WorldWideScience

Sample records for solidified eutectic alloy

  1. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    Science.gov (United States)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  2. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  3. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    Science.gov (United States)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  4. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  5. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Chang-Sheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Liu, Tie, E-mail: liutie@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2017-02-15

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials. - Highlights: • We study effects of orientation in crystal and morphology on magnetic anisotropy. • Both orientation in crystal and morphology can induce magnetic anisotropy. • Their effects depend on direction and exhibit either mutual promotion or competition.

  6. Structural perfection of directionally solidified lamellar eutectics

    International Nuclear Information System (INIS)

    Attallah, T.; Gurzleski, J.E.

    1976-01-01

    The mechanisms for the formation of faults in lamellar eutectics are reviewed, and it is postulated that faults play several roles in eutectic freezing with their exact importance depending on the specific alloy system and the growth conditions. Faults are not the cause of lamellar spiralling although they are necessary for it to occur. Lamellar spiralling is found to occur only when the crystallographic orientations of the two eutectic phases lead to a growth component normal to the lamellar plane, and although some systems such as Pb-Sn normally spiral it is possible for them to achieve orientation relationships where no spiralling occurs

  7. Initial stages of solidification of eutectic alloys

    International Nuclear Information System (INIS)

    Lemaignan, Clement

    1980-01-01

    The study of the various initial stages of eutectic solidification - i.e. primary nucleation, eutectic structure formation and stable growth conditions - was undertaken with various techniques including low angle neutron diffusion, in-situ electron microscopy on solidifying alloys and classical metallography. The results obtained allow to discuss the effect of metastable states during primary nucleation, of surface dendrite during eutectic nucleation and also of the crystallographic anisotropy during growth. (author) [fr

  8. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    Science.gov (United States)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  9. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  10. General characteristics of eutectic alloy solidification mechanisms

    International Nuclear Information System (INIS)

    Lemaignan, Clement.

    1977-01-01

    The eutectic alloy sodification was studied in binary systems: solidification of non facetted - non facetted eutectic alloy (theoretical aspects, variation of the lamellar spacing, crystallographic relation between the various phases); solidification of facetted - non facetted eutectic alloy; coupled growth out of eutectic alloy; eutectic nucleation [fr

  11. Solidification of eutectic system alloys in space (M-19)

    Science.gov (United States)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are

  12. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  13. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    Science.gov (United States)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  14. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  15. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    Science.gov (United States)

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  16. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  17. Study of the thermal and kinetic parameters during directional solidification of zinc-aluminum eutectic alloys

    International Nuclear Information System (INIS)

    Gueijman, Sergio Fabian; Ares, Alicia Esther; Schvezov, Carlos Enrique

    2008-01-01

    Much work has been done recently on investigating zinc-based binary alloys, with different aluminum content, and modified or not with small amounts of other alloying elements. Some of these alloys have interesting properties, such as, the ZA alloys that have properties similar to some bronzes that are used in applications that require pieces with enough resistance to mechanical stresses. The longitudinal thermal gradients, the minimal gradients, the velocities of the liquid interphases, the velocities of the solid interphases and the accelerations of both interphases as a function of time and position were determined for each diluted alloy of the eutectic concentration considered (Zn-5%Al, % in weight), solidified horizontally with caloric extraction from both ends of the test pieces. The values obtained from the horizontal solidification with two directions of predominant caloric extraction are compared to previous values obtained for the same vertically solidified alloy system with a predominantly caloric extraction direction

  18. Microstructure Of MnBi/Bi Eutectic Alloy

    Science.gov (United States)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  19. Directional solidification of Zn-Al-Cu eutectic alloy by the vertical Bridgman method

    Directory of Open Access Journals (Sweden)

    Büyük U.

    2015-01-01

    Full Text Available In the present work, the effect of growth rate and temperature gradient on microstructure and mechanical properties of Zn-7wt.%Al-4wt.%Cu eutectic alloy has been investigated. Alloys prepared under steady-state conditions by vacuumed hot filing furnace. Then, the alloys were directionally solidified upward with different growth rates (V=11.62-230.77 mm/s at a constant temperature gradient (G=7.17 K/mm and with different temperature gradients (G=7.17-11.04 K/mm at a constant growth rate (V=11.62 mm/s by a Bridgman furnace. The microstructures were observed to be lamellae of Zn, Al and broken lamellae CuZn4 phases from quenched samples. The values of eutectic spacing, microhardness and ultimate tensile strength of alloys were measured. The dependency of the microstructure and mechanical properties on growth rate and temperature gradient were investigated using regression analysis.

  20. Structure of eutectic alloys of Au with Si and Ge

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan)], E-mail: takeda@rc.kyushu-u.ac.jp; Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Tahara, S.; Nakashima, S. [Graduate School of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S.; Itou, M. [Japan Synchrotron Radiation Research Institute, 1-1-1 Koto Sayo-cho, Sayo Hyogo 679-5198 (Japan)

    2008-03-06

    Au-Si and Au-Ge alloy systems have a deep eutectic point in the Au-rich concentration region where the melting point falls down to 633 K. In order to investigate the liquid structure in relation to the glass-forming tendency of these alloys, high-energy X-ray diffraction measurements have been carried out at the eutectic composition and at compositions with excess amounts of Au or IVb element. The nearest neighbor correlations in the eutectic liquids are intense and sharp in the pair distribution function and exhibit a rather small temperature dependence in comparison with those alloys of other than the eutectic composition. Structural models for these liquid alloys are proposed with the aid of reverse Monte Carlo simulation. The reproduced atomic arrangements around the eutectic region exhibit a substitutional-type structure where the dense random packing of Au atoms is preserved and Si or Ge atoms occupy the Au-sites at random.

  1. Modelling Eutectic Growth in Unmodified and Modified Near-Eutectic Al-Si Alloy

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Hattel, Jesper Henri; Taylor, John A.

    2013-01-01

    growth parameters from the literature that depend on the type of modification (unmodified, Na-modified or Sr-modified) are used to describe differences in growth of the alloys. Modelling results are compared with solidification experiments where an Al-12.5wt%Si alloy was cast in unmodified, Na modified......A numerical model that describes solidification of primary aluminium grains and nucleation and growth of eutectic cells is used to analyse the solidification of an Al-12.5wt% Si alloy. Nucleation of eutectic cells is modelled using an Oldfield-type nucleation model where the number of nuclei...... and Sr modified forms. The model confirms experimental observations of how modification and alloy composition influence nucleation, growth and finally the size of eutectic cells in the alloys. Modelling results are used to explain how cooling conditions in the casting act together with the nuclei density...

  2. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D.L.; Xie, W.J.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2012-10-15

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition. (orig.)

  3. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  4. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  5. Directional solidification of filamentary shapes of Pb--Cd and Pb--Sn eutectic alloys

    International Nuclear Information System (INIS)

    Dhindaw, B.K.; Verhoeven, J.D.; Spencer, C.R.; Gibson, E.D.

    1978-01-01

    Eutectic alloys of Pb--Cd and Pb--Sn were directionally solidified as thin filamentary strips contained in stainless steel and quartz capillaries. As the solidification rate increased the filament width, w, had to be reduced to maintain complete alignment of the lamellae clear across the filament. It was determined that in order to achieve complete alignment the ratio of filament width to lamellar spacing, w/lambda had to be less than about 30. Experiments were carried out at rates of 2-400 μm/s and at temperature gradients of 130 and 320 0 C/cm

  6. Microstructural and mechanical properties of binary Ni–Si eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Musa, E-mail: gogebakan@ksu.edu.tr [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Kursun, Celal [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gunduz, Kerem Ozgur; Tarakci, Mehmet; Gencer, Yucel [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey)

    2015-09-15

    Highlights: • Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} were prepared by arc melting method. • The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy. • The microhardness values decreases with increase of Si/Ni ratio. • Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} are paramagnetic. - Abstract: In the present work, Ni–Si eutectic alloys with nominal compositions of Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} (Ni and Si with the purity of 99.99%) were prepared by arc melting method under vacuum/argon atmosphere. The effects of Si/Ni ratio on the microstructural properties, thermal transformation behavior, micro-hardness and magnetic properties of the Ni–Si eutectic alloys were investigated. These alloys were characterized by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), differential thermal analysis (DTA), Vickers microhardness measurement and Vibrating Sample Magnetometer (VSM). The phases expected according to Ni–Si phase diagram for conventional solidified eutectic Ni–Si alloys are considerably consistent with phase detected by XRD in this study. The quantitative results confirm that the chemical composition of the alloys very close to eutectic compositions and the microstructures are in typical lamellar eutectic morphology. The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy which has highest melting temperature amongst Ni–Si eutectics. The microhardness values decreases with increase of Si/Ni ratio. Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} alloys are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} alloys are paramagnetic with no magnetic saturation.

  7. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  8. Rapidly solidified long-range-ordered alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Koch, C.C.; Liu, C.T.

    1981-01-01

    The influence of rapid solidification processing on the microstructure of long-range-ordered alloys in the (Fe, Co, Ni) 3 V system has been studied by transmission electron microscopy. The main microstructural feature of the as-quenched alloys was a fine cell structure (approx. 300 nm diameter) decorated with carbide particles. This structure was maintained aftr annealing treatments which develop the ordered crystal structure. Other features of the microstructures both before and after annealing are presented and discussed. 6 figures

  9. Evolution of morphology in solidifying aluminium alloys

    NARCIS (Netherlands)

    Dijkstra, W.O.

    2007-01-01

    In the thesis two different models of solidification of aluminum alloys are presented and analyzed. The first 1--D solidification model is derived from the conservation of solute, heat and mass. With numerical experiments it is shown that simulations with the Finite Difference discretization must

  10. Pseudobinary eutectics in Cu–Ag–Ge alloy droplets under containerless condition

    International Nuclear Information System (INIS)

    Ruan, Y.; Wang, X.J.; Lu, X.Y.

    2013-01-01

    Highlights: ► Two pseudobinary eutectics form in Cu–Ag–Ge alloy. ► It is influenced by thermodynamic and kinetic factors of the alloy in the drop tube. ► As droplet size reduces, anomalous → lamellar → anomalous transition happens in (Ag + ζ). ► (Ag + ε 2 ) is a product of both peri-eutectic and pseudobinary eutectic transitions. -- Abstract: Pseudobinary eutectic generated by pseudobinary eutectic transition or peri-eutectic transition is a crucial structure in ternary alloy systems. Its formation mechanism strongly influences mechanical properties of these metallic materials. However, it was customarily neglected. In this paper, two pseudobinary eutectics, i.e. (Ag + ζ) and (Ag + ε 2 ), were investigated during the rapid solidification of Cu–Ag–Ge ternary alloy in a 3 m-drop tube. The sharp temperature variations and dramatic kinetic activities of the falling alloy droplets before solidification cause special microstructural characteristics. (Ag) dendrite is the heterogeneous nucleus for anomalous (Ag + ζ) pseudobinary eutectic in large droplets. Lamellar (Ag + ζ) pseudobinary eutectic grain forms independently on condition that primary (Ag) dendrite cannot form and its eutectic morphology becomes anomalous with the decrease of droplet size. Nanoscaled (Ag + ε 2 ) pseudobinary eutectic generating at the last stage of solidification is the product of both peri-eutectic and pseudobinary eutectic transitions. It distributes in the gaps of (Ag + ζ) pseudobinary eutectic grains and its morphology remains lamellar regardless of droplet size

  11. Effective hydrogen diffusion coefficient for solidifying aluminium alloys

    International Nuclear Information System (INIS)

    Felberbaum, M.; Landry-Desy, E.; Weber, L.; Rappaz, M.

    2011-01-01

    An effective hydrogen diffusion coefficient has been calculated for two solidifying Al - 4.5 wt.% Cu and Al - 10 wt.% Cu alloys as a function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the results of the numerical model at steady state. The results are compared with various effective medium theories.

  12. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  13. Effect of Trace Ce on Microstructure and Properties of Near-rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2018-03-01

    Full Text Available Through using DSC, XRD, SEM, EDS, static tensile test and other analysis methods of materials, the effect of trace Ce on microstructure and properties of near-rapidly solidified Al-Zn-Mg-Cu alloy was studied in order to find out rational homogenizing heat treatment process. The results show that Ce plays a role of refining grain and purifying molten alloy. The addition of Ce reduces dendritic spacing, refines the grain structures, eliminates dispersed shrinkage. The addition of Ce reduces the initial melting point of low melting eutectic phases by 3℃, under the same homogenization conditions. Trace Ce promotes the dissolution of low melting eutectic phases into the matrix, which improves the effect of homogenization. Homogenization temperatures of alloy A should be lower than 480℃and alloy B should be lower than 470℃; the addition of Ce decreases the homogenization temperature and improves the homogenization effect. The addition of Ce also greatly increases the tensile strength of the alloys.

  14. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  15. Monotonic and fatigue deformation of Ni--W directionally solidified eutectic

    International Nuclear Information System (INIS)

    Garmong, G.; Williams, J.C.

    1975-01-01

    Unlike many eutectic composites, the Ni--W eutectic exhibits extensive ductility by slip. Furthermore, its properties may be greatly varied by proper heat treatments. Results of studies of deformation in both monotonic and fatigue loading are reported. During monotonic deformation the fiber/matrix interface acts as a source of dislocations at low strains and an obstacle to matrix slip at higher strains. Deforming the quenched-plus-aged eutectic causes planar matrix slip, with the result that matrix slip bands create stress concentrations in the fibers at low strains. The aged eutectic reaches generally higher stress levels for comparable strains than does the as-quenched eutectic, and the failure strains decrease with increasing aging times. For the composites tested in fatigue, the aged eutectic has better high-stress fatigue resistance than the as-quenched material, but for low-stress, high-cycle fatigue their cycles to failure are nearly the same. However, both crack initiation and crack propagation are different in the two conditions, so the coincidence in high-cycle fatigue is probably fortuitous. The effect of matrix strength on composite performance is not simple, since changes in strength may be accompanied by alterations in slip modes and failure processes. (17 fig) (auth)

  16. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  17. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  18. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  19. Divorced Eutectic Solidification of Mg-Al Alloys

    Science.gov (United States)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  20. Modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand); Kajornchaiyakul, Julathep [National Metal and Material Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@kmutt.ac.th [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2013-10-25

    Highlights: •Morphologies and growth of Sc and Sr-modified eutectic silicon resemble those of dendrites. •Crystal orientation of eutectic aluminum depends on growth characteristics of eutectic silicon. •We report strong evidence of the occurrence of an impurity-induced twinning mechanism. -- Abstract: The modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium was studied. The crystallographic orientation relationships between primary dendrites and the eutectic phase of unmodified and modified Al–6Si–0.3 Mg alloys were determined using electron backscatter diffraction (EBSD). The orientation of aluminum modified with scandium in the eutectic phase was different from that of the neighboring primary dendrites. This result implies that eutectic aluminum grows epitaxially from the surrounding primary aluminum dendrites in the unmodified alloy and that eutectic aluminum grows competitively from the surrounding primary aluminum dendrites in the modified alloy. The pole figure maps of eutectic Si in the [1 0 0], [1 1 0] and [1 1 1] axes of the unmodified and Sc-modified alloys were different, suggesting that the eutectic Al and Si crystals in modified alloy growth are more isotropic and cover a larger set of directions. The lattice fringes of Si of the alloys with and without Sc modification were different in the TEM results. The lattice fringes of Si in modified alloy were found to be multiple twins. However, this was not observed in the unmodified alloy. The growth characteristic of eutectic Si crystal in modified alloy suggests the occurrence of multiple twinning reactions and the formation of a high density of twins. This modification mechanism by Sc is explained by the results of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis, which provide strong evidence of the occurrence of the impurity-induced twinning (IIT) mechanism.

  1. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  2. The novel eutectic microstructures of Si-Mn-P ternary alloy

    International Nuclear Information System (INIS)

    Wu Yaping; Liu Xiangfa

    2010-01-01

    The microstructures of Si-Mn-P alloy manufactured by the technique of combining phosphorus transportation and alloy melting were investigated using electron probe micro-analyzer (EPMA). The phase compositions were determined by energy spectrum and the varieties of eutectic morphologies were discussed. It is found that there is no ternary compound but Si, MnP and MnSi 1.75-x could appear when the Si-Mn-P alloy's composition is proper. Microstructure is greatly refined by rapid solidification technique and the amount of eutectic phases change with faster cooling rates. Moreover, primary Si or MnP are surrounded firstly by the binary eutectic (Si + MnP) and then the ternary eutectic (Si + MnSi 1.75-x + MnP) which also exhibit binary structures due to divorced eutectic determined by the particularity of some Si-Mn-P alloys.

  3. The effect of the solidification mode on eutectic structure in Fe-C-V alloys

    International Nuclear Information System (INIS)

    Fras, E.; Guzik, E.

    1980-01-01

    The aim of the study was to determine such a chemical composition of Fe-C-V alloys which would ensure the formation of perfectly eutectic structures as well as to investigate the eutectic morphology of these alloys when undergoing bulk and directional solidification. Attempts have been done to get in situ composites from Fe-C-V alloys. The adopted testing methods as well as obtained results are described in detail. (H.M.)

  4. On creep of directionally solidified eutectic Co-Cr-C-base superalloys

    International Nuclear Information System (INIS)

    Hildebrandt, U.W.

    1981-01-01

    It is shown in the present paper that the stress exponent and the activation energy of an Al-modified 73 C-alloy agree with the following mechanisms: diffusion controlled climbing of dislocation takes place and, the activation energy is in accordance with the self-diffusion energy of chromium, particularly that of Cr in Cr 7 C 3 . (orig.) [de

  5. Prospects for designing structural cast eutectic alloys on Al-Ce-Ni system base

    International Nuclear Information System (INIS)

    Belov, N.A.; Naumova, E.S.

    1996-01-01

    The phase diagram of Al-Ce-Ni system is built for an aluminium corner at component concentration up to 16 mass %Ce and 8 mass%Ni. A ternary eutectic reaction is established at 12%Ce, 5%Ni and 626 deg C. The ternary eutectic alloy is similar in structure to rapidly cooled Al base alloys with transition metals. The possibility to design new cast alloys based on three-phase (Al)+NiAl 3 +CeAl 4 eutectics is under consideration. Al-Zn-Mg-Cu, Al-Sc and Al-Zr base alloys can be used as (Al) constituent of the eutectics. The new alloys may be considered as heat resistant ones due to the fact that no structural changes are observed in castings on heating up to 350 deg C. 18 refs.; 4 figs.; 2 tabs

  6. Divorced eutectic in a HPDC magnesium-aluminum alloy

    International Nuclear Information System (INIS)

    Barbagallo, S.; Laukli, H.I.; Lohne, O.; Cerri, E.

    2004-01-01

    The morphology of the eutectic in a thin-wall high pressure die cast (HPDC) U-shape AM60 magnesium box was investigated by light microscope, SEM, TEM and EPMA. The extremely fast cooling rate taking place in the solidification process produces a highly segregated zone near the boundaries of small grains and a fine distribution of β particles, which is typical of a completely divorced eutectic. It was shown that the segregated zone is coherent with the primary α-Mg grain core even if the increased aluminium content produces a deformation of the hexagonal crystal lattice, which was estimated through diffraction patterns (SADP). The variation of the alloying elements content through the grain boundaries was shown by means of EPMA line scanning. The β particle composition was quantitatively investigated and the results show that, in comparison with the equilibrium phase diagram, the non-equilibrium phase boundary of the Mg 17 Al 12 region is moved some percent towards the lower aluminium content, at the high cooling rate that occurs in high pressure die castings. The cubic structure of the β phase was revealed by diffraction pattern. The presence of small Al-Mn particles both inside the grain and in the boundary region was also put in evidence by TEM

  7. Antimony Influence on Shape of Eutectic Silicium in Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2017-12-01

    Full Text Available Liquid AI-Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved properties. For many years, sodium additions to hypoeutectic and eutectic AI-Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic structure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI-Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non-fading refining ability. In this paper, the authors summarize work on antimony treatment of Al-Si based alloys.

  8. Microstructural stability of a NiAl-Mo eutectic alloy

    International Nuclear Information System (INIS)

    Kush, M.T.; Holmes, J.W.; Gibala, R.

    1999-01-01

    The microstructural stability of a directionally-solidified NiAl-9 at.% Mo quasi-binary alloy was investigated under conditions of thermal cycling between the temperatures 973K and 1,473K utilizing time-temperature heating and cooling profiles which approximate potential engine applications. Two different microstructures were examined: a cellular microstructure in which the faceted second-phase Mo rods in the NiAl matrix formed misaligned cell boundaries which separated aligned cells approximately 0.4 mm in width and 5--25 mm in length, and a nearly fault-free fully columnar microstructure well aligned along the [001] direction. Both microstructures resisted coarsening under thermal cycling, but plastic deformation induced by thermal stresses introduced significant specimen shape changes. Surprisingly, the cellular microstructure, for which the cell boundary region apparently acts as a deformation buffer, exhibited better resistance to thermal fatigue than the more fault-free and better aligned columnar microstructure

  9. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts

    Science.gov (United States)

    Li, Mingjun; Kuribayashi, Kazuhiko

    2003-12-01

    Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results

  10. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  11. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  12. THE NIOBIUM-THORIUM EUTECTIC ALLOY AS A HIGH-FIELD, HIGH-CURRENT SUPERCONDUCTOR

    Energy Technology Data Exchange (ETDEWEB)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1963-03-15

    Niobium-thorium eutectic alloys having fine acicuiar microstructures were produced by fast cooling frorn a vacuum melt. Although the solidified material was normal, continuity between the superconducting niobium-rich phase, which was essentially pure niobium, was attained by plastic deformation at room temperature. The resulting wire was tested for critical current at 4.2 deg K, in transverse magnetic fields up to 82.5 kilogauss; at the highest field, critical current densities of slightly more than 10/sup 4/ amps per square centimeter were observed. The critical current density was independent of applied field from 20 kilogauss to the highest field used; the level of critical current density depended on diameter in a manner that suggested dependence on cold work. It was concluded that the cold work reduced the thickness of the needles of niobium below the superconducting penetration depth, and brought them sufficiently close together to allow the superconducting correlation to interconnect the niobium, in the manner suggested by Cooper; furthermore, the constant critical current region may possibly extend to considerably higher fields. (auth)

  13. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Jie, J.C.; Zou, C.M.; Brosh, E.; Wang, H.W.; Wei, Z.J.; Li, T.J.

    2013-01-01

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al 12 Mg 17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al 3 Mg 2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  14. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    International Nuclear Information System (INIS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-01-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl 2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting

  15. Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys

    International Nuclear Information System (INIS)

    Li Chong; Wu Yaping; Li Hui; Wu Yuying; Liu Xiangfa

    2010-01-01

    Research highlights: → By the injection of rod-like NiAl 3 phase in Al-Mg 2 Si alloys, Al-Mg 2 Si binary eutectic structure gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic. → The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. → The mechanism of structural evolution was analyzed in terms of the detailed microstructural observations. → The high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structural evolution. - Abstract: The aim of this work is to investigate the eutectic structural evolution of hypereutectic Al-20% Mg 2 Si with Ni addition under a gravity casting process. Three-dimensional morphologies of eutectic phases were observed in detail using field emission scanning electron microscopy, after Al matrix was removed by deep etching or extraction. The results show that Al-Mg 2 Si binary eutectic gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic with the increase of Ni content, and flake-like eutectic Mg 2 Si transforms into rods. The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. Further, the high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structure evolution, and the mechanism of structural evolution was discussed and analyzed in terms of the detailed microstructural observations.

  16. On the stable eutectic solidification of iron–carbon–silicon alloys

    International Nuclear Information System (INIS)

    Stefanescu, Doru M.; Alonso, Gorka; Larrañaga, Pello; Suarez, Ramon

    2016-01-01

    Extensive effort was expanded to elucidate the growth and morphology of the stable eutectic grains during early solidification of continuous cooled Fe–C–Si alloys. To this purpose, quenching experiments at successive stages during solidification have been carried out on five cast irons with various magnesium and titanium levels designed to produce graphite morphologies ranging from lamellar to mixed compacted–spheroidal. The graphite shape factors were measured on the metallographic samples, and their evolution as a function of the chemical composition and the solid fraction was analyzed. Extensive scanning electron microscopy was carried on to evaluate the change in graphite shape during early solidification, to establish the fraction of solid at which the transition from spheroidal-to-compacted-to-lamellar graphite occurs, and to outline the early morphology of the eutectic grains. It was confirmed that solidification of Mg containing irons started with the development of spheroidal graphite even at Mg levels as low as 0.013 mass%. Then, as solidification proceeds, when some spheroids developed one or more tails (tadpole graphite), the spheroidal-to-compacted graphite transition occurs. The new findings were then integrated in previous knowledge to produce an understanding of the eutectic solidification of these materials. It was concluded that in hypoeutectic lamellar graphite iron austenite/graphite eutectic grains can nucleate at the austenite/liquid interface or in the bulk of the liquid, depending on the sulfur content and on the cooling rate. When graphite nucleation occurs on the primary austenite, several eutectic grains can nucleate and grow on the same dendrite. The primary austenite continues growing as eutectic austenite and therefore the two have the same crystallographic orientation. Thus, a final austenite grain may include several eutectic grains. In eutectic irons the eutectic grains nucleate and grow mostly in the liquid. The eutectic

  17. Directional solidification and characterization of the Al Nb2 - Al3 Nb eutectic system

    International Nuclear Information System (INIS)

    Trevisan, Eduardo A.O.; Andreotti, Fabio; Caram, Rubens

    1996-01-01

    The manufacturing of components to operate at high temperatures requires the use of metallic materials which can keep satisfactory mechanical and chemical properties, even at temperatures beyond 1000 deg C. An interesting alternative is the use of directionally solidified eutectic alloys. The eutectic alloy solidification makes possible the production of 'in situ' composite. A potentially useful system for manufacturing structural materials is the Al-Nb eutectic system. The aim of this work is to present the directional solidification of the Al-Nb eutectic alloy. (author)

  18. Undercooling and demixing in rapidly solidified Cu-Co alloys

    DEFF Research Database (Denmark)

    Battezzati, L.; Curiotto, S.; Johnson, Erik

    2007-01-01

    The Cu–Co system displays a metastable miscibility gap in the liquid state. A considerable amount of work has been performed to study phase separation and related microstructures showing that demixing of the liquid is followed by coagulation before dendritic solidification. Due to kinetic...... competition of transformation phenomena, the mechanisms have not been fully disclosed. This contribution reviews such findings with the help of a computer calculation of the phase diagram and extends the present knowledge by presenting new results obtained by rapidly solidifying various Cu–Co compositions...... using a wide range of cooling rates achieved by forcing the liquid into cylindric and conic moulds and by melt spinning....

  19. Free energy change of off-eutectic binary alloys on solidification

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  20. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  1. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    Science.gov (United States)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  2. Acoustic emission from a solidifying aluminum-lithium alloy

    Science.gov (United States)

    Henkel, D. P.; Wood, J. D.

    1992-01-01

    Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.

  3. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys

    Science.gov (United States)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Various Cu-Pb-Al alloys were directionally solidified under 1-g conditions and alternating high-g/low-g conditions (achieved using NSAS's KC-135 aircraft) as a means of studying the influence of interfacial energies and gravitational levels on the resulting microstructures. Directional solidification of low Al content alloys was found to result in samples with coarser more irregular microstructures than in alloys with high Al contents under all the gravity conditions considered. Structures are correlated with interfacial energies, growth rates, and gravitational levels.

  4. Effect of Bi-content on hardness and micro-creep behavior of Sn-3.5Ag rapidly solidified alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M. [Metal Physics Laboratory, Faculty of Science, Mansoura University (Egypt); Gouda, El Said [Metal Physics Laboratory, Department of Solid State Physics, Physics Division, National Research Center, Dokki, Giza (Egypt); Marei, L.K. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2009-12-15

    In the present paper, the influence of 1, 3, 5 and 10 % Bi (weight %) as ternary additions on structure, melting and mechanical properties of rapidly solidified Sn-3.5Ag alloy has been investigated. The effect of Bi was discussed based on the experimental results. The experimental results showed that the alloys of Sn-3.5Ag, Sn-3.5Ag-1Bi and Sn-3.5Ag-3Bi are composed of two phases; Ag{sub 3}Sn IMC embedded in Sn matrix phase, which indicated that the solubility of Bi phase in Sn-matrix was extended to 3 % as a result of rapid solidification. Bi precipitation in Sn matrix was only observed in Sn-3.5Ag-5Bi and Sn-3.5Ag-10Bi alloys. Also, addition of Bi decreased continuously the melting point of the eutectic Sn-3.5Ag alloy to 202.6 C at 10 % Bi. Vickers hardness of Sn-3.5Ag rapidly solidified alloy increased with increasing Bi content up to 3 % due to supersaturated solid solution strengthening hardening mechanism of Bi phase in Sn matrix, while the alloys contain 5 and 10 % Bi exhibited lower values of Vickers hardness. The lower values can be attributed to the precipitation of Bi as a secondary phase which may form strained regions due to the embrittlement of Bi atom. In addition, the effect of Bi addition on the micro-creep behavior of Sn-3.5Ag alloy as well as the creep rate have been described and has been calculated at room temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station

    Science.gov (United States)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  6. Rapidly solidified Ti-25Al-Nb alloys

    International Nuclear Information System (INIS)

    Ward, C.H.; Broderick, T.F.; Jackson, A.G.; Rowe, R.G.; Froes, F.H.

    1987-01-01

    Alloys based on the Ti-25Al-Nb intermetallic system were studied to determine the effects of rapid solidification on structure. Compositions ranging from 12 to 30 at% niobium which are beyond the α/sub 2/ single phase field were evaluated. Alloys were prepared using a melt spinning process. The resulting ribbons were characterized using transmission electron microscopy and x-ray diffraction. The alloys were all found to have a retained ordered B2 structure in the melt spun condition with an antiphase domain size that significantly decreased with increasing niobium content. ''Tweed-like'' striations, indicating planar shear strain, were observed in all compositions. The characteristic diffraction pattern of an ordered ''omega-type'' phase was found to occur in the patterns taken from the 12 at% niobium alloy

  7. Microstructure and orientation evolution in unidirectional solidified Al–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail: chzw@nwpu.edu.cn; Wang, Enyuan; Hao, Xiaolei

    2016-06-14

    Morphological instability and growth orientation evolution during unidirectional solidification of Al–Zn alloys with different pulling speeds were investigated by X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) in scanning electron microscope (SEM). The experimental results show that, as the pulling speed increases, the primary dendrite spacing becomes smaller gradually and dendrite trunks incline to the heat flow direction perfectly in unidirectional solidified Al–9.8 wt%Zn and Al–89 wt%Zn alloys. However, regardless of the pulling speed in unidirectional solidified Al–Zn alloys under fixed thermal gradient, the regular dendrites with <100> directions of primary trunks and secondary arms in 9.8 wt% Zn composition are replaced by <110> dendrites of primary trunks and secondary arms in 89 wt% Zn composition. In unidirectional solidified Al–32 wt% Zn alloy, cellular, fractal seaweed, and stabilized seaweed structures were observed at high pulling speeds. At a high pulling speed of 1000 µm/s, seaweed structures transform to the columnar dendrites with <110> trunks and <100> arms. The above orientation evolution can be attributed to low anisotropy of solid-liquid interface energy and the seaweed structure is responsible for isotropy of {111} planes.

  8. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    Science.gov (United States)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  9. A potentiostatic and galvanostatic study of the selective dissolution of Cd/Pb eutectic alloy

    International Nuclear Information System (INIS)

    Sokharev, N.P.; Rabdel, A.A.; Zhadanov, V.V.

    1986-01-01

    The authors consider the selective dissolution (SD) of the electronegative component of a two-phase, eutectic alloy (Cd/Pb) under galvanostatic conditions. Treating this process as the extraction of a solid substance from a porous matrix, the distribution of the concentration of EC ions, c(x, t), can be described by a differential equation (presented). Experimental data are presented in two equations which are applicable for the description of the selective dissolution process of the electronegative component of a eutectic alloy under conditions of concentration polarization

  10. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  11. Crystallization processes in Ni-Ti-B glassy alloys of near-ternary-eutectic composition

    International Nuclear Information System (INIS)

    Merk, N.; Morris, D.G.; Stadelmann, P.

    1987-01-01

    The crystallization kinetics and mechanisms of three Ni-Ti-B glasses have been examined with a view to elucidating the roles of chemical composition and quenched structure on behaviour. Alloys of composition near a ternary-eutectic point have been chosen because they represent a real and complex situation where several crystalline phases may form simultaneously. Crystallization processes are analysed in terms of nucleation and growth stages. Different nucleation mechanisms seem to be best explained in terms of the short range ordered structure of the quenched glass. Analysis of crystal glass interface energies indicates that it is not this energy term which controls the nucleation of crystals on annealing. Crystal growth may involve a eutectic mechanism or a single-phase mechanism controlled by interface or matrix-diffusion kinetics. Crystallization is fastest when eutectic nucleation and growth occurs. Formation of the eutectic colony requires the initial formation of the phase of complex structure followed by the phase of simpler structure

  12. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, D.V.; Inoue, A.

    2005-01-01

    An as-solidified structure and transformation behaviour on heating of the rapidly solidified Al-Y-Ni-Co-Pd alloy was studied by X-ray diffractometry (XRD), transmission electron microscopy (TEM), differential scanning and isothermal calorimetries. The Al-Y-Ni-Co-Pd ribbon samples have been produced by the melt spinning technique and heat treated using a differential scanning calorimeter (DSC). The addition of Pd to Al-Y-Ni-Co alloys caused disappearance of the supercooled liquid region as well as the formation of the highly dispersed primary α-Al nanoparticles about 3-7 nm in size homogeneously embedded in the glassy matrix upon solidification. An extremely high density of precipitates of the order of 10 24 m -3 is obtained. These particles start growing at the temperature below a glass-transition temperature. The results presented in this paper indicate that some of so-called 'marginal' glass-formers in as-solidified state are actually not glassy alloys with pre-existed nuclei but crystal-glassy nanocomposites

  13. Microstructural evolution of ternary Ag33Cu42Ge25 eutectic alloy inside ultrasonic field

    Directory of Open Access Journals (Sweden)

    Wei Zhai

    2014-12-01

    Full Text Available Ultrasonic field with a frequency of 20 kHz is introduced into the solidification process of ternary Ag33Cu42Ge25 eutectic alloy from the sample bottom to its top. The ultrasound stimulates the nucleation of alloy melt and prevents its bulk undercooling. At low ultrasound power of 250 W, the primary ε2 phase in the whole alloy sample grows into non-faceted equiaxed grains, which differs to its faceted morphology of long strip under static condition. The pseudobinary (Ag+ε2 eutectic transits from dendrite shape grain composed of rod type eutectic to equiaxed chrysanthemus shape formed by lamellar structure. By contrast, the ultrasound produces no obvious variation in the morphology of ternary (Ag+Ge+ε2 eutectic except a coarsening effect. When ultrasound power rises to 500 W, divorced ternary (Ag+Ge+ε2 eutectic forms at the sample bottom. However, in the upper part, the ultrasonic energy weakens, and it only brings about prominent refining effect to primary ε2 phase. The microstructural evolution mechanism is investigated on the cavitation, acoustic streaming and acoustic attenuation.

  14. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  15. Solidification structure and dispersoids in rapidly solidified Ti-Al-Sn-Zr-Er-B alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Broderick, T.F.; Koch, E.F.; Froes, F.H.

    1986-01-01

    The microstructure of melt extracted and melt spun titanium alloys containing erbium and boron revealed a duplex solidification structure of columnar grains leading to equiaxed and dendritic structures near the free surface of melt extracted and melt spun alloys. The solidification structure was revealed by apparent boride segregation to cellular, interdendritic and grain boundaries. Precipitation of needle or lath-like TiB particles occurred adjacent to Er/sub 2/O/sub 3/ dispesoid particles in as-rapidly solidified ribbon

  16. Preparation, heat treatment, and mechanical properties of the uranium-5 weight percent chromium eutectic alloy

    International Nuclear Information System (INIS)

    Townsend, A.B.

    1980-10-01

    The eutectic alloy of uranium-5 wt % chromium (U-5Cr) was prepared from high-purity materials and cast into 1-in.-thick ingots. This material was given several simple heat treatments, the mechanical properties of these heat-treated samples were determined; and the microstructure was examined. Some data on the melting point and transformation temperatures were obtained

  17. Coupled growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys

    International Nuclear Information System (INIS)

    Hecht, U; Witusiewicz, V; Drevermann, A

    2012-01-01

    Coupled eutectic growth of Al and Al 2 Cu was investigated in univariant Al-Cu-Ag alloys during solidification with planar and cellular morphology. Experiments reveal the dynamic selection of small spacings, below the minimum undercooling spacing and show that distinct morphological features pertain to nearly isotropic or anisotropic Al-Al 2 Cu interfaces.

  18. Pressure-induced structural change in liquid GaIn eutectic alloy

    DEFF Research Database (Denmark)

    Yu, Q.; Ahmad, A. S.; Ståhl, Kenny

    2017-01-01

    Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and a polymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa at room temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phase...

  19. Microstructure of amorphous and crystalline zirconium alloys rapiddly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.; Bezerra, G.H

    1986-01-01

    In this work we report microstructural studies of rapidly solification of Zr-30% at Cu alloy. This composition was chosen because it is the Zr rich limit of glass formation range. The ribbons were prepared by melt spinning system (cooling rate is estimated in 10 6 K/s) and the average thickness of the microscopy were prepared by double jet electropolishing to investigate the microstructure of the ribbon. It was observed amorphos and crystalline regions. In the crystalline regions occured a radial growth morphology with stress contrats. The beginning of solidification is a polimorphous reaction and the shape of the micrograins is similar to spherulitic form. The average diameter of the grains are 0,5 μm or less. (Author) [pt

  20. A study on the microstructural characteristics of rapidly solidified Al-Fe alloys(I)

    International Nuclear Information System (INIS)

    Kim, D.H.; Lee, H.I.

    1991-01-01

    Solidification microstructures and phases in rapidly solidified Al-5, 10wt% Fe alloys have been investigated by TEM bright field and dark field imaging techniques and electron and x-ray diffraction techniques. Rapid solidification of Al-5, 10wt%Fe alloys produces various metastable and stable phases, such as Al m Fe, Al 6 Fe and Al 13 Fe 4 . In addition to these phases, clusters of randomly oriented few nm scale particles exist in the form of fine cellular network with α-Al or primary spherical particles. Solidification microstructures of the rapidly solidified Al-5, 10wt%Fe alloys consist of various combination of primary phases such as Al 13 Fe 4 , Al m Fe and cluster of nm scale particles, and cellular/dendritic structures such as fine cellular network structure of nm scale particle clusters and α-Al and cellular structure of Al m Fe and α-Al, depending upon alloy compositions and local cooling rates. (Author)

  1. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  2. Structure of liquid Au-Si alloys around the eutectic region

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, S. [Faculty of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan)], E-Mail: takeda@rc.kyushu-u.ac.jp; Fujii, H. [Graduate School of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Kawakita, Y. [Faculty of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Kato, Y. [Graduate School of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Fujita, S. [Graduate School of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, Ropponmatsu Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouo Mikazuki-cho, Sayou-gun Hyogo 670-5198 (Japan)

    2007-03-25

    X-ray diffraction measurements have been carried out for liquid Au-Si alloys around the eutectic region by the transmission method using high-energy X-ray to investigate the atomic arrangements in the liquid state. From the temperature dependence of the observed structure factors, the partial pair correlation and the detailed atomic arrangements will be discussed on the basis of a Reverse Monte Carlo analysis. The reproduced atomic arrangements around the eutectic region suggest the substitution structure and also rather dense liquid with decreasing temperature.

  3. Modeling of Eutectic Formation in Al-Si Alloy Using A Phase-Field Method

    Directory of Open Access Journals (Sweden)

    Ebrahimi Z.

    2017-12-01

    Full Text Available We have utilized a phase-field model to investigate the evolution of eutectic silicon in Al-Si alloy. The interfacial fluctuations are included into a phase-field model of two-phase solidification, as stochastic noise terms and their dominant role in eutectic silicon formation is discussed. We have observed that silicon spherical particles nucleate on the foundation of primary aluminum phase and their nucleation continues on concentric rings, through the Al matrix. The nucleation of silicon particles is attributed to the inclusion of fluctuations into the phase-field equations. The simulation results have shown needle-like, fish-bone like and flakes of silicon phase by adjusting the noise coefficients to larger values. Moreover, the role of primary Al phase on nucleation of silicon particles in Al-Si alloy is elaborated. We have found that the addition of fluctuations plays the role of modifiers in our simulations and is essential for phase-field modeling of eutectic growth in Al-Si system. The simulated finger-like Al phases and spherical Si particles are very similar to those of experimental eutectic growth in modified Al-Si alloy.

  4. Structure and mechanical properties of Al-3Fe rapidly solidified alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    The Al based Al-3 wt%Fe alloy was prepared by conventionally casting (ingot) and further processed the melt-spinning technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased.

  5. Filtration of aluminum alloys and its influence on mechanical properties and shape of eutectical silicium

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2008-07-01

    Full Text Available Filtration during casting of high quality aluminum alloys belongs to main refining methods. Even when there are many years of experiences and experimental works on this subject, there are still some specific anomalies. While using ceramic filtration media during casting of aluminum alloys, almost in all experiments occurred increase of strength limit and atypical increase of extension. This anomaly was not explained with classical metallurgical methods, black-white contrast after surface etching neither with color surface etching. For that reason was used deep etching on REM. By using pressed ceramic filters, by studying morphology eutectical silicon was observed modification morphology of eutectical silicon, this explains increase extension after filtration. Pressed ceramic filters were used on experimental works. Casting was executed on hardenable alloy AlSi10MgMn.

  6. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  7. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  8. Effect of scandium on structure and hardening of Al–Ca eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A., E-mail: nikolay-belov@yandex.ru [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); Naumova, E.A. [Bauman Moscow State Technical University, 5, 2 ul. Baumanskaya, Moscow, 105005 (Russian Federation); Alabin, A.N. [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation); Matveeva, I.A. [UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation)

    2015-10-15

    The phase composition, structure and hardening of alloys in the aluminium corner of the Al–Ca–Sc system were studied in the range up to 10% Ca and up to 1% S≿. The experimental study (optical, scanning and transmission electron microscopy with electron-microprobe analysis, differential thermal analysis and hardness measurements) was combined with Thermo-Calc software simulation for the optimization of the alloy composition. It was shown that only phases of the binary systems (Al{sub 4}Ca and Al{sub 3}Sc) might be in equilibrium with the aluminium solid solution. It was shown that the (Al) + Al{sub 4}Ca eutectic had a much finer structure as compared with the Al–Si eutectic, which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356 type. The influence of the annealing temperature within the range up to 600 °C on the structure and hardness of the Al–Ca–Sc experimental alloys was studied. It was determined that the maximum hardening corresponded to the annealing at 300 °C, which was due to the precipitation of Al{sub 3}Sc nanoparticles with their further coarsening. With an example of an Al-7.6% Ca-0.3% Sc model experimental alloy, a principal possibility of manufacturing aluminium casting alloys based on the (Al) + Al{sub 4}Ca eutectic was demonstrated. Unlike commercial alloys of the A356 type, the model alloy does not require quenching, as hardening particles are formed in the course of annealing of casting. - Highlights: • Al–Ca–Sc phase diagram in aluminum corner. • Formation of Al{sub 3}Sc nanoparticles in eutectic (Al) + Al{sub 4}Ca during heating at 300–450 °C. • Hardening and thermal stability of proposed (Al–Ca–Sc) and commercial (Al–Si–Mg, 356 type) eutectic alloys.

  9. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, A.T. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Ferrandini, P.L. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Costa, C.A.R. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Goncalves, M.C. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Caram, R. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil)]. E-mail: rcaram@fem.unicamp.br

    2005-08-16

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni{sub 3}Si. This paper deals with the directional solidification of Ni-Ni{sub 3}Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni{sub 3}Si phase. It could be noticed that the solid/solid transformations by which Ni{sub 3}Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface.

  10. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    International Nuclear Information System (INIS)

    Dutra, A.T.; Ferrandini, P.L.; Costa, C.A.R.; Goncalves, M.C.; Caram, R.

    2005-01-01

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni 3 Si. This paper deals with the directional solidification of Ni-Ni 3 Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni 3 Si phase. It could be noticed that the solid/solid transformations by which Ni 3 Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface

  11. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  12. THE INFLUENCE OF HEAT TREATMENT WITH THE LIQUID PHASE ON FORMATION OF A MICROSTRUCTURE OF EUTECTIC Al-Si-ALLOY

    Directory of Open Access Journals (Sweden)

    A. Anikin

    2015-01-01

    Full Text Available The effect of heat treatment on the structure of the eutectic Al-Si-alloy, a theoretical substantiation process based on thermal analyzer and cooked microstructures was presented in this paper.

  13. On the performance of a novel grain refiner in hyper-eutectic Al-Si cast alloys

    OpenAIRE

    Bolzoni, L; Nowak, M; Hari Babu, N

    2014-01-01

    The stringent requirements for pollution reduction are pushing the automotive industry towards the employment of lightweight structures and, therefore, aluminium and its alloys play a remarkable role. Al-Si casting alloy with eutectic or hyper- eutectic compositions are, normally, employed for the production of high performance automotive products such as pistons and engine blocks which have to withstand critical loading conditions (i.e. high temperature, high pressure and corrosive exhaust g...

  14. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys.

    Science.gov (United States)

    Ibrahim, Mohamed F; Elgallad, Emad M; Valtierra, Salvador; Doty, Herbert W; Samuel, Fawzy H

    2016-01-27

    The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150-200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al₄SrSi₂, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  15. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys

    Directory of Open Access Journals (Sweden)

    Mohamed F. Ibrahim

    2016-01-01

    Full Text Available The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be, where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt% Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  16. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    Lecong Dzuong; Do Minh Nghiep; Nguyen van Dzan; Cao the Ha

    1996-01-01

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  17. Chip bonding of low-melting eutectic alloys by transmitted laser radiation

    Science.gov (United States)

    Hoff, Christian; Venkatesh, Arjun; Schneider, Friedrich; Hermsdorf, Jörg; Bengsch, Sebastian; Wurz, Marc C.; Kaierle, Stefan; Overmeyer, Ludger

    2017-06-01

    Present-day thermode bond systems for the assembly of radio-frequency identification (RFID) chips are mechanically inflexible, difficult to control, and will not meet future manufacturing challenges sufficiently. Chip bonding, one of the key processes in the production of integrated circuits (ICs), has a high potential for optimization with respect to process duration and process flexibility. For this purpose, the technologies used, so far, are supposed to be replaced by a transmission laser-bonding process using low-melting eutectic alloys. In this study, successful bonding investigations of mock silicon chips and of RFID chips on flexible polymer substrates are presented using the low-melting eutectic alloy, 52In48Sn, and a laser with a wavelength of 2 μm.

  18. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  19. The influence of high gravity in PbSn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F.E.; Toledo, R.C.; Poli, A.K.S.; An, C.Y.; Bandeira, I.N., E-mail: filipe.estevao@gmail.com, E-mail: chen@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2014-07-01

    The study of materials processed in centrifuges improves the understanding of the acceleration influence in the convection behavior in materials processing. This work aims to study the influence of high gravity in PbSn eutectic alloy solidification using a small centrifuge designed and built in the Associate Laboratory of Sensors and Materials of the Brazilian Space Research Institute (LAS/INPE). The samples were analyzed by densitometry and scanning electron microscopy (SEM). (author)

  20. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P

    Energy Technology Data Exchange (ETDEWEB)

    Song Xigui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)], E-mail: sxglm@126.com; Bian Xiufang; Zhang Jingxiang; Zhang Jie [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)

    2009-06-24

    The viscosities of eutectic Al-12 wt.%Si alloy and those modified with Sr and P were investigated using high-temperature torsional oscillation viscometer. Strontium decreased melt's viscosity, while phosphorus increased viscosity. Both additional level and means of addition affected the variation of viscosity. The activation energy of viscous flow was strengthened after modification, but the influence of modification on the molar volume was perplexing.

  1. Chemical interaction of the In-Ga eutectic with Al and Al-base alloys

    International Nuclear Information System (INIS)

    Trenikhin, M.V.; Bubnov, A.V.; Duplyakin, V.K.; Nizovskij, A.I.

    2006-01-01

    The chemical interaction of the indium-gallium eutectic with Al and Al-base alloys is studied by X-ray diffraction, optical microscopy, and electron microscopy. Experimental data are presented that shed light on the reaction mechanism and the diffusion processes responsible for the subsequent disintegration of the material and its dissolution in water. Mechanical tests show that the activation of aluminum leads to a transition from plastic to brittle fracture [ru

  2. Effects of Eutectic Si and Secondary Dendrite Arm Spacing on the Mechanical Properties of Al-Si-Cu Cast Alloys

    International Nuclear Information System (INIS)

    Lee, Kyungmin; Kim, Yumi; Kim, Youngman; Hong, Sungkil; Choi, Seweon; Kim, Youngchan; Kang, Changseok

    2014-01-01

    The present study aims at investigating the effects of eutectic Si and Secondary dendrite arm spacing (SDAS) on mechanical properties of Al-Si-Cu alloy. Heat treatment and controlling of solidification rate affect to microstructure of Al-Si-Cu alloy. Al-Si-Cu alloy was dissolved in an electric furnace. The alloy cast in STD61 mold which had been pre-heated to 95 ℃ and 200 ℃. Eutectic Si and SDAS were finer as cooling rate increased. Image analysis technique has been utilized to examine the microstructure. Microstructure observation results showed that T6 heat treatment has a strong influence eutectic Si particle morphology. The mechanical properties, such as tensile strength, yield strength, elongation, were improved by ASTM E8 standard. Tensile properties of the Al-Si-Cu alloys prepared by different cooling rates were the same as each other by T6 heat treatment.

  3. Thermal and microstructural analysis of an aluminium A356 alloy solidified by magnetic agitation

    International Nuclear Information System (INIS)

    Bustos, O; Ordonez, S; Jarami, Dario; Colas, R

    2008-01-01

    A magnetic agitation device was designed using a permanently rotating magnetic field, in order to study the effect of applying a variable magnetic field to agitate cast metals during the solidification process. The procedure used to verify the machine's functioning involved smelting and casting a predefined amount of A356 alloy in the device with and without the application of the magnetic field and then characterizing the material obtained with standard procedures of metallographic analysis. The results obtained show that the application of a permanently rotating magnetic field produces a destruction of the cast dendritic structure. This is explained by the fact that a magnetic field that varies over time induces a f.e.m. in a fluid conductor that becomes an increased convective transport through the Lorentz force. This work also studied the kinetics of solidification. The alloy was heated to 680 o C and was cast in molds preheated to 200 o C. Tests were carried out with and without the application of magnetic agitation. The cooling curves were recorded to evaluate the effect of the magnetic agitation on the alloy's form of solidification. The thermal analysis of the cooling curves shows a decrease in the temperatures under which the formation of dendrites from the primary phase as well as from the eutectic Al-Si phase begins when a magnetic field is imposed. A series of intermetallic AlFeSi type compounds appear in these alloys, which display noticeable refining and redistribution from the magnetic agitation (au)

  4. Fusion zone microstructure of laser beam welded directionally solidified Ni3Al-base alloy IC6

    International Nuclear Information System (INIS)

    Ding, R.G.; Ojo, O.A.; Chaturvedi, M.C.

    2006-01-01

    The fusion zone microstructure of laser welded alloy IC6 was examined. Extensive weld-metal cracking was observed to be closely associated with non-equilibrium eutectic-type microconstituents identified as consisting of γ, γ' and NiMo (Y) phases. Their formation has been related to modification of primary solidification path due to reduced solutal microsegregation

  5. Interaction of hydrogen with Pb83Li17 eutectic alloy

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Taxak, Manju; Krishnamurthy, N.

    2011-01-01

    Liquid Metal blankets are attractive candidates for both near-term and long-term fusion applications. Lead-lithium alloy appears to be promising for the use in self cooled breeding blanket, which has inherent simplicity with candidate material liquid lithium serving as both breeder and coolant. The crucial issues in case of lead lithium are the permeation loss of tritium (T) to the coolant and surroundings and the formation of new phase LiH/LiT, which eventually change the physical properties. Present investigation is based on the interaction process of hydrogen with the alloy and the relevant changes in physical properties. (author)

  6. Heat affected zone microfissuring in a laser beam welded directionally solidified Ni3Al-base alloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Ding, R.G.; Chaturvedi, M.C.

    2006-01-01

    The laser beam weld heat affected zone (HAZ) microstructure of a newly developed aerospace alloy, IC 6, was examined. HAZ microfissuring was observed and found to be associated with grain boundary liquation facilitated by subsolidus eutectic-type transformation of the alloy's major phase, γ' precipitates, and interfacial melting of M 6 C-type carbide and (Mo 2 Ni)B 2 -type boride particles

  7. Effects of Eutectic Si Particles on Mechanical Properties and Fracture Toughness of Cast A356 Aluminum Alloys

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Lee, Sung Hak; Kwon, Yong Nam

    2007-01-01

    The present study aims at investigating the effects of eutectic Si particles on mechanical properties and fracture toughness of three A356 aluminum alloys. These A356 alloys were fabricated by casting processes such as rheo-casting, squeeze-casting, and casting-forging, and their mechanical properties and fracture toughness were analyzed in relation with microfracture mechanism study. All the cast A356 alloys contained eutectic Si particles mainly segregated along solidification cells, and the distribution of Si particles was modified by squeeze-casting and casting-forging processes. Microfracture observation results showed that eutectic Si particles segregated along cells were cracked first, but that aluminum matrix played a role in blocking crack propagation. Tensile properties and fracture toughness of the squeeze cast and cast-forged alloys having homogeneous distribution of eutectic Si particles were superior to those of the rheo-cast alloy. In particular, the cast-forged alloy had excellent hardness, strength, ductility, and fracture toughness because of the matrix strengthening and homogeneous distribution of eutectic Si particles due to forging process

  8. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  9. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    Science.gov (United States)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  10. Corrosion of ferrous alloys in eutectic lead-lithium environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-09-01

    Corrosion data have been obtained on austenitic prime candidate alloy (PCA) and Type 316 stainless steel and ferritic HT-9 and Fe-9Cr-1Mo steels in a flowing Pb-17 at. % Li environment at 727 and 700 K (454 and 427 0 C). The results indicate that the dissolution rates for both austenitic and ferritic steels in Pb-17Li are an order of magnitude greater than in flowing lithium. The influence of time, temperature, and alloy composition on the corrosion behavior in Pb-17Li is similar to that in lithium. The weight losses for the austenitic steels are an order of magnitude greater than for the ferritic steels. The rate of weight loss for the ferritic steels is constant, whereas the dissolution rates for the austenitic steels decrease with time. After exposure to Pb-17Li, the austenitic steels develop a very weak and porous ferrite layer which easily spalls from the specimen surface

  11. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao, E-mail: tzhou1118@163.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Chen Zhenhua, E-mail: chenzhenhua45@hotmail.com [College of Material Science and Engineering, Hunan University, Changsha 410082 (China); Yang Mingbo, E-mail: yangmingbo@cqit.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Hu Jianjun, E-mail: hujj@qq.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Xia Hua, E-mail: xiahua@cqut.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial to the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.

  12. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  13. Electron microscopy investigations of rapidly solidified Fe-Zr-B-Cu alloys

    International Nuclear Information System (INIS)

    Majumdar, B.; Arvindha Babu, D.; Akhtar, D.

    2010-01-01

    Rapidly solidified Fe-based nanocrystalline soft magnetic materials possess a unique combination of properties i,e high permeability, saturation and Curie temperature and very low coercivity which are otherwise not attainable in conventional soft magnetic materials. The alloys are processed by producing amorphous phase through melt spinning route followed by a partial devitrification for incorporation of nanocrystalline phase in the amorphous matrix. In this paper, detailed electron microscopic investigations of melt spun Fe-Zr-B-Cu alloys are presented. Melt spun ribbons of Fe 99-x-y Zr x BCu 1 alloys with x+y = 11 and x+y = 13 were prepared under different wheel speed conditions and then vacuum annealed for 1 h at different temperatures. The microstructure changes from completely amorphous to a cellular/dendritic bcc solid solution coexisting with the amorphous phase at intercellular/dendritic regions when Zr/B ratio or the process parameters are varied. Annealing leads to the precipitation of nanocrystalline bcc-Fe phase from both amorphous phase and already existing bcc solid solution. (author)

  14. Coatings for directional eutectics

    Science.gov (United States)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  15. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    Science.gov (United States)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  16. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  17. Eutectic growth under acoustic levitation conditions.

    Science.gov (United States)

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface.

  18. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  19. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily

  20. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    International Nuclear Information System (INIS)

    Zhuang, Y. X.; Jiang, J. Z.; Lin, Z. G.; Mezouar, M.; Crichton, W.; Inoue, A.

    2001-01-01

    The phase evolution with the temperature and time in the process of crystallization of Al 89 La 6 Ni 5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi) 11 La 3 -like phase, were identified after the first crystallization reaction, revealing a eutectic reaction instead of a primary reaction suggested in the literature. Time-dependent nucleation in the amorphous alloy is detected and the experimental data can be fitted by both the Zeldovich's and Kashchiev's transient nucleation models with transient nucleation times of 220 and 120 min, respectively. Copyright 2001 American Institute of Physics

  1. Out-of-pile chemical compatibility of Pb-Bi eutectic alloy with graphite

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, A.K.; Bhagat, R.K.; Jarvis, T.; Majumdar, S. [Radiometallurgy Div., Bhabha Atomic Research Centre, Mumbai (India); Laik, A.; Kale, G.B. [Material Science Div., Bhabha Atomic Research Centre, Mumbai (India); Kamath, H.S. [Nuclear Fuels Group, Bhabha Atomic Research Centre, Mumbai (India)

    2006-06-15

    Lead Bismuth eutectic alloy (Pb: 55.5 wt.%, Bi: 44.5 wt.%) is a potential candidate coolant material for high-temperature reactors because of its low melting point (124 C), high thermal conductivity, heat capacity, and better neutronic properties. Out-of-pile chemical compatibility studies of this coolant with graphite (coolant channel) have been carried out by isothermal annealing of the liquid alloy in a graphite crucible at 800, 900, 1000, and 1100 C for times ranging from 100 h to 1000 h. Formation of a reaction layer is observed. The growth rate of the reaction layer follows a parabolic law. Reaction layer thicknesses of 61.3 {mu}m and 121 {mu}m are estimated from the growth rate vs. time relation after 1 year and 5 years respectively. The growth of the reaction layer is diffusion-controlled and the activation energy of the reaction is estimated to be 100 KJ/mol. (orig.)

  2. Out-of-pile chemical compatibility of Pb-Bi eutectic alloy with graphite

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Bhagat, R.K.; Jarvis, T.; Majumdar, S.; Laik, A.; Kale, G.B.; Kamath, H.S.

    2006-01-01

    Lead Bismuth eutectic alloy (Pb: 55.5 wt.%, Bi: 44.5 wt.%) is a potential candidate coolant material for high-temperature reactors because of its low melting point (124 C), high thermal conductivity, heat capacity, and better neutronic properties. Out-of-pile chemical compatibility studies of this coolant with graphite (coolant channel) have been carried out by isothermal annealing of the liquid alloy in a graphite crucible at 800, 900, 1000, and 1100 C for times ranging from 100 h to 1000 h. Formation of a reaction layer is observed. The growth rate of the reaction layer follows a parabolic law. Reaction layer thicknesses of 61.3 μm and 121 μm are estimated from the growth rate vs. time relation after 1 year and 5 years respectively. The growth of the reaction layer is diffusion-controlled and the activation energy of the reaction is estimated to be 100 KJ/mol. (orig.)

  3. Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N.R., E-mail: Nicole.Overman@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Mathaudhu, S.N. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); University of California, Riverside, 3401 Watkins Dr., Riverside, CA 92521 (United States); Choi, J.P.; Roosendaal, T.J.; Pitman, S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2016-02-15

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} (wt.%), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1–0.25 μm whereas branching in the shot material was 0.5–1.0 μm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 °C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 °C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. - Highlights: • A novel alloy, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} was fabricated by rapid solidification. • Room temperature yield strength exceeded 500 MPa. • Elevated temperature (300 °C) yield strength exceeded 275 MPa. • Forging, after extrusion of the alloy resulted in microstructural coarsening. • Decreased strength and ductility was

  4. Liquid-liquid structure transition and nucleation in undercooled Co-B eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yixuan [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France); Li, Jinshan; Wang, Jun; Kou, Hongchao [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Beagunon, Eric [Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France)

    2017-06-15

    Cyclic superheating and cooling were carried out for the undercooled hypereutectic Co{sub 80}B{sub 20}, eutectic Co{sub 81.5}B{sub 18.5,} and hypoeutectic Co{sub 83}B{sub 17} alloys. For each alloy, there is a critical overheating temperature T{sub c}° at which there is a sharp increase of the mean undercooling, i.e., below (above) T{sub c}°, and the mean undercooling is about 80 °C (200 °C). DSC measurements show that there is a thermal absorption peak in the heating process, the peak temperature of which is nearly equal to the critical overheating temperature, indicating that the temperature-induced liquid-liquid structure transition does occur and should relate highly to nucleation in the undercooled Co-B eutectic melts. The effect of the liquid-liquid structure transition on nucleation was interpreted by the recent nucleation theory that considers the structures of overheated melts, and the composition-dependent overheating temperature was ascribed to the change of local favored structures. The present work provides further evidences for the liquid-liquid structure transition and is helpful for understanding solidification in undercooled melts. (orig.)

  5. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    International Nuclear Information System (INIS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-01-01

    In order to clarify the heterogeneous nucleation potential of α-Ni grains on Ni 3 Si particles in Ni-Ni 3 Si eutectic alloy, the work of adhesion (W ad ), fracture toughness (G), interfacial energy (γ i ), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni 3 Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni 3 Si. Since OM stacking interfaces have larger W ad , G and γ i than that of the top site stacking (OT) interfaces. The Ni/Ni 3 Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni 3 Si eutectic alloy. The calculated interfacial energy of Ni/Ni 3 Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni 3 Si particles for α-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  6. A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties

    Science.gov (United States)

    Hao, Yufei; Wang, Tianmiao; Xie, Zhexin; Sun, Wenguang; Liu, Zemin; Fang, Xi; Yang, Minxuan; Wen, Li

    2018-02-01

    This paper presents a soft actuator embedded with two types of eutectic alloys which enable sensing, tunable mechanical degrees of freedom (DOF), and variable stiffness properties. To modulate the stiffness of the actuator, we embedded a low melting point alloy (LMPA) in the bottom portion of the soft actuator. Different sections of the LMPA could be selectively melted by the Ni-Cr wires twined underneath. To acquire the curvature information, EGaIn (eutectic gallium indium) was infused into a microchannel surrounding the chambers of the soft actuator. Systematic experiments were performed to characterize the stiffness, tunable DOF, and sensing the bending curvature. We found that the average bending force and elasticity modulus could be increased about 35 and 4000 times, respectively, with the LMPA in a solid state. The entire LMPA could be melted from a solid to a liquid state within 12 s. In particular, up to six different motion patterns could be achieved under each pneumatic pressure of the soft actuator. Furthermore, the kinematics of the actuator under different motion patterns could be obtained by a mathematical model whose input was provided by the EGaIn sensor. For demonstration purposes, a two-fingered gripper was fabricated to grasp various objects by adjusting the DOF and mechanical stiffness.

  7. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Gil; Lee, Sang-Hwa [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Lee, Jung-Moo, E-mail: jmoolee@kims.re.kr [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Cho, Young-Hee [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Kim, Su-Hyeon [Metal Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Yoon, Woon-Ha [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of)

    2016-07-04

    The effects of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-12.2Si-3.3Cu-2.4Ni-0.8Mg-0.1Fe (wt%) piston alloy were systematically investigated. Rigid colonies consisting of primary Si, eutectic Si, Mg{sub 2}Si and various aluminides (ε-Al{sub 3}Ni, δ-Al{sub 3}CuNi, π-Al{sub 8}FeMg{sub 3}Si{sub 6}, γ-Al{sub 7}Cu{sub 4}Ni, Q-Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and θ-Al{sub 2}Cu) were observed in the as-cast alloys. The sizes of the secondary phases, eutectic cell and grain were significantly decreased by UST because of the enhanced nucleation of each phase under ultrasonic irradiation. The yield strength, tensile strength and elongation at 25 °C were significantly improved by UST mainly because of the refinement of the microstructures. Both tensile strength and elongation at 350 °C were also improved by UST despite the unchanged yield strength.

  8. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  9. Modified Welding Technique of a Hypo-Eutectic Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Ghosh, B. R.; Gupta, R. K.; Biju, S.; Sinha, P. P.

    GTAW process is used for welding of pressure vessels made of hypo-eutectic Al-Cu alloy AA2219 containing 6.3% Cu. As welded Yield strength of the alloy was found to be in the range of 140-150 MPa, using conventional single pass GTAW technique on both AC and DCSP modes. Interestingly, it was also found that weld-strength decreased with increase in thickness of the weld coupons. Welding metallurgy of AA2219 Al alloy was critically reviewed and factors responsible for lower properties were identified. Multipass GTAW on DCSP mode was postulated to improve the weld strength of this alloy. A systematic experimentation using 12 mm thick plates was carried out and YS of 200 MPa has been achieved in the as welded condition. Thorough characterization including optical and electron microscopy was conducted to validate the metallurgical phenomena attributable to improvement in weld strength. This paper presents the conceptual understanding of welding metallurgy of AA2219 alloy and validation by experiments, which could lead to better weld properties using multipass GTAW on DCSP mode.

  10. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  11. Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis

    International Nuclear Information System (INIS)

    Kral, M.V.; McIntyre, H.R.; Smillie, M.J.

    2004-01-01

    Intermetallic phases in sand cast eutectic Al-Si alloys were characterized using a combination of SEM, EDS and EBSD pattern analysis. Chinese script α-phase particles were consistent with cubic Al 19 (Fe,Mn) 5 Si 2 . Plate-shaped β-phase particles were consistent with tetragonal Al 3 (Fe,Mn)Si 2

  12. Tensile behaviour at room and high temperatures of novel metal matrix composites based on hyper eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Valer, J.; Rodriguez, J.M.; Urcola, J.J.

    1997-01-01

    This work shows the improvement obtained on tensile stress at room and high temperatures of hyper eutectic Al-Si alloys. These alloys are produced by a combination of spray-forming, extrusion and thixoforming process, in comparison with conventional casting alloys.Al-25% Si-5%Cu. Al-25%Si-5%Cu-2%Mg and Al-30%Si-5%Cu alloys have been studied relating their microstructural parameters with tensile stress obtained and comparing them with conventional Al-20%Si. Al-36%Si and Al-50%Si alloys. Al-25%Si-5%Cu alloy-was tested before and after semi-solid forming, in order to distinguish the different behaviour of this alloy due to the different microstructure. The properties obtained with these alloys were also related to Al-SiC composites formed by similar processes. (Author) 20 refs

  13. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    Science.gov (United States)

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  14. Fusion technology for the production of PbLi eutectic alloys; Obtencion de aleaciones eutecticas PbLi mediante procesos de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barrena, M. J.; Gomez de Salazar, J. M.; Quinones, J.; Pascual, L.; Soria, A.

    2012-07-01

    The development of thermonuclear experimental reactor (ITER), whose objective is to produce energy from nuclear fusion, has raised the study of Pb-Li eutectic alloys, as they have been selected for the manufacture of test blanket modules (TBM). However, during the manufacturing process of the Pb-Li alloys, thermal conditions used result in a loss of litium element, which inhibits the formation of eutectic structures. In this work we have done fusion of pure lead and lithium, evaluating different process parameters to obtain Pb-Li (17 at. %) eutectic alloys. The alloys manufactured were characterized by DSC, SEM-EDX and microhardness tests. From these studies we noted that the used of an induction reactor and the process parameters optimized to obtain Pb-Li alloy allow for completely eutectic ingots and high chemical homogeneity and microstructural. (Author) 26 refs.

  15. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  16. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  17. Initial Stages of GaAs/Au Eutectic Alloy Formation for the Growth of GaAs Nano wires

    International Nuclear Information System (INIS)

    Rosnita, M.; Yussof, W.; Zuhairi, I.; Zulkafli, O.; Samsudi, S.

    2012-01-01

    Annealing temperature plays an important role in the formation of an Au-Ga eutectic alloy. The effects of the annealing temperature on gold nanoparticles colloid and substrate surface were studied using AFM, FE-SEM and TEM. At 600 degree Celsius, the layer of gold colloids particle formed an island in the state of molten eutectic alloy and absorbed evaporated metal-organics to formed nano wire (NW) underneath the alloy. Pit formed on the substrate surface due to the chemical reactions during the annealing process have an impact on the direction of growth of the NW. Without annealing, the NW formed vertically on the GaAs (100) surface. The growth direction depends on the original nucleation facets and surface energy when annealed. When annealed, the wire base is large and curved due to the migration of Ga atoms on the substrate surface towards the tip of the wire and the line tension between the substrate surface and gold particle. (author)

  18. Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al-Si cast alloys

    International Nuclear Information System (INIS)

    Liang, S M; Schmid-Fetzer, R

    2016-01-01

    The eutectic microstructure in hypoeutectic Al-Si cast alloys is strongly influenced by AlP particles which are potent nuclei for the eutectic (Si) phase. The solidification sequence of AlP and (Si) phases is, thus, crucial for the nucleation of eutectic silicon with marked impact on its morphology. This study presents this interdependence between Si- and P-compositions, relevant for Al-Si cast alloys, on the solidification sequence of AlP and (Si). These data are predicted from a series of thermodynamic calculations. The predictions are based on a self-consistent thermodynamic description of the Al-Si-P ternary alloy system developed recently. They are validated by independent experimental studies on microstructure and undercooling in hypoeutectic Al-Si alloys. A constrained Scheil solidification simulation technique is applied to predict the undercooling under clean heterogeneous nucleation conditions, validated by dedicated experimental observations on entrained droplets. These specific undercooling values may be very large and their quantitative dependence on Si and P content of the Al alloy is presented. (paper)

  19. Investigation of enthalpy and specific heat of the gallium-indium-tin eutectic alloy

    International Nuclear Information System (INIS)

    Roshchupkin, V.V.; Migaj, L.L.; Fordeeva, L.K.; Perlova, N.L.

    1978-01-01

    Enthalpy and specific heat of the fusible (melting point is 10.6 deg C) eutectic alloy (67% Ga - 20.5% In - 12.5% Sn according to mass) are determined by the mixing method. The determination was carried out in vacuum at the residual pressure of >= 1x10 -5 torr in the temperature range from 59.3 to 437.0 deg C. It is established that temperature dependence of alloy enthalpy is described by the equation: Hsub(t) - Hsub(0degC)=1.014+0.0879t-0.0000129 t 2 , where (Hsub(t) - Hsub(0degC)) is enthalpy, cal/g; t-temperature, deg C. Mean-square dispersion is +-0.6%. Temperature dependence of alloy specific heat in the temperature range under study was determined by differentiation of the equation obtained for enthalpy: Csub(p)=0.0879-0.000026t, where Csub(p)-specific heat, cal/gx deg. It is supposed that temperature increase makes it possible to decrease slightly specific heat

  20. Directionally solidified Eu doped CaF.sub.2./sub./Li.sub.3./sub.AlF.sub.6./sub. eutectic scintillator for neutron detection

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Hishinuma, K.; Kurosawa, S.; Shoji, Y.; Pejchal, Jan; Ohashi, Y.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 50, Dec (2015), 71-75 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : scintillator * eutectic * micro-pulling down Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  1. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  2. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  3. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material.

    Science.gov (United States)

    Gu, X N; Li, X L; Zhou, W R; Cheng, Y; Zheng, Y F

    2010-06-01

    Rapidly solidified (RS) Mg–3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s(-1), 30 m s(-1) and 45 m s(-1) with the as-cast Mg–3Ca alloy ingot as a raw material. The RS45 Mg–3Ca alloy ribbon showed a much more fine grain size feature (approximately 200–500 nm) in comparison to the coarse grain size (50–100 μm)of the original as-cast Mg–3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg–3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds(1.43 mm yr(-1) for RS15, 0.94 mm yr(-1) for RS30 and 0.36 mm yr(-1) for RS45). The RS Mg–3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg–3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg–3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells,whereas the as-cast Mg–3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg–3Ca alloy ribbons than that of the as-cast Mg–3Ca alloy ingot.

  4. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zhou, W R; Zheng, Y F [State Key Laboratory for Turbulence and Complex System and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Li, X L [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Cheng, Y, E-mail: yfzheng@pku.edu.c [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2010-06-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s{sup -1}, 30 m s{sup -1} and 45 m s{sup -1}) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 {mu}m) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr{sup -1} for RS15, 0.94 mm yr{sup -1} for RS30 and 0.36 mm yr{sup -1} for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  5. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    International Nuclear Information System (INIS)

    Gu, X N; Zhou, W R; Zheng, Y F; Li, X L; Cheng, Y

    2010-01-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s -1 , 30 m s -1 and 45 m s -1 ) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 μm) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr -1 for RS15, 0.94 mm yr -1 for RS30 and 0.36 mm yr -1 for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  6. Reply to "On Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K- A high temperature mass spectrometric study"

    Science.gov (United States)

    Jain, Uttam; Mukherjee, Abhishek

    2018-03-01

    This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".

  7. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    Science.gov (United States)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  8. Containerless solidification of undercooled oxide and metallic eutectic melts

    International Nuclear Information System (INIS)

    Li Mingjun; Nagashio, Kosuke; Kuribayashi, Kazuhiko

    2004-01-01

    A high-speed video was employed to monitor the in situ recalescence of undercooled oxide Al 2 O 3 -36.8 at.% ZrO 2 and metallic Ni-18.7 at.% Sn eutectics that were processed on an aero-acoustic levitator and an electromagnetic levitator, respectively. For the oxide eutectic, the entire sample becomes brighter and brighter without any clear recalescence front during spontaneous crystallization. When the sample was seeded at desired undercoolings, crystallization started from the seeding point and then spread through the entire sample. Microstructures of the oxide solidified via both the spontaneous crystallization and external seeding consist of many independent eutectic colonies at the sample surface, indicating that copious nucleation takes place regardless of melt undercooling and solidification mode. For the metallic eutectics, two kinds of recalescence are visualized. The surface and cross sectional microstructures reveal that copious nucleation is also responsible for the formation of independent eutectic colonies distributing within the entire sample. It is not possible to measure the growth velocity of a single eutectic colony using optical techniques under the usual magnification. The conventional nucleation concept derived from single-phase alloys may not be applicable to the free solidification of the undercooled double-phase oxide and metallic eutectic systems

  9. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  10. Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al–Cu–Ni alloys

    International Nuclear Information System (INIS)

    Kundin, Julia; Pogorelov, Evgeny; Emmerich, Heike

    2015-01-01

    We have investigated the microstructure evolution during the isothermal and non-isothermal solidification of ternary Al–Cu–Ni alloys by means of a general multi-phase-field model for an arbitrary number of phases. The stability requirements for the model functions on every dual interface guarantee the absence of “ghost” phases. The aim was to generate a realistic microstructure by coupling the thermodynamic parameters of the phases and the thermodynamically consistent phase-field evolution equations. It is shown that the specially constructed thermal noise terms disturb the stability on the dual interfaces and can produce heterogeneous nucleation of product phases at energetically favorable points. Similar behavior can be observed in triple junctions where the heterogeneous nucleation of a fourth phase is more favorable. Finally, the model predicts the growth of a combined eutectic-like and peritectic-like structure that is comparable to the observed experimental microstructure in various alloys

  11. Interfacial microstructure and joining properties of Titanium–Zirconium–Molybdenum alloy joints brazed using Ti–28Ni eutectic brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, X.G., E-mail: songxg@hitwh.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Tian, X. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhao, H.Y. [Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Si, X.Q.; Han, G.H.; Feng, J.C. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2016-01-20

    Vacuum brazing of Titanium–Zirconium–Molybdenum (Abbreviated as TZM) alloy using Ti–28Ni (wt%) eutectic brazing alloy was successfully achieved in this study. Reliable TZM brazed joints were obtained at the temperatures ranging from 1000 °C to 1160 °C for 600 s. The interfacial microstructure of TZM joints was characterized by employing SEM, EDS and XRD. The effects of brazing temperature on interfacial microstructure and joining properties were investigated in details. TZM brazed joints mainly consisted of δ-Ti{sub 2}Ni phase and Ti-based solid solution (Ti(s,s)). The interfacial microstructure of TZM joints was influenced obviously by brazing temperature. Both the thickness of brazing seam and the amount of δ-Ti{sub 2}Ni phase was reduced with the increasing brazing temperature, while the Ti(s,s) layer did not change significantly. The maximum average shear strength of TZM joints reached 107 MPa when brazed at 1080 °C. The presence of δ-Ti{sub 2}Ni intermetallic phase and crack-like structure in joints deteriorated the joining properties, which resulted in the formation of brittle fracture after shear test. In addition, fracture locations were related to the brazing temperature. When the brazing temperature was relatively low, cracks initiated and propagated in the continuous δ-Ti{sub 2}Ni layer. However, the fracture locations preferred to locating at the interface between TZM substrate and brazing seam when brazing temperature exceeded 1080 °C.

  12. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    Science.gov (United States)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  13. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  14. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the Al

  15. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  16. Characterization of age-hardening behavior of eutectic region in squeeze-cast A356-T5 alloy using nanoindenter and atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Youn, S.W. [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan)]. E-mail: youn.sung-won@aist.go.jp; Kang, C.G. [National Laboratory of Thixo/Rheo Forming, School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)]. E-mail: cgkang@pusan.ac.kr

    2006-06-15

    The nano/microstructure, the aging response (in T5 heat treatment), and the mechanical/tribological properties of the eutectic regions in squeeze-cast A356 alloy parts were investigated using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. In addition, the eutectic region showed lower pile-up and higher elastic recovery than the primary Al region. The aging responses of the eutectic regions in the squeeze-cast A356 alloys aged at 150 deg. C for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. As the aging time increased, acicular Si particles in the eutectic regions gradually came to a fine structure. Both Vickers hardness (H {sub V}) and indentation (H {sub IT}) test results showed almost the same trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found. The friction coefficient for the eutectic region was lower than that for the primary Al region.

  17. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  18. Effect of length scale on mechanical properties of Al-Cu eutectic alloy

    Science.gov (United States)

    Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.

    2012-10-01

    This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.

  19. 3D observation of the solidified structures by x-ray micro computerized tomography

    International Nuclear Information System (INIS)

    Yasuda, Hideyuki; Ohnaka, Itsuo; Tsuchiyama, Akira; Nakano, Tsukasa; Uesugi, Kentaro

    2003-01-01

    The high flux density of the monochromatized and well-collimated X-ray and the high-resolution detector provide a new 3D observation tool for microstructures of metallic alloys and ceramics. The X-ray micro computerized tomography in BL47XU of SPring-8 (SP-μCT) was applied to observe microstructures produced through the eutectic reaction for Sn-based alloys and an Al 2 O 3 -Y 2 O 3 oxide system. The constituent phases in the eutectic structures were three-dimensionally identified, in which the lamellar spacing ranged from several to 10 μm. Since the 3D structure of the unidirectionally solidified specimens contains history of the eutectic structure formation, the 3D structure obtained by SP-μCT gives useful information to consider the microstructure evolution. (author)

  20. Modeling Macrosegregation in Directionally Solidified Aluminum Alloys under Gravitational and Microgravitational Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Mark A.; Poirier, David R.; Erdmann, Robert G.; Tewari, Surendra N.; Madison, Jonathan D

    2014-09-01

    This report covers the modeling of seven directionally solidified samples, five under normal gravitational conditions and two in microgravity. A model is presented to predict macrosegregation during the melting phases of samples solidified under microgravitational conditions. The results of this model are compared against two samples processed in microgravity and good agreement is found. A second model is presented that captures thermosolutal convection during directional solidification. Results for this model are compared across several experiments and quantitative comparisons are made between the model and the experimentally obtained radial macrosegregation profiles with good agreement being found. Changes in cross section were present in some samples and micrographs of these are qualitatively compared with the results of the simulations. It is found that macrosegregation patterns can be affected by changing the mold material.

  1. Irradiation response of rapidly solidified Path A type prime candidate alloys

    International Nuclear Information System (INIS)

    Imeson, E.; Tong, C.; Lee, M.; Vander Sande, J.B.; Harling, O.K.

    1981-01-01

    The objective of this study is to present a first assessment of the microstructural response to neutron irradiation shown by Path A alloys prepared by rapid solidification processing. To more fully demonstrate the potential of the method, alloys with increased titanium and carbon content have been used in addition to the Path A prime candidate alloy

  2. A study on crystalline phases present in the as-solidified and crystallized microstructures in Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.

    2011-01-01

    In the present study the as-solidified and crystallized microstructures of Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy have been examined in detail. Solidification was carried out by melt spinning, suction casting and copper mould casting techniques. The last technique yielded a partially crystalline microstructure, whereas, the other two techniques resulted in amorphous microstructures. (author)

  3. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  4. The influence of Si and V on the kinetics of phase transformation and microstructure of rapidly solidified Al-Fe-Zr alloys

    OpenAIRE

    Karpe B.; Kosec B.; Nagode A.; Bizjak M.

    2013-01-01

    The influence of Si and V on the precipitation kinetics of the rapidly solidified (RS) Al-Fe-Zr alloys is presented. Precipitation kinetics and microstructural development of RS Al-Fe-Zr alloys with Si or V addition have been investigated by the combination of four point electrical resistance measurement, optical microscopy, transmition electron microscopy (TEM) and scanning electron microscopy (SEM). For verification of the electrical resistivity measurement results differential scanni...

  5. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  6. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  7. Evolution of the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under high pressure

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zhu, Dongdong; Zou, Chunming; Wei, Zunjie

    2012-01-01

    Highlights: → The microstructure of Ti-48Al alloy changes under high pressure. → With increasing pressure, the amount of γ s phase decreases. → High pressure leads to the decreasing of lamellar spacing. → The nanohardness of lamellar structure increases with pressure. -- Abstract: In this work the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under different pressures (normal pressure, 2 GPa, 4 GPa) were experimental investigated by using a tungsten-carbide six-anvil apparatus. The results indicate that high pressure does not change the phase constitution of Ti-48 at.%Al alloy. However, the microstructure changes under high pressure. With increasing pressure, the volume fraction of interdendritic γ (γ s ) phase decreases and Al concentration in lamellae increases. When the pressure is 4 GPa, there is only a little γ s embedded in lamellar structure. The volume fraction of γ s phase is approximately 17.0% for normal pressure, 8.73% for 2 GPa, 0.69% for 4 GPa. The lamellar spacings also decrease with pressure, which are 495 nm, 345 nm, 227 nm under normal pressure, 2 GPa, 4 GPa, respectively. The change in nanohardness was discussed based on the microstructural observations. It shows a certain increase of the nanohardness as the pressure increases from normal pressure to 4 GPa. When the pressure is 4 GPa, the nanohardness increases by 50.2% compared with that of normal pressure.

  8. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    Science.gov (United States)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  9. Oxygen partial pressure: a key to alloying and discovery in metal oxide--metal eutectic systems

    International Nuclear Information System (INIS)

    Holder, J.D.; Clark, G.W.; Oliver, B.F.

    1978-01-01

    Control of oxygen partial pressure is essential in the directional solidification of oxide--metal eutectic composites by techniques involving gas-solid and gas-liquid interactions. The existence of end components in the eutectic composite is Po 2 sensitive as are melt stoichiometry, solid phase compositions, and vapor losses due to oxidation-volatilization. Simple criteria are postulated which can aid the experimentalist in selecting the proper gas mixture for oxide--metal eutectic composite growth. The Cr 2 O 3 --Mo--Cr systems was used to verify certain aspects of the proposed criteria

  10. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  11. Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy.

    Science.gov (United States)

    Timpel, M; Wanderka, N; Schlesiger, R; Yamamoto, T; Isheim, D; Schmitz, G; Matsumura, S; Banhart, J

    2013-09-01

    The addition of 200 ppm strontium to an Al-10 wt% Si casting alloy changes the morphology of the eutectic silicon phase from coarse plate-like to fine fibrous networks. In order to clarify this modification mechanism the location of Sr within the eutectic Si phase has been investigated by a combination of high-resolution methods. Whereas three-dimensional atom probe tomography allows us to visualise the distribution of Sr on the atomic scale and to analyse its local enrichment, transmission electron microscopy yields information about the crystallographic nature of segregated regions. Segregations with two kinds of morphologies were found at the intersections of Si twin lamellae: Sr-Al-Si co-segregations of rod-like morphology and Al-rich regions of spherical morphology. Both are responsible for the formation of a high density of multiple twins and promote the anisotropic growth of the eutectic Si phase in specific crystallographic directions during solidification. The experimental findings are related to the previously postulated mechanism of "impurity induced twinning". Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Influence of micro-additions of bismuth on structures, mechanical and electrical transport properties of rapidly solidified Sn-3.5% Ag Alloy from melt

    International Nuclear Information System (INIS)

    El Bahay, M.M.; Mady, H.A.

    2005-01-01

    The present study was undertaken to investigate the influence of the Bi addition in the Sn-3.5 Ag rapidly solidified binary system for use as a Pb-free solder. The resulting properties of the binary system were extended to the Sn based ternary systems Sn 9 6.5-X Ag 3 .5 Bi x (0≤ X ≤ 2.5) solder. The structure and electrical resistivity of rapidly solidified (melt spun) alloys have been investigated. With the addition of up to 2.5 mass % Bi, the melting temperature decreases from 221.1 to 214.8 degree C. Wetting contact angle of the six alloys on Cu Zn 3 0 substrate are carried out at 573 K. Microhardness evaluations were also performed on the Sn-Ag-Bi alloys. The measured values and other researcher's results were compared with the calculated data

  13. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    International Nuclear Information System (INIS)

    Ma, Jie; Wang, Bo; Zhao, Shunli; Wu, Guangxin; Zhang, Jieyu; Yang, Zhiliang

    2016-01-01

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  14. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  15. Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueliang [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zou, Xingli, E-mail: xinglizou@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xionggang, E-mail: luxg@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Changyuan; Cheng, Hongwei; Xu, Qian [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhou, Zhongfu [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

    2016-11-01

    Graphical abstract: Micro/nanostructured Zn and Cu–Zn alloy films have been electrodeposited directly from ZnO/CuO precursors in ChCl/urea-based DES, the typical nucleation-growth mechanism and the micro/nanostructures-formation process are determined. Display Omitted - Highlights: • Micro/nanostructured Zn films have been electrodeposited directly from ZnO precursor in deep eutectic solvent (DES). • The morphology of the Zn electrodeposits depends on the cathodic potential and temperature. • The electrodeposited Zn films exhibit homogeneous morphologies with controllable particle sizes and improved corrosion resistance. • Cu–Zn alloy films have also been electrodeposited directly from their metal oxides precursors in DES. - Abstract: The electrodeposition of Zn and Cu–Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu–Zn alloy films have also been electrodeposited directly from CuO–ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu–Zn alloy depends on the electrodeposition potential.

  16. Microstructure and magnetic properties of rapidly solidified nanocrystalline Fe81Zr7B12 alloy

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Muddle, B.C.; Finlayson, T.R.

    2000-01-01

    Full text: Nanocrystalline Fe-Zr-B alloys have aroused extensive research interest due to their high saturation magnetization. There have been several studies [Suzuki et al., 1994; Kim et al., 1994] of the effect of boron on the formation of nanocrystalline structure and magnetic properties, showing that the addition of boron to Fe-Zr alloys improves the glass-forming ability and refines the primary bcc α-Fe grains during crystallization. However, when the boron content is increased to 8 at.%, the magnetic permeability is observed to decrease. There has been no detailed work to date concerning the microstructural evolution and magnetic properties in those alloys with higher boron content

  17. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy

    International Nuclear Information System (INIS)

    Mohamed, A.M.A.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.

    2009-01-01

    The continuing quest for aluminum castings with enhanced mechanical properties for applications in the automotive industries has intensified the interest in aluminum-silicon alloys. In Al-Si alloys, the properties are influenced by the shape and distribution of the eutectic silicon particles in the matrix, as also by the iron intermetallics and copper phases that occur upon solidification. The detailed microstructure and tensile properties of as-cast and heat-treated new experimental alloy belonging to cast Al-Si near-eutectic alloys have been investigated as a function of Fe, Mn, Cu, and Mg content. Microstructural examination was carried out using optical microscopy, image analysis, and electron probe microanalysis (EPMA), wavelength dispersive spectroscopic (WDS) analysis facilities. Tensile properties upon artificial aging in the temperature range of 155-240 o C for 5 h were also investigated. The results show that the volume fraction of Fe-intermetallics increases as the iron or manganese contents increase. Compact polygonal or star-like particles form when the sludge factor is greater than 2.1. The Al 2 Cu phase was observed to dissolve almost completely during solution heat treatment of all the alloys studied, especially those containing high levels of Mg and Fe, while Al 5 Cu 2 Mg 8 Si 6 , sludge, and α-Fe phases were found to persist after solution heat treatment. The β-Al 5 (Fe,Mn)Si phase dissolved partially in Sr-modified alloys, and its dissolution became more pronounced after solution heat treatment. At 0.5% Mn, the β-Fe phase forms when the Fe content is above 0.75%, causing the tensile properties to decrease drastically. The same results are obtained when the levels of both Fe and Mn are increased beyond 0.75%, because of sludge formation. On the other hand, the tensile properties of the Cu-containing alloys are affected slightly at high levels of Mg as a result of the formation of Al 5 Cu 2 Mg 8 Si 6 which decreases the amount of free Mg

  18. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-11-01

    Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.

  19. Dynamic Analysis of Recalescence Process and Interface Growth of Eutectic Fe82B17Si1 Alloy

    Science.gov (United States)

    Fan, Y.; Liu, A. M.; Chen, Z.; Li, P. Z.; Zhang, C. H.

    2018-03-01

    By employing the glass fluxing technique in combination with cyclical superheating, the microstructural evolution of the undercooled Fe82B17Si1 alloy in the obtained undercooling range was studied. With increase in undercooling, a transition of cooling curves was detected from one recalescence to two recalescences, followed by one recalescence. The two types of cooling curves were fitted by the break equation and the Johnson-Mehl-Avrami-Kolmogorov model. Based on the cooling curves at different undercoolings, the recalescence rate was calculated by the multi-logistic growth model and the Boettinger-Coriel-Trivedi model. Both the recalescence features and the interface growth kinetics of the eutectic Fe82B17Si1 alloy were explored. The fitting results that were obtained using TEM (SAED), SEM and XRD were consistent with the changing rule of microstructures. Finally, the relationship between the microstructure and hardness was also investigated.

  20. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition

    International Nuclear Information System (INIS)

    Fazio, Concetta; Sobolev, V.P.; Aerts, A.; Gavrilov, S.; Lambrinou, K.; Schuurmans, P.; Gessi, A.; Agostini, P.; Ciampichetti, A.; Martinelli, L.; Gosse, S.; Balbaud-Celerier, F.; Courouau, J.L.; Terlain, A.; Li, N.; Glasbrenner, H.; Neuhausen, J.; Heinitz, S.; Zanini, L.; Dai, Y.; Jolkkonen, M.; Kurata, Y.; Obara, T.; Thiolliere, N.; Martin-Munoz, F.J.; Heinzel, A.; Weisenburger, A.; Mueller, G.; Schumacher, G.; Jianu, A.; Pacio, J.; Marocco, L.; Stieglitz, R.; Wetzel, T.; Daubner, M.; Litfin, K.; Vogt, J.B.; Proriol-Serre, I.; Gorse, D.; Eckert, S.; Stefani, F.; Buchenau, D.; Wondrak, T.; Hwang, I.S.

    2015-01-01

    Heavy liquid metals such as lead or lead-bismuth have been proposed and investigated as coolants for fast reactors since the 1950's. More recently, there has been renewed interest worldwide in the use of these materials to support the development of systems for the transmutation of radioactive waste. Heavy liquid metals are also under evaluation as a reactor core coolant and accelerator-driven system neutron spallation source. Several national and international R and D programmes are ongoing for the development of liquid lead-alloy technology and the design of liquid lead-alloy-cooled reactor systems. In 2007, a first edition of the handbook was published to provide deeper insight into the properties and experimental results in relation to lead and lead-bismuth eutectic technology and to establish a common database. This handbook remains a reference in the field and is a valuable tool for designers and researchers with an interest in heavy liquid metals. The 2015 edition includes updated data resulting from various national and international R and D programmes and contains new experimental data to help understand some important phenomena such as liquid metal embrittlement and turbulent heat transfer in a fuel bundle. The handbook provides an overview of liquid lead and lead-bismuth eutectic properties, materials compatibility and testing issues, key aspects of thermal-hydraulics and existing facilities, as well as perspectives for future R and D. (authors)

  1. HRTEM characterization of melt-spun Al-Si-Cu-Mg alloys solidified at different rates

    International Nuclear Information System (INIS)

    Alfonso, Ismeli; Maldonado, Cuauhtemoc; Medina, Ariosto; Gonzalez, Gonzalo; Bejar, Luis

    2006-01-01

    Six quaternary alloys Al-6Si-3Cu-xMg (x = 0.59, 3.80 and 6.78 wt.%) were produced by melt spinning using two different tangential speeds of the copper wheel (30 and 45 ms -1 ), and characterized using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness. At 30 ms -1 , XRD and TEM investigations revealed the presence of Al 2 Cu (θ) for the alloy with 0.59%Mg and Al 5 Cu 2 Mg 8 Si 6 (Q) for the alloys with 3.80 and 6.78%Mg. The increase in microhardness of the alloys with higher Mg content is attributed to the presence of nanosized a-Al particles and a higher content of Q nanoparticles. At 45 ms -1 the alloying element content in solid solution is increased due to the fact that the quantity of free second phases (θ and Q nanoparticles) has decreased. For this rotation speed, amorphous regions of α -Al were observed, increasing microhardness compared to the 30 ms -1 ribbons

  2. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  3. Elevated temperature mechanical properties of a rapidly solidified A1-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Mitra, S.

    1992-01-01

    Dispersion strengthened Al alloys based on the Al-Fe-V-Si quartenary system have recently been developed using rapid solidification techniques. Rapid solidification techniques which resulted in the above mentioned alloys have also been used to manufacture another commercial alloy, FVS 1212, with 37 volume % of dispersoid. The alloy has shown excellent resistance to coarsening at high temperatures and to creep deformation. Elevated temperature exposure of FVS 1212, for times up to 100 hours, resulted in a significant loss in room temperature mechanical properties only beyond 500 degrees C while 1000 hours at 425 degrees C did not result in any degradation of mechanical but no detailed study of the tensile behavior of FVS 1212 at slow strain rates and elevated temperatures has been reported to date. This paper reports that the present study was undertaken to investigate the tensile behavior of FVS 1212 from room temperature to 400 degrees C at strain rates of 6.56 x 10 - 5/sec and 6.56 x 10 -6 /sec. The study focussed on dynamic strain aging effects and strain hardening behavior, while the effect of strain rate on the flow behavior at elevated temperatures was also evaluated

  4. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  5. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  6. Microstructure characterization of rapidly solidified Al-Fe-Cr-Ce alloy by positron annihilation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Čízek, J.; Procházka, I.; Drahokoupil, Jan; Novák, P.

    2011-01-01

    Roč. 509, č. 7 (2011), s. 3211-3218 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : metals and alloy s * nanostructured materials * rapid solidification * positron spectroscopies * transmission electron microscopy * x-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.289, year: 2011

  7. Applicability of Al-powder-alloy coating to corrosion barriers of 316SS in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Kurata, Yuji; Sato, Hidetomo; Yokota, Hitoshi; Suzuki, Tetsuya

    2011-01-01

    A new Al-alloy coating method using Al, Ti and Fe powders has been applied to 316SS in order to develop corrosion resistant coating in liquid lead-bismuth eutectic (LBE). The 316SS plates with coating layers of different Al concentrations were exposed to liquid LBE with controlled oxygen concentrations of 10 -6 to 10 -4 mass% at 823 K for 3600 ks. While surface oxidation and grain boundary corrosion accompanied by liquid LBE penetration are observed in 316SS without Al-alloy coating, the Al-alloy coating is effective to protect such severe corrosion attacks in liquid LBE. Although the coating layer containing 2.8 mass% Al does not always keep sufficient corrosion resistance, good corrosion resistance is obtained through the Al-oxide film formed in liquid LBE in the coating layer where the average Al concentration is 4.2 mass%. Cracks are formed in the coating layer containing 17.8 mass% Al during the coating process. The Al-powder-alloy coating applied to 316SS is promising as a corrosion resistant coating method in liquid LBE environment. (author)

  8. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified

    International Nuclear Information System (INIS)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de

    2010-01-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  9. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1995-01-01

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  10. Solidified Structure and Corrosion Behavior of Laser-melt Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    FANG Zhi-hao

    2017-12-01

    Full Text Available The AZ91D magnesium alloy samples were scanned by millisecond pulse Nd:YAG laser under high pure argon protection. The surface morphology, microstructure and composition of the treated magnesium alloy were studied by X-ray diffraction, optical microscopy, scanning electron microscopy, atomic force microscopy. In addition, the corrosion surface which was corroded using simulated body fluid and the mass fraction of 3.5%NaCl solution was observed and material corrosion rate was calculated. The results show that, at the same corrosion time, compared with the untreated samples, the surface corrosion resistance is improved by the enrichment of Al at the irradiated surface by the joint effect of the combination of refined homogeneous microstructure of α-Mg phase and β-Mg17Al12 phase and the selective vaporization and the chemical composition of base metal in the laser-treated AZ91D alloy; the solidification equation is obtained by calculating the relation between the size of the dendrite cell and the cooling rate in laser melting zone.

  11. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, S., E-mail: saeedfarahany@gmail.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Ourdjini, A.; Idrsi, M.H. [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Shabestari, S.G. [Center of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), 16846-13114 Tehran (Iran, Islamic Republic of)

    2013-05-10

    Highlights: • Combined effect of Bi, Sb and Sr additions, and cooling condition was evaluated. • Two different scenarios of recalecense in response to cooling rate were observed. • Fraction solid increased in the order of Sr > Bi > Sb, corresponds to Si morphologies. • Only Bi decreased the nucleation temperature of Al{sub 2}Cu eutectic phase. - Abstract: Al–Si and Al–Cu eutectic phases strongly affect the properties of Al–Si–Cu cast alloys. The characteristic parameters of these two eutectic phases with addition of bismuth, antimony and strontium under different cooling rates (0.6–2 °C/s) were investigated in ADC12 alloy using in situ thermal analysis. Results show that additives affect the Al–Si phase more than the Al–Cu (Al{sub 2}Cu) phase. Addition elements showed two different scenarios in response to cooling rate in terms of recalescence of the Al–Si eutectic phase. Both Bi and Sb caused an increase in recalescence with increased cooling rate but Sr addition reduced the recalescence. Additions of Sb and Sr increased the nucleation temperature of Al{sub 2}Cu, but addition of Bi produced an opposite effect. There seems to be relationship between the solidification temperature range and fraction solid of Al–Si and Al{sub 2}Cu eutectic phases. As the cooling rate increases the fraction solid of Al–Si decreased and that of Al{sub 2}Cu increased.

  12. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis

    International Nuclear Information System (INIS)

    Farahany, S.; Ourdjini, A.; Idrsi, M.H.; Shabestari, S.G.

    2013-01-01

    Highlights: • Combined effect of Bi, Sb and Sr additions, and cooling condition was evaluated. • Two different scenarios of recalecense in response to cooling rate were observed. • Fraction solid increased in the order of Sr > Bi > Sb, corresponds to Si morphologies. • Only Bi decreased the nucleation temperature of Al 2 Cu eutectic phase. - Abstract: Al–Si and Al–Cu eutectic phases strongly affect the properties of Al–Si–Cu cast alloys. The characteristic parameters of these two eutectic phases with addition of bismuth, antimony and strontium under different cooling rates (0.6–2 °C/s) were investigated in ADC12 alloy using in situ thermal analysis. Results show that additives affect the Al–Si phase more than the Al–Cu (Al 2 Cu) phase. Addition elements showed two different scenarios in response to cooling rate in terms of recalescence of the Al–Si eutectic phase. Both Bi and Sb caused an increase in recalescence with increased cooling rate but Sr addition reduced the recalescence. Additions of Sb and Sr increased the nucleation temperature of Al 2 Cu, but addition of Bi produced an opposite effect. There seems to be relationship between the solidification temperature range and fraction solid of Al–Si and Al 2 Cu eutectic phases. As the cooling rate increases the fraction solid of Al–Si decreased and that of Al 2 Cu increased

  13. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy

    International Nuclear Information System (INIS)

    Matsuda, M.; Ii, S.; Kawamura, Y.; Ikuhara, Y.; Nishida, M.

    2005-01-01

    The long-period stacking order (LPSO) structures in rapidly solidified Mg 97 Zn 1 Y 2 alloy have been studied by conventional and high-resolution transmission electron microscopes (HRTEMs). There are four kinds of stacking sequences in the LPSO structures, i.e., 18R of ABABABCACACABCBCBC, 14H of ACBCBABABABCBC, 10H of ABACBCBCAB and 24R of ABABABABCACACACABCBCBCBC. The 18R structure is dominantly observed in the present study. The rest three are occasionally observed in places. The 10H and 24R structures are recently discovered. The lattice constants of 18R(1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 , 14H(2-bar -bar 1-bar 2-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2-bar 1-bar -bar 2), 10H(1-bar 3-bar -bar 1-bar 1-bar -bar 3-bar 1-bar ) and 24R(1-bar 1-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 structures are estimated to be a=0.320nm and c=4.678nm, a=0.325nm and c=3.694nm, a=0.325nm and c=2.603nm, a=0.322nm and c=6.181nm for the hexagonal structure, respectively

  14. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  15. Study of directionally solidified eutectic Al2O3-ZrO2(3%Y2O3 doped with TiO2

    Directory of Open Access Journals (Sweden)

    Peña, J. I.

    2007-06-01

    Full Text Available An study of directionally grown samples of the eutectic composition in the Al2O3-ZrO2 (3 mol% Y2O3 system, with small TiO2 additions (1 wt%, is presented. The microstructural changes induced by this addition are analysed using SEM (EDX techniques. The mechanical changes, when TiO2 is added, are studied by measuring the flexural strength by three point bending. Also, the toughness is determined by Vickers indentation method. When slow growth rates (10 mm/h are used, interpenetratred and homogeneous microstructure is obtained, independently of the TiO2 doping. When growth rates are higher (300 and 1000 mm/h the structure changes and the phases are organized in form of colonies or cells, which have smaller size when TiO2 is present. This size reduction is accompanied with an increase of the toughness.Este trabajo presenta un estudio de muestras crecidas direccionalmente del sistema Al2O3-ZrO2 (3 mol% Y2O3 en su composición eutéctica con pequeñas adiciones de óxido de titanio (1% de TiO2 en peso. Se analizan los cambios microestructurales inducidos por esta adición mediante SEM (EDX y se estudian los cambios en su comportamiento mecánico medido por flexión en tres puntos, así como la tenacidad de fractura mediante indentación Vickers. Con velocidades lentas de solidificación (10 mm/h se obtiene en ambos casos una microestructura homogénea e interpenetrada, mientras que a velocidades mayores, 300 y 1000 mm/h, se forma una estructura en las que las fases se organizan en forma de colonias o células, siendo éstas de menor tamaño en las muestras dopadas. Esta disminución en el tamaño viene acompañada de un aumento de la tenacidad de fractura medida por indentación.

  16. Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys

    International Nuclear Information System (INIS)

    Li, Xi; Gagnoud, Annie; Wang, Jiang; Li, Xiaolong; Fautrelle, Yves; Ren, Zhongming; Lu, Xionggang; Reinhart, Guillaume; Nguyen-Thi, Henri

    2014-01-01

    The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn 5 Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn 5 Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16 T). In addition, electron backscatter diffraction analysis revealed that the 〈0 0 0 1〉-crystal direction of the Zn 5 Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid

  17. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  18. Assessment of the transmutation capability an accelerator driven system cooled by lead bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Bianchi, F.; Peluso, V.; Calabrese; Chen, X.; Maschek, W.

    2007-01-01

    1. PURPOSE The reduction of long-lived fission products (LLFP) and minor actinides (MA) is a key point for the public acceptability and economy of nuclear energy. In principle, any nuclear fast reactor is able to burn and transmute MA, but the amount of MA content has to be limited a few percent, having unfavourable consequences on the coolant void reactivity, Doppler effect, and delayed neutron fraction, and therefore on the dynamic behaviour and control. Accelerator Driven Systems (ADS) are instead able to safely burn and/or transmute a large quantity of actinides and LLFP, as they do not rely on delayed neutrons for control or power change and the reactivity feedbacks have very little importance during accidents. Such systems are very innovative being based on the coupling of an accelerator with a subcritical system by means of a target system, where the neutronic source needed to maintain the neutron reaction chain is produced by spallation reactions. To this end the PDS-XADS (Preliminary Design Studies on an experimental Accelerator Driven System) project was funded by the European Community in the 5th Framework Program in order both to demonstrate the feasibility of the coupling between an accelerator and a sub-critical core loaded with standard MOX fuel and to investigate the transmutation capability in order to achieve values suitable for an Industrial Scale Transmuter. This paper summarizes and compares the results of neutronic calculations aimed at evaluating the transmutation capability of cores cooled by Lead-Bismuth Eutectic alloy and loaded with assemblies based on (Pu, Am, Cm) oxide dispersed in a molybdenum metal (CERMET) or magnesia (CERCER) matrices. It also describes the constraints considered in the design of such cores and describes the thermo-mechanical behaviour of these innovative fuels along the cycle. 2. DESCRIPTION OF THE WORK: The U-free composite fuels (CERMET and CERCER) were selected for this study, being considered at European level

  19. Direct preparation of Al-base alloys from their oxides/metal precursors in the eutectic LiCl–KCl melt

    International Nuclear Information System (INIS)

    Gao, Bingliang; Zhu, Hao; Xia, Yuxiang; Shi, Zhongning; Hu, Xianwei; Wang, Zhaowen

    2016-01-01

    A study was carried out on the preparation of Al–Cu–Li alloy from their oxides/metal precursors using the method of electro-deoxidation in the eutectic LiCl–KCl melt at 648 K. Cyclic voltammetry was used to characterize the system. The samples were prepared by potentiostatic electrolysis at −1.0 V to −2.0 V (vs. Ag + /Ag) for 5 h. XRD analysis shows that Li 2 O is not electrochemically reduced to Li at −1.0 V (vs. Ag + /Ag) or more negative potential. During the preparation process of Al–Cu–Li alloy, lithium peroxide is formed as an intermediate compound. Al–Cu–Li alloy is chemically prepared through the reaction between aluminum and lithium peroxide by heating of Al–Cu–Li 2 O precursors in KCl–LiCl–LiF melt at 1023 K. Eelectro-deoxidation in LiCl–KCl melt can increase the lithium content in the final alloy product. Al–Mg and Al–Nd alloy were also prepared by using the same method from their mixture of aluminum and corresponding oxide, respectively. Al–Nd alloy can only be obtained at the temperature above 773 K. Al–Li alloy could not be obtained in eutectic CaCl 2 –LiCl melt because of formation of calcium aluminates. - Highlights: • Al–Cu–Li alloy was prepared using electrochemical deoxidation of Al–Cu–Li 2 O precursor in eutectic KCl–LiCl melt at 648 K. • Al–Nd alloy was successfully produced by the same method at 773 K. • CaCl 2 –LiCl melt is not a good choice for preparing Al–Li alloy because of formation of calcium aluminate.

  20. Direct preparation of Al-base alloys from their oxides/metal precursors in the eutectic LiCl–KCl melt

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bingliang, E-mail: blgao@mail.neu.edu.cn; Zhu, Hao; Xia, Yuxiang; Shi, Zhongning; Hu, Xianwei; Wang, Zhaowen

    2016-04-25

    A study was carried out on the preparation of Al–Cu–Li alloy from their oxides/metal precursors using the method of electro-deoxidation in the eutectic LiCl–KCl melt at 648 K. Cyclic voltammetry was used to characterize the system. The samples were prepared by potentiostatic electrolysis at −1.0 V to −2.0 V (vs. Ag{sup +}/Ag) for 5 h. XRD analysis shows that Li{sub 2}O is not electrochemically reduced to Li at −1.0 V (vs. Ag{sup +}/Ag) or more negative potential. During the preparation process of Al–Cu–Li alloy, lithium peroxide is formed as an intermediate compound. Al–Cu–Li alloy is chemically prepared through the reaction between aluminum and lithium peroxide by heating of Al–Cu–Li{sub 2}O precursors in KCl–LiCl–LiF melt at 1023 K. Eelectro-deoxidation in LiCl–KCl melt can increase the lithium content in the final alloy product. Al–Mg and Al–Nd alloy were also prepared by using the same method from their mixture of aluminum and corresponding oxide, respectively. Al–Nd alloy can only be obtained at the temperature above 773 K. Al–Li alloy could not be obtained in eutectic CaCl{sub 2}–LiCl melt because of formation of calcium aluminates. - Highlights: • Al–Cu–Li alloy was prepared using electrochemical deoxidation of Al–Cu–Li{sub 2}O precursor in eutectic KCl–LiCl melt at 648 K. • Al–Nd alloy was successfully produced by the same method at 773 K. • CaCl{sub 2}–LiCl melt is not a good choice for preparing Al–Li alloy because of formation of calcium aluminate.

  1. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  2. Eutectic crystallization behavior of new Zr48Cu36Al8Ag8 alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Zhang, Q S; Zhang, W; Xie, G Q; Inoue, A

    2009-01-01

    A water quenching method is used to produce as-cast Zr 48 Cu 36 Al 8 Ag 8 rods with diameters from 20 mm to 25 mm. The microstructures of the as-cast samples were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Furthermore, the crystallization behavior of the Zr 48 Cu 36 Al 8 Ag 8 glassy alloy was examined by XRD and transmission electron microscopy. Based on the results obtained one can assume that the simultaneous precipitation of the Zr 2 Cu+AlCu 2 Zr eutectic phases is the possible reason for the high stabilization of the quaternary Zr 48 Cu 36 Al 8 Ag 8 supercooled liquid.

  3. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys

    International Nuclear Information System (INIS)

    Shalaby, Rizk Mostafa

    2013-01-01

    Mechanical properties and indentation creep of the melt-spun process Bi–42 wt%Sn, Bi–40 wt%Sn–2 wt%In, Bi–40 wt%Sn–2 wt%Ag and Bi–38 wt%Sn–2 wt%In–2 wt%Ag were studied by dynamic resonance technique and Vickers indentation testing at room temperature and compared to that of the traditional Sn–37 wt%Pb eutectic alloy. The results show that the structure of Bi–42 wt%Sn alloy is characterized by the presence of rhombohedral Bi and body centered tetragonal β-Sn. The two ternary alloys exhibit additional constituent phases of intermetallic compounds SnIn 19 for Bi–40 wt%Sn–2 wt%In and ε-Ag 3 Sn for Bi–40 wt%Sn–2 wt%Ag alloys. Attention has been paid to the role of intermetallic compounds on mechanical and creep behavior. The In and Ag containing solder alloy exhibited a good combination of higher creep resistance, good mechanical properties and lower melting temperature as compared with Pb–Sn eutectic solder alloy. This was attributed to the strengthening effect of Bi as a strong solid solution element in the Sn matrix and formation of intermetallic compounds β-SnBi, ε-Ag 3 Sn and InSn 19 which act as both strengthening agent and grain refiner in the matrix of the material. Addition of In and Ag decreased the melting temperature of Bi–Sn lead-free solder from 143 °C to 133 °C which was possible mainly due to the existence of InSn 19 and Ag 3 Sn intermetallic compounds. Elastic constants, internal friction and thermal properties of Bi–Sn based alloys have been studied and analyzed.

  4. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail: jose.sanchez@ipicyt.edu.mx; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)

    2015-05-07

    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  5. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  6. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  7. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  8. Diffusivity, activity and solubility of oxygen in liquid lead and lead-bismuth eutectic alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Gnanasekaran, T.; Srinivasa, Raman S.

    2006-01-01

    The diffusivity of oxygen in liquid lead and lead-bismuth eutectic (LBE) alloy was measured by a potentiostatic method and is given by log(D O Pb /cm 2 s -1 )=-2.554-2384/T(+/-0.070), 818-1061K, and log(D O LBE /cm 2 s -1 )=-0.813-3612/T(+/-0.091), 811-980K. The activity of oxygen in lead and LBE was determined by coulometric titration experiments. Using the measured data, the standard free energy of dissolution of oxygen in liquid lead and LBE was derived and is given byG O(Pb) xs =-121349+16.906T(+/-560)J(gatomO) -1 ,815-1090K,G O(LBE) xs = -127398+27.938T(+/-717)J(gatomO) -1 ,812-1012K.Using the above data, the Gibbs energy of formation of PbO(s) and equilibrium oxygen pressures measured over the oxygen-saturated LBE alloy, the solubility of oxygen in liquid lead and LBE were derived. The solubility of oxygen in liquid lead and LBE are given by log(S/at.%O)=-5100/T+4.32 (+/-0.04), 815-1090K and log(S/at.%O)=-4287/T+3.53 (+/-0.06), 812-1012K respectively.

  9. Parameters promoting liquid metal embrittlement of the T91 steel in lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Proriol Serre, I.; Ye, C.; Vogt, J.B.

    2015-01-01

    The use of liquid lead-bismuth eutectic (LBE) as a spallation target and a coolant in accelerator-driven systems raises the question of the reliability of structural materials, such as T91 martensitic steel in terms of liquid metal assisted damage and corrosion. In this study, the mechanical behaviour of the T91 martensitic steel was examined in liquid lead-bismuth eutectic (LBE) and in inert atmosphere. Several conditions showed the most sensitive embrittlement factor. The Small Punch Test technique was employed using smooth specimens. In this standard heat treatment, T91 appeared in general as a ductile material, and became brittle in the considered conditions if the test was performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement (LME) of the T91 steel in LBE. Loading the T91 very slowly instead of rapidly in oxygen saturated LBE resulted in brittle fracture. Furthermore, low-oxygen content in LBE and an increase in temperature promote LME. (authors)

  10. Microtexture formation of Ni99B1 alloys solidified on an ESL and an EML-a study based on the EBSP technique

    International Nuclear Information System (INIS)

    Li Mingjun; Ishikawa, Takehiko; Nagashio, Kosuke; Kuribayashi, Kazuhiko; Yoda, Shinichi

    2007-01-01

    We employed an electrostatic levitator (ESL) and an electromagnetic levitator (EML) to solidify Ni 99 B 1 (at.%) alloys at various undercoolings. The microstructures and microtextures were revealed by using the electron backscatter diffraction pattern (EBSP) technique in a scanning electron microscope. It is found that that no significant refinement can be identified at the low and medium undercooling regimes for the primary trunk in the sample solidified on the ESL, while the fragmentation of the secondary and even tertiary branches may take place to generate equiaxed grains. Further investigation by the EBSP reveals that neighboring grains have small misorientation angles, which may be ascribed to the absence of mechanical stirring from electromagnetic eddy current. A sharp contrast is that the samples solidified on the EML at low and medium undercoolings have refined equiaxed microstructures. The EBSP mapping reveals that the equiaxed grains yielded on the EML have a random distribution in crystallographic orientations among neighboring grains, indicating that electromagnetic stirring (EMS) induced by the electromagnetic field in the EML plays a vital role in promoting fragmentation and thus generating refined grains and random distribution in orientation. Regarding to the refined microstructure at high undercoolings, no significant difference arises in the samples processed between the EML and ESL

  11. Microtexture formation of Ni{sub 99}B{sub 1} alloys solidified on an ESL and an EML-a study based on the EBSP technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-Mail: li.mingjun@aist.go.jp; Ishikawa, Takehiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Nagashio, Kosuke [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2007-03-25

    We employed an electrostatic levitator (ESL) and an electromagnetic levitator (EML) to solidify Ni{sub 99}B{sub 1} (at.%) alloys at various undercoolings. The microstructures and microtextures were revealed by using the electron backscatter diffraction pattern (EBSP) technique in a scanning electron microscope. It is found that that no significant refinement can be identified at the low and medium undercooling regimes for the primary trunk in the sample solidified on the ESL, while the fragmentation of the secondary and even tertiary branches may take place to generate equiaxed grains. Further investigation by the EBSP reveals that neighboring grains have small misorientation angles, which may be ascribed to the absence of mechanical stirring from electromagnetic eddy current. A sharp contrast is that the samples solidified on the EML at low and medium undercoolings have refined equiaxed microstructures. The EBSP mapping reveals that the equiaxed grains yielded on the EML have a random distribution in crystallographic orientations among neighboring grains, indicating that electromagnetic stirring (EMS) induced by the electromagnetic field in the EML plays a vital role in promoting fragmentation and thus generating refined grains and random distribution in orientation. Regarding to the refined microstructure at high undercoolings, no significant difference arises in the samples processed between the EML and ESL.

  12. Thermophoresis research of nanoparticles in liquid lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Liu Liang; Fang Xiaolu; Lin Daping

    2015-01-01

    Thermophoresis theory of solid particles in liquid are selected to research thermophoresis phenomenon in liquid Lead-Bismuth Eutectic (LBE). Thermophoretic velocity of different particles in LBE and stainless steel particles in different fluid are calculated. The results showed that, thermophoretic velocity of particles in LBE increase with the increase of temperature gradient and the decrease of particle radius. And the thermophoretic velocity of stainless steel particles two orders of magnitude lower than the Carbon Nanotubes (CNT) particles, at the same time, it is similar to copper particles in LBE. What's more, the thermophoretic velocity of stainless steel particles in LBE would one order of magnitude lower than that in water and R134a. Of course, it is still faster than that in Engine Oil and Ethyl Glycol two orders of magnitude. (author)

  13. Derivative thermo analysis of the near eutectic Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-12-01

    Full Text Available For determining of the dependence between cooling Speer, chemical composition and structure of the Al–Si–Cu aluminium cast alloy the thermo-analysis was carried out, using the UMSA device (Universal Metallurgical Simulator and Analyzer, next the optical and electron scanning microscopy was used for investigation of the structure, phase and chemical composition of the AC-AlSi7Cu3Mg grade Al cast alloy also using the EDS microanalysis as well the EBSD technique.

  14. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  15. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    Science.gov (United States)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  16. Evolution of the microstructure and hardness of a rapidly solidified/melt-spun AZ91 alloy upon aging at different temperatures

    International Nuclear Information System (INIS)

    Wang Baishu; Liu Yongbing; An Jian; Li Rongguang; Su Zhenguo; Su Guihua; Lu You; Cao Zhanyi

    2009-01-01

    The effect of aging at different temperatures on a rapidly solidified/melt-spun AZ91 alloy has been investigated in depth. The microstructures of as-spun and aged ribbons with a thickness of approximately 60 μm were characterized using X-ray diffraction, transmission electron microscopy and laser optical microscopy; microhardness measurements were also conducted. It was found that the commercial AZ91 alloy undergoes a cellular/dendritic transition during melt-spinning at a speed of 34 m/s. A strengthening effect due to aging was observed: a maximum hardness of 110 HV/0.05 and an age-hardenability of 50% were obtained when the ribbon was aged at 200 deg. C for 20 min. The β-Mg 17 Al 12 phase exhibits net and dispersion types of distribution during precipitation. The dispersion of precipitates in dendritic grains or cells is the main source of strengthening

  17. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  18. Comparative Study on the Grain Refinement of Al-Si Alloy Solidified under the Impact of Pulsed Electric Current and Travelling Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yunhu Zhang

    2016-07-01

    Full Text Available It is high of commercial importance to generate the grain refinement in alloys during solidification by means of electromagnetic fields. Two typical patterns of electromagnetic fields, pulsed electric currents (ECP and traveling magnetic field (TMF, are frequently employed to produce the finer equiaxed grains in solidifying alloys. Various mechanisms were proposed to understand the grain refinement in alloys caused by ECP and TMF. In this paper, a comparative study is carried out in the same solidification regime to investigate the grain refinement of Al-7 wt. %Si alloy driven by ECP and TMF. Experimental results show that the application of ECP or TMF can cause the same grain refinement occurrence period, during which the refinement of primary Al continuously occurs. In addition, the related grain refinement mechanisms are reviewed and discussed, which shows the most likely one caused by ECP and TMF is the promoted dendrite fragmentation as the result of the ECP-induced or TMF-induced forced flow. It suggests that the same grain refinement process in alloys is provoked when ECP and TMF are applied in the same solidification regime, respectively.

  19. Numerical simulation of heat-transfer and insoluble corrosion product deposition in lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Fang Xiaolu; Lin Daping; Ru Xiaolong

    2015-01-01

    As the primary coolant of ADS (accelerator driven sub-critical system), the safety of reactor will be threatened and the lifetime of the reactor will be shortened by appearing of the tiny particles in LBE (lead-bismuth eutectic) alloy. To this end, numerical simulation with the code of FLUENT was used to research the deposition distribution of insoluble corrosion products in rectangular channel. The standard k-ε model was selected to predict the turbulence variation in the rectangular channel. The discrete phase model (DPM) was used to track the trajectory of the particles. It is found that the deposition efficiency is positively correlated with the temperature difference between the fluid and cold wall. The near wall region with a high concentration of particulate matter and low temperature is in favor of particulate matter deposition on the wall. At the same time, the high turbulence kinetic near wall region is not conducive to the deposition of particulate matter. A secondary flow phenomenon occurs under the influence of boundary wall, namely that there are eight symmetrical regions in the radial direction. (authors)

  20. Wafer-level integration of NiTi shape memory alloy on silicon using Au–Si eutectic bonding

    International Nuclear Information System (INIS)

    Gradin, Henrik; Bushra, Sobia; Braun, Stefan; Stemme, Göran; Van der Wijngaart, Wouter

    2013-01-01

    This paper reports on the wafer level integration of NiTi shape memory alloy (SMA) sheets with silicon substrates through Au–Si eutectic bonding. Different bond parameters, such as Au layer thicknesses and substrate surface treatments were evaluated. The amount of gold in the bond interface is the most important parameter to achieve a high bond yield; the amount can be determined by the barrier layers between the Au and Si or by the amount of Au deposition. Deposition of a gold layer of more than 1 μm thickness before bonding gives the most promising results. Through patterning of the SMA sheet and by limiting bonding to small areas, stresses created by the thermal mismatch between Si and NiTi are reduced. With a gold layer of 1 μm thickness and bond areas between 200 × 200 and 800 × 800 μm 2 a high bond strength and a yield above 90% is demonstrated. (paper)

  1. Brittle fracture of T91 steel in liquid lead–bismuth eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changqing, E-mail: Changqing.ye@ed.univ-lille1.fr; Vogt, Jean-Bernard, E-mail: jean-bernard.vogt@univ-lille1.fr; Proriol-Serre, Ingrid, E-mail: ingrid.proriol-serre@univ-lille1.fr

    2014-12-15

    Highlights: • Tempering temperature is important for LBE embrittlement occurrence. • Brittle behaviour in LBE evidenced by small punch test and fatigue test. • Brittle behaviour in low oxygen LBE observed for low loading rate. - Abstract: The mechanical behaviour of the T91 martensitic steel has been studied in liquid lead–bismuth eutectic (LBE) and in inert atmosphere. Several conditions were considered to point out the most sensitive embrittling factors. Smooth and notched specimens were employed for respectively monotonic and cyclic loadings. The present investigation showed that T91 appeared in general as a ductile material, and became brittle in the considered conditions only if at least tests were performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement of T91 in LBE. For the standard heat treatment condition, loading monotonically the T91 very slowly instead of rapidly in LBE resulted in brittle fracture. Also, under cyclic loading, the crack propagated in a brittle manner in LBE.

  2. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Lin, Z. G.

    2001-01-01

    The phase evolution with the temperature and time in the process of crystallization of Al89La6Ni5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi)(11...

  3. Description of hypo eutectic Al-Si-Cu alloys based on their known chemical compositions

    International Nuclear Information System (INIS)

    Djurdjevic, M. B.; Vicario, I.

    2013-01-01

    The modeling of casting processes has remained a topic of active interest for several decades, and the availability of numerous software packages on the market is a good indication of the interest that the casting industry has in this field. Most of the data used in these software packages are directly read or estimated from the binary or multi-component phase diagrams. Unfortunately, except for binary diagrams, many of ternary or higher order phase diagrams are still not accurate enough. Having in mind that most of the aluminum binary systems are very well established, it has been tried to transfer multi-component system into one well known Al-Xi pseudo binary system (in this case the Al-Si phase diagram was chosen as a reference system). The new Silicon Equivalency (SiEQ) algorithm expresses the amounts of major and minor alloying elements in the aluminum melts through an equivalent amount of silicon. Such a system could be used to calculate several thermo-physical and solidification characteristics of multi component as cast aluminum alloys. This provides to the model the capacity to predict the solidification characteristics of cast parts, where cooling rates are slow and the solidification process has to be known in great detail in order to avoid quality problems in the casting. This work demonstrates how the SiEQ algorithm can be used to calculate the characteristic solidification temperatures of the multicomponent Al-Si alloys as well as their latent heats and growth restriction factor. Statistical analysis of the results obtained for a wide range of alloy chemical compositions shows a very good correlation with the experimental data and the SiEQ calculations. The same mathematical approach might be applied for other metallic systems such as iron and magnesium, using carbon equivalency for ferrous systems and aluminum equivalency for magnesium multi-component alloys. (Author)

  4. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  5. Effect of Fe, Ni, and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy under different pH conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Kaiser

    2018-05-01

    Full Text Available Effect of Fe, Ni and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy was studied. The test of corrosion behaviour at different environmental pH 1, 3, 5, 7, 9, 11 and 13 was performed using conventional gravimetric measurements and complemented by resistivity, optical micrograph, scanning electron microscopy (SEM and X-ray analyser (EDX investigations. The highest corrosion rate was observed at pH 13 followed by pH 1, while in the pH range of 3.0 to 11, there is a high protection of surface due to formation of stable surface oxide film. The highest corrosion rate at pH 13 is due to presence of sodium hydroxide in the solution in which the surface oxide film is soluble. At pH 1, however, high corrosion rate can be attributed to dissolution of Al due to the surface attack by aggressive chloride ions. Presence of Fe, Ni and Cr in hyper-eutectic Al-Si automotive alloy has significant effect on the corrosion rate at both environmental pH values. Resistivity of alloy surfaces initially decreases at pH 1 and pH 13 due to formation of thin films. The SEM images of corroded samples immersed in pH 1 solution clearly show pores due to uniform degradation of the alloy. In pH 13 solution, however, the corrosion layer looks more packed and impermeable.

  6. Effect of cooling rate and Mg addition on the structural evaluation of rapidly solidified Al-20wt%Cu-12wt%Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.tr [Çankırı Karatekin University, Faculty of Sciences, Department of Physics, 18100 Çankırı (Turkey); Çolak, Hakan [Çankırı Karatekin University, Faculty of Sciences, Department of Chemistry, 18100 Çankırı (Turkey)

    2016-11-15

    The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggests that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.

  7. Raman mapping in the elucidation of solid salt eutectic and near eutectic structures

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Kerridge, D. H.

    2002-01-01

    The distribution of the different components of solidified eutectic or near-eutectic salt mixtures (eutectics) was examined by use of Raman microscope mapping of the structures formed when these melts were slowly cooled. Seven binary and one ternary system were investigated. In most cases...... and the composition. When unidirectional cooling was applied it was possible for the system (KCl-Na2SO4, 60:40 mol/mol) to observe lamellar arrangements of the component phases, in an arrangement closely similar to what is frequently found among metallic or ceramic eutectics. Each area, conglomerate or lamellar, did...

  8. Investigation of ion sputtering for eutectic Cu-37 at% Ag alloys

    International Nuclear Information System (INIS)

    Wang Zhenxia; Pan Jisheng; Zhang Jiping; Tao Zhenlan; Zhu Fuying; Zhao Lie; Zhang Huiming

    1994-01-01

    Angular distributions of sputtered atoms and the phenomenon of element locally rich relative to micro-topographic feature (ELR-MTF) of sputtered target surface have been investigated for Cu-37 at% Ag alloys by means of RBS, SEM and EPMA measurements. In the paper,emphasis will be put on the correlation between surface topography caused by Ar + ion bombardment with different doses and angular distribution of sputtered atoms ejecting from various micro-zones at topographical surface during sputtering. The experiment result was explained with the so-called ELR-MTF model which can qualitatively interpret the shape of the angular distributions and the variation of the preferential sputtering curves

  9. Study of the influence of gravity on the thermodynamic equilibrium of a liquid alloy, and on its solidification: application to eutectic Al-Ge and monotectic Al-In alloys

    International Nuclear Information System (INIS)

    Vinet, Bernard

    1981-01-01

    After having recalled the meaning of gravity, this research thesis addresses the study of movements within the Earth gravity field to assess accelerations for a centrifuged system, and to describe conditions which create weightlessness. The various actions of gravity on fluid phases are analysed by highlighting phenomena of convection and segregation. In a second part, the author addresses the issue of local order. The third part addresses the influence of gravity conditions on the distribution of components of a binary liquid alloy in thermodynamic equilibrium. The fourth part addresses experimental means. The next parts address the eutectic Al-Ge alloy and the monotectic Al-In alloy. Results obtained for liquid alloy are presented, and the author analyse segregations which appeared during solidification in gravity conditions between 40 and 100 g. The influence of these conditions of the structure of both alloys is then studied

  10. Effect of Electric Field on the Wetting Behavior of Eutectic Gallium-Indium Alloys in Aqueous Environment

    Science.gov (United States)

    Yuan, Bo; He, Zhi-Zhu; Liu, Jing

    2018-02-01

    Room-temperature liquid metals have many intriguing properties that have not previously been fully understood. Among them, surface tension behaviors of such metals are especially critical in a group of newly emerging areas such as printed electronics, functional materials and soft machines, etc. This study is dedicated to clarifying the wettability of liquid metals on various substrate surfaces with varied roughness immersed in solutions when subject to an electric field. The contact angles of Ga75.5In24.5 in several typical liquids were comprehensively measured and interpreted, and were revealed to be affected by the components and concentration of the environmental solution. Meanwhile, the roughness of the substrates is also revealed to be an important parameter dominating the process. The dynamic wetting behaviors of liquid metal in aqueous environment under an electric field were quantified. The contact angle values of eutectic gallium-indium alloys (eGaIn) on titanium substrates with different roughness would lead to better electrowetting performances on rougher surfaces. In particular, using an electrical field to control the wetting status of liquid metal with the matching substrate have been illustrated, which would offer a practical way to flexibly control liquid metal-based functional devices working in an aqueous environment. Furthermore, Lippmann-Young's equation reveals the relationship between contact angle and applied voltage, explaining the excellent electrowetting property of eGaIn. The power law, R = αt β , was adopted to characterize the two-stage wetting process of eGaIn under different voltages. In the initial process, β ≈ 1/2 represents the complete wetting law, while the later one, β ≈ 1/10, meets with Tanner's law of a drop spontaneously spreading on a smooth surface.

  11. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy

    International Nuclear Information System (INIS)

    Gao, Xuzhou; Lu, Yiping; Zhang, Bo; Liang, Ningning; Wu, Guanzhong; Sha, Gang; Liu, Jizi; Zhao, Yonghao

    2017-01-01

    Recent studies indicate that eutectic high-entropy alloys can simultaneously possess high strength and high ductility, which have potential applications in industrial fields. Nevertheless, microstructural origins of the excellent strength–ductility combination remain unclear. In this study, an AlCoCrFeNi 2.1 eutectic high-entropy alloy was prepared with face-centered cubic (FCC)(L1 2 )/body-centered-cubic (BCC)(B2) modulated lamellar structures and a remarkable combination of ultimate tensile strength (1351 MPa) and ductility (15.4%) using the classical casting technique. Post-deformation transmission electron microscopy revealed that the FCC(L1 2 ) phase was deformed in a matter of planar dislocation slip, with a slip system of {111} <110>, and stacking faults due to low stacking fault energy. Due to extreme solute drag, high densities of dislocations are distributed homogeneously at {111} slip plane. In the BCC(B2) phase, some dislocations exist on two {110} slip bands. The atom probe tomography analysis revealed a high density of Cr-enriched nano-precipitates, which strengthened the BCC(B2) phase by Orowan mechanisms. Fracture surface observation revealed a ductile fracture in the FCC(L1 2 ) phase and a brittle-like fracture in the BCC(B2) lamella. The underlying mechanism for the high strength and high ductility of AlCoCrFeNi 2.1 eutectic high-entropy alloy was finally analyzed based on the coupling between the ductile FCC(L1 2 ) and brittle BCC(B2) phases.

  12. Hydrogen storage properties of Mg-23.3wt.%Ni eutectic alloy prepared via hydriding combustion synthesis followed by mechanical milling

    International Nuclear Information System (INIS)

    Liquan Li; Yunfeng Zhu; Xiaofeng Liu

    2006-01-01

    A Mg-23.3wt.%Ni eutectic alloy was prepared by the process of hydriding combustion synthesis followed by mechanical milling (HCS+MM). The product showed a high hydriding rate at 373 K and the dehydrogenation started at temperature as low as 423 K. Several reasons contributing to the improvement in hydrogen storage properties were presented. The result of this study will provide attractive information for mobile applications of magnesium hydrogen storage materials, and the process of HCS+MM developed in this study showed its potential for synthesizing magnesium based hydrogen storage materials with novel hydriding/de-hydriding properties. (authors)

  13. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy

    Science.gov (United States)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo

    2015-02-01

    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  14. Role of bismuth on solidification, microstructure and mechanical properties of a near eutectic Al-Si alloys

    Science.gov (United States)

    Farahany, Saeed; Ourdjini, Ali; Bakar, Tuty Asma Abu; Idris, Mohd Hasbullah

    2014-09-01

    Computer aided thermal analysis and microstructural observation showed that addition of bismuth (Bi) within the range of 0.25 and 2 wt% produced a greater effect on the Al-Si eutectic phase than on primary aluminium and Al2Cu phases. Results showed that with addition of 1 wt% Bi the eutectic silicon structure was refined from flake-like morphology into lamellar. Bi refines rather than modifies the Si structure and increases the Al-Si eutectic fraction solid and more significantly there was no fading even up to 180 min of melt holding. Transmission electron microscopy study showed that the Si twin spacing decreased from 160 to 75 nm which is likely attributed to the refining effect of Bi. It was also found that addition of 1 wt% Bi increased the tensile strength, elongation and the absorbed energy for fracture due to the refined eutectic silicon structure.

  15. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  16. Characterization of age-hardening behavior of eutectic surface on rheo-cast A356-T5 alloy by using nano/micro-indentation, scratching and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Youn, S.W. [Department of Precision and Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)]. E-mail: youn.sung-won@aist.go.jp; Kang, C.G. [National Research Laboratory of Thixo/Rheo Forming, School of Mechanical Engineering, Pusan National University, JangJun-Dong, Gumjung-Gu, Pusan 609-735 (Korea, Republic of)]. E-mail: cgkang@pusan.ac.kr

    2006-11-10

    This study investigates the nano/microstructure, the aging response (in T5 heat treatment), and the mechanical/tribological properties of the eutectic regions in rheo-cast A356 alloy parts using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. The aging responses of the eutectic regions in the rheo-cast A356 alloys aged at 150 deg. C for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Vickers hardness and indentation test results showed a similar trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found. The friction coefficient for the eutectic region was lower than that for the primary Al region.

  17. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    Science.gov (United States)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  18. Die-cast of a hypo-eutectic AL-SI alloy: influence of injection temperature on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Santos, Silvano Leal dos; Santos, Sydney Ferreira

    2014-01-01

    Die-casting is widely used for manufacturing light alloy components for automotive industry. Among others, hypo-eutectic Al-Si alloys are currently processed by die-casting. To obtain high quality die-cast components, a better understanding on the correlations between processing parameters, microstructures, and mechanical properties are of utmost importance. In this study, we investigate the effect of injection temperature of liquid metal on the microstructure and mechanical properties of Al-Si alloy EN AC 46000 (DIN designation). The injection temperatures were 579, 589, 643, and 709 deg C. As-cast components had their microstructures analyzed by X-ray diffraction, optical and scanning electron microscopy, and X-ray energy dispersive spectroscopy. The mechanical properties were examined by micro-hardness and tensile tests. It was observed that the ultimate tensile strength slightly increased with the increase of injection temperature. The same trend was observed for micro-hardness. The amount of porosity in the samples varies in a small amount for different injection temperatures. On the other hand, the microstructure of the alloys seems more refined for higher temperatures of injection. This refinement in microstructure might play a major role on the mechanical properties of the Al-Si die-cast alloy. (author)

  19. Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-02-01

    Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

  20. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  1. Measurement of solid-liquid interfacial energy in the In-Bi eutectic alloy at low melting temperature

    International Nuclear Information System (INIS)

    Marasli, N; Akbulut, S; Ocak, Y; Keslioglu, K; Boeyuek, U; Kaya, H; Cadirli, E

    2007-01-01

    The Gibbs-Thomson coefficient and solid-liquid interfacial energy of the solid In solution in equilibrium with In Bi eutectic liquid have been determined to be (1.46 ± 0.07) x 10 -7 K m and (40.4 ± 4.0) x 10 -3 J m -2 by observing the equilibrated grain boundary groove shapes. The grain boundary energy of the solid In solution phase has been calculated to be (79.0 ± 8.7) x 10 -3 J m -2 by considering force balance at the grain boundary grooves. The thermal conductivities of the In-12.4 at.% Bi eutectic liquid phase and the solid In solution phase and their ratio at the eutectic melting temperature (72 deg. C) have also been measured with radial heat flow apparatus and Bridgman-type growth apparatus

  2. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; Overman, N. R.; Doyle, J.; Shield, J. E.; Mathaudhu, S. N.

    2018-04-01

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same

  3. Microstructural characterization of a rapidly solidified ultrahigh strength Al94.5Cr3Co1.5Ce1 alloy

    International Nuclear Information System (INIS)

    Ping, D.H.; Hono, K.; Inoue, A.

    2000-01-01

    The microstructure of a rapidly solidified Al 94.5 Cr 3 Co 1.5 Ce 1 alloy has been examined in detail by means of high resolution transmission electron microscopy (HRTEM) and atom probe field ion microscopy (APFIM). In the as-quenched microstructure, nanoscale particles of a solute-enriched amorphous phase and an Al-Cr compound are dispersed in randomly oriented fine grains of α-Al ( 200nm ). The interface between the Al grains and the amorphous particles is not smooth but irregular with atomic protrusions and concavities, suggesting that interfacial instability occurs during the solidification process. Nanoscale amorphous particles are formed as a result of solute trapping within the rapidly grown Al grains. After annealing at 400 C for 15 minutes grain growth occurs, and the interface of the Al grains is smoothed. The amorphous region trapped within the grains if crystallized to an Al-Cr compound, but no icosahedral phase has been confirmed. The APFIM results have revealed that Cr and Ce atoms have a similar partitioning behavior, i.e., they are rejected from the α-Al phase and partitioned into the trapped amorphous regions. On the other hand, Co atoms are not partitioned between the two phases in the as-quenched state but are partitioned into the α-Al grains in the annealed alloys being rejected from the Al compounds and finally form Al-Co compounds. Based on these microstructural characterization results, the origins of high strength of this alloy are discussed

  4. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Marion, E-mail: marion.roy@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Martinelli, Laure, E-mail: laure.martinelli@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Ginestar, Kevin, E-mail: kevin.ginestar@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Favergeon, Jérôme, E-mail: jerome.favergeon@utc.fr [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Moulin, Gérard [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France)

    2016-01-15

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10{sup −9} and 5 10{sup −4} g kg{sup −1}. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = −57584/T(K) −55.876T(K) + 254546 (R is the gas constant in J mol{sup −1} K{sup −1}). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour. - Highlights: • 10 austenitic steels and Ni rich alloys were tested in LBE at 520 °C with dissolved oxygen content between 10{sup -9} and 5 10{sup -4} wt%. • It is shown that only thermodynamics cannot explain the Ni rich alloys corrosion behaviour in LBE. • The role of oxygen on corrosion behaviour in LBE was highlighted. • An equilibrium line was defined above which only oxidation has occurred on 316L: RTln[O](wt%) = -57584/T(K)-55.876T(K)+254546. • 18Cr-15Ni-3.7Si, 21Cr-11Ni-1.6Si and 14Cr-25Ni-3.5Al

  5. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    Science.gov (United States)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  6. Effect of titanium on structure and martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys

    International Nuclear Information System (INIS)

    Dutkiewicz, J.; Czeppe, T.; Morgiel, J.

    1999-01-01

    Alloys of composition Cu-(11.8-13.5)%Al-(3.2-4)%Ni-(2-3)%Mn and 0-1%Ti (wt.%) were cast using the melt spinning method in He atmosphere. Ribbons obtained in this process showed grains from 0.5 to 30 μm depending on the type of alloy and wheel speed. Bulk alloys and most of the ribbons contained mixed 18R and 2H type martensite at room temperature (RT). Some ribbons, crystallizing at the highest cooling rate, retained also β phase due to a drop of M s below RT. The M s temperatures in ribbons were strongly lowered with increasing wheel speed controlling the solidification rate. This drop of M s shows a linear relationship with d -1/2 , where d is grain size. The strongest decrease of M s and smallest grains were found in the ribbons containing titanium due to its grain refinement effect. The cubic Ti rich precipitates, present in both Cu-Al-Ni-Ti and Cu-Al-Ni-Mn-Ti bulk, were dispersed in ribbons cast with intermediate cooling rates of up to 26 m s -1 , but suppressed for higher cooling rates. The transformation hysteresis loop was much broader in ribbons due to presence of coherent Ti rich precipitates and differences in grain size which is particularly important in the ultra small grain size range. (orig.)

  7. Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-10-01

    Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.

  8. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Jiang Kun; Ma Xiaoguang; Liu Xiangfa

    2009-01-01

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiC x and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti 3 Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  9. Influence of gating design on microstructure and fluidity of thin sections AA320.0 cast hypo-eutectic Al-Si alloy

    Science.gov (United States)

    Ramadan, Mohamed

    2018-05-01

    Influence of gating design especially number of ingrates on microstructure and fluidity of thin sections of 2, 4, 6 mm AA320.0 cast hypo-eutectic Al-Si alloy was evaluated for sand casting molding technique. Increasing the number of ingates improves the microstructe to be fine and more globular. About 87 μm of α-Al grain size, 0.6 α-Al grain sphericity and 37 μm dendrite arm spacing DAS are achieved by using 4 ingates in gating system. Increasing the number of ingates up to 3 increases hardness, filling area and related fluditiy of all cast samples. The minimum thickness of 2.5 mm for each ingate should be considered in order to successfully production of high quality light weight thin sections castings in sand mold.

  10. Phase-field model of eutectic growth

    International Nuclear Information System (INIS)

    Karma, A.

    1994-01-01

    A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically

  11. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    Science.gov (United States)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  12. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    International Nuclear Information System (INIS)

    Liu, D R; Mangelinck-Noël, N; Thi, H Nguyen; Billia, B; Gandin, Ch-A; Zimmermann, G; Sturz, L

    2016-01-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement. (paper)

  13. Thermal analysis of selected tin-based lead-free solder alloys

    DEFF Research Database (Denmark)

    Palcut, Marián; Sopoušek, J.; Trnková, L.

    2009-01-01

    ) and thermodynamic calculations using the CALPHAD approach. The amount of the alloying elements in the materials was chosen to be close to the respective eutectic composition and the nominal compositions were the following: Sn-3.7Ag-0.7Cu, Sn-1.0Ag-0.5Cu-1Bi (in wt.%). Thermal effects during melting and solidifying...... were experimentally studied by the DSC technique. The microstructure of the samples was determined by the light microscopy and the composition of solidified phases was obtained by the energy-dispersive X-ray spectroscopy, respectively. The solidification behaviour under equilibrium conditions...

  14. 3D CAFE modeling of grain structures: application to primary dendritic and secondary eutectic solidification

    International Nuclear Information System (INIS)

    Carozzani, T; Digonnet, H; Gandin, Ch-A

    2012-01-01

    A three-dimensional model is presented for the prediction of grain structures formed in casting. It is based on direct tracking of grain boundaries using a cellular automaton (CA) method. The model is fully coupled with a solution of the heat flow computed with a finite element (FE) method. Several unique capabilities are implemented including (i) the possibility to track the development of several types of grain structures, e.g. dendritic and eutectic grains, (ii) a coupling scheme that permits iterations between the FE method and the CA method, and (iii) tabulated enthalpy curves for the solid and liquid phases that offer the possibility to work with multicomponent alloys. The present CAFE model is also fully parallelized and runs on a cluster of computers. Demonstration is provided by direct comparison between simulated and recorded cooling curves for a directionally solidified aluminum–7 wt% silicon alloy

  15. Preparation and characterization of the Li(17)Pb(83) eutectic alloy and the LiPb intermetallic compound

    International Nuclear Information System (INIS)

    Jauch, U.; Karcher, V.; Schulz, B.

    1986-01-01

    Li(17)Pb(83) and LiPb were prepared from the pure elements in amounts of several hundred grams. The resolidified samples were characterized by melting points (eutectic temperature), chemical analysis and metallography. Using differential thermal analysis the heats of fusion were determined and the behaviour of the intermetallic phase LiPb in vacuum and high purified He was studied. The results from these investigations were applied to characterize Li(17)Pb(83) prepared in high amounts for technical application as a potential liquid breeder material. (orig.)

  16. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    Science.gov (United States)

    Dou, Ruifeng; Phillion, A. B.

    2016-08-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  17. Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    International Nuclear Information System (INIS)

    Farkoosh, A.R.; Javidani, M.; Hoseini, M.; Larouche, D.; Pekguleryuz, M.

    2013-01-01

    Highlights: ► Phase formation in Al–Si–Ni–Cu–Mg–Fe system have been investigated. ► T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni are formed at different Ni levels. ► Thermally stable Ni-bearing precipitates improved the overaged hardness. ► It was found that Ni:Cu and Ni:Fe ratios control the precipitation. ► δ-Al 3 CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al–7Si–(0–1)Ni–0.5Cu–0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the δ-Al 3 CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  18. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies

    International Nuclear Information System (INIS)

    2007-01-01

    As part of the development of advanced nuclear systems, including accelerator-driven systems (ADS) proposed for high-level radioactive waste transmutation and generation IV reactors, heavy liquid metals such as lead (Pb) or lead-bismuth eutectic (LBE) are under evaluation as reactor core coolant and ADS neutron target material. Heavy liquid metals are also being envisaged as target materials for high-power neutron spallation sources. The objective of this handbook is to collate and publish properties and experimental results on Pb and LBE in a consistent format in order to provide designers with a single source of qualified properties and data and to guide subsequent development efforts. The handbook covers liquid Pb and LBE properties, materials compatibility and testing issues, key aspects of the thermal-hydraulics and system technologies, existing test facilities, open issues and perspectives. (author)

  19. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  20. The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture

    Directory of Open Access Journals (Sweden)

    Yu Kyoung Kim

    2013-01-01

    Full Text Available The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.

  1. The effects of adding elements of zinc and magnesium on ag-cu eutectic alloy for warming acupuncture.

    Science.gov (United States)

    Kim, Yu Kyoung; Park, Il Song; Kim, Keun Sik; Lee, Min Ho

    2013-01-01

    The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.

  2. Examination of Clustering in Eutectic Microstrcture

    Directory of Open Access Journals (Sweden)

    Bortnyik K.

    2017-06-01

    Full Text Available The eutectic microstructures are complex microstructures and a hard work to describe it with few numbers. The eutectics builds up eutectic cells. In the cells the phases are clustered. With the development of big databases the data mining also develops, and produces a lot of method to handling the large datasets, and earns information from the sets. One typical method is the clustering, which finds the groups in the datasets. In this article a partitioning and a hierarchical clustering is applied to eutectic structures to find the clusters. In the case of AlMn alloy the K-means algorithm work well, and find the eutectic cells. In the case of ductile cast iron the hierarchical clustering works better. With the combination of the partitioning and hierarchical clustering with the image transformation, an effective method is developed for clustering the objects in the microstructures.

  3. Evaluation of the response time of H-concentration probes for tritium sensors in lead–lithium eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2014-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} ceramic. - Abstract: Dynamic tritium concentration measurement in lead–lithium eutectic is of major interest for a reliable tritium testing program in ITER TBM and for an experimental proof of tritium self-sufficiency in liquid metal breeding systems. Potentiometric hydrogen sensors using different solid-state electrolytes for molten lead–lithium eutectic have been reported and tested by the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS). In the present work the following ceramic elements have been synthesized and characterized by X-ray diffraction (XRD) in order to be tested as a Proton Exchange Membranes (PEM) H-probes: BaCeO{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr(Ce{sub 0.9}–Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3−δ}. Potentiometric measurements of the synthesized ceramic elements have been performed shifting from a fixed hydrogen partial pressure at the working electrode to high purity argon. In this experimental campaign a fixed and known hydrogen pressure has been used in the reference electrode. The goal of these experiments is to evaluate the sensor response time when the hydrogen concentration in the environment is rapidly changed. All experiments have been done at 500 °C and 600 °C. The sensor constructed using the proton conductor element BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation. In contrast, the sensors constructed using the proton conductor elements BaCeO{sub 3} and Sr(Ce{sub 0.9}–Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3−δ} showed higher

  4. Heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-Si alloys investigated by entrained droplet technique and DSC

    International Nuclear Information System (INIS)

    Li, J H; Schumacher, P; Albu, M; Hofer, F; Ludwig, T H; Arnberg, L

    2016-01-01

    Entrained droplet technique and DSC analyses were employed to investigate the influence of trace elements of Sr, Eu and P on the heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-5wt.% Si alloys. Sr and Eu addition was found to exert negative effects on the nucleation process, while an increased undercooling was observed. This can be attributed to the formation of phosphide compounds having a lower free energy and hence may preferentially form compared to AlP. Only a trace P addition was found to have a profound effect on the nucleation process. The nucleation kinetics is discussed on the basis of the classical nucleation theory and the free growth model, respectively. The estimated AlP patch size was found to be sufficient for the free growth of Si to occur within the droplets, which strongly indicates that the nucleation of Si on an AlP patch or AlP particle is a limiting step for free growth. The maximum nucleation site density within one droplet is directly related to the size distribution of AlP particles or AlP patches for Si nucleation, but is independent of the cooling rates. Although the nucleation conditions were optimized in entrained droplet experiments, the observed mechanisms are also valid at moderate cooling conditions, such as in shape casting. (paper)

  5. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 deg. C after 4000-7200 h

    International Nuclear Information System (INIS)

    Mueller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2004-01-01

    This paper presents the results of steel exposure up to 7200 h in flowing LBE at elevated temperatures and is a follow-up paper of that with results of an exposure of up to 2000 h. The examined AISI 316 L, 1.4970 austenitic and MANET 10Cr martensitic steels are suitable as a structural material in LBE (liquid eutectic Pb 45 Bi 55 ) up to 550 deg. C, if 10 -6 wt% of oxygen is dissolved in the LBE. The martensitic steel develops a thick magnetite and spinel layer while the austenites have thin spinel surface layers at 420 deg. C and thick oxide scales like the martensitic steel at 550 deg. C. The oxide scales protect the steels from dissolution attack by LBE during the whole test period of 7200 h. Oxide scales that spall off are replaced by new protective ones. At 600 deg. C severe attack occurs already after 2000 and 4000 h of exposure. Steels with 8-15 wt% Al alloyed into the surface suffer no corrosion attack at all experimental temperatures and exposure times

  6. Analysis by numerical calculations of the depth and dynamics of the penetration of ordered cellular structure made by casting from AlSi10Mg eutectic alloy

    Directory of Open Access Journals (Sweden)

    M. Małysza

    2011-07-01

    Full Text Available Owing to high plastic deformability while maintaining stress values constant and relatively low, ordered cellular structures arecharacterised by excellent properties and the ability to dissipate the impact energy. Due to the low weight, structures of this type can beused, among others, for different parts of motor vehicles. For tests, a trapezoidal ordered cellular structure of 50.8 x 50.8 x 25.4 (mmoverall dimensions was selected. It was made as an investment casting from AlSi9Mg eutectic alloy by the method of Rapid Prototyping(RP. During FEM computations using an Abaqus programme, it was assumed that the material is isotropic and exhibits the features of anelastic – plastic body, introducing to calculations the, listed in a table, values of the stress-strain curve obtained in tensile tests performedon a MTS testing machine (10T. The computations used Johnson - Cook model, which is usually sufficiently accurate when modelling thephenomena of penetration of an element by an object of high initial velocity. The performed numerical calculations allowed identification

  7. Rapidly solidified aluminium for optical applications

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H. van; Bosch, A.J.; Senden, R.

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as

  8. The role of elevated temperature exposure on structural evolution and fatigue strength of eutectic AlSi12 alloys

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Nicoletto, G.; Kunz, Ludvík; Riva, E.

    2016-01-01

    Roč. 83, č. 1 (2016), s. 24-35 ISSN 0142-1123 Institutional support: RVO:68081723 Keywords : Piston * Al-Si alloy * Elevated temperature * Fatigue strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  9. Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.; Shahizan, N. R.; Gandouz, S.

    2017-01-01

    The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA‒CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, Δ t s, and low solidification temperature, Δ T S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ t a-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index ( Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.

  10. Effects of alloying on Co--Si eutectoid structures and properties

    International Nuclear Information System (INIS)

    Livingston, J.D.

    1976-01-01

    The effects of various ternary alloying elements on the microstructure and properties of directionally solidified and transformed Co-Si eutectoid alloys were studied. Aligned eutectoid structures were maintained with additions of up to 10 at. percent Ni. However, higher Ni additions led to changes in both the silicide and solid-solution phases, related changes in microstructure, and decreased tensile strength. Additions of 5 at. percent Cr, Cu, Fe, or Mn produced cellular eutectoid microstructures which deteriorated the mechanical properties. Additions of W, Ta, or Al led to eutectic, rather than eutectoid, microstructures. Alloys based on the Co-W-Si eutectic appear to have the most promising high-temperature mechanical properties

  11. The buoyancy convection during directional solidification of AlZn eutectic

    International Nuclear Information System (INIS)

    Prazak, M.; Procio, M.; Holecek, S.

    1993-01-01

    A study has been made of the effect of buoyancy convection during the directional solidification of AlZn eutectic alloy. Experiments have been conducted using a Bridgman-Stockbarger arrangement with the furnace moving along the specimen. The apparatus rotated around the horizontal axis, which made it possible to carry out measurements at different angles β contained by the gravity and temperature gradient vectors in the specimen. The anisotropy of both the linear thermal expansion coefficient a and the hardness HK measured by the Knoop method has been studied. The dilatation measurements confirmed the expected anisotropy of the linear thermal expansion of directionally solidified specimens. The values of HK correspond with the lamellar spacing measured in the metallographic study. (orig.)

  12. Microstructure formation and in situ phase identification from undercooled Co-61.8 at.% Si melts solidified on an electromagnetic levitator and an electrostatic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, 2266-98 Shimo-Shidami, Moriyama, Nagoya, Aichi 463-8560 (Japan); Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: li.mingjun@aist.go.jp; Nagashio, Kosuke [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Mizuno, Akitoshi; Adachi, Masayoshi; Watanabe, Masahito [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Katayama, Yoshinori [Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan)

    2008-06-15

    Co-61.8 at.% Si (CoSi-CoSi{sub 2}) eutectic alloys were solidified on an electromagnetic levitator (EML) and an electrostatic levitator (ESL) at different undercooling levels. The results indicated that there is only a single recalescence event at low undercooling with the CoSi intermetallic compound as primary phase, which is independent of processing facilities, on either an EML or an ESL. The microstructure, however, is strongly dependent on the processing facility. The interior melt flow behavior in the sphere solidified at the EML differs substantially from that at the ESL, thus yielding different microstructures. On high undercooling, double recalescence takes place regardless of levitation condition. In situ X-ray diffraction of alloys solidified on the EML demonstrates that the CoSi{sub 2} compound becomes the primary phase upon the first recalescence, and the CoSi intermetallic phase crystallizes during the second recalescence. In addition to phase identification, real-time diffraction patterns can also provide additional evidence of the fragmentation of the primary phase and the ripening feature in the subsequent cooling process in the semisolid state. The phase competition between the CoSi and CoSi{sub 2} compounds is discussed when considering the nucleation barrier. The low interfacial energy of the CoSi{sub 2} phase favors a preferential nucleation event over the CoSi phase, which also plays a critical role in non-reciprocity nucleation and thus yields a double recalescence profile at high undercooling.

  13. Corrosion resistance of Fe-Al alloy-coated steel under bending stress in high temperature lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Yamaki, Eriko; Takahashi, Minoru

    2009-01-01

    Formation of thin Fe-Al alloy layers on the surface of cladding and structural materials is effective to protect a base material from corrosion in high temperature LBE. However, it is concerned that these protective layers may be damaged under various stress conditions. This study on Fe-Al alloy coatings deposited by unbalanced magnetron sputtering (UBMS) is focused to evaluate corrosion resistance and integrity of the Fe-Al coating layers with thickness of 0.5 mm under bending stress in high temperature LBE. High chromium steel specimens (HCM12A, Recloy10) with Fe-Al alloy coating were exposed to LBE pool with low oxygen concentration (up to 5.2x10 -8 wt%) at 550 and 650degC under 45kg-loading for 240 and 500 h. No LBE corrosion was observed in the base metal and coating layer after the tests at 550degC for 550 h. The coating layers could be barrier for corrosion resistance from LBE at 550degC, although the coating scales are cracked by the load. At 650degC, because the base metal was contoccured directly with LBE through cracks across the coating layer. Penetration of LBE to base metal and dissolution of beset metal into LBE occurred. Fe-Al coating layer was not corroded by LBE. (author)

  14. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    International Nuclear Information System (INIS)

    Zhu Tianping; Chen, Zhan W.; Gao Wei

    2008-01-01

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the α-Mg/β-Mg 17 Al 12 phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a more regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, α-Mg re-solidified with a cellular growth, resulting in a serrated interface between α-Mg and α-Mg/β-Mg 17 Al 12 in the weld sample and between α-Mg and β-Mg 17 Al 12 (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained

  15. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Xuezheng Zhang

    2016-05-01

    Full Text Available Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF was investigated in comparison with the PTF and permanent mold cast (PMC 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  16. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    Science.gov (United States)

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiC p ) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiC p , which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  17. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    Science.gov (United States)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  18. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  19. Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys

    International Nuclear Information System (INIS)

    Öz, Turan; Karaköse, Ercan; Keskin, Mustafa

    2013-01-01

    Highlights: • Thermal and mechanical properties of Al–Mn–Be alloys were investigated. • IQC Al–Mn–Be alloys were synthesized by the CS and MS techniques. • The volume fraction of IQC increases continuously with Be content. • The melting points of the QC i-phase were determined between 652 °C and 675 °C. • The maximum H V and σ values were found to be 124 kg/mm 2 and 458 MPa with the addition of 5% Be. - Abstract: The influence of beryllium (Be) addition on the quasicrystal-forming ability, thermal and mechanical properties of Al–4.5 wt.%Mn–x wt.%Be (x = 0, 1, 3, 5) alloys was investigated in this study. Quasicrystalline Al–Mn–Be alloys were synthesized by the conventionally casting and melt spinning techniques. The microstructures of the samples were characterized by scanning electron microscopy (SEM) and the phase composition was identified by X-ray diffractometry (XRD). The phase transition during the solidification process was studied by differential scanning calorimetry (DSC) and differential thermal analysis (DTA) under an Ar atmosphere. The mechanical properties of the conventionally solidified (CS) and melt-spun (MS) samples were measured by a Vickers micro-hardness indenter and tensile-strength tests. The Al–4.5 wt.%Mn alloy has a hexagonal structure and minor dendritic icosahedral quasicrystalline phase (IQC) precipitates surrounded by an α-Al matrix. Addition of Be into the Al–4.5 wt.%Mn alloy generates intermetallic Be 4 AlMn and IQC phases with the extinction of the hexagonal phase, and the fraction of IQC increases continuously with the increase in Be content. A considerable improvement in microhardness and tensile strength values was observed due to the addition of Be in different percentages into the composition

  20. Feeding and Distribution of Porosity in Cast Al-Si Alloys as Function of Alloy Composition and Modification

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2012-01-01

    Unmodified, Na-modified, and Sr-modified castings of Al-7 pct Si and Al-12.5 pct Si alloys were cast in molds in which it was possible to create different cooling conditions. It is shown how solidification influences the distribution of porosity at the surface and the center of the castings...... of the casting, while Sr-modified castings solidify in a mushy manner that creates a more homogeneous distribution of porosity in the casting. The amount of porosity was highest in the Sr-modified alloys, lower in the Na-modified alloys, and lowest in the unmodified alloys. The size of the porosity-free layer...... as a function of modification and Si content in sand- and chill-cast samples. Eutectic modification, Si content, and cooling conditions have a great impact on the distribution of porosity. Unmodified and Na-modified castings are more easily fed with porosity tending to congregate near the centerline...

  1. Directional solidification of Al2-Cu-Al and Al3-Ni-Al eutectics during TEXUS rocket flight

    Science.gov (United States)

    Favier, J. J.; Degoer, J.

    1984-01-01

    One lamellar eutectic sample and one fiber-like eutectic sample were solidified directionally during the TEXUS-6 rocket flight. The microstructures and the results of the thermal analysis, obtained from the temperatures recorded on the cartridge skin, are compared. No appreciable modifications of the regularity of the eutectic structures were observed by passing from 1 g to 0.0001 g in these experiments. No steady state growth conditions were achieved in these experiments.

  2. Development of metal-carbon eutectic cells for application as high temperature reference points in nuclear reactor severe accident tests: Results on the Fe-C, Co-C, Ti-C and Ru-C alloys' melting/freezing transformation temperature under electromagnetic induction heating

    International Nuclear Information System (INIS)

    Parga, Clemente J.; Journeau, Christophe; Parga, Clemente J.; Tokuhiro, Akira

    2012-01-01

    With the aim of reducing the high temperature measurement uncertainty of nuclear reactor severe accident experimental tests at the PLINIUS platform in Cadarache Research Centre, France, a variety of graphite cells containing a metal-carbon eutectic mix have been tested to assess the melting/freezing temperature reproducibility and their feasibility as calibration cells for thermometers. The eutectic cells have been thermally cycled in an induction furnace to assess the effect of heating/cooling rate, metal purity, graphite crucible design, and binary system constituents on the eutectic transformation temperature. A bi-chromatic pyrometer was used to perform temperature measurements in the graphite cell black cavity containing the metal-carbon eutectic mix. The eutectic points analyzed are all over 1100 C and cover an almost thousand degree span, i.e. from the Fe-Fe 3 C to the Ru-C eutectic. The induction heating permitted the attainment of heating and cooling rates of over 200 C/min under an inert atmosphere. The conducted tests allowed the determination of general trends and peculiarities of the solid. liquid transformation temperature under non-equilibrium and non-steady-state conditions of a variety of eutectic alloys (Fe-C, Co-C, Ti-C and Ru-C binary systems). (authors)

  3. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  4. Die-cast of a hypo-eutectic AL-SI alloy: influence of injection temperature on microstructure and mechanical properties; Fundicao sob pressao das ligas de AL-SI: influencia da temperatura de injecao nas microestruturas e propriedades mecanicas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Silvano Leal dos; Santos, Sydney Ferreira, E-mail: silvano_lleal@yahoo.com.br [Universidade Federal do ABC (UFABC), SP (Brazil)

    2014-07-01

    Die-casting is widely used for manufacturing light alloy components for automotive industry. Among others, hypo-eutectic Al-Si alloys are currently processed by die-casting. To obtain high quality die-cast components, a better understanding on the correlations between processing parameters, microstructures, and mechanical properties are of utmost importance. In this study, we investigate the effect of injection temperature of liquid metal on the microstructure and mechanical properties of Al-Si alloy EN AC 46000 (DIN designation). The injection temperatures were 579, 589, 643, and 709 deg C. As-cast components had their microstructures analyzed by X-ray diffraction, optical and scanning electron microscopy, and X-ray energy dispersive spectroscopy. The mechanical properties were examined by micro-hardness and tensile tests. It was observed that the ultimate tensile strength slightly increased with the increase of injection temperature. The same trend was observed for micro-hardness. The amount of porosity in the samples varies in a small amount for different injection temperatures. On the other hand, the microstructure of the alloys seems more refined for higher temperatures of injection. This refinement in microstructure might play a major role on the mechanical properties of the Al-Si die-cast alloy. (author)

  5. Formation of an 18R long-period stacking ordered structure in rapidly solidified Mg88Y8Zn4 alloy

    International Nuclear Information System (INIS)

    Garcés, Gerardo; Requena, Guillermo; Tolnai, Domonkos; Pérez, Pablo; Medina, Judit; Stark, Andreas; Schell, Norbert; Adeva, Paloma

    2016-01-01

    The formation of the long-period stacking ordered structure (LPSO) in a Mg 88 Y 8 Zn 4 (at%) ribbon produced by melt spinning was studied using high energy X-ray synchrotron radiation diffraction during in-situ isochronal heating and transmission electron microscopy. The microstructure of the rapidly solidified ribbons is characterised by fine magnesium grains with yttrium and zinc in solid solution and primary 18R LPSO-phase segregated at grain boundaries. Using differential scanning calorimetry, a strong exothermal peak was observed around 300 °C which was associated with the development of the 18R-type LPSO-phase in the magnesium grains. The apparent activation energy calculated using the Kissinger model was 125 KJmol −1 and it is related to simultaneous diffusion of Y and Zn through magnesium basal plane. - Highlights: •The formation of the LPSO phase in rapidly solidified ribbons was studied. •The formation of the 18R LPSO starts at around 300 °C. •LPSO formation have to steps: Stacking faults along basal plane and then growth of 18R structure along the c direction.

  6. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  7. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    International Nuclear Information System (INIS)

    Wu Mengwu; Xiong Shoumei

    2012-01-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  8. Fatigue crack growth rates and fracture toughness of rapidly solidified Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1994-01-01

    The room-temperature fatigue crack growth rates (FCGR) and fracture toughness were evaluated for different crack plane Orientations of an Al-8.5 pct Fe-1.2 pct V-1.7 pct Si alloy produced by planar flow casting (PFC) and atomized melt deposition (AMD) processes. For the alloy produced by the PFC process, properties were determined in six different orientations, including the short transverse directions S-T and S-L. Diffusion bonding and adhesive bonding methods were used to prepare specimens for determining FCGR and fracture toughness in the short transverse direction. Interparticle boundaries control fracture properties in the alloy produced by PFC. Fracture toughness of the PFC alloy varies from 13.4 MPa√ bar m to 30.8 MPa√ bar m, depending on the orientation of the crack plane relative to the interparticle boundaries. Fatigue crack growth resistance and fracture toughness are greater in the L-T, L-S, and T-S directions than in the T-L, S-T, and S-L orientations. The alloy produced by AMD does not exhibit anisotropy in fracture toughness and fatigue crack growth resistance in the as-deposited condition or in the extruded condition. The fracture toughness varies from 17.2 MPa√ bar m to 18.5 MPa√ bar m for the as-deposited condition and from 19.8 MPa√ bar m to 21.0 MPa√ bar m for the extruded condition. Fracture properties are controlled by intrinsic factors in the alloy produced by AMD. Fatigue crack growth rates of the AMD alloy are comparable to those of the PFC alloy in the L-T orientation. The crack propagation modes were studied by optical metallographic examination of crack-microstructure interactions and scanning electron microscopy of the fracture surfaces

  9. Effect of Fe addition on the magnetic and giant magneto-impedance behaviour of CoCrSiB rapidly solidified alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Seema; Chattoraj, I; Panda, A K; Mitra, A; Pal, S K [National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2006-05-21

    Thermal electrical resistivity, magnetic hysteresis and magneto-impedance behaviour of melt spun and annealed Co{sub 71-X}Fe{sub X}Cr{sub 7}Si{sub 8}B{sub 14} (X = 0, 2, 3.2, 4, 6, 8 and 12 at.%) were investigated. The addition of Fe in the system changed crystallization as well as the magnetic properties of the materials. The alloy containing 6 at.% Fe showed an increase in resistivity during the first crystallization process. A TEM micrograph indicated the formation of nanostructure during the crystallization process. The GMI properties of the alloys are evaluated at a driving current amplitude of 5 mA and a frequency of 4 MHz. The two-peak behaviour in the GMI profile was observed for all the samples. It is found that the alloy with 4 at.% Fe has the maximum GMI ratio because of the nearly zero magnetostriction value of the sample. About 62% change in the GMI ratio was observed in the alloy with 4 at.% Fe when annealed at 673 K. The anisotropy field was also minimum for the annealed alloy. The results were explained by the formation of directional ordering and the reduction of the magnetostriction constant of the alloy due to nanocrystallization during the annealing process.

  10. Eutectic Gallium-Indium (EGaIn) : A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature

    NARCIS (Netherlands)

    Dickey, Michael D.; Chiechi, Ryan C.; Larsen, Ryan J.; Weiss, Emily A.; Weitz, David A.; Whitesides, George M.

    2008-01-01

    This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGaIn) as it is injected into microfluidic channels to form stable microstructures of liquid metal. EGaIn is well-suited for this application because of its rheological properties at room temperature: it

  11. Eutectic gamma (Nickel)/gamma vprime(Nickel Aluminide) delta (Nickel Niobium) polycrystalline nickel-base superalloys: Chemistry, processing, microstructure and properties

    Science.gov (United States)

    Xie, Mengtao

    Directionally solidified (D.S.) gamma(Ni)/gamma'(Ni 3A1)-delta(Ni3Nb) eutectic alloys were considered as candidate turbine blade materials. Currently, the properties of polycrystalline gamma/gamma'-delta alloys are of interest as they inherit many advantageous attributes from the D.S. gamma/gamma'-delta alloys. This thesis is therefore dedicated towards the development of a fundamental understanding of these novel eutectic alloys from several important perspectives. This thesis will first be focused on quantifying the effect of several elements. A set of Ni-Cr-Al-Nb alloy compositions with increasing levels of Cr was designed to investigate the influence of Cr on the primary phase formation, solidus and liquidus temperatures and g-d eutectic morphology. A matrix of complex gamma/gamma'-delta alloy compositions with the same (Ta+Nb) content but varying Ta/Nb ratios was designed to study the influence of Ta on elemental segregation and solid state partitioning behaviors. Thermodynamic predicaitons using the Computherm Pandat database (PanNi7) were compared to experimental results in these investigations. The second part of this thesis will provide a more general understanding of the effects of common elements. A large number of experimental alloys covering a broad range of compositions were selected for the analysis. Important alloy attributes were characterized as a function of element concentration. Linear regression analysis was performed to reveal the relative effectiveness of different elements. An extensive comparison between the experimental observations and Pandat predictions was provided to critically evaluate the strength and weakness of existing thermodynamic database model in this novel alloy system. The last part of this thesis emphasizes the development of cast and wrought processes for cast gamma/gamma'-delta alloys as a cost effective alternative to the powder metallurgy route. Hot rolling of workpieces encapsulated within a steel can was performed on

  12. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-09-01

    Full Text Available Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively. The BCC2 phase was enriched with Ti and Zr and the Laves phase was heavily enriched with Cr. After hot isostatic pressing at 1450 °C for 3 h, the BCC1 dendrites coagulated into round-shaped particles and their volume fraction increased to 67%. The volume fractions of the BCC2 and Laves phases decreased to 16% and 17%, respectively. After subsequent annealing at 1000 °C for 100 h, submicron-sized Laves particles precipitated inside the BCC1 phase, and the alloy consisted of 52% BCC1, 16% BCC2 and 32% Laves phases. Solidification and phase equilibrium simulations were conducted for the CrMo0.5NbTa0.5TiZr alloy using a thermodynamic database developed by CompuTherm LLC. Some discrepancies were found between the calculated and experimental results and the reasons for these discrepancies were discussed.

  13. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station

    Science.gov (United States)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.

    2016-01-01

    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model

  14. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  15. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, J.G., E-mail: jglee88@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, M.K.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr{sub 48}Ti{sub 16}Cu{sub 17}Ni{sub 19} (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr{sub 2}Ni and particulate Zr{sub 2}Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr{sub 2}Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr{sub 2}Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C)

  16. Morphologies and growth mechanisms of the eutectic particles in as-cast Al-Mg-Sc alloy; Morphologien und Wachstumsmechanismen eutektischer Partikel in Al-Mg-Sc-Legierung im Gusszustand

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dejiang; Zhou, Shi' ang; Li, Heng [Hefei Univ. of Technology (China); Zhang, Zhen; Wu, Yucheng [Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei (China); Li, Ming [Anhui Jianghuai Automobile Co., Ltd, Hefei (China)

    2017-04-15

    Primary particles with faceted cubic morphology were produced in as-cast Al-Mg alloy due to the addition of Sc. The cross-section of the particles revealed some eutectic structure composed of multilayer of 'Al{sub 3}Sc + α-Al + Al{sub 3}Sc..'. At the cooling rate of 200 - 300 K/s, Al{sub 3}Sc primary phase nucleated initially on oxides within the melt and developed to a cubic structure with a 'cellular-dendritic' mode of growth. The formation of α-Al structural shells was attributed as a reason for the segregation of Mg-rich lamellar dendrites at later stages. A growth mechanism for multilayer structure was proposed using the results presented.

  17. Radioactive substance solidifying device

    International Nuclear Information System (INIS)

    Sakoda, Kotaro.

    1979-01-01

    Purpose: To easily solidify radioactive substances adhering to the surfaces of solid wastes without scattering in the circumference by paints, and further to reduce surface contamination concentrations. Constitution: Solid wastes are placed on a hanging plate, and dipped in paints within a paint dipping treatment tank installed at the lower part of a treatment tank by means of a monorail hoist, and the surfaces of said solid wastes are coated with paints, thereby to solidify the radioactivity on the surfaces of the solid wastes. After dipping, the solid wastes are suspended up to a paint spraying tank to dry the paints. After drying, non-contaminated paints are atomized to apply through an atomizing tube onto the solid wastes. After drying the atomized paints, the solid wastes are carried outside the treatment tank by means of the monorail hoist. (Yoshino, Y.)

  18. Effect of strontium on liquid structure of Al-Si hypoeutectic alloys using high-energy X-ray diffraction

    International Nuclear Information System (INIS)

    Srirangam, P.; Kramer, M.J.; Shankar, S.

    2011-01-01

    High-energy X-ray diffraction experiments were performed using a synchrotron beam source to investigate the effect of strontium on the liquid atomic structure of Al-Si hypoeutectic alloys. The high-temperature liquid diffraction experiments were carried out on Al alloys with 3, 7, 10 and 12.5 (eutectic) wt.% Si, respectively, with 0 and 0.04 wt.% addition of Sr to each of the alloys. Further, the diffraction data for all the alloys were obtained at various melt temperatures (5-220 K) above the respective liquidus temperature. It was observed that the addition of 0.04 wt.% Sr results in significant change in the liquid structure parameters, such as structure factor, pair distribution function, radial distribution function, coordination number and packing density, at any given melt temperature of the alloy. Salient observations were that, for any specific alloy and temperature, addition of Sr significantly decreases coordination number and packing density. Further, with the addition of Sr in the liquid alloy, the atomic coordination number and packing density increases with decreasing temperature and decreasing Si content of the alloy. The results coupled with prior knowledge have enabled an in-depth understanding of the nucleation environment of the solidifying phases, specifically the role of Sr in delaying the clustering tendencies (nucleation) of the eutectic Si phase.

  19. Growth and Morphology of Rod Eutectics

    Energy Technology Data Exchange (ETDEWEB)

    Jing Teng; Shan Liu; R. Trivedi

    2008-03-17

    The formation of rod eutectic microstructure is investigated systematically in a succinonitrile-camphor alloy of eutectic composition by using the directional solidification technique. A new rod eutectic configuration is observed in which the rods form with elliptical cylindrical shape. Two different orientations of the ellipse are observed that differ by a 90{sup o} rotation such that the major and the minor axes are interchanged. Critical experiments in thin samples, where a single layer of rods forms, show that the spacing and orientation of the elliptic rods are governed by the growth rate and the sample thickness. In thicker samples, multi layers of rods form with circular cross-section and the scaling law between the spacing and velocity predicted by the Jackson and Hunt model is validated. A theoretical model is developed for a two-dimensional array of elliptical rods that are arranged in a hexagonal or a square array, and the results are shown to be consistent with the experimental observations. The model of elliptic rods is also shown to reduce to that for the circular rod eutectic when the lengths of the two axes are equal, and to the lamellar eutectic model when one of the axes is much larger than the other one.

  20. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified; Caracterizacao da liga Ni-45wt%Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de, E-mail: walman@dem.ufcg.edu.b [Universidade Federal de Campina Grande (UAEM/UFCG), PB (Brazil). Unidade Academica de Engenharia Mecanica

    2010-07-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  1. A new approach to assess the effects of Sr and Bi interaction in ADC12 Al–Si die casting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com; Ourdjini, Ali; Abu Bakar, Tuty Asma; Idris, Mohd Hasbullah

    2014-01-10

    Highlights: • Interactive effect between Bi and Sr has been invesitigated comprehensively. • Sequence of addition did not affect thermal and microscopical characteristics. • A new map has been established to assess the final microstructure of castings. - Abstract: In the present paper, the possible interaction between bismuth and strontium in ADC12 die casting alloy was investigated comprehensively by using in situ thermal analysis technique. The characteristic temperatures including nucleation, minimum and growth temperatures of eutectic Al–Si were also analyzed. The results show that with Bi present in the Al–Si alloy melt the efficiency of Sr in modifying the eutectic Si is reduced. A threshold Sr/Bi ratio of at least 0.5 is required for a fully modified Si structure to form. A new map based on the characteristic temperatures, Sr/Bi ratio and microstructure, was established to assess the microstructure of fully solidified Al–Si castings.

  2. A new approach to assess the effects of Sr and Bi interaction in ADC12 Al–Si die casting alloy

    International Nuclear Information System (INIS)

    Farahany, Saeed; Ourdjini, Ali; Abu Bakar, Tuty Asma; Idris, Mohd Hasbullah

    2014-01-01

    Highlights: • Interactive effect between Bi and Sr has been invesitigated comprehensively. • Sequence of addition did not affect thermal and microscopical characteristics. • A new map has been established to assess the final microstructure of castings. - Abstract: In the present paper, the possible interaction between bismuth and strontium in ADC12 die casting alloy was investigated comprehensively by using in situ thermal analysis technique. The characteristic temperatures including nucleation, minimum and growth temperatures of eutectic Al–Si were also analyzed. The results show that with Bi present in the Al–Si alloy melt the efficiency of Sr in modifying the eutectic Si is reduced. A threshold Sr/Bi ratio of at least 0.5 is required for a fully modified Si structure to form. A new map based on the characteristic temperatures, Sr/Bi ratio and microstructure, was established to assess the microstructure of fully solidified Al–Si castings

  3. Influence of convection on eutectic microstructure

    Science.gov (United States)

    Baskaran, V.; Eisa, G. F.; Wilcox, W. R.

    1985-01-01

    When the MnBi-Bi eutectic is directionally solidified, it forms fibers of MnBi in a matrix of bismuth. When the material solidified in space at rates of 30 and 50 cm/hr, the average fiber spacing lambda was about one half of the value obtained in cases in which the same material solidified on earth. Neither an altered temperature gradient nor a fluctuating freezing rate are apparently responsible for the change in lambda, and the possibility is studied that natural convection increases lambda on earth by perturbing the compositional field in the melt ahead of the growing solid. A theoretical analysis is conducted along with some experiments. On the basis of the theoretical results for lamellar growth, it is concluded that the spacing lambda increases with increasing stirring, especially at small freezing rates. The experiments indicate that at low growth rates the cross-sectional area of the MnBi blades increases with increased stirring and with decreased growth rate.

  4. Study on the morphology of Pb-Sn eutectics

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Gentile, E.F.

    1976-01-01

    The influence of factors such as rate of growth of the solid phase, thermal gradient in the liquid and presence of impurities on the solidification of eutectic structures is studied. To emphasize certain aspects of the basic concept, the technique of unidirectional cooling was used in a specially constructed apparatus. Micrographs of the structure obtained with the eutectic Pb-Sn alloy are shown and a purely qualitative analysis of the factors described is given [pt

  5. Application of SEM/EBSD and FEG-TEM/CBED to determine eutectic solidification mechanisms

    International Nuclear Information System (INIS)

    Nogita, K.; Dahle, A.K.; Drennan, J.

    2002-01-01

    Full text: This study shows the application of electron backscatter diffraction (EBSD) in SEM and convergent beam electron diffraction (CBED) in FEG-TEM to determine eutectic nucleation and growth in hypoeutectic Al-Si foundry alloys. Because the eutectic reaction is often the final stage of solidification it can be expected to have a significant impact on the formation of casting defects, particularly porosity. Previous EBSD work by Nogita and Dahle (2001), Dahle et al (2001), has shown that the eutectic nucleates on the primary phase in the unmodified alloy, and eutectic grains are nucleated in the intergranular liquid, instead of filling the dendrite envelopes, when Sr or Sb is added. However, the orientation relationship between silicon and aluminium in the eutectic has so far not been determined because of difficulties with sample preparation for EBSD and also detection limitations of Kikuchi refraction of silicon and aluminium, particularly in modified alloys with a refined eutectic. The combination of the EBSD technique in SEM and CBED in TEM analyses can provide crystallographic orientation relationships between primary aluminium dendrites, eutectic aluminium and silicon, which are important to explicitly define the solidification mode of the eutectic in hypoeutectic Al-Si alloys. These relationships are influenced, and altered, by the addition of certain elements. This paper also describes the sample preparation techniques for SEM and TEM for samples with different eutectic structures. The advantages the techniques are discussed. Copyright (2002) Australian Society for Electron Microscopy Inc

  6. Solidification of AM and AZ magnesium alloys characterized by heat-transfer modeled thermal and calorimetric analysis and microsegregation study of directionally solidified microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje

    2008-05-09

    The micro-scale solidification of commercial Mg alloys of the AZ and AM series is in the focus of the present thesis. Two approaches of investigating solidification are implemented, complementary regarding temperature gradient and solidification rate, and also with respect to the generated microstructure. The first approach considers solidification under a negligible spatial temperature gradient. Here the solidification curves, i.e. fraction solid versus temperature, were determined by developing an improved heat-transfer modeling applicable on both differential thermal analysis (DTA) and differential scanning calorimetry (DSC) signals. The correlation between solidification enthalpy and fraction solid during solidification was tested in detail. A better evaluation of the measured DTA and DSC signals is attained through an independent measurement of the time constant as function of temperature for the applied equipment. A further improvement is achieved through a more impartial interpretation of the measured curves. Both improvements enable a better desmearing of measured signals and reduce the error induced by the operator. The novel tantalum encapsulation enabled appropriate handling of challenging Mg-alloys. The viability and limitations of thermal analysis in general to determine start and end of solidification of AZ magnesium alloys was also studied. The second approach is based on directional solidification in a high temperature gradient and at constant solidification rate, achieved by the Bridgman technique. The resulting dendritic microstructure and inherent microsegregation are studied in this work. The solute profiles, i.e. solute content versus solid phase fraction during solidification, are determined by an advanced treatment of the EPMA data. Problems that are demonstrated in this work are Al-loss and melt pollution due to reaction with typical sample container material made of unprotected steel. The development of an optimized boron nitride (BN

  7. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    Science.gov (United States)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-08-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  8. Phase transformations in the rapidly solidified Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N. [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yao Kefu [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: kfyao@tsinghua.edu.cn; Louzguine-Luzgin, D.V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Qiu Shengbao [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Inoue, A. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2007-10-15

    We report that an approximant phase was initially obtained in amorphous Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (I) phase with a high thermal stability while the cF96 Zr{sub 2}Ni-type (space group Fd3-bar m with a=1.25nm and 96 atoms cell{sup -1}) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000K and then transforms into the Zr{sub 2}Ni-type phase with an endothermic reaction.

  9. Quasi-static and dynamic compressive deformation of a bulk nanolayered Ag–Cu eutectic alloy: Macroscopic response and dominant deformation mechanisms

    International Nuclear Information System (INIS)

    Kingstedt, O.T.; Eftink, B.; Lambros, J.; Robertson, I.M.

    2014-01-01

    Nanostructured multilayered material systems offer an attractive method of increasing material strength. This work examines the response of a bulk eutectic silver–copper material (Ag 60 Cu 40 , subscripts indicating atomic percent) which has a hierarchical structure of alternating Ag and Cu layers with thicknesses down to 50 nm. The hierarchical structure consists of two primary arrangements of layers, eutectic colonies of parallel layers, most commonly found at the material interior, and “grains” consisting of alternating Ag and Cu layers which emanate from a central region in a radial pattern, most commonly found at the material exterior surface. We show that the hierarchical structure causes a significant increase in the measured strength response when comparing the Ag 60 Cu 40 response to that of the constituent materials in their bulk nanograined or micrograined form. The deformation mechanisms of this material are studied under compressive loading over the quasi-static and dynamic regime (10 −3 –10 3 s −1 ) with strain between 5% and 50%

  10. Microstructure and Mechanical Properties of Al2O3/Er3Al5O12 Binary Eutectic Ceramic Prepared by Bridgman Method

    Science.gov (United States)

    Song, Caiyu; Wang, Shunheng; Liu, Juncheng; Zhai, Shuoyan

    2018-01-01

    Directionally solidified Al2O3/Er3Al5O12 (EAG) eutectic ceramic was prepared via vertical Bridgman method with high-frequency induction heating. The effects of the growth rate on the microstructure and mechanical properties of the solidified ceramic were investigated. The experimental results showed that there were no pores or amorphous phases in the directionally solidified Al2O3/EAG eutectic ceramic. Al2O3 phase was embedded in the EAG matrix phase, and the two phases were intertwined with each other to form a typical binary eutectic “hieroglyphic” structure. With the increase of growth rate, the phase size and spacing of the solidified Al2O3/EAG ceramic both decreased, and the growth rate and phase spacing satisfied the λ2v ≈ 60 formula of Jackson-Hunt theory. The cross section microstructure of the solidified ceramic always exhibited an irregular eutectic growth, while the longitudinal section microstructure presented a directional growth. The mechanical properties of the solidified ceramic gradually increased with the increase of growth rate, and the maximum hardness and fracture toughness could reach 21.57 GPa and 2.98 MPa·m1/2 respectively. It was considered that the crack deflection and branching could enhance the toughness of the solidified ceramic effectively. PMID:29601545

  11. Study of the microstructural evolution and rheological behavior by semisolid compression between parallel plate of the alloy A356 solidified under a continuously rotating magnetic field

    International Nuclear Information System (INIS)

    Leiva L, Ricardo; Sanchez V, Cristian; Mannheim C, Rodolfo; Bustos C, Oscar

    2004-01-01

    This work presents a study of the rheological behavior of the alloy A356, with and without continuous magnetic agitation during its solidification, in semisolid state. The evaluation was performed using a parallel plate compression rheometer with the digital recording of position and time data. The microstructural evolution was also studied at the start and end of the semisolid compression test. The procedure involved tests of short cylinders extracted from billets with a non dendritic microstructure cast under a continuously rotating magnetic field. These pieces were tested in different solid fractions, at constant charges and at constant deformation velocities. When the test is carried out at a constant charge the equation can be determined that governs the rheological behavior of the material in semisolid state following a power grade of two Ostwald-de-Waele parameters. But when the test is done at a constant deformation speed the flow behavior of the material can be described in the semisolid shaping process. The results obtained show that the morphology of the phases present in the microstructure is highly relevant to its rheological behavior. A globular coalesced rosette to rosette type microstructure was found to have the typical behavior of a fluid when shaped in a semisolid state but a cast dendritic structure did not behave this way. Also the Arrhenius type dependence of viscosity with temperature was established (CW)

  12. Design and qualification of an on-line permeator for the recovery of tritium from lead-lithium eutectic breeding alloy

    International Nuclear Information System (INIS)

    Veredas, G.; Fradera, J.; Fernandez, I.; Batet, L.; Penalva, I.; Mesquida, L.; Abella, J.; Sempere, J.; Martinez, I.; Herrazti, B.; Sedano, L.

    2011-01-01

    The fast and efficient recovery of bred tritium represents a major milestone of tritium breeding technologies R and D and is key for the demonstration of fusion reactor fuel self-sufficiency. For lead-lithium eutectic, diverse technologies are currently being investigated and qualified. Permeator Against Vacuum (PAV) solution represents a firm candidate because: (i) runs as a single-step process for tritium on-line recovery, (ii) works passively allowing to be thermally governed, (iii) can be easily in-pipe integrated in Pb15.7Li loop systems and (iv) can be conceived with high compactness. An optimal design of a PAV requires a detailed hydraulic design optimization for established operational ranges. An optimal PAV design is proposed and qualified by numerical simulation.

  13. Microstructure and mechanical properties of hypo/hyper-eutectic Al-Si alloys synthesized using a near-net shape forming technique

    International Nuclear Information System (INIS)

    Gupta, M.; Ling, S.

    1999-01-01

    In the present study, three aluminum-silicon alloys containing 7, 10 and 19 wt % silicon were synthesized using a novel technique commonly known as disintegrated melt deposition technique. The results following processing revealed that a yield of at least 80% can be achieved after defacing the shrinkage cavity from the as-processed ingots. Microstructural characterization studies conducted on the as-processed samples revealed an increase in the volume fraction of porosity with an increase in silicon content. Porosity levels of 1.07, 1.51 and 2.65% attained in the case of Al-7Si, Al-10Si, and Al-19Si alloys indicates the near-net shape forming capability of the disintegrated melt deposition technique. The results of aging studies conducted on the aluminum-silicon alloys revealed similar aging kinetics irrespective of different silicon content. Results of ambient temperature mechanical tests demonstrate an increase in matrix microhardness and 0.2% yield stress and decrease in ductility with an increase in silicon content in aluminum. Furthermore, the results of an attempt to investigate the effect of extrusion on Al-19Si alloy revealed that the extrusion process significantly assists in reducing porosity and improving microstructural uniformity, 0.2% yield strength, ultimate tensile strength and ductility when compared to the as-processed Al-19Si alloy. The results of microstructural characterization and mechanical properties of aluminum-silicon alloys were finally correlated with the amount of silicon in aluminum and secondary processing technique. (orig.)

  14. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  15. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  16. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  17. Solidification with back-diffusion of irregular eutectics

    Directory of Open Access Journals (Sweden)

    M. Trepczyńska-Łent

    2008-10-01

    Full Text Available The definition of the α - parameter back-diffusion has been introduced in the work. The alternative models of solidification were describedtaking into consideration back-diffusion process. The possibility of using those models for eutectic alloys solidification is worthyof interest.

  18. Effect of titanium on the near eutectic grey iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tiedje, Niels Skat; Hattel, Jesper Henri

    The effect of Titanium on the microstructure of grey iron was investigated experimentally in this work. Tensile test bars of grey cast iron of near eutectic alloys containing 0.01, 0.1, 0.26 and 0.35% Ti, respectively were made in green sand moulds. Chemical analysis, metallographic investigation...

  19. Porosity formation in Al-Si casting alloys: role of Sr oxide

    International Nuclear Information System (INIS)

    Liu, L.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S.

    2002-01-01

    The strength and quality of an Al-Si alloy casting are determined by its microstructure and the amount of porosity present in the casting. Modification is one of the processes used to improve the microstructural quality, where the addition of a modifying agent alters the shape of the eutectic Si from an acicular to a fibrous form that is extremely beneficial to the mechanical properties. Among various modifiers, strontium, although easy to handle and resistant to fading, also causes porosity formation in these alloys, attributed variously to an increase in the hydrogen level of the melt, feedability problems in the mushy zone, changes in the mode of eutectic nucleation, etc. The present study shows how the presence of oxides is responsible for the porosity formation, and that the difference in porosity characteristics with the addition of Sr depends on the amount of Sr oxides present the solidified structure. Both Sr and Al oxides are favourable sites for the nucleation of other microconstituents. A number of experimental (binary Al-Si) and industrial (319 and 356) alloys have been studied, to cover various alloy freezing ranges. Thermal analysis, optical microscopy, SEM/EDX and EPMA analyses were employed to obtain the results. (author)

  20. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  1. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  2. Variations of Microsegregation and Second Phase Fraction of Binary Mg-Al Alloys with Solidification Parameters

    Science.gov (United States)

    Paliwal, Manas; Kang, Dae Hoon; Essadiqi, Elhachmi; Jung, In-Ho

    2014-07-01

    A systematic experimental investigation on microsegregation and second phase fraction of Mg-Al binary alloys (3, 6, and 9 wt pct Al) has been carried out over a wide range of cooling rates (0.05 to 700 K/s) by employing various casting techniques. In order to explain the experimental results, a solidification model that takes into account dendrite tip undercooling, eutectic undercooling, solute back diffusion, and secondary dendrite arm coarsening was also developed in dynamic linkage with an accurate thermodynamic database. From the experimental data and solidification model, it was found that the second phase fraction in the solidified microstructure is not determined only by cooling rate but varied independently with thermal gradient and solidification velocity. Lastly, the second phase fraction maps for Mg-Al alloys were calculated from the solidification model.

  3. Rapidly solidified prealloyed powders by laser spin atomization

    Science.gov (United States)

    Konitzer, D. G.; Walters, K. W.; Heiser, E. L.; Fraser, H. L.

    1984-01-01

    A new technique, termed laser spin atomization, for the production of rapidly solidified prealloyed powders is described. The results of experiments involving the production of powders of two alloys, one based on Ni, the other on Ti, are presented. The powders have been characterized using light optical metallography, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Auger elec-tron spectroscopy, and these various observations are described.

  4. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  5. Performance of LiAlloy/Ag(2)CrO(4) Couples in Molten CsBr-LiBr-KBr Eutectic

    International Nuclear Information System (INIS)

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.

    1999-01-01

    The performance of Li-alloy/CsBr-LiBr-KBr/Ag(sub 2)CrO(sub 4) systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm(sup 2) using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag(sub 2)CrO(sub 4) system exhibited thermal runaway. Thermal analytical tests showed that the Ag(sub 2)CrO(sub 4) cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications

  6. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si15Te85 from 673 to 1373 k

    International Nuclear Information System (INIS)

    Wang Yubing; Zhao Gang; Liu Changsong; Zhu Zhengang

    2010-01-01

    Using ab initio molecular dynamics simulations and inherent structure formalism, the local atomic structure and electronic properties of liquid Si 15 Te 85 alloy were studied at eight different temperatures from 673 to 1373 K. In comparison with available experimental data, our calculated structure factors are acceptable. With increasing temperature from 773 to 1173 K, the calculated total coordination number N Total increases gradually in contrast to the behavior of a classical isotropic fluid. Our results of pair-correlation functions, bond-angle distribution functions and angular limited triplet correlation functions suggest that the temperature-dependence of the preserved sp 3 hybridization of Si atoms and Peierls-type distorted local structure around Te atoms both play important roles in the structural change of Si 15 Te 85 characterized by thermodynamic anomalies.

  7. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si{sub 15}Te{sub 85} from 673 to 1373 k

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yubing, E-mail: ybwang1985@gmail.co [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Post Office 1129, Hefei 230031 (China); Zhao Gang [Department of Physics and Electronic Engineering, Ludong University, Hongqi Road, No. 186, Yantai 264025 (China); Liu Changsong; Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Post Office 1129, Hefei 230031 (China)

    2010-01-15

    Using ab initio molecular dynamics simulations and inherent structure formalism, the local atomic structure and electronic properties of liquid Si{sub 15}Te{sub 85} alloy were studied at eight different temperatures from 673 to 1373 K. In comparison with available experimental data, our calculated structure factors are acceptable. With increasing temperature from 773 to 1173 K, the calculated total coordination number N{sub Total} increases gradually in contrast to the behavior of a classical isotropic fluid. Our results of pair-correlation functions, bond-angle distribution functions and angular limited triplet correlation functions suggest that the temperature-dependence of the preserved sp{sup 3} hybridization of Si atoms and Peierls-type distorted local structure around Te atoms both play important roles in the structural change of Si{sub 15}Te{sub 85} characterized by thermodynamic anomalies.

  8. Silumins alloy crystallization

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available This paper presents the results of research, by ATD method, of hypo-, near- and hyperutectic silumins crystallization containing the following alloying additives: Mg, Ni, Cu, Cr, Mo, W, V. It has been shown that, depending on their concentration may crystallize pre-eutectic or eutectic multicomponent phases containing these alloy additives. It has been revealed that any subsequent crystallizable phase nucleate and grows near the liquid/former crystallized phase interface. In multiphases compound also falls the silicon, resulting in a reduction in its quantity and the fragmentation in the eutectic mixture. As a result, it gets a high hardness of silumins in terms of 110-220HB.

  9. Study on segregation of aluminium-uranium alloys

    International Nuclear Information System (INIS)

    Lima, Rui Marques de

    1979-01-01

    The relations between alloy solidification and solute segregation were considered. The solidification structure and the solute redistribution during the solidification of alloys with dendritic micro morphology were studied. The macro and micro segregation theories were reviewed. The mechanisms that could change the solidification structure were taken into account in the context of more homogeneous alloy production. Aluminum alloys solidification structures and segregation were studied experimentally in the 13 to 45% uranium range, usually considering solidification in static molds. The uranium alloys with up to 20% uranium were studied both for solidification in ingot molds and for controlled directional solidification. It was verified that these alloy compositions had structures similar to those of hipoeutectic alloys, showing an a phase with dendritic morphology and inter dendritic eutectic. For the alloys with more than 25% uranium, it was observed the formation of UAl 3 and UAl 4 phases with dendritic morphology. The dendritic UAl 3 , phase morphology was affected both by the solute concentration in the alloy and by the growth rate. The dendritic UAl 3 phase non-singular aspect could be destroyed with decrease of the alloy solute concentration. In the alloys obtained with higher cooling rates it was found a tendency for the formation of substantial quantities of equi axial crystals of the solute enriched phases in the central regions of the ingot upper half. In the more external regions it was observed dendritic growth of these phases, for alloy compositions with over 25% uranium. An adequate reduction in the cooling rate changed the solidification structure form and distribution, as well as the segregation type and intensity. The uranium content in the solidified macro structures is presented as a function of: cooling rate, superheating, mold size, mold form and its temperature, number of remelting and time for the melt homogenization and agitation. It was

  10. The Influence of Cr on the Solidification Behavior of Polycrystalline γ(Ni)/ γ'(Ni3Al)- δ(Ni3Nb) Eutectic Ni-Base Superalloys

    Science.gov (United States)

    Xie, Mengtao; Helmink, Randolph; Tin, Sammy

    2012-04-01

    In the current investigation, the effect of Cr on the solidification characteristics and as-cast microstructure of pseudobinary γ- δ eutectic alloys based on a near-eutectic composition (Ni-5.5Al-13.5Nb at. pct) was investigated. It was found that Cr additions promote the formation of a higher volume fraction of γ- δ eutectic microstructure in the interdendritic region. Increasing levels of Cr also triggered morphological changes in the γ- δ eutectic and the formation of γ- γ'- δ ternary eutectic during the last stage of solidification. A detailed characterization of the as-cast alloys also revealed that Cr additions suppressed the liquidus, solidus, and γ' precipitation temperature of these γ/ γ'- δ eutectic alloys. A comparison of the experimental results with thermodynamic calculations using the CompuTherm Pandat database (CompuTherm LLC, Madison, WI) showed qualitative agreement.

  11. Material properties of Al-Si-Cu aluminium alloy produced by the rotational cast technology

    Directory of Open Access Journals (Sweden)

    Muhammad Syahid

    2017-03-01

    Full Text Available The aim of the present study is to explore microstructural and mechanical properties of cast Al-Si-Cu aluminum alloy (ADC12. To obtain excellent material properties, the cast Al alloys were produced by an originally developed mold rotational machine, namely liquid aluminum alloy is solidified during high speed rotating. The casting process was conducted under various casting conditions, in which the following factors were altered, e.g., melt temperature, metal mold temperature and different rotational speed. Microstructural characteristics were examined by direct observation using an optical microscope and a scanning electron microscope (SEM, and the secondary dendrite arm spacing of alpha-Al phase (SDAS and the size of Si eutectic phase were identified. Mechanical properties were investigated by micro-hardness and tensile tests. Rotation speed and melt temperature were directly attributed to the SDAS, and severe shear stress arising from the rotation made fine and complicated grain structure, leading to the high mechanical properties. The extent of the shear stress was altered depending on the area of the sample due to the different shear stress. Furthermore, high melt temperature and high rotational speed decrease the size of Si eutectic phases. The high mechanical properties were detected for the cast samples produced by the casting condition as follows: melt temperature 700oC, mold temperature 400oC and rotation speed 400 rpm

  12. Method of solidifying radioactive laundry wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1984-01-01

    Purpose: To enable to solidify radioactive laundry wastes containing non-ionic liquid detergents less solidifiable by plastic solidification process in liquid laundry wastes for cloths or the likes discharged from a nuclear power plant. Method: Radioactive laundry wastes are solidified by using plastic solidifying agent comprising, as a main ingredient, unsaturated polyester resins and methylmethacrylate monomers. The plastic solidifying agents usable herein include, for example, unsaturated polyester resins prepared by condensating maleic anhydride and phthalic anhydride with propylene glycol and incorporated with methylmethacrylate monomers. The mixing ratio of the methylmethacrylate monomers is preferably 30 % by weight based on the unsaturated polyester resins. (Aizawa, K.)

  13. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    Science.gov (United States)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  14. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  15. Effect of Cooling Rate on the Microstructure of Al-Zn Alloys with Addition of Silicon as Nanocomposite

    Directory of Open Access Journals (Sweden)

    S. García-Villarreal

    2013-01-01

    Full Text Available Al-43.5Zn-1.5Si (wt% alloys are widely used as coatings on steel substrates. This kind of coatings is manufactured by hot-dip process, in which Si is added as solid particles or master alloy. The role of Si during formation of the coating is to control the metallurgical reactions between solid steel and liquid Al-Zn-Si alloy initially forming an AlZnFeSi intermetallic layer and next the excess of Si forms intermetallic compounds, which grows over this alloy layer, segregates into the Zn rich interdendritic regions, and solidifies as eutectic reaction product as massive particles with needle like morphology. Therefore, during the experimental procedure is very difficult to control the final morphology and distribution of the silicon phase. The acicular morphology of this phase greatly affects the mechanical properties of the alloy because it acts as stress concentrators. When the coated steel sheet is subjected to bending, the coating presents huge cracks due to the presence of silicon phase. Therefore, the aim of the paper was to propose a new methodology to control the silicon phase through its addition to Al-Zn alloy as nanocomposite and additionally determine the effect of cooling rate (between 10 and 50°Cs−1 on the solidification microstructure and mechanical properties of Al-Zn alloy.

  16. The effect of solution heat treatments on the microstructure and hardness of ZK60 magnesium alloys prepared under low-frequency alternating magnetic fields

    International Nuclear Information System (INIS)

    Li, Caixia; Yu, Yan Dong

    2013-01-01

    The solidified structure of ZK60 magnesium alloys in the presence and absence of electromagnetic stirring during the solidification process was compared, and the precipitates of ZK60 magnesium alloys were analyzed after a solution heat treatment using optical microscopy, micro-hardness analysis, X-ray diffraction and scanning electron microscopy. The results showed that the microstructure of cast alloys under a low-frequency alternating magnetic field (LFAMF) was mainly composed of a primary crystalline Mg matrix and a non-equilibrium eutectic structure (Mg+MgZn+MgZn 2 ). In comparison with the microstructure observed in the absence of the electromagnetic field, the eutectic network structure on the grain boundary under low-frequency alternating magnetic field was finer and exhibited a more uniform grain distribution. The grains under the LFAMF were refined in comparison with those under no electromagnetic field before the solution heat treatment, and the former grain distribution was more uniform than the latter after the solution heat treatment. The more uniform grain distribution is because the solution heat treatment is conducive to the dissolution of the second phase particles. The hardness exhibited a downward trend with increasing solution heat treatment time. Under the same solution heat treatment, the hardness value of the samples prepared under the LFAMF was lower than those prepared in the absence of the electromagnetic field. In contrast, the mechanical properties of alloys prepared under the LFAMF were better than those prepared in the absence of the electromagnetic field.

  17. In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys.

    Science.gov (United States)

    Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo

    2014-02-12

    The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e. , strong enough, to avoid hot tear formation.

  18. In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Jean-Marie Drezet

    2014-02-01

    Full Text Available The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation.

  19. Method of solidifying powderous wastes

    International Nuclear Information System (INIS)

    Kakimoto, Akira; Miyake, Takashi; Sato, Shuichi; Inagaki, Yuzo.

    1985-01-01

    Purpose: To improve the properties of solidification products, in the case of solidifying powderous wastes with thermosetting resins. Method. A solvent for the solution of the thermosetting resin is admixed with the powderous wastes into a paste-like form prior to adding the resin to the wastes, which are then mixed with the resin solution. As the result, those solidification products having the specific gravity and the compression strength more excellent than those of the conventional ones, and much higher than the reference values can be obtained. (Kamimura, M.)

  20. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  1. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Matthew G. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  2. Influence of Laser Welding Speed on the Morphology and Phases Occurring in Spray-Compacted Hypereutectic Al-Si-Alloys

    Directory of Open Access Journals (Sweden)

    Thomas Gietzelt

    2016-11-01

    Full Text Available Normally, the weldability of aluminum alloys is ruled by the temperature range of solidification of an alloy according to its composition by the formation of hot cracks due to thermal shrinkage. However, for materials at nonequilibrium conditions, advantage can be taken by multiple phase formation, leading to an annihilation of temperature stress at the microscopic scale, preventing hot cracks even for alloys with extreme melting range. In this paper, several spray-compacted hypereutectic aluminum alloys were laser welded. Besides different silicon contents, additional alloying elements like copper, iron and nickel were present in some alloys, affecting the microstructure. The microstructure was investigated at the delivery state of spray-compacted material as well as for a wide range of welding speeds ranging from 0.5 to 10 m/min, respectively. The impact of speed on phase composition and morphology was studied at different disequilibrium solidification conditions. At high welding velocity, a close-meshed network of eutectic Al-Si-composition was observed, whereas the matrix is filled with nearly pure aluminum, helping to diminish the thermal stress during accelerated solidification. Primary solidified silicon was found, however, containing considerable amounts of aluminum, which was not expected from phase diagrams obtained at the thermodynamic equilibrium.

  3. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  4. Aluminum alloy and associated anode and battery

    International Nuclear Information System (INIS)

    Tarcy, G.P.

    1990-01-01

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy

  5. On the thermal cyclic loading behaviour of a directional eutectic superalloy based on the Co-Cr-C system

    International Nuclear Information System (INIS)

    Hildebrandt, U.W.; Nicoll, A.R.

    1981-01-01

    Various modifications of the eutectic, directionally solidified superalloy 73 C were investigated with respect to creep fatigue effects. This was carried out using a thermal cycling apparatus where a mechanical uniaxial load could be applied. A high volume fraction of carbides had an impairing effect on fatigue life. An improvement, however, could be obtained using low concentrations of refractory elements which form monocarbides. (orig.) [de

  6. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  7. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  8. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  9. Microstructure of rapidly solidified materials

    Science.gov (United States)

    Jones, H.

    1984-07-01

    The basic features of rapidly solidified microstructures are described and differences arising from alternative processing strategies are discussed. The possibility of achieving substantial undercooling prior to solidification in processes such as quench atomization and chill block melt spinning can give rise to striking microstructural transitions even when external heat extraction is nominally Newtonian. The increased opportunity in laser and electron beam surface melting for epitaxial growth on the parent solid at an accelerating rate, however, does not exclude the formation of nonequilibrium phases since the required undercooling can be locally attained at the solidification front which is itself advancing at a sufficiently high velocity. The effects of fluid flow indicated particularly in melt spinning and surface melting are additional to the transformational and heat flow considerations that form the present basis for interpretation of such microstructural effects.

  10. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  11. Design of a braze alloy for fast epitaxial brazing of superalloys

    Science.gov (United States)

    Piegert, S.; Laux, B.; Rösier, J.

    2012-07-01

    For the repair of directionally solidified turbine components made of nickel-based superalloys, a new high-temperature brazing method has been developed. Utilising heterogeneous nucleation on the crack surface, the microstructure of the base material can be reproduced, i.e. single crystallinity can be maintained. In contrast to commonly used eutectic braze alloys, such as nickel-boron or nickel-silicon systems, the process is not diffusion controlled but works with a consolute binary base system. The currently applied epitaxial brazing methods rely on isothermal solidification diffusing the melting point depressants into the base material until their concentration is reduced so that the liquid braze solidifies. Contrary, the identified Ni-Mn consolute system enables a temperature driven epitaxial solidification resulting in substantially reduced process duration. The development of the braze alloys was assisted using the CALPHAD software Thermo-Calc. The solidification behaviour was estimated by kinetic calculations with realistic boundary conditions. Finally, the complete system, including braze alloy as well as substrate material, was modelled by means of DICTRA. Subsequently, the thermodynamic properties of the braze alloys were experimentally analysed by DSC measurements. For brazing experiments 300 μm wide parallel gaps were used. Complete epitaxial solidification, i.e. the absence of high-angle grain boundaries, could be achieved within brazing times being up to two orders of magnitude shorter compared to diffusion brazing processes. Theoretically and experimentally evaluated process windows reveal similar shapes. However, a distinct shift has to be stated which can be ascribed to the limited accuracy of the underlying thermodynamic databases.

  12. Review of possible experiments in the eutectic growth and thermodiffusion fields

    International Nuclear Information System (INIS)

    Malmejac, Yves.

    1976-01-01

    The results now available from the SKYLAB and ASTP programmes give a clearer indication of the lines of the research to pursue in the years to come. The criteria necessary for the choice of experiments are analysed in the fields of eutectic solidification and diffusion along a temperature gradient in liquid alloys [fr

  13. WORK FUNCTION CHARACTERIZATION OF DIRECTIONALLY SOLIDIFIED LAB6VB2 EUTECTIC (POSTPRINT)

    Science.gov (United States)

    2017-05-10

    Roth , V. Dose , Interaction of atomic hydrogen with the graphite single-crystal surface, Appl. Phys. A 55 (1992) 4 89–4 92 . Please cite this article ...Clearance Date: 28 Apr 2017. This document contains color. Journal article published in Ultramicroscopy, 10 May 2017. © 2017 Elsevier B.V. The U.S...system. Here we combine thermal emission electron microscopy and low energy electron microscopy with Augerelectron spectroscopy and physical vapor

  14. Liquid wastes concentrating and solidifying device

    International Nuclear Information System (INIS)

    Kamiyoshi, Hideki; Ninokata, Yoshihide.

    1985-01-01

    Purpose: To provide a device for concentrating to solidify radioactive liquid wastes at large solidifying speed and with high decontaminating coefficient, without requirement for automatic control. Constitution: An asphalt solidifying device is disposed below a centrifugal thin film drier, and powder resulted from the drier is directly solidified with asphalt by utilizing the rotation of the drier for the mixing operation in the asphalt vessel. If abnormality should occur in the operation of the drier, resulting liquid wastes can be received and solidified in the asphalt vessel. The liquid wastes are heated to dry in a vessel main body having the heating surface at the circumferential surface. The vessel main body provided with a nozzle for supplying liquid to be treated disposed slantwise at the upper portion of the heating face, scrapers which rotate and slidingly contact the heating face and nozzles which jet out chemicals to the heating face behind the scrapers. Below the vessel main body, are disposed a funnel-like hopper for receiving falling scales, rotary vanes, and the likes by which the scales are introduced into the asphalt solidifying vessel. (Moriyama, K.)

  15. The formation mechanism of eutectic microstructures in NiAl-Cr composites.

    Science.gov (United States)

    Tang, Bin; Cogswell, Daniel A; Xu, Guanglong; Milenkovic, Srdjan; Cui, Yuwen

    2016-07-20

    NiAl-based eutectic alloys, consisting of an ordered bcc matrix (B2) and disordered bcc fibers (A2), have been a subject of intensive efforts aimed at tailoring the properties of many of the currently used nickel-based superalloys. A thermodynamic phase field model was developed on a thermodynamic foundation and fully integrated with a thermo-kinetic database of the Ni-Al-Cr ternary system to elucidate the resulting peculiar eutectic microstructure. Invoking a variation of the liquid/solid interfacial thickness with temperature, we simulated the characteristic sunflower-like eutectic microstructures in the NiAl-Cr composites, consistent with experimental observations. The mechanism that governs the formation of the peculiar eutectic morphology was envisioned from the modeled evolutions associated with six sequential steps. Our calculations show that the conditional spinodal decomposition occurring in sequence could further trim and revise the microstructure of the eutectics by generating fine-domain structures, thereby providing an additional method to explore the novel NiAl-based eutectic composites with tunable properties at elevated temperatures.

  16. Correlation of Thermal and Microstructural Properties of an Al-0.60wt%Mg-0.25wt%Fe-0.05wt%Cu Alloy Unidirectionally Solidified

    Directory of Open Access Journals (Sweden)

    Pedro LAMARÃO

    2014-09-01

    Full Text Available This work aims to study the thermal, mechanical and microstructural properties of an Al-0.60 wt% Mg-0.25 wt% Fe- -0.05 wt% Cu alloy for application as an electrical conductor. The ingots were obtained by unidirectional horizontal casting, and were sectioned in specific positions to the production of test specimens destined to mechanical tests and microstructural characterization. As results, one can observe that it was possible to obtain experimental models of correlation between the average dimple diameters and thermal variables, demonstrating a trend on the formation of smaller fracture dimples where the cooling was more intense. As one can associate smaller dimples with greater ultimate tensile strength, it is important to understand this mechanism. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5015

  17. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    Science.gov (United States)

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  18. Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength

    Energy Technology Data Exchange (ETDEWEB)

    Tiwary, C.S., E-mail: cst311@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kashyap, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kim, D.H. [Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Chattopadhyay, K. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2015-07-15

    Developments of aluminum alloys that can retain strength at and above 250 °C present a significant challenge. In this paper we report an ultrafine scale Al–Fe–Ni eutectic alloy with less than 3.5 at% transition metals that exhibits room temperature ultimate tensile strength of ~400 MPa with a tensile ductility of 6–8%. The yield stress under compression at 300 °C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al–Al{sub 3}Ni rod eutectic with spacing of ~90 nm enveloped by a lamellar eutectic of Al–Al{sub 9}FeNi (~140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al–Al{sub 3}Ni eutectic colony indicates accommodation of plasticity in α-Al with dislocation accumulation at the α-Al/Al{sub 3}Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy.

  19. Method of solidifying radioactive wastes with plastics

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro; Minami, Yuji; Tomita, Toshihide

    1980-01-01

    Purpose: To prevent solidification of solidifying agents in the mixer by conducting the mixing process for the solidifying agents and the radioactive wastes at a temperature below the initiation point for the solidification of the agents thereby separating the mixing process from the solidification-integration process. Method: Catalyst such as cobalt naphthenate is charged into an unsaturated polyester resin in a mixer previously cooled, for example, to -10 0 C. They are well mixed with radioactive wastes and the mixture in the mixer is charged in a radioactive waste storage container. The temperature of the mixture, although kept at a low temperature initially, gradually increases to an ambient temperature whereby curing reaction is promoted and the reaction is completed about one day after to provide firm plastic solidification products. This can prevent the solidification of the solidifying agents in the mixer to thereby improve the circumstance's safety. (Kawakami, Y.)

  20. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Savchenko, A.M.; Konovalov, Yu.V.; Yuferov, O.I.

    2005-01-01

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically [ru

  1. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    Science.gov (United States)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  2. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidiifed slurry

    Institute of Scientific and Technical Information of China (English)

    Yoshiki Tsunekawa; Shinpei Suetsugu; Masahiro Okumiya; Naoki Nishikawa; Yoshikazu Genma

    2014-01-01

    For the wider applications, it is necessary to improve the ductility as wel as the strength and wear-resistance of hypereutectic Al-Si-Cu aloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modiifed wear-resistance of hypereutectic Al-Si-Cu aloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidiifcation, which is caled sono-solidiifcation, was carried out from its molten state to just above the eutectic temperature. The sono-solidiifed Al-17Si-4Cu aloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibriuma-Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidiifed slurry to shape a disk specimen. After the rheo-casting with modiifed sono-solidiifed slurry held for 45 s at 570 ºC, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of softa-Al phase. In contrast, there exist only 5 area% of primary silicon particles and noa-Al phase in rheo-cast specimen with normaly solidiifed slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normaly solidiifed slurry.

  3. Finite-element solidification modelling of metals and binary alloys

    International Nuclear Information System (INIS)

    Mathew, P.M.

    1986-12-01

    In the Canadian Nuclear Fuel Waste Management Program, cast metals and alloys are being evaluated for their ability to support a metallic fuel waste container shell under disposal vault conditions and to determine their performance as an additional barrier to radionuclide release. These materials would be cast to fill residual free space inside the container and allowed to solidify without major voids. To model their solidification characteristics following casting, a finite-element model, FAXMOD-3, was adopted. Input parameters were modified to account for the latent heat of fusion of the metals and alloys considered. This report describes the development of the solidification model and its theoretical verification. To model the solidification of pure metals and alloys that melt at a distinct temperature, the latent heat of fusion was incorporated as a double-ramp function in the specific heat-temperature relationship, within an interval of +- 1 K around the solidification temperature. Comparison of calculated results for lead, tin and lead-tin eutectic melts, unidirectionally cooled with and without superheat, showed good agreement with an alternative technique called the integral profile method. To model the solidification of alloys that melt over a temperature interval, the fraction of solid in the solid-liquid region, as calculated from the Scheil equation, was used to determine the fraction of latent heat to be liberated over a temperature interval within the solid-liquid zone. Comparison of calculated results for unidirectionally cooled aluminum-4 wt.% copper melt, with and without superheat, showed good agreement with alternative finite-difference techniques

  4. Weldability of superalloys alloy 718 and ATI {sup registered} 718Plus trademark. A study performed by Varestraint testing

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson, Jonny [The Production Technology Centre Univ. West, Trollhaettan (Sweden). GKN Aerospace Sweden; Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Industrial and Material Science; Andersson, Joel [The Production Technology Centre Univ. West, Trollhaettan (Sweden). Dept. of Engineering Science; Brederholm, Anssi; Haenninen, Hannu [Aalto Univ., Helsinki (Finland). Dept. of Engineering Design and Production

    2017-11-01

    In this study, the old and well-known alloy 718 is compared with the newly developed ATI {sup registered} 718Plus trademark from the weldability point of view. This is done in order to gain new information that have not been documented and established yet among the high-temperature materials with high strength, oxidation resistance, thermal stability and sufficient weldability, yet. ATI {sup registered} 718Plus trademark shows a lower sensitivity to hot cracking than alloy 718 with approximately 10 mm total crack length (TCL) difference in Varestraint testing. In the solution-annealed condition at 982 C for 4.5 h followed by air cooling, the crack sensitivity is decreased as compared to the mill-annealed condition. Along the crack path and also ahead of the crack tip, γ-Laves eutectic is present in both alloys. The microhardness measurements showed similar hardness level of 250 HV in the weld metal of both alloys and even in the parent material of alloy 718. ATI {sup registered} 718Plus trademark parent metal had hardness of 380 HV and a small increase of less than 50 HV was observed for both studied alloys in the heat affected zone (HAZ). For the same grain size of ATI {sup registered} 718Plus trademark (8.3 μm) and alloy 718 (15.6 μm), the susceptibility to liquation cracking may increase with increasing grain size. With a small grain size, there is a possibility to accommodate more trace elements (B, S, P) due to the larger grain boundary area. The impurity elements were found in relatively small precipitates, typically borides (0.2 μm), phosphides (0.1 to 0.5 μm) and carbo-sulphides. The solidification sequence of alloy 718 and ATI {sup registered} 718Plus trademark is relatively similar, where the liquid starts to solidify as γ-phase followed by γ/MC reaction at about 1260 C and then final γ/Laves eutectic reaction at around 1150 C. Detailed knowledge about weldability of alloy 718 and ATI {sup registered} 718Plus trademark can be used for material

  5. Scaling-Up Eutectic Freeze Crystallization

    NARCIS (Netherlands)

    Genceli, F.E.

    2008-01-01

    A novel crystallization technology, Eutectic Freeze Crystallization (EFC) has been investigated and further developed in this thesis work. EFC operates around the eutectic temperature and composition of aqueous solutions and can be used for recovery of (valuable) dissolved salts (and/or or acids)

  6. The growth of faceted/nonfaceted eutectics

    International Nuclear Information System (INIS)

    Suchtelen, J. van

    1976-01-01

    This paper is concerned with the unidirectional solidification of eutectic melts in which one of the phases has a faceted, the other a nonfaceted solid-liquid interface. The occurrence of complex microstructures in such eutectics is explained as a growth phenomenon. The essential condition for the occurrence of such structures is a non-isothermal solid-liquid interface, developing into a faceted-cellular structure. The faceted shape of the cells is imposed by the faceted component of the eutectic. Breakdown to such a cellular structure occurs not only in constitutional-supercooling conditions, but under any circumstances, the cellular period being a function of growth velocity, temperature gradient etc. The two-phase morphology of the eutectic structure is discussed in terms of the relative magnitude of the periods of the cellular and of the eutectic structure. (orig.) [de

  7. The effect of vanadium and grain refiner additions on the nucleation of secondary phases in 1XXX Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C.M.; O' Reilly, K.A.Q.; Evans, P.V.; Cantor, B.

    1999-11-26

    High purity Al-0.3 wt% Fe-0.1 wt% Si alloys with different Si, V and grain refiner contents were melt spun to produce microstructures of submicron secondary phases entrained in a higher melting point Al matrix. On reheating, a dispersion of eutectic liquid droplets forms that represents an exaggerated version of the liquid puddles that solidify punched-off between Al dendrite arms during conventional casting. The subsequent resolidification of the droplets, analyzed using differential scanning calorimetry (DSC), allows the nucleation-controlled aspects of secondary phase selection to be studied. The droplets solidify as the metastable FeAl{sub m} phase in ribbons containing {approx{underscore}equal}500 ppm V or {approx{underscore}equal}100 ppm V plus Al-Ti-B, Al-Ti-C or Al-B grain refiner. This phase contributes to the fir-tree surface defect in commercial sheet products. this work suggests that the combination of V and Al-Ti-B promotes FeAl{sub m} in commercial ingots, and confirms that solidification rate and bulk Si content also influence phase content.

  8. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

    Science.gov (United States)

    Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin

    2018-03-01

    In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [ e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

  9. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  10. Determination of Coherency and Rigidity Temperatures in Al-Cu Alloys Using In Situ Neutron Diffraction During Casting

    Science.gov (United States)

    Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo

    2014-08-01

    The rigidity temperature of a solidifying alloy is the temperature at which the solid phase is sufficiently coalesced to transmit tensile stress. It is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for an Al-13 wt.% Cu alloy using in situ neutron diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is not possible. The cooling on both sides of the mold induces a hot spot at the middle of the sample that is irradiated by neutrons. Diffraction patterns are recorded every 11 s using a large detector, and the very first change of diffraction angles allows for the determination of the rigidity temperature. We measured rigidity temperatures equal to 557°C and 548°C depending on the cooling rate for grain refined Al-13 wt.% Cu alloys. At a high cooling rate, rigidity is reached during the formation of the eutectic phase. In this case, the solid phase is not sufficiently coalesced to sustain tensile load and thus cannot avoid hot tear formation.

  11. Basic visualization experiments on eutectic reaction of boron carbide and stainless steel under sodium-cooled fast reactor conditions

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Suzuki, Tohru; Kamiyama, Kenji; Kudo, Isamu

    2016-01-01

    This paper describes basic visualization experiments on eutectic reaction and relocation of boron carbide (B 4 C) and stainless steel (SS) under a high temperature condition exceeding 1500degC as well as the importance of such behaviors in molten core during a core disruptive accident in a Generation-IV sodium-cooled fast reactor (750 MWe class) designed in Japan. At first, a reactivity history was calculated using an exact perturbation calculation tool taking into account expected behaviors. This calculation indicated the importance of a relocation behavior of the B 4 C-SS eutectic because its behavior has a large uncertainty in the reactivity history. To clarify this behavior, basic experiments were carried out by visualizing the reaction of a B 4 C pellet contacted with molten SS in a high temperature-heating furnace. The experiments have shown the eutectic reaction visualization as well as freezing and relocation of the B 4 C-SS eutectic in upper part of the solidified test piece due to the density separation. (author)

  12. Structure of the aluminium-uranium eutectic

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Vieira, R.R.

    1975-01-01

    The authors discuss the factors which might effect the eutectic structure, including external conditions during solidification as well as factors peculiar to each individual system. They studied the structure of the A1-U eutectic, consisting of the solid solution of uranium in aluminium and UA1 4 , as obtained in ingot moulds and by unidirectional solidification, and found a tendency for the structure to develop in a spiral, in the form of a rhombus. They discuss this structure in terms of certain variables with emphasis on the growth characteristics of the phases comprising the eutectic, the velocity of growth and thermal gradient in the liquid [pt

  13. Morphology of the aluminium-uranium eutectic

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Vieira, R.R.

    1976-01-01

    The factors which might affect the eutectic structure including external condition during solidification as well as factors peculiar to each individual system is discussed. The structure of the Al-U eutectic, consisting of the solid solution of uranium in aluminium and UAl 4 , as obtained in ingot moulds and by unidirectional solidification. The extructure in terms of certain variables with emphasis on the growth characteristics of the phases comprising the eutectic the velocity of growth and thermal gradient in the liquid is also presented [pt

  14. Method for solidifying powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide.

    1978-01-01

    Purpose: To solidify powdery radioactive wastes through polymerization in a vessel at a high impregnation speed with no cloggings in pipes. Method: A drum can is lined with an inner liner layer of a predetermined thickness made of inflammable material such as glass fiber. A plurality of pipes for supplying liquid plastic monomer are provided in adjacent to the upper end face of the inflammable material or inserted between the vessel and the inflammable material. Then powdery radioactive wastes are filled in the vessel and the liquid plastic monomer dissolving therein a polymerization initiator is supplied through the pipes. The liquid plastic monomer impregnates through the inflammable material layer into the radioactive wastes and the plastic monomer is polymerized by the aid of the polymerization initiator after a predetermined of time to produce solidified plastic products of radioactive wastes. (Seki, T.)

  15. Leaching behavior of solidified plastics radioactive wastes

    International Nuclear Information System (INIS)

    Yook, Chong Chul; Lee, Byung Hun; Jae, Won Mok; Kim, Kyung Eung

    1986-01-01

    It is highly needed to develope the solidification process to dispose safely the radioactive wastes increasing with the growth of the nuclear industry. The leaching mechanisms of the solidified plastic wastes were investigated and the leaching rates of the plastic wastes were also measured among the many solidification processes. In addition, the transport equation based on the diffusion or the diffusion-dissolution was compared with the empirical equation derived from the experimental data by graphical method. Consequently, leaching process of the solidified plastic wastes is quite well agreed with the mass transport theory, but it may be difficult to simulate leaching process by diffusion dissolution mechanism. But the theoretical equation could be applicable to the cumulative amount of radionuclides leached form the plastic wastes disposed into the environment. (Author)

  16. Magnetostriction of the polycrystalline Fe{sub 80}Al{sub 20} alloy doped with boron

    Energy Technology Data Exchange (ETDEWEB)

    Bormio-Nunes, Cristina, E-mail: cristina@demar.eel.usp.br [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus [Escola de Engenharia de Lorena, Dep. de Eng. de Materiais, Universidade de S.Paulo, Lorena, SP (Brazil); Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael [Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Fe{sub 80}Al{sub 20} polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. Black-Right-Pointing-Pointer B stabilizes {alpha}-FeAl phase and a coexistence of {alpha}-FeAl + Fe{sub 3}Al improves magnetostriction. Black-Right-Pointing-Pointer Presence of Fe{sub 2}B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe{sub 80}Al{sub 20} polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic {alpha}-FeAl and/or Fe{sub 3}Al and Fe{sub 2}B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of {alpha}-FeAl and a correspondent decrease of the Fe{sub 3}Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe{sub 2}B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe{sub 80}Al{sub 20} alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the {alpha}-FeAl and Fe{sub 3}Al phases could be reached.

  17. Vacuum distillation for the separation of LiCl-KCl eutectic salt and cadmium in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Woo, M. S.; Kim, K. R.; Kim, J. G.; Ahn, D. H.; Lee, H. S.

    2010-10-01

    Electrorefining is a key step in pyro processing. Electrorefining process is generally composed of two recovery steps- a deposit of uranium onto a solid cathode (electrorefining) and then the recovery of the remaining uranium and Tru (Transuranic) elements simultaneously by a liquid cadmium cathode (electrowinning). In this study, distillation experiments of a LiCl-KCl eutectic salt and cadmium metal were carried out to examine the distillation behaviors for the development of the electrorefining and the electrowinning processes. The experimental set-up was composed of a distillation tower with an evaporator and a condenser, vacuum pump, control unit, and an off gas treatment system. The solid-liquid separation prior to distillation of the LiCl-KCl eutectic salt was proposed and found to be feasible for the reduction of the burden of the distillation process. The LiCl-KCl eutectic salt was successfully distilled after the liquid salt separation. Distillation experiments for cadmium metal were also carried out. The apparent evaporation rates of LiCl-KCl eutectic salt and cadmium increased with an increasing temperature. The evaporation behaviors of cadmium metal and cadmium-cerium alloy were compared. Cadmium in the alloy was successfully distilled and separated from cerium. The evaporation rate of cadmium in the alloy was lower than that of cadmium metal. The low evaporation rate of the alloy was probably caused by the formation of an intermetallic compound and the residual salt during the preparation of the alloy. Therefore, the distillation temperature for the distillation of the liquid cathode should be higher than the distillation of cadmium metal. The measured evaporation rates of the eutectic salt and cadmium were compared with the values calculated by a relation based on the kinetics of gases. The theoretical values of the evaporation rate calculated by the Hertz-Langmuir relation were higher than the experimental values. The deviations were compensated for

  18. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  19. Microstructural characterization of LaB6-ZrB2 eutectic composites

    International Nuclear Information System (INIS)

    Wang Shengchang; Wei, W.J.; Zhang Litong

    2003-01-01

    Detail microstructure of LaB 6 -ZrB 2 composites has been characterized by TEM and HRTEM. The directionally solidified ZrB 2 fibers in LaB 6 matrix near LaB 6 -ZrB 2 eutectics present at least three growing relationship systems. In addition to previous report of [001]LaB 6 / [0001]ZrB 2 relationship, [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . were identified. Different with [001]LaB 6 / [0001]ZrB 2 system, the interfaces of [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . show non-coherent and clean interfaces. There is neither glassy phase nor reaction products found at the interfaces (orig.)

  20. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    International Nuclear Information System (INIS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S

    2014-01-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al 6 Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al 3 Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al 6 Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al 6 Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented

  1. Site Simulation of Solidified Peat: Lab Monitoring

    Science.gov (United States)

    Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd

    2018-04-01

    In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.

  2. Method and apparatus for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Kadota, Hiroko; Kikuchi, Makoto; Tsuchiya, Hiroyuki; Tamada, Shin.

    1989-01-01

    The present invention concerns a method of solidifying radioactive wastes that generate heat with water curing solidifying material and the object there of is suppress the effect of heat generation of the wastes given on the solidification material. That is, it is a feature of the invention to inject water content contained in the water curable solidification material in the form of ice into the wastes. Thus, since the water content in the water curable solidification material is ice, the solidification products can be obtained by way of the following three steps: (1) ice is dissolved into water, (2) solid content of the solidification material is dissolved into water, and(3) curing reaction of the solidification material is started. Acccordingly, since the heat generated from the wastes contributes as heat of reaction when ice is dissolved into water till the solidification material has been completely filled, promotion for the curing reaction causing problems so far can be suppressed to enable easy filling. Then, after the completion of the filling of the solidification material, the heat of the wastes has an effect of promoting the second and the third steps described above to accelerate the curing reaction. (K.M.)

  3. Method and device for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hayashi, Tadamasa.

    1981-01-01

    Purpose: To solidify radioactive waste without producing radioactive dusts by always heating and evaporating the water from liquid radioactive waste in a mixture of liquid plastic and exhausting the molten mixture of the waste residue and the plastic material. Constitution: Liquid plastic material in a tank cooled to prevent polymerization or changes of its properties is continuously supplied to the top of a heating and mixing evaporator by a constant supply pump. After the heat transfer surface of the evaporator is covered with the plastic material, radioactive waste in the tank is supplied to the evaporator via the constant supply pump. The waste is abruptly mixed with the plastic material by an agitating rotor, heated by a heater, and the evaporated water is fed to a condenser. An anhydrous molten mixture is continuously exhausted from the bottom of the evaporator into a mixture cooler, a polymerizing agent and catalyst are introduced thereinto from a polymerizing agent tank and a catalyst tank, inhibitor is introduced thereinto from a polymerization inhibitor tank as required, and is filled with the mixture a solidifying container while it is cooled for its polymerization and solidification. (Yoshino, Y.)

  4. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    Science.gov (United States)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  5. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  6. Effect of solution heat treatment time on a rheocast Al-Zn-Mg-Cu alloy

    CSIR Research Space (South Africa)

    Mazibuko, NE

    2011-06-01

    Full Text Available During rheo-high pressure die casting (R-HPDC) of Al-Zn-Mg-Cu alloys a coarse eutectic phase is formed. This eutectic phase is difficult to take into solution because of its size and it would require longer solution heat treatment times...

  7. Flux flow and proximity effects in aligned Pb--Cd eutectic lamellar structures

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, C. R.

    1977-09-01

    A high speed directional solidification technique was used to fabricate lamellar Pb-Cd and (Pb-Mg)--(Cd-Mg) superconductor-normal metal composites in which all the lamellae are oriented perpendicular to the broad surface of the sample. These lamellar composites are found to behave like a large number (approximately 1000) of superconducting-normal-superconducting junctions. For the Pb-Cd eutectic system, the critical current densities and critical fields have shown no dependence upon the lamellar periods between 1.0 and 3.1 microns. The critical current density of the aligned lamellar Pb-Cd structures was enhanced approximately 50% when compared to quenched eutectic alloy and to pure Pb. The superconducting transition temperature, T/sub c/, varies inversely with the square of the thickness of the superconducting material as expected from Ginzburg-Landau theory. Upon annealing, the Pb lamellae change from type II to type I superconductivity.

  8. Flux flow and proximity effects in aligned Pb--Cd eutectic lamellar structures

    International Nuclear Information System (INIS)

    Spencer, C.R.

    1977-09-01

    A high speed directional solidification technique was used to fabricate lamellar Pb-Cd and (Pb-Mg)--(Cd-Mg) superconductor-normal metal composites in which all the lamellae are oriented perpendicular to the broad surface of the sample. These lamellar composites are found to behave like a large number (approximately 1000) of superconducting-normal-superconducting junctions. For the Pb-Cd eutectic system, the critical current densities and critical fields have shown no dependence upon the lamellar periods between 1.0 and 3.1 microns. The critical current density of the aligned lamellar Pb-Cd structures was enhanced approximately 50% when compared to quenched eutectic alloy and to pure Pb. The superconducting transition temperature, T/sub c/, varies inversely with the square of the thickness of the superconducting material as expected from Ginzburg-Landau theory. Upon annealing, the Pb lamellae change from type II to type I superconductivity

  9. Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt

    Directory of Open Access Journals (Sweden)

    Ang Zhang

    2017-11-01

    Full Text Available In the present study, the influence of natural convection on the lamellar eutectic growth is determined by a phase-field-lattice Boltzmann study for Al-Cu eutectic alloy. The mass difference resulting from concentration difference led to the fluid flow, and a robust parallel and adaptive mesh refinement algorithm was employed to improve the computational efficiency without any compromising accuracy. Results show that the existence of natural convection would affect the growth undercooling and thus control the interface shape by adjusting the lamellar width. In particular, by alternating the magnitude of the solute expansion coefficient, the strength of the natural convection is changed. Corresponding microstructure patterns are discussed and compared with those under no-convection conditions.

  10. Capture and Solidification of Rare Earth Nuclide (Nd) in LiCl-KCl Eutectic Salt Using a Synthetic Inorganic Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Na-Young; Eun, Hee-Chul; Park, Hwan-Seo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    In this study, neodymium (Nd) nuclides in LiCl-KCl eutectic salts were captured and solidified using a synthetic inorganic composite (Li{sub 2}O-SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}), a process that allows the selective capture of Nd and fabrication of a composite with Nd captured from waste, without additional additives or mixing. The Nd nuclides in the LiCl-KCl eutectic salt were mainly captured in the form of LiNdSiO{sub 4}, and it was confirmed that NdSiO{sub 3} can be formed in the composite with captured Nd when the content of Nd in the composite is increased. The capture efficiency was higher than about 98 wt%. It was thought that the salt recovered from the Nd capture test was a renewable form could be reused in the pyroprocessing of used nuclear fuel, because the composite has high chemical durability in a LiCl-KCl eutectic salt at 900 ℃. The composite captured Nd was fabricated into a homogeneous glass form and a stable ceramic form.

  11. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Alva, Guruprasad; Huang, Xiang; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: •Myristic acid–palmitic acid eutectic was microencapsulated with silica shell. •Structure, morphology of microencapsulated phase change material were investigated. •Thermal capacity, stability of microencapsulated phase change material were analyzed. •Silica shell improved thermal stability of microencapsulated phase change material. -- Abstract: In this work microencapsulation of myristic acid–palmitic acid (MA–PA) eutectic mixture with silica shell using sol−gel method has been attempted. The core phase change material (PCM) for thermal energy storage was myristic acid−palmitic acid eutectic mixture and the shell material to prevent the PCM core from leakage was silica prepared from methyl triethoxysilane (MTES). Thermal properties of the microcapsules were measured by differential scanning calorimeter (DSC). The morphology and particle size of the microcapsules were examined by scanning electronic microscope (SEM). Fourier transformation infrared spectrophotometer (FT–IR) and X–ray diffractometer (XRD) were used to investigate the chemical structure and crystalloid phase of the microcapsules respectively. The DSC results indicated that microencapsulated phase change material (MPCM) melts at 46.08 °C with a latent heat of 169.69 kJ kg −1 and solidifies at 44.35 °C with a latent heat of 159.59 kJ kg −1 . The thermal stability of the microcapsules was analyzed by a thermogravimeter (TGA). The results indicated that the MPCM has good thermal stability and is suitable for thermal energy storage application.

  12. Method of solidifying radioactive waste by plastics

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Tomita, Toshihide.

    1976-01-01

    Purpose: To prevent leakage of radioactivity by providing corrosion-resistant layer on the inner surface of a waste container for radioactive waste. Constitution: The inner periphery and bottom of a drum can is lined with an non-flammable cloth of such material as asbestos. This drum is filled with a radioactive waste in the form of powder or pellets. Then, a mixture of a liquid plastic monomer and a polymerization starting agent is poured at a normal temperature, and the surface is covered with a non-flammable cloth. The plastic monomer and radioactive waste are permitted to impregnate the non-flammable cloth and are solidified there. Thus, even if the drum can is corroded at the sea bottom after disposal it in the ocean, it is possible to prevent the waste from permeating into the outer sea water because of the presence of the plastic layer on the inside. Styrene is used as the monomer. (Aizawa, K.)

  13. A process for solidifying radioactive liquid waste

    International Nuclear Information System (INIS)

    Mergan, L.M.; Cordier, J.-P.

    1981-01-01

    In a process for solidifying radioactive liquid waste, its pH is adjusted, solids precipitated and then it is concentrated to about 50% solids content using a thin film evaporator, the concentrate then being dried to powder in a heated mixer. The mixer has a heated wall and working means, e.g. a rotor and helical screw, to shear the dried concentrate from the internal walls, subdivide it into a dry particulate powder, and advance the powder to the mixer outlet. The dried particles are then encapsulated in a suitable matrix. Vapour from the mixer and evaporator is condensed and recycled after any particles have been removed from it. The mixer may both dry the concentrate and mix the dry particles with the encapsulating matrix, and possibly, part of the mixer may be used for pH adjustment and precipitation. (author)

  14. Method of solidifying radioactive liquid wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Kawamura, Fumio; Kikuchi, Makoto; Fukazawa, Tetsuo.

    1983-01-01

    Purpose: To enable to confine the volatiling ingredients such as cesium in liquid wastes safely in glass solidification products while suppressing the volatilization thereof. Method: Acid salt of tetravalent metal such as titanium phosphate has an intense selective adsorption property to cesium. So liquid wastes stored in a high level liquid wastes tank is mixed with titanium phosphate gels stored in an adsorbent tank, then supplied to a mixer and mixed with a sodium silicate solution stored in a sodium silicate storage tank and boric acid stored in an additive tank, into gel-like state. The gel-like material thus formed is supplied to a drier. After being dried at a temperature of 200sup(o)C - 300sup(o)C, the material is melted under heating at a temperature of 1000sup(o)C - 1100sup(o)C, and then cooled to solidify. (Horiuchi, T.)

  15. The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents

    International Nuclear Information System (INIS)

    Vieira, L.; Schennach, R.; Gollas, B.

    2016-01-01

    Highlights: • Mechanistic insight into zinc electrodeposition from deep eutectic solvents. • Overpotential for hydrogen evolution affects the electrodeposition of zinc. • Electrodeposited zinc forms surface alloys on Cu, Au, and Pt. • In situ PM-IRRAS of a ZnCl_2 containing deep eutectic solvent on glassy carbon. - Abstract: The voltammetric behaviour of the ZnCl_2 containing deep eutectic solvent choline chloride/ethylene glycol 1:2 was investigated on glassy carbon, stainless steel, Au, Pt, Cu, and Zn electrodes. While cyclic voltammetry on glassy carbon and stainless steel showed a cathodic peak for zinc electrodeposition only in the anodic reverse sweep, a cathodic peak was found also in the cathodic forward sweep on Au, Pt, Cu, and Zn. This behaviour is in agreement with the proposed mechanism of zinc deposition from an intermediate species Z, whose formation depends on the cathodic reduction potential of the solvent. The voltammetric reduction of the electrolyte involves hydrogen evolution and as a result the formation of Z and its reduction to zinc depend on the hydrogen overpotential for each electrode material. On Au, Pt, and Cu also the anodic stripping was different from that on glassy carbon and steel due to the formation of surface zinc alloys with the three former metals. The morphology of the zinc layers on Cu has been characterised by scanning electron microscopy and focussed ion beam. X-ray diffraction confirmed the presence of crystalline zinc and a Cu_4Zn phase. Spectroelectrochemistry by means of polarization modulation reflection-absorption spectroscopy (PM-IRRAS) on a glassy carbon electrode in the ZnCl_2 containing deep eutectic solvent showed characteristic potential dependent changes. The variation of band intensities at different applied potentials correlate with the voltammetry and suggest the formation of a compact blocking layer on the electrode surface, which inhibits the electrodeposition of zinc at sufficiently negative

  16. Microstructural investigation of Sr-modified Al-15 wt%Si alloys in the range from micrometer to atomic scale.

    Science.gov (United States)

    Timpel, M; Wanderka, N; Vinod Kumar, G S; Banhart, J

    2011-05-01

    Strontium-modified Al-15 wt%Si casting alloys were investigated after 5 and 60 min of melt holding. The eutectic microstructures were studied using complementary methods at different length scales: focused ion beam-energy selective backscattered tomography, transmission electron microscopy and 3D atom probe. Whereas the samples after 5 min of melt holding show that the structure of eutectic Si changes into a fine fibrous morphology, the increase of prolonged melt holding (60 min) leads to the loss of Sr within the alloy with an evolution of an unmodified eutectic microstructure displaying coarse interconnected Si plates. Strontium was found at the Al/Si eutectic interfaces on the side of the eutectic Al region, measured by 3D atom probe. The new results obtained using 3D atom probe shed light on the location of Sr within the Al-Si eutectic microstructure. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Into the depths of deep eutectic solvents

    NARCIS (Netherlands)

    Rodriguez, N.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Ionic liquids (ILs) have been successfully tested in a wide range of applications; however, their high price and complicated synthesis make them infeasible for large scale implementation. A decade ago, a new generation of solvents so called deep eutectic solvents (DESs) was reported for the first

  18. Direct observation of spatially isothermal equiaxed solidification of an Al-Cu alloy in microgravity on board the MASER 13 sounding rocket

    Science.gov (United States)

    Murphy, A. G.; Mathiesen, R. H.; Houltz, Y.; Li, J.; Lockowandt, C.; Henriksson, K.; Melville, N.; Browne, D. J.

    2016-11-01

    For the first time, isothermal equiaxed solidification of a metallic alloy has been observed in situ in space, providing unique benchmark experimental data. The experiment was completed on board the MASER 13 sounding rocket, launched in December 2015, using a newly developed isothermal solidification furnace. A grain-refined Al-20 wt%Cu sample was fully melted and solidified during 360 s of microgravity and the solidification sequence was recorded using time-resolved X-radiography. Equiaxed nucleation, dendritic growth, solutal impingement, and eutectic transformation were thus observed in a gravity-free environment. Equiaxed nucleation was promoted through application of a controlled cooling rate of -0.05 K/s producing a 1D grain density of 6.5 mm-1, uniformly distributed throughout the field of view (FOV). Primary growth slowed to a visually imperceptible level at an estimated undercooling of 7 K, after which the cooling rate was increased to -1.0 K/s for the remainder of solidification and eutectic transformation, ensuring the sample was fully solidified inside the microgravity time window. The eutectic transformation commenced at the centre of the FOV proceeding radially outwards covering the entire FOV in 3 s Microgravity-based solidification is compared to an identical pre-flight ground-based experiment using the same sample and experiment timeline. The ground experiment was designed to minimise gravity effects, by choice of a horizontal orientation for the sample, so that any differences would be subtle. The first equiaxed nucleation occurred at an apparent undercooling of 0.6 K less than the equivalent event during microgravity. During primary equiaxed solidification, as expected, no buoyant grain motion was observed during microgravity, compared to modest grain rotation and reorientation observed during terrestrial-based solidification. However, when the cooling rate was increased from -0.05 K/s to -1.0 K/s during the latter stages of solidification, in

  19. Formation and microstructure of Al{sub 2}O{sub 3}-YAG eutectic ceramics by phase transformation from metastable system to equilibrium system

    Energy Technology Data Exchange (ETDEWEB)

    Nagira, Tomoya; Yasuda, Hideyuki; Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: nagira@ams.eng.osaka-u.ac.jp

    2009-05-01

    Unidirectionally solidified Al{sub 2}O{sub 3}-YAG(Y{sub 3}Al{sub 5}O{sub 12}: yttrium-aluminum-garnet) eutectic ceramic composites have been recognized as encouraging heat-resistance materials because of the superior mechanical properties at high temperatures. In addition to the excellent mechanical properties at high temperatures, some interesting solidification phenomena have been reported in the Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} system. The Al{sub 2}O{sub 3}-YAG equilibrium eutectic at 2099 K and the Al{sub 2}O{sub 3}-YAP metastable eutectic at 1975 K exist in the Al{sub 2}O{sub 3}-Y{sub 2}O{sub 3} system. The heating the metastable eutectic up to temperatures above the metastable eutectic temperature produced the undercooled melt. Solidification in the equilibrium path accompanied the melting of the metastable eutectic. The solidification process using undercooled melt resulted in the fine and uniform eutectic structure. In this study, the effect of the initial Al{sub 2}O{sub 3}-YAP particles size on the undercooled melt formation was examined. The Al{sub 2}O{sub 3}-YAP particles with diameters more than several {mu}m resulted in the transformation through the undercooled melt. EBSD analysis showed that the domains of Al{sub 2}O{sub 3} grains with same crystallographic orientation were observed and that their domain size depended on the Al{sub 2}O{sub 3}-YAP particles size. On the other hand, for the Al{sub 2}O{sub 3}-YAP particles with a diameter of 500 nm, the each Al{sub 2}O{sub 3} grain with diameter of about 1 {mu}m had the different crystallographic orientations, which suggested that the transformation from metastable eutectic to equilibrium eutectic occurred in the solid state. The increase in the Al{sub 2}O{sub 3}-YAP free surface area suppressed the undercooled melt formation.

  20. Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage

    International Nuclear Information System (INIS)

    Cao, Lei; Tang, Yaojie; Fang, Guiyin

    2015-01-01

    Shape-stabilized fatty acid eutectics/carboxy methyl cellulose-1 composites as phase change materials (PCMs) were synthesized by absorbing liquid eutectics into the carboxy methyl cellulose-1 fibers. The chemical structure, crystalloid phase and morphology were determined by the Fourier transformation infrared spectroscope, X-ray diffractometer and scanning electronic microscope. The thermal properties and thermal stability were measured by the differential scanning calorimeter, thermogravimetric analyzer and the thermal cycling test, respectively. The results indicate that the eutectics are well adsorbed in the porous structure of the carboxy methyl cellulose-1. According to the DSC (differential scanning calorimeter) results, the composites melt at 32.2 °C with latent heat of 114.6 kJ/kg and solidify at 29.2 °C with latent heat of 106.8 kJ/kg. The thermal cycling test proves that the composites have good thermal reliability. It is envisioned that the prepared shape-stabilized PCMs have considerable potential for developing their roles in thermal energy storage. - Highlights: • The fatty acid eutectic/carboxy methyl cellulose-1 composites as PCMs were prepared. • Chemical structure and microstructure of composites were determined by FT-IR and SEM. • Thermal properties and stabilities were investigated by DSC and TGA. • The thermal cycling test confirmed that the composite has good thermal reliability

  1. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  2. Texture characterisation of hexagonal metals: Magnesium AZ91 alloy, welded by laser processing

    International Nuclear Information System (INIS)

    Kouadri, A.; Barrallier, L.

    2006-01-01

    Cooled and cast magnesium AZ91 alloy was welded using a CO 2 laser. The changes in the microstructure were analysed by optical and scanning electron microscopy and X-ray diffraction. Modification of the anisotropic properties was evaluated by the characterization of the texture in the base metal, in the core of the welded zone and in the welded zone close to the surface. In the two former zones, we have not observed a texture. Laser welding only leads to a change of the grain size and a disappearance of the eutectic phase. By contrast, in the welded zone close to the surface, the laser process leads both to a finer microstructure, to a loss of the Al-content and to the presence of several texture components. In this zone, our results showed that these textures are on pyramidal {101-bar 1} and prismatic {101-bar 0} planes. Much of the explanation for such texture rests with the fact that during the laser welding, material solidifies in strong non-equilibrium conditions. The kinetics of the nucleation and the growth are partly controlled by the high-rise and high fall of the temperature and the power produced by the laser process. The nature of the texture has been explained by the presence of a columnar to equiaxed transition in the welded zone

  3. Role of cerium, lanthanum, and strontium additions in an Al-Si-Mg (A356) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nabawy, Ahmed M.; Samuel, Agnes M.; Samuel, Fawzy H. [Universite du Quebec, Chicoutimi (Canada). Dept. des Sciences Appliquees; Alkahtani, Saleh A.; Abuhasel, Khaled A. [Salman Bin Abdulaziz Univ., Riyadh (Saudi Arabia). Mechanical Engineering Dept.

    2016-05-15

    The effects of individual and combined additions of cerium (Ce), lanthanum (La), and strontium (Sr) on the eutectic modification and solidification characteristics of an Al-Si-Mg (A356) aluminum alloy were investigated using optical microscopy and thermal analysis techniques. Addition of Ce, La, and Sr resulted in different depression levels of the eutectic nucleation temperature and eutectic growth undercooling, generating modified eutectic structures exhibiting different levels of modification. Microstructural results showed that the best modification levels using individual additions were achieved by Sr which produced a fine fibrous eutectic structure, followed by La, which produced a refined lamellar structure, with Ce providing the lowest level of modification. On the other hand, a combined addition of Ce and Sr provided the highest modification level, with the production of a very fine fibrous eutectic silicon structure. In general, the addition of Sr helped to further increase the refinement obtained in the alloys containing La or Ce + La additions. In the latter alloy, the main intermetallic phases observed were La(Al,Si){sub 2} and Al{sub 20}(La,Ce)Ti{sub 2}Si. The improved modification levels were found to be proportional to the depression in the eutectic nucleation temperature and the eutectic growth undercooling. A high cooling rate also improved the modification level by at least one level.

  4. Growth crystallography and lamellar to rod transition in directionally solidified Nb--Nb2C eutectic composites

    International Nuclear Information System (INIS)

    David, S.A.; Santhanam, A.T.; Brody, H.D.

    1976-01-01

    The transition in morphology of the carbide phase is discussed in terms of the relative volume fraction of the phases, growth rate, and orientation relationships. The carbide morphology is influenced by the growth rate and carbon content. For constant growth rate increasing the volume fraction of the carbide phase favors the lamellar morphology. At low growth rates the lamellar morphology is favored, and at high growth rates the rod-like morphology is favored. Growth crystallography has no direct influence on the transition in carbide morphology

  5. Method for accelerated leaching of solidified waste

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Heiser, J.H.; Pietrzak, R.F.; Franz, E.M.; Colombo, P.

    1990-11-01

    An accelerated leach test method has been developed to determine the maximum leachability of solidified waste. The approach we have taken is to use a semi-dynamic leach test; that is, the leachant is sampled and replaced periodically. Parameters such as temperature, leachant volume, and specimen size are used to obtain releases that are accelerated relative to other standard leach tests and to the leaching of full-scale waste forms. The data obtained with this test can be used to model releases from waste forms, or to extrapolate from laboratory-scale to full-scale waste forms if diffusion is the dominant leaching mechanism. Diffusion can be confirmed as the leaching mechanism by using a computerized mathematical model for diffusion from a finite cylinder. We have written a computer program containing several models including diffusion to accompany this test. The program and a Users' Guide that gives screen-by-screen instructions on the use of the program are available from the authors. 14 refs., 4 figs., 1 tab

  6. Leaching behavior of cement solidified materials

    International Nuclear Information System (INIS)

    2002-03-01

    An immersion test of mortar was carried out in order to solidify waste with uranium. The sample consists of 2000g cement, 950g ion exchange water, 1600g sound and 1g water reducing agent. The solid sample and ion exchange water (100 of immersion liquid/original sample) was put into polystyrene closed vessel in globe box and kept four weeks, and then it was separated to the immersion liquid and the solid phase. New ion exchange water was added to the solid and kept four weeks and then separated. Its ratio showed 200. The analysis was done at 100, 200 and 300 ratio of immersion liquid/sample. The solid phase was studied by the powder X-ray diffraction analysis, thermo gravimetric analysis and chemical analysis. The liquid phase was determined by pH values and composition analysis. The results showed Ca(OH) 2 , cement hydrate, was flowed out and it was not found in the solid phase at 200 ratio. (S.Y.)

  7. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  8. Thermophysical properties of the Li(17)Pb(83) eutectic alloy

    International Nuclear Information System (INIS)

    Jauch, U.; Haase, G.; Schulz, B.

    1986-01-01

    Methods of measurements and results for the following properties of Li(17)Pb(83) are presented: density, specific heat, latent heat of fusion, surface energy, thermal conductivity and diffusivity, electrical conductivity and viscosity. The range of the temperature for extrapolation of the physical properties is discussed. (orig.)

  9. Experimental specifications for eutectic reaction between metallic fuel and HT-9

    International Nuclear Information System (INIS)

    Hwang, Woan; Nam, Cheol; Lee, Byoung Oon; Ryu, Woo Seog

    1998-10-01

    The chemical interaction between metallic fuel and cladding is important in designing the fuel pin of the KALIMER. When metal fuel and cladding are contacted, the elements in fuel and cladding are inter-diffuse each other, forming the reaction layers at interface. The reaction layers may cause two important factors in aspects of fuel pin integrity. Firstly, it degrades cladding strength by reducing effective cladding thickness. Secondly, these layers accelerate eutectic reaction at transient conditions. To evaluate these phenomena, the diffusion couple experiment is planned by using metal fuels with various zirconium contents and HT-9 steel. The U-Zr fuel alloys will be used for the experiment with the different zirconium contents, these are 8, 10 and 12 weight %. This experiment aims to evaluate the effects of zirconium content on the chemical reaction. Furthermore, the reaction rate and threshold temperature of the eutectic melting will be determined as a function of the zirconium content. This document describes the detail experimental specifications for the eutectic reaction such as test setup, test requirements and test procedure. (author). 10 refs

  10. Leaching studies of radionuclides from solidified wastes with thermosetting resin

    International Nuclear Information System (INIS)

    Suzuki, K.; Kuribayashi, H.; Morimitsu, W.; Ono, I.

    1982-01-01

    This paper reports on studies of the leachability of Co-60 and Cs-137 from simulated LWR radwastes solidified with thermosetting resin and evaluates the effects of chemical fixation on leachability. It is concluded that insolubilization by a nickel-ferrocyanide compound offers an effective chemical fixation of these radionuclides and is a recommended pretreating method for radwastes that are to be solidified. 2 figures

  11. Production and processing of Cu-Cr-Nb alloys

    International Nuclear Information System (INIS)

    Ellis, D.L.; Michal, G.M.; Orth, N.W.

    1990-01-01

    A new Cu-based alloy possessing high strength, high conductivity, and good stability at elevated temperatures was recently produced. This paper details the melting of the master alloys, production of rapidly solidified ribbon, and processing of the ribbon to sheet by hot pressing and hot rolling

  12. Production and processing of Cu-Cr-Nb alloys

    Science.gov (United States)

    Ellis, David L.; Michal, Gary M.; Orth, Norman W.

    1990-01-01

    A new Cu-based alloy possessing high strength, high conductivity, and good stability at elevated temperatures was recently produced. This paper details the melting of the master alloys, production of rapidly solidified ribbon, and processing of the ribbon to sheet by hot pressing and hot rolling.

  13. A comparative EBSP study of microstructure and microtexture formation from undercooled Ni99B1 melts solidified on an electrostatic levitator and an electromagnetic levitator

    International Nuclear Information System (INIS)

    Li Mingjun; Ishikawa, Takehiko; Nagashio, Kosuke; Kuribayashi, Kazuhiko; Yoda, Shinichi

    2006-01-01

    Ni 99 B 1 alloys were solidified by containerless processing at various melt undercoolings on an electrostatic levitator (ESL) and an electromagnetic levitator (EML). A scanning electron microscope in combination with an electron backscatter diffraction pattern mapping technique was employed to reveal microstructures and microtextures formed on these two facilities. The microstructure consists of well-developed primary dendrites with coarse secondary arms in the alloys solidified on the ESL at low and medium undercooling levels, whereas equiaxed grains are yielded in alloys solidified on the EML at almost the same undercoolings. Further analysis indicates that the melt flow induced by the electromagnetic field in the EML may play a significant role in promoting fragmentation of primary dendrites in the mushy zone and thus resulting in equiaxed grains. In contrast, the primary dendrites in the alloy processed on the ESL can fully develop in the absence of melt flow. The fluid flow in the sample on the EML can rotate, move, and displace surviving fragments, yielding a random distribution of grain orientation and thus leading to a random microtexture at low and medium undercoolings. At high undercoolings, refined equiaxed grains can be obtained on both the ESL and the EML and the influence of melt flow on refinement seems negligible due to the enhanced driving force in capillarity and solute effects. A great number of coherent annealing twins are formed, making the pole figures more complex and random

  14. Dispersoid reinforced alloy powder and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Terpstra, Robert L.

    2017-12-05

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  15. Dispersoid reinforced alloy powder and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Terpstra, Robert L.

    2017-10-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  16. Development and characterization of solidified forms for high-level wastes: 1978. Annual report

    International Nuclear Information System (INIS)

    Ross, W.A.; Mendel, J.E.

    1979-12-01

    Development and characterization of solidified high-level waste forms are directed at determining both process properties and long-term behaviors of various solidified high-level waste forms in aqueous, thermal, and radiation environments. Waste glass properties measured as a function of composition were melt viscosity, melt electrical conductivity, devitrification, and chemical durability. The alkali metals were found to have the greatest effect upon glass properties. Titanium caused a slight decrease in viscosity and a significant increase in chemical durability in acidic solutions (pH-4). Aluminum, nickel and iron were all found to increase the formation of nickel-ferrite spinel crystals in the glass. Four multibarrier advanced waste forms were produced on a one-liter scale with simulated waste and characterized. Glass marbles encapsulated in a vacuum-cast lead alloy provided improved inertness with a minimal increase in technological complexity. Supercalcine spheres exhibited excellent inertness when coated with pyrolytic carbon and alumina and put in a metal matrix, but the processing requirements are quite complex. Tests on simulated and actual high-level waste glasses continue to suggest that thermal devitrification has a relatively small effect upon mechanical and chemical durabilities. Tests on the effects radiation has upon waste forms also continue to show changes to be relatively insignificant. Effects caused by decay of actinides can be estimated to saturate at near 10 19 alpha-events/cm 3 in homogeneous solids. Actually, in solidified waste forms the effects are usually observed around certain crystals as radiation causes amorphization and swelling of th crystals

  17. High damping Al-Fe-Mo-Si/Zn-Al composites produced by rapidly solidified powder metallurgy process

    International Nuclear Information System (INIS)

    Li, P.Y.; Dai, S.L.; Chai, S.C.; Li, Y.R.

    2000-01-01

    The metallic materials commonly used in aircraft and aerospace fields, such as aluminum and titanium alloys, steels, etc., show extremely low damping capacity (usually of the order of or less than 10 -3 ). Thus, some problems related to vibration may emerge and influence the reliability, safety and life of airplanes, satellites, etc. It has been reported that almost two thirds of errors for rockets and satellites are related to vibration and noise. One effective way to solve these vibration-related problems is to adopt high damping metallic materials. Conventional high damping alloys exhibit damping capacity above 10 -2 , however, their densities are usually great than 5 x 10 3 kg m -3 , or their strengths are less than 200 MPa (for alloys based on dislocation damping), making them impossible to be applied to aircraft and aerospace areas. Recently, some low-density high-damping metal/metal composites based on aluminum and high damping alloys have been developed in Beijing Institute of Aeronautical Materials (BIAM) by the rapidly solidified power metallurgy process. This paper aims to report the properties of the composites based on a high temperature Al-Fe-Mo-Si alloy and a high damping Zn-Al alloy, and compare them with that of 2618-T61 alloy produced by the ingot metallurgy process

  18. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  19. Quantitative Comparison of Ternary Eutectic Phase-Field Simulations with Analytical 3D Jackson-Hunt Approaches

    Science.gov (United States)

    Steinmetz, Philipp; Kellner, Michael; Hötzer, Johannes; Nestler, Britta

    2018-02-01

    For the analytical description of the relationship between undercoolings, lamellar spacings and growth velocities during the directional solidification of ternary eutectics in 2D and 3D, different extensions based on the theory of Jackson and Hunt are reported in the literature. Besides analytical approaches, the phase-field method has been established to study the spatially complex microstructure evolution during the solidification of eutectic alloys. The understanding of the fundamental mechanisms controlling the morphology development in multiphase, multicomponent systems is of high interest. For this purpose, a comparison is made between the analytical extensions and three-dimensional phase-field simulations of directional solidification in an ideal ternary eutectic system. Based on the observed accordance in two-dimensional validation cases, the experimentally reported, inherently three-dimensional chain-like pattern is investigated in extensive simulation studies. The results are quantitatively compared with the analytical results reported in the literature, and with a newly derived approach which uses equal undercoolings. A good accordance of the undercooling-spacing characteristics between simulations and the analytical Jackson-Hunt apporaches are found. The results show that the applied phase-field model, which is based on the Grand potential approach, is able to describe the analytically predicted relationship between the undercooling and the lamellar arrangements during the directional solidification of a ternary eutectic system in 3D.

  20. Effects of La2O3 on microstructure and wear properties of laser clad γ/Cr7C3/TiC composite coatings on TiAl intermatallic alloy

    International Nuclear Information System (INIS)

    Liu Xiubo; Yu Rongli

    2007-01-01

    The effects of La 2 O 3 addition on the microstructure and wear properties of laser clad γ/Cr 7 C 3 /TiC composite coatings on γ-TiAl intermetallic alloy substrates with NiCr-Cr 3 C 2 precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La 2 O 3 . The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr 7 C 3 and TiC carbides and the γ/Cr 7 C 3 eutectics distributed in the tough γ nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La 2 O 3 -addition and a suitable laser processing parameters. The additions of rare-earth oxide La 2 O 3 can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr 7 C 3 to Cr 7 C 3 /γ eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La 2 O 3 is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La 2 O 3 addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La 2 O 3 have no better influence on wear resistance of the composite coating

  1. Heat storage in alloy transformations

    Science.gov (United States)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  2. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1985-05-01

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  3. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  4. Aluminum alloy nanosecond vs femtosecond laser marking

    Indian Academy of Sciences (India)

    Faculty of Materials Science and Engineering, Technical University “Gheorghe Asachi” of Iasi, No. ... molten material. One can identify local melting of circular shape, subsequently solidified with partial superimposing of molten alloy. The laser writing presents a ... Abbott–Firestone curve (Abbott and Firestone 1933), which.

  5. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  6. The Application of ATD and DSC Methods to Study of the EN AC-48000 Alloy Phase Transformations

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2017-06-01

    Full Text Available Tests concerning EN AC 48000 (AlSi12CuNiMg alloy phase transition covered (ATD thermal analysis and (DSC differential scanning calorimetry specifying characteristic temperatures and enthalpy of transformations. ATD thermal analysis shows that during cooling there exist: pre-eutectic crystallization effect of Al9Fe2Si phase, double eutectic and crystallization α(Al+β(Si and multi-component eutectic crystallization. During heating, DSC curve showed endothermic effect connected with melting of the eutectic α(Al+β(Si and phases: Al2Cu, Al3Ni, Mg2Si and Al9Fe2Si being its components. The enthalpy of this transformation constitutes approx. +392 J g-1. During freezing of the alloy, DSC curve showed two exothermal reactions. One is most likely connected with crystallization of Al9Fe2Si phase and the second one comes from freezing of the eutectic α(Al+β(Si. The enthalpy of this transformation constitutes approx. -340 J g-1. Calorimetric test was accompanied by structural test (SEM conducted with the use of optical microscope Reichert and scanning microscope Hitachi S-4200. There occurred solution’s dendrites α(Al, eutectic silicon crystal (β and two types of eutectic solution: double eutectic α(Al+β(Si and multi-component eutectic α+AlSiCuNiMg+β.

  7. Formation of bands of ultrafine beryllium particles during rapid solidification of Al-Be alloys: Modeling and direct observations

    International Nuclear Information System (INIS)

    Elmer, J.W.; Tanner, L.E.; Smith, P.M.; Wall, M.A.; Aziz, M.J.

    1994-01-01

    Rapid solidification of dilute hyper-eutectic and monotectic alloys sometimes produces a dispersion of ultrafine randomly-oriented particles that lie in arrays parallel to the advancing solidification front. The authors characterize this effect in Al-Be where Be-rich particles with diameters on the order of 10 nm form in arrays spaced approximately 25 nm apart, and they present a model of macroscopically steady state but microscopically oscillatory motion of the solidification front to explain this unusual microstructure. The proposed mechanism involves; (i) the build-up of rejected solute in a diffusional boundary layer which slows down the growing crystal matrix, (2) the boundary layer composition entering a metastable liquid miscibility gap, (3) homogeneous nucleation of solute rich liquid droplets in the boundary layer, and crystallization of these droplets, and (4) growth of the matrix past the droplets and its reformation into a planar interface. The size of the Be-rich particles is limited by the beryllium supersaturation in the diffusional boundary layer. A numerical model was developed to investigate this solidification mechanism, and the results of the model are in good agreement with experimental observations of rapidly solidified Al-5 at.% Be

  8. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Roehling, John D.; Coughlin, Daniel R.; Gibbs, John W.; Baldwin, J. Kevin; Mertens, James C.E.; Campbell, Geoffrey H.; Clarke, Amy J.; McKeown, Joseph T.

    2017-01-01

    In situ dynamic transmission electron microscope (DTEM) imaging of Al-Si thin-film alloys was performed to investigate rapid solidification behavior. Solidification of alloys with compositions from 1 to 15 atomic percent Si was imaged during pulsed laser melting and subsequent solidification. Solely α-Al solidification was observed in Al-1Si and Al-3Si alloys, and solely kinetically modified eutectic growth was observed in Al-6Si and Al-9Si alloys. A transition in the solidification mode in eutectic and hypereutectic alloys (Al-12Si and Al-15Si) from nucleated α-Al dendrites at lower solidification velocities to planar eutectic growth at higher solidification velocities was observed, departing from trends previously seen in laser-track melting experiments. Comparisons of the growth modes and corresponding velocities are compared with previous solidification models, and implications regarding the models are discussed.

  9. Microstructure of rapidly solidified Al2O3-dispersion-strengthened Type 316 stainless steel

    International Nuclear Information System (INIS)

    Megusar, J.; Arnberg, L.; Vander Sande, J.B.; Grant, N.J.

    1981-01-01

    An aluminum oxide dispersion strengthened 316 stainless steel was developed by surface oxidation. Surface oxidation was chosen as a preferred method in order to minimize formation of less stable chromium oxides. Ultra low C+N 316 stainless steel was alloyed with 1 wt % Al, rapidly solidified to produce fine powders and attrited to approximately 0.5 μm thick flakes to provide for surface oxidation. Oxide particles in the extruded material were identified mostly as Al oxides. In the preirradiated condition, oxide dispersion retarded crystallization and grain growth and had an effect on room temperature tensile properties. These structural modifications are expected to have an effect on the swelling resistance, structure stability and high temperature strength of austenitic stainless steels

  10. The influence of Ta on the solidification microstructure and segregation behavior of γ(Ni)/γ′(Ni3Al)–δ(Ni3Nb) eutectic Ni-base superalloys

    International Nuclear Information System (INIS)

    Xie, M.; Helmink, R.; Tin, S.

    2013-01-01

    Highlights: ► Ta and Nb have a nominally identical influence on equilibrium δ volume fraction. ► Ta and Nb impact the sequence and segregation differently during solidification. ► Microstructure varies with both overall Ta + Nb level and Ta/Nb ratio. ► Pandat (PanNi7) is unable to predict trends quantitatively in this system. -- Abstract: Polycrystalline γ/γ′–δ eutectic Ni-base superalloys based on the Ni–Al–Nb alloy system were recently demonstrated to possess excellent high temperature strength and creep resistance. Investigations aimed to establish the fundamental relationships between alloy chemistry, solidification behavior and cast microstructure in these novel Ni–Al–Nb γ/γ′–δ alloy systems are currently underway. This particular study is focused on understanding the influence of Ta additions on the solidification sequence, phase volume fraction, distribution coefficient and solid state partitioning parameter of this eutectic alloy system by systematically investigating a series of experimental alloys with nominally constant overall levels of Ta + Nb content but varying Ta/Nb ratios. Although many of the tendencies observed in these multi-component γ/γ′–δ eutectic alloys are in agreement with trends observed in lower order model alloy systems, Ta additions were found to significantly modify solidification characteristics of the alloys. The experimental observations were also used to critically assess the predictive capability of thermodynamic database calculations. Despite the qualitative agreement observed between the experimental results and predictions for relatively simple quaternary and quinary model alloys, comparison of the results for higher order, multi-component γ/γ′–δ eutectic alloys reveals notable differences

  11. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir

    2017-01-01

    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  12. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Science.gov (United States)

    Golik, Vladimir; Dmitrak, Yury

    2017-11-01

    The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  13. Energy asymmetry in melting and solidifying processes of PCM

    International Nuclear Information System (INIS)

    Jin, Xing; Hu, Huoyan; Shi, Xing; Zhang, Xiaosong

    2015-01-01

    Highlights: • The melting process and the solidifying process of PCM were asymmetrical. • The enthalpy and state of PCM were affected by its previous state. • The main reason for energy asymmetry of PCM was supercooling. - Abstract: The solidifying process of phase change material (PCM) was usually recognized as the exact inverse process of its melting process, especially when building the heat transfer model of PCM. To figure out that whether the melting process and the solidifying process of PCM were symmetrical, several kinds of PCMs were tested by a differential scanning calorimeter (DSC) in this paper. The experimental results showed that no matter using the DSC dynamic measurement method or the DSC step measurement method, the melting process and the solidifying process of PCM were asymmetrical. Because of the energy asymmetry in the melting and solidifying processes of PCM, it was also found that the enthalpy and the state of PCM were not only dependent on its temperature, but also affected by its “previous state”.

  14. Giant Enhancement of Magnetostrictive Response in Directionally-Solidified Fe83Ga17Erx Compounds

    Directory of Open Access Journals (Sweden)

    Radhika Barua

    2018-06-01

    Full Text Available We report, for the first time, correlations between crystal structure, microstructure and magnetofunctional response in directionally solidified [110]-textured Fe83Ga17Erx (0 < x < 1.2 alloys. The morphology of the doped samples consists of columnar grains, mainly composed of a matrix phase and precipitates of a secondary phase deposited along the grain boundary region. An enhancement of more than ~275% from ~45 to 170 ppm is observed in the saturation magnetostriction value (λs of Fe83Ga17Erx alloys with the introduction of small amounts of Er. Moreover, it was noted that the low field derivative of magnetostriction with respect to an applied magnetic field (i.e., dλs/dHapp for Happ up to 1000 Oe increases by ~230% with Er doping (dλs/dHapp,FeGa= 0.045 ppm/Oe; dλs/dHapp,FeGaEr= 0.15 ppm/Oe. The enhanced magnetostrictive response of the Fe83Ga17Erx alloys is ascribed to an amalgamation of microstructural and electronic factors, namely: (i improved grain orientation and local strain effects due to deposition of Er in the intergranular region; and (ii strong local magnetocrystalline anisotropy, due to the highly anisotropic localized nature of the 4f electronic charge distribution of the Er atom. Overall, this work provides guidelines for further improving galfenol-based materials systems for diverse applications in the power and energy sector.

  15. Precision of the eutectic points determination by the isopleths

    Energy Technology Data Exchange (ETDEWEB)

    Lutsyk, V I; Sumkina, O G; Savinov, V V; Zelenaya, A E, E-mail: vluts@pres.bscnet.ru [Physical Problems Department, Buryat Scientific Center of RAS (Siberian Branch), 8 Sakhyanova st., Ulan-Ude, 670047 (Russian Federation)

    2011-10-29

    An imitation of quaternary eutectic point searching techniques by means of two-dimensional sections set construction (tie-lines method) was made, using the model of T-x-y-z diagram of eutectic type without solid-phases solubility as an example. The errors, appearing in sections graphics of experimentally studied systems, are analyzed.

  16. Method of solidifying and disposing radioactive waste plastic

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro

    1981-01-01

    Purpose: To solidify radioactive waste as it is with plastic by forming a W/O (Water-in-Oil) emulsion with the radioactive waste and a plastic solidifier, and treating it with a polymerization starting agent, an accelerator, and the like. Method: A predetermined amount of alkaline substance such as sodium hydroxide, triethanol, or the like is added quantitatively to radioactive waste and it is mixed by an agitator. A predetermined amount of solidifier such as unsaturated polyester or the like is added to the mixture and it is further mixed by the agitator to form a stable W/O emulsion. Subsequently, predetermined amounts of polymerization starting agent such as methyl ethyl ketone peroxide and polymerization accelerator such as cobalt naphthenate or the like are added thereto, the mixture is mixed, and is then allowed to stand for at room temperature for the plastic solidification thereof. No reaction occurs after the solidification. (Sekiya, K.)

  17. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    Science.gov (United States)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  18. Effect of titanium content and cooling rate on the microstructure and martensitic transformation of rapidly solidified Ti-Ni shape memory alloys; Influencia do Ti e da taxa de resfriamento na microestrutura e na temperatura M{sub S} em ligas Ni-Ti com EMF solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, George Carlos dos Santos; Castro, Walman Benicio de, E-mail: georgeanselmo@yahoo.com.br, E-mail: walman.castro@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2017-01-15

    One important challenge of microsystems design is the implementation of efficient principles of miniaturized actuation at the micro-scale. Shape memory alloys (SMAs) have early been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be micro-scale processed. Alloys of composition Ni-44,8wt%Ti and Ni- 45,3wt%Ti were produced using the melt spinning method in air atmosphere. Ribbons obtained in this process showed martensitic grain size between 5 and 30 μm, depending on the alloy composition and the linear velocity of the wheel. (author)

  19. Ternary equilibria in bismuth--indium--lead alloys

    International Nuclear Information System (INIS)

    Liao, K.C.; Johnson, D.L.; Nelson, R.C.

    1975-01-01

    The liquidus surface is characterized by three binary equilibria. One binary extends from the Pb--Bi peritectic to the Pb--In peritectic. The other two extend from In--Bi eutectics, merge at 50 at. percent Bi and 30 at. percent Pb, and end at the Bi--Pb eutectic. Based on analysis of ternary liquidus contours and vertical sections, it is suggested that solidification for high lead and very high indium alloys occurs from two-phase equilibria. Solidification from all other alloys occurs from three-phase equilibria. Four-phase solidification does not occur in this system

  20. Solidification processing of intermetallic Nb-Al alloys

    Science.gov (United States)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  1. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  2. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    1981-01-01

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  3. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.

    1999-01-01

    Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...... photoresist, have shown a stable and promising alternative to pure tin and tin-lead alloys for flip-chip bonding applications....

  4. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  5. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Timothy [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    often contain additions of heavier elements, such as zinc, zirconium, and rare earth elements, which significantly improve high temperature performance. However, additions of these elements can lead to macrosegregational effects in castings, which are detectable by radiographic scans. The effect of these flow-line indications on alloy mechanical properties is not well quantified. An examination of these flow-line indications and their effects on mechanical properties in three magnesium-based casting alloys was performed here in order to determine the best practice for dealing with affected castings. Preliminary results suggest the flow-lines do not measurably impact bulk material properties. Three additional methods of characterizing three-dimensional material structures are also presented: a minimum spanning tree analysis is utilized to quantify local structure in Cu-Zr liquid phase simulations obtained from molecular dynamics; the radial distribution function is applied to directionally solidified Al-Si structures in an attempt to extract local spacing data; and the critical diameter measurement is also defined and applied to irregular eutectic Al-Si structures.

  6. Solidification microstructures of aluminium-uranium alloys

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Vieira, R.R.

    1976-01-01

    The solidification of microstrutures of aluminium-uranium alloys in the range of 4 to 20% uranium is investigated. The solidification was obtained both in ingot molds and under controlled directional solidification. The conditions for the presence of primary crystals and eutectic are discussed and an analysis of the influence of variables (growth rate and thermal gradient in the liquid) on the alloy structure is made. The effect of cooling rate on the alloy structures has been determined. It is found that the resulting structure can be derived from the kinectics concept, as required by the coupled-zone theory. Suggestions on the qualitative intervals of composition and temperatures with eutectic growth are presented [pt

  7. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    Science.gov (United States)

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by

  8. The microstructure and composition of equilibrium phases formed in hypoeutectic Te-In alloy during solidification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baoguang [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Hu, Jinwu [Center of Failure Analysis, Central Iron and Steel Research Institute, Beijing 100081 (China); Wang, Chongyun; Yang, Wenhui [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Tian, Wenhuai, E-mail: wenhuaitian@ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-03-15

    As a key tellurium atoms evaporation source for ultraviolet detection photocathode, the hypoeutectic Te{sub 75}In{sub 25} alloy was prepared by employing a slow solidification speed of about 10{sup −2} K/s. The microstructure and chemical composition of the equilibrium phases formed in the as-prepared alloy were studied in this research work. The experimental results show that the as-prepared Te-In alloy was constituted by primary In{sub 2}Te{sub 5} phase and eutectic In{sub 2}Te{sub 5}/Te phases. The eutectic In{sub 2}Te{sub 5}/Te phases are distributed in the grain boundaries of primary In{sub 2}Te{sub 5} phase. With the slow solidification speed, a pure eutectic Te phase without any excessive indium solute was obtained, where Te content of eutectic Te phase is 100 mass%. Moreover, it can be considered that the stress between the In{sub 2}Te{sub 5} and Te phases plays an important role in reducing the tellurium vapor pressure in Te{sub 75}In{sub 25} alloy. - Highlights: • The microstructure of Te-In alloy as an evaporation source was analyzed. • A pure eutectic Te phase was obtained by using a slow solidification speed method. • The relation between vapor pressure and inner-stress in the alloy was discussed.

  9. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-01-01

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  10. Characteristics of solidified high-level waste products

    International Nuclear Information System (INIS)

    1979-01-01

    The object of the report is to contribute to the establishment of a data bank for future preparation of codes of practice and standards for the management of high-level wastes. The work currently in progress on measuring the properties of solidified high-level wastes is being studied

  11. Solidification processing of monotectic alloy matrix composites

    Science.gov (United States)

    Frier, Nancy L.; Shiohara, Yuh; Russell, Kenneth C.

    1989-01-01

    Directionally solidified aluminum-indium alloys of the monotectic composition were found to form an in situ rod composite which obeys a lambda exp 2 R = constant relation. The experimental data shows good agreement with previously reported results. A theoretical boundary between cellular and dendritic growth conditions was derived and compared with experiments. The unique wetting characteristics of the monotectic alloys can be utilized to tailor the interface structure in metal matrix composites. Metal matrix composites with monotectic and hypermonotectic Al-In matrices were made by pressure infiltration, remelted and directionally solidified to observe the wetting characteristics of the alloys as well as the effect on structure of solidification in the constrained field of the fiber interstices. Models for monotectic growth are modified to take into account solidification in these constrained fields.

  12. Response of MnBi-Bi eutectic to freezing rate changes

    Science.gov (United States)

    Nair, M.; Fu, T.-W.; Wilcox, W. R.; Doddi, K.; Ravishankar, P. S.; Larson, D.

    1982-01-01

    Reference is made to a study by Fu and Wilcox (1981), which treated theoretically the influence on freezing rate of sudden changes in translation rate in the Bridgman-Stockbarger technique. This treatment is extended here to a linear ramped translation rate and an oscillatory freezing rate. It is found that oscillations above a few hertz are highly damped in small-diameter apparatus. An experimental test is carried out of the theoretical predictions for a sudden change of translation rate. The MnBi-Bi eutectic is solidified with current-induced interface demarcation. The experimental results accord reasonably well with theory if the silica ampoule wall is assumed to either (1) contribute only a resistance to heat exchange between the sample and the furnace wall or (2) transmit heat effectively in the axial direction by radiation. In an attempt to explain the fact that a finer microstructure is obtained in space, MnBi-Bi microstructure is determined when the freezing rate is increased or decreased rapidly. Preliminary results suggest that fiber branching does not occur as readily as fiber termination.

  13. Sulfide phase in the Fe-Ti-S and Fe-C-Ti-S alloys

    International Nuclear Information System (INIS)

    Malinochka, Ya.N.; Balakina, N.A.; Shmelev, Yu.S.

    1976-01-01

    The nature of the sulfide phases in Fe-Ti-S and Fe-C-Ti-S alloys was studied. The carbide and the sulfide phase were identified the aid of X-ray spectral microanalysis. It was established that for a small content of titanium and sulfur in ternary Fe-Ti-S alloys the solidification of the γ-solution on the boundaries of dendritic branches is accompanied, along with the precipitation of a sulfide rich in iron of the (Fe, Ti) S type where a small quantity of titanium is dissolved, by the formation of a titanium-bearing sulfide eutectic γ + TiS. The amount of the sulfide eutectic increases with the contents of titanium and sulfur until a purely eutectic alloy is formed. Both carbides and sulfides may be formed in the solidification of quaternary alloys Fe-C-Ti-S

  14. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  15. Eutectic propeties of primitive Earth's magma ocean

    Science.gov (United States)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and

  16. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951

    International Nuclear Information System (INIS)

    Chu Zhaokuang; Yu Jinjiang; Sun Xiaofeng; Guan Hengrong; Hu Zhuangqi

    2008-01-01

    Total strain-controlled low cycle fatigue (LCF) tests were performed at a temperature range from 700 to 900 deg. C in ambient air condition on a directionally solidified Ni-base superalloy DZ951. The fatigue life of DZ951 alloy does not monotonously decrease with increasing temperature, but exhibits a strong dependence on the total strain range. The dislocation characteristics and failed surface observation were evaluated through transmission electron microscopy and scanning electron microscopy. The alloy exhibits cyclic hardening, softening or cyclic stability as a whole, which is dependent on the testing temperature and total strain range. At 700 deg. C, the cyclic plastic deformation process is the main cause of fatigue failure. At 900 deg. C, the failure mostly results from combined fatigue and creep damage under total strain range from 0.6 to 1.2% and the reduction in fatigue life can be taken as the cause of oxidation, creep and cyclic plastic deformation under total strain range of 0.5%

  17. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system

    International Nuclear Information System (INIS)

    Baran, Guelseren; Sari, Ahmet

    2003-01-01

    The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA-SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 deg. C and has a latent heat of 181.7 J g -1 , and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA-SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems

  18. Real-time X-ray transmission microscopy for fundamental studies solidification: Al-Al2Au eutectic

    International Nuclear Information System (INIS)

    Curreri, Peter A.; Kaukler, William F.; Sen, Subhayu

    1998-01-01

    High resolution real-time X-ray Transmission Microscopy, XTM, has been applied to obtain information fundamental to solidification of optically opaque metallic systems. We have previously reported the measurement of the solute profile in the liquid, phase growth, and detailed solid-liquid interfacial morphology of aluminum based alloys with exposure times less than 2 seconds. Recent advances in XTM furnace design have provided an increase in real-time magnification (during solidification) for the XTM from 40X to 160X. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 5 μm. We have previously applied this system to study the kinetics of formation and morphological evolution of secondary fibers and particles in Al-Bi monotectic alloys. In this paper we present the preliminary results of the first real-time observations of fiber morphology evolution in optically opaque bulk metal sample of Aluminum-Gold eutectic alloy. These studies show that the XTM can be applied to study the fundamentals of eutectic and monotectic solidification. We are currently attempting to apply this technology in the fundamentals of solidification in microgravity

  19. Precise Analysis of Microstructural Effects on Mechanical Properties of Cast ADC12 Aluminum Alloy

    Science.gov (United States)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Yamamoto, Masaki; Ohfuji, Hiroaki; Ochi, Toshihiro

    2015-04-01

    The effects of microstructural characteristics (secondary dendrite arm spacing, SDAS) and Si- and Fe-based eutectic structures on the mechanical properties and failure behavior of an Al-Si-Cu alloy are investigated. Cast Al alloy samples are produced using a special continuous-casting technique with which it is easy to control both the sizes of microstructures and the direction of crystal orientation. Dendrite cells appear to grow in the casting direction. There are linear correlations between SDAS and tensile properties (ultimate tensile strength σ UTS, 0.2 pct proof strength σ 0.2, and fracture strain ɛ f). These linear correlations, however, break down, especially for σ UTS vs SDAS and ɛ f vs SDAS, as the eutectic structures become more than 3 μm in diameter, when the strength and ductility ( σ UTS and ɛ f) decrease significantly. For eutectic structures larger than 3 μm, failure is dominated by the brittle eutectic phases, for which SDAS is no longer strongly correlated with σ UTS and ɛ f. In contrast, a linear correlation is obtained between σ 0.2 and SDAS, even for eutectic structures larger than 3 μm, and the eutectic structure does not have a strong effect on yield behavior. This is because failure in the eutectic phases occurs just before final fracture. In situ failure observation during tensile testing is performed using microstructural and lattice characteristics. From the experimental results obtained, models of failure during tensile loading are proposed.

  20. Deep Eutectic Solvents Enable More Robust Chemoenzymatic Epoxidation Reactions

    NARCIS (Netherlands)

    Zhou, Pengfei; Wang, Xuping; Zeng, Chaoxi; Wang, Weifei; Yang, Bo; Hollmann, F.; Wang, Yonghua

    2017-01-01

    A chemoenzymatic method for the production of epoxidized vegetable oils was developed. The unique combination of the commercial lipase G from Penicillieum camembertii with certain deep eutectic solvents enabled the efficient production of epoxidized vegetable oils.

  1. The creep behavior of In-Ag eutectic solder joints

    International Nuclear Information System (INIS)

    Reynolds, H.L.; Kang, S.H.; Morris, J.W. Jr.; Univ. of California, Berkeley, CA

    1999-01-01

    The addition of 3 wt.% Ag to In results in a eutectic composition with improved mechanical properties while only slightly lowering the melting temperature. Steady-state creep properties of In-Ag eutectic solder joints have been measured using constant load tests at 0, 30, 60, and 90 C. Constitutive equations are derived to describe the creep behavior. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Two parallel mechanisms were observed for the In-Ag eutectic joints. The high-stress mechanism is a bulk mechanism with a thermal dependence dominated by the thermal dependence of creep in the In-rich matrix. The low-stress mechanism is a grain boundary mechanism. Results of this work are discussed with regard to creep behavior of typical eutectic systems

  2. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    Science.gov (United States)

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  3. Propertis of solidified radioactive wastes from commercial LWRs

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1978-01-01

    A study has been performed to characterize the properties of solidified radioactive wastes generated in the liquid radwaste treatment systems at LWRs. The properties which have been studied are those which are pertinent in defining the relative potential for the release of radionuclides to the environment as well as others relating to the evaluation of various solidification agents on an economic and feasibility basis. The use of standard testing procedures in measuring these properties allows an intercomparison of respective properties between various types of solidified waste forms. The leachability, mechanical properties, thermal stability, radiation stability, and thermal properties of hydraulic cement, ureaformaldehyde, bitumen, and addition type polymer waste forms have been measured. In addition, the chemical sensitivity, volumetric efficiency and radiation shielding characteristics of these waste forms have been studied. Emphasis in this paper is placed on the results of studies concerning chemical compatibility of solidification agents with specific waste streams, volumetric efficiency, free standing water, and leachability

  4. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  5. The effect of micro alloying on the microstructure evolution of Sn-Ag-Cu lead-free solder

    Science.gov (United States)

    Werden, Jesse

    The microelectronics industry is required to obtain alternative Pb-free soldering materials due to legal, environmental, and technological factors. As a joining material, solder provides an electrical and mechanical support in electronic assemblies and therefore, the properties of the solder are crucial to the durability and reliability of the solder joint and the function of the electronic device. One major concern with new Pb-free alternatives is that the microstructure is prone to microstructural coarsening over time which leads to inconsistent properties over the device's lifetime. Power aging the solder is a common method of stabilizing the microstructure for Pb-based alloys, however, it is unclear if this will be an appropriate solution to the microstructural coarsening of Pb-free solders. The goal of this work is to develop a better understanding of the coarsening process in new solder alloys and to suggest methods of stabilizing the solder microstructure. Microalloying is one potential solution to the microstructural coarsening problem. This experiment consists of a microstructural coarsening study of SAC305 in which each sample has been alloyed with one of three different solutes, directionally solidified at 100microm/s, and then aged at three different temperatures over a total period of 20 days. There are several important conclusions from this experiment. First, the coarsening kinetics of the intermetallics in the ternary eutectic follow the Ostwald ripening model where r3 in proprotional to t for each alloying constituent. Second, the activation energy for coarsening was found to be 68.1+/-10.3 kJ/mol for the SAC305 samples, Zn had the most significant increase in the activation energy increasing it to 88.8+/-34.9 kJ/mol for the SAC+Zn samples, Mn also increased the activation energy to 83.2+/-20.8 kJ/mol for the SAC+Mn samples, and Sb decreased the activation energy to 48.0+/-3.59 kJ/mol for the SAC+Sb samples. Finally, it was found that the

  6. Mechanism of eutectic formation upon compaction and its effects on tablet properties

    International Nuclear Information System (INIS)

    Bi, Mingda; Hwang, Sung-Joo; Morris, Kenneth R.

    2003-01-01

    The unique property of a eutectic mixture is a lower melting temperature than that of any of its pure components. What differentiates a eutectic mixture from a simple physical mixture is less well understood. This impedes the ability to anticipate and/or detect unintentional eutectic formation during pharmaceutical tablet manufacturing and any potential negative impact. In this study, a thermodynamic/heat transfer approach was used to explain the mechanism of eutectic formation upon exposure to a physical stress, i.e. compaction, and a differential scanning calorimetric (DSC) method was developed to detect and quantify the amount of eutectic formed in the compacts. Furthermore, the mechanism of eutectic formation upon compaction was tested experimentally by correlating the amount of eutectic formed in tablets with the particle size, compaction force, the estimated intimate contact area between the eutectic-forming materials, calculated tablet tensile strength, and tablet porosity. The effect of the presence of eutectics on tablet properties was also investigated. The results show that intimate contact and mutual solubility between eutectic-forming materials are the necessary and sufficient criteria for eutectic formation upon compaction. The systems of acetaminophen (APAP)/caffeine and APAP/propylphenazone were both shown to exhibit eutectic behavior upon compaction and the extent of formation was dependent upon the amount of intimate contact between eutectic-forming materials. Finally, it was found that eutectic had no negative effect on tablet hardness

  7. Characterization of rapidly solidified powder of high-speed steel

    Czech Academy of Sciences Publication Activity Database

    Miglierini, M.; Lančok, Adriana; Kusý, M.

    2009-01-01

    Roč. 190, 1-3 (2009), s. 51-57 ISSN 0304-3843 R&D Projects: GA ČR GP203/07/P011 Grant - others:GA(SK) VEGA1/3190/06 Institutional research plan: CEZ:AV0Z40320502 Keywords : Rapidly solidified powder * Tool steel * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.209, year: 2007

  8. Flow characteristics of natural circulation in a lead-bismuth eutectic loop

    Institute of Scientific and Technical Information of China (English)

    Chen-Chong Yue; Liu-Li Chen; Ke-Feng Lyu; Yang Li; Sheng Gao; Yue-Jing Liu; Qun-Ying Huang

    2017-01-01

    Lead and lead-alloys are proposed in future advanced nuclear system as coolant and spallation target.To test the natural circulation and gas-lift and obtain thermal-hydraulics data for computational fluid dynamics (CFD) and system code validation,a lead-bismuth eutectic rectangular loop,the KYLIN-Ⅱ Thermal Hydraulic natural circulation test loop,has been designed and constructed by the FDS team.In this paper,theoretical analysis on natural circulation thermal-hydraulic performance is described and the steady-state natural circulation experiment is performed.The results indicated that the natural circulation capability depends on the loop resistance and the temperature and center height differences between the hot and cold legs.The theoretical analysis results agree well with,while the CFD deviate from,the experimental results.

  9. Drainage effect in eutectic Al-Si foam using similar alporas process

    International Nuclear Information System (INIS)

    Filho, M.O.; Junior, A.C.S; Ferrandini, P.L.; Nakazato, A.Z.; Assis, W.L.S.

    2016-01-01

    Cellular materials have particular properties. This properties are very interesting in various type of industries, as construction, automobile and shipbuilding. Two reasons why metal foams are apply in more companies are difficult process control and high production costs. Therefore, this study aims to analyze the drainage effect in four samples produced with alloy Al-Si eutectic using CaCO 3 as foaming agent, since this is low cost than TiH 2 used normally in Alporas process and this foam have well pores uniform. For these samples has been used 700°C during all process, mixing time was 180 seconds, holding time was 150 seconds and 3,5 w.t% CaCO3. Therefore, these samples were cut transversally and analyzed what were the drainage effect on the apparent density, relative density and porosity. The free zone bubbles were noticed in all the samples. (author)

  10. A comparative EBSP study of microstructure and microtexture formation from undercooled Ni{sub 99}B{sub 1} melts solidified on an electrostatic levitator and an electromagnetic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)]. E-mail: li.mingjun@aist.go.jp; Ishikawa, Takehiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Nagashio, Kosuke [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2006-08-15

    Ni{sub 99}B{sub 1} alloys were solidified by containerless processing at various melt undercoolings on an electrostatic levitator (ESL) and an electromagnetic levitator (EML). A scanning electron microscope in combination with an electron backscatter diffraction pattern mapping technique was employed to reveal microstructures and microtextures formed on these two facilities. The microstructure consists of well-developed primary dendrites with coarse secondary arms in the alloys solidified on the ESL at low and medium undercooling levels, whereas equiaxed grains are yielded in alloys solidified on the EML at almost the same undercoolings. Further analysis indicates that the melt flow induced by the electromagnetic field in the EML may play a significant role in promoting fragmentation of primary dendrites in the mushy zone and thus resulting in equiaxed grains. In contrast, the primary dendrites in the alloy processed on the ESL can fully develop in the absence of melt flow. The fluid flow in the sample on the EML can rotate, move, and displace surviving fragments, yielding a random distribution of grain orientation and thus leading to a random microtexture at low and medium undercoolings. At high undercoolings, refined equiaxed grains can be obtained on both the ESL and the EML and the influence of melt flow on refinement seems negligible due to the enhanced driving force in capillarity and solute effects. A great number of coherent annealing twins are formed, making the pole figures more complex and random.

  11. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    Science.gov (United States)

    2013-02-01

    concerns. These braze alloys use a high Si content to produce a low melting Al-Si near eutectic alloy. The recommended 11 brazing temperature for A A...each successive dip enhancing the 21 high temperature Si enrichment outside of the braze gap and decreasing the Si content within the braze gap.6...Nevertheless equilibrium phases should be considered as a reference point for grain boundaries after high temperature brazing . Recent literature [22

  12. Passivation and alloying element retention in gas atomized powders

    Science.gov (United States)

    Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.

    2017-12-05

    A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.

  13. Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy

    Directory of Open Access Journals (Sweden)

    Abdoul-Aziz Bogno

    2015-01-01

    Full Text Available The properties and performance of lead-free solder alloys such as fluidity and wettability are defined by the alloy composition and solidification microstructure. Rapid solidification of metallic alloys is known to result in refined microstructures with reduced microsegregation and improved mechanical properties of the final products as compared to normal castings. The rapidly solidified Sn-based solders by melt spinning were shown to be suitable for soldering with low temperature and short soldering duration. In the present study, rapidly solidified Sn–0.7 wt.%Cu droplets generated by impulse atomization (IA were achieved as well as directional solidification under transient conditions at lower cooling rate. This paper reports on a comparative study of the rapidly solidified and the directionally solidified samples. Different but complementary characterization techniques were used to fully analyze the solidification microstructures of the samples obtained under the two cooling regimes. These include X-ray diffractometry (XRD and scanning electron microscopy (SEM. In order to compare the tensile strength and elongation to fracture of the directionally solidified ingot and strip castings with the atomized droplet, compaction and extrusion of the latter were carried out. It was shown that more balanced and superior tensile mechanical properties are available for the hot extruded samples from compacted as-atomized Sn–0.7 wt.%Cu droplets. Further, elongation-to-fracture was 2–3× higher than that obtained for the directionally solidified samples.

  14. Influence of temper condition on microstructure and mechanical properties of semisolid metal processed Al–Si–Mg alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2009-01-01

    Full Text Available The microstructures and mechanical properties of strontium modified semisolid metal high pressure die cast A356 alloy are presented. The alloy A356-F (as cast) has a globular primary grain structure containing a fine eutectic. Solution treatment...

  15. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  16. Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    QIN Ren-yao

    2016-06-01

    Full Text Available The ZM5 magnesium alloy plates were welded by TIG welding method. The microstructural characteristics and mechanical properties of ZM5 magnesium alloy joint were studied by optical microscopy, microhardness and tensile testers. The results show that the TIG weld joint of ZM5 magnesium alloy is composed of heat affected zone, partially melted zone and weld metal. The heat affected zone is consisted of primary α-Mg phase and eutectic phase that is composed of eutectic α-Mg and eutectic β-Mg17Al12 phase and mainly precipitated at grain boundaries. In the partially melted zone, the eutectic phase is not only increasingly precipitated at grain boundaries, but also dispersed in grains, and the growth of the β-Mg17Al12 phase is obviously observed. The microstructure in the weld is the typical dendritic morphology. The dendrites are considered as primary α-Mg phase, and the interdendritic regions are α+β eutectic phase. The difference in the microstructure of the heat affected zone, partially melted zone and weld results in their various microhardness values, and leads to the smaller tensile strength and ductility in the ZM5 alloy weld joint than parent metal.

  17. Tuning the sapphire EFG process to the growth of Al2O3/YAG/ZrO2:Y eutectic

    Science.gov (United States)

    Carroz, L.; Duffar, T.

    2018-05-01

    In this work, a model is proposed, in order to analytically study the working point of the Edge defined Film-fed Growth (EFG) pulling of crystal plates. The model takes into account the heat equilibrium at the interface and the pressure equilibrium across the meniscus. It is validated on an industrial device dedicated to the pulling of sapphire ribbons. Then, the model is applied to pulling ceramic alloy plates, of the ternary eutectic Al2O3/YAG/ZrO2:Y. This allowed understanding the experimental difficulties of pulling this new material and suggested improvements of the control software. From these results, pulling net shaped ceramic alloy plates was successful in the same industrial equipment as used for sapphire.

  18. Microstructures and mechanical properties of directionally solidified Ni-25%Si full lamellar in situ composites

    International Nuclear Information System (INIS)

    Zhang, Binggang; Li, Xiaopeng; Wang, Ting; Liu, Zheng

    2016-01-01

    Directional solidification experiments have been performed on Ni-25 at% Si alloy using electron beam floating zone method. A fully regular eutectic microstructures consisting of Ni, γ-Ni 31 Si 12 and β 1 -Ni 3 Si have been obtained. The influences of the directional solidification rate on the microstructures and properties of the full lamellar structures have been studied. The results show that the relationship between the mean interphase spacing (λ) and withdrawal rate (v) meets λ=29.9v −0.65 . The hardness increases with the increasing of growth rate (v) and decreasing of the interlamellar spacing (λ) which meets the relationship of H V =445.2v 0.14 and H V =910λ −0.21 . The maximum compressive strength, 2576 MPa, for DS samples is obtained by 10 mm/h. The average fracture toughness value found for 5 mm/h, 7 mm/h, 10 mm/h is 28.3 MPa m 1/2 , 29.1 MPa m 1/2 and 35.9 MPa m 1/2 , respectively. The crack bridging and crack deflection/interface debonding are the main toughening mechanism of Ni-25 at% Si with full lamellar structures.

  19. The Effect of Rotation Stirring on Macrosegregation in Bi-Sn Alloy

    OpenAIRE

    Zulaida Yeni Muriani; Afrizal Riyan; Suryana Suryana

    2017-01-01

    Macrosegregation is a defect that difficult to avoid in a metal alloy made by casting method. Macrosegregation can cause decreasing in mechanical properties of casting products. It will reduce their performance in industrial application. Macrosegregation is convinced occur during solidification time in liquid alloy. In the early solidified, The solids move upward/downward in liquid alloy during solidification are considered to contribute on macrosegregation formation. This movement occur due ...

  20. Material properties influence on steam explosion efficiency. Prototypic versus simulant melts, eutectic versus non-eutectic melts

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2006-01-01

    A steam explosion may occur during a severe nuclear reactor accident if the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. Details of processes taking place prior and during the steam explosion have been experimentally studied for a number of years with adjunct efforts in modelling these processes to address the scaling of these experiments. Steam explosion experiments have shown that there are important differences of behaviour between simulant and prototypical melts, and that also at prototypical melts the fuel coolant interactions depend on the composition of the corium. In experiments with prototypic materials no spontaneous steam explosions occurred (except with an eutectic composition), whereas with simulant materials the steam explosions were triggered spontaneously. The energy conversion ratio of steam explosions with prototypic melts is at least one order of magnitude lower than the energy conversion ratio of steam explosions with simulant melts. Although the different behaviour of prototypic and simulant melts has been known for a number of years, there is no reliable explanation for these differences. Consequently it is not possible to reliably estimate whether corium would behave so non-explosive also in reactor conditions, where the mass of poured melt is nearly three orders of magnitude larger than in experimental conditions. An even more fascinating material effect was observed recently at corium experiments with eutectic and non-eutectic compositions. It turned out that eutectic corium always exploded spontaneously, whereas non-eutectic corium never exploded spontaneously. In the paper, a possible explanation of both material effects (prototypic/simulant melts, eutectic/non-eutectic corium) on the steam explosion is provided. A model for the calculation of the

  1. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  2. Thermodynamic properties of uranium in gallium–aluminium based alloys

    International Nuclear Information System (INIS)

    Volkovich, V.A.; Maltsev, D.S.; Yamshchikov, L.F.; Chukin, A.V.; Smolenski, V.V.; Novoselova, A.V.; Osipenko, A.G.

    2015-01-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  3. Thermodynamic properties of uranium in gallium–aluminium based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volkovich, V.A., E-mail: v.a.volkovich@urfu.ru [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maltsev, D.S.; Yamshchikov, L.F. [Department of Rare Metals and Nanomaterials, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Smolenski, V.V.; Novoselova, A.V. [Institute of High-Temperature Electrochemistry UD RAS, Ekaterinburg, 620137 (Russian Federation); Osipenko, A.G. [JSC “State Scientific Centre - Research Institute of Atomic Reactors”, Dimitrovgrad, 433510 (Russian Federation)

    2015-10-15

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga–Al alloys containing 0.014–20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated. - Highlights: • Thermodynamics of uranium is determined in Ga–Al alloys of various compositions. • Uranium in the mixed alloys interacts with both components, Ga and Al. • Interaction of U with Al increases with decreasing temperature. • Activity and solubility of uranium depend on Al content in Ga–Al alloys.

  4. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

    International Nuclear Information System (INIS)

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-01-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques

  5. Effect of Al and AlP on the microstructure of Mn-30 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2008-04-15

    Effect of Al and AlP particles on the microstructure of near eutectic Mn-Si alloy (Mn-30 wt.%Si) was studied by Electron Probe Micro-analyzer (EPMA) and Differential Scanning Calorimeter (DSC). Crystal lattice correspondence analyses show that both Al and AlP have good lattice matching coherence relationships with MnSi phase, and the addition of Al and AlP particles results in an abnormal eutectic structure, i.e. the eutectic constitution MnSi and Mn{sub 5}Si{sub 3} precipitate separately: MnSi precipitates firstly, and then the Mn{sub 5}Si{sub 3} phase.

  6. Solidifier effectiveness : variation due to oil composition, oil thickness and temperature

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Fingas, M.

    2009-01-01

    This paper provided an overview of solidifier types and composition. Solidifiers are a class of spill treating agents that offer an effective means to convert a liquid oil into a solid material. They are used as a treatment option for oil spills on water. This paper also reported on recent laboratory studies that consist of 4 components: (1) a qualitative examination of the characteristics of the interaction of a broad range of solidifier products with a standard oil to evaluate reaction rate, states of solidification, and the impact of dosage, (2) a comparison of a smaller subset of solidifiers on the standard oil at lower temperatures, (3) solidifier treatment on a range of oils of varying physical properties and composition to assess the potential scope of application, and (4) the treatment of a series of small-scale oil layers of varying thickness to determine the significance of oil thickness on solidifier effectiveness and recovery. This paper also reviewed solidifier chemistry with particular reference to polymer sorbents; cross-linking agents; and cross-linking agents and polymeric sorbents combined. Toxicity is also an important issue regarding solidifiers. The aquatic toxicity of solidifiers is low and not measurable as the products are not water-soluble. There have not been any studies on the effects of the solidifier or the treated oil on surface feeders and shoreline wildlife that may come into contact with the products. It was concluded that oil composition may play a major role in solidifier effectiveness. The effectiveness of solidifiers is also inhibited at reduced temperatures, increased viscosity and density of the oil. 25 refs., 5 tabs., 2 figs., 1 appendix

  7. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: reroy@lsu.edu [J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA (United States); Stegemann, Julia A., E-mail: j.stegemann@ucl.ac.uk [Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK (United Kingdom)

    2017-01-05

    Highlights: • XAS shows the same Ni speciation in untreated and stabilized/solidified filtercake. • Ni solubility is the same for untreated and stabilized/solidified filtercake. • Leaching is controlled by pH and physical encapsulation for all binders. - Abstract: Cement-based stabilization/solidification (S/S) is used to decrease environmental leaching of contaminants from industrial wastes. In this study, two industrial metal treatment filtercakes were characterized by X-ray diffractometry (XRD), thermogravimetric and differential thermogravimetric analysis (TG/DTG) and Fourier transform infrared (FTIR); speciation of nickel was examined by X-ray absorption (XAS) spectroscopy. Although the degree of carbonation and crystallinity of the two untreated filtercakes differed, α-nickel hydroxide was identified as the primary nickel-containing phase by XRD and nickel K edge XAS. XAS showed that the speciation of nickel in the filtercake was unaltered by treatment with any of five different S/S binder systems. Nickel leaching from the untreated filtercakes and all their stabilized/solidified products, as a function of pH in the acid neutralization capacity test, was essentially complete below pH ∼5, but was 3–4 orders of magnitude lower at pH 8–12. S/S does not respeciate nickel from metal treatment filtercakes and any reduction of nickel leaching by S/S is attributable to pH control and physical mechanisms only. pH-dependent leaching of Cr, Cu and Ni is similar for the wastes and s/s products, except that availability of Cr, Cu and Zn at decreased pH is reduced in matrices containing ground granulated blast furnace slag.

  8. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  9. Filling of recovered mining areas using solidifying backfill

    Directory of Open Access Journals (Sweden)

    Zeman Róbert

    2001-12-01

    Full Text Available The aim of this article is to explore the possibilities for filling recovered mining areas using solidifying backfill .The article describes the preparation of the backfill (backfill formulation with an eventual application using low quality sands, wastes from treatment plants and ash from power plants etc now to transport it as well as its application in practice. Advantageous and disadvantageous of this method are also mentioned.Several factors must be taken info consideration during the preparation process of the backfill mixture. Firstly, the quantities of each individual component must be constantly regulated. Secondly, the properties of each component must be respected. In addition, the needs of the pipeline transport system and the specific conditions of the recovered area to be filled must also be considered.Hydraulic transport and pneumo-hydraulic pipeline transport are used for handling the backfill. Pumps for transporting the solidifying backfill have to carry out demanding tasks.Due to the physical-mechanical properties of the backfill, only highly powerful pumps can be considered. Piston type pumps such as Abel Simplex and Duplex pumps with capacities of up to 100 m3.h-1 and operating pressures of up to 16 MPa would be suitable.This method has been applied abroad for different purposes. For example, solid backfill was used in the Hamr mine during exploitation of uranium using the room-and-pillar system mining method.In the Ostrava–Karvina Coal field, backfill was used in decontamination work, filling areas in a zone of dangerous deformations and for creating a dividing stratum during thick seam mining.Research info the use of solidifying backfill was also done in the Walsum mine in Germany. The aim of this research was:- to investigate the possibilities of filling a collapsing area in a working face using a solidifying mixture of power plant ash and water,- to verify whether towing pipelines proposed by the DMT corporation would be

  10. Study on dissolution behavior of molten solidified waste

    International Nuclear Information System (INIS)

    Mizuno, Tsuyoshi; Maeda, Toshikatsu

    2005-01-01

    Radioactive molten solidified waste (slag) has been generated by melting non-metallic low-level radioactive wastes (LLW). Slag is expected to immobilize radionuclides in the waste repository. The chemical durability of slag is an important factor for the safety assessment of the disposal in that the durability provides the source term in the assessment. Since a chemical characteristic of slag is similar to that of glass, the general information on the chemical durability of slag might be provided from previous studies on nuclear waste glass. We have investigated effects of chemical compositions of slag and alkaline environments of repository on the chemical durability of slag. (author)

  11. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    Science.gov (United States)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  12. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  13. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-01-01

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni 2 (Mo,Cr) 4 (Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni 3 (Mo,Cr) 3 (Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld metal

  14. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  15. Analysis of the Deformability of Two-Layer Materials AZ31/Eutectic / Analiza Możliwości Odkształcania Plastycznego Materiału Dwuwarstwowego AZ31/Eutektyka

    Directory of Open Access Journals (Sweden)

    Mola R.

    2015-12-01

    Full Text Available The paper present the results of physical simulation of the deformation of the two-layered AZ31/eutectic material using the Gleeble 3800 metallurgical processes simulator. The eutectic layer was produced on the AZ31 substrate using thermochemical treatment. The specimens of AZ31 alloy were heat treated in contact with aluminium powder at 445°C in a vacuum furnace. Depending on the heating time, Al-enriched surface layers with a thickness of 400, 700 and 1100 μm were fabricated on a substrate which was characterized by an eutectic structure composed of the Mg17Al12 phase and a solid solution of aluminium in magnesium. In the study, physical simulation of the fabricated two-layered specimens with a varying thickness of the eutectic layer were deformed using the plane strain compression test at various values of strain rates. The testing results have revealed that it is possible to deform the two-layered AZ31/eutectic material at low strain rates and small deformation values.

  16. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    International Nuclear Information System (INIS)

    Kalay, Yunus Eren

    2008-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T 0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T 0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 (micro)m with a Peclet number of ∼0.2, JH and TMK deviate from each other. This

  17. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  18. Phosphorus effect on structure and physical properties of iron-nickel alloys

    International Nuclear Information System (INIS)

    Berseneva, F.N.; Kalinin, V.M.; Rybalko, O.F.

    1982-01-01

    The structure and properties of iron-nickel alloys (30-50 % Ni) containing from 0.02 to 0.5 wt. % P have been investigated. It has been found that phosphorus solubility in iron-nickel alloys at most purified from impurities exceeds limiting solubility values usually observed for commercial alloys. Phosphide eutectics precipitation over the grain boundaries of studied alloys occurs but with phosphorus content equal 0.45 wt. %. The 0.4 wt. % P addition in invar alloys increases saturation magnetization and the Curie point and leads to a more homogeneous structure

  19. Analysis of heavy alloying elements segregation in gravity cast experimental Mg-Al-Zn-RE alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available Microstructure of experimental AZ91 alloy with an addition of rare earth elements (RE at a level of 4 wt.% was examined by means of light microscopy. The investigated AZ91 + 4 wt.% RE alloy was fabricated by adding cerium rich mish metal to molten commercial AZ91 alloy. In the microstructure of the resulting alloy, besides α solid solution, α + γ eutectic and discontinuous precipitates of γ phase, also the Al11RE3 phase with needle-like morphology and the polygonal Al10RE2Mn7 phase were revealed. No segregation of rare earth elements was found in the investigated gravity cast alloy, which was confirmed by statistical analysis of cerium concentrations in selected parts of the cast. Similar results were obtained for manganese. Ce and Mn concentrations were determined by a spectrophotometric method.

  20. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary