Sample records for solidification nonequilibrium interface

  1. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    Choi, Jeong [Iowa State Univ., Ames, IA (United States)


    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  2. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    Choi, Jeong [Iowa State Univ., Ames, IA (United States)


    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  3. Comparative study of solute trapping and Gibbs free energy changes at the phase interface during alloy solidification under local nonequilibrium conditions

    Sobolev, S. L., E-mail: [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)


    An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V{sub D}, where V{sub D} is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When V ≥ V{sub D}, the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishing solute drag energy, i.e. partitionless and “dragless” solidification.

  4. Numerical simulation on rapid melting and nonequilibrium solidification of pure metals and binary alloys

    惠希东; 陈国良; 杨院生; 胡壮麒


    A heat and mass transfer modelling containing phase transformation dynamics is made for pure metals and binary alloys under pulsed laser processing. The nonequilibrium effects of processing parameters and physical properties are evaluated on the melting and solidification of pure metals (Al, Cu, Fe and Ni) and Al-Cu alloys. It is shown that the energy intensity of laser beam and physical properties of metals and the solute concentration of alloys have important effect on the interface temperature, melting and solidification velocity, melting depth and non-equilibrium partition coefficient. This situation is resulted from the interaction of heat transfer, redistribution of solute, solute trapping and growth kinetics.

  5. Non-Equilibrium Solidification of Undercooled Metallic Melts

    Dieter M. Herlach


    Full Text Available If a liquid is undercooled below its equilibrium melting temperature an excess Gibbs free energy is created. This gives access to solidification of metastable solids under non-equilibrium conditions. In the present work, techniques of containerless processing are applied. Electromagnetic and electrostatic levitation enable to freely suspend a liquid drop of a few millimeters in diameter. Heterogeneous nucleation on container walls is completely avoided leading to large undercoolings. The freely suspended drop is accessible for direct observation of rapid solidification under conditions far away from equilibrium by applying proper diagnostic means. Nucleation of metastable crystalline phases is monitored by X-ray diffraction using synchrotron radiation during non-equilibrium solidification. While nucleation preselects the crystallographic phase, subsequent crystal growth controls the microstructure evolution. Metastable microstructures are obtained from deeply undercooled melts as supersaturated solid solutions, disordered superlattice structures of intermetallics. Nucleation and crystal growth take place by heat and mass transport. Comparative experiments in reduced gravity allow for investigations on how forced convection can be used to alter the transport processes and design materials by using undercooling and convection as process parameters.

  6. Non-equilibrium solidification of undercooled droplets during atomization process

    Prashant Shukla; R K Mandal; S N Ojha


    Thermal history of droplets associated with gas atomization of melt has been investigated. A mathematical model, based on classical theory of heterogeneous nucleation and volume separation of nucleants among droplets size distribution, is described to predict undercooling of droplets. Newtonian heat flow condition coupled with velocity dependent heat transfer coefficient is used to obtain cooling rate before and after nucleation of droplets. The results indicate that temperature profile of droplets in the spray during recalescence, segregated and eutectic solidification regimes is dependent on their size and related undercooling. The interface temperature during solidification of undercooled droplets rapidly approaches the liquidus temperature of the alloy with a subsequent decrease in solid–liquid interface velocity. A comparison in cooling rates of atomized powder particles estimated from secondary dendrite arm spacing measurements are observed to be closer to those predicted from the model during segregated solidification regime of large size droplets.

  7. Observations of a monotectic solidification interface morphology

    Kaukler, W. F.; Frazier, D. O.


    For detailed studies of the region around a solidification interface on a microscopic scale, a very thin (essentially two-dimensional) test cell may be translated across two temperature-controlled heating/cooling blocks and viewed with a microscope. Such a device is sometimes referred to as a temperature gradient microscope stage (TGS). Of particular interest in this study is the behavior of a monotectic type solution during solidification. Succinonitrile based model systems for metallic monotectic alloys, when solidified on a TGS, form an unusual 'worm-like' micromorphology. These interfaces are observable in situ under high optical magnification during growth.

  8. Nonlinear theory of autooscillations of quasiplanar interface during directional solidification

    Lubashevsky, I A; Keijan, M G


    Within the framework of the frozen temperature approximation we develop a strongly-nonlinear theory of one-dimensional pattern formation during directional solidification of binary mixture under nonequilibrium segregation. In the case of small partition coefficient the full problem is reduced to the system of two ordinary differential equations describing the interface motion in terms of its velocity and position coordinate. The type of the oscillatory instability bifurcation is studied in detail in different limits. For the subcrytical bifurcaton relaxation interface oscillations are analyzed analytically and numerically. We show that these oscillation exibit a number of anomalous properies. In particular, such oscillations can be weakly- or strongly-dissipative depending on the physical parameters and the amplitude of the strongly-dissipative oscillations is determined not only by the form of the corresponding nullcline but also by the behavior of the system for small values of the interface velocity. Chara...

  9. Nonlinear equations on controlling interface patterns during solidification of a dilute binary alloy

    王自东; 周永利; 常国威; 胡汉起


    In nonequilibrium nonlinear region, by assuming that there is local equilibrium at the solid/liquid interface, and considering that curvature, temperature and composition at the solid/liquid interface which are related to perturbation amplitude are nonlinear, nonlinear equations of the time dependence of the perturbation amplitude of the solid/liquid interface during solidification of a dilute binary alloy are established. Crystal growth from nonsteady state to steady state can be controlled by these nonlinear equations.

  10. ThermoCalc Application for the Assessment of Binary Alloys Non-Equilibrium Solidification

    Zyska A.


    Full Text Available The paper presents the possibility of application of the developed computer script which allows the assessment of non-equilibrium solidification of binary alloys in the ThermoCalc program. The script makes use of databases and calculation procedures of the POLY-3 module. A solidification model including diffusion in the solid state, developed by Wołczyński, is used to describe the non-equilibrium solidification. The model takes into account the influence of the degree of solute segregation on the solidification process by applying the so-called back-diffusion parameter. The core of the script is the iteration procedure with implemented model equation. The possibility of application of the presented calculation method is illustrated on the example of the Cr-30% Ni alloy. Computer simulations carried out with use of the developed script allow to determine the influence of the back-diffusion parameter on the course of solidification curves, solidus temperature, phase composition of the alloy and the fraction of each phase after the solidification completion, the profile of solute concentration in liquid during solidification process, the average solute concentration in solid phase at the eutectic temperature and many other quantities which are usually calculated in the ThermoCalc program.

  11. Construction and analysis of dynamic solidification curves for non-equilibrium solidification process in lost-foam casting hypo-eutectic gray cast iron

    Ming-guo Xie


    Full Text Available Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to non-equilibrium solidification process. In this study, the construction of the dynamic solidification curve (DSC for the non-equilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation (TAL and the start temperature of eutectic solidification (TES; double curves method to determine the temperature of the dendrite coherency point of primary austenite (TAC and the temperature of eutectic cells collision point (TEC; the “technical solidus” method to determine the end temperature of eutectic reaction (TEN. For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction (fs of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burnt-in sand tendency of the hypoeutectic gray cast iron. Due to the fact that

  12. Crustal fingering: solidification on a moving interface

    Fu, Xiaojing; Jimenez-Martinez, Joaquin; Porter, Mark; Cueto-Felgueroso, Luis; Juanes, Ruben


    Viscous fingering-the hydrodynamic instability that takes place when a less viscous fluid displaces a more viscous fluid-is a well known phenomenon. Motivated by the formation of gas hydrates in seafloor sediments and during the ascent of gas bubbles through ocean water, here we study the interplay of immiscible viscous fingering with solidification of the evolving unstable interface. We present experimental observations of the dynamics of a bubble of Xenon in a water-filled and pressurized Hele-Shaw cell. The evolution is controlled by two processes: (1) the formation of a hydrate "crust" around the bubble, and (2) viscous fingering from bubble expansion. To reproduce the experimental observations, we propose a phase-field model that describes the nucleation and thickening of a porous solid shell on a moving gas-liquid interface. We design the free energy of the three-phase system (gas-liquid-hydrate) to rigorously account for interfacial effects, mutual solubility, and phase transformations (hydrate formation and disappearance). We introduce a pseudo-plasticity model with large variations in viscosity to describe the plate-like rheology of the hydrate shell. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex "crustal fingering" patterns as a result of gas fingering dynamics modulated by hydrate growth at the interface.

  13. Interface Pattern Selection in Directional Solidification

    Trivedi, Rohit; Tewari, Surendra N.


    The central focus of this research is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. Ground-based studies have established that the conditions under which cellular and dendritic microstructures form are precisely where convection effects are dominant in bulk samples. Thus, experimental data can not be obtained terrestrially under pure diffusive regime. Furthermore, reliable theoretical models are not yet possible which can quantitatively incorporate fluid flow in the pattern selection criterion. Consequently, microgravity experiments on cellular and dendritic growth are designed to obtain benchmark data under diffusive growth conditions that can be quantitatively analyzed and compared with the rigorous theoretical model to establish the fundamental principles that govern the selection of specific microstructure and its length scales. In the cellular structure, different cells in an array are strongly coupled so that the cellular pattern evolution is controlled by complex interactions between thermal diffusion, solute diffusion and interface effects. These interactions give infinity of solutions, and the system selects only a narrow band of solutions. The aim of this investigation is to obtain benchmark data and develop a rigorous theoretical model that will allow us to quantitatively establish the physics of this selection process.

  14. Energetics of nonequilibrium solidification in Al-Sm

    Zhou, S. H.; Napolitano, R. E.


    Solution-based thermodynamic modeling, aided by first-principles calculations, is employed here to examine phase transformations in the Al-Sm binary system which may give rise to product phases that are metastable or have a composition that deviates substantially from equilibrium. In addition to describing the pure undercooled Al liquid with a two-state model that accounts for structural ordering, thermodynamic descriptions of the fcc phase, and intermediate compounds ( Al4Sm-β , Al11Sm3-α , Al3Sm-δ , and Al2Sm-σ ) are reanalyzed using special quasirandom structure and first-principles calculations. The possible phase compositions are presented over a range of temperatures using a “Baker-Cahn” analysis of the energetics of solidification and compared with reports of rapid solidification. The energetics associated with varying degrees of chemical partitioning are quantified and compared with experimental observations of the metastable Al11Sm3-α primary phase and reports of amorphous solids.

  15. Directional solidification of binary melts with a non-equilibrium mushy layer

    Aseev, D.L.; Alexandrov, D.V. [Urals State University, Department of Mathematical Physics, Lenin Avenue 51, Ekaterinburg 620083 (Russian Federation)


    When the melt or solution solidifies a constitutionally supercooled mushy layer is frequently formed ahead of the phase transition boundary. This leads to nucleation and growth mechanisms of newly born solid particles within a mush. The latter is responsible for the structures and properties appearing in the crystal. The process of solidification with a supercooled mushy layer is analytically described on the basis of two joint theories of directional and bulk crystallization. Such characteristics as the constitutional supercooling, the solid fraction and the radial density distribution function of solid particles in a mushy layer are found. The complex structure of the non-equilibrium mushy layer is completely recognized. (author)

  16. Interface Pattern Selection Criterion for Cellular Structures in Directional Solidification

    Trivedi, R.; Tewari, S. N.; Kurtze, D.


    The aim of this investigation is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. We shall first address scientific concepts that are crucial in the selection of interface patterns. Next, the results of ground-based experimental studies in the Al-4.0 wt % Cu system will be described. Both experimental studies and theoretical calculations will be presented to establish the need for microgravity experiments.

  17. Analysis of a solidification interface stability Al - Cu by the heat balance integral method

    B. Magiera


    Full Text Available The aim of his thesis is the analysis of a planar interface solidification stability of alloys. The stability of a planar interface solidification is tested by means of solving the heat conduction equation for solids and liquid and a mass diffusion equation for liquid, under assumed boundary, initial and continuity conditions. The solidification equations are solved using the method of heat balance integral and the theorem of the derivative integrals, whose limitsdepend on the parameter.

  18. Influence of Al content on non-equilibrium solidification behavior of Ni-Al-Ta model single crystal alloys

    Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai


    The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.

  19. Melt flow effect on interface stability during directional solidification

    Fedorov, O. P.; Mashkovskiy, A. G.


    In the framework of the phenomenological macroscopic continuum theory using the approximation of a flat frontier layer the stability of solid-liquid interface at the directional solidification under melt motion along the interface is studied. The stability conditions are reduced to determination of eigenvalues of boundary value problem for infinitesimal disturbances of stationary process. In case of stagnant melt it is shown that in the plane "wave number-pulling rate" there are two areas of instability for low and large pulling rates divided by the area of steady-steady growth. Neutral stability curve calculated for rather large pulling rates for succinonitrile-acetone (SCN-Ac) system is close to the relevant values received by Mullins and Sekerka, while the absolute values of critical growth rates are of the same order of magnitude as the experimental ones. Melt flow along the interface leads to emergence of the third area of instability which is characterized by small values of wave numbers. When increasing the melt flow rate the area of instability extends towards great values of wave numbers.

  20. Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy

    Changshuai Wang; Jun Zhang; Lin Liu; Hengzhi Fu


    The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics.

  1. Non-equilibrium phenomena near vapor-liquid interfaces

    Kryukov, Alexei; Puzina, Yulia


    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  2. Nonequilibrium Solidification, Grain Refinements, and Recrystallization of Deeply Undercooled Ni-20 At. Pct Cu Alloys: Effects of Remelting and Stress

    Xu, Xiaolong; Hou, Hua; Zhao, Yuhong; Liu, Feng


    Grain refinement phenomena during the microstructural evolution upon nonequilibrium solidification of deeply undercooled Ni-20 at. pct Cu melts were systematically investigated. The dendrite growth in the bulk undercooled melts was captured by a high-speed camera. The first kind of grain refinement occurring in the low undercooling regimes was explained by a current grain refinement model. Besides, for the dendrite melting mechanism, the stress originating from the solidification contraction and thermal strain in the FMZ during rapid solidification could be a main mechanism causing the second kind of grain refinement above the critical undercooling. This internal stress led to the distortion and breakup of the primary dendrites and was semiquantitatively described by a corrected stress accumulation model. It was found that the stress-induced recrystallization could make the primary microstructures refine substantially after recalescence. A new method, i.e., rapidly quenching the deeply undercooled alloy melts before recalescence, was developed in the present work to produce crystalline alloys, which were still in the cold-worked state and, thus, had the driven force for recrystallization.

  3. Characteristics of S/L Interface Evolution during High Rate Directional Solidification


    The present paper aims to the characterization of high rate direction solidification on Al-Mn and Al-Cu alloys. It is indicated that the relevant cooling rate of high rate directional solidification is defined within 100~103 K/s that is located in the region between near-equilibrium slow growth rate and rapid solidification rate beyond equilibrium condition, and at the meantime there occurred a series of turning effect of interface stability and morphologies.With the increase of growth velocity the interface with planar front evolved to cells and dendrites at the stage of near-equilibrium and with further increase of growth rate they transformed reversely from dendrites to cell structure and then to absolute stability of planar interface. An explanation based on effective constitutional supercooling about the evolution of interface morphologies with the change of growth rate was proposed.

  4. Analysis on the non-equilibrium dendritic solidification of a binary alloy with back diffusion

    Chung, J.D. [Seoul National University Graduate School, Seoul (Korea, Republic of); Yoo, H.S. [Soong Sil University, Seoul (Korea, Republic of); Lee, J.S. [Seoul National University, Seoul (Korea, Republic of)


    Micro-Macro approach is conducted for the mixture solidification to handle the closely linked phenomena of microscopic solute redistribution and macroscopic solidification behavior. For this purpose, present work combines the efficiency of mixture theory for macro part and the capability of microscopic analysis of two-phase model for micro part. The micro part of present study is verified by comparison with experiment of Al-4.9 mass% Cu alloy. The effect of back diffusion on the macroscopic variables such as temperature and liquid concentration, is appreciable. The effect, however, is considerable on the mixture concentration and eutectic fraction which are indices of macro and micro segregation, respectively. According to the diffusion time, the behavior near the cooling wall where relatively rapid solidification permits short solutal diffusion time, approaches Scheil equation limit and inner part approaches lever rule limit. (author). 23 refs., 13 figs., 1 tab.

  5. Non-equilibrium solidification of undercooled Ni-31.44%Pb monotectic alloy melts

    郑红星; 谢辉; 郭学锋


    By using the method of molten glass denucleating combined with superheating cycling, solidification behavior of the bulk undercooled Ni-31.44%Pb monotectic alloy melts was systematically investigated. The results indicated that the undercooled monotectic alloy solidifies in form of dendrite essentially during the stage of rapid solidification and after recalescence, the residual melts between the dendrites solidify in the equilibrium mode. Within the achieved undercooling range, the solidification structures are classified into three categories. When the undercooling is less than 50K, the structures are composed of coarse dendrites and interdendritic lead phase. With the undercooling increasing into the range of 70~232K, the dendrite clusters are refined and fine lead particles separate out from the supersaturated primary dendrite arms because of solute trapping. When the undercooling exceeds 242K, the granular grains form and fine lead particles homogeneously distribute in the whole sample. Based on the observation of the solidification structures and the calculated results with BCT model, it is found that the granulation mechanism of the granular grains is owing to the primary dendrite disintegration and recrystallization.

  6. Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces

    Feng, Tianli; Yao, Wenjun; Wang, Zuyuan; Shi, Jingjing; Li, Chuang; Cao, Bingyang; Ruan, Xiulin


    Although extensive experimental and theoretical works have been conducted to understand the ballistic and diffusive phonon transport in nanomaterials recently, direct observation of temperature and thermal nonequilibrium of different phonon modes has not been realized. Herein, we have developed a method within the framework of molecular dynamics to calculate the temperatures of phonons in both real and phase spaces. Taking silicon thin film and graphene as examples, we directly obtained the spectral phonon temperature (SPT) and observed the local thermal nonequilibrium between the ballistic and diffusive phonons. Such nonequilibrium also generally exists across interfaces and is surprisingly large, and it provides a significant additional thermal interfacial resistance mechanism besides phonon reflection. Our SPT results directly show that the vertical thermal transport across the dimensionally mismatched graphene-substrate interface is through the coupling between flexural acoustic phonons of graphene and the longitudinal phonons in the substrate with mode conversion. In the dimensionally matched interfaces, e.g., graphene-graphene junction and graphene-boron nitride planar interfaces, strong coupling occurs between the acoustic phonon modes on both sides, and the coupling decreases with interfacial mixing. The SPT method together with the spectral heat flux can eliminate the size effect of the thermal conductivity prediction induced from ballistic transport.

  7. Real Time Characterization of Solid/Liquid Interfaces During Directional Solidification

    Sen, S.; Kaukler, W. K.; Curreri, P. A.; Peters, P.


    A X-Ray Transmission Microscope (XTM) has been developed to observe in real time and in-situ solidification phenomenon at the solid/liquid interface. Recent improvements in the horizontal Bridgman furnace design provides real-time magnification (during solidification) up to 12OX. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 3-6 micrometers. Further, morphological transitions from planar to cellular interfaces have also been imaged. Results from recent XTM studies on Al-Bi monotectic system, Al-Au eutectic system and interaction of insoluble particles with s/I interfaces in composite materials will be presented. An important parameter during directional solidification of molten metal is the interfacial undercooling. This parameter controls the morphology and composition at the s/I interface. Conventional probes such as thermocouples, due to their large bead size, do not have sufficient resolution for measuring undercooling at the s/I interface. Further, the intrusive nature of the thermocouples also distorts the thermal field at the s/I interface. To overcome these inherent problems we have recently developed a compact furnace which utilizes a non-intrusive technique (Seebeck) to measure undercooling at the S/I interface. Recent interfacial undercooling measurements obtained for the Pb-Sn system will be presented. The Seebeck measurement furnace in the future will be integrated with the XTM to provide the most comprehensive tool for real time characterization of s/I interfaces during solidification.

  8. Nonlinear dynamics theory on the steady state interface pattern during solidification of a dilute binary alloy

    王自东; 胡汉起


    The nonlinear dynamics equations of the time dependence of the perturbation amplitude of the solid/ liquid interface during unidirectional solidification of a dilute binary alloy are established. The solutions to these equations are obtained, and the condition of the initial steady state growth of the cellular and dendritic structure after the planar solid/liquid interface bifurcates (mGc> G) with the increase of the growth rate is given. The condition of the steady state growth of fine cellular and dendritic structure in the beginning after the coarse dendrites bifurcate ( mGc<Γw2 + G) under the rapid solidification is obtained. The relationship of the steady state cell and dendrite tip radius, the perturbation amplitude and wavelength at the solid/liquid interface is presented.

  9. 快速凝固中局部非平衡溶质截留的分析模型%An analytical model for local-nonequilibrium solute trapping during rapid solidification



    Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered.The LNDM takes into account deviation from local equilibrium of solute concentration and solute flux fields in bulk liquid.The exact solutions for solute concentration and flux in bulk liquid were obtained using hyperbolic diffusion equations.The results show the transition from diffusion-limited to purely thermally controlled solidification with effective diffusion coefficient DLNDMb→0 and complete solute trapping KLNDM(v)→1 at v→VDb for any kind of solid-liquid interface kinetics.Critical parameter for diffusionless solidification and complete solute trapping is the diffusion speed in bulk liquid VDb.Different models for solute trapping at the interface with different interface kinetic approaches were considered.%对二元合金快速凝固过程中的局部非平衡扩散模型(LNDM)进行改进.改进的模型考虑了熔体中溶质浓度和溶质通量流场与局部平衡的偏差.采用双曲函数扩散方程求得了熔体中溶质浓度和通量的准确解.结果表明,对任何固-液界面的动力学,当有效扩散系数DLNDMb→0和在V→VDb发生完全溶质截留KLNDM(v)→1时,凝固过程将由扩散控制转变为完全的热控制.非扩散凝固和完全溶质截留的临界参数为在溶体中的扩散速度VDb,考察了不同界面动力学途径的溶质截留模型.

  10. Nonequilibrium thermodynamics of transport through moving interfaces with application to bubble growth and collapse

    Öttinger, H.C.; Bedeaux, D.; Venerus, D.C.


    We develop the general equation for the nonequilibrium reversible-irreversible coupling framework of thermodynamics to handle moving interfaces in the context of a gas that can be dissolved in a surrounding liquid. The key innovation is a “moving interface normal transfer” term required for

  11. Numerical formulation of composition segregation at curved solid-liquid interface during steady state solidification process

    Wang, Jai-Ching


    The lateral solute segregation that results from a curved solid-liquid interface shape during steady state unidirectional solidification of a binary alloy system has been studied both analytically and numerically by Coriell, Bosivert, Rehm, and Sekerka. The system under their study is a two dimensional rectangular system. However, most real growth systems are cylindrical systems. Thus, in a previous study, we have followed Coriell etc. formalism and obtained analytical results for lateral solute segregation for an azimuthal symmetric cylindrical binary melt system during steady state solidification process. The solid-liquid interface shape is expressed as a series combination of Bessel functions. In this study a computer program has been developed to simulate the lateral solute segregation.

  12. Break-down of a planar liquid-solid interface during directional solidification - Influence of convection

    Tewari, S. N.; Chopra, M. A.


    The influence of convection on the development of morphological instability at the liquid-solid interface during directional solidification in a positive thermal gradient has been examined in Pb-10 wt pct Sn and succinonitrile-1.9 wt pct acetone. The onset of interfacial breakdown occurs at higher growth speeds in the presence of convection. The linear stability analysis due to Favier and Rouzaud which uses the 'deformable' mass flow boundary layer concept shows a good agreement with the experimentally observed behavior.

  13. Liquid concentration distribution and planar interface instability at an abruptly changing pulling velocity in directional solidification

    LI ShuangMing; FU HengZhi


    Liquid concentration distribution is seriously affected by an abruptly changing pulling velocity under directional solidification. Theoretical and numerical investigations indicate that at the pulling velocity jumping from V0 to V, the solidification system does not achieve the pulling velocity V immediately, and it goes through a non-steady-state transition zone. As the pulling velocity abruptly increases (V/V0 > 1), interface liquid concentration firstly increases to the maximum and then decreases to the steady-state value. The magnitude of interface liquid concentration at the beginning increases with V/V0, the initial pulling velocity V0 and the temperature gradient GL in the liquid. At the same time, solute diffusion length reduces with V/V0 and GL. In contrast, the minimum of interface liquid concentration falls with V/V0 at the pulling velocity decreasing abruptly. As the interface liquid concentration enriched at V/V0 > 1 is more than the value required for the planar interface to keep stable, the solid/liquid interface may become unstable. The analytical results are in agreement with the numerical calculation results of Al-2%Cu alloy.

  14. Liquid concentration distribution and planar interface instability at an abruptly changing pulling velocity in directional solidification


    Liquid concentration distribution is seriously affected by an abruptly changing pulling velocity under directional solidification. Theoretical and numerical investi-gations indicate that at the pulling velocity jumping from V0 to V, the solidification system does not achieve the pulling velocity V immediately, and it goes through a non-steady-state transition zone. As the pulling velocity abruptly increases (V/V0 > 1), interface liquid concentration firstly increases to the maximum and then de-creases to the steady-state value. The magnitude of interface liquid concentration at the beginning increases with V/V0, the initial pulling velocity V0 and the tem-perature gradient GL in the liquid. At the same time, solute diffusion length reduces with V/V0 and GL. In contrast, the minimum of interface liquid concentration falls with V/V0 at the pulling velocity decreasing abruptly. As the interface liquid con-centration enriched at V/V0 > 1 is more than the value required for the planar inter-face to keep stable, the solid/liquid interface may become unstable. The analytical results are in agreement with the numerical calculation results of Al-2%Cu alloy.

  15. Effect of gravity convection on interface morphology during solidification

    DUAN MengMeng; CHEN ChangLe; LI ZhanYao; JIN QuanWei


    An experimental apparatus consisting of a crystal growth room and a crystal growth observation system was developed for the study of the effect of the gravity convection perpendicular to the growth direction on the growth process by use of model alloy succinonitrile (SCN)-5wt%ethanol. It was found that the convection improves the stability of the interface and causes the downstream alternation of the cell growth direction because of the dual effect of the Stokes force and the gravity. The second dendrite arm facing the flow comes into being earlier than that at another side when the interface transforms cell to dendrite. Then the dendrite at the side facing the flow comes into being earlier. The second dendrite arm facing the flow grows faster and is more developed than that at another side. In addition, the primary dendrite arm spacing increases and the dendrite tip radius decreases under the gravity convection.

  16. Effect of gravity convection on interface morphology during solidification


    An experimental apparatus consisting of a crystal growth room and a crystal growth observation system was developed for the study of the effect of the gravity convection perpendicular to the growth direction on the growth process by use of model alloy succinonitrile (SCN)-5wt%ethanol. It was found that the convection improves the stability of the interface and causes the downstream alternation of the cell growth direction because of the dual effect of the Stokes force and the gravity. The second dendrite arm facing the flow comes into being earlier than that at an- other side when the interface transforms cell to dendrite. Then the dendrite at the side facing the flow comes into being earlier. The second dendrite arm facing the flow grows faster and is more developed than that at another side. In addition, the primary dendrite arm spacing increases and the dendrite tip radius decreases un- der the gravity convection.

  17. Microstructure and fractal characteristics of the solid-liquid interface forming during directional solidification of Inconel 718

    WANG Ling


    Full Text Available The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718, under different cooling rates during directional solidification, were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate, but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.

  18. Microstructure and fractal characteristics of the solid-liquid interface forming during directional solidification of Inconel 718


    The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel718, under different cooling rates during directional solidification, ware investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS) was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate, but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.

  19. Bubble Induced Disruption of a Planar Solid-Liquid Interface During Controlled Directional Solidification in a Microgravity Environment

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.


    Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.

  20. Combined effect of non-equilibrium solidification and thermal annealing on microstructure evolution and hardness behavior of AZ91 magnesium alloy

    Zhou, Z.Z.; Yang, W., E-mail:; Chen, S.H.; Yu, H.; Xu, Z.F.


    Non-equilibrium solidification of commercial AZ91 magnesium alloy was performed by copper mold spray-casting technique and the thermal stability property of as-formed meta-stable microstructure was investigated by subsequent annealing at different temperatures and times. Remarkable grain refinement appears with increasing cooling rate during solidification process, which is accompanied by a visible cellular/dendrite transition for the grain morphology of primary phase. Moreover, the non-equilibrium solidified alloy exhibits obvious precipitation hardening effect upon annealing at 200 °C, and the precipitation mode of β-Mg{sub 17}Al{sub 12} phase changes from discontinuous to continuous with extending isothermal time from 4 h to 16 h, which generates an increase of resultant micro-hardness value. After solid solution treatment at the elevated temperature of 420 °C, the volume fraction of β-Mg{sub 17}Al{sub 12} phase decreases and a notable grain growth phenomenon occurs, which give rise to a reduction of hardness in comparison with that of as-quenched alloy.

  1. Effects of void-induced convection on interface morphology and segregation during low-g solidification

    Barsi, S.; Alexander, J.I.D. [Case Western Reserve University, Cleveland, OH (United States). Dept. of Mechanical Engineering; Kassemi, M. [NASA Glenn Research Center, Cleveland, OH (United States). National Center for Microgravity Research


    Recent microgravity experiments have been hampered by convection caused by unwanted voids and/or bubbles in the melt. In this work, a numerical model is developed to describe how thermocapillary convection generated by a void can affect a typical Bridgman solidification process in microgravity. The model is based on the quasi-steady Navier-Stokes equations for a Newtonian fluid coupled with the conservation equations for transport of energy and species. Numerical solutions for a variety of operating conditions indicate that void-generated thermocapillary convection can have a drastic effect on both interface morphology and solutal transport. (author)

  2. Preparation of the initial solid liquid interface and melt in directional solidification

    Nguyen Thi, H.; Drevet, B.; Debierre, J. M.; Camel, D.; Dabo, Y.; Billia, B.


    The preparation of the initial conditions (solid-liquid interface morphology and solute segregation in the liquid phase) on which growth is started is a very critical step in directional-solidification experiments. Dedicated experiments on Al-1.5 wt% Ni consisting in directional melting followed by thermal stabilisation with different lengths, show that precise control is in practice not straightforward. Indeed, in the mushy zone created by melting the original solid sample, temperature gradient zone melting (TGZM) causes migration of solute-rich liquid droplets and channels. A model is proposed to describe this process and validate the physical interpretation of the experiments through numerical simulation. Knowing the status of the preparation, the intriguing observations in the partially melted region of the Al-1.5 wt% Ni alloys solidified in the Advanced Gradient Heating Facility of European Space Agency during the LMS and STS-95 space missions can now be explained. Finally, the influence of initial interface morphology and melt segregation on directional-solidification transient is discussed, based on a comparison of Al-Ni alloys with hypoeutectic Al-Li alloys previously grown on Earth and in space. It follows that for experiments achieved on original rods with equiaxed microstructure, the efficiency of the preparatory melting and stabilisation phases can be evaluated from the solute macrosegregation profile in the region in between the non-melted solid and directional solidification. The major conclusion is that when the melt is mixed by fluid flow, the initial conditions are near to their asymptotic state at the end of TGZM whereas, when solute diffusion is the mode of transport into the bulk liquid, the condition of homogeneous melt becomes limiting and too much time-consuming to be fulfilled, which in particular holds for the 3D-experiments carried out in the reduced-gravity environment of space.

  3. Nonequilibrium thermodynamics of interfaces using classical density functional theory

    Johannessen, E.; Gross, J.; Bedeaux, D.


    A vapor-liquid interface introduces resistivities for mass and heat transfer. These resistivities have recently been determined from molecular simulations, as well as theoretically using the van der Waals square gradient model. This model, however, does not allow for direct quantitative comparison t

  4. Particle Trapping and Banding in Rapid Colloidal Solidification

    Elliott, J. A. W.


    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  5. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.

    Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q


    The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles.

  6. Computation of interface curvature in modelling of solidification by the method of cellular automaton

    Burbelko A. A.


    Full Text Available Modelling of solidification process by the method of cellular automaton (CA requires determination of geometrical characteristics of the interface, i.e. of its direction and curvature. In previous studies the authors proposed a method to reduce the well-known effect of an artificial symmetry of the simulation results caused by the anisotropy of the CA computation grid (e.g. a preferred growth of the main dendrite arms along the grid lines or at an angle of 45° in the case of grids with square cells. The aim was achieved by application of the developed methods of computation of the transformation rate and front direction. In this study the authors examined the problem of an accuracy of the computations of an interface curvature. The obtained results show us that the error of the curvature computation introduced by some well-known methods exceeds by 100% a nominal value of this parameter. A method to estimate the accuracy of the applied solution has been proposed. Practical application of the proposed tests enables selection of a best solution, including the authors' own solutions, thus considerably improving an accuracy of the solidification modelling by the method of CA.

  7. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon.

    Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner


    A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett. 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.

  8. Morphological instability of a non-equilibrium ice-colloid interface

    Peppin, S. S. L.


    We assess the morphological stability of a non-equilibrium ice-colloidal suspension interface, and apply the theory to bentonite clay. An experimentally convenient scaling is employed that takes advantage of the vanishing segregation coefficient at low freezing velocities, and when anisotropic kinetic effects are included, the interface is shown to be unstable to travelling waves. The potential for travelling-wave modes reveals a possible mechanism for the polygonal and spiral ice lenses observed in frozen clays. A weakly nonlinear analysis yields a long-wave evolution equation for the interface shape containing a new parameter related to the highly nonlinear liquidus curve in colloidal systems. We discuss the implications of these results for the frost susceptibility of soils and the fabrication of microtailored porous materials. © 2009 The Royal Society.

  9. Nonequilibrium roughening transition in an interface growth model with two species of particles.

    Park, S; Kahng, B


    We introduce an interface growth model exhibiting a roughening transition from a smooth to a rough phase, related to a nonequilibrium phase transition (NPT) from an active to an inactive phase at the bottom layer. In the model, two different species of particles are deposited or evaporated, and a dynamic rule is assigned symmetrically or asymmetrically with respect to particle species. It is found that for the asymmetric case, the roughening transition and the NPT belong to the directed percolation universality class, while for the symmetric case, they are related to the directed Ising universality class.

  10. Laser synthesis of a copper-single-walled carbon nanotube nanocomposite via molecular-level mixing and non-equilibrium solidification

    Tu, Jay F.; Rajule, Nilesh; Molian, Pal; Liu, Yi


    A copper-single-walled carbon nanotube (Cu-SWCNT) metal nanocomposite could be an ideal material if it can substantially improve the strength of copper while preserving the metal’s excellent thermal and electrical properties. However, synthesis of such a nanocomposite is highly challenging, because copper and SWCNTs do not form intermetallic compounds and are insoluble; as a result, there are serious issues regarding wettability and fine dispersion of SWCNTs within the copper matrix. In this paper we present a novel wet process, called the laser surface implantation process (LSI), to synthesize Cu-SWCNT nanocomposites by mixing SWCNTs into molten copper. The LSI process includes drilling several microholes on a copper substrate, filling the microholes with SWCNTs suspended in solution, and melting the copper substrate to create a micro-well of molten copper. The molten copper advances radially outward to engulf the microholes with pre-deposited SWCNTs to form the Cu-SWCNT implant upon solidification. Rapid and non-equilibrium solidification is achieved due to copper’s excellent heat conductivity, so that SWCNTs are locked in position within the copper matrix without agglomerating into large clusters. This wet process is very different from the typical dry processes used in powder metallurgy. Very high hardness improvement, up to 527% over pure copper, was achieved, confirmed by micro-indentation tests, with only a 0.23% SWCNT volume fraction. The nanostructure of the nanocomposite was characterized by TEM imaging, energy-dispersive x-ray spectroscopy mapping and spectroscopy measurements. The SWCNTs were found to be finely dispersed within the copper matrix with cluster sizes in the range of nanometers, achieving the goal of molecular-level mixing.

  11. Study on Rare Earth-Containing Phases in TiAl Based Alloys Prepared by Non-Equilibrium Solidification Processing

    马学著; 沈军; 贾均


    Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HA). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with γ/α2 lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.

  12. Microstructure evolution and non-equilibrium solidification of undercooled Ni-29.8at% Si eutectic alloy melts


    Microstructure formation and transition of undercooled bulk Ni70.2Si29.8 eutectic alloy melt were investigated by melt fluxing,cyclical overheating and cooling under high-frequency vacuum melting.The maximum undercooling of the alloy melt amounted to 428 K.Scanning electron microscope(SEM),energy-dispersive X-ray spectroscopy(EDS) and optical microscopy techniques(OM) were adopted to investigate the microstructure and identify the phase composition.The cooling curves of eutectic alloys upon solidification which were subjected to different undercoolings were described and compared.The complex microstructure evolution was observed in the as-solidified samples with the increase of undercooling.Surprisingly,an extremely fine microstructure was achieved at the max undercooling of 428 K,and the lamellar distance of about 50-100 nm was observed.Based on the solution entropy of eutectic phases,the microstructure transition with the undercooling was analyzed.Calculated results showed that the microstructure transition process was ascribed to solution entropy of transition,i.e.,the complex microstructure evolution was attributed to a transition from faceted-faceted(FF)→faceted-nonfaceted(FN)→nonfaceted-nonfaceted(NN) eutectic systems concurring with increased undercooling.

  13. Nonequilibrium study of the intrinsic free-energy profile across a liquid-vapour interface

    Braga, Carlos, E-mail:; Muscatello, Jordan, E-mail:; Lau, Gabriel, E-mail:; Müller, Erich A., E-mail:; Jackson, George, E-mail: [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW72AZ (United Kingdom)


    We calculate an atomistically detailed free-energy profile across a heterogeneous system using a nonequilibrium approach. The path-integral formulation of Crooks fluctuation theorem is used in conjunction with the intrinsic sampling method to calculate the free-energy profile for the liquid-vapour interface of the Lennard-Jones fluid. Free-energy barriers are found corresponding to the atomic layering in the liquid phase as well as a barrier associated with the presence of an adsorbed layer as revealed by the intrinsic density profile. Our findings are in agreement with profiles calculated using Widom’s potential distribution theorem applied to both the average and the intrinsic profiles as well as the literature values for the excess chemical potential.

  14. Calculations of the phase interface constitution during the non-equilibrium growth of binary eutectics

    Chvoj, Z. (Inst. of Physics, Academy of Science, Prague (Czechoslovakia))


    It is well-known that eutectics do not necessarily grow at the eutectic temperature, or with the eutectic composition. Thus, the eutectic point can be shifted due to nonequilibrium conditions in the system. This fact was observed in many experiments. We try to explain this behaviour on the basis of the study of phase transformation kinetics. We construct the kinetic phase diagrams within the framework of the nucleation theory as well as of the theory of growth on the phase interface. Our models are based on the molecular model of the difference in chemical potential of components for the liquid and solid phases. The proposed model describes the position of the eutectic point very well. (orig.).

  15. Measurement and control of the liquid/solid interface temperature during the directional solidification by using the Seebeck effect

    Cambon, G.; Cadet, G.; Favier, J. J.; Rouzaud, A.; Comera, J.

    The morphological stability and the segregation in the vicinity of the solid/liquid interface moving during the directional solidification of a metallurgical sample are depending on the undercooling phenomena which occurs during the growth. An interesting means to know this undercooling effect is to measure the Seebeck signal produced by the solid/liquid interface moving, with comparison with another static S/L interface of the sample. The in situ measurement techniques developed by CEA/CENG/LES and CNES/GERME gives the possibility to measure this temperature with 0.01 K differential accuracy in the severe mechanical, thermal and electromagnetic environment of the MEPHISTO space instrument on board of the U.S. Space Shuttle. After a brief scientific description of the interest of such undercooling measurement, a technical description of the adequate hardware, with the performance obtained during scientific tests, is presented in this paper.

  16. Removal of Phosphorus in Silicon by the Formation of CaAl2Si2 Phase at the Solidification Interface

    Sun, Liyuan; Wang, Zhi; Chen, Hang; Wang, Dong; Qian, Guoyu


    To fully understand the role of CaAl2Si2 phase in concentrating the non-metallic impurity phosphorus, an experiment of directional solidification of Al-70 at. pct Si alloy with extreme small lowering rate 0.05 mm min-1 was carried out. With good dynamic condition for the diffusion of impurity (Ca, Al, P) from silicon to the S/L interface, the CaAl2Si2 phase with 0.6-0.7 at. pct P was successfully observed by Electron Probe Micro Analyzer (EPMA), and its distribution character was originally presented. This impurity phase was widely detected in the refined sample but only at the interface of silicon crystal and Al-Si alloy which contributed to the deep removal of impurity P. The formation mechanism of CaAl2Si2-P phase was thus explored, in which the microsegregation and concentration of element P, Ca, Al in front of S/L interface were crucial. After acid leaching, the P content decreased from the original 23 ppm to below 5 ppm. Compared with normal solidification, a 16 pct higher removal efficiency of P was obtained in this study.

  17. Phase field simulation of the interface morphology evolution and its stability during directional solidification of binary alloys


    The influences of pulling speed V and temperature gradient G on morphology evolution, concentration distribution, solute trapping and interface stability during directional solidification of binary alloys have been studied with the B-S phase field model. Simulated results reproduced the morphology transitions of deep cell to shallow cell and shallow cell to plane front. The primary cellular spacing, depth of groove and effective solute redistribution coefficient for different V and G are compared. The absolute stability under high pulling speed and high temperature gradient has also been predicted, which is in agreement with the Mullins-Sekerka (M-S) stability theory.

  18. Quantification of Vortex Generation Due to Non-Equilibrium Electrokinetics at the Micro/Nanochannel Interface: Spectral Analysis

    Seung Jun Lee


    Full Text Available We report on our investigation of a low Reynolds number non-equilibrium electrokinetic flow in a micro/nanochannel platform. Non-equilibrium electrokinetic phenomena include so-called concentration polarization in a moderate electric field and vortex formation in a high electric field. We conducted a spectral analysis of non-equilibrium electrokinetic vortices at a micro/nanochannel interface. We found that periodic vortices are formed while the frequency varies with the applied voltages and solution concentrations. At a frequency as high as 60 Hz, vortex generation was obtained with the strongest electric field and the lowest concentration. The power spectra show increasing frequency with increasing voltage or decreasing concentration. We expect that our spectral analysis results will be useful for micromixer developers in the micromachine research field.

  19. Solidification characterization of a new rapidly solidified Ni-Cr-Co based superalloy

    Wu, Kai, E-mail: [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Guoquan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hu, Benfu [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li, Feng [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Zhang, Yiwen [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); High Temperature Materials Research Institution, CISRI, Beijing 100081 (China); Tao, Yu; Liu, Jiantao [High Temperature Materials Research Institution, CISRI, Beijing 100081 (China)


    The solidification characterization of a new rapidly solidified Ni-Cr-Co based superalloy prepared by plasma rotating electrode process was investigated by means of optical microscope, scanning electron microscope, and transmission electron microscope. The results show that the solidification microstructure changes from dendrites to cellular and microcrystal structures with decreasing powder size. The elements of Co, Cr, W and Ni are enriched in the dendrites, while Mo, Nb and Ti are higher in the interdendritic regions. The relationships between powder size with the average solid-liquid interface moving rate, the average interface temperature gradient and the average cooling rate are established. Microsegregation is increased with larger powder size. The geometric integrity of MC Prime type carbides in the powders changes from regular to diverse with decreasing powder size. The morphology and quantity of carbides depend on the thermal parameters and non-equilibrium solute partition coefficients during rapid solidification. - Highlights: Black-Right-Pointing-Pointer The relations of solidification thermal parameters with powder size are established. Black-Right-Pointing-Pointer The relation of non-equilibrium solute partition with powder size is investigated. Black-Right-Pointing-Pointer The solidification microstructure is related to thermal parameters. Black-Right-Pointing-Pointer The segregation behavior is linked to non-equilibrium partition coefficients. Black-Right-Pointing-Pointer The morphology and quantity of carbides depend on the above combined factors.

  20. On migration of primary/peritectic interface during interrupted directional solidification of Sn-Ni peritectic alloy

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie; Fu, Hengzhi


    The migration of the primary/peritectic interface in local isothermal condition is observed in dendritic structure of Sn–Ni peritectic alloy after experiencing interrupted directional solidification. It was observed that this migration of primary Ni3Sn2/peritectic Ni3Sn4 interface towards the primary Ni3Sn2 phase was accompanied by migration of liquid film located at this interface. The migration velocity of this interface was confirmed to be much faster than that of peritectic transformation, so this migration was mostly caused by superheating of primary Ni3Sn2 phase below TP, leading to nucleation and migration of liquid film at this interface. This migration can be classified as a kind of liquid film migration (LFM), and the migration velocity at the horizontal direction has been confirmed to be much faster than that along the direction of temperature gradient. Analytical prediction has shown that the migration of liquid film could be divided into two stages depending on whether primary phase exists below TP. If the isothermal annealing time is not long enough, both the liquid film and the primary/peritectic interface migrate towards the primary phase until the superheated primary phase has all been dissolved. Then, this migration process towards higher temperature is controlled by temperature gradient zone melting (TGZM).

  1. Interaction of SiC particles with moving solid-liquid interface during directional solidification of silicon

    Friedrich, J.; Reimann, C.; Jauss, T.; Cröll, A.; Sorgenfrei, T.


    In this work, the interaction of SiC particles, having sizes of 7 μm to 300 μm, with the moving solid-liquid interface during directional solidification of silicon was experimentally and theoretically investigated. This included both convective and nearly diffusive conditions. In the nearly diffusive regime under microgravity, the particles were incorporated at a lower growth velocity than in the convective regime under 1g conditions. The experimental data were compared to simple theoretical models allowing the calculation of the critical growth velocity for the incorporation of spherical particles in dependence of the particle size. It was found that the theoretical results could qualitatively explain the experimental observations when a proper set of equations for the forces acting on the particle and of the material constants are chosen. It can be concluded that sedimentation of the particles due to gravity seems to play a role only for large particles. On the other hand, melt flow might cause a lift force which would push the particles away from the solid-liquid interface, and thus would result in higher critical growth velocities under convective conditions, e.g. due to buoyancy convection. Therefore, a contribution of the missing lift force under μg conditions could lead to the smaller critical growth velocity for particle incorporation that is observed under microgravity.

  2. Absolute stability of the solidification interface in a laser resolidified Zn-2wt.%Cu hypoperitectic alloy

    Su Yun-Peng; Lin Xin; Wang Meng; Xue Lei; Huang Wei-Dong


    This paper reports on laser surface remelting experiments performed on a Zn-2wt.%Cu hypoperitectic alloy by employing a 5kW CW CO2 laser at scanning velocities between 6 and 1207mm/s. The growth velocities of the microstructures in the laser molten pool were accurately measured. The planar interface structure caused by the high velocity absolute stability was achieved at a growth velocity of 210 mm/s. An implicit expression of the critical solidification velocity for the cellular-planar transition was carried out by nonlinear stability analyses of the planar interface.The results showed a better agreement with the measured critical velocity than that predicted by M-S theory. Cell-free structures were observed throughout the whole molten pool at a scanning velocity of 652 mm/s and the calculated minimum temperature gradient in this molten pool was very close to the critical temperature gradient for high gradient absolute stability (HGAS) of the η phase. This indicates that HGAS was successfully achieved in the present experiments.

  3. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein


    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  4. Application of modern software packages to calculating the solidification of high-speed steels

    Morozov, S. I.


    The solidification of high-speed steels is calculated with the Pandat and JMatPro software packages. The results of calculating equilibrium and nonequilibrium solidification are presented and discussed. The nonequilibrium solidification is simulated using the Shelley-Gulliver model. The fraction of carbides changes as a function of the carbon content in the steels.

  5. Numerical Analysis of Temperature Gradients and Interface Shape During Directional Solidification of Al and Al-Cu Alloy Under Microgravity Conditions

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.


    Numerical modeling was undertaken to analyze the influence of radial thermal gradient on solid/liquid (s/1) interface shape and convection patterns during solidification of pure Al and Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a s/l interface. These predictions would then be used to define the minimum gravity level (g) required to investigate the fundamental physics of interaction between a particle and a s/I interface. To satisfy this objective, steady state calculations were performed for different gravity levels and orientations with the gravity vector. ne furnace configuration used in this analysis is the proposed International Space Station Furnace, Quench Module Insert (QMI) 1. Results from a thermal model of the furnace core were used as initial boundary conditions for solidification modeling. General model of binary alloy solidification was based on the finite element code FIDAP. It was found that for the worst case orientation of 90 degrees with the gravity vector and a g level of 10(exp -4)g(sub o) (g(sub o) = 9.8 m/s(exp 2)) the dominant forces acting on the particle would be the fundamental drag and interfacial forces.

  6. Models of Rapid Solidification

    Gilmer, G. H.; Broughton, J. Q.


    Laser annealing studies provide much information on various consequences of rapid solidification, including the trapping of impurities in the crystal, the generation of vacancies and twins, and on the fundamental limits to the speed of the crystal-melt interface. Some results obtained by molecular dynamics methods of the solidification of a Lennard-Jones liquid are reviewed. An indication of the relationship of interface speed to undercooling for certain materials can be derived from this model. Ising model simulations of impurity trapping in silicon are compared with some of the laser annealing results. The consequences of interface segregation and atomic strain are discussed.

  7. Measurement of Heat Flux at Metal-Mold Interface during Casting Solidification

    Sabau, Adrian S [ORNL


    All previous studies on interfacial heat transfer coefficient have been based on indirect methods for estimating the heat flux that employed either inverse heat transfer analysis procedures or instrumentation arrangements to measure temperatures and displacements near the metal-mold interface. In this paper, the heat transfer at the metal-mold interfaces is investigated using a sensor for the direct measurement of heat flux. The heat flux sensor (HFS) was rated for 700oC and had a time response of less than 10 ms. Casting experiments were conducted using graphite molds for aluminum alloy A356. Several casting experiments were performed using a graphite coating and a boron nitride coating. The measurement errors were estimated. The temperature of the mold surface was provided by the HFS while the temperature of the casting surface was measured using a thermocouple. Results for the heat transfer coefficients were obtained based on measured heat flux and temperatures. Four stages were clearly identified for the variation in time of the heat flux. Values of the heat transfer coefficient were in good agreement with data from previous studies.

  8. Quantification of Vortex Generation Due to Non-Equilibrium Electrokinetics at the Micro/Nanochannel Interface: Particle Tracking Velocimetry

    Seung Jun Lee


    Full Text Available We describe a quantitative study of vortex generation due to non-equilibrium electrokinetics near a micro/nanochannel interface. The microfluidic device is comprised of a microchannel with a set of nanochannels. These perm-selective nanochannels induce flow instability and thereby produce strong vortex generation. We performed tracking visualization of fluorescent microparticles to obtain velocity fields. Particle tracking enables the calculation of an averaged velocity field and the velocity fluctuations. We characterized the effect of applied voltages and electrolyte concentrations on vortex formation. The experimental results show that an increasing voltage or decreasing concentration results in a larger vortex region and a strong velocity fluctuation. We calculate the normalized velocity fluctuation—whose meaning is comparable to turbulent intensity—and we found that it is as high as 0.12. This value is indicative of very efficient mixing, albeit with a small Reynolds number.

  9. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    Snezhko, Alexey


    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  10. Morphological Evolution of Directional Solidification Interfaces in Microgravity: An Analysis of Model Experiments Performed on the International Space Station

    Strutzenberg, Louise L.; Grugel, R. N.; Trivedi, R. K.


    A series of experiments performed using the Pore Formation and Mobility Investigation (PFMI) apparatus within the glovebox facility (GBX) on board the International Space Station (ISS) has provided video images of the morphological evolution of a three-dimensional interface in a diffusion controlled regime. The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with "alloys" of succinonitrile (SCN) and water in an atmosphere of nitrogen at 450 millibar pressure. The compositions of the samples processed and analyzed are 0.25,0.5 and 1.0 wt% water. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall !3pace Flight Center. During the experiments, the sample was first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Following the melt back, the interface was allowed to stabilize before translation is initiated. The temperatures in the sample were monitored by six in situ thermocouples and the position is monitored by an optical linear encoder. For the experiments performed and analyzed, the gradients ranged from 2.5 - 3.3 K/mm and the initial pulling velocities ranged from 0.7 micron per second to 1 micron per second with subsequent transition velocities of up to 100 microns per second. The data provided by the PFMI for analysis includes near-real-time (NRT) video captured on the ground during the experiment runs, ISS Video Tape Recorder (VTR) data dumped from the VTR at the end of the experiment run and recorded on the ground, telemetry data including temperature and position measurements, and limited flight HI-8 tapes in 2 camera views of experiment runs for which tapes have been returned to the investigators from ISS. Because of limited down mass from the ISS

  11. Buoyancy-driven detachment of a wall-bound pendant drop: Interface shape at pinchoff and nonequilibrium surface tension

    Lamorgese, A.; Mauri, R.


    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90∘, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000), 10.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  12. Buoyancy-driven detachment of a wall-bound pendant drop: interface shape at pinchoff and nonequilibrium surface tension.

    Lamorgese, A; Mauri, R


    We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90^{∘}, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000)JFLSA70022-112010.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.

  13. Parabolic aircraft solidification experiments

    Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan


    A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.

  14. 凝固过程中生长界面前沿质点的排斥过程研究%Study on Particle Pushing in Front of Growing Interface During Solidification

    毛协民; 温宏权


    For in-situ composite materials, the interaction between the second-phase particles and the solidification interface attracts more attentions of people, for concerning the final distribution of the particles on the matrix. With the conception of the local solidification time, a kinematics mechanism of particle pushing into the crystal boundary during the solidification process was assumed.Through the analysis of forces acted on the particle in front of the solid/liquid interface the critical velocity criterion for the particles pushing was given. The calculation results show when the growth rate of the interface V is less than or equals to the critical velocity Vc. the particles on the solid/liquid interface is pushed into the boundary region of cellular crystals, where they are distributed as a chain-like straight, which forms a particle-strengthened in-situ composite materials.

  15. Non-equilibrium molecular simulations of simple fluid transport at fluid-solid interfaces and fluidic behaviors at nanoscale

    Yong, Xin

    Nano fluidics has shown promising potential for applications that could significantly impact our daily life, such as energy harvest, lab on a chip, desalination, etc. Current techniques to realize nano fluidic ideas are still very limited due to manufacturing technology. Although sub-micron fabrication techniques are undergoing rapid development recently, scientists and engineers are still not able to access actual nanometric systems. This reason prompts the development of computational tools to reveal physical principles underlying nano fluidic phenomena. Among various numerical approaches ranging from macroscopic to microscopic, molecular dynamics stands out because of its ability to faithfully model both equilibrium and non-equilibrium nanosystems by involving an appropriate amount of molecular details. The results from molecular dynamics simulations could elucidate essential physics and benefit designs of practical nano fluidic systems. This thesis attempts to provide the theoretical foundation for modeling nano fluidic systems, by investigating nanoscale fluid behaviors and nanoscale fluid-solid interfacial physics and transport for simple fluids via molecular dynamics simulations. Boundary-driven-shear, homogeneous-shear and reverse non-equilibrium molecular dynamics methods are implemented to generate non-equilibrium systems. The fundamental fluid behaviors such as velocity profile, temperature distribution and rheological material functions under steady planar shear are explored comprehensively by each method corresponding to different perspectives. The influences of nanoscale confinement are analyzed from the comparison among these methods. The advantages and disadvantages of each method are clarified, which provide guidance to conduct appropriate molecular dynamics simulations for nano fluidics. Further studies on the intrinsic slip of smooth solid surfaces is realized by the boundary-driven-shear method. Inspired by previous hypothesis of momentum

  16. Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved interface

    Schiffbauer, Jarrod


    Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension--hence Laplace pressure--is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated.

  17. Effect of melt convection at various gravity levels and orientations on the forces acting on a large spherical particle in the vicinity of a solidification interface

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.


    Numerical modeling was undertaken to analyze the influence of both radial and axial thermal gradients on convection patterns and velocities during solidification of pure Al and an Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a solid/liquid (s/l) interface. These predictions were then be used to define the minimum gravity level ( g) required to investigate the fundamental physics of interactions between a particle and a s/l interface. This is an ongoing NASA funded flight experiment entitled "particle engulfment and pushing by solidifying interfaces (PEP)". Steady-state calculations were performed for different gravity levels and orientations with respect to the gravity vector. The furnace configuration used in this analysis is the quench module insert (QMI-1) proposed for the Material Science Research Facility (MSRF) on board the International Space Station (ISS). The general model of binary alloy solidification was based on the finite element code FIDAP. At a low g level of 10 -4g 0 ( g 0=9.8 m/s 2) maximum melt convection was obtained for an orientation of 90°. Calculations showed that even for this worst case orientation the dominant forces acting on the particle are the fundamental drag and interfacial forces.

  18. interfaces

    Dipayan Sanyal


    macroscopic conservation equations with an order parameter which can account for the solid, liquid, and the mushy zones with the help of a phase function defined on the basis of the liquid fraction, the Gibbs relation, and the phase diagram with local approximations. Using the above formalism for alloy solidification, the width of the diffuse interface (mushy zone was computed rather accurately for iron-carbon and ammonium chloride-water binary alloys and validated against experimental data from literature.

  19. The effect of interface heat transfer on solidification, microstructure evolution, and mold wear in permanent mold casting of titanium-aluminum-vanadium

    Kobryn, Pamela Astra

    Recently, a permanent mold casting approach for titanium alloys (Ti PMC) was developed. This process generated a lot of interest in the titanium casting industry due to its potential to decrease cost and improve mechanical properties. However, little research has been conducted in this area. Hence, the research described in this dissertation was performed to augment and complement prior work on Ti PMC. The current research dealt with the development of computer simulation capabilities for predicting characteristics of solidification, microstructure evolution, and mold wear for Ti PMC. It focused on the effect of interface heat transfer on ProCASTTM simulation results. A combination of physical and numerical experiments were used to determine interface heat transfer coefficients for Ti PMC, the sensitivity of FEM results to input parameters, and the validity of using the chosen modeling approach and input parameters to simulate various casting geometries. Laboratory and in-plant casting trials were conducted to obtain casting data. Thermocouple data were compared to simulation results to determine interface heat transfer coefficients for "shrink off" and "shrink on" geometries. Both a conventional thermocouple technique and a novel microstructure-based mold temperature signature analysis technique were used to determine mold temperatures for model validation. The validated models were used as a starting point for the application of two microstructure prediction techniques (solidification mapping and the parabolic grain growth law) and the study of mold wear causes and mechanisms. The importance of properly accounting for the casting-mold interface contact condition was stressed throughout. The results demonstrated the importance of considering the casting-mold interface geometry when selecting interface heat transfer coefficients for casting simulations, as the coefficient varied from an initial value of 2000 W/m2-K to less than 50 W/m2-K in the "shrink off" case

  20. Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces.

    Jordens, Sophia; Isa, Lucio; Usov, Ivan; Mezzenga, Raffaele


    Two-dimensional alignment of shape-anisotropic colloids is ubiquitous in nature, ranging from interfacial virus assembly to amyloid plaque formation. The principles governing two-dimensional self-assembly have therefore long been studied, both theoretically and experimentally, leading, however, to diverging fundamental interpretations on the nature of the two-dimensional isotropic-nematic phase transition. Here we employ single-molecule atomic force microscopy, cryogenic scanning electron microscopy and passive probe particle tracking to study the adsorption and liquid crystalline ordering of semiflexible β-lactoglobulin fibrils at liquid interfaces. Fibrillar rigidity changes on increasing interfacial density, with a maximum caused by alignment and a subsequent decrease stemming from crowding and domain bending. Coexistence of nematic and isotropic regions is resolved and quantified by a length scale-dependent order parameter S(2D)(d). The nematic surface fraction increases with interfacial fibril density, but depends, for a fixed interfacial density, on the initial bulk concentration, ascribing the observed two-dimensional isotropic-nematic coexistence to non-equilibrium phenomena.

  1. Semiconductor band alignment from first principles: a new nonequilibrium Green's function method applied to the CZTSe/CdS interface for photovoltaics

    Palsgaard, Mattias Lau Nøhr; Crovetto, Andrea; Gunst, Tue


    In this paper we present a method to obtain the band offset of semiconductor heterointerfaces from Density Functional Theory together with the nonequilibrium Green's function method. Band alignment and detailed properties of the interface between Cu2ZnSnSe4 and CdS are extracted directly from first...... principles simulations. The interface is important for photovoltaics applications where in particular the band offsets are important for efficiency. The band bending pose a problem for accurate atomistic simulations of band offsets due to its long range. Here we investigate two different methods for dealing...

  2. Pulsatile instability in rapid directional solidification - Strongly-nonlinear analysis

    Merchant, G. J.; Braun, R. J.; Brattkus, K.; Davis, S. H.


    In the rapid directional solidification of a dilute binary alloy, analysis reveals that, in addition to the cellular mode of Mullins and Sekerka (1964), there is an oscillatory instability. For the model analyzed by Merchant and Davis (1990), the preferred wavenumber is zero; the mode is one of pulsation. Two strongly nonlinear analyses are performed that describe this pulsatile mode. In the first case, nonequilibrium effects that alter solute rejection at the interface are taken asymptotically small. A nonlinear oscillator equation governs the position of the solid-liquid interface at leading order, and amplitude and phase evolution equations are derived for the uniformly pulsating interface. The analysis provides a uniform description of both subcritical and supercritical bifurcation and the transition between the two. In the second case, nonequilibrium effects that alter solute rejection are taken asymptotically large, and a different nonlinear oscillator equation governs the location of the interface to leading order. A similar analysis allows for the derivation of an amplitude evolution equation for the uniformly pulsating interface. In this case, the bifurcation is always supercritical. The results are used to make predictions about the characteristics of solute bands that would be frozen into the solid.

  3. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)


    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  4. A Mixed-control Mechanism Model of Proeutectoid Ferrite Growth under Non-equilibrium Interface Condition in Fe-C Alloys

    Ruiheng WU; Xueyu RUAN; Hongbing ZHANG; T.Y.Hsu


    By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration.For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.


    LI Xiaoquan; DU Zeyu; YANG Xuguang


    For characteristics of open and far from thermodynamic equilibrium in welding chemical reaction, a new kind of quantitative method, which is used to analyze direction and extent for chemical reaction of SiO2/Fe during quasi-steady state period, is introduced with the concept of non-equilibrium stationary state. The main idea is based on thermodynamic driving forces, which result in non-zero thermodynamic fluxes and lead to chemical reaction far away from thermodynamic equilibrium. There exists certain dynamic equilibrium relationship between rates of diffusion fluxes in liquid phase of reactants or products and the rate equation of chemical reaction when welding is in quasi-steady state. As result of this, a group of non-linear equations containing concentrations of all substances at interface of slag/liquid-metal may be established. Moreover the stability of this non-equilibrium stationary state is discussed using dissipative structure theory and it is concluded theoretically that this non-equilibrium stationary state for welding chemical reaction is of stability.

  6. Evolution of solid-liquid interface morphology of primary TiB2 in non-equilibrium solidified Ti-Al-B alloys

    张虎; 高文理; 金云学; 曾松岩


    Ti-Al-B alloys were produced by in-situ synthesis method. The phase constitutions, microstructure of these alloys and the morphology of the primary TiB2 were investigated by XRD and SEM. The results show that these alloys are composed of TiAl and TiB2, and the primary TiB2 is hexagonal prism shape. Growth terraces, pyramidal protrusion, and rod shape dendrites are observed on (0001) plane of primary TiB2. There are thin flake convexes on plane of primary TiB2, parallel to (0001) plane of the primary TiB2. The rod-shaped crystal orientation and thin flake convexes are parallel to primary TiB2 where they protrude out. The solid-liquid interface morphology of primary TiB2 during solidification was also investigated. It was indicated that the solid-liquid interface morphology of primary TiB2 is instable and gradually develops into a complicated interface consisted of a few separated secondary interfaces. These secondary interfaces are facet with the same crystalline orientation.

  7. Micro/macro solidification modeling of columnar eutectic growth

    Judson, Ward Michael


    A general multidimensional model of alloy solidification is presented in which a velocity-dependent freezing temperature is coupled with the macroscale energy equation. The velocity dependence of the freezing temperature ( Tf˜v ) results from the microscale species diffusion for microstructures with coupled eutectic growth. At solidification rates ( ˜ 1--10 mm/s) that are representative of gravity permanent mold and die casting processes, consideration of the nonequilibrium conditions at the interface affects the prediction of the macroscale thermal field. Near-eutectic alloys freeze with a macroscopically discrete solid-liquid interface at a temperature below the equilibrium eutectic temperature. The model is illustrated with unidirectional solidification of a near-eutectic alloy in a finite domain and solved numerically with a fixed-grid Galerkin finite element method. The numerical algorithm includes inexpensive steps to compute the interface speed explicitly. By nondimensionalizing the governing equations the effect of coupled eutectic growth on heat transport is clearly identified so that the model's sensitivity to important parameters can be investigated. Additionally, the average eutectic spacing can be determined with the temperature field, rather than post-determination from a standard, uncoupled solution of the energy equation. The eutectic coupling results indicate that the predicted solid-liquid interface location lags behind the uncoupled solution; therefore, decreasing the amount of solid formed, increasing the total solidification time, and increasing the average eutectic spacing. A procedure is also illustrated for computing mechanical properties using experimental correlations and the computed interface velocity history. The effect of the eutectic undercooling is then studied in a square domain and a realistic three-dimensional production casting geometry. In order to address the multidimensional cases, a phase-field formulation is developed

  8. Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid-liquid interface and on solute distribution during the initial transient of solidification

    Bogno, A., E-mail: [Aix Marseille Universite, Campus Saint-Jerome, Case 142, 13397 Marseille Cedex 20 (France); CNRS, UMR 6242, Campus Saint-Jerome, Case 142, 13397 Marseille Cedex 20 (France); Nguyen-Thi, H. [Aix Marseille Universite, Campus Saint-Jerome, Case 142, 13397 Marseille Cedex 20 (France); CNRS, UMR 6242, Campus Saint-Jerome, Case 142, 13397 Marseille Cedex 20 (France); Buffet, A. [ESRF, Avenue des Martyrs, BP 220, 38048 Grenoble Cedex (France); Reinhart, G.; Billia, B.; Mangelinck-Noel, N.; Bergeon, N. [Aix Marseille Universite, Campus Saint-Jerome, Case 142, 13397 Marseille Cedex 20 (France); CNRS, UMR 6242, Campus Saint-Jerome, Case 142, 13397 Marseille Cedex 20 (France); Baruchel, J. [ESRF, Avenue des Martyrs, BP 220, 38048 Grenoble Cedex (France); Schenk, T. [LPM - ENSMN, Parc de Saurupt, 54042 Nancy Cedex (France)


    In situ monitoring of the initial transient of directional solidification was carried out by means of synchrotron X-ray radiography. Experiments with Al-4 wt.% Cu alloy samples were performed on beamline ID19 of the European Synchrotron Radiation Facility (ESRF) in a dedicated Bridgman-type furnace. X-ray radiography enabled a detailed analysis of the evolution over time of the solid-liquid interface macroscopic shape in interaction with convection in the melt. Lateral solute segregation induced by fluid flow resulted in a significant deformation of the solid-liquid interface. The time-dependent velocity of the solidification front was determined at different abscissa values along the curved interface during the solidification process, from the growth phase with a smooth interface to the onset of morphological instability. Further, using a novel quantitative image analysis technique we were able to measure longitudinal solute profiles in the melt during the initial transient. Solutal length was then deduced as well as concentration in the melt, both at the interface and far away from it. The influence of convection on growth velocity and the characteristic parameters of the solute boundary layer are discussed, and a comparison with the Warren and Langer model is also presented.

  9. The Effect of Convection on Microstructures and Interface Stability of Al-4.5wtpctCu Alloy Made by Directional Solidification

    Du, Weidong; Song, Changjiang; Zhang, Feng; Jiang, Mingwei; Zhai, Qijie; Han, Ke


    The effect of convection and diffusion introduced by sample size and curvatures on microstructures, stability of solid/liquid (S/L) interface, and solute distribution in an Al-4.5wtpctCu alloy was studied with growth velocity between 1 and 96 μm/s. The experiments were undertaken via directional solidification within coaxial tubes of a variety of diameters. The intent was to achieve the same temperature gradient and growth velocity but different magnitudes of convection. The results indicate that with respect to planar growth, the growth front of the smallest diameter samples (1 mm) in the inner tube is less stable than that of large diameter (7.3 mm). The samples with the smallest diameter have weak convection and show no planar growth. Because of the reduced convection, the transition from cellular-to-dendritic growth occurs at relatively slow growth rate (4 μm/s). Increasing sample sizes results in formation of a planar growth front. The interface position of the inner smaller samples is located behind that of the outer larger samples, and more interfacial Cu segregation is found in smaller samples than in larger samples because of convection reductions in small samples. The change of the curvature of the samples affects the convection. At certain conditions, small curvature results in reduced convection. Samples with smaller sizes and therefore reduced convections have larger S/L curvatures than the larger samples.

  10. Role of interface in forming non-equilibrium hcp phase by ion mixing in an immiscible Au-Co system

    Yan, H F; Liu, B X


    In an equilibrium immiscible Au-Co system characterized by a positive heat of formation of +11 kJ mol sup - sup 1 , a non-equilibrium Au-Co phase of hcp structure was formed by 200 keV xenon ion mixing at 77 K in the Au sub 5 sub 0 Co sub 5 sub 0 multilayered films. Based on the free energy calculation, the excess interfacial free energy stored in the Au-Co multilayered films could provide adequate thermodynamic driving force for alloying between Au and Co and forming the non-equilibrium Au-Co hcp phase. Besides, the average magnetic moment per Co atom in the newly formed hcp structure was reduced by 22% of its equilibrium value, within a measuring error of 8%.

  11. Morphology of solidification front in eutectic

    M. Trepczyńska - Łent


    Full Text Available In this paper the analysis of morphology of solidification front in eutectic made. It was present influence of composition, solidification velocity, concentration micro-field and capillarity effects on the morphology of the solid/liquid interface. It was introduced phase-field model.

  12. Atomistic simulations of solidification process in B2-LiPb solid(0 0 1)-liquid system

    Xu, Chao; Gan, Xianglai; Meng, Xiancai; Xiao, Shifang; Deng, Huiqiu; Li, Xiaofan; Hu, Wangyu


    Li-Pb alloy is considered as a candidate for a blanket material in fusion reactors for its excellent physical and chemical properties. In this work, the solidification process in the B2-LiPb solid(0 0 1)-liquid system is studied using molecular dynamics (MD) simulations. The results indicate that the liquid phase atoms near the solid-liquid interface separate according to the crystal structure, and the separated atoms constitute (0 0 1) crystal planes through an ordering arrangement, which induces the B2-LiPb crystal to grow layer by layer. The velocity of moving solid-liquid interface in our case increases with the degree of thermostat undercooling. Nonequilibrium concentrations of point defects and a misshapen region are observed in the finally solidified crystal. The formation of the dominant point defect is dominated by defect formation energy. Additionally, Pb atoms are enriched in the misshapen region due to the formation of nonequilibrium concentrations of point defects.

  13. General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function

    Stradi, Daniele; Martinez, Umberto; Blom, Anders


    this method to characterize an Ag/Si interface relevant for photovoltaic applications and study the rectifying-to-Ohmic transition as a function of the semiconductor doping. We also demonstrate that the standard “activation energy” method for the analysis of I-Vbias data might be inaccurate for nonideal...... interfaces as it neglects electron tunneling, and that finite-size atomistic models have problems in describing these interfaces in the presence of doping due to a poor representation of space-charge effects. Conversely, the present method deals effectively with both issues, thus representing a valid...

  14. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    Momeni, Kasra; Levitas, Valery I


    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  15. State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface

    Voráč, Jan; Synek, Petr; Procházka, Vojtěch; Hoder, Tomáš


    Optical emission spectroscopy applied to non-equilibrium plasmas in molecular gases can give important information on basic plasma parameters, including the rotational and vibrational temperatures and densities of the investigated radiative states. In order to precisely understand the non-equilibrium of rotational-vibrational state distribution from the investigated spectra without limiting presumptions, a state-by-state temperature-independent fitting procedure is the ideal approach. In this paper, we present a novel software tool developed for this purpose, freely available for the scientific community. The introduced tool offers a convenient way to construct Boltzmann plots even from partially overlapping spectra, in a user-friendly environment. We apply the novel software to the challenging case of OH spectra in surface streamer discharges generated from the triple-line of the argon/water/dielectrics interface. After the barrier discharge is characterised by ICCD and electrical measurements, the spatially and phase resolved rotational temperatures from N2(C-B) and OH(A-X) spectra are determined and compared. The precise analysis shows that OH(A) states with quantum numbers ≤ft({{v}\\prime}=0,~9≤slant {{N}\\prime}≤slant 13\\right) are overpopulated with respect to the found two-Boltzmann distribution. We hypothesise that fast vibrational-energy transfer is responsible for this phenomenon, observed here for the first time. Finally, the vibrational temperature of the plasma and the relative populations of hot and cold OH(A) states are quantified spatially and phase resolved.

  16. Pattern and phase selection of peritectic reaction during directional solidification

    HUANG; Weidong; (黄卫东); LIN; Xin; (林鑫); WANG; Meng; (王猛); SHEN; Shujuan; (沈淑娟); SU; Yunpeng; (苏云鹏); LIU; Zhenxia; (刘振侠)


    Based on the growth competition between different pattern and phases, the pattern and phase selection during peritectic solidification is analysed by applying the maximum interface temperature criterion to the interface response functions calculated from a numerical model for single phase solidification. The theoretical results agree very well with the experimental results published in literature.

  17. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.


    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  18. Analysis of solidification and melting of Pcm with energy generation

    Jiji, Latif M. [Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031 (United States); Gaye, Salif [Ecole Superieure Polytechnique, Enseignant a l' ESP BP A10, Universite Cheikh Anta Diop, Thies (Senegal)


    One-dimensional solidification and melting of a slab with uniform volumetric energy generation is examined analytically. A sudden change in surface temperature triggers phase transformation and interface motion. Analytic solutions are obtained using a quasi-steady approximation. Unlike solidification, the melting case is characterized by a pure liquid phase and a mixture of solid and liquid at the fusion temperature. The solution is governed by a single energy generation parameter. Temperature profiles, interface location and steady state conditions are presented for solidification and melting. Results are applied to two examples: solidification of a nuclear material and melting of ice. [Author].

  19. Crossover from Nonequilibrium Fractal Growth to Equilibrium Compact Growth

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.


    Solidification controlled by vacancy diffusion is studied by Monte Carlo simulations of a two-dimensional Ising model defined by a Hamiltonian which models a thermally driven fluid-solid phase transition. The nonequilibrium morphology of the growing solid is studied as a function of time as the s...... as the system relaxes into equilibrium described by a temperature. At low temperatures the model exhibits fractal growth at early times and crossover to compact solidification as equilibrium is approached....

  20. Solidification under microgravity

    B K Dhindaw


    The paper outlines the broad areas where studies are being conducted under microgravity conditions worldwide viz., biotechnology, combustion science, materials science and fluid physics. The paper presents in particular a review on the various areas of research being pursued in materials science. These include studies on immiscibles, eutectics, morphology development during solidification or pattern formation, nucleation phenomena, isothermal dendrite growth, macrosegregation and the behaviour of insoluble particles ahead of the solidifying interface. The latter studies are given in detail with description of case studies of experiments conducted by the author on space shuttles. In particular, the technology and the science issues are addressed. Lastly, based on the presentations, some salient features enumerating the advantages of conducting experiments under conditions of microgravity are highlighted in terms of science returns.

  1. Modeling of surface melting and resolidification for pure metals and binary alloys: Effect of non-equilibrium kinetics

    Wang, G.X.; Matthys, E.F. [Univ. of California, Santa Barbara, CA (United States). Dept. of Mechanical and Environmental Engineering


    A one-dimensional model including non-equilibrium phenomena was developed for surface melting and resolidification of both pure metals and binary alloys substrates. Non-equilibrium kinetics from crystal growth theory are introduced in the model to treat both non-equilibrium melting and resolidification. The modelled problem involves a moving boundary with both heat and solute diffusions and is solved by an implicit control volume integral method with solid/liquid interface immobilization by coordinate transformation. For illustration of the model applicability, the authors have analyzed laser surface melting of pure metals (Al, Cu, Ni, Ti) and dilute Al-Cu alloys, and some typical results are presented. The computation results show large solid overheating and melt undercooling which result from the high heat flux and the slow kinetics. The melt undercooling is maintained during most of the resolidification process and so is the high solidification rate. Complex interface velocity variations during the earlier stages of resolidification were obtained and result from interactions between various physical mechanisms. A strong effect of the solute on the interface velocity was also predicted.

  2. Effects of the location of a cast in the furnace on flatness of the solidification front in directional solidification

    Lian, Yuanyuan; Li, Dichen; Zhang, Kai


    Many defects of single crystals are caused by the nonplanar solidification front. The transverse temperature gradient at melt-crystal interface results in nonplanar solidification fronts. The location of a cast in the directional solidification furnace affects heat dissipation and thus influences the transverse temperature gradient. This paper presents a criterion and a searching algorithm to find the optimal location of the cast for flattening the solidification front. A numerical simulation was employed for the verification of our method. Additionally, the effects of the size of the cooling device of the furnace on the optimal location, the transverse temperature gradient and the solidification time were discussed. The transverse temperature gradient is reduced about 50% without increasing much solidification time when setting the cast with a varying thickness mould at the optimal location. In addition, the optimal location is mainly influenced by the radius of the cooling ring.

  3. Directional Solidification of Ledeburite

    M. Trepczyńska-Łent


    Full Text Available Directional solidification of ledeburite was realised out using a Bridgman’s device. The growth rate for movement sample v=83.3 μm/s was used. In one sample the solidification front was freezing. The value of temperature gradient in liquid at the solidification front was determined. Interfacial distance λ on the samples was measured with NIS-Elements application for image analysis.

  4. Fundamental Metallurgy of Solidification

    Tiedje, Niels


    The text takes the reader through some fundamental aspects of solidification, with focus on understanding the basic physics that govern solidification in casting and welding. It is described how the first solid is formed and which factors affect nucleation. It is described how crystals grow from ...

  5. Effects of Ca(Y)-Si modifier on interface morphology and solute segregation during directional solidification of an austenite medium Mn steel


    The austenite medium Mn steel modified with controlled additions of Ca, Y, Si were directionally solidified using the vertical Bridgman method to study the effects of Ca(Y)-Si modifier on the solid-liquid (S-L) interface morphology and solute segregation. The interface morphology and the C and Mn segregation of the steel directionally solidified at 6.9 μm/s were investigated with an image analysis and a scanning electron microscope equipped with energy dispersive X-ray analysis. The 0.5wt% Ca-Si modified steel is solidified with a planar S-L interface. The interface of the 1.0wt% Ca-Si modified steel is similar to that of the 0.5wt% Ca-Si modified steel, but with larger nodes. The 1.5wt% Ca-Si modified steel displays a cellular growth parttern. The S-L interface morphology of the 0.5wt% Ca-Si+1.0wt% Y-Si modified Mn steel appears as dendritic interface, and primary austenite dendrites reveal developed lateral branching at the quenched liquid. In the meantime, the independent austenite colonies are formed ahead of the S-L interface. A mechanism involving constitutional supercooling explains the S-L interface evolution. It depends mainly on the difference in the contents of Ca, Y, and Si ahead of the S-L interface. The segregation of C and Mn ahead of the S-L interface enhanced by the modifiers is observed.

  6. Effect Of Natural Convection On Directional Solidification Of Pure Metal

    Skrzypczak T.


    Full Text Available The paper is focused on the modeling of the directional solidification process of pure metal. During the process the solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D. The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys, etc.

  7. Cellular instability in rapid directional solidification - Bifurcation theory

    Braun, R. J.; Davis, S. H.


    Merchant and Davis performed a linear stability analysis on a model for the directional solidification of a dilute binary alloy valid for all speeds. The analysis revealed that nonequilibrium segregation effects modify the Mullins and Sekerka cellular mode, whereas attachment kinetics has no effect on these cells. In this paper, the nonlinear stability of the steady cellular mode is analyzed. A Landau equation is obtained that determines the amplitude of the cells. The Landau coefficient here depends on both nonequilibrium segregation effects and attachment kinetics. This equation gives the ranges of parameters for subcritical bifurcation (jump transition) or supercritical bifurcation (smooth transition) to cells.

  8. Numerical Modeling and In-Situ Observations of the Dynamics of the Solid/Liquid Interface Morphology During Directional Solidification of Alloys

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Curreri, Peter A.; Kaukler, W. F.


    The departure from interface planarity and the subsequent evolution to a periodic array of cells or dendrites is a fundamental process that characterizes most microstructures in solidified alloys. The growing demand for high quality alloys and semiconductor crystals requires a precise methodology to predict and subsequently control both the interface morphology and the distribution of impurities, additives, and phases in the grown crystal. Apart from its practical significance, the study of morphological evolution has also been viewed as a means to unearth a general paradigm for pattern formation in nature. A previously developed 2D numerical model for the solid/liquid interface tracking has been further refined and used to simulate the time-evolution of the perturbations on the interface. The dynamics of the local growth velocity, interface undercooling and solute concentration at the interface has been theoretically predicted by means of the numerical model for Al-Cu and Pb-Sn alloys. The model shows that perturbations with a wavelengths, lambda greater than a critical wavelength lambda(sub c) continue to grow in time whereas perturbations with lambda interface. Comparison of these predictions with existing theories of pattern formation and experimental results will be discussed.

  9. Numerical Modeling and In-Situ Observations of the Dynamics of the Solid/Liquid Interface Morphology During Directional Solidification of Alloys

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Curreri, Peter A.; Kaukler, W. F.


    The departure from interface planarity and the subsequent evolution to a periodic array of cells or dendrites is a fundamental process that characterizes most microstructures in solidified alloys. The growing demand for high quality alloys and semiconductor crystals requires a precise methodology to predict and subsequently control both the interface morphology and the distribution of impurities, additives, and phases in the grown crystal. Apart from its practical significance, the study of morphological evolution has also been viewed as a means to unearth a general paradigm for pattern formation in nature. A previously developed 2D numerical model for the solid/liquid interface tracking has been further refined and used to simulate the time-evolution of the perturbations on the interface. The dynamics of the local growth velocity, interface undercooling and solute concentration at the interface has been theoretically predicted by means of the numerical model for Al-Cu and Pb-Sn alloys. The model shows that perturbations with a wavelengths, lambda greater than a critical wavelength lambda(sub c) continue to grow in time whereas perturbations with lambda < lambda(sub c) cease to propagate. The model further predicts that under certain conditions perturbation can also propagate along the interface. Comparison of these predictions with existing theories of pattern formation and experimental results will be discussed.

  10. Solidification control in continuous casting of steel

    S Mazumdar; S K Ray


    An integrated understanding of heat transfer during solidification, friction/lubrication at solid-liquid interface, high temperature properties of the solidifying shell etc. is necessary to control the continuous casting process. The present paper elaborates upon the knowledge developed in the areas of initial shell formation, mode of mould oscillation, and lubrication mechanism. The effect of these issues on the caster productivity and the quality of the product has been discussed. The influence of steel chemistry on solidification dynamics, particularly with respect to mode of solidification and its consequence on strength and ductility of the solidifying shell, has been dealt with in detail. The application of these basic principles for casting of stainless steel slabs and processing to obtain good quality products have been covered.

  11. Advances in Solidification Processing

    Hugo F. Lopez


    Full Text Available Melt solidification is the shortest and most viable route to obtain components, starting from the design to the finished products. Hence, a sound knowledge of the solidification of metallic materials is essential for the development of advanced structural metallic components that drive modern technological societies. As a result, there have been innumerable efforts and full conferences dedicated to this important subject [1–6]. In addition, there are various scientific journals fully devoted to investigating the various aspects which give rise to various solidification microstructures [7–9]. [...

  12. Modelling directional solidification

    Wilcox, William R.; Regel, Liya L.


    This grant, NAG8-831, was a continuation of a previous grant, NAG8-541. The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis in the recently completed grant was on determining the influence of perturbations on directional solidification of InSb and InSb-GaSb alloys. In particular, the objective was to determine the influence of spin-up/spin-down (ACRT), electric current pulses and vibrations on compositional homogeneity and grain size.

  13. Solidification microstructure development

    G Phanikumar; K Chattopadhyay


    In the present article, evolution of microstructure during solidification, as a function of various parameters, is discussed. Macrosegregation is described as being due to insufficient diffusivity of solute in the solid. Pattern formation is discussed in the light of instabilities at the solidification growth front. An overview of the scaling relations for various microstructures is given. Metastable extensions to equilibrium phase diagrams and corrections to equilibrium quantities are described.

  14. Solidification and casting

    Cantor, Brian


    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  15. Localized microstructures induced by fluid flow in directional solidification.

    Jamgotchian, H; Bergeon, N; Benielli, D; Voge, P; Billia, B; Guérin, R


    The dynamical process of microstructure localization by multiscale interaction between instabilities is uncovered in directional solidification of transparent alloy. As predicted by Chen and Davis, morphological instability of the interface is observed at inward flow-stagnation regions of the cellular convective field. Depending on the driving force of fluid flow, focus-type and honeycomb-type localized patterns form in the initial transient of solidification, that then evolves with time. In the case of solute-driven flow, the analysis of the onset of thermosolutal convection in initial transient of solidification enables a complete understanding of the dynamics and of the localization of morphological instability.

  16. Capillary-wave description of rapid directional solidification.

    Korzhenevskii, Alexander L; Bausch, Richard; Schmitz, Rudi


    A recently introduced capillary-wave description of binary-alloy solidification is generalized to include the procedure of directional solidification. For a class of model systems a universal dispersion relation of the unstable eigenmodes of a planar steady-state solidification front is derived, which readjusts previously known stability considerations. We moreover establish a differential equation for oscillatory motions of a planar interface that offers a limit-cycle scenario for the formation of solute bands and, taking into account the Mullins-Sekerka instability, of banded structures.

  17. Variable-Temperature-Gradient Device for Solidification Research

    Kaukler, W. F.


    Device for research in solidification and crystal growth allows crystallization of melt observed as occurs. Temperature gradient across melt specimen increased or decreased rapidly while solidification front proceeds at constant speed across sample. Device moves sample at same speed, thereby holding position of liquid/solid interface stationary within field of optical microscope. Device, variabletemperature-gradient microscope stage, used to study crystal growth at constant rate while thermal driving force is varied.

  18. Numerical calculation on temperature field of FGH95 alloy droplet during rapid solidification

    Huanming Chen; Benfu Hu


    The temperature field of FGH95 alloy droplet atomized by plasma rotating electrode processing (PREP) during solidifica-tion has been calculated through numerical analysis based on equivalent sensible heat capacity method. And thus the relational cul-ves among temperature gradient of solid-liquid interface, moving velocity of solid-liquid interface and solid fraction during solidifi-cation have been presented. The results indicate that the relation between average temperature gradient of solid-liquid interface anddroplet size, and the relation between average moving velocity of solid-liquid interface and droplet size can be expressed during solidification.

  19. Solidification microstructures and solid-state parallels: Recent developments, future directions

    Asta, M. [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Beckermann, C. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115 (United States); Kurz, W. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)], E-mail:; Napolitano, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States); Plapp, M. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Purdy, G. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ont., L8S 4L7 (Canada); Rappaz, M. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Trivedi, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States)


    Rapid advances in atomistic and phase-field modeling techniques as well as new experiments have led to major progress in solidification science during the first years of this century. Here we review the most important findings in this technologically important area that impact our quantitative understanding of: (i) key anisotropic properties of the solid-liquid interface that govern solidification pattern evolution, including the solid-liquid interface free energy and the kinetic coefficient; (ii) dendritic solidification at small and large growth rates, with particular emphasis on orientation selection; (iii) regular and irregular eutectic and peritectic microstructures; (iv) effects of convection on microstructure formation; (v) solidification at a high volume fraction of solid and the related formation of pores and hot cracks; and (vi) solid-state transformations as far as they relate to solidification models and techniques. In light of this progress, critical issues that point to directions for future research in both solidification and solid-state transformations are identified.

  20. Molecular dynamics modelling of solidification in metals

    Boercker, D.B.; Belak, J.; Glosli, J. [Lawrence Livermore National Lab., CA (United States)


    Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.

  1. Interface

    Computerens interface eller grænseflade har spredt sig overalt. Mobiltelefoner, spilkonsoller, pc'er og storskærme indeholder computere – men computere indbygges også i tøj og andre hverdagslige genstande, så vi konstant har adgang til digitale data. Interface retter fokus mod, hvordan den digita...

  2. Interface

    Computerens interface eller grænseflade har spredt sig overalt. Mobiltelefoner, spilkonsoller, pc'er og storskærme indeholder computere – men computere indbygges også i tøj og andre hverdagslige genstande, så vi konstant har adgang til digitale data. Interface retter fokus mod, hvordan den digitale...... kunst og kultur skabes, spredes og opleves igennem interfaces. Forfatterne undersøger og diskuterer interfacets æstetik, ideologi og kultur – og analyserer aktuel interfacekunst på tværs af musik, kunst, litteratur og film. Bogen belyser interfacets oprindelse i den kolde krigs laboratorier og dets...

  3. Solidification modeling: Status and outlook

    Dantzig, J. A.


    Solidification modeling is a complex and highly advanced field. This article examines the state of the art in solidification modeling, including physical phenomena of solidification such as heat extraction, transport processes within a casting, and dimensional changes in the casting and mold during solidification. Also examined are current efforts to model these phenomena and the strengths and weaknesses of these efforts. Finally, obstacles to solidification modeling, such as speed and cost of the process, are considered, along with the likelihood those obstacles will be overcome.

  4. Convection and morphological stability during directional solidification

    Coriell, Sam R.; Chernov, A. A.; Murray, Bruce T.; Mcfadden, G. B.


    For growth of a vicinal face at constant velocity, the effect of anisotropic interface kinetics on morphological stability is calculated for a binary alloy. The dependence of the interface kinetic coefficient on crystallographic orientation is based on the motion and density of steps. Anisotropic kinetics give rise to traveling waves along the crystal-melt interface, and can lead to a significant enhancement of morphological stability. The stability enhancement increases as the orientation approaches a singular orientation and as the solidification velocity increases. Shear flows interact with the traveling waves and, depending on the direction of the flow, may either stabilize or destabilize the interface. Specific calculations are carried out for germanium-silicon alloys.

  5. Nonlinear instability and dynamic bifurcation of a planeinterface during solidification

    吴金平; 侯安新; 黄定华; 鲍征宇; 高志农; 屈松生


    By taking average over the curvature, the temperature and its gradient, the solute con-centration and its gradient at the flange of planar interface perturbed by sinusoidal ripple during solidifi-cation, the nonlinear dynamic equations of the sinusoidal perturbation wave have been set up. Analysisof the nonlinear instability and the behaviors of dynamic bifurcation of the solutions of these equationsshows that (i) the way of dynamic bifurcation of the flat-to-cellular interface transition vades with differ-ent thermal gradients. The quasi-subcritical-lag bifurcation occurs in the small interface thermal gradientscope, the supercritical-lag bifurcation in the medium thermal gradient scope and the supercritical bifur-cation in the large thermal gradient scope. (ii) The transition of cellular-to-flat interface is realizedthrough supercritical inverse bifurcation in the rapid solidification area.

  6. Inversion Solidification Cladding of H90-Steel

    LI Bao-mian; XU Guang-ming; CUI Jian-zhong


    The variation law of cladding thickness as well as the structures and properties of H90-steel clad strip produced by inversion solidification was studied.The interface bonding mechanisms were approached.It is found that the thickness of H90 cladding goes sequentially through the solidification growth stage,holding stage,and remelting stage,with an increase in immersion time.The higher the preheating temperature of the steel coil,the thicker is the maximum cladding thickness.Observation by using optical microscopy (OM) and the electron probe microanalyzer (EPMA) shows that the microstrueture of H90 cladding is composed of equiaxed grains,and that interdiffusion between Cu and Fe at interface occurs but obvious diffusion of Zn and the intermetallic layer are not observed.The diffusion layer is thin and about 4 μm.Multipass small reduction cold rolling and repeated bending tests show that the interface is firmly bonded.Tensile test shows that the mechanical properties of the as-clad strips can meet the requirements of GB5213-2001 for the F-grade deep-drawing steel plate though there is a slight difference in the mechanical properties among the clad strips with different cladding thickness.

  7. Seaweed to dendrite transition in directional solidification.

    Provatas, Nikolas; Wang, Quanyong; Haataja, Mikko; Grant, Martin


    We simulate directional solidification using a phase-field model solved with adaptive mesh refinement. For small surface tension anisotropy directed at 45 degrees relative to the pulling direction we observe a crossover from a seaweed to a dendritic morphology as the thermal gradient is lowered, consistent with recent experimental findings. We show that the morphology of crystal structures can be unambiguously characterized through the local interface velocity distribution. We derive semiempirically an estimate for the crossover from seaweed to dendrite as a function of thermal gradient and pulling speed.

  8. Low Melt Height Solidification of Superalloys

    Montakhab, Mehdi; Bacak, Mert; Balikci, Ercan


    Effect of a reduced melt height in the directional solidification of a superalloy has been investigated by two methods: vertical Bridgman (VB) and vertical Bridgman with a submerged baffle (VBSB). The latter is a relatively new technique and provides a reduced melt height ahead of the solidifying interface. A low melt height leads to a larger primary dendrite arm spacing but a lower mushy length, melt-back transition length, and porosity. The VBSB technique yields up to 38 pct reduction in the porosity. This may improve a component's mechanical strength especially in a creep-fatigue type dynamic loading.

  9. Numerical simulation on directional solidification of Al-Ni-Co alloy based on FEM

    Yang Zhili


    Full Text Available The ratio, of the temperature gradient at the solidification front to the solidification rate of solid-liquid interface, plays a large part in columnar grain growth. The transient temperature fields of directional solidification of Al-Ni-Co alloy were studied by employing a finite element method. The temperature gradient at the solidification front and the solidification rate were analyzed for molten steels pouring at different temperatures. The results show that with different initial pouring temperatures, the individual ratio of the temperature gradient at solidification front to the solidification rate soars up in the initial stage of solidification, then varies within 2,000-6,000 ℃·s·cm-2, and finally goes down rapidly and even tend to be closed to each other when the solidification thickness reaches 5-6 cm. The simulation result is consistent with the practical production which can provide an available reference for process optimization of directional solidified Al-Ni-Co alloy.

  10. Nonequilibrium molecular dynamics

    Hoover, W.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA))


    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  11. The effects of solidification on sill propagation dynamics and morphology

    Chanceaux, L.; Menand, T.


    Sills are an integral part of the formation and development of larger plutons and magma reservoirs. Thus sills are essential for both the transport and the storage of magma in the Earth's crust. However, although cooling and solidification are central to magmatism, their effects on sills have been so far poorly studied. Here, the effects of solidification on sill propagation dynamics and morphology are studied by means of analogue laboratory experiments. Hot fluid vegetable oil (magma analogue), that solidifies during its propagation, is injected as a sill in a colder layered gelatine solid (elastic host rock analogue). The injection flux and temperature are maintained constant during an experiment and systematically varied between each experiment, in order to vary and quantify the amount of solidification between each experiments. The oil is injected directly at the interface between the two gelatine layers. When solidification effects are small (high injection temperatures and fluxes), the propagation is continuous and the sill has a regular and smooth surface. Inversely, when solidification effects are important (low injection temperatures and fluxes), sill propagation is discontinuous and occurs by steps of surface-area creation interspersed with periods of momentary arrest. The morphology of these sills displays folds, ropy structures on their surface, and lobes with imprints of the leading fronts that correspond to each step of area creation. These experiments show that for a given, constant injected volume, as solidification effects increase, the area of the sills decreases, their thickness increases, and the number of propagation steps increases. These results have various geological and geophysical implications. The morphology of sills, such as lobate structures (interpretation of 3D seismic studies in sedimentary basin) and ropy flow structures (field observations) can be related to solidification during emplacement. Moreover, a non-continuous morphology

  12. Effect of Mould Wall Thickness on Rate of Solidification of Centrifugal Casting



    Full Text Available In Centrifugal Casting process the centrifugal force presses the metal against the inner wall of the metal mould, resulting in rapid solidification of the molten metal. However the solidification structures like structural uniformity and structural character of the solidified metal of centrifugal casting is of great importance, regarding to its mechanical properties. The solidification time of the casting is dependent upon the various parameters like speed ofrotation of the mold, mould wall temperature, heat transfer coefficient at the metal-mold interface, mould wall thickness, material of the mould and so on. In this paper experimental study of effect of mould wall thickness on solidification of the centrifugal casting has been discussed. As the mould wall thickness increases, due to the chilling effect, the solidification time decreases. Fine grains are observed in castings produced in thick walled mould and coarse grains are observed in thin walled moulds. Brinel Hardness of the casting was measured.

  13. Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation

    Levitas, Valery I.; Warren, James A.


    studies of cubic crystals. In order to consider a fully specified system, a typical sixth order polynomial phase field model is considered. Analytical solutions for the propagating interface and critical nucleus are found, accounting for the influence of the anisotropic gradient energy and elucidating the distribution of components of interface stresses. The orientation-dependence of the nonequilibrium interface energy is first suitably defined and explicitly determined analytically, and the associated width is also found. The developed formalism is applicable to melting/solidification and crystal-amorphous transformation and can be generalized for martensitic and diffusive phase transformations, twinning, fracture, and grain growth, for which interface energy depends on interface orientation of crystals from either side.

  14. Effect of strontium and solidification rate on eutectic grain structure in an AI-13 wt% Si alloy

    Liao Hengcheng; Bi Juanjuan; Zhang Min; Ding Ke; Jiang Yunfeng; Cai Mingdong


    The influence of strontium addition and solidification rate on eutectic grain structure in a near-eutectic AI-Si alloy was investigated. The characteristic temperature of eutectic nucleation (TN),minimum temperature prior to recalescence (TM),and the growth temperature (TG) during cooling were determined by quantitative thermal analysis. All characteristic temperatures were found to decrease continuously with increasing Sr content and solidification rate. Microstructural analysis also revealed that the eutectic grain size decreases with increasing Sr content and solidification rate. Such eutectic grain refinement is attributed to the increased actual under-cooling ahead of the liquid/solid interface during solidification.

  15. Overview of the Tusas Code for Simulation of Dendritic Solidification

    Trainer, Amelia J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newman, Christopher Kyle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Marianne M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than it is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].

  16. Multi-crystalline silicon solidification under controlled forced convection

    Cablea, M.; Zaidat, K.; Gagnoud, A.; Nouri, A.; Chichignoud, G.; Delannoy, Y.


    Multi-crystalline silicon wafers have a lower production cost compared to mono-crystalline wafers. This comes at the price of reduced quality in terms of electrical properties and as a result the solar cells made from such materials have a reduced efficiency. The presence of different impurities in the bulk material plays an important role during the solidification process. The impurities are related to different defects (dislocations, grain boundaries) encountered in multi-crystalline wafers. Applying an alternative magnetic field during the solidification process has various benefits. Impurities concentration in the final ingot could be reduced, especially metallic species, due to a convective term added in the liquid that reduces the concentration of impurities in the solute boundary layer. Another aspect is the solidification interface shape that is influenced by the electromagnetic stirring. A vertical Bridgman type furnace was used in order to study the solidification process of Si under the influence of a travelling magnetic field able to induce a convective flow in the liquid. The furnace was equipped with a Bitter type three-phase electromagnet that provides the required magnetic field. A numerical model of the furnace was developed in ANSYS Fluent commercial software. This paper presents experimental and numerical results of this approach, where interface markings were performed.

  17. Microstructural Development in Al-Si Powder During Rapid Solidification

    Genau, Amber Lynn [Iowa State Univ., Ames, IA (United States)


    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  18. Modeling fluid interactions with the rigid mush in alloy solidification

    Plotkowski, Alexander J.

    Macrosegregation is a casting defect characterized by long range composition differences on the length scale of the ingot. These variations in local composition can lead to the development of unwanted phases that are detrimental to mechanical properties. Unlike microsegregation, in which compositions vary over the length scale of the dendrite arms, macrosegregation cannot be removed by subsequent heat treatment, and so it is critical to understand its development during solidification processing. Due to the complex nature of the governing physical phenomena, many researchers have turned to numerical simulations for these predictions, but properly modeling alloy solidification presents a variety of challenges. Among these is the appropriate treatment of the interface between the bulk fluid and the rigid mushy zone. In this region, the non-linear and coupled behavior of heat transfer, fluid mechanics, solute transport, and alloy thermodynamics has a dramatic effect on macrosegregation predictions. This work investigates the impact of numerical approximations at this interface in the context of a mixture model for alloy solidification. First, the numerical prediction of freckles in columnar solidification is investigated, and the predictive ability of the model is evaluated. The model is then extended to equiaxed solidification, in which the analogous interface is the transition of free-floating solid particles to a rigid dendritic network. Various models for grain attachment are investigated, and found to produce significant artifacts caused by the discrete nature of their implementation on the numerical grid. To reduce the impact of these artifacts, a new continuum grain attachment model is proposed and evaluated. The differences between these models are compared using uncertainty quantification, and recommendations for future research are presented.

  19. A new coupled model for alloy solidification

    LI Daming; LI Ruo; ZHANG Pingwen


    A new coupled model in the binary alloy solidification has been developed. The model is based on the cellular automaton (CA)technique to calculate the evolution of the interface governed by temperature, solute diffusion and Gibbs-Thomson effect. The diffusion equation of temperature with the release of latent heat on the solid/liquid (S/L) interface is valid in the entire domain.The temperature diffusion without the release of latent heat and solute diffusion are solved in the entire domain. In the interface cells, the energy and solute conservation, thermodynamic and chemical potential equilibrium are adopted to calculate the temperature, solid concentration, liquid concentration and the increment of solid fraction. Compared with other models where the release of latent heat is solved in implicit or explicit form according to the solid/liquid (S/L) interface velocity, the energy diffusion and the release of latent heat in this model are solved at differentscales, I.e. The macro-scale and micro-scale. The variation ofsolid fraction in this model is solved using several algebraicrelations coming from the chemical potential equilibrium andthermodynamic equilibrium which can be cheaply solved insteadof the calculation of S/L interface velocity. With the assumptionof the solute conservation and energy conservation, the solidfraction can be directly obtained according to the thermodynamicdata. This model is natural to be applied to multiple (>2)spatial dimension case and multiple (>2) component alloy. Themorphologies of equiaxed dendrite are obtained in numericalexperiments.

  20. Cast microstructure of Inconel 713C and its dependence on solidification variables

    Bhambri, A.K.; Kattamis, T.Z.; Morral, J.E.


    The dependence of cast microstructure of Inconel 713C on solidification variables was investigated over a wide range of local cooling rates, epsilon, and thermal gradients in the liquid at the solid-liquid interface, G. The shape of MC carbide particles was found to depend greatly on: 1) the G/R ratio at the solid-liquid interface, where R is growth rate, through the effect of this ratio on the solid phase, ..gamma../sub g/, growth morphology. Under planar front growth conditions the carbide particles were octahedral, under cellular growth conditions they were plate-like, elongated along the cellular growth direction, and under dendritic growth conditions they were irregularly shaped; 2) the local cooling rate, epsilon, when ..gamma.. was dendritic, with a transition from octahedral to dendritic with increasing epsilon. The size of MC carbide particles was found to be controlled by coarsening and to become finer with increasing epsilon. In this alloy the composition of the MC carbide was established as (Nb/sub 0/./sub 63/Ti/sub 0/./sub 31/M0/sub 0/./sub 06/)C and was practically independent of local cooling rate. Other observations were that the precipitation of ..gamma.., d the formation of nonequilibrium eutectics, such as MC-..gamma.., ..gamma..-..gamma..' or MC-..gamma..-..gamma..' were suppressed at splat-cooling rates. Also, microsegregation of all alloying elements with the exception of aluminum was normal, with concentration increasing from the dendrite center-line to the dendrite arm boundary. Aluminum behaved in the opposite manner. Within the cooling rate range used herein, this variable had only a slight effect on microsegregation.

  1. Nonequilibrium statistical physics

    Röpke, Gerd


    Authored by one of the top theoretical physicists in Germany, and a well-known authority in the field, this is the only coherent presentation of the subject suitable for masters and PhD students, as well as postdocs in physics and related disciplines.Starting from a general discussion of the nonequilibrium state, different standard approaches such as master equations, and kinetic and linear response theory, are derived after special assumptions. This allows for an insight into the problems of nonequilibrium physics, a discussion of the limits, and suggestions for improvements. Applications

  2. Nonlinear rheological models for structured interfaces

    Sagis, L.M.C.


    The GENERIC formalism is a formulation of nonequilibrium thermodynamics ideally suited to develop nonlinear constitutive equations for the stress–deformation behavior of complex interfaces. Here we develop a GENERIC model for multiphase systems with interfaces displaying nonlinear viscoelastic stres

  3. Structures Self-Assembled Through Directional Solidification

    Dynys, Frederick W.; Sayir, Ali


    Nanotechnology has created a demand for new fabrication methods with an emphasis on simple, low-cost techniques. Directional solidification of eutectics (DSE) is an unconventional approach in comparison to low-temperature biomimetic approaches. A technical challenge for DSE is producing microstructural architectures on the nanometer scale. In both processes, the driving force is the minimization of Gibb's free energy. Selfassembly by biomimetic approaches depends on weak interaction forces between organic molecules to define the architectural structure. The architectural structure for solidification depends on strong chemical bonding between atoms. Constituents partition into atomic-level arrangements at the liquid-solid interface to form polyphase structures, and this atomic-level arrangement at the liquid-solid interface is controlled by atomic diffusion and total undercooling due to composition (diffusion), kinetics, and curvature of the boundary phases. Judicious selection of the materials system and control of the total undercooling are the keys to producing structures on the nanometer scale. The silicon-titanium silicide (Si-TiSi2) eutectic forms a rod structure under isothermal cooling conditions. At the NASA Glenn Research Center, directional solidification was employed along with a thermal gradient to promote uniform rods oriented with the thermal gradient. The preceding photomicrograph shows the typical transverse microstructure of a solidified Si-TiSi2 eutectic composition. The dark and light gray regions are Si and TiSi2, respectively. Preferred rod orientation along the thermal gradient was poor. The ordered TiSi2 rods have a narrow distribution in diameter of 2 to 3 m, as shown. The rod diameter showed a weak dependence on process conditions. Anisotropic etch behavior between different phases provides the opportunity to fabricate structures with high aspect ratios. The photomicrographs show the resulting microstructure after a wet chemical etch and a

  4. Microstructural development of rapid solidification in Al-Si powder

    Jin, Feng [Iowa State Univ., Ames, IA (United States)


    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 μm to 150 μm diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  5. The Effect of Solidification Rate on Morphological Stability

    Sekerka, R. F.


    At low solidification rates, the criterion for the onset of morphological instability parallels closely the criterion of constitutional supercooling. At somewhat larger rates of solidification, however, the results of the perturbation theory of morphological instability differ significantly from the predictions of constitutional supercooling. This arises because the critical wave length for instability decreases as solidification rate increases and thus the effects of capillarity (solid-liquid surface tension) play a strong stabilizing role. This gives rise to the concept of absolute stability, according to which the system will always be stable for a sufficiently large rate of solidification. This enhanced stabilization by capillarity is present only so long as local equilibrium is maintained at the solid-liquid interface. If the interfacial temperature drops below its equilibrium value by an amount dependent on growth rate, oscillatory morphological instabilities can occur. The differences among these various stability criteria are illustrated by means of some simple two-dimensional diagrams that should supplant the conventional plots of (temperature gradient)/(growth rate) vs. alloy concentration.

  6. Directional solidification of flake and nodular cast iron during KC-135 low-g maneuvers

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.


    Alloys solidified in a low-gravity environment can, due to the elimination of sedimentation and convection, form unique and often desirable microstructures. One method of studying the effects of low-gravity (low-g) on alloy solidification was the use of the NASA KC-135 aircraft flying repetitive low-g maneuvers. Each maneuver gives from 20 to 30 seconds of low-g which is between about 0.1 and 0.001 gravity. A directional solidification furnace was used to study the behavior of off eutectic composition case irons in a low-g environment. The solidification interface of hypereutectic flake and spheroidal graphite case irons was slowly advanced through a rod sample, 5 mm in diameter. Controlled solidification was continued through a number of aircraft parabolas. The known solidification rate of the sample was then correlated with accelerometer data to determine the gravity level during solidification for any location of the sample. The thermal gradient and solidification rate were controlled independently. Samples run on the KC-135 aircraft exhibited bands of coarser graphite or of larger nodules usually corresponding to the regions solidified under low-g. Samples containing high phosphorous (used in order to determine the eutectic cell) exhibited larger eutectic cells in the low-g zone, followed by a band of coarser graphite.

  7. Numerical Simulation of Dendrite Evolution during Solidification Process

    LI Qiang; GUO Qiao-yi; REN Chuan-fu


    In order to precisely describe the dendrite evolution during solidification process, especially in microscale, a continuous method is presented to deal with the discontinuous physical properties beside the solid/liquid interface. In this method, the physical properties are used as averaging physical properties of solid phase and liquid phase in the interface zone, which can smooth the property gap between solid and liquid phases, and make the properties from liquid phase to solid phase. The simulated results show that the method can represent the sidebranches and the solute micro-segregation well.

  8. Instabilities in rapid solidification of multi-component alloys

    Altieri, Anthony L.; Davis, Stephen H.


    Rapid solidification of multi-component liquids occurs in many modern applications such as additive manufacturing. In the present work the interface departures from equilibrium consist of the segregation coefficient and liquidus slope depending on front speed, the one-sided, frozen-temperature approximation, and the alloy behaving as the superposition of individual components. Linear-stability theory is applied, showing that the cellular and oscillatory instabilities of the binary case are modified. The addition of components tends to destabilize the interface while the addition of a single large-diffusivity material can entirely suppress the oscillatory mode. Multiple minima in the neutral curve for the cellular mode occur.

  9. Competitive growth of high purity aluminum grains in directional solidification

    ZHANG Jiao; SHU Da; WANG De-lin; SUN Bao-de; CHEN Gang


    A self-made directional solidification setup was used to prepare high purity aluminum ingots of 100mm in diameter. The morphology of the growth interface was detected by SEM and AFM, and the grain lattice orientation was detected by XRD. The results indicate that the grains suffer competitive growth under any conditions in experiments. The lattice orientation of the preferred grains is determined by the flow field above the solid-liquid interface. The horizontal lattice position does not change during the growth process. However, the lattice orientation in the growth direction varies with the growth velocity and approaches to [100]gradually during the growth process.

  10. In-situ observation of porosity formation during directional solidification of Al-Si casting alloys

    Zhao Lei


    Full Text Available In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si was made by using of micro-focus X-ray imaging. In both alloys, small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L interface and then grow and coagulate during solidification. Some pores can float and escape from the solidifying melt front at a relatively high velocity. At the end of solidification, the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy. This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys. The mechanism of the porosity formation is briefly discussed in this paper.

  11. Statistical mechanics of nonequilibrium liquids

    Evans, Denis J; Craig, D P; McWeeny, R


    Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,

  12. Dynamical Non-Equilibrium Molecular Dynamics

    Giovanni Ciccotti


    Full Text Available In this review, we discuss the Dynamical approach to Non-Equilibrium Molecular Dynamics (D-NEMD, which extends stationary NEMD to time-dependent situations, be they responses or relaxations. Based on the original Onsager regression hypothesis, implemented in the nineteen-seventies by Ciccotti, Jacucci and MacDonald, the approach permits one to separate the problem of dynamical evolution from the problem of sampling the initial condition. D-NEMD provides the theoretical framework to compute time-dependent macroscopic dynamical behaviors by averaging on a large sample of non-equilibrium trajectories starting from an ensemble of initial conditions generated from a suitable (equilibrium or non-equilibrium distribution at time zero. We also discuss how to generate a large class of initial distributions. The same approach applies also to the calculation of the rate constants of activated processes. The range of problems treatable by this method is illustrated by discussing applications to a few key hydrodynamic processes (the “classical” flow under shear, the formation of convective cells and the relaxation of an interface between two immiscible liquids.

  13. Nanoparticle Capture During Directional Solidification of Nano-Sized SiC Particle-Reinforced AZ91D Composites.

    Zhu, Qiaobo; Liu, Hongchang; Li, Wenzhen; Gao, Weiming; Li, Qiushu


    The capture/push behavior of a particle in front of a solidification interface was analyzed theoretically and experimentally in this work. Van der Waals force, viscous force, and force due to interfacial energy played important roles in the particle capture/push process. Directional solidification experiments were conducted with nano-sized SiC particle-reinforced AZ91D composites to observe the distribution of nanoparticles in different solidification morphologies under varied cooling rates. When the composite solidified with plane manner, the nanoparticles could be captured by the solidification front and distributed uniformly in the matrix. When solidified with columnar or equiaxial manners, the nanoparticles could be captured by the solidification front but distributed uniformly only in the grain boundary as a result of the difference in interfacial energy and wettability between SiC/α-Mg and SiC/eutectic phase. Theoretical prediction of particle capture was in agreement with the experiment results.

  14. Solidification at the High and Low Rate Extreme

    Meco, Halim [Iowa State Univ., Ames, IA (United States)


    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  15. Non-equilibrium thermodynamics

    De Groot, Sybren Ruurds


    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  16. Solidification zoning and metallographic cooling rates of chondrites

    Willis, J.; Goldstein, J. I.


    The cooling rates of chondrites have been determined according to the cooling rate method of Wood (1967) which involves the measurement of the concentration of nickel in the interiors of taenite grains of various sizes. The present paper presents an investigation of the effect of zoning produced during solidification on the use of the Wood method. Cooling rate curves were obtained in a computer simulation based on a model of kamacite formation on the outer edge of a taenite sphere of uniform initial composition, followed by the inward radial progression of the kamacite-taenite interface. When a concentration gradient produced by solidification is present in the initial conditions, deviations from the cooling rate curves for uniform 10% Ni are obtained only at cooling rates greater than 1000 K/million years, which would result in an overestimation of the cooling rates based on observed Ni gradients in grains of radius greater than 20 microns.

  17. Nonequilibrium superconducting detectors

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.


    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  18. Nonequilibrium superconducting detectors

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)


    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  19. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization

    Golod, V. M.; Sufiiarov, V. Sh


    Gas atomization is a high-performance process for manufacturing superfine metal powders. Formation of the powder particles takes place primarily through the fragmentation of alloy melt flow with high-pressure inert gas, which leads to the formation of non-uniform sized micron-scale particles and subsequent their rapid solidification due to heat exchange with gas environment. The article presents results of computer modeling of crystallization process, simulation and experimental studies of the cellular-dendrite structure formation and microsegregation in different size particles. It presents results of adaptation of the approach for local nonequilibrium solidification to conditions of crystallization at gas atomization, detected border values of the particle size at which it is possible a manifestation of diffusionless crystallization.

  20. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion.

    Ramirez, J C; Beckermann, C; Karma, A; Diepers, H-J


    A phase-field model is developed for simulating quantitatively microstructural pattern formation in solidification of dilute binary alloys with coupled heat and solute diffusion. The model reduces to the sharp-interface equations in a computationally tractable thin-interface limit where (i). the width of the diffuse interface is about one order of magnitude smaller than the radius of curvature of the interface but much larger than the real microscopic width of a solid-liquid interface, and (ii). kinetic effects are negligible. A recently derived antitrapping current [Phys. Rev. Lett. 87, 115701 (2001)

  1. Modeling of Cooling and Solidification of TNT based Cast High Explosive Charges

    A. Srinivas Kumar


    Full Text Available Cast trinitrotoluene (TNT based high explosive charges suffer from different defects such as cracks, voids, etc. One of the quality control measures is to cool the castings gradually, so that the entire charge solidifies without a large temperature gradient from core to the periphery of the cast charge. The fact that the solidification of high explosive casting starts from the periphery (cooler side and travels towards the center enables us to predict the solidification profile of TNT based explosive castings. Growth of solidification thickness and cooling temperature profiles of TNT based cast high explosive charges are predicted as functions of time and space using unsteady state heat transfer principles, associated with heat balance at solid to liquid interface as a moving boundary of solidification. This will enable adoption of proper quality control during solidification of the molten TNT to eliminate inherent drawbacks of cast high explosive charges. The solidification profiles of TNT based cast charges under controlled and natural conditions are predicted and the model is validated against 145 mm diameter TNT cast charge which is found to be in broad agreement with experiments.Defence Science Journal, Vol. 64, No. 4, July 2014, pp.339-343, DOI:

  2. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟*%Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio∗

    陈海楠; 孙东科; 戴挺; 朱鸣芳


      A two-dimensional (2D) two-component and two-phase lattice Boltzmann method (LBM) with large density ratio is developed based on a modified Shan-Chen pseudopotential model combined with the deferent time step method. The present LBM model can simulate the gas-liquid two-phase flow with density ratio up to around 800. To validate the model, the pressure difference between the inside and outside of a bubble varying with its radius is simulated with different gas-liquid interact parameters and density ratios. The results are found to obey the Laplace law. Then, the LBM is coupled with the cellular automaton (CA) method used for simulating the solid phase growth, and the finite difference method (FDM) used for calculating the temperature field. The LBM-CA-FDM coupled model is used to simulate the interaction between bubble and the solidification interface. The results show that the existence of adiabatic bubble influences the distribution of temperature field in front of solidification interface, which leads to a bulge of the solid-liquid interface when it is close to the bubble. Under the conditions of different growth rates, the bubble is either engulfed or pushed away by the growing solid-liquid interface. The simulation results agree reasonably well with those observed experimentally.%  建立了二维双组分两相流的大密度比格子玻尔兹曼方法(lattice Boltzmann method, LBM)模型。该模型基于改进的Shan-Chen伪势多相流LBM模型,结合采用不同时间步长的方法,实现密度比达800以上的气液两相流模拟。为了对模型进行验证,模拟了在不同气液相互作用系数和密度比条件下气泡内外压力差与其半径之间的关系,其结果满足Laplace定律。将所建立的大密度比LBM与介观尺度的元胞自动机(cellular automaton, CA)和有限差分法(FDM)相耦合,用LBM模拟气液两相流,用CA方法模拟固相生长,用有限差分法模拟温度场,采用LBM-CA-FDM耦合模型对

  3. Effect of thermosolutal convection on directional solidification

    Suresh V Garimella; James E Simpson


    The impact of thermosolutal convection during directional solidification is explored via results of numerical investigations. Results from fully transient numerical simulations of directional solidification in a differentially heated cavity under terrestrial conditions and Bridgman crystal growth in space are discussed. The pivotal role of both thermal and solutal convection in the solidification process is illustrated by examining these two cases. In particular, radial and longitudinal macrosegregation resulting from this thermosolutal convection is discussed.

  4. Non-equilibrium Economics

    Katalin Martinás


    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  5. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene


    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  6. Rapid solidification in thermal spary deposition: Microstructure and modelling

    Guo-Xiang Wang; V Prasad; S Sampath


    Mechanical, thermal, and adhesive properties of thermal spray coatings are primarily determined by the phase and microstructure of single splats, which ultimately depend on rapid solidification of each splat and on the interactions between the splats and between the splat and the substrate. Significant efforts are being made to develop a better understanding of the physical mechanisms underlying these phenomena. This paper reviews a series of work in the area of mathematical modelling of phase and microstructure formation during the rapid solidification of single splats and coatings. The model development has been complimented by special experiments. Conditions under which plariar interface solidification occurs, columnar cellular or dendriric growth takes place, or banded structure forms, have been identified. A microstructure map can therefore be built using the model presented here. The process parameters that promote crystalline nucleation and grain structure formation can be isolated and the effect of interfacial heat transfer, splat substrate temperature difference, and substrate melting and resolidification can be examined using the model. The model predictions agree qualitatively well with the experimental data for alumina, yttria, partially-stabilized zirconia, and molybdenum.

  7. Investigation of compositional segregation during unidirectional solidification of solid solution semiconducting alloys

    Wang, J. C.


    Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.

  8. Modified enthalpy method for the simulation of melting and solidification

    Niranjan N Gudibande; Kannan N Iyer


    Enthalpy method is commonly used in the simulation of melting and solidification owing to its ease of implementation. It however has a few shortcomings. When it is used to simulate melting/solidification on a coarse grid, the temperature time history of a point close to the interface shows waviness. While simulatingmelting with natural convection, in order to impose no-slip and impermeability boundary conditions, momentum sink terms are used with some arbitrary constants called mushy zone constants. The values of these are very large and have no physical basis. Further, the chosen values affect the predictions and hence have to be tuned for satisfactory comparison with experimental data. To overcome these deficiencies, a new cell splitting method under the framework of the enthalpy method has been proposed. This method does not produce waviness nor requires mushy zone constants for simulating melting with natural convection. The method is then demonstrated for a simple onedimensional melting problem and the results are compared with analytical solutions. The method is then demonstrated to work in two-dimensions and comparisons are shown with analytical solutions for problems with planar and curvilinear interfaces. To further benchmark the present method, simulations are performed for melting in a rectangular cavity with natural convection in the liquid melt. The solid–liquid interface obtained is compared satisfactorily with the experimental results available in literature.

  9. Boundary-layer model of pattern formation in solidification

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.


    A model of pattern formation in crystal growth is proposed, and its analytic properties are investigated. The principal dynamical variables in this model are the curvature of the solidification front and the thickness (or heat content) of a thermal boundary layer, both taken to be functions of position along the interface. This model is mathematically much more tractable than the realistic, fully nonlocal version of the free-boundary problem, and still recaptures many of the features that seem essential for studying dendritic behavior, for example. Preliminary numerical solutions produce snowflakelike patterns similar to those seen in nature.

  10. Solidification process and infrared image characteristics of permanent mold castings

    Viets, Roman; Breuer, Markus; Haferkamp, Heinz; Kruessel, Thomas; Niemeyer, Matthias


    Interdependence between the development of temperature gradients at the solid-liquid interface during solidification of metals and the formation of local defects demands for thermal investigation. In foundry practice thermocouples are used to control the die's overall cooling-rate, but fluctuations in product quality still occur. Capturing FIR- thermograms after opening the die visualizes the state, when most thermal throughput has already flattened the temperature gradients in the mold. Rapid dissipation of heat from liquid metal to the mold during solidification forces further approach of the process investigation by slowing down the heat flux or the use of transparent mold material. Aluminum gravity casting experiments under technical vacuum conditions lead to decelerated solidification by suppression of convection and image sequences containing explicit characteristics that could be assigned to local shrinkage of the casting. Hence relevant clusters are extracted and thermal profiles are drawn from image series, pointing out correlations between feeding performance from the sink heads and the appearance of local defects. Tracing thermal processes in vacuum casting can scarcely be transferred to image data in foundry practice, since only little analogies exist between atmospheric and vacuum casting. The diagnosis of the casting process requires detection of the still closed mold using a transparent silica- aerogel sheet as part of the die. Hereby thermograms of the initial heat input are recorded by adapting a NIR-camera in addition to the FIR-unit. Thus the entire thermal compensation at the joint face for each casting is visualized. This experimental set-up is used for image sequence analysis related to the intermediate casting phases of mold filling, body formation and solidification shrinkage.

  11. Effect of anisotropy on deep cellular crystal growth in directional solidification

    Jiang, Han; Chen, Ming-Wen; Shi, Guo-Dong; Wang, Tao; Wang, Zi-Dong


    The effect of anisotropic surface tension and anisotropic interface kinetics on deep cellular crystal growth is studied. An asymptotic solution of deep cellular crystal growth in directional solidification is obtained by using the matched asymptotic expansion method and the multiple variable expansion method. The results show that as the anisotropic parameters increase, the total length of deep cellular crystal increases and the root depth increases, whereas the curvature of the interface near the root increases or the curvature radius decreases.

  12. Particle incorporation in metallic melts during dendritic solidification-undercooling experiments under reduced gravity

    Lierfeld, T. [Institute of Space Simulation, German Aerospace Center (DLR), D-51170 Cologne (Germany); Institute of Materials, Ruhr-University Bochum, D-44780 Bochum (Germany)], E-Mail:; Gandham, P. [Institute of Space Simulation, German Aerospace Center (DLR), D-51170 Cologne (Germany); Department of Metallurgical and Materials Engineering, IITM, Chennai (India); Kolbe, M. [Institute of Space Simulation, German Aerospace Center (DLR), D-51170 Cologne (Germany); Schenk, T. [Experiments Division (ID19), ESRF, F-38043 Grenoble (France); Laboratoire de Physique des Materiaux, EdM de Nancy, F-54042 Nancy (France); Singer, H.M. [Laboratory for Solid State Physics, Swiss Federal Institute of Technology ETH, CH-8093 Zurich (Switzerland); Eggeler, G. [Institute of Materials, Ruhr-University Bochum, D-44780 Bochum (Germany); Herlach, D.M. [Institute of Space Simulation, German Aerospace Center (DLR), D-51170 Cologne (Germany)


    The interaction of ceramic particles with a dendritic solid/liquid-interface has been investigated by undercooling experiments with different levels of convection: (i) in a terrestrial electromagnetic levitation facility and (ii) in TEMPUS, a facility for containerless processing, under low gravity conditions during parabolic flights. Entrapment of particles in ground experiments and engulfment of a significant fraction of submicron particles under low gravity conditions are attributed to the lower level of convection in the latter experiments and to morphological features of dendritic solidification. X-ray radiography has been used for in situ observations of directional solidification in Al{sub 90}Cu{sub 10} with alumina particles.

  13. Laser ablation ICP-MS investigation of solute element distributions during Al-Si solidification

    Nafisi, Shahrooz [Center for University Research on Aluminum (CURAL), University of Quebec at Chicoutimi, Chicoutimi, QC, G7H 2B1 (Canada); Cox, Richard [Department of Earth Sciences, University of Quebec at Chicoutimi, Chicoutimi, QC, G7H 2B1 (Canada); Ghomashchi, Reza [Center for University Research on Aluminum (CURAL), University of Quebec at Chicoutimi, Chicoutimi, QC, G7H 2B1 (Canada)]. E-mail:


    During solidification of an alloy, solute elements may pile up ahead of the growing interface due to their lower solubility within the solid material, when the distribution or partition coefficient is less than unity. In this paper, laser ablation inductively coupled plasma mass spectrometry, LA-ICP-MS, as a new method, is used to analyze solute distribution within primary {alpha}-Al particles formed during solidification of hypoeutectic Al-Si alloys. The results are further compared with those obtained from electron probe micro-analysis, EPMA, of the same specimens. There is a good agreement between the results obtained by both techniques.

  14. 1-D diffusion based solidification model with volumetric expansion and shrinkage effect: A semi-analytical approach

    Monde, Aniket D.; Chakraborty, Prodyut R.


    Volumetric expansion and shrinkage due to different densities of solid and liquid phases are common phenomena during solidification process. Simple analytical models addressing effect of volumetric expansion/shrinkage during solidification are rarely found. The few existing 1-D solidification models are valid only for semi-infinite domain with limitations of their application for finite domain size. The focus of the present work is to develop a 1-D semi-analytical solidification model addressing effects of volumetric expansion/shrinkage in a finite domain. The proposed semi-analytical scheme involves finding simultaneous solution of transient 1-D heat diffusion equations at solid and liquid domain coupled at the interface by Stefan condition. The change of the total domain length during solidification due to volumetric expansion/shrinkage is addressed by using mass conservation. For validation of the proposed model, solidification of water in a finite domain is studied without considering volumetric expansion/shrinkage effect and results are compared with those obtained from existing enthalpy updating based numerical model. After validation, case studies pertaining to volumetric expansion and shrinkage are performed considering solidification of water and paraffin respectively and physically consistent results are obtained. The study is relevant for understanding unidirectional crystal growth under the effect of controlled boundary condition.

  15. Numerical modelling of rapid solidification

    Pryds, Nini; Hattel, Jesper Henri


    A mathematical model of the melt spinning process has been developed based on the control-volume finite-difference method. The model avoids some of the limitations of the previous models, for example including the effect of the wheel in the heat how calculations and the temperature dependence...... of the thermophysical parameters of the material. The nucleation temperature was calculated based on the heterogeneous nucleation theory. The effect of various parameters, such as the heat transfer coefficient, the nucleation temperature and the heating and type of the wheel on the rapid solidification behaviour...

  16. Directional Solidification of Eutectic Ceramics

    Sayir, Ali


    Two major problems associated with structural ceramics are lack of damage tolerance and insufficient strength and creep resistance at very high temperatures of interest for aerospace application. This work demonstrated that the directionally solidified eutectics can have unique poly-phase microstructures and mechanical properties superior to either constituent alone. The constraining effect of unique eutectic microstructures result in higher resistance to slow crack growth and creep. Prospect of achieving superior properties through controlled solidification are presented and this technology can also be beneficial to produce new class of materials.

  17. Nonequilibrium thermodynamics of nucleation

    Schweizer, M., E-mail: [ETH Zurich, Department of Materials, Polymer Physics, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Sagis, L. M. C., E-mail: [ETH Zurich, Department of Materials, Polymer Physics, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Food Physics Group, Wageningen University, Bornse Weilanden, 6708 WG Wageningen (Netherlands)


    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  18. Theory of Nonequilibrium Spin Transport and Spin Transfer Torque in Superconducting-Ferromagnetic Nanostructures

    Zhao, Erhai; Sauls, J. A.


    Spin transport currents and the spin-transfer torques in voltage-biased superconducting-ferromagnetic nanopillars (SFNFS point contacts) are computed. We develop and implement an algorithm based on the Ricatti formulation of the quasiclassical theory of superconductivity to solve the time-dependent boundary conditions for the nonequilibrium Green's functions for spin transport through the ferromagnetic interfaces. A signature of the nonequilibrium torque is a component perpendicular to the pl...

  19. Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification

    Wang, Ying

    Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO2 interfacial energy (i.e., sigma Si-SiO2). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified

  20. Thermal Convection Affects Shape Of Solid/Liquid Interface

    Mennetrier, C.; Chopra, M. A.; Yao, M.; De Groh, H. C., III; Yeoh, G. H.; De Vahl Davis, G.; Leonardi, E.


    Report describes experimental and theoretical study of effect of thermal convection on shape of interface between solid and liquid succinonitrile, clear commercially available plastic, in Bridgman (directional-solidification) apparatus in vertical and horizontal orientations.

  1. Application of Layer-by-Layer Solidification Principle to Optimization of Large Chain Wheel Foundry Technology

    李日; 毛协民; 柳百成; 李文珍


    In order to get a sound casting of the alloy with a solidification range, the principle of directional solidification (DS) and the layer-by-layer solidification(LBLS) should be followed, especially in designing foundry process of steel cas/dng. Using the principles, the reasons for the forming of the defects on the surface of the chain wheels teeth and groove and the forming of MT (magneldc particle testing) thin lines were analyzed. The results of the metallographic observation and the numerical simulation show that the low temperature gradient results in a wider mushy zone at the S/L interface that causes the defects and MT thin lines on the surface of the chain wheel casting. Bvsed on the anslysis, a new casUng technology of the chain wheel was designed and used in the casting production successfully.

  2. A Chebyshev Collocation Method for Moving Boundaries, Heat Transfer, and Convection During Directional Solidification

    Zhang, Yiqiang; Alexander, J. I. D.; Ouazzani, J.


    Free and moving boundary problems require the simultaneous solution of unknown field variables and the boundaries of the domains on which these variables are defined. There are many technologically important processes that lead to moving boundary problems associated with fluid surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass solidification, melting and name propagation. The directional solidification of semi-conductor crystals by the Bridgman-Stockbarger method is a typical example of such a complex process. A numerical model of this growth method must solve the appropriate heat, mass and momentum transfer equations and determine the location of the melt-solid interface. In this work, a Chebyshev pseudospectra collocation method is adapted to the problem of directional solidification. Implementation involves a solution algorithm that combines domain decomposition, finite-difference preconditioned conjugate minimum residual method and a Picard type iterative scheme.

  3. Local equations of state in nonequilibrium heterogeneous physicochemical systems

    Tovbin, Yu. K.


    Equations describing local thermal and caloric equations of state in heterogeneous systems at any degree of their states' deviation from equilibrium are derived. The state of a system is described by equations of the transfer of mixture components; these generalize the equations of classical non-equilibrium thermodynamics for strongly nonequilibrium processes. The contributions from reactions and external fields are taken into account. The equations are derived using the lattice gas model with discrete molecular distributions in space (on a scale comparable to molecular dimensions) and continuous molecular distributions (at short distances inside cells) during their translational and vibrational motions. For simplicity, it is assumed that distinctions between the sizes of mixture components are small. Contributions from potential functions of intermolecular interaction (of the Lennard-Jones type) to some coordination spheres are considered. The theory provides a unified description of the dynamics of distributions of concentrations and pair functions of mixture components in three aggregate states, and at their interfaces. Universal expressions for the local components of the pressure tensor and internal energy inside multicomponent bulk phases and at their interfaces are obtained. Local components of the pressure tensor and the internal energy are universally expressed through local unary and pair distribution functions (DFs) in any nonequilibrium state. The time evolution of the unary and pair DFs themselves is determined from the derived system of equations of mass, momentum, and energy transfer that ensure the transition of the system from a strongly nonequilibrium state to both the local equilibrium state described within traditional nonequilibrium thermodynamics and the complete thermodynamic equilibrium state postulated by classical thermodynamics.

  4. Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process

    Li Qiang; Guo Qiao-Yi; Li Rong-De


    The dendrite growth and solute microsegregation of Fe-C binary alloy are simulated during solidification process by using cellular automaton method.In the model the solid fraction is deduced from the relationship among the temperature,solute concentration and curvature of the solid/liquid interface unit,which can be expressed as a quadric equation,instead of assuming the interface position and calculating the solid fraction from the interface velocity.Then by using this model a dendrite with O and 45 degree of preferential growth direction are simulated respectively.Furthermore,a solidification microstructure and solute microsegregation are simulated by this method. Finally,different GibbsThomson coefficient and liquid solute diffusing coefficient are adopted to investigate their influences on the morphology of dendrite.

  5. Stability of a directional solidification front in subdiffusive media.

    Hamed, Mohammad Abu; Nepomnyashchy, Alexander A


    The efficiency of crystal growth in alloys is limited by the morphological instability, which is caused by a positive feedback between the interface deformation and the diffusive flux of solute at the front of the phase transition. Usually this phenomenon is described in the framework of the normal diffusion equation, which stems from the linear relation between time and the mean squared displacement of molecules 〈x2(t)〉∼K1t (K1 is the classical diffusion coefficient) that is characteristic of Brownian motion. However, in some media (e.g., in gels and porous media) the random walk of molecules is hindered by obstacles, which leads to another power law, 〈x2(t)〉∼Kαtα, where 0directional solidification front in the case of an anomalous diffusion. Linear stability of a moving planar directional solidification front is studied, and a generalization of the Mullins-Sekerka stability criterion is obtained. Also, an asymptotic nonlinear long-wave evolution equation of Sivashinsky's type, which governs the cellular structures at the interface, is derived.

  6. Phase-field simulation of dendritic solidification using a full threaded tree with adaptive meshing

    Yin Yajun; Zhou Jianxin; Liao Dunming; Pang Shengyong; Shen Xu


    Simulation of the microstructure evolution during solidification is greatly beneficial to the control of solidification microstructures. A phase-field method based on the ful threaded tree (FTT) for the simulation of casting solidification microstructure was proposed in this paper, and the structure of the ful threaded tree and the mesh refinement method was discussed. During dendritic growth in solidification, the mesh for simulation is adaptively refined at the liquid-solid interface, and coarsened in other areas. The numerical results of a three-dimension dendrite growth indicate that the phase-field method based on FTT is suitable for microstructure simulation. Most importantly, the FTT method can increase the spatial and temporal resolutions beyond the limits imposed by the available hardware compared with the conventional uniform mesh. At the simulation time of 0.03 s in this study, the computer memory used for computation is no more than 10 MB with the FTT method, while it is about 50 MB with the uniform mesh method. In addition, the proposed FTT method is more efficient in computation time when compared with the uniform mesh method. It would take about 20 h for the uniform mesh method, while only 2 h for the FTT method for computation when the solidification time is 0.17 s in this study.

  7. Formation of metastable phases during solidification of Al-3.2 wt% Mn

    Khvan, Alexandra V.; Cheverikin, Vladimir V.; Dinsdale, Alan T. [Thermochemistry of Materials SRC, National University of Science and Technology MISIS, 4 Leninsky Prosp., 119049 Moscow (Russian Federation); Watson, Andy [Thermochemistry of Materials SRC, National University of Science and Technology MISIS, 4 Leninsky Prosp., 119049 Moscow (Russian Federation); Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, LS2 9JT Leeds (United Kingdom); Levchenko, Viktor V.; Zolotorevskiy, Vadim S. [Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology MISIS, 4 Leninsky Prosp., 119049 Moscow (Russian Federation)


    Highlights: • During rapid solidification of Al-Mn alloys, expected phases do not always form. • This has been verified in this study. • Calculations of phase equilibria using thermodynamics can help to explain this. • ‘Stable’ phases are shown to be kinetically inhibited from forming. - Abstract: The solidification of the technologically important Al-rich Al-Mn alloys has been studied both experimentally and by calculation of the phase equilibria. The results of previous experimental studies, which indicated that one or more stable intermetallic phases are suppressed on solidification from the liquid, have been confirmed. It was shown that it is important to consider the formation of Al{sub 11}Mn{sub 4} even though other intermetallic phases have a higher driving force for solidification. It is concluded that while an understanding of the thermodynamic properties of the phases is fundamental to modelling the formation of microstructure associated with solidification, it is necessary to take into account other effects such as the thermodynamic properties at interfaces and their effect on nucleation.

  8. Steps, kinetic anisotropy, and long-wavelength instabilities in directional solidification.

    Grimm, H P; Davis, S H; McFadden, G B


    We consider the effect of anisotropic interface kinetics on long-wavelength instabilities during the directional solidification of a binary alloy having a vicinal interface. Linear theory predicts that a planar solidification front is stabilized under the effect of anisotropy as long as the segregation coefficient is small enough, whereas a novel instability appears at high rates of solidification. Furthermore, the neutral stability curve, indicating the values of the principal control parameter (here the morphological number) for which the growth rate of a sinusoidal perturbation of a given wavelength changes its sign, is shown to have up to three branches, two of them combining to form an isola for certain values of the control parameters. We identify conditions for which linear stability theory predicts the instability of the planar interface to long-wavelength traveling waves. A number of distinguished limits provide evolution equations that describe the resulting dynamical behavior of the crystal-melt interface and generalize previous work by Sivashinsky, Brattkus, and Davis and Riley and Davis. Bifurcation analysis and numerical computations for the derived evolution equations show that the anisotropy is able to promote the tendency to supercritical bifurcation, and also leads to the development of strongly preferred interface orientations for finite-amplitude deformations.

  9. Solute segregation in directional solidification of GaInSb concentrated alloys under alternating magnetic fields

    Stelian, Carmen; Delannoy, Yves; Fautrelle, Yves; Duffar, Thierry


    Numerical simulations of the vertical Bridgman solidification of Ga 1- xIn xSb concentrated alloys are performed by using the commercial codes FIDAP ® and FLUENT ®. The transient axi-symmetric simulation of heat, mass and species transport during highly doped ( x=0.2) crystal growth, shows a strong solute effect on the melt convection. The thermally driven flow is damped by the heavier solute (InSb) rejected at the solid-liquid interface. A diffusive transport regime is established in the melt a short time after the beginning of solidification and as a consequence, the radial segregation increases. This leads to a significant increase of the interface curvature because of the melting point dependency on the interface composition. Finally, the crystals are not chemically homogeneous with large variations of InSb concentration on the axial and radial directions. In order to improve the chemical homogeneity of highly doped Ga 1- xIn xSb crystals, it is proposed to apply an alternating magnetic field in the vicinity of the solid-liquid interface. The magnetic parameters for which an optimal level of convection arises in the melt are derived from the numerical simulation. It is shown that during solidification under optimized electromagnetic stirring, the radial segregation and interface deflection can be maintained at low values.

  10. Modeling of Mold Filling and Solidification in Lost Foam Casting

    Fengjun LI; Houfa SHEN; Baicheng LIU


    Based on the characteristics of the lost foam casting (LFC) and the artificial neural network technique, a mathematicalmodel for the simulation of the melt-pattern interface movement during the mold filling of LFC has been proposed andexperimentally verified. The simulation results are consistent with the experiments in both the shapes of melt frontand filling sequences. According to the calculated interface locations, the fluid flow and the temperature distributionsduring the mold filling and solidification processes were calculated, and the shrinkage defect of a lost foam ductileiron casting was predicted by considering the mold wall movement in LFC. The simulation method was applied tooptimize the casting design of lost foam ductile iron castings. It is shown that the model can be used for the defectsprediction and for casting design optimization in the practical LFC production.

  11. Non-equilibrium phase transitions

    Henkel, Malte; Lübeck, Sven


    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  12. Solidification of gold nanoparticles in carbon nanotubes.

    Arcidiacono, S; Walther, J H; Poulikakos, D; Passerone, D; Koumoutsakos, P


    The structure and the solidification of gold nanoparticles in a carbon nanotube are investigated using molecular dynamics simulations. The simulations indicate that the predicted solidification temperature of the enclosed particle is lower than its bulk counterpart, but higher than that observed for clusters placed in vacuum. A comparison with a phenomenological model indicates that, in the considered range of tube radii (R(CNT)) of 0.5 < R(CNT) < 1.6 nm, the solidification temperature depends mainly on the length of the particle with a minor dependence on R(CNT).

  13. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys

    Kenel, C., E-mail:; Leinenbach, C.


    Highlights: • Rapid solidification studies with varying cooling rates were realized for Ti–Al. • Experiments were combined with finite element simulations of heat transfer. • The resulting microstructure of Ti–Al alloys is strongly dependent on the Al content. • The microstructure and phase transformation behavior can be predicted. • The method allows alloy development for processes involving rapid solidification. - Abstract: Titanium aluminides as structural intermetallics are possible candidates for a potential weight reduction and increased performance of high temperature components. A method for the characterization of the microstructure formation in rapidly solidified alloys was developed and applied for binary Ti–(44–48)Al (at.%). The results show a strong dependency of the microstructure on the Al content at cooling rates between 6 ⋅ 10{sup 2} and 1.5 ⋅ 10{sup 4} K s{sup −1}. The formation of α → α{sub 2} ordering, lamellar α{sub 2} + γ colonies and interdendritic TiAl γ-phase were observed, depending on the Al amount. Based on thermodynamic calculations the observed microstructure can be explained using the CALPHAD approach taking into account the non-equilibrium conditions. The presented method provides a useful tool for alloy development for processing techniques involving rapid solidification with varying cooling rates.

  14. Interrupted and Isothermal Solidification Studies of Low and Medium Carbon Steels

    Pottore, N. S.; Garcia, C. I.; Deardo, A. J.


    Low and medium carbon steels experience multiple phase transformations during solidification and subsequent cooling. The sequence, extent, and nature of the different transformations have a significant bearing on the microstructural evolution that occurs in the steel. The change in microstructure with temperature is very important, since it may influence the hot ductility of the steel during casting and/or rolling and the subsequent response of the material to thermoprocessing. The aim of this investigation was to gain a better understanding of the development of the as-cast structure in low and medium carbon steels. Of particular interest is the origin of the large austenite grains frequently associated with poor hot ductility. Interrupted and isothermal solidification experiments were therefore conducted to study the nonequilibrium and near-equilibrium structures which form at different stages of the freezing process. The results of the investigation established delta-ferrite as the primary solidifying phase in low carbon steels. Austenite forms as the secondary phase by nucleation at the solidification (delta-ferrite) boundaries. While excessive austenite grain coarsening is suppressed by the coexistence of the second phases delta-ferrite or liquid, this suppression occurs over only a limited temperature range, just below the peritectic temperature. Subsequent cooling leads to very large austenite grains, ranging up to 5 mm in diameter, in steels of low carbon content.

  15. Nonequilibrium stationary states and entropy.

    Gallavotti, G; Cohen, E G D


    In transformations between nonequilibrium stationary states, entropy might not be a well defined concept. It might be analogous to the "heat content" in transformations in equilibrium which is not well defined either, if they are not isochoric (i.e., do involve mechanical work). Hence we conjecture that in a nonequilibrium stationary state the entropy is just a quantity that can be transferred or created, such as heat in equilibrium, but has no physical meaning as "entropy content" as a property of the system.

  16. Rapid solidification of immiscible alloys

    Bosco, Enrica; Rizzi, Paola; Baricco, Marcello E-mail:


    Immiscible alloys have been rapidly solidified for the preparation of granular materials with giant magnetoresistance properties. Au-based (Au-Co and Au-Fe) and Cu-based (Cu-Co and Cu-Fe) systems have been investigated. Single supersaturated solid solution has been obtained for Au-Fe, whereas three FCC solid solutions with different Co content have been found for Au-Co. For Cu-Co and Cu-Fe a limit of solubility in Cu has been observed. Ni additions to Cu-Fe strongly enhance solid solubility. A thermodynamic analysis has been used to describe the competition between partition-less solidification and phase separation in undercooled liquid.

  17. Thermoelastic Stability Analysis of Solidification of Pure Metals on a Coated Planar Mold of Finite Thickness

    Demir, Mehmet Hakan; Yigit, Faruk


    A theoretical model for investigating the thermoelastic instability/mechanism during pure metal solidification on a coated mold of finite thickness is developed. This study extends the previous theoretical works on growth instability during solidification process by investigating the effects of an added coating layer. Mold coating is one of the most important factors controlling the heat transfer rate, and hence it has a very important role on the solidification rate and the development of microstructure. In this model, thermal and mechanical problems are coupled through the pressure-dependent contact resistances at mold/coating and coating/shell interfaces. The thermal diffusivities of solidified shell, coating, and mold materials are assumed to be zero. This assumption provides us to solve heat transfer problem analytically. A linear perturbation method is used to simplify complexity of the modeled solidification problem, and governing equations are solved numerically using a variable step variable order predictor-corrector algorithm. The effects of coating layer thickness and coupling rates at shell/coating and coating/mold interfaces are investigated in detail. The results show that coating thickness has destabilizing effect on the growth instability when the coupling rates are small. However, when these coupling rates are increased individually or together, the destabilizing effect of coating thickness turns to be stabilizing. On the other hand, coupling rates have generally destabilizing effects on the process, but an increase in the thickness of coating leads to diminishing coupling rates effect in some cases.

  18. Open problems in non-equilibrium physics

    Kusnezov, D.


    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  19. Evolution of solidification texture during additive manufacturing

    Wei, H L; Mazumder, J; DebRoy, T


    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data...

  20. Alternating grain orientation and weld solidification cracking

    Kou, S.; Le, Y.


    A new mechanism for reducing weld solidification cracking was proposed, based on the concept of the crack path and resistance to crack propagation, and its effectiveness was verified in magnetically oscillated GTA welds of a rather crack susceptible material 2014 aluminum alloy. This mechanism, i.e., alternating grain orientation, was most pronounced in welds made with transverse arc oscillation of low frequency and high amplitude, and solidification cracking was dramatically reduced in these welds. The effect of the arc oscillation pattern, amplitude, and frequency on the formation of alternating columnar grains and the reduction of solidification cracking in GTA welds of 2014 aluminum alloy was examined and explained. The present study demonstrated for the first time that columnar grains can, in fact, be very effective in reducing solidification cracking, provided that they are oriented favorably.

  1. A visualization of the eutectic solidification process

    E. Olejnik


    Full Text Available The study presents a visualization of the sequence of formation of eutectic grains during solidification in volume and directional solidification of model organic materials from the system of salol (faceted phase - camphor (non-faceted phase and carbon tetrabromide (non-faceted phase - hexachloroethane (non-faceted phase. It has been proved that the faceted phase may act as a substrate for nucleation of the non-faceted phase, while the non-faceted phase in a eutectic grain is of polycrystalline character. The directional solidification of non-faceted/non-faceted eutectic enabled disclosing various structural defects, while solidification in volume explained in what way the, so called, halo effect is formed.

  2. Evolution of solidification texture during additive manufacturing.

    Wei, H L; Mazumder, J; DebRoy, T


    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.

  3. A Citizen's Guide to Solidification and Stabilization

    This guide describes how solidification and stabilization refer to a group of cleanup methods that prevent or slow the release of harmful chemicals from wastes, such as contaminated soil, sediment, and sludge.

  4. Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys

    Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo


    characterized, the constituent metals are available in a very pure form, and the thermophysical properties are well known. During solidification of hypoeutectic alloys, e.g., 55 wt pct Pb, the primary dendrites reject the less dense tin, and for the hypereutectic alloys, e.g., 75 wt pct Sn, the primary dendrites reject denser lead. Alloys were prepared by melting appropriate amounts of lead and tin in a glass crucible after which the homogeneous liquid was sucked directly into 5-mm i.d. glass tubes. The sample tube, containing approximately 30 cm of alloy, was then mechanically driven into the directional solidification furnace assembly and positioned such that approx. 20 cm of the sample was remelted. Subsequently, directional solidification was initiated by withdrawing the sample through a water-cooled jacket at a constant growth velocity of 2 ,microns/s. After 5 to 6 cm of growth, the sample was quickly removed from the furnace and quenched in a water bath to preserve the solid-liquid interface. Samples were directionally solidified vertically upward, nearly horizontally, and some in conjunction with an applied axial rotation of the crucible. Temperature gradients at the solid-liquid interface were measured with an in-siru K-type thermocouple. Solidified samples were cut perpendicular and parallel to the growth direction and conventionally prepared for microscopic examination.

  5. Rheology via nonequilibrium molecular dynamics

    Hoover, W.G.


    The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference.

  6. Chaotic dynamics, fluctuations, nonequilibrium ensembles.

    Gallavotti, Giovanni


    The ideas and the conceptual steps leading from the ergodic hypothesis for equilibrium statistical mechanics to the chaotic hypothesis for equilibrium and nonequilibrium statistical mechanics are illustrated. The fluctuation theorem linear law and universal slope prediction for reversible systems is briefly derived. Applications to fluids are briefly alluded to. (c) 1998 American Institute of Physics.

  7. The effect of ultrasonic processing on solidification microstructure and heat transfer in stainless steel melt.

    Zhang, Xiaopeng; Kang, Jinwu; Wang, Shuo; Ma, Jiyu; Huang, Tianyou


    The heat transfer in the ultrasonic processing of stainless steel melt is studied in this thesis. The temperature field is simulated when the metal melt is treated with and without ultrasound. In order to avoid the erosion of high temperature melt, ultrasound was introduced from the bottom of melt. It is found that the temperature of melt apparently increases when processed with ultrasound, and the greater the ultrasonic power is, the higher the melt temperature will be; ultrasonic processing can reduce the temperature gradient, leading to more uniform temperature distribution in the melt. The solidification speed is obviously brought down due to the introduction of ultrasound during solidification, with the increasing of ultrasonic power, the melt temperature rises and the solidification speed decreases; as without ultrasound, the interface of solid and mushy zone is arc-shaped, so is the interface of liquid and mushy zone, with ultrasound, the interface of solid and mushy zone is still arc-shaped, but the interface of liquid and mushy zone is almost flat. The simulation results of temperature field are verified in experiment, which also indicates that the dendrite growth direction is in accord with thermal flux direction. The effect of ultrasonic treatment, which improves with the increase of treating power, is in a limited area due to the attenuation of ultrasound.

  8. Topologically protected modes in non-equilibrium stochastic systems

    Murugan, Arvind


    Non-equilibrium driving of biochemical reactions is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enyzmatic specificity and maintenance of coherent oscillations. Non-equilibrium biochemical reactions can be modeled as a master equation whose rate constants break detailed balance. We find that non equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. We show that when a biochemical network can be decomposed into two ordered bulks that meet at a possibly disordered interferace, the ordered bulks can be each associated with a topologically invariant winding number. If the winding numbers are mismatched, we are guaranteed that the steady state distribution is localized at the interface between the bulks, even in the presence of strong disorder in reaction rates. We argue that our work provides a framew...

  9. Potential Flow Interactions With Directional Solidification

    Buddhavarapu, Sudhir S.; Meiburg, Eckart


    The effect of convective melt motion on the growth of morphological instabilities in crystal growth has been the focus of many studies in the past decade. While most of the efforts have been directed towards investigating the linear stability aspects, relatively little attention has been devoted to experimental and numerical studies. In a pure morphological case, when there is no flow, morphological changes in the solid-liquid interface are governed by heat conduction and solute distribution. Under the influence of a convective motion, both heat and solute are redistributed, thereby affecting the intrinsic morphological phenomenon. The overall effect of the convective motion could be either stabilizing or destabilizing. Recent investigations have predicted stabilization by a flow parallel to the interface. In the case of non-parallel flows, e.g., stagnation point flow, Brattkus and Davis have found a new flow-induced morphological instability that occurs at long wavelengths and also consists of waves propagating against the flow. Other studies have addressed the nonlinear aspects (Konstantinos and Brown, Wollkind and Segel)). In contrast to the earlier studies, our present investigation focuses on the effects of the potential flow fields typically encountered in Hele-Shaw cells. Such a Hele-Shaw cell can simulate a gravity-free environment in the sense that buoyancy-driven convection is largely suppressed, and hence negligible. Our interest lies both in analyzing the linear stability of the solidification process in the presence of potential flow fields, as well as in performing high-accuracy nonlinear simulations. Linear stability analysis can be performed for the flow configuration mentioned above. It is observed that a parallel potential flow is stabilizing and gives rise to waves traveling downstream. We have built a highly accurate numerical scheme which is validated at small amplitudes by comparing with the analytically predicted results for the pure

  10. Effect of Initial Concentrations on Solidification of Ammonium Chloride water Solution


    The effect of initial concentrations on solidification of ammonium chloride water solution is numerically investigated in detail.The solidifying process.with the cold wall temperature lower than the eutectic temperature,is assumed to be one-dimensional,and controlled by heat conduction only.The simulation reveals that:(1) The solid-mush interface grows in a linear manner,while the growth rate of the mush-liquid interface decreases in a parabolic manner,with increasing initial concentrations.(2) The temperature field in the whole region has parabolic characteristics,but is shows a linear feature in the solid zone and mushy zone.(3) The concentration always has linear characteristics in the much.(4)The solid fraction distribution is strongly affected by the initial concertration.The solidification process shows quite different features,especially at small and high initial concentrations.

  11. Simulation of the solidification of pure nickel via the phase-field method

    Alexandre Furtado Ferreira


    Full Text Available The Phase-Field method was applied to simulate the solidification of pure nickel dendrites and the results compared with those predicted by the solidification theory and with experimental data reported in the literature. The model's behavior was tested with respect to some initial and boundary conditions. For an initial condition without supercooling, the smooth interface of the solid phase nucleated at the edges of the domain grew uniformly into the liquid region, without branching. In an initially supercooled melt, the interface became unstable under 260 K supercooling, generating ramifications into the liquid region. The phase-field results for dendrite tip velocity were close to experimental results reported in the literature for supercooling above 50 K, but they failed to describe correctly the nonlinear behavior predicted by the collision-limited growth theory and confirmed by experimental data for low supercooling levels.

  12. Solidification and crystal growth of solid solution semiconducting alloys

    Lehoczky, S.L.; Szofran, F.R.


    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  13. Investigation of solidification dynamics of Zr-based alloys

    Kobold, Raphael; Herlach, Dieter [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Ruhr-Universitaet Bochum, 44780 Bochum (Germany)


    In contrast to experiments with most undercooled binary alloys the velocity of dendritic growth of a Cu50Zr50 alloy does not increase monotonically with undercooling but passes through a maximum and then decreases. To study this behaviour we investigate Zr-based alloys such as CuZr, NiZr and NiZrAl with Zirconium concentrations ranging from 36 to 64 at.% including eutectic and intermetallic phases. We use electrostatic levitation technique to melt and undercool samples with a diameter of 2-3 mm under ultra-high-vacuum conditions. Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures since heterogeneous nucleation on container walls is completely avoided. During crystallisation of the undercooled melt the heat of crystallisation is released. The rapid increase of the temperature at the solid-liquid interface makes the solidification front visible. The velocities of the solidification front are recorded by using a high-speed camera with a maximum rate of 50.000 frames per second and are analyzed with a software for optical ray tracing. Furthermore, we try to model the growth velocity vs. the undercooling temperature and perform sample EBSD analysis with a scanning electron microscope.

  14. Solidification and crystal growth of solid solution semiconducting alloys

    Lehoczky, S. L.; Szofran, F. R.


    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  15. Thermal effects in rapid directional solidification - Linear theory

    Huntley, D. A.; Davis, S. H.


    We study the morphological instability of the planar solid/liquid interface for a unidirectionally-solidified dilute binary mixture. We use a model developed by Boettinger et al. (1985, 1986), Aziz (1982), and Jackson et al. (1980), which allows for nonequilibrium effects on the interface through velocity-dependent segregation and attachment kinetics. Two types of instabilities are found in the linear stability analysis: (1) a cellular instability, and (2) an oscillatory instability driven by disequilibrium effects. Merchant and Davis (1990) characterized these instabilities subject to the frozen-temperature approximation (FTA). The present work relaxes the FTA by including the effects of latent heat and the full temperature distribution. Thermal effects slightly postpone the onset of the cellular instability but dramatically postpone the onset of the oscillatory instability; however, the absolute-stability conditions, at which at high speed the cellular and oscillatory instabilities are suppressed, remain unchanged from the FTA.



    The solidification processing of SiCp/ZL108 composite material developed by mechanical stirring molten matrix alloy containing flux-treated SiC particles is studied. The criterion and model of particles well-distributed in matrix are discussed. The bonding structure of interface between SiC particles and ZL108 matrix and the morphology of tensile fracture are analysed by using JXA-840A electron-probe. The mechanism of crack propagating is explored preliminarily.

  17. Mass transport phenomena during solidification in microgravity; preliminary results of the first Mephisto flight experiment

    Favier, J. J.; Garandet, J. P.; Rouzaud, A.; Camel, D.


    The MEPHISTO space facility flew on the Columbia space shuttle in October 1992. The preliminary scientific results, mainly based on the analysis of the Seebeck signal, are presented in this paper. Valuable information was obtained for both planar and cellular solidification regimes. It is shown that mass transfer in the melt during the flight was principally diffusive; however, even in microgravity, slow growth rates may result in significant convective transport. A tentative interpretation of the Seebeck signal for destabilized interfaces is also proposed.

  18. Effect of the growth conditions on the spatial features of Re nanowires produced by directional solidification.

    Milenkovic, Srdjan; Hassel, Achim Walter; Schneider, André


    The effects of the solidification parameters, such as growth rate and temperature gradient, on the distance and diameter of Re nanowires have been examined. Both the spacing and diameter increase with decreasing growth rate and temperature gradient, respectively. The ratio of fiber spacing to diameter is 9.1. In addition, it was demonstrated that the temperature gradient influences interface undercooling in the same way as the growth rate and may be used as an additional parameter to control fiber spacing and diameter.

  19. Microstructure formation in binary Al-TM alloys under non-equilibrium solidification

    Beresina, A L; Kurdyumov, G V [Institute for Metal Physics, 36, Vernadsky Blvd, Kyiv-142 (Ukraine); Segida, E A, E-mail:


    The structure formation in hypereutectic Al-Sc and hyperperitectic Al-Zr, Al-Hf alloys with concentration of alloying element up to 1.3 at.% have been studied under conditions far from thermodynamical equilibrium depending on cooling rate and quenching temperature. The co-operative growth structures are solidified with cooling rate of 10{sup 2}-10{sup 3} K/s regardless of overheating and under cooling rate of 10{sup 5}-10{sup 6} K/s at small overheating. The phase compound of these structures is alpha-solid solutions and phase with L1{sub 2}-ordered structure or two solid solutions with different concentrations of alloying element. The large overheating leads to formation of alpha-solid solution anomalously supersaturated under cooling rate of 10{sup 5}-10{sup 6} K/s.

  20. Modeling of columnar and equiaxed solidification of binary mixtures; Modelisation de la solidification colonnaire et equiaxe de melanges binaires

    Roux, P


    This work deals with the modelling of dendritic solidification in binary mixtures. Large scale phenomena are represented by volume averaging of the local conservation equations. This method allows to rigorously derive the partial differential equations of averaged fields and the closure problems associated to the deviations. Such problems can be resolved numerically on periodic cells, representative of dendritic structures, in order to give a precise evaluation of macroscopic transfer coefficients (Drag coefficients, exchange coefficients, diffusion-dispersion tensors...). The method had already been applied for a model of columnar dendritic mushy zone and it is extended to the case of equiaxed dendritic solidification, where solid grains can move. The two-phase flow is modelled with an Eulerian-Eulerian approach and the novelty is to account for the dispersion of solid velocity through the kinetic agitation of the particles. A coupling of the two models is proposed thanks to an original adaptation of the columnar model, allowing for undercooling calculation: a solid-liquid interfacial area density is introduced and calculated. At last, direct numerical simulations of crystal growth are proposed with a diffuse interface method for a representation of local phenomena. (author)

  1. Thermodynamic Measure for Nonequilibrium Processes

    Attila Grandpierre


    Full Text Available One of the most fundamental laws of Nature is formulated by the Second Law of Thermodynamics. At present, in its usual formulation the central concept is entropy characterized in terms of equilibrium state variables. We point out that because thermodynamic changes arise when systems are out of equilibrium and because entropy is not a natural state variable characterizing non-equilibrium states, a new formulation of the Second Law is required. In this paper, we introduce a new, more general, but still entropic measure that is suitable in non-equilibrium conditions as well. This new entropic measure has given a name extropy. The introduction of extropy allows us to formulate the Second Law in a more suitable and precise form, and it resolves some conceptual difficulties related to the interpretation of entropy. We point out that extropy has a fundamental significance in physics, in biology, and in our scientific worldview.

  2. Forming Conditions and Neural Network Control of Continuously Directional Microstructure in Directional Solidification Continuous Casting Process


    Directional solidification continuous casting (DSCC) process is a new manufacturing technology for metal- lic materials which combines advantages of both directional solidification technology and continuous casting technolo- gy. Unlimited long shaped metal with directionally solidifying microstructure can be produced by this process. It is experimentally shown that controlling condition of stable and continuous growth of single crystal structure means the precise control of the location of the S/L interface, which is affected and determined by seven process parameters. Moreover, these parameters are also interacted each other, so the disturbance of any parameters may cause the fail- ure of controlling of S/L interface. In this paper, on the basis of analyzing the forming conditions of continuously di- rectional microstructures in DSCC process, the control model of DSCC procedure by neural network control (NNC) method was proposed and discussed. Combining with the experiments, we first used the computer to simulate the effects of the solidification parameters on destination control variable (S/L interface) and the interactions among these parameters during DSCC procedure. Secondly many training samples necessary for neural network calculation can be obtained through the simulation. Moreover, these samples are inputted into neural network software (NNs) and trained, then the control model can be built up.

  3. Nonequilibrium aspects of quantum thermodynamics


    Questions about the route from a nonequilibrium initial state to the final global equilibrium have played an important role since the early days of phenomenological thermodynamics and statistical mechanics. Nowadays, their implications reach from central technical devices of the contemporary human society, like heat engines, refrigerators and computers to recent physics at almost all length scales, from Bose-Einstein-condensation and superconductors to black holes. This work addresses the fou...

  4. Microstructural Development during Directional Solidification of Peritectic Alloys

    Lograsso, Thomas A.


    A thorough understanding of the microstructures produced through solidification in peritectic systems has yet to be achieved, even though a large number of industrially and scientifically significant materials are in this class. One type of microstructure frequently observed during directional solidification consists of alternating layers of primary solid and peritectic solid oriented perpendicular to the growth direction. This layer formation is usually reported for alloy compositions within the two-phase region of the peritectic isotherm and for temperature gradient and growth rate conditions that result in a planar solid-liquid interface. Layered growth in peritectic alloys has not previously been characterized on a quantitative basis, nor has a mechanism for its formation been verified. The mechanisms that have been proposed for layer formation can be categorized as either extrinsic or intrinsic to the alloy system. The extrinsic mechanisms rely on externally induced perturbations to the system for layer formation, such as temperature oscillations, growth velocity variations, or vibrations. The intrinsic mechanisms approach layer formation as an alternative type of two phase growth that is inherent for certain peritectic systems and solidification conditions. Convective mixing of the liquid is an additional variable which can strongly influence the development and appearance of layers due to the requisite slow growth rate. The first quantitative description of layer formation is a model recently developed by Trivedi based on the intrinsic mechanism of cyclic accumulation and depiction of solute in the liquid ahead of the interface, linked to repeated nucleation events in the absence of convection. The objective of this research is to characterize the layered microstructures developed during ground-based experiments in which external influences have been minimized as much as possible and to compare these results to the current the model. Also, the differences

  5. Solidification of Cu-Water nanofluid in a trapezoidal cavity: A CFD study

    Sharma, R. K.; Ganesan, P.; Metselaar, I. H.


    A numerical study has been carried out to investigate the solidification of a binary mixture of water and Cu nanoparticles inside a horizontal trapezoidal cavity of different aspect ratio under specific given boundary conditions for temperature and concentration gradients. The vertical side walls of the cavity are insulated while the top wall temperature is kept lower than that of the bottom wall. The effect of parameters such as the ratio of the cavity length to height (aspect ratio), the cold wall temperature (-5 to -30 °C) and the initial temperature of the nanofluid (0 °C to16 °C) on solidification time is investigated. The moving solid-liquid interface is obtained using Enthalpy-porosity technique in the model. We found that the solidification time decreases with the increase of the aspect ratio (i.e., a longer trapezoidal cavity) and the decrease of cold wall temperature. Aspect ratio is found to give a prominent effect. However, the initial temperature of fluid does not affect the solidification time much.

  6. Non-Equilibrium Phenomena in High Power Beam Materials Processing

    Tosto, Sebastiano


    The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.

  7. Finite element modelling of solidification phenomena

    K N Seetharamu; R Paragasam; Ghulam A Quadir; Z A Zainal; B Sathya Prasad; T Sundararajan


    The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.

  8. Non newtonian annular alloy solidification in mould

    Moraga, Nelson O.; Garrido, Carlos P. [Universidad de La Serena, Departamento de Ingenieria Mecanica, La Serena (Chile); Castillo, Ernesto F. [Universidad de Santiago de Chile, Departamento de Ingenieria Mecanica, Santiago (Chile)


    The annular solidification of an aluminium-silicon alloy in a graphite mould with a geometry consisting of horizontal concentric cylinders is studied numerically. The analysis incorporates the behavior of non-Newtonian, pseudoplastic (n=0.2), Newtonian (n=1), and dilatant (n=1.5) fluids. The fluid mechanics and heat transfer coupled with a transient model of convection diffusion are solved using the finite volume method and the SIMPLE algorithm. Solidification is described in terms of a liquid fraction of a phase change that varies linearly with temperature. The final results make it possible to infer that the fluid dynamics and heat transfer of solidification in an annular geometry are affected by the non-Newtonian nature of the fluid, speeding up the process when the fluid is pseudoplastic. (orig.)

  9. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef;


    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  10. Segregation effects and phase developments during solidification of alloy 625

    Højerslev, Christian; Tiedje, Niels Skat; Hald, John


    The solidification behaviour of pure Alloy 625, and Alloy 625 enriched respectively in iron and carbon, was investigated in situ by hot-stage light optical microscopy. Using this technique planar front solidification for distances of several hundred microns was facilitated. After solidification...

  11. Solidification of ternary systems with a nonlinear phase diagram

    Alexandrov, D. V.; Dubovoi, G. Yu.; Malygin, A. P.; Nizovtseva, I. G.; Toropova, L. V.


    The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquidus line equation. A deviation of the liquidus equation from a linear function is shown to result in a substantial change in the solidification parameters.

  12. Transient convective instabilities in directional solidification

    Meca, Esteban


    We study the convective instability of the melt during the initial transient in a directional solidification experiment in a vertical configuration. We obtain analytically the dispersion relation, and perform an additional asymptotic expansion for large Rayleigh number that permits a simpler analytical analysis and a better numerical behavior. We find a transient instability, i.e. a regime in which the system destabilizes during the transient whereas the final unperturbed steady state is stable. This could be relevant to growth mode predictions in solidification.

  13. Conditions Of Directional Solidification Affect Superalloy

    Schmidt, D. D.; Alter, W. S.; Hamilton, W. D.; Parr, R. A.


    Report describes experiments to determine effects of gradient of temperature and rate of solidification on microstructure and fatigue properties of nickel-based superalloy MAR-M246(Hf). Enhancement of properties extends lifespans of objects, including turbo-pump blades of Space Shuttle Main Engines. Results indicate significant improvements in fatigue properties derived through manipulation of parameters of directional solidification. Particularly MAR-M246(Hf) for turbine blades contains small, well-dispersed blocky carbide and microstructure with small distances between dendrite arms, and without eutectic phase.

  14. Solidification Based Grain Refinement in Steels


    likely to form, the author conducted a Schiel solidification analysis using Thermo-Calc. Table 2 lists the steel chemistry used based on the actual...the phases present during freezing were calculated. Table 3 Steel chemistry used fur Schiel analysis. C (wt. %) Mn (wt %) AKwt. %) Ti(wt. %) N(wt...0.4 0.6 0.8 Mole fraction of all solid phases Figure 23 Schiel solidification analysis for 0.1 % Ti containing 1030 steel. Figure 25 depicts the

  15. Solidification on fly ash, Yugoslav experiences

    Knezevic, D. [Mining Institute, Belgrade (Yugoslavia); Popov, S.; Salatic, D. [Faculty of Mining and Geology, Belgrade (Yugoslavia)


    A study was performed on ashes produced in the combustion process of coal from the Kosovo coal basin, in order to determine the potential and conditions of ash self-solidification. Investigations showed that the ash properties allows for the transformation into a solid mass through a controlled mixing with water. The optimal concentration of ash is 50 percent and the hydro-mixture is behaving as a Bingham plastic fluid. Solidification is obtained in a relatively short period (within 3 to 5 days) without additives. The resulting solidified mass is very consistent and stable

  16. Nonequilibrium volumetric response of shocked polymers

    Clements, B E [Los Alamos National Laboratory


    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  17. Nonequilibrium microstructures in reactive monolayers as soft matter systems.

    Mikhailov, Alexander S; Ertl, Gerhard


    Chemical systems provide classical examples of nonequilibrium pattern formation. Reactions in weak aqueous solutions, such as the extensively investigated Belousov-Zhabotinsky reaction, demonstrate a rich variety of patterns, ranging from travelling fronts to rotating spiral waves and chemical turbulence. Pattern formation in such systems is based on interplay between the reactions and diffusion. Intrinsically, this puts a restriction on the minimum length scale of the developing structures, which cannot be shorter than the diffusion length of the reactants. However, much smaller nonequilibrium structures, with characteristic lengths reaching down to nanoscales, are also possible. They are found in reactive soft matter, where energetic interactions between molecules are present as well. In these systems, chemical reactions and diffusion interfere with phase transitions, yielding active, stationary or dynamic microstructures. Nonequilibrium soft-matter microstructures are of fundamental importance for biological cells and may have interesting engineering applications. In this Minireview, we focus on the microstructures found in reactive soft-matter monolayers at solid surfaces or liquid-air interfaces.

  18. Orientation and velocity dependence of the nonequilibrium partition coefficient

    Beatty, K. M.; Jackson, K. A.


    Monte Carlo simulations based on a Spin-1 Ising Model for binary alloys have been used to investigate the non-equilibrium partition coefficient (k(sub neq)) as a function of solid-liquid interface velocity and orientation. In simulations of Si with a second component k(sub neq) is greater in the [111] direction than the [100] direction in agreement with experimental results reported by Azlz et al. The simulated partition coefficient scales with the square of the step velocity divided by the diffusion coefficient of the secondary component in the liquid.

  19. Numerical Simulation of Solidification Microstructure and Effects of Phase-field Parameters on Grain Growth Morphologies

    Jingfeng LIU; Ruixiang LIU; Liliang CHEN


    By a simple phase field model, a series of numerical simulations of solidification microstructure was performed to show a rich variety of dendritic patterns. At the same time, the relation between the morphology of grain growth and some parameters including the strength of anisotropy, dimensionless latent heat and the size of initial solid zone was studied. It is for the first time that patterns of grain growth were associated with the size of initial solid zone,which is an interesting issue. The possible reason for this may be that variation in the size of initial solid zone may bring about fluctuation of the interface energy, making the interface unstable.

  20. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.

    Ohno, Munekazu


    A quantitative phase-field model is developed for simulating microstructural pattern formation in nonisothermal solidification in dilute multicomponent alloys with arbitrary thermal and solutal diffusivities. By performing the matched asymptotic analysis, it is shown that the present model with antitrapping current terms reproduces the free-boundary problem of interest in the thin-interface limit. Convergence of the simulation outcome with decreasing the interface thickness is demonstrated for nonisothermal free dendritic growth in binary alloys and isothermal and nonisothermal free dendritic growth in a ternary alloy.

  1. Structure of nanocomposites of Al–Fe alloys prepared by mechanical alloying and rapid solidification processing

    S S Nayak; B S Murty; S K Pabi


    Structures of Al-based nanocomposites of Al–Fe alloys prepared by mechanical alloying (MA) and subsequent annealing are compared with those obtained by rapid solidification processing (RSP). MA produced only supersaturated solid solution of Fe in Al up to 10 at.% Fe, while for higher Fe content up to 20 at.% the nonequilibrium intermetallic Al5Fe2 appeared. Subsequent annealing at 673 K resulted in more Al5Fe2 formation with very little coarsening. The equilibrium intermetallics, Al3Fe (Al13Fe4), was not observed even at this temperature. In contrast, ribbons of similar composition produced by RSP formed fine cellular or dendritic structure with nanosized dispersoids of possibly a nano-quasicrystalline phase and amorphous phase along with -Al depending on the Fe content in the alloys. This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP.

  2. Solid-Liquid Interface Characterization Hardware

    Peters, Palmer N.


    The objective is to develop enabling technology to characterize the solid-liquid interface during directional solidification to unprecedented levels with real-time measurement hardware. Existing x-ray imaging hardware is combined with compact Seebeck furnaces and thermal profiling hardware, under development, to accomplish the measurements. Furnace thermal profiles are continuously measured in addition to the sample characteristics.

  3. Solidification of oils and organic liquids

    Clark, D.E.; Colombo, P.; Neilson, R.M. Jr.


    The suitability of selected solidification media for application in the disposal of low-level oil and other organic liquid wastes has been investigated. In the past, these low-level wastes (LLWs) have commonly been immobilized by sorption onto solid absorbents such as vermiculite or diatomaceous earth. Evolving regulations regarding the disposal of these materials encourage solidification. Solidification media which were studied include Portland type I cement; vermiculite plus Portland type I cement; Nuclear Technology Corporation's Nutek 380-cement process; emulsifier, Portland type I cement-sodium silicate; Delaware Custom Materiel's cement process; and the US Gypsum Company's Envirostone process. Waste forms have been evaluated as to their ability to reliably produce free standing monolithic solids which are homogeneous (macroscopically), contain < 1% free standing liquids by volume and pass a water immersion test. Solidified waste form specimens were also subjected to vibratory shock testing and flame testing. Simulated oil wastes can be solidified to acceptable solid specimens having volumetric waste loadings of less than 40 volume-%. However, simulated organic liquid wastes could not be solidified into acceptable waste forms above a volumetric loading factor of about 10 volume-% using the solidification agents studied.

  4. Solidification studies of automotive heat exchanger materials

    Carlberg, T.; Jaradeh, M.; Kamgou Kamaga, H.


    Modifications of the aluminum alloy AA 3003 have been studied to improve and tailorits properties for applications in automotive heat exchangers. Laboratory techniques have been applied to simulate industrial direct-chill casting, and some basic solidification studies have been conducted. The results are coupled to structures observed in industrial-size ingots and discussed in terms of structure-property relations.

  5. Detached Growth of Germanium by Directional Solidification

    Palosz, W.; Volz, M. P.; Cobb, S.; Motakef, S.; Szofran, F. R.


    The conditions of detached solidification under controlled pressure differential across the meniscus were investigated. Uncoated and graphite- or BN-coated silica and pBN crucibles were used. Detached and partly detached growth was achieved in pBN and BN-coated crucibles, respectively. The results of the experiments are discussed based on the theory of Duffar et al.

  6. Microstructure Development during Solidification of Aluminium Alloys

    Ruvalcaba Jimenez, D.G.


    This Thesis demonstrates studies on microstructure development during the solidification of aluminium alloys. New insights of structure development are presented here. Experimental techniques such as quenching and in-situ High-brilliance X-ray microscopy were utilized to study the microstructure evo

  7. Solidification of Trapped Liquid in Rocks and Crystals

    Morse, S. A.


    Trapped liquid in an igneous cumulate solidifies over a range of time and temperature that can be retrieved by use of the lever rule in binary solutions applied to plagioclase using the range in the An content found for the individual rock studied. The resident crystals in the cumulate count in the phase equilibria as though deposited by the resident liquid in pure fractional crystallization at the moment of trapping. The An range (Morse JPet 53:891, 2012) when measured in sufficient detail, defines the solidification history. The instantaneous solid composition along the solidus defines the zoning of the plagioclase as it follows the trapped liquid on the liquidus. The reference bulk composition of the trapped liquid is given by an intercept on the initial solid-liquid lever, defined by the fraction of plagioclase in the trapped parent magma times the residual porosity. The mafic fraction is assumed to solidify by reaction independently of the plagioclase zoning. The residual porosity is calculated from the An range when that is calibrated to a value independently determined from the evolved components. Examples from a recent treatment of residual porosity (cited above) will be given for the solidification of selected rock compositions from the Kiglapait and Skaergaard intrusions. The same principles apply to the solidification of melt inclusions, with the difference that the latter tend to sample an evolved sheath by capture, rather than a parent magma trapped by closure of a cumulate. Melt inclusions are evolved from birth, and then are likely to evolve further with continued growth and re-equilibration of the container. The cumulate, by contrast, given any small degree of adcumulus growth, has had time to exchange the evolved rejected solute owing to its slow solidification, so its trapped liquid is the contemporaneous magma at the cumulate interface. Experimental results on melt inclusions in mafic magma demonstrate their intrinsic evolved nature. For example

  8. Non-dissipative effects in nonequilibrium systems

    Maes, Christian


    This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.

  9. Competitive growth of different phases in eutectic alloys under directional solidification

    LI; Shuangming; MA; Bole; LI; Xiaoli; LIU; Lin; FU; Hengzhi


    By comparisons of interface growth temperatures of different phases in eutectic systems, competitive growth between the primary phase, halo structure and coupled eutectic has been discussed. The compositions for the formation of coupled eutectic have been discussed at the coexisting with the primary phase in eutectic under directional solidification. Solidification conditions, such as growth rate and composition required for the formation of the primary phase, halo structure and coupled eutectic have been proposed. Numerical calculation results show that no halo structure formed in directionally solidified Sn-Pb eutectic, but in Al-Si eutectic, competitive growth structures of the primaryβ-Si phase,α-Al halo structure and coupled eutectic (α+β) may exist at the hypereutectic composition between 12.6% and 25% Si. The calculated results of Al-Si eutectic fit in with the reported experiment results.

  10. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.


    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  11. Optimization of magnetically driven directional solidification of silicon using artificial neural networks and Gaussian process models

    Dropka, Natasha; Holena, Martin


    In directional solidification of silicon, the solid-liquid interface shape plays a crucial role for the quality of crystals. The interface shape can be influenced by forced convection using travelling magnetic fields. Up to now, there is no general and explicit methodology to identify the relation and the optimum combination of magnetic and growth parameters e.g., frequency, phase shift, current magnitude and interface deflection in a buoyancy regime. In the present study, 2D CFD modeling was used to generate data for the design and training of artificial neural networks and for Gaussian process modeling. The aim was to quickly assess the complex nonlinear dependences among the parameters and to optimize them for the interface flattening. The first encouraging results are presented and the pros and cons of artificial neural networks and Gaussian process modeling discussed.

  12. The effect of the shear flow on directional solidification of SCN-3wt% Salol alloy


    The directional solidification process of SCN-3wt%Salol transparent alloy is investigated in the presence of the shear flow at the liquid-solid interface.It is found that the shear flow induces a stabilizing effect on planar interface.At higher pulling rates,oscillation of the growth pattern together with fluctuation of the growth velocity takes place.With the increase of the pulling rate,the interface growth pattern transits from"planar-cellular"oscillation to"cellular-dendritic"oscillation,and the periodicity increases.The modification of the growth pattern is due to the effect of the shear flow on solute distribution,and the time and history dependent character of interface morphology evolution also plays an important role in the formation of the oscillating growth pattern.

  13. Thermoelectric and morphological effects of peltier pulsing on directional solidification of eutectic Bi-Mn

    Silberstein, R. P.; Larson, D. J.; Dressler, B.


    We have carried out extensive in situ thermal measurements during Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi. We have observed that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. We have separated the contributions of the Peltier, Thomson, and Joule heats, and studied them as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  14. Immiscible phase incorporation during directional solidification of hypermonotectics

    Andrews, J. Barry; Merrick, Roger A.


    Solidification processes in immiscible samples were investigated by directly observing the events taking place at the solid-liquid interface during directional solidification. Visualization of these events was made possible through the use of a transparent metal analog system and a temperature gradient stage assembly fitted to an optical microscope. The immiscible transparent analog system utilized was the succinonitrile-glycerol system. This system has been shown to exhibit the same morphological transitions as observed in metallic alloys of monotectic composition. Both monotectic and hypermonotectic composition samples were directionally solidified in order to gain an improved understanding of the manner in which the excess hypermonotectic liquid is incorporated into the solidifying structure. The processing conditions utilized prevented sedimentation of the excess hypermonotectic liquid by directionally solidifying the samples in very thin (13 microns), horizontally oriented cells. High thermal gradient to growth rate ratios (G/R) were used in an effort to prevent constitutional supercooling and the subsequent formation of L(sub 2) droplets in advance of the solidification front during the growth of fibrous composite structures. Results demonstrated that hypermonotectic composites could be produced in samples up to two weight percent off of the monotectic composition by using a G/R ratio greater than or equal to 4.6 x 10(exp 4) C(s)/mm(sup 2) to avoid constitutional supercooling. For hypermonotectic samples processed with G/R ratios below 4.6 x 10(exp 4) C(s)/mm(sup 2), constitutional supercooling occurred and resulted in slight interfacial instability. For these samples, two methods of incorporation of the hypermonotectic liquid were observed and are reported. The correlation between the phase spacing, lambda, and the growth rate, R, was examined and was found to obey a relationship generally associated with a diffusion controlled coupled growth process. For

  15. Potential-step amplified nonequilibrium thermal-electric converters

    Chen, Gang


    We predict a large thermoelectric effect at properly designed electrical potential steps that can be exploited to design thermoelectric coolers and power generators. A large nonequilibrium between electrons and phonons can be created at a potential step either by a heat flux (for power generation) or an electrical current. This effect can only exist in a forward structural configuration, which consists of a short region with low doping and a long region with high doping, and a potential step from the short to the long region. Electron temperature discontinuity is amplified at such an interface, leading to a large Seebeck voltage drop at the interface. A similar effect does not exist in a reverse structure. Modeling shows that higher thermal-electric power generation and cooling efficiency can be realized using the effect.

  16. Solidification of AM and AZ magnesium alloys characterized by heat-transfer modeled thermal and calorimetric analysis and microsegregation study of directionally solidified microstructure

    Mirkovic, Djordje


    ) coating to prevent detrimental reaction between Al and sample container is a successful novelty. The interplay between tube material, inside tube coating and details of the Bridgman device was thoroughly investigated. The result enables controlling the reaction on the tube/sample interface. The next novelty is correct implementation of the Scheil model for the solute profile calculation, implying precipitates during multiphase solidification. (orig.)

  17. INTRODUCTION: Nonequilibrium Processes in Plasmas

    Petrović, Zoran; Marić, Dragana; Malović, Gordana


    This book aims to give a cross section from a wide range of phenomena that, to different degrees, fall under the heading of non-equilibrium phenomenology. The selection is, of course, biased by the interests of the members of the scientific committee and of the FP6 Project 026328 IPB-CNP Reinforcing Experimental Centre for Non-equilibrium Studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research. Some of the papers included here are texts based on selected lectures presented at the Second International Workshop on Non-equilibrium Processes in Plasmas and Environmental Science. However, this volume is not just the proceedings of that conference as it contains a number of papers from authors that did not attend the conference. The goal was to put together a volume that would cover the interests of the project and support further work. It is published in the Institute of Physics journal Journal of Physics: Conference Series to ensure a wide accessibility of the articles. The texts presented here range from in-depth reviews of the current status and past achievements to progress reports of currently developed experimental devices and recently obtained still unpublished results. All papers have been refereed twice, first when speakers were selected based on their reputation and recently published results, and second after the paper was submitted both by the editorial board and individual assigned referees according to the standards of the conference and of the journal. Nevertheless, we still leave the responsibility (and honours) for the contents of the papers to the authors. The papers in this book are review articles that give a summary of the already published work or present the work in progress that will be published in full at a later date (or both). In the introduction to the first volume, in order to show how far reaching, ubiquitous and important non-equilibrium phenomena are, we claimed that ever since the early

  18. Disorder Scattering in Magnetic Tunnel Junctions: Theory of Nonequilibrium Vertex Correction

    Ke, Youqi; Xia, Ke; Guo, Hong


    We report a first principles formalism and its numerical implementation for treating quantum transport properties of nanoelectronic devices with atomistic disorder. We develop a nonequilibrium vertex correction (NVC) theory to handle the configurational average of random disorder at the density matrix level so that disorder effects to nonlinear and nonequilibrium quantum transport can be calculated from atomic first principles in a self-consistent and efficient manner. We implement the NVC into a Keldysh nonequilibrium Green’s function (NEGF) -based density functional theory (DFT) and apply the NEGF-DFT-NVC formalism to Fe/vacuum/Fe magnetic tunnel junctions with interface roughness disorder. Our results show that disorder has dramatic effects on the nonlinear spin injection and tunnel magnetoresistance ratio.

  19. Multiphysics and multiscale modelling of ductile cast iron solidification

    D. Gurgul


    Full Text Available The presented model of ductile cast iron solidification is a typical sample of multiphysics and multiscale engineering system. This model takes into consideration the different time and spatial scales of accounted phenomenon of microstructure formation: heat diffusion, components mass diffusion in the liquid and solid phases, thermodynamic of phase transformation under the condition of inhomogeneous chemical composition of growing and vanishing phases, phase interface kinetics and grains nucleation.The results of two-dimensional modelling of the microstructure formation in the ductile cast iron (so called - Ductile Iron - DI are pre-sented. The cellular automaton model (CA was used for the simulation. Six states of CA cells were adopted to three phases above men-tioned (liquid, austenite and graphite and to three two-phase interfaces. For the modelling of concentration and temperature fields the numerical solution was used. The parabolic nonlinear differential equa-tions with a source term were solved by using the finite difference method and explicit scheme. The overlapping lattices with the same spatial step were used for the concentration field modelling and for the CA. The time scale of the temperature field for this lattice is about 104 times shorter. Due to above reasons the another lattice was used with a multiple spatial step and the same time step.

  20. Directional Solidification of Bi-Sn on USMP-4

    Abbaschian, Reza; deGroh, H., III; Leonardi, E.; Timchenko, V.; deVahlDavis, G.


    The experiments used MEPHISTO hardware to study the solidification and melting behavior of bismuth alloyed with 1 at% tin. Three samples, each approximately 900 mm long and 6mm in diameter, were used. A portion of each sample also included a 2 mm diameter growth capillary, to assist in the formation of a single grain. One sample provided the Seebeck voltage generated during melting and freezing processes. Another provided temperature data and Peltier pulsed demarcation of the interface shape for post flight analysis. The third sample provided resistance and growth velocity measurements, as well as additional thermal data. The third sample was also quenched at the end of the mission to preserve the composition of the liquid near the interface for post flight determination. A total of 450mm of directionally solidified samples were preserved for post mission structural and compositional characterization. Substantial differences were observed in the Seebeck signal between the ground-based experiments and the space-based experiments. The temperature gradient in the liquid for the ground-based experiments was significantly lower than the temperature gradient in the liquid for the space-based experiments.

  1. Phase-field simulation of formation of cellular dendrites and fine cellular structures at high growth velocities during directional solidification of Ti56Al44 alloy

    LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi


    A phase-field model whose free energy of the solidification system derived from the Calphad thermodynamic modeling of phase diagram was used to simulate formation of cellular dendrites and fine cellular structures of Ti56Al44 alloy during directional solidification at high growth velocities. The liquid-solid phase transition of L→β was chosen. The dynamics of breakdown of initially planar interfaces into cellular dendrites and fine cellular structures were shown firstly at two growth velocities. Then the unidirectional free growths of two initial nucleations evolving to fine cellular dendrites were investigated. The tip splitting phenomenon is observed and the negative temperature gradient in the liquid represents its supercooling directional solidification. The simulation results show the realistic evolution of interfaces and microstructures and they agree with experimental one.

  2. Shapiro step at nonequilibrium conditions

    Shukrinov, Yu. M.; Nashaat, M.; Kulikov, K. V.; Dawood, R.; El Samman, H.; El Sherbini, Th. M.


    Detailed numerical simulations of intrinsic Josephson junctions of high-temperature superconductors under external electromagnetic radiation are performed taking into account a charge imbalance effect. We demonstrate that the charge imbalance is responsible for a slope in the Shapiro step in the IV-characteristic. The value of slope increases with a nonequilibrium parameter. Coupling between junctions leads to the distribution of the slope's values along the stack. The nonperiodic boundary conditions shift the Shapiro step from the canonical position determined by Vss=\\hbar f /(2e) , where f is a frequency of external radiation. This fact makes the interpretation of the experimentally found Shapiro step shift by the charge imbalance effect ambiguous.

  3. Nonequilibrium Thermodynamics of Porous Electrodes

    Ferguson, Todd R


    We review classical porous electrode theory and extend it to non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model...

  4. Local non-equilibrium thermodynamics.

    Jinwoo, Lee; Tanaka, Hajime


    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  5. Statistical thermodynamics of nonequilibrium processes

    Keizer, Joel


    The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo­ dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com­ bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...

  6. Nonequilibrium fluctuations in a resistor.

    Garnier, N; Ciliberto, S


    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  7. Experimental Verification of Solidification Stress Theory

    Solbrig, C W; Morrison, M C; SImpson, M F; Bateman, K J


    A research program is being conducted to develop a crack-free ceramic waste form (CWF) to be used for long term encasement of fission products and actinides resulting from processing spent nuclear fuel. Cracking usually occurs in the cooldown phase of the glass or ceramic formations. A crack-free formation should have more resistance to leaching than one with many cracks. In the research leading up to producing a CWF, a model was developed that proposes a permanent stress develops when the melt solidifies and that this stress can cause failure as the CWF nears room temperature. This paper reports on how the formation, CWF2, confirms the existence of this stress. The solidification stress is in addition to and of opposite sign of the thermal stress. Its derivation is reported on in Ref. 1. Cracking of the CWF would occur at low temperatures if solidification stress exists but at high temperatures if it doesn’t. If solidification stress occurs, then the cooldown rate during solidification should be reduced. If not, it should be reduced when the thermal stresses are highest. Recording cracking sounds confirm the existence of this solidification stress since cracking occurred during the low temperature phase of the cooldown. As a side purpose of this paper, a cooldown rate is proposed that should eliminate cracking in the next experiment, CWF3. CWF2 is a prototype vertical ceramic waste cylinder formed over a period of 10 days by heating a mixture of 75% zeolite, 25% glass frit in an argon atmosphere furnace through melting to 925 C and then cooling through solidification to room temperature. It is approximately 1 m high, 0.5 m in diameter, weighs about 400 kg, and is formed in a stainless steel can 0.5 cm thick. This cylinder developed many cracks on cooldown. At least 15 loud cracks were recorded over a period of 4 days at the end of cooldown when the temperatures were below 400 C. The CWF2 surface and centerline temperatures at mid height were measured which

  8. Transport Phenomena During Equiaxed Solidification of Alloys

    Beckermann, C.; deGroh, H. C., III


    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  9. Complex banded structures in directional solidification processes.

    Korzhenevskii, A L; Rozas, R E; Horbach, J


    A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos.

  10. Direct numerical simulation of solidification microstructures affected by fluid flow

    Juric, D.


    The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a plutonium-gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow.

  11. Study on undercooling of metal droplet in rapid solidification

    GAO; Yulai; GUAN; Wanbing; ZHAI; Qijie; XU; Kuangdi


    A mathematical model for the undercooling of the metal droplet during the rapid solidification is established, by which the factors that influence the undercooling of the metal droplet during the rapid solidification are analyzed, and the parameter ζ=σSL3/ (TLΔH 2 ) is defined as the impact factor of the undercooling for the droplet solidification. Different undercoolings of droplets induced by various rapid solidification conditions are mainly ascribed to the change of the impact factor. Moreover, it is shown that the larger of ζ, the higher the relative undercooling can be gained. Meanwhile, the parameters such as solid-liquid interfacial energy σSL and latent heat of solidification ΔH also vary with the rapid solidification conditions of droplets.

  12. Shape of growth cells in directional solidification.

    Pocheau, A; Georgelin, M


    The purpose of this study is to characterize experimentally the whole shape of the growth cells displayed in directional solidification and its evolution with respect to control parameters. A library of cells is first built up from observation of directional solidification of a succinonitrile alloy in a large range of pulling velocity, cell spacing, and thermal gradient. Cell boundaries are then extracted from these images and fitted by trial functions on their whole profile, from cell tip to cell grooves. A coherent evolution of the fit parameters with the control parameters is evidenced. It enables us to characterize the whole cell shape by a single function involving only two parameters which vary smoothly in the control parameter space. This, in particular, evidences a continuous evolution of the cell geometry at the cell to dendrite transition which denies the existence of a change of branch of solutions at the occurrence of sidebranching. More generally, this global determination of cell shape complemented with a previous determination of the position of cells in the thermal field (the cell tip undercooling) provides a complete characterization of growth solutions and of their evolutions in this system. It thus brings about a relevant framework for testing and improving theoretical and numerical understanding of cell shapes and cell stability in directional solidification.

  13. A Numerical Study of Directional Solidification and Melting in Microgravity

    Chen, P. Y. P.; Timchenko, V.; Leonardi E.; deVahlDavis, G.; deGroh, H. C., III


    A computational model is presented for the study of the solidification and melting of a pure substance and of a binary alloy. The enthalpy method has been used, and incorporated into a commercial CFD code. Three examples of the use of the model are described: the three-dimensional solidification of a pure substance (succinonitrile), the results of which are compared with experiment; an example of the solidification of a bismuth-tin alloy; and a simulation of a solidification and melting experiment done in space known as the MEPHISTO program.

  14. Effect of solidification rate on competitive grain growth in directional solidification of a nickel-base superalloy

    ZHOU YiZhou; SUN XiaoFeng


    The mechanism of grain structure evolution during directional solidification is a fundamental subject in material science.Within the published research there exist conflicting views on the mechanism of grain overgrowth.To study the effect of solidification rate on grain structure evolution,bi-crystals samples were produced in a nickel-base superalloy at different solidification rates.It was found that at the convergent grain boundaries those grains better aligned with respect to the heat flux more readily overgrew neighbouring grains with misaligned orientations and the effect became more pronounced as solidification rate was increased.However,at diverging grain boundaries the rate of overgrowth was invariant to the solidification rate.These experimental results were compared with models in the literature.Thus,a better insight into competitive grain growth in directional solidification processes was obtained.

  15. In Situ Observation of Solidification Conditions in Pulsed Laser Welding of AL6082 Aluminum Alloys to Evaluate Their Impact on Hot Cracking Susceptibility

    von Witzendorff, Philipp; Kaierle, Stefan; Suttmann, Oliver; Overmeyer, Ludger


    The influence of laser pulse parameters on solidification conditions and hot crack formation in pulsed laser welding of Al6082 aluminum alloys was studied with the aid of high-speed cameras capturing visible and infrared radiation. Hot cracking was evaluated with respect to strain rate, strain, and metallurgical outcome. The strain rate was approximated by the product of interface velocity and temperature gradient at the interface. The temperature gradient decreases during the course of solidification and followed a specific course. The interface velocity was therefore used as an indicator for the strain rate, which increased in a logarithmic manner with respect to the slope of the laser pulse's cooling time. The accumulated strain was calculated by measuring the spot weld deformation during solidification. Within the heat-conduction welding regime, hot cracking can be reduced by lowering the interface velocity leading to a reduced strain rate and enhanced permeability of the dendritic microstructure. An over-proportional increase of the accumulated strain was observed for keyhole welding, which led to a high susceptibility to hot cracking regardless of the interface velocity. At low interface velocities, hot cracking was induced by extensive hydrogen diffusion at the solid-liquid interface, which promotes crack initiation.

  16. Cell partitioning during the directional solidification of trehalose solutions.

    Hubel, A; Darr, T B; Chang, A; Dantzig, J


    Previous studies have demonstrated that ice/cell interaction influences post thaw viability and specific cryoprotective agents can affect those interactions. Trehalose, a disaccharide, has been shown to have a protective benefit during conventional slow freezing. Existing theories have been put forth to explain the protective benefit of trehalose during desiccation and vitrification, but these theories do not explain the protective benefit observed during conventional freezing protocols. The overall objective of this investigation was to characterize cell/ice interactions in the presence of trehalose using non-planar freezing conditions. To that end, lymphoblasts suspended in phosphate buffered saline solution with various levels of trehalose (0, 10, 100, and 300 mM) were frozen on a directional solidification stage. The partitioning of cells into the interdendritic space or engulfment by an advancing dendrite was determined as a function of velocity and solution composition. For a given temperature gradient, the fraction of cells entrapped into the interdendritic region increased with increasing velocity. With small additions of trehalose (10 mM), the velocity at which cells were entrapped in the interdendritic region increased. At high trehalose concentrations (100, 300 mM), interface morphology was significantly different and cells were engulfed by the advancing interface. Dehydration of cells in the region shortly before and after the interface was significant and depended upon of the type of interaction experienced by the cell (entrapped vs. engulfed). These studies suggest that one potential mechanism for the action of trehalose involves changing the ice/cell interactions during conventional slow freezing.

  17. Online process control for directional solidification by ultrasonic pulse echo technique.

    Drevermann, A; Pickmann, C; Tiefers, R; Zimmermann, G


    A method of controlling the actual growth velocity during directional solidification based on ultrasound has been developed. For this purpose a pulse echo technique is used to measure the actual solidification rate online. This quantity is used to control the furnace velocity. Solidification experiments with metallic alloys and constant furnace velocity often result in non-steady actual solidification rates. Experiments carried out with online process control demonstrate that a really steady-state solidification with a constant solidification rate is achieved.

  18. Plasma wave instabilities in nonequilibrium graphene

    Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka


    We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....

  19. A Thermal Simulation Method for Solidification Process of Steel Slab in Continuous Casting

    Zhong, Honggang; Chen, Xiangru; Han, Qingyou; Han, Ke; Zhai, Qijie


    Eighty years after the invention of continuous cast of steels, reproducibility from few mm3 samples in the laboratory to m3 product in plants is still a challenge. We have engineered a thermal simulation method to simulate the continuous casting process. The temperature gradient ( G L ) and dendritic growth rate ( v) of the slab were reproduced by controlling temperature and cooling intensity at hot and chill end, respectively, in our simulation samples. To verify that our samples can simulate the cast slab in continuous casting process, the heat transfer, solidification structure, and macrosegregation of the simulating sample were compared to those of a much larger continuous casting slab. The morphology of solid/liquid interface, solidified shell thickness, and dendritic growth rate were also investigated by in situ quenching the solidifying sample. Shell thickness ( δ) determined by our quenching experiment was related to solidification time ( τ) by equation: δ = 4.27 × τ 0.38. The results indicated that our method closely simulated the solidification process of continuous casting.

  20. Characterization of the Al-3wt.%Si alloy in unsteady-state horizontal directional solidification

    Diego Brito Carvalho


    Full Text Available The main purpose of this paper is to investigate both the columnar to equiaxed transition and primary dendritic arm spacings of Al-3wt.%Si alloy during the horizontal directional solidification. The transient heat transfer coefficient at the metal-mold interface is calculated based on comparisons between the experimental thermal profiles in castings and the simulations provided by a finite difference heat flow program. Simulated curve of the interfacial heat transfer coefficient was used in another numerical solidification model to determine theoretical values of tip growth rates, cooling rates and thermal gradients that are associated with both columnar to equiaxed transition and primary dendritic arm spacings. A good agreement was observed between the experimental values of these thermal variables and those numerically simulated for the alloy examined. A comparative analysis is carried out between the experimental data of this work and theoretical models from the literature that have been proposed to predict the primary dendritic spacings. In this context, this study may contribute to the understanding of how to manage solidification operational parameters aiming at designing the microstructure of Al-Si alloys.

  1. Comparison between numerical simulation and experimental measurement of solute segregation during directional solidification

    Stelian, Carmen; Duffar, Thierry; Nicoara, Irina


    The effect of Bridgman furnace configuration on the temperature field, melt convection and the solute distribution in the resulting crystal are experimentally and numerically analyzed for the semiconductor diluted alloy solidification. The governing equations of the heat and mass transfer are solved by using the finite element method with help of the commercial software FIDAP ®. Two different solidification experiments of Ga 1- xIn xSb ( x=0.01 and 0.04) are simulated in order to compare the numerical results for thermal, velocity and solute fields. The central objective of the work is to give the conditions for which a more uniform distribution of the solute in the crystal can be obtained. It is found that crystals obtained in conditions of a strong convective regime in the vicinity of the solid-liquid interface are more homogeneous radially and on a significant length than the crystals for which solidification occurred in a quasi-diffusive regime. The results, in terms of axial and radial segregation, are compared to experimental chemical analysis.

  2. Directional solidification of Al-8 wt. %Fe alloy under high magnetic field gradient

    Wu, Mingxu; Liu, Tie; Dong, Meng; Sun, Jinmei; Dong, Shulin; Wang, Qiang


    We investigated applying a magnetic field (up to 6 T) during directional solidification of a hypereutectic Al-8 wt. %Fe alloy, finding that it dramatically affected the final microstructure. A eutectic area appeared at the top of the samples, and as the magnetic flux density increased, the eutectic area clearly enlarged. In addition, the Al3Fe phase was twisted and fractured, and some phases aggregated and distributed randomly in the samples. We also investigated the volume fraction distribution of the Al3Fe phase, revealing that applying the magnetic field during solidification caused dramatic disorder in the solute and phase distributions. The magnetic force induced by the interaction between the magnetic field gradient and the magnetic materials appeared to be the main reason not only for the occurrence and enlargement of the eutectic area but also for the movement of Fe-enriched zones during directional solidification. Otherwise, the deformation and fracture of the Al3Fe phase, the morphological instability in the interface between the eutectic area and the Al3Fe phase, and the random distribution of the aggregated Al3Fe phase appeared to come from the thermoelectric magnetic force/thermoelectric magnetic convection under the magnetic field.

  3. Numerical Simulation of Morphology and Microsegregation Evolution during Solidification of Al-Si Alloy

    Dayong GUO; Yuansheng YANG; Wenhui TONG; Zhuangqi HU


    A stochastic model coupled with transient calculations for the distributions of temperature, solute and velocity during the solidification of binary alloy is presented. The model can directly describe the evolution of both morphology and segregation during dendritic crystal growth. The model takes into account the curvature and growth anisotropy of dendritic crystals. Finite difference method is used to explicitly track the sharp solid liquid (S/L) interface on a fixed Cartesian grid. Two-dimensional mesoscopic calculations are performed to simulate the evolution of columnar and equiaxed dendritic morphologies of an Al-7 wt pct Si alloy. The effects of heat transfer coefficient on the evolution of both the dendrite morphology and segregation patterns during the solidification of binary alloys are analyzed. This model is applied to the solidification of small casting. Columnar-to-equiaxed transition is analyzed in detail. The effects of heat transfer coefficient on final casting structures are also studied. Final casting structures changing from wholly columnar dendrites to wholly equiaxed dendrites are described. The effect of melt flow on the morphological development during Al-7 wt pct Si alloy soilidification is also described.

  4. Effect of a Transverse Magnetic Field on Stray Grain Formation of Ni-Based Single Crystal Superalloy During Directional Solidification

    Xuan, Weidong; Liu, Huan; Lan, Jian; Li, Chuanjun; Zhong, Yunbo; Li, Xi; Cao, Guanghui; Ren, Zhongming


    The effect of a transverse magnetic field on stray grain formation during directional solidification of superalloy was investigated. Experimental results indicated that the transverse magnetic field effectively suppressed the stray grain formation on the side the primary dendrite diverges from the mold wall. Moreover, the quenched experimental results indicated that the solid/liquid interface shape was obviously changed in a transverse magnetic field. The effect of a transverse magnetic field on stray grain formation was discussed.

  5. Aerospace Applications of Non-Equilibrium Plasma

    Blankson, Isaiah M.


    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).


    Y.S. Yang; X.H. Feng; G.F. Cheng; Y.J. Li; Z.Q. Hu


    The crystal growth of a nickel-based single crystal superalloy DD3 was researched via controlled directional solidification under the action of a DC electric field. The cellular or dendrite spacing of the single crystal superalloy is refined and microsegregation of alloying elements Al,Ti, Mo and W, is reduced by the electric field. The electric field decreases the interface stability and reduces the critical growth rate of the cellular-dendritic translation because of Thomson effect and Joule heating. The precipitation of the γ' phase is more uniform and the size of the γ'phase is smaller with the electric field than that without the electric field.

  7. Directional melting and solidification of gallium in a traveling magnetic field as a model experiment for silicon processes

    Dadzis, K.; Lukin, G.; Meier, D.; Bönisch, P.; Sylla, L.; Pätzold, O.


    Small-scale model experiments for directional solidification processes are performed using a gallium volume with a square horizontal cross-section and dimensions of 10×10×7.5 cm3. A heater at the top and a cooler at the bottom generate a vertical temperature gradient while an external coil system produces a traveling magnetic field (TMF) leading to Lorentz forces in the melt. The position and shape of the phase interface as well as the melt flow during melting and solidification processes are investigated both experimentally and with a coupled 3D numerical model. Uncertainty in various experimental parameters and appropriate methods of calibration are discussed to enable precise validation of numerical simulations. A distinct influence of the melt flow is observed, which results in a concave melting interface with an upward TMF and a convex shape with a downward TMF. In both cases, the corner region demonstrates local deflections in the opposite directions, which illustrates the challenge to obtain a smooth interface shape in silicon solidification processes. These processes can be further investigated using the validated 3D model. Additionally, direct transfer of the results between model experiments and silicon processes using scaling laws is discussed.

  8. Dynamics of Complex Fluid-Fluid Interfaces

    Sagis, L.M.C.


    This chapter presents an overview of recent progress in modelling the behaviour of complex fluid–fluid interfaces with non-equilibrium thermodynamics. We will limit ourselves to frameworks employing the Gibbs dividing surface model, and start with a general discussion of the surface excess variables

  9. Front tracking in the numerical simulation of binary alloy solidification

    Simpson, James Edward


    A model for directional solidification in dilute binary alloys is presented. The energy equation is solved for the temperature field, while the species equation is solved for the solute distribution. Either the vorticity-vector potential formulation or the pressure-velocity formulation is used to solve the governing equations for the velocity field. The constitutive equations are solved using a fully transient scheme. A variety of fast numerical schemes for solving sparse systems are used in the solution procedure. A single domain approach is used for the solution scheme for the energy and concentration equations. The effects of phase-change (energy equation) and solute rejection at the advancing solid/liquid interface (concentration equation) are handled via the introduction of appropriate source terms. The numerical approach was validated by comparing numerical results to data from a series of experiments of the Bridgman growth of pure succinonitrile. These experiments were performed as part of this work and are explained in detail. The numerical results agree well with the experimental data in terms of interface shape, temperature and velocity data. The key contribution of this work is the investigation of the Bridgman crystal growth of bismuth-tin in support of NASA's MEPHISTO project. The simulations reported in this work are among the first fully transient simulations of the process; no simplifying steady state approximations were used. Results are obtained for Bi-Sn alloys at a variety of initial concentrations and gravity levels. For most of the work, the solid/liquid interface temperature is assumed to be constant. For the richer alloy (Bi-1.0 at.% Sn) the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. At lower gravity levels, convection-induced segregation is

  10. Stochastic Modeling of Non-equilibrium Bedload Transport

    Kuai, Z.; Tsai, C. W.


    Traditional stochastic bed load models aimed to solve for the equilibrium bedload transport rate by matching the rate of bed erosion with the rate of deposition. Bedload transport can be in nonequilibrium even under the steady flow condition, as the quantity of moving particles in the bedload layer may vary. In a nonequilibrium condition, the interchange of sediment particles occurs not only between the bedload layer and the bed surface, but also across the interface between bedload and suspended load. The proposed approach attempts to add a new bedload-suspended load interchange layer to a stochastic bedlod transport model based on the Markov chain. The bedload transport rate is the product of the total particle volume in saltation and the average saltating velocity. We can quantify the number of saltating particles by modeling the occupancy probabilities vector of particles staying in three states (i.e., bed surface, bedload layer, and the interchange layer between the bedload and the suspended load.). The new stochastic bedload relation is validated against existing bedload model. The sudden change of flow and/or sediment condition leads to changes in the transition probabilities. The influence of sudden changes in flow-sediment properties on the bedload transport rate is investigated in this preliminary study. It is found that the neglecting the exchange process between the bedload layer and the suspended layer may lead to non-negligible errors in bedload calculation when the flow and/or sediment conditions change.

  11. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    Wei, Jiuan

    Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and

  12. Non-equilibrium Thermodynamics and the Production of Entropy Life, Earth, and Beyond

    Kleidon, Axel


    The present volume studies the application of concepts from non-equilibrium thermodynamics to a variety of research topics. Emphasis is on the Maximum Entropy Production (MEP) principle and applications to Geosphere-Biosphere couplings. Written by leading researchers form a wide range of background, the book proposed to give a first coherent account of an emerging field at the interface of thermodynamics, geophysics and life sciences.

  13. A Computer Aided System for Simulating Weld Metal Solidification Crack


    A computer-aided system for simulating weld solidification crack has been developed by which a welding engineer can carry out the welding solidification crack simulation on the basis of a commercial finite element analysis software package. Its main functions include calculating the heat generations of the moving arc, mesh generation, calculating stress-strain distributions with element rebirth technique.

  14. The Statistical Dynamics of Nonequilibrium Control

    Rotskoff, Grant Murray

    Living systems, even at the scale of single molecules, are constantly adapting to changing environmental conditions. The physical response of a nanoscale system to external gradients or changing thermodynamic conditions can be chaotic, nonlinear, and hence difficult to control or predict. Nevertheless, biology has evolved systems that reliably carry out the cell's vital functions efficiently enough to ensure survival. Moreover, the development of new experimental techniques to monitor and manipulate single biological molecules has provided a natural testbed for theoretical investigations of nonequilibrium dynamics. This work focuses on developing paradigms for both understanding the principles of nonequilibrium dynamics and also for controlling such systems in the presence of thermal fluctuations. Throughout this work, I rely on a perspective based on two central ideas in nonequilibrium statistical mechanics: large deviation theory, which provides a formalism akin to thermodynamics for nonequilibrium systems, and the fluctuation theorems which identify time symmetry breaking with entropy production. I use the tools of large deviation theory to explore concepts like efficiency and optimal coarse-graining in microscopic dynamical systems. The results point to the extreme importance of rare events in nonequilibrium dynamics. In the context of rare dynamical events, I outline a formal approach to predict efficient control protocols for nonequilibrium systems and develop computational tools to solve the resulting high dimensional optimization problems. The final chapters of this work focus on applications to self-assembly dynamics. I show that the yield of desired structures can be enhanced by driving a system away from equilibrium, using analysis inspired by the theory of the hydrophobic effect. Finally, I demonstrate that nanoscale, protein shells can be modeled and controlled to robustly produce monodisperse, nonequilibrium structures strikingly similar to the

  15. [Solidification of volatile oil with graphene oxide].

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao


    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.

  16. Novel Directional Solidification of Hypermonotectic Alloys

    Grugel, R. N.; Fedoseyev, A. I.; Rose, M. Franklin (Technical Monitor)


    There are many metal alloy systems that separate into two different liquids upon cooling from a higher temperature. Uniform microstructural development during solidification of these immiscible liquids on Earth is hampered by inherent density differences between the phases. Microgravity processing minimizes settling but segregation still occurs due to gravity independent wetting and coalescence phenomena. Experiments with the transparent organic, metal analogue, succinonitrile-glycerol system were conducted in conjunction with applied ultrasonic energy. The processing parameters associated with this technique have been evaluated in view of optimizing dispersion uniformity. Characterization of the experimental results in terms of an initial modeling effort will also be presented.

  17. Alternating tip splitting in directional solidification.

    Utter, B; Ragnarsson, R; Bodenschatz, E


    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys. Despite the random appearance of the growth, a tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f~V1.5. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.

  18. ORNL liquid low-level waste solidification

    Schultz, R.M.; Monk, T.H.; du Mont, S.P.; Helms, R.E.; Keigan, M.V.; Morris, M.I.


    The solidification of LLLW at ORNL has developed two basic strategies, a near-term or backup flowsheet is planned to alleviate the immediate capacity problem for storage of concentrated LLLW and a long-term or reference flowsheet is planned to incorporate filtration of the settleable TRU and cesium and strontium decontamination of the LLLW. Presently a feasibility study is evaluating the process alternatives for segregating LLLW from remote-handled transuranic (RH-TRU) sludges, decontamination of the LLLW for beta-gamma radionuclides such as cesium and strontium, and the handling and storage of the RH-TRU sludges and decontamination media. 14 refs.

  19. Melt Flow Control in the Directional Solidification of Binary Alloys

    Zabaras, Nicholas


    Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.

  20. Nanoparticle-induced unusual melting and solidification behaviours of metals

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun


    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage.

  1. Relativistic Hydrodynamics and Non-Equilibrium Steady States

    Spillane, Michael


    We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under con- sideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.

  2. Nonequilibrium plasma generator (NPG) project - experimental program

    Lineberry, J.T.; Wu, Y.C.L.; Lin, B.C. [and others


    This paper summarizes research conducted under a DOE MHD SBIR entitled: {open_quotes}A Light Metal Fueled Non-equilibrium Plasma Generator (NPG){close_quotes}. It is a summary paper presenting the idea of the NPG and activities of the NPG SBIR research program along with experimental results from NPG Proof-of-Principle tests. The NPG is an innovative concept for a combustion device that can produce a nonequilibrium plasma. This device bums powdered metal fuel, and it can be used to drive an MHD disk generator pulse power unit or a similar nonequilibrium MHD device or system. The NPG research program was concluded over the past two years under sponsorship of a DOE Phase II SBIR grant. This program focused on addressing fundamental and practical aspects of the NPG concept and its system design. The research included investigation of the physics of the NPG concept through theoretical and experimental studies on the quality of the plasma that it can produce, theoretical evaluations of the nonequilibrium ionization processes in an MHD disk generator driven by an NPG, and experimental validation of the NPG concept in Proof-of-Principle tests. At the conclusion of this research it was determined that the NPG is indeed a viable concept. Results from combustion tests using powdered aluminum fuel reveal that the NPG can produce an extremely hot argon plasma clean enough to support nonequilibrium ionization in an MHD device.

  3. Non-equilibrium Thermodynamics of Rayleigh-Taylor instability

    Sengupta, Tapan K.; Sengupta, Aditi; Shruti, K. S.; Sengupta, Soumyo; Bhole, Ashish


    Rayleigh-Taylor instability (RTI) has been studied here as a non-equilibrium thermodynamics problem. Air masses with temperature difference of 70K, initially with heavier air resting on lighter air isolated by a partition, are allowed to mix by impulsively removing the partition. This results in interface instabilities, which are traced here by solving two dimensional (2D) compressible Navier-Stokes equation (NSE), without using Boussinesq approximation (BA henceforth). The non-periodic isolated system is studied by solving NSE by high accuracy, dispersion relation preserving (DRP) numerical methods described in Sengupta T.K.: High Accuracy Computing Method (Camb. Univ. Press, USA, 2013). The instability onset is due to misaligned pressure and density gradients and is evident via creation and evolution of spikes and bubbles (when lighter fluid penetrates heavier fluid and vice versa, associated with pressure waves). Assumptions inherent in compressible formulation are: (i) Stokes' hypothesis that uses zero bulk viscosity assumption and (ii) the equation of state for perfect gas which is a consequence of equilibrium thermodynamics. Present computations for a non-equilibrium thermodynamic process do not show monotonic rise of entropy with time, as one expects from equilibrium thermodynamics. This is investigated with respect to the thought-experiment. First, we replace Stokes' hypothesis, with another approach where non-zero bulk viscosity of air is taken from an experiment. Entropy of the isolated system is traced, with and without the use of Stokes' hypothesis. Without Stokes' hypothesis, one notes the rate of increase in entropy to be higher as compared to results with Stokes' hypothesis. We show this using the total entropy production for the thermodynamically isolated system. The entropy increase from the zero datum is due to mixing in general; punctuated by fluctuating entropy due to creation of compression and rarefaction fronts originating at the interface

  4. The melting and solidification of nanowires

    Florio, B. J.; Myers, T. G.


    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  5. The Advanced Automated Directional Solidification Furnace

    Gillies, D. C.; Reeves, F. A.; Jeter, L. B.; Sledd, J. D.; Cole, J. M.; Lehoczky, S. L.


    The Advanced Automated Directional Solidification Furnace (AADSF) is a five zone tubular furnace designed for Bridgman-Stockbarger, other techniques of crystal growth involving multiple temperature zones such as vapor transport experiments and other materials science experiments. The five zones are primarily designed to produce uniform hot and cold temperature regions separated by an adiabatic region constructed of a heat extraction plate and an insert to reduce radiation from the hot to the cold zone. The hot and cold zone temperatures are designed to reach 1600 C and 1100 C, respectively. AADSF operates on a Multi-Purpose Experiment Support Structure (MPESS) within the cargo bay of the Space Shuttle on the United States Microgravity Payload (USMP) missions. Two successful flights, both employing the directional solidification or Bridgman Stockbarger technique for crystal growth have been made, and crystals of HgCdTe and PbSnTe grown in microgravity have been produced on USMP-2 and USMP-3, respectively. The addition of a Sample Exchange Mechanism (SEM) will enable three different samples to be processed on future flights including the USMP-4 mission.

  6. Carburizer Effect on Cast Iron Solidification

    Janerka, Krzysztof; Kondracki, Marcin; Jezierski, Jan; Szajnar, Jan; Stawarz, Marcin


    This paper presents the effect of carburizing materials on cast iron solidification and crystallization. The studies consisted of cast iron preparation from steel scrap and different carburizers. For a comparison, pig iron was exclusively used in a solid charge. Crystallization analysis revealed the influence of the carburizer material on the crystallization curves as well as differences in the solidification paths of cast iron prepared with the use of different charge materials. The carburizers' influence on undercooling during the eutectic crystallization process was analyzed. The lowest undercooling rate was recorded for the melt with pig iron, then for synthetic graphite, natural graphite, anthracite, and petroleum coke (the highest undercooling rate). So a hypothesis was formulated that eutectic cells are created most effectively with the presence of carbon from pig iron (the highest nucleation potential), and then for the graphite materials (crystallographic similarity with the carbon precipitation in the cast iron). The most difficult eutectic crystallization is for anthracite and petroleum coke (higher undercooling is necessary). This knowledge can be crucial when the foundry plant is going to change the solid charge composition replacing the pig iron by steel scrap and the recarburization process.

  7. Solidification microstructure of centrifugally cast Inconel 625

    Silvia Barella


    Full Text Available Centrifugal casting is a foundry process allowing the production of near net-shaped axially symmetrical components. The present study focuses on the microstructural characterization of centrifugally cast alloys featuring different chemical compositions for the construction of spheres applied in valves made of alloy IN625 for operation at high pressure. Control of the solidification microstructure is needed to assure the reliability of the castings. Actually, a Ni-base superalloy such as this one should have an outstanding combination of mechanical properties, high temperature stability and corrosion resistance. Alloys such as IN625 are characterised by a large amount of alloying elements and a wide solidification range, so they can be affected by micro-porosity defects, related to the shrinkage difference between the matrix and the secondary reinforcing phases (Nb-rich carbides and Laves phase. In this study, the microstructure characterization was performed as a function of the applied heat treatments and it was coupled with a calorimetric analysis in order to understand the mechanism ruling the formation of micro-porosities that can assure alloy soundness. The obtained results show that the presence of micro-porosities is governed by morphology and by the size of the secondary phases, and the presence of the observed secondary phases is detrimental to corrosion resistance.

  8. Numerical study on morphology and solidification characteristics of successive droplet depositions on a substrate

    Adaikalanathan, Vimalan

    Successive droplet impingement finds extensive applications in additive manufacturing technologies such as 3D printing, Liquid Metal Jetting and Net Form Manufacturing. Deposition, deformation and solidification of droplets are the constitutive stages in the process which determine the final outcome. Detailed knowledge about the flow behaviour, phase transformation and free surface deformation is required to have a complete understanding and optimization of the process parameters. Experimental research in this field is only limited to imaging techniques and post solidification analysis which only provide superficial information while overlooking most of the governing phenomenon. Knowledge of the physics governing the fluid and thermal behaviours can be applied to study the process with real time data pertaining to flow field, temperature profiles and solidification. However, free surface tracking, surface tension modelling, non-isothermal solidification and convection dominant heat transfer pose mathematical challenges in the solution of the governing equations. Moreover, deposition of droplets on pre-solidified splats or non-flat surfaces requires accurate special attention. The objective of the present work is to model the successive droplet impacts and simultaneous solidification and deformation. The highly non-linear flow field governed by the Navier Stokes equation is solved using a Two Step Projection method. The surface tension effects are accounted for through a Continuum Surface Force technique. One of the crucial elements in the study is the interface tracking algorithm. A Coupled Level Set Volume of Fluid (CLSVOF) method is formulated to give an accurate orientation of the drastically deforming interface and also facilitates generation of multiple droplets in a fixed domain at a user defined frequency, thereby conserving computational resources. The phase change is modelled using an enthalpy formulation of the energy equation with an implicit source term

  9. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Salazar, Domingos S. P.


    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  10. Local entropy of a nonequilibrium fermion system

    Stafford, Charles A.; Shastry, Abhay


    The local entropy of a nonequilibrium system of independent fermions is investigated and analyzed in the context of the laws of thermodynamics. It is shown that the local temperature and chemical potential can only be expressed in terms of derivatives of the local entropy for linear deviations from local equilibrium. The first law of thermodynamics is shown to lead to an inequality, not equality, for the change in the local entropy as the nonequilibrium state of the system is changed. The maximum entropy principle (second law of thermodynamics) is proven: a nonequilibrium distribution has a local entropy less than or equal to a local equilibrium distribution satisfying the same constraints. It is shown that the local entropy of the system tends to zero when the local temperature tends to zero, consistent with the third law of thermodynamics.

  11. A non-equilibrium plasma generator

    Lineberry, J.T.; Wu, Y.C.L.; Martin, J.F. [ERC, Incorporated, Tullahoma, TN (United States)


    This paper summarizes research ideas, results and activities on a DOE MHD SBIR entitled: {open_quote}A Light Metal Fueled Nonequilibrium Plasma Generator (NPG){close_quotes}. The NPG is a concept for a device that has the capability of producing a nonequilibrium plasma from metal combustion. The results of preliminary studies on the NPG concept are given. These studies address fundamentals of the NPG including operating concepts of the NPG concept, results of studies on the quality of the plasma that it can produce, and theoretical evaluations of the nonequilibrium ionization process in an MHD disk generator driven by an NPG. A discussion of potential applications for the NPG is given. These applications encompass pulse MHD power, commercial MHD power and disk MHD generator research.

  12. Study of non-equilibrium transport phenomena

    Sharma, Surendra P.


    Nonequilibrium phenomena due to real gas effects are very important features of low density hypersonic flows. The shock shape and emitted nonequilibrium radiation are identified as the bulk flow behavior parameters which are very sensitive to the nonequilibrium phenomena. These parameters can be measured in shock tubes, shock tunnels, and ballistic ranges and used to test the accuracy of computational fluid dynamic (CFD) codes. Since the CDF codes, by necessity, are based on multi-temperature models, it is also desirable to measure various temperatures, most importantly, the vibrational temperature. The CFD codes would require high temperature rate constants, which are not available at present. Experiments conducted at the NASA Electric Arc-driven Shock Tube (EAST) facility reveal that radiation from steel contaminants overwhelm the radiation from the test gas. For the measurement of radiation and the chemical parameters, further investigation and then appropriate modifications of the EAST facility are required.

  13. Non-Equilibrium Thermodynamics in Multiphase Flows

    Mauri, Roberto


    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  14. Nonequilibrium molecular dynamics theory, algorithms and applications

    Todd, Billy D


    Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...

  15. Numerical Simulation of Transport Phenomena in Solidification of Multicomponent Ingot Using a Continuum Model


    A continuum model proposed for dendrite solidification of multicomponent alloys, with any partial solid back diffusion, was used to numerically simulate the macroscopic solidification transport phenomena and macrosegregations in an upwards directionally solidified plain carbon steel ingot. The computational results of each macroscopic field of the physical variables involved in the solidification process at a middle solidification stage were presented.

  16. Monitoring solidification of an alloy by thermoelectric effects: results of the MEPHISTO-USMP1 flight experiment

    Lehmann, P.; Moreau, R.; Camel, D.; Favier, J. J.


    During the directional solidification of a metallic alloy, the interface between the solid and the liquid can be looked upon as a thermocouple junction, provided that the two phases show a difference of thermoelectric power. Thermoelectric measurements made under microgravity conditions are discussed here. When the interface is planar, i.e. isothermal, the measured voltage is proportional to the temperature of the interface and correlation with solidification phenomena is straightforward. If now this interface is cellular, we show that a local thermoelectric current density appears. A modelling of the voltage drop due to these currents is proposed. It is shown that to the leading order, the measured voltage depends on three unknowns: the average liquid fraction, the temperatures at the tip and at the bottom of the structure. A good agreement is found between the theoretical calculated voltage and the measurements made on metallographies. It is also demonstrated that thermoelectric currents appear in the solid phase because of the concentration inhomogeneities. These currents cause a peak to appear on the signal. At least, we show how to deduce the liquid fraction, the temperature at the tip and at the bottom of the interface directly from the recorded signal.

  17. Study on Particle Pushing in Front of Growing Interface During Soldification

    毛协民; 温宏权


    For in -situ composite materials,the interaction between the second-phase particles and the solidification interface attracts more attentions of people,for concerning the final distribution of the particles on the matrix.With the conception of the local solidification time,a kinematics mechanism of particle pushing into the crystal boundary during the solidification process was assumed.Through the analysis of forces acted on the particle in front of the solid /liquid interface the critical velocity criterion for the particles pushing was given.The calculation results show when the growth rate of the interface V is less than or equals to the critical velocity Vc,the particles on the solid/liquid interface is pushed into the boundary region of cellular crystals,where they are distributed as a chain-like straight,which forms a particle-strengthened in-situ composite materials.

  18. Steady-state and dynamic models for particle engulfment during solidification

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.


    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  19. Interfacial instabilities in directional solidification of dilute binary alloys: The Kuramoto-Sivashinsky equation

    Novick-Cohen, A.


    Directional solidification processes in the presence of an impurity are studied in the limit in which the dimensionless parameter overlineW = {GD}/{VC}0( g + ⨍ c) is small. Here G is the imposed temperature gradient, D is the diffusion coefficient of the impurity, V is the imposed transport velocity, g is equal to minus the slope of the liquidus line, C0 is the impurity concentration at the liquid side of a planar interface, and ⨍ c is a coefficient reflecting deviations from local thermal equilibrium. The dynamics of interfacial kinetics becomes important in this limit and the phenomenological model of Coriell and Sekerka [J. Cryst. Growth 61 (1983) 499-508] is used to model these processes. In this limit, the Kuramoto-Sivashinsky equation is shown to be an asymptotically valid description of the interfacial dynamics. The Kuramoto-Sivashinsky equation is known to exhibit intermittancy superimposed on a relatively stable array of cusps or wrinkles [Michelson and Sivashinsky, Acta Astronautica 4 (1977) 1207-1221] and thus may give a reasonable limiting description of the solidification interface just before coherency is lost. These cusps may also be important in the initiation of dendritic growth by serving as defect points [Schaefer and Glicksman, Met. Trans. 1 (1970) 1973-1978].

  20. Chemical Sensing by Nonequilibrium Cooperative Receptors

    Skoge, Monica; Naqvi, Sahin; Meir, Yigal; Wingreen, Ned S.


    Cooperativity arising from local interactions in equilibrium receptor systems provides gain, but does not increase sensory performance, as measured by the signal-to-noise ratio (SNR) due to a fundamental tradeoff between gain and intrinsic noise. Here we allow sensing to be a nonequilibrium process and show that energy dissipation cannot circumvent the fundamental tradeoff, so that the SNR is still optimal for independent receptors. For systems requiring high gain, nonequilibrium 2D-coupled receptors maximize the SNR, revealing a new design principle for biological sensors. PMID:25165963

  1. Evidence for topological nonequilibrium in magnetic configurations

    Vainshtein, A I; Rosner, R A; Linker, J A


    We use direct numerical simulations to study the evolution, or relaxation, of magnetic configurations to an equilibrium state. We use the full single-fluid equations of motion for a magnetized, non-resistive, but viscous fluid; and a Lagrangian approach is used to obtain exact solutions for the magnetic field. As a result, the topology of the magnetic field remains unchanged, which makes it possible to study the case of topological nonequilibrium. We find two cases for which such nonequilibrium appears, indicating that these configurations may develop singular current sheets.

  2. Mesoscopic virial equation for nonequilibrium statistical mechanics

    Falasco, G.; Baldovin, F.; Kroy, K.; Baiesi, M.


    We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nosé-Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A macroscopic virial theorem ensues upon summation over all degrees of freedom. It allows for the derivation of generalised (nonequilibrium) equations of state that involve average dissipative heat flows besides genuine state variables, as exemplified for inertial Brownian motion with solid friction and overdamped active Brownian particles subject to inhomogeneous pressure.

  3. Mean Field Theory for Nonequilibrium Network Reconstruction

    Roudi, Yasser; Hertz, John


    There has been recent progress on the problem of inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for non-equilibrium systems. Here we introduce an approach to this problem, considering, as an exam......There has been recent progress on the problem of inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for non-equilibrium systems. Here we introduce an approach to this problem, considering......-time and one time step-delayed correlation functions....

  4. On the excess energy of nonequilibrium plasma

    Timofeev, A. V. [National Research Centre Kurchatov Institute, Institute of Hydrogen Power Engineering and Plasma Technologies (Russian Federation)


    The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.

  5. Energy repartition in the nonequilibrium steady state

    Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu


    The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.

  6. Solidification science in cast MMCs: The influence of merton flemings

    Rohatgi, Pradeep; Asthana, Rajiv


    The solidification science of cast metalmatrix composites (MMC) evolved as a subset of the broad field of solidification of monolithic alloys pioneered by Merton Flemings and his students. As a result of advances in solidification, the cast MMC field has evolved from its early incarnation—employing empirical research to engineer novel materials using versatile and cost-effective casting techniques—to using solidification-science-based approaches to tailor advanced materials for application-specific needs. The current and emerging applications of cast MMCs in a variety of automotive, aerospace, electronic packaging, and consumer-good industries exemplify the maturity of the field and the materials. Innovations in composite-forming techniques and efforts at wider industrial acceptance of MMCs will undoubtedly continue. However, the scientific principles underlying the solidification microstructure evolution that governs the composite properties have become well established, to a great extent, due to Flemings’ early, pioneering work on monolithic alloys and some of his more recent studies on solidification of reinforced metals. This paper reviews some aspects of solidification of discontinuously reinforced cast metals that owe their current understanding to Flemings’ contributions, in particular, the scientific understanding of macro- and microsegregation, fluidity and rheology of multiphase slurries, and stircasting, semi-solid casting, and preform infiltration. Current research to develop and test prototype components made from cast composites, including Al-flyash, Cu-graphite, Al-graphite, Al-alumina, and SiC-Al, is also presented, along with directions for future research.

  7. Linking Equilibrium and Nonequilibrium Dynamics in Glass-Forming Systems

    Mauro, John C.; Guo, Xiaoju; Smedskjær, Morten Mattrup

    , we show that the nonequilibrium glassy dynamics are intimately connected with the equilibrium liquid dynamics. This is accomplished by deriving a new functional form for the thermal history dependence of nonequilibrium viscosity, which is validated against experimental measurements of industrial......Understanding nonequilibrium glassy dynamics is of great scientific and technological importance. However, prediction of the temperature, thermal history, and composition dependence of nonequilibrium viscosity is challenging due to the noncrystalline and nonergodic nature of the glassy state. Here...

  8. Monte Carlo simulation of the dynamic evolution of binary lamellar eutectic in directional solidification

    Wang Wei-Min; Niu Yu-Chao; Chen Jun-Hua; Bian Xiu-Fang; Liu Jun-Ming


    The dynamic evolution of the lamellar eutectic of binary alloys in directional solidification is studied in detail using the Monte Carlo technique. The simulated results can be summarized into two aspects: (1) the lamellar spacing λ is found to be inversely proportional to the chemical potential difference △μ, predicting a linear relationship between the kinetic supercooling △Tk and total supercooling at the solid/liquid (S/L) interface; (2) as the solidifying velocity R is low, the dynamic product λ2R shows a considerable dependence on temperature gradient GT in the liquid in front of the S/L interface, although this dependence becomes much weaker at a high R.



    Solidification microstructure and mechanical property are explored.Furthermore,tensile fracture and microstructure are analyzed by using SEM and JXA-840A electron-probe.The results indicate that SiC particles in SiCp/ZA27 composite are mainly distributed on interfaces or between dendrites and surrounded by primary α phase.The dendrite of α phase is fined by SiCp.The tensile strength at room temperature decreases with the increasing of SiCp addition.The tensile strength at elevated temperature increases with the addition of SiCp.The fracture of SiCp/ZA27 composites is the mixture of tough and brittle fracture.The carck is prone to extend along the interface and the region of dispersed shrinkage.

  10. What happens to the initial planar instability when the thermal gradient is increased during directional solidification?

    Wang Zhi-Jun; Wang Jin-Cheng; Li Jun-Jie; Yang Gen-Cang; Zhou Yao-He


    The positive thermal gradient is one of the most important parameters during directional solidification.The increase of the thermal gradient usually stabilizes the planar interface in the steady state analysis.However,in the initial transient range of planar instability,the thermal gradient presents complicated effects.Time-dependent analysis shows that the increase of the thermal gradient can enhance both the stabilizing effects and the destabilizing effects on a planar interface.The incubation time first decreases and then increases with the increase of the thermal gradient.Moreover,the initial average wavelength always increases with the thermal gradient increasing,contrary to the effect of the thermal gradient on the steady cellular/dendritic spacing.This reveals the types of spacing adjustment after planar instability.

  11. Inverse thermal analysis method to study solidification in cast iron

    Dioszegi, Atilla; Hattel, Jesper


    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... inverse thermal analysis was tested on both experimental and simulated data....

  12. Numerical simulation of recalescence of 3-dimensional isothermal solidification for binary alloy using phase-field approach

    ZHU Chang-sheng; XIAO Rong-zhen; WANG Zhi-ping; FENG Li


    A accelerated arithmetic algorithm of the dynamic computing regions was designed, and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented. The dendritic growth and the recalescence of Ni-Cu binary alloy during the solidification at different cooling rates were investigated. The effects of cooling rate on dendritic patterns and microsegregation patterns were studied. The computed results indicate that, with the increment of the cooling rate, the dendritic growth velocity increases, both the main branch and side-branches become slender, the secondary dendrite arm spacing becomes smaller, the inadequate solute diffusion in solid aggravates, and the severity of microsegregation ahead of interface aggravates. At a higher cooling rate, the binary alloy presents recalescence; while the cooling rate is small, no recalescence occurs.

  13. Numerical study of the spreading and solidification of a molten particle impacting onto a rigid substrate under plasma spraying conditions

    Oukach Soufiane


    Full Text Available This paper deals with simulation of the spreading and solidification of a fully molten particle impacting onto a preheated substrate under traditional plasma spraying conditions. The multiphase problem governing equations of mass, momentum and energy conservation taking into account heat transfer by conduction, convection and phase change are solved by using a Finite Element approach. The interface between molten particle and surrounding air, is tracked using the Level Set method. The effect of the Reynolds number on the droplet spreading and solidification, using a wide range of impact velocities (40-250m/s, is reported. A new correlation that predicts the final spread factor of splat as a function of Reynolds number is obtained. Thermal contact resistance, viscous dissipation, wettability and surface tension forces effects are taken into account.

  14. Solidification of Al alloys under electromagnetic field



    New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, I.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process-DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process-DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.

  15. Simulation of continuous cast steel product solidification

    Ardelean, E.


    Full Text Available Primary cooling – inside the tundish – has a great impact over the thickness of the solidified steel crust. If on exiting the tundish the crust is too thin, it can punch and break, as a result of the ferrostatic pressure exerted from the inside by the liquid steel as well as because of the weight of the molten steel. The parameters that influence the amount of dissipated heat depend on the cooling water flow of the tundish, on the pressure and temperature of the cooling water but also on the overheating of the continuously cast steel. The secondary cooling takes place at the exit of the semi-finished product from the tundish, when the solidification is supposed to take place all along the cross section of the strand. In order to achieve it, in addition to a correctly managed primary cooling, it is necessary to obtain the proper correlation of the factors that influence the secondary cooling as well: the water flow rate long the three zones of the installation and its pressure in the secondary circuit. All these have in view a proper solidification length; an intense cooling can generate cracks due to the thermal stress, while a too slow cooling can generate a partial solidification of the strand up to the cropping machine area. The paper presents a mathematical simulation of the continuously cast steel solidification.

    El enfriamiento primario del cristalizador tiene una gran importancia sobre el espesor de la costra de acero solidificado. Si al salir del cristalizador, esta costra es demasiado sutil, bajo la acción de la presión ferro estática ejercitada por el acero líquido del interior y gracias el peso propio del hilo, ésta, puede perforar resultando su rompimiento. Los parámetros que influenyen sobre la cantidad de calor cedida dependen del agua de enfriamiento del catalizador, de la presión y de la temperatura de agua de enfriamiento, pero también del sobrecalentamiento del acero fundido continuamente. A la salida del

  16. Directional Solidification Assisted by Liquid Metal Cooling

    Jian ZHANG; Langhong LOU


    An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the LMC process has been analyzed by considering the demands of (1) newer technologies that can provide higher thermal gradients for alleviated segregation in advanced alloy systems, and (2) better production yield of the large directionally solidified superalloy components. The brief history of the industrialization of the LMC process has been reviewed, followed by the discussion on the LMC parameters including selection of the cooling media, using of the dynamic baffle, and the influence of withdrawal rates and so on. The microstructure and mechanical properties of the traditional superalloys processed by LMC, as well as the new alloys particularly developed for LMC process were then described. Finally, future aspects concerning the LMC process have been summarized.

  17. The cement solidification systems at LANL

    Veazey, G.W.


    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.

  18. Non-equilibrium thermodynamics and physical kinetics

    Bikkin, Halid


    This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.

  19. Transmission eigenchannels from nonequilibrium Green's functions

    Paulsson, Magnus; Brandbyge, Mads


    The concept of transmission eigenchannels is described in a tight-binding nonequilibrium Green's function (NEGF) framework. A simple procedure for calculating the eigenchannels is derived using only the properties of the device subspace and quantities normally available in a NEGF calculation...

  20. Non-equilibrium modelling of distillation

    Wesselingh, JA; Darton, R


    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  1. Evolution and non-equilibrium physics

    Becker, Nikolaj; Sibani, Paolo


    We argue that the stochastic dynamics of interacting agents which replicate, mutate and die constitutes a non-equilibrium physical process akin to aging in complex materials. Specifically, our study uses extensive computer simulations of the Tangled Nature Model (TNM) of biological evolution...

  2. Experimental Determination of the Primary Solidification Phase dependency on the solidification velocity for 17 different austenitic stainless steel compositions

    Laursen, Birthe Nørgaard; Olsen, Flemming Ove; Yardy, John;


    to the austenite phase.Most stainless steels are weldable by conventional welding techniques. However, during laser weldng the solidification velocities can be very much higher than by conventional welding techniques. By increasing the solidification velocity to a critical value known as the transition velocity......, the primary solidification phase is found to change from ferrite to austenite.A novel laser remelting technique has been modified to enable the transition velocity for laser welded austenitic stainless steels to be deermined experimentally and on the basis of results from 17 different alloy compositions...... an equation for the calculation of the transition velocity from alloy composition is proposed....

  3. Simulation for Solidification of Melt-Cast Explosives Based on Matlab%基于Matlab的熔注炸药凝固过程模拟



    Most of the solidification simulation study focused on numerical model algorithm, it can not realize real time display. According to the analysis of the characteristics for the solidification process of the melt-cast explosive, the main task is to establish the thermodynamic model by using the combination of experimentation and theoretical analysis from the micro thermodynamics point. Based on the Matlab interface development process, carry out numerical analysis of solidification interface, the characteristic equations at any time are obtained. The simulation and the test curves are both four degree polynomial through the experimentation verification for the formation and the growth law of the solidification interface. The simulation results are consistent with the test, achieving the display of the real-time simulation system of the solidification.%  针对目前对凝固模拟的研究多局限于数值模型的算法上,距实时显示尚有一定差距的问题,通过分析熔注炸药凝固工艺特点,结合热力学理论,建立熔注炸药凝固过程热力学模型。基于Matlab界面开发程序,对凝固界面进行数值分析,得到任意时刻装药凝固界面特性方程。通过对逐层凝固过程模拟界面的形成、生长规律进行试验验证。验证结果表明:模拟曲线与试验曲线均近似符合4次多项式形式,模拟结果与测试结果一致,能实现凝固过程的实时模拟。

  4. Fundamentals of Alloy Solidification Applied to Industrial Processes


    Solidification processes and phenomena, segregation, porosity, gravity effects, fluid flow, undercooling, as well as processing of materials in the microgravity environment of space, now available on space shuttle flights were discussed.

  5. Progress of Solidification Researches and the Applications in Materials Processing


    The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last years are also pointed out.

  6. Rapid Solidification of AB5 Hydrogen Storage Alloys

    Gulbrandsen-Dahl, Sverre


    This doctoral thesis is concerned with rapid solidification of AB5 materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB5 materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to.The thesis is divided in to 6 parts, of which Part I is a literature review, starting wit...

  7. Eutectic-Free Superalloy Made By Directional Solidification

    Schmidt, Deborah Dianne


    By suitable control of thermal conditions in directional-solidification process, supperalloy structural and machine components (e.g., turbine blades) cast with microstructures enhancing resistance to fatigue. Specific version of process and thermal conditions chosen to reduce micro-segregation during solidification and to minimize or eliminate script carbide and eutectic-phase inclusions, which are brittle inclusions found to decrease resistance to fatigue.

  8. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    Alavi, Saman; Ripmeester, J. A.


    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  9. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows

    Lai, Huilin; Xu, Aiguo; Zhang, Guangcai; Gan, Yanbiao; Ying, Yangjun; Succi, Sauro


    The effects of compressibility on Rayleigh-Taylor instability (RTI) are investigated by inspecting the interplay between thermodynamic and hydrodynamic nonequilibrium phenomena (TNE, HNE, respectively) via a discrete Boltzmann model. Two effective approaches are presented, one tracking the evolution of the local TNE effects and the other focusing on the evolution of the mean temperature of the fluid, to track the complex interfaces separating the bubble and the spike regions of the flow. It is found that both the compressibility effects and the global TNE intensity show opposite trends in the initial and the later stages of the RTI. Compressibility delays the initial stage of RTI and accelerates the later stage. Meanwhile, the TNE characteristics are generally enhanced by the compressibility, especially in the later stage. The global or mean thermodynamic nonequilibrium indicators provide physical criteria to discriminate between the two stages of the RTI.

  10. Proceedings of the 2010 international solidification-stabilization technology forum

    Lake, C.B. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Civil and Resource Engineering; Hills, C.D. [Greenwich Univ. (United Kingdom). Centre for Contaminated Land Remediation] (eds.)


    Solidification/stabilization (S/S) is remediation technology used to manage the risk associated with contaminated soils, wastes, and brownfield sites. Canada is now facing considerable challenges in ensuring that sites impacted by hydrocarbon contaminants are efficiently and effectively remediated. This forum was held to bring together leading researchers and practitioners in S/S remediation technology. Recent advances in research were presented, as well as new developments in the implementation of S/S technologies in the field, and methods of safely stabilizing and using potentially hazardous waste products. The conference was divided into the following 8 sessions: (1) stabilization/solidification of organics, (2) stabilization/solidification case studies, (3) stabilization/solidification of metals, (4) performance assessment, (5) mining applications, (6) new stabilization/solidification applications and approaches, (7) marine/coastal applications, and (8) stabilization/solidification amendments or alternatives. The forum featured 28 presentations, of which 6 have been catalogued separately for inclusion in this database. refs., figs.

  11. Experimental Determination of the Primary Solidification Phase dependency on the solidification velocity for 17 different austenitic stainless steel compositions

    Laursen, Birthe Nørgaard; Olsen, Flemming Ove; Yardy, John


    When studying laser welding of austenitic stainless steel, hot cracking is frequently observed. To prevent hot cracking in laser welded stainless steel it is advantageous to obtain primary solidification of the ferrite phase that subsequently, on cooling, transforms in the solid state...... to the austenite phase.Most stainless steels are weldable by conventional welding techniques. However, during laser weldng the solidification velocities can be very much higher than by conventional welding techniques. By increasing the solidification velocity to a critical value known as the transition velocity......, the primary solidification phase is found to change from ferrite to austenite.A novel laser remelting technique has been modified to enable the transition velocity for laser welded austenitic stainless steels to be deermined experimentally and on the basis of results from 17 different alloy compositions...

  12. The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys

    Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.


    The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.

  13. A Study of Interdiffusion in the Fe-C/Ti System Under Equilibrium and Nonequilibrium Conditions

    Prasanthi, T. N.; Sudha, C.; Saroja, S.


    In the present study, diffusion behavior under equilibrium and nonequilibrium conditions in a Fe-C/Ti system is studied in the temperature range of 773 K to 1073 K (500 °C to 800 °C). A defect-free weld joint between mild steel (MS) (Fe-0.14 pct C) and Ti Grade 2 obtained by friction welding is diffusion annealed for various durations to study the interdiffusion behavior under equilibrium conditions, while an explosive clad joint is used to study interdiffusion under nonequilibrium conditions. From the elemental concentration profiles obtained across the MS-Ti interface using electron-probe microanalysis and imaging of the interface, the formation of distinct diffusion zones as a function of temperature and time is established. Concentration and temperature dependence of the interdiffusion coefficients ( D( c)) and activation energies are determined. Under equilibrium conditions, the change in molar volume with concentration shows a close match with the ideal Vegard's law, whereas a negative deviation is observed for nonequilibrium conditions. This deviation can be attributed to the formation of secondary phases, which, in turn, alters the D( c) values of diffusing species. Calculations showed that the D 0 and activation energy for interdiffusion under equilibrium is on the order of 10-11 m2/s and 147 kJ/mol, whereas it is far lower in the nonequilibrium case (10-10 m2/s and 117 kJ/mol) in the compositional range of 40 to 50 wt pct Fe, which also manifests as accelerated growth kinetics of the different diffusion zones.

  14. A Study of Interdiffusion in the Fe-C/Ti System Under Equilibrium and Nonequilibrium Conditions

    Prasanthi, T. N.; Sudha, C.; Saroja, S.


    In the present study, diffusion behavior under equilibrium and nonequilibrium conditions in a Fe-C/Ti system is studied in the temperature range of 773 K to 1073 K (500 °C to 800 °C). A defect-free weld joint between mild steel (MS) (Fe-0.14 pct C) and Ti Grade 2 obtained by friction welding is diffusion annealed for various durations to study the interdiffusion behavior under equilibrium conditions, while an explosive clad joint is used to study interdiffusion under nonequilibrium conditions. From the elemental concentration profiles obtained across the MS-Ti interface using electron-probe microanalysis and imaging of the interface, the formation of distinct diffusion zones as a function of temperature and time is established. Concentration and temperature dependence of the interdiffusion coefficients (D(c)) and activation energies are determined. Under equilibrium conditions, the change in molar volume with concentration shows a close match with the ideal Vegard's law, whereas a negative deviation is observed for nonequilibrium conditions. This deviation can be attributed to the formation of secondary phases, which, in turn, alters the D(c) values of diffusing species. Calculations showed that the D 0 and activation energy for interdiffusion under equilibrium is on the order of 10-11 m2/s and 147 kJ/mol, whereas it is far lower in the nonequilibrium case (10-10 m2/s and 117 kJ/mol) in the compositional range of 40 to 50 wt pct Fe, which also manifests as accelerated growth kinetics of the different diffusion zones.

  15. Evaluation of solid–liquid interface profile during continuous casting by a spline based formalism

    S K Das


    A numerical framework has been applied which comprises of a cubic spline based collocation method to determine the solid–liquid interface profile (solidification front) during continuous casting process. The basis function chosen for the collocation algorithm to be employed in this formalism, is a cubic spline interpolation function. An iterative solution methodology has been developed to track the interface profile for copper strand of rectangular transverse section for different casting speeds. It is based on enthalpy conservation criteria at the solidification interface and the trend is found to be in good agreement with the available information in the literature although a point to point mapping of the profile is not practically realizable. The spline based collocation algorithm is found to be a reasonably efficient tool for solidification front tracking process, as a good spatial derivative approximation can be achieved incorporating simple modelling philosophy which is numerically robust and computationally cost effective.

  16. Solidification phenomena in metal matrix nanocomposites

    de Cicco, Michael Peter


    Nanoparticles in metal matrix nanocomposites (MMNCs) were shown to act as catalysts for nucleation of solidification of the matrix alloy, as well as to alter the intermetallic phase formation. These phenomena were studied in zinc, aluminum, and magnesium alloys. In all alloys studied, a refinement of the microstructure was seen with the addition of the nanoparticles. Various types of nanoparticles were used and had varying degrees of refinement. In a zinc alloy, AC43A, SiC, TiC, and Al2O3 gamma nanoparticles were all found to refine the alloy. Thermal analysis of bulk samples showed the onset of solidification at reduced undercoolings, indicating nucleation catalysis. Nucleation of the primary phase was also observed by employing the droplet emulsion technique (DET). DET results showed that the secondary phase nucleation was also catalyzed by the nanoparticles. Exploiting the nucleation catalysis of the nanoparticles and the associated grain refinement, a semi-solid casting (SSC) process was demonstrated in AC43A + SiC nanocomposites. This novel process successfully incorporated the strength enhancement of MMNCs and the casting quality benefits of SSC. This process required no additional processing steps or material handling typical of existing SSC processes. The nucleation catalysis of the nanoparticles was sufficient to create semi-solid slurries appropriate for SSC. Nanoparticle induced nucleation catalysis was also examined in a common aluminum alloy, A356, using the DET. All nanoparticles catalyzed nucleation of the primary Al phase. However, undercoolings varied depending on the nanoparticle identity and average diameter. The variation in undercoolings generally agreed with a modified lattice disregistry theory and the free growth theory. For nanoparticles with a small lattice spacing mismatch with the Al phase, undercoolings approached the size dependent free growth limit. Binary alloys of magnesium and zinc showed significant strength and ductility

  17. Nonequilibrium thermodynamics of pressure solution

    Lehner, F. K.; Bataille, J.


    This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantity kδ/2C pD, where k is the interfacial transfer coefficient, δ is the mean diffusion path length, C p is the solubility at pressure p, and D is the mass

  18. Kinetic Interface


    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  19. Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions.

    Krasnov, V M


    I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.

  20. A nonequilibrium phase transition in immune response

    Zhang Wei; Qi An-Shen


    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied.In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions,the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  1. Thermal response of nonequilibrium RC-circuits

    Baiesi, Marco; Falasco, Gianmaria; Yolcu, Cem


    We analyze experimental data obtained from an electrical circuit having components at different temperatures, showing how to predict its response to temperature variations. This illustrates in detail how to utilize a recent linear response theory for nonequilibrium overdamped stochastic systems. To validate these results, we introduce a reweighting procedure that mimics the actual realization of the perturbation and allows extracting the susceptibility of the system from steady state data. This procedure is closely related to other fluctuation-response relations based on the knowledge of the steady state probability distribution. As an example, we show that the nonequilibrium heat capacity in general does not correspond to the correlation between the energy of the system and the heat flowing into it. Rather, also non-dissipative aspects are relevant in the nonequilbrium fluctuation response relations.

  2. Nonequilibrium Thermodynamic Model of Manganese Carbonate Oxidation

    郝瑞霞; 彭省临


    Manganese carbonate can be converted to many kinds of manganese oxides when it is aerated in air and oxygen.Pure manganese carbonate can be changed into Mn3O4 and γ-MnOOH,and manganese carbonate ore can be converted to MnO2 under the air-aerating and oxygen-aerating circumstances.The oxidation process of manganese carbonate is a changing process of mineral association,and is also a converting process of valence of manganese itself.Not only equilibrium stat,but also nonequilibrium state are involved in this whole process,This process is an irreversible heterogeneous complex reaction,and oberys the nonequilibrium thermodynamic model,The oxidation rate of manganese cabonate is controlled by many factors,especially nonmanganese metallic ions which play an important role in the oxidation process of manganese carbonate.

  3. Effect of thermal convection on the shape of a solid-liquid interface

    Mennetrier, C.; Chopra, M. A.; De Groh, H. C., III


    The effect of thermal convection on the shape of solid-liquid interface was investigated in experiments conducted in a transparent Bridgman-type directional solidification furnace. The relationship was numerically modeled using a standard 2D finite-difference approach, with the solid-liquid deformable interface approximated by a blocking-off technique. The directional solidification furnace was used with pure succinonitrile (which is also transparent) contained in a long square ampoule made of borosilicate glass. With the furnace in the vertical configuration, a flat interface was observed, in agreement with the model. On the other hand, a highly distorted interface was obtained in the horizontal configuration; the numerical results showed a strong recirculating cell in front of the interface due to natural thermal convection. The results indicate that thermal convection is responsible for the interface distortion.

  4. Lattice Boltzmann approach for complex nonequilibrium flows.

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S


    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  5. Nonequilibrium band structure of nano-devices

    Hackenbuchner, S.; Sabathil, M.; Majewski, J. A.; Zandler, G.; Vogl, P.; Beham, E.; Zrenner, A.; Lugli, P.


    A method is developed for calculating, in a consistent manner, the realistic electronic structure of three-dimensional (3-D) heterostructure quantum devices under bias and its current density close to equilibrium. The nonequilibrium electronic structure is characterized by local Fermi levels that are calculated self-consistently. We have applied this scheme to predict asymmetric Stark shifts and tunneling of confined electrons and holes in single-dot GaAs/InGaAs photodiodes.

  6. Nonequilibrium invariant measure under heat flow.

    Delfini, Luca; Lepri, Stefano; Livi, Roberto; Politi, Antonio


    We provide an explicit representation of the nonequilibrium invariant measure for a chain of harmonic oscillators with conservative noise in the presence of stationary heat flow. By first determining the covariance matrix, we are able to express the measure as the product of Gaussian distributions aligned along some collective modes that are spatially localized with power-law tails. Numerical studies show that such a representation applies also to a purely deterministic model, the quartic Fermi-Pasta-Ulam chain.

  7. Numerical modeling of radiative heat transfer in Bridgman solidification of semi-transparent BaF 2 crystals

    Stelian, C.


    The radiative heat transfer during Bridgman solidification of semi-transparent barium fluoride (BaF 2) crystals is numerically investigated by using the commercial software FIDAP. This code uses the P-1 approximation for the participating media modeling. The thermal field and the solid-liquid interface shape are computed for an opaque melt-crystal sample, a semi-transparent grey sample and a semi-transparent non-grey sample. The transient numerical analysis of the latent heat influence on the interface deflection shows a significant effect on the interface shape. In the case of an opaque sample, this effect is huge because of the small thermal conductivity of the BaF 2 melt. The interface curvature is drastically reduced when the latent heat is taken into account, and the growth front, which has a convex shape, becomes flat when the growth rate increases. The latent heat effect is reduced in the case of the participating BaF 2 sample because the effective thermal conductivity of the melt is augmented by the internal radiative heat transfer. The internal radiative effect is small at low solidified fractions but becomes significant when the crystal length increases, leading to a more curved interface. When the growth rates are greater than a critical value, the interface becomes concave and a destabilization of the growth process can occur. These results are in agreement with previous experimental measurements of the interface curvature and analytical investigations of the factors affecting the interface deflection.

  8. Numerical Simulation of Solidification, Homogenization, and Precipitation in an Industrial Ni-Based Superalloy

    Rougier, Luc; Jacot, Alain; Gandin, Charles-André; Ponsen, Damien; Jaquet, Virginie


    A comprehensive simulation approach integrating solidification, homogenization, and precipitation during aging has been used to predict the formation of γ/ γ' microstructures in the AM1 nickel-based superalloy. The particle size distribution of intradendritic γ' precipitates after aging was calculated with a multicomponent diffusion model coupled with CALPHAD thermodynamics for the equilibrium at the interface. The influence of residual microsegregation after homogenization and quenching was analyzed through different initial conditions obtained from calculations of the concentration profiles in the primary γ dendritic microstructure during solidification and the homogenization heat treatment. While the global sequence of precipitation remains qualitatively the same, substantial differences in the final volume fraction of γ' precipitates were predicted between the core and the periphery of a former dendrite arm, for typical homogenization and aging conditions. To demonstrate the relevance of the developed simulation approach, the model was also used to investigate modified precipitation heat treatments. The simulations showed that relatively short heat treatments based on slow continuous cooling could potentially replace the extended isothermal heat treatments which are commonly used. Slow continuous cooling conditions can lead to similar γ' precipitates radii and volume fractions, the main differences with isothermal heat treatments lying in a narrower particle size distribution.

  9. Dynamics of a faceted nematic-smectic-B front in thin-sample directional solidification.

    Börzsönyi, T; Akamatsu, S; Faivre, G


    We present an experimental study of the directional-solidification patterns of a nematic-smectic-B front. The chosen system is C4H9-(C6H10)2CN (in short, CCH4) in 12 microm-thick samples, and in the planar configuration (director parallel to the plane of the sample). The nematic-smectic-B interface presents a facet in one direction-the direction parallel to the smectic layers--and is otherwise rough and devoid of forbidden directions. We measure the Mullins-Sekerka instability threshold and establish the morphology diagram of the system as a function of the solidification rate V and the angle straight theta(0) between the facet and the isotherms. We focus on the phenomena occurring immediately above the instability threshold when straight theta(0) is neither very small nor close to 90 degrees. Under these conditions, we observe drifting shallow cells and a type of solitary wave, called "faceton," which consists essentially of an isolated macroscopic facet traveling laterally at such a velocity that its growth rate with respect to the liquid is small. Facetons may propagate either in a stationary or an oscillatory way. The detailed study of their dynamics casts light on the microscopic growth mechanisms of the facets in this system.

  10. Numerical Simulation and Optimization of Directional Solidification Process of Single Crystal Superalloy Casting

    Hang Zhang


    Full Text Available The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD method was used to simulate the directional solidification (DS process of single crystal (SX superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v (a key technological parameter. The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process.

  11. Phase-field simulations of particle capture during the directional solidification of silicon

    Aufgebauer, Henning; Kundin, Julia; Emmerich, Heike; Azizi, Maral; Reimann, Christian; Friedrich, Jochen; Jauß, Thomas; Sorgenfrei, Tina; Cröll, Arne


    We present a phase-field model for particle capture during directional solidification. Its predictions for critical growth velocities for particles of different sizes are compared with experimental results for capture of silicon carbide (SiC) particles during directional solidification of silicon. The phase-field model allows us to systematically test the influence of different assumptions about attractive and repulsive forces and the capture mechanisms, including the effects of particle shape and of partial engulfment of the particle by the interface. We identify common properties of models that show agreement with experiments, trying to determine the underlying physical effects by abductive inference. We find that predictions vary only slightly between models with different repulsive forces and that the shape of the particle can have a larger effect on the critical growth velocity than the exact nature of the repulsive force or the capture process. We assess to what extent a good description of experimental critical growth velocities implies that the model accurately describes the actual physical processes and propose additional ways to test the validity of models.

  12. Solidification microstructures and phase transformations in Al-Ti-Si-Mn deoxidized steel weld metals

    Kluken, A. O.; Grong, Ø.; Rørvik, G.


    The present investigation is concerned with basic studies of solidification mechanisms in Al-Ti-Si-Mn deoxidized steel weld metals. Assessment of the weld metal solidification micro-structures was done on the basis of optical microscopy in combination with secondary ion mass spectrometry (SIMS), while both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for characterization of indigenous oxide inclusions. It is shown that nonmetallic inclusions play a critical role in the development of the weld metal columnar grain structure by acting as inert substrates for nucleation of delta ferrite ahead of the advancing interface. The nucleation potency of the oxides increases in the order SiO2-MnO, Al2O3-Ti2O3-SiO2-MnO, A12O3, reflecting a corresponding increase in the inclusion/liquid interfacial energy. Moreover, a shift in the peritectic reaction (which facilitates growth of the austenite grains across the phosphorus-rich boundaries of the primary delta ferrite phase) has been observed in the presence of A12O3 inclusions. Indications are that the resulting decrease in the local phosphorus concentrations at the austenite grain boundaries will strongly alter the kinetics of the subsequent solid-state transformation reactions by promoting growth of grain boundary ferrite sideplates at the expense of intragranularly nucleated acicular ferrite.

  13. Stabilization/solidification of TSCA incinerator ash

    Spence, R.D.; Trotter, D.R.; Francis, C.L.; Morgan, I.L.


    Stabilization/solidification is a well-known waste treatment technique that utilizes different additives and processes. The Phoenix Ash Technology of the Technical Innovation Development Engineering Company is such a technique that uses Cass C fly ash and mechanical pressure to make brick waste forms out of solid wastes, such as the bottom ash from the Toxic Substances Control Act incinerator at the Oak Ridge K-25 Site. One advantage of this technique is that no volume increase over the bulk volume of the bottom ash occurs. This technique should have the same high pH stabilization for Resource Conservation and Recovery Act metals as similar techniques. Also, consolidation of the bottom ash minimizes the potential problems of material dispersion and container corrosion. The bottom ash was spiked with {sup 99}{Tc} to test the effectiveness of the bricks as a physical barrier. The {sup 99}{Tc} leachability index measured for these bricks was 6.8, typical for the pertechnetate anion in cementitious waste forms, indicating that these bricks have accessible porosity as high as that of other cementitious waste forms, despite the mechanical compression, higher waste form density, and water resistant polymer coating.

  14. Onset of sidebranching in directional solidification.

    Echebarria, Blas; Karma, Alain; Gurevich, Sebastian


    We use a computationally efficient phase-field formulation [B. Echebarria, Phys. Rev. E 70, 061604 (2004)] to investigate the origin and dynamics of sidebranching in directional solidification for realistic parameters of a dilute alloy previously studied experimentally [M. Gorgelin and A. Pocheau, Phys. Rev. E 57, 3189 (1998)]. Sidebranching is found to result either from noise amplification or from deterministic oscillations that exist both in two dimensions and in a three-dimensional thin-sample geometry. The oscillatory branch of growth solutions bifurcates subcritically from the main steady-state branch of solutions and exists over a finite range of large array spacings. In contrast, noise-induced sidebranching is associated with a smooth transition where the sidebranching amplitude increases exponentially with spacing up to nonlinear saturation due to the overlap of diffusion fields from neighboring cells, as observed experimentally. In the latter case where sidebranching is noise-induced, we find that increasing the externally imposed thermal gradient reduces the onset velocity and wavelength of sidebranching, as also observed experimentally. We show that this counterintuitive effect is due to tip blunting with increasing thermal gradient that promotes noise amplification in the tip region.

  15. Weld solidification cracking in 304 to 204L stainless steel

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory


    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  16. Weld solidification cracking in 304 to 304L stainless steel

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory


    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  17. Nonequilibrium quantum dynamics in optomechanical systems

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund


    The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.

  18. Nonequilibrium functional bosonization of quantum wire networks

    Ngo Dinh, Stephane, E-mail: [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Bagrets, Dmitry A. [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Mirlin, Alexander D. [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Institut fuer Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Petersburg Nuclear Physics Institute, 188300 St. Petersburg (Russian Federation)


    We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. The formalism is based on nonequilibrium version of functional bosonization. A central role in this approach is played by the Keldysh action that has a form reminiscent of the theory of full counting statistics. To proceed with evaluation of physical observables, we assume the weak-tunneling regime and develop a real-time instanton method. A detailed exposition of the formalism is supplemented by two important applications: (i) tunneling into a biased Luttinger liquid with an impurity, and (ii) quantum Hall Fabry-Perot interferometry. - Highlights: Black-Right-Pointing-Pointer A nonequilibrium functional bosonization framework for quantum wire networks is developed Black-Right-Pointing-Pointer For the study of observables in the weak tunneling regime a real-time instanton method is elaborated. Black-Right-Pointing-Pointer We consider tunneling into a biased Luttinger liquid with an impurity. Black-Right-Pointing-Pointer We analyze electronic Fabry-Perot interferometers in the integer quantum Hall regime.

  19. Heat Transfer Model of Directional Solidification by LMC Process for Superalloy Casting Based on Finite Element Method

    Cao, Liu; Liao, Dunming; Lu, Yuzhang; Chen, Tao


    With the rapid development of the aviation industry, the turbine blade, a critical component of the aeronautical engine, has come to be widely produced by liquid-metal cooling (LMC) process. A temperature- and time-dependent heat transfer coefficient was used to represent the heat convection between the shell and the cooling liquid, and an improved Monte Carlo ray-tracing approach was adopted to handle the boundary of radiation heat transfer. Unstructured mesh was used to fit the irregular shell boundary, and the heat transfer model of directional solidification by LMC process based on finite element method (FEM) was established. The concept of local matrix was here proposed to guarantee computational efficiency. The pouring experiments of directional solidification by LMC process were carried out, then simulation and experimental results were compared here. The accuracy of the heat transfer model was validated by the cooling curves and grain morphology, and the maximum relative error between simulation and experimental cooling curve was 2 pct. The withdrawal rate showed an important influence on the shape of solidification interface, and stray grain is liable to be generated on the bottom of platform at an excessive withdrawal rate.

  20. Progress on Numerical Modeling of the Dispersion of Ceramic Nanoparticles During Ultrasonic Processing and Solidification of Al-Based Nanocomposites

    Zhang, Daojie; Nastac, Laurentiu


    In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.

  1. Progress on Numerical Modeling of the Dispersion of Ceramic Nanoparticles During Ultrasonic Processing and Solidification of Al-Based Nanocomposites

    Zhang, Daojie; Nastac, Laurentiu


    In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.

  2. Impact of External Pressure on the Heat Transfer Coefficient during Solidification of Al-A356 Alloy

    Jabbari, Masoud; Ilkhchy, A.Fardi; Moumani, E.

    In this paper the interfacial heat transfer coefficient (IHTC) is correlated to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of the casting under different pressures were obtained using the Inverse Heat Conduction...... Problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented...

  3. Scale up aspects of directional solidification and Czochralski silicon growth processes in traveling magnetic fields

    Dropka, Natasha; Ervik, Torunn; Czupalla, Matthias; Kiessling, Frank M.


    We performed 3D simulations of directional solidification (DS) and Czochralski (Cz) silicon growth processes in traveling magnetic fields (TMFs) and verified them with the experimental data that were available. Particularly, we studied silicon DS growth in real G1, G2 and G5 size setups and Cz growth in 6″ and 24″ crucibles in furnaces provided with KRISTMAG® heater magnet modules (HMMs). TMFs were used for a solid/liquid interface shaping and for a melt stirring. Based on our simulation findings, we discussed scale up challenges and proposed a method for safe upscaling. The method related all present driving forces using dimensionless numbers: Grashof (Gr), Stephan (Ste), Reynolds (Re), Shielding (S) and magnetic forcing number (F).

  4. Self-organized dendritic sidebranching in directional solidification: sidebranch coherence within uncorrelated bursts.

    Pocheau, Alain; Bodea, Simona; Georgelin, Marc


    We experimentally study the level of organization of dendritic sidebranching in directional solidification. For this, we extract successive interface positions at a fixed distance from the dendrite tips and we perform various correlation analyses. The sidebranching signals appear composed of randomly distributed bursts in which sidebranching coherence is surprisingly large and robust. This is attested by the large autocorrelation found in single bursts and the large cross-correlation found in any couple of bursts, even belonging to different sides of a dendrite or to different dendrites. However, the phase coherence of sidebranching breaks down at the transition between bursts. This restricts the coherence of extended sidebranching signals to a mean burst length and prevents the occurrence of large scale cross-correlation between them. This balanced view on sidebranching coherence stresses the capability of self-organization of dendrites in material science and sheds light on the nature of sidebranching on curved growing forms.

  5. Macrosegregation during Plane Front Solidification of Cesium Iodide wt Percent Thallium Iodide Alloy

    Sidawi, Ibrahim M. S.

    Macrosegregation produced during directional solidification of CsI-1 wt% TlI by vertical Bridgman technique has been examined in crucibles of varying diameter, from 0.5 to 2.0 cm. Phase diagram and temperature dependence of the thermal conductivity have been determined. The experimentally observed liquid-solid interface shape and the fluid flow behavior have been compared with that computed from the commercially available code FIDAP. Thallium iodide content of the alloy was observed to increase along the length of the directionally solidified specimens, resulting in continuously decreasing light output. The experimentally observed solutal distribution agrees with predictions from the boundary layer model of Favier. The observed macrosegregation behavior suggests that there is a significant convection in the melt even in the smallest crucible diameter of 0.5 cm.

  6. Phase change material solidification in a finned cylindrical shell thermal energy storage: An approximate analytical approach

    Mosaffa Amirhossein


    Full Text Available Results are reported of an investigation of the solidification of a phase change material (PCM in a cylindrical shell thermal energy storage with radial internal fins. An approximate analytical solution is presented for two cases. In case 1, the inner wall is kept at a constant temperature and, in case 2, a constant heat flux is imposed on the inner wall. In both cases, the outer wall is insulated. The results are compared to those for a numerical approach based on an enthalpy method. The results show that the analytical model satisfactory estimates the solid-liquid interface. In addition, a comparative study is reported of the solidified fraction of encapsulated PCM for different geometric configurations of finned storage having the same volume and surface area of heat transfer.


    Martínez-Sykora, Juan; Pontieu, Bart De; Hansteen, Viggo H. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Gudiksen, Boris, E-mail: [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)


    The properties of nonstatistical equilibrium ionization of silicon and oxygen ions are analyzed in this work. We focus on five solar targets (quiet Sun; coronal hole; plage; quiescent active region, AR; and flaring AR) as observed with the Interface Region Imaging Spectrograph (IRIS). IRIS is best suited for this work owing to the high cadence (up to 0.5 s), high spatial resolution (up to 0.″32), and high signal-to-noise ratios for O iv λ1401 and Si iv λ1402. We find that the observed intensity ratio between lines of three times ionized silicon and oxygen ions depends on their total intensity and that this correlation varies depending on the region observed (quiet Sun, coronal holes, plage, or active regions) and on the specific observational objects present (spicules, dynamic loops, jets, microflares, or umbra). In order to interpret the observations, we compare them with synthetic profiles taken from 2D self-consistent radiative MHD simulations of the solar atmosphere, where the statistical equilibrium or nonequilibrium treatment of silicon and oxygen is applied. These synthetic observations show vaguely similar correlations to those in the observations, i.e., between the intensity ratios and their intensities, but only in the nonequilibrium case do we find that (some of) the observations can be reproduced. We conclude that these lines are formed out of statistical equilibrium. We use our time-dependent nonequilibrium ionization simulations to describe the physical mechanisms behind these observed properties.

  8. Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats.

    Grosberg, A Y; Joanny, J-F


    We introduce a novel type of locally driven systems made of two types of particles (or a polymer with two types of monomers) subject to a chaotic drive with approximately white noise spectrum, but different intensity; in other words, particles of different types are in contact with thermostats at different temperatures. We present complete systematic statistical mechanics treatment starting from first principles. Although we consider only corrections to the dilute limit due to pairwise collisions between particles, meaning we study a nonequilibrium analog of the second virial approximation, we find that the system exhibits a surprisingly rich behavior. In particular, pair correlation function of particles has an unusual quasi-Boltzmann structure governed by an effective temperature distinct from that of any of the two thermostats. We also show that at sufficiently strong drive the uniformly mixed system becomes unstable with respect to steady states consisting of phases enriched with different types of particles. In the second virial approximation, we define nonequilibrium "chemical potentials" whose gradients govern diffusion fluxes and a nonequilibrium "osmotic pressure," which governs the mechanical stability of the interface.

  9. Self-organized crystallization mechanism of non-equilibrium 2:1 type phyllosilicate systems


    The crystallization mechanism of 2:1 type regular interstratified minerals is investigated in views of non-equilibrium thermodynamics. The structural chemistry of relative layers and their interstratified combinations is analyzed and six kinds of non-equilibrium chemical systems have been induced. The universal laws of chemical reactions which happened in the interface region of these non-equilibrium systems have been summarized. From these laws, two reaction systems crystallizing out Tosudite and Rectorite respectively have been recovered. The kinetic model of chemical reactions has been developed by means of the mass conservation law. The oscillatory solution showing regular interstratified features has also been obtained numerically. These results indicate that the difference in original chemical composition among systems can affect the chemical connotation of reactants, intermediate products and resultants, and the flow chart of chemical reaction, but cannot change their crystallization behavior of network-forming cations, bigger and smaller network-modifying cations during crystallization. Hence, their kinetic model reflecting the universal crystallization law of these cations is just the same. These systems will crystallize out regular interstratified minerals at suitable parameters, which always exist as domain with nanometer-sized in thickness and can be called the self-organized ordering structure.

  10. Wave formation during explosive welding: the relaxation of a nonequilibrium structure

    Greenberg, B. A.; Ivanov, M. A.; Kuz'min, S. V.; Lysak, V. I.; Pushkin, M. S.; Inozemtsev, A. V.; Patselov, A. M.; Pasheev, A. V.


    The sequence of the transition states of the interface in the process of explosion welding has been studied. The self-organization of splash-shaped cusps first into a quasi-wave surface and, then into a perfect wavy surface has been revealed. A similarity between a quasi-wave surface and the periodic surface relief, which has been observed in the well-known experiments of G. R. Abrahamson, of a steel bullet after collision with a target has been found. Simulation tests have been performed in order to find possible methods of the relaxation of a nonequilibrium structure that possess excess area.


    G.F. Liang; C.Q. Wan; J.C. Wu; G.M. Zhu; Y. Yu; Y. Fang


    It was presented the in situ observation of growth behavior and morphology of delta-ferrite as a function of solidification rate in an AISI304 stainless steel. The specimens have been solidified and observed using confocal scanning laser microscopy ( CSLM). The δ-phase always appears like cells on the sample surface when critical supercooling occurs, during which the L→δtransformation starts. The solid-liquid (S-L) interface is found to be finger shaped and has no faceted shape. Γ phase appears among δ grains due to partitioning of Ni into the melt during solidification, when solidification rate is higher. The mergence of observed δ cells is possible for the steel sample cooled at 7.5℃/min. The formation of dendrites can be observed on the free surface of the steel sample cooled at 150℃/min. The size of solidified delta grains decreases from 120 to 20-80μm, and the volume fraction of solidified austenite increases with increase in solidification rate from 7.5 to 150℃/min. The relation between the tip radius of δ cell and its growth rate is deduced, and the results agree with the experimental values.

  12. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Zweiacker, K.; McKeown, J. T.; Liu, C.; LaGrange, T.; Reed, B. W.; Campbell, G. H.; Wiezorek, J. M. K.


    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ˜1.3 m s-1 to ˜2.5 m s-1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s-1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  13. Effect of a transverse magnetic field on solidification morphology and microstructures of pure Sn and Sn-15 wt% Pb alloys grown by a Czochralski method

    Shen, Zhe; Zhong, Yunbo; Wang, Huai; Ren, Weili; Lei, Zuosheng; Ren, Zhongming


    The pure Sn and Sn-15 wt% Pb alloys were grown by a Czochralski method under various magnetic flux densities in this paper. The influence of thermoelectric magnetic (TEM) flows and buoyancy flows on solidification morphology, macrosegregation and microstructures had been investigated experimentally, and the velocity magnitude of TEM flows and buoyancy flows had been studied by 3D numerical simulations. The experimental results indicate that the modification of solidification morphology and microstructures is attributed to the unidirectional Pb solutes transport caused by TEM flows. The 3D numerical simulations results show that the buoyancy flows dominate the flows in the melt under a weak transverse magnetic field (B≤0.43 T), and the unidirectional TEM flows at the vicinity of solid-liquid interface become the dominant flows in the melt with the increase of magnetic field. The interaction of TEM flows and buoyancy flows affecting solidification morphology and microstructures during directional solidification of alloys by the Czochralski method under various magnetic flux densities has been discussed and a corresponding simple evolution mechanism of dendritic growth has been proposed.

  14. Study of the oxidation effects on isothermal solidification based high temperature stable Pt/In/Au and Pt/In/Ag thick film interconnections on LTCC substrate

    Kumar, Duguta Suresh; Suri, Nikhil; Khanna, P. K.; Sharma, R. P.


    The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.

  15. Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering.

    Wang, Hanxiong; Gong, Jixuan; Pei, Yongmao; Xu, Zhiping


    We investigate here heat transfer across interfaces consisting of single- and few-layer graphene sheets between silicon carbides by performing nonequilibrium molecular dynamics simulations. The interfacial thermal conducitivity κI is calculated by considering graphene layers as an interfacial phase. The results indicate that κI decreases with its thickness and heat flux but increases with the environmental temperature. Interface engineering of κI is explored by intercalating molecules between graphene layers. These guest molecules decouple electronic states across the interface, but tune κI slightly, leading to a thermally transparent but electronically insulating interface. These results provide a fundamental understanding in thermal transport across weakly bound interfaces, and design recipes for multifunctional thermal interface materials, composites and thermal management in graphene-based devices.

  16. Experimental and Numerical Simulations of the Solidification Process in Continuous Casting of Slab

    Liang Bai


    Full Text Available Thermal simulation equipment (TSE was recently developed to simulate the solidification process in the industrial continuous casting of slab. The grain growth, solid-liquid interface movement, and columnar-to-equiaxed transition (CET in the continuous casting process can be reproduced using this equipment. The current study is focused on the effects of different cooling rates and superheat conditions on the grain growth in the solidification process of chromium-saving ferritic stainless steel (B425. The temperature distribution and microstructure evolution are simulated by a Cellular Automaton-Finite Element (CAFE model. The experimental results demonstrate that the temperature gradient and the grain growth rate of the sample can be effectively controlled by the equipment. It is observed from optical micrographs of the microstructure that the average equiaxed grain ratio increases when the superheat temperature decreases. The average equiaxed grain ratio is approximately 26% and 42% under superheat conditions of 40 °C and 30 °C, respectively, and no apparent columnar grain generation in the samples occurs under superheat conditions of 10 °C and 20 °C, as the result of a large thermal resistance at the copper-sample interface and low superheat inside the sample. A lower cooling rate results in a higher equiaxed crystal ratio in the sample. As the cooling rate decreases, the equiaxed crystal ratio becomes 14%, 23%, and 42%. Comparing the simulation results with the experimental observations, a reasonable qualitative agreement is achieved for the chilled layer thickness, grain morphology, and CET in the sample. Thus, the CAFE model in the current study can accurately predict the grain growth under different superheating and cooling rate conditions.

  17. Shape sensitivity analysis in numerical modelling of solidification

    E. Majchrzak


    Full Text Available The methods of sensitivity analysis constitute a very effective tool on the stage of numerical modelling of casting solidification. It is possible, among others, to rebuilt the basic numerical solution on the solution concerning the others disturbed values of physical and geometrical parameters of the process. In this paper the problem of shape sensitivity analysis is discussed. The non-homogeneous casting-mould domain is considered and the perturbation of the solidification process due to the changes of geometrical dimensions is analyzed. From the mathematical point of view the sensitivity model is rather complex but its solution gives the interesting information concerning the mutual connections between the kinetics of casting solidification and its basic dimensions. In the final part of the paper the example of computations is shown. On the stage of numerical realization the finite difference method has been applied.

  18. Simulation of shrinkage cavity formation during solidification of binary alloy

    T. Skrzypczak


    Full Text Available Presented paper is focused on numerical modeling of binary alloy solidification process with connection to shrinkage cavity formation phenomenon. Appropriate matching of cooling parameters during solidification process of the cast with raiser is essential to obtain suitable properties of the manufactured part. Localization, structure and depth of the shrinkage cavity is connected to these parameters. The raiser is removed after process, so defect localization in the top part of the manufactured element is of great importance. Mathematical model of solidification process is presented in the paper. The main focus is put on the algorithm of shrinkage cavity creation process. On the basis of mathematical model the numerical approach using finite element method is proposed. On the base of mathematical and numerical model computer program is made. It is able to perform simulation of the shrinkage cavity formation in 2D region. Shape and localization of shrinkage cavity obtained from simulation is compared to defect which was created during experiment.

  19. Matemathical description of solidification cooling curves of pure metals

    Arno Müller


    Full Text Available The introduction of an "incubation time" to the Schwarz classical mathematical description of metals solidification, resulted in a new model called Modified Schwarz Model. By doing so it was possible to identify and quantify the "delay time" that separates the two heat waves traveling independently in a casting during the solidification: the Supercooled / Superheated Liquid and the Solid / Liquid. The thermal shock produced in the initial stage of the undercooling generation process, can be used as an important parameter in the forecasting of the solidification's behavior of pure metals and alloys, when changing mold's materials, pouring and ambient temperatures. The hypercooling proneness degree of metals and alloys, can also be calculated.

  20. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review

    Tajudin, S. A. A.; Azmi, M. A. M.; Nabila, A. T. A.


    Stabilization/Solidification (S/S) is typically a process that involves a mixing of waste with binders to reduce the volume of contaminant leachability by means of physical and chemical characteristics to convert waste in the environment that goes to landfill or others possibly channels. Stabilization is attempts to reduce the solubility or chemical reactivity of the waste by changing the physical and chemical properties. While, solidification attempt to convert the waste into easily handled solids with low hazardous level. These two processes are often discussed together since they have a similar purpose of improvement than containment of potential pollutants in treated wastes. The primary objective of this review is to investigate the materials used as a binder in Stabilization/Solidification (S/S) method as well as the ability of these binders to remediate the contaminated soils especially by heavy metals.

  1. Inverse thermal analysis method to study solidification in cast iron

    Dioszegi, Atilla; Hattel, Jesper


    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... was developed in order to investigate the thermal behaviour of the solidifying metal. Three cylindrically shaped cast samples surrounded by different cooling materials were introduced in the same mould allowing a common metallurgical background for samples solidifying at different cooling rates. The proposed...

  2. In-Situ Analysis of Coarsening during Directional Solidification Experiments in High-Solute Aluminum Alloys

    Ruvalcaba, D.; Mathiesen, R.H.; Eskin, D.G.; Arnberg, L.; Katgerman, L.


    Coarsening within the mushy zone during continuous directional solidification experiments was studied on an Al-30 wt pct Cu alloy. High brilliance synchrotron X-radiation microscopy allowed images to be taken in-situ during solidification. Transient conditions were present during directional solidif

  3. Effects of Pulse Current on Solidification Structure of Austenitic Stainless Steel

    FAN Jin-hui; CHEN Yu; LI Ren-xing; ZHAI Qi-jie


    The 1Cr18Ni9Ti specimens were treated respectively with pulse current under 520 V and 2 600 V during solidification and the solidification structure was observed. The results showed that pulse current can refine solidification grains, cut primary dentrities remarkably and reduce second dentritic arm spacing. The mechanism and effect are changed with operation parameters.

  4. Electrokinetics of heterogeneous interfaces.

    Zembala, Maria


    The influence of surface heterogeneity of various types on electrokinetic parameters is reviewed. The scope of the paper covers classical electrokinetic phenomena characterized by linear dependence of electrokinetic parameters vs. related driving forces. Neither non-linear effects nor the effects of non-equilibrium electric double layer are considered. A historical description of hydrodynamic aspect of electrokinetic phenomena exploiting the slip plane idea is briefly outlined. Attempts to estimate the slip plane location by comparing the diffuse layer and zeta potential values for some model systems are presented. The surface heterogeneity was divided into three categories. Heterogeneity of the first type was related to geometrical morphology of an interfacial region characterized by a considerable surface development producing a three-dimensional interfacial region. The effects of solid roughness, hairy surface, dense polymer layers and gel-like layers are discussed here. The very high surface conductivity detected for such interfaces seems to be a good indicator of the presence of structured layers of this type. Heterogeneous interfaces of the second class cover systems exhibiting non-uniform distribution of surface charge. The non-uniform surface charge distribution can be either of a molecular (discrete charges) or of a microscale (two-dimensional micropatches or three-dimensional structures formed by polyelectrolyte multilayers). The last class of systems examined includes interfaces composed of charged substrate covered by charged bulky objects (particles). In comparison to the homogeneous surfaces, adsorbed charged particles modify both hydrodynamic flow and the electrostatic field significantly altering the electrokinetic parameters. The new description of electrokinetics of composed interfaces presented here takes into account both hydrodynamic and electric field modification and is free of the previously assumed slip plane shift caused by adsorbed

  5. Nonequilibrium antifreeze peptides and the recrystallization of ice.

    Knight, C A; Wen, D; Laursen, R A


    Evidence is presented that the nonequilibrium antifreeze peptide (AFP) from winter flounder has a special ability to inhibit recrystallization in ice only when an appreciable amount of liquid is present, as is the case when the system contains salts and the temperature is not too low. In this circumstance the AFP binds to the ice surface at the ice-solution interfaces in grain boundaries, preventing migration of the solution and effectively immobilizing the boundaries. In the absence of liquid, recrystallization inhibition appears to be a common property of many peptides. This is consistent with the view that the special effects of AFPs require a structural fit onto ice, and therefore require the AFP molecules to have the mobility to achieve that fit. Since the concentration of salt required to induce the special recrystallization inhibition effects of AFPs is lower (recrystallization. The proposition that mobility is needed for AFP molecules to produce their special influence upon ice growth argues against any special effects of AFPs in devitrification.

  6. Modelling of convection during solidification of metal and alloys

    A K Singh; R Pardeshi; B Basu


    The role of convection during solidification is studied with the help of a mathematical model. The effect of various mush models on convection and consequent macrosegregation is examined with the help of numerical simulations. The predicted macrosegregation profiles are compared with published experimental data. Subsequently, the importance of proper auxiliary relationship for thermo-solutal coupling in the mushy region is highlighted through some careful numerical simulations. Finally, the role of material parameters on double-diffusive convection is illustrated through comparative study of solidification of aqueous ammonium chloride, iron-carbon and lead-tin binary systems. Important results of these studies are presented and discussed.

  7. Modeling solidification structure evolution and microsegregation under pressure condition

    Qiang Li; Qiaoyi Guo; Rongde Li


    Solidification microstructure and microsegregation were simulated under a constant pressure condition using the cellular automaton method. First, a single dendrite evolution was simulated and compared under pressure condition and under normal condition,respectively. The solidification microstructure and microsegregation were then simulated. Through simulation, it may be concluded that if the growth direction of the dendrite is parallel to the pressure direction, dendrite growth will be hindered. On the other hand,pressure has no influence on the dendrite evolution. However, when two dendrites grow in close contact, solute enrichment occurs in the dendrites, which hinders the growth of the dendrites. In addition, the solute is preferentially enriched along the pressure direction.

  8. Heat Transfer and Its Effect on Solidification in Combined Mould

    QIU Sheng-tao; TAO Hong-biao; TANG Hong-wei; ZHANG Hui; ZHAO Pei


    The nucleation can be enhanced by decreasing the superheat of molten steel, thus reducing temperature gradient on the solidification front can retard the growth of columnar crystals and enlarge the equiaxed zone in continuous casting strand. The billets with equiaxed zone more than 90% were cast with a combined mould and the heatflux was measured. The heat transfer of the combined mould and traditional mould was compared. The results show that under same casting conditions, the temperature gradient on the solidification front in the combined mould is smaller than that in traditional mould at a distance within 0-150 mm from the meniscus.

  9. Solidification microstructure of directionally solidified superalloy under high temperature gradient


    The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of ...

  10. Nonequilibrium Tuning of the Thermal Casimir Effect

    Dean, David S; Maggs, A C; Podgornik, Rudolf


    In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.

  11. Non-equilibrium Dynamics of DNA Nanotubes

    Hariadi, Rizal Fajar

    Can the fundamental processes that underlie molecular biology be understood and simulated by DNA nanotechnology? The early development of DNA nanotechnology by Ned Seeman was driven by the desire to find a solution to the protein crystallization problem. Much of the later development of the field was also driven by envisioned applications in computing and nanofabrication. While the DNA nanotechnology community has assembled a versatile tool kit with which DNA nanostructures of considerable complexity can be assembled, the application of this tool kit to other areas of science and technology is still in its infancy. This dissertation reports on the construction of non-equilibrium DNA nanotube dynamic to probe molecular processes in the areas of hydrodynamics and cytoskeletal behavior. As the first example, we used DNA nanotubes as a molecular probe for elongational flow measurement in different micro-scale flow settings. The hydrodynamic flow in the vicinity of simple geometrical objects, such as a rigid DNA nanotube, is amenable to rigorous theoretical investigation. We measured the distribution of elongational flows produced in progressively more complex settings, ranging from the vicinity of an orifice in a microfluidic chamber to within a bursting bubble of Pacific ocean water. This information can be used to constrain theories on the origin of life in which replication involves a hydrodynamically driven fission process, such as the coacervate fission proposed by Oparin. A second theme of this dissertation is the bottom-up construction of a de novo artificial cytoskeleton with DNA nanotubes. The work reported here encompasses structural, locomotion, and control aspects of non-equilibrium cytoskeletal behavior. We first measured the kinetic parameters of DNA nanotube assembly and tested the accuracy of the existing polymerization models in the literature. Toward recapitulation of non-equilibrium cytoskeletal dynamics, we coupled the polymerization of DNA

  12. Spectroscopy of nonequilibrium electrons and phonons

    Shank, CV


    The physics of nonequilibrium electrons and phonons in semiconductors is an important branch of fundamental physics that has many practical applications, especially in the development of ultrafast and ultrasmall semiconductor devices. This volume is devoted to different trends in the field which are presently at the forefront of research. Special attention is paid to the ultrafast relaxation processes in bulk semiconductors and two-dimensional semiconductor structures, and to their study by different spectroscopic methods, both pulsed and steady-state. The evolution of energy and space distrib

  13. Nonequilibrium Spin Magnetization Quantum Transport Equations

    Buot, F A; Otadoy, R E S; Villarin, D L


    The classical Bloch equations of spin magnetization transport is extended to fully time-dependent and highly-nonlinear nonequilibrium quantum distribution function (QDF) transport equations. The leading terms consist of the Boltzmann kinetic equation with spin-orbit coupling in a magnetic field together with spin-dependent scattering terms which do not have any classical analogue, but should incorporate the spatio-temporal-dependent phase-space dynamics of Elliot-Yafet and D'yakonov-Perel scatterings. The resulting magnetization QDF transport equation serves as a foundation for computational spintronic and nanomagnetic device applications, in performing simulation of ultrafast-switching-speed/low-power performance and reliability analyses.

  14. Nonlinear and nonequilibrium dynamics in geomaterials.

    TenCate, James A; Pasqualini, Donatella; Habib, Salman; Heitmann, Katrin; Higdon, David; Johnson, Paul A


    The transition from linear to nonlinear dynamical elasticity in rocks is of considerable interest in seismic wave propagation as well as in understanding the basic dynamical processes in consolidated granular materials. We have carried out a careful experimental investigation of this transition for Berea and Fontainebleau sandstones. Below a well-characterized strain, the materials behave linearly, transitioning beyond that point to a nonlinear behavior which can be accurately captured by a simple macroscopic dynamical model. At even higher strains, effects due to a driven nonequilibrium state, and relaxation from it, complicate the characterization of the nonlinear behavior.

  15. Universality in Nonequilibrium Lattice Systems Theoretical Foundations

    Ódor, Géza


    Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically.The book helps the reader to navigate in the zoo of basic m

  16. Non-Equilibrium Transitions of Heliospheric plasma

    Livadiotis, G.; McComas, D. J.


    Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A

  17. Tuning non-equilibrium superconductors with lasers

    Sentef, Michael A.; Kollath, Corinna [HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn (Germany); Kemper, Alexander F. [LBL Berkeley (United States); Georges, Antoine [Ecole Polytechnique and College de France, Paris (France)


    The study of the real-time dynamics dynamics of solids perturbed by short laser pulses is an intriguing opportunity of ultrafast materials science. Previous theoretical work on pump-probe photoemission spectroscopy revealed spectroscopic signatures of electron-boson coupling, which are reminiscent of features observed in recent pump-probe photoemission experiments on cuprate superconductors. Here we investigate the ordered state of electron-boson mediated superconductors subject to laser driving using Migdal-Eliashberg theory on the Kadanoff-Baym-Keldysh contour. We extract the characteristic time scales on which the non-equilibrium superconductor reacts to the perturbation, and their relation to the coupling boson and the underlying order.

  18. Nonequilibrium thermodynamics and Nose-Hoover dynamics.

    Esposito, Massimiliano; Monnai, Takaaki


    We show that systems driven by an external force and described by Nose-Hoover dynamics allow for a consistent nonequilibrium thermodynamics description when the thermostatted variable is initially assumed in a state of canonical equilibrium. By treating the "real" variables as the system and the thermostatted variable as the reservoir, we establish the first and second law of thermodynamics. As for Hamiltonian systems, the entropy production can be expressed as a relative entropy measuring the system-reservoir correlations established during the dynamics.

  19. Nonequilibrium fermion production in quantum field theory

    Pruschke, Jens


    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  20. Dynamical Ensembles in Nonequilibrium Statistical Mechanics

    Gallavotti, G.; Cohen, E.G.D. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)]|[The Rockefeller University, New York, New York 10021 (United States)


    Ruelle`s principle for turbulence leading to what is usually called the Sinai-Ruelle-Bowen (SRB) distribution is applied to the statistical mechanics of many particle systems in nonequilibrium stationary states. A specific prediction, obtained without the need to construct explicitly the SRB itself, is shown to be in agreement with a recent computer experiment on a strongly sheared fluid. This presents the first test of the principle on a many particle system far from equilibrium. A possible application to fluid mechanics is also discussed.

  1. Global stabilities, selection of steady cellular growth, and origin of side branches in directional solidification.

    Xu, Jian-Jun; Chen, Yong-Qiang


    The present paper investigates the global instability mechanisms of arrayed-cellular growth with asymptotic approach. We find that the system of directional solidification involves two types of global instability mechanisms: the low-frequency instability and the global oscillatory instability, which are profoundly similar to that found in the system of viscous fingering and free dendritic growth. Based on these global instabilities, the neutral mode selection principle for the limiting state of growth is proposed; the origin and essence of side branching on the interface are elucidated with the so-called global trapped wave mechanism, which involves the interfacial wave reflection and amplification along the interface. It is demonstrated that side branching is self-sustaining and can persist without continuously applying the external noise; the effect of the anisotropy of interfacial energy is not essential for the selection of steady cellular growth and for the origin and formation of side branching at the interface. The comparisons of theoretical results are made with the most recent experimental works and the numerical simulations which show very good quantitative agreement.

  2. Pattern formation in directional solidification under shear flow. I. Linear stability analysis and basic patterns.

    Marietti, Y; Debierre, J M; Bock, T M; Kassner, K


    An asymptotic interface equation for directional solidification near the absolute stability limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies which is described in the following paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.

  3. Application of Layer-by-Layer Solidification Principle to Optimization of Large Chain Wheel Foundry Technology%逐层凝固原则在大链轮铸造工艺优化中的应用

    李日; 毛协民; 柳百成; 李文珍


    In order to get a sound casting of the alloy with a solidification range, the principle of directional solidification (DS) and the layer-by-layer solidification(LBLS) should be followed, especially in designing foundry process of steel casting. Using the principles, the reasons for the forming of the defects on the surface of the chain wheels teeth and groove and the forming of MT (magnetic particle testing) thin lines were analyzed. The results of the metallographic observation and the numerical simulation show that the low temperature gradient results in a wider mushy zone at the S/L interface that causes the defects and MT thin lines on the surface of the chain wheel casting. Based on the analysis, a new casting technology of the chain wheel was designed and used in the casting production successfully.

  4. Interface Consistency

    Staunstrup, Jørgen


    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  5. Determination of the Solid/Liquid Interface Shape and Resultant Radial Homogeneity in Directionally Solidified Hg(0.89)Mn(0.11)Te

    Price, M. W.; Scripa, R. N.; Lehoczky, S. L.; Szofran, F. R.; Hanson, B.


    Directional solidification and interrupted directional solidification experiments were used to determine tile shape of the solid/liquid interface and the resultant radial homogeneity in Hg(0.89)Mg(0.11)Te. For directionally solidified samples solidified at a rate of 0.09 microns/sec in a thermal gradient of 83 C/cm, a maximum of 0.006 molar percent MnTe radial variation across the Hg0.89)Mn(0.11)Te boules at specific locations was determined using an FTIR technique. This FTIR evaluation of the radial homogeneity also indicated an asymmetrical, convex interface shape during solidification. The asymmetrical, convex shape of the growth interface was confirmed by interrupted directional solidification experiments. These were performed under the same growth conditions as the normally completed directional solidification experiments except that the samples were quenched before the final growth transient was reached. In these experiments, etching and scanning X-ray fluorescence were used to reveal the shape of the solid/liquid interface. Microprobe analysis of composition gradients across the interface was used to confirm the authors' previous work in evaluating the segregation coefficient of Hg(0.89)Mn(0.11)Te alloy. Microprobe analysis of the interface region of the interrupted growth sample revealed a dendritic structure containing secondary and tertiary dendritic arms.

  6. Nonequilibrium dynamics in an interacting Fe-C nanoparticle system

    Jönsson, P.; Hansen, Mikkel Fougt; Nordblad, P.


    Nonequilibrium dynamics in an interacting Fe-C nanoparticle sample, exhibiting a low-temperature spin-glass-like phase, has been studied by low-frequency ac susceptibility and magnetic relaxation experiments. The nonequilibrium behavior shows characteristic spin-glass features, but some qualitative...

  7. Analysis of Instabilities in Non-Equilibrium Plasmas

    LIN Lie; WU Bin; ZHANG Peng; WANG Yong-Qing


    Plasma instabilities with charged particle production processes in non-equilibrium plasma are analysed. A criterion on plasma instabilities is deduced by first-order perturbation theory. The relationship between plasma instabilities and certain factors (degree of non-equilibrium in plasma, the electron attachment rate coefficient and electron temperature) are described.

  8. Non-equilibrium phase transitions in complex plasma

    Sutterlin, K. R.; Wysocki, A.; Rath, C.; Ivlev, A. V.; Thomas, H. M.; Khrapak, S.; Zhdanov, S.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.


    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separatio

  9. Non-equilibrium phenomena in confined soft matter irreversible adsorption, physical aging and glass transition at the nanoscale


    This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: ·         Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). ·         Irr...




    Full Text Available In this research solidification characteristic of metal matrix composites consisted of titanium carbide particulate reinforced aluminium-11.8% silicon alloy matrix is performed. Vortex mixing and permanent casting method are used as the manufacturing method to produce the specimens. Temperature measurements during the casting process are captured and solidification graphs are plotted to represent the solidification characteristic. The results show, as volume fraction of particulate reinforcement is increased, solidification time is faster. Particulate reinforcement promotes rapid solidification which will support finer grain size of the casting specimen. Hardness test is performed and confirmed that hardness number increased as more particulate are added to the system.

  11. Development of an inviscid flux scheme for thermochemical nonequilibrium flow

    Campbell, Charles Hugh

    Solutions to the governing equations that model hypersonic aerothermodynamics rely heavily on the mathematical and numerical technology that characterizes Computational Fluid Dynamics. Many areas of significant investigation are relevant to advancing state of the art hypersonic aerothermodynamic engineering and applied research analyses. Due to the relatively high energy achieved by spacecraft during launch, physical models for thermal nonequilibrium and chemical nonequilibrium are necessary to develop adequate numerical reentry simulations. In addition, complex features of the Navier Stokes equations require sophisticated mathematical and numerical techniques in order to develop reasonably accurate simulations in an acceptable amount of time. The objective of this work is to present the development of a new inviscid flux evaluation method. This new method, referred to as the Flux Consistent scheme, is closely related to the Modified Steger-Warming method. The unique characteristics of this new flux scheme involve an original eigenvalue implementation. This original eigenvalue formulation, however, leads to incorrect flux magnitudes which must be corrected in the total flux to provide an accurate representation of the inviscid fluxes. The mathematical technique used to identify flux magnitude errors in the Flux Consistent scheme is also applied to the Modified Steger-Warming flux evaluation method. This assessment leads to the characterization of flux errors in the Modified Steger-Warming scheme which are generated by eigenvalue differences between the left and right cell interface flow states. These Modified Steger-Warming flux errors are shown to vanish for supersonic conditions. Two hypotheses in reference to the Modified Steger-Warming scheme are proposed. The first is that sonic glitch problems occurring in some Steger-Warming simulations are the result of the flux error vanishing at supersonic conditions. The second hypothesis concerning the Steger

  12. Non-equilibrium many body dynamics

    Creutz, M.; Gyulassy, M.


    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  13. Viscosity of confined inhomogeneous nonequilibrium fluids.

    Zhang, Junfang; Todd, B D; Travis, Karl P


    We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width.

  14. On Typicality in Nonequilibrium Steady States

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto


    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  15. Nonequilibrium free diffusion in seed leachate

    Ortiz G., Luis; Riquelme P., Pablo; Guzmán, R.


    In this work, we use a Schlieren-like Near Field Scattering (SNFS) setup to study nonequilibrium free diffusion behavior of a colloidal solution obtained from seeds leachate. The main objective is to compare the temporal behavior of the diffusion coefficient of seed leachate with an electric conductivity based vigor test. SNFS sizing measurements, based on Mie theory, were carried out to ensure its reliability and sensitivity. Then, we performed a typical nonequilibrium free diffusion experiment of a glycerol-water mixture. In this way, we confirmed that SNFS setup is sensitive to giant concentration fluctuations of nanocolloidal solutions. The results obtained in this stage reproduce properly the data reported elsewhere in literature. Moreover, seed leachate diffuse, in water, in a similar way that glycerol does. In both cases we used the same method (dynamic structure factor) to determine thermo-physical properties. We show that time evolution of diffusion coefficient of Lupinus Albus leachate exhibits three defined regimes as electric conductivity measurements. The results also exhibit a correspondence between the behavior of the diffusion coefficient and electric conductivity values of the two regions in the temporal range studied. Finally, we discuss biological processes involved in germination that could modulate this dependence, and the role played by the electrolytic nature of solutes.

  16. Nonequilibrium dynamical mean-field theory

    Eckstein, Martin


    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  17. Interface models

    Ravn, Anders P.; Staunstrup, Jørgen


    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  18. Topologically protected modes in non-equilibrium stochastic systems

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan


    Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.

  19. Observation of an Aligned Gas - Solid "Eutectic" during Controlled Directional Solidification Aboard the International Space Station - Comparison with Ground-based Studies

    Grugel, R. N.; Anilkumar, A.


    Direct observation of the controlled melting and solidification of succinonitrile was conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) in an atmosphere of nitrogen at 450 millibar pressure for eventual processing in the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) on board the ISS. Real time visualization during controlled directional melt back of the sample showed nitrogen bubbles emerging from the interface and moving through the liquid up the imposed temperature gradient. Over a period of time these bubbles disappear by dissolving into the melt. Translation is stopped after melting back of about 9 cm of the sample, with an equilibrium solid-liquid interface established. During controlled re-solidification, aligned tubes of gas were seen growing perpendicular to the planar solid/liquid interface, inferring that the nitrogen previously dissolved into the liquid SCN was now coming out at the solid/liquid interface and forming the little studied liquid = solid + gas eutectic-type reaction. The observed structure is evaluated in terms of spacing dimensions, interface undercooling, and mechanisms for spacing adjustments. Finally, the significance of processing in a microgravity environment is ascertained in view of ground-based results.

  20. Effects of Gravity on the Double-Diffusive Convection during Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe

    Bune, Andris; Gillies, Donald; Lehoczky, Sandor


    General 2-D and 3-D finite element model of non-dilute alloy solidification was used to simulate growth of HgCdTe in terrestrial and microgravity conditions. Parametric research was undertaken to investigate effects of gravity level, gravity vector orientation and growth velocity on the pattern of melt convection, shape of crystal/melt interface and radial thermal gradient. Verification of the model was undertaken by comparison with previously published results. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures obtained from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. For gravity levels higher then 10(exp -7) of terrestrial one it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by 50% by choosing proper orientation of the ampoule. The predicted interface shape is in agreement with one obtained experimentally by quenching.

  1. Effect of abruptly changing withdrawal rate on solidification microstructure in directionally solidified Al-4.5wt%Cu alloy

    Yang Luyan


    Full Text Available Al-4.5wt.%Cu alloy has been directionally solidified at constant and abruptly changing withdrawal rates, respectively. The effects of the withdrawal rate on solidification microstructure, primary dendrite arm spacing (PDAS and liquid solute distribution in front of the solid-liquid interface were investigated. The experimental results for the PDAS at a constant withdrawal rate agree well with the values calculated by the Hunt, Trivedi and Hunt-Lu models. At an abrupt change in the withdrawal rate, the maximum to minimum ratio of the PDAS at a given solidification parameter, i.e. λ1max/λ1min, is more than 2, and the PDAS values are remarkably history-dependent. Further, the liquid-solute distribution curve based on theoretical calculation shows that the larger the initial withdrawal rate is, the smaller the minimum of liquid solute concentration in front of the solid-liquid interface is after the abrupt change in withdrawal rate.

  2. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy.

    Siquieri, R; Doernberg, E; Emmerich, H; Schmid-Fetzer, R


    In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al(3)Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.

  3. Gas-Liquid Interfacial Non-Equilibrium Plasmas for Structure Controlled Nanoparticles

    Kaneko, Toshiro


    Plasmas generated in liquid or in contact with liquid have attracted much attention as a novel reactive field in the nano-bio material creation because the brand-new chemical and biological reactions are yielded at the gas-liquid interface, which are induced by the physical actions of the non-equilibrium plasmas. In this study, first, size- and structure-controlled gold nanoparticles (AuNPs) covered with DNA are synthesized using a pulse-driven gas-liquid interfacial discharge plasma (GLIDP) for the application to next-generation drug delivery systems. The size and assembly of the AuNPs are found to be easily controlled by changing the plasma parameters and DNA concentration in the liquid. On the other hand, the mono-dispersed, small-sized, and interval-controlled AuNPs are synthesized by using the carbon nanotubes (CNTs) as a template, where the CNTs are functionalized by the ion and radical irradiation in non-equilibrium plasmas. These new materials are now widely applied to the solar cell, optical devices, and so on. Second, highly-ordered periodic structures of the AuNPs are formed by transcribing the periodic plasma structure to the surface of the liquid, where the spatially selective synthesis of the AuNPs is realized. This phenomenon is well explained by the reduction and oxidation effects of the radicals which are generated by the non-equilibrium plasma irradiation to the liquid and resultant dissociation of the liquid. In addition, it is attempted to form nano- or micro-scale periodic structures of the AuNPs based on the self-organizing behavior of turbulent plasmas generated by the nonlinear development of plasma fluctuations at the gas-liquid interface.

  4. Solidification in a Supercomputer: From Crystal Nuclei to Dendrite Assemblages

    Shibuta, Yasushi; Ohno, Munekazu; Takaki, Tomohiro


    Thanks to the recent progress in high-performance computational environments, the range of applications of computational metallurgy is expanding rapidly. In this paper, cutting-edge simulations of solidification from atomic to microstructural levels performed on a graphics processing unit (GPU) architecture are introduced with a brief introduction to advances in computational studies on solidification. In particular, million-atom molecular dynamics simulations captured the spontaneous evolution of anisotropy in a solid nucleus in an undercooled melt and homogeneous nucleation without any inducing factor, which is followed by grain growth. At the microstructural level, the quantitative phase-field model has been gaining importance as a powerful tool for predicting solidification microstructures. In this paper, the convergence behavior of simulation results obtained with this model is discussed, in detail. Such convergence ensures the reliability of results of phase-field simulations. Using the quantitative phase-field model, the competitive growth of dendrite assemblages during the directional solidification of a binary alloy bicrystal at the millimeter scale is examined by performing two- and three-dimensional large-scale simulations by multi-GPU computation on the supercomputer, TSUBAME2.5. This cutting-edge approach using a GPU supercomputer is opening a new phase in computational metallurgy.

  5. Changes in porosity of foamed aluminum during solidification


    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  6. Three-dimensional solidification and melting using magnetic field control

    Dulikravich, George S.; Ahuja, Vineet


    A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields.

  7. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    Pedersen, Karl Martin; Tiedje, Niels Skat


    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...

  8. Solidification paths in modified Inconel 625 weld overlay material

    Chandrasekaran, Karthik; Tiedje, Niels Skat; Hald, John


    Inconel 625 is commonly used for overlay welding to protect the base metal against high temperature corrosion. The efficiency of corrosion protection depends on effective mixing of the overlay weld with the base metal and the subsequent segregation of alloy elements during solidification...

  9. Dislocation density analyses of multi-crystalline silicon during the directional solidification process with bottom grooved furnace

    Karuppasamy, P.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.


    A transient global model was used to investigate the effect of bottom grooved furnace upon the directional solidification (DS) process of multicrystalline silicon (mc-Si). The computations were carried out on a 2D axisymmetric model using the finite volume method. The temperature distribution, crystal-melt (c-m) interface and dislocation density were simulated. The modified heat exchanger block system was used for controlling the temperature gradient at the bottom of the crucible. The obtained results shows convex shape of the c-m interface. The dislocation density was reduced while using the bottom grooved furnace. This work was carried out for the different groove of radius 30 and 60 mm of the heat exchanger block.

  10. Numerical modeling of HgCdTe solidification: effects of phase diagram double-diffusion convection and microgravity level

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.


    A numerical model of HgCdTe solidification was implemented using finite the element code FIDAP. Model verification was done using both experimental data and numerical test problems. The model was used to eluate possible effects of double- diffusion convection in molten material, and microgravity level on concentration distribution in the solidified HgCdTe. Particular attention was paid to incorporation of HgCdTe phase diagram. It was found, that below a critical microgravity amplitude, the maximum convective velocity in the melt appears virtually independent on the microgravity vector orientation. Good agreement between predicted interface shape and an interface obtained experimentally by quenching was achieved. The results of numerical modeling are presented in the form of video film.

  11. Research on Solidification Behavior of Ag-Cu-Zn Alloys%Ag-Cu-Zn合金凝固行为的研究

    陈永泰; 谢明; 杨有才; 张吉明; 刘满门; 王松; 王塞北; 胡洁琼; 李爱坤


    对Ag-6Cu-xZn(x=0,1,2)合金铸态显微组织、物相及凝固行为进行了研究,结果表明,Zn对Ag-Cu合金的二次枝晶间距有细化作用;Ag-6Cu-xZn合金主要由α相(富Ag固溶体相)和少量的β相(富Cu和Zn固溶体相)组成,β相弥散分布于二次枝晶间;Zn的添加降低了合金及第二相的熔化温度,且 Zn 含量越高,合金熔化温度降低趋势越大,其凝固特征是一个典型的固溶体合金的非平衡凝固过程。%The as-cast microstructure, chemical phase and solidification behavior of Ag-6Cu-xZn (x=0, 1, 2) alloys were investigated. The results indicate that, the Zn in Ag-Cu alloy could refine the secondary dendrite arm spacing, but its refining effect is limited. The Ag-Cu-Zn alloy is mainly composed ofα phase (silver-rich phase) and littleβ phase ((copper, zinc)-rich phase).βphases are dispersively distributed in secondary dendrite, they will help to improve the abrasion resistance properties of materials. Adding Zn can reduce the melting temperature of the alloy and the second phase, the higher content of Zn, the greater tendency to reduce the melting temperature of the alloy, the solidification feature of Ag-Cu-Zn alloy is a typical of non-equilibrium solidification of Solid Solution.

  12. Mathematical Modeling of Binary Alloy Solidification

    R. Černý


    Full Text Available Te is simulated. Moving boundary conditions for temperatures are taken into account, which makes it possible to simulate the Bridgman method of crystal growth for instance. The computational experiments reveal a qualitative agreement of the numerically simulated and experimentally measured concentration fields. The influence of principal parameters of Bridgman growth and of the accuracy of material parameters is studied as well. Concerning the material parameters, the liquid/solid thermal conductivity ratio at the melting temperature is found to be the most important because it can affect the shape of the phase interface significantly, and therefore the temperature and concentration fields as well.

  13. Nonequilibrium effects in the energy distribution function

    Burns, George; Cohen, L. Kenneth


    The relative nonequilibrium energy distribution function, in the steady state for the irreversibly reacting Br2 in an argon system at 3500 K, is calculated. It is based upon 44 400 classical 3D trajectories, and uses the single uniform ensemble method [H. D. Kutz and G. Burns, J. Chem. Phys. 72, 3562 (1980)]. Although the raw data display a considerable scatter, they clearly indicate a depletion from the equilibrium distribution function over a wide energy range. A careful statistical study of the data is performed. It is found that their histograms can be described over the entire possible energy range by a simple analytical function with only one adjustable parameter. The best fitting procedure yields a surprisingly narrow goodness of fit. However, an apparent deviation of the fit from the data is observed in the energy region where the reaction channel opens. To that extent, this work sheds a new light on the nature of the steady state in an irreversible reaction.

  14. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    Tomé, Tânia; de Oliveira, Mário J


    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  15. Ab initio vibrations in nonequilibrium nanowires

    Jauho, Antti-Pekka; Engelund, Mads; Markussen, T


    We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative predicti......We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative...... predictions for the thermoelectric properties, while for the atomic gold chains we evaluate microscopically the damping of the vibrations, due to the coupling of the chain atoms to the modes in the bulk contacts. Both approaches are based on the combination of density-functional theory, and nonequilibrium...... Green's functions....

  16. Localized nonequilibrium nanostructures in surface chemical reactions

    Hildebrand, M; Ipsen, M; Mikhailov, A S; Ertl, G [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)


    Nonequilibrium localized stationary structures of submicrometre and nanometre sizes can spontaneously develop under reaction conditions on a catalytic surface. These self-organized structures emerge because of the coupling between the reaction and a structural phase transition in the substrate. Depending on the reaction conditions they can either correspond to densely covered spots (islands), inside which the reaction predominantly proceeds, or local depletions (holes) in a dense adsorbate layer with a very small reactive output in comparison to the surroundings. The stationary localized solutions are constructed using the singular perturbation approximation. These results are compared with numerical simulations, where special adaptive grid algorithms and numerical continuation of stationary profiles are used. Numerical investigations beyond the singular perturbation limit are also presented.

  17. Nonequilibrium phase transitions in biomolecular signal transduction

    Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David


    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.

  18. Gravity and Nonequilibrium Thermodynamics of Classical Matter

    Hu, B L


    Renewed interest in deriving gravity (more precisely, the Einstein equations) from thermodynamics considerations [1, 2] is stirred up by a recent proposal that 'gravity is an entropic force' [3] (see also [4]). Even though I find the arguments justifying such a claim in this latest proposal rather ad hoc and simplistic compared to the original one I would unreservedly support the call to explore deeper the relation between gravity and thermodynamics, this having the same spirit as my long-held view that general relativity is the hydrodynamic limit [5, 6] of some underlying theories for the microscopic structure of spacetime - all these proposals, together with that of [7, 8], attest to the emergent nature of gravity [9]. In this first paper of two we set the modest goal of studying the nonequilibrium thermodynamics of classical matter only, bringing afore some interesting prior results, without invoking any quantum considerations such as Bekenstein-Hawking entropy, holography or Unruh effect. This is for the ...

  19. Non-equilibrium quantum heat machines

    Alicki, Robert; Gelbwaser-Klimovsky, David


    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  20. Anomalous spectral lines and relic quantum nonequilibrium

    Underwood, Nicolas G


    We describe general features that might be observed in the line spectra of relic cosmological particles should quantum nonequilibrium be preserved in their statistics. According to our arguments, these features would represent a significant departure from those of a conventional origin. Among other features, we find a possible spectral broadening (for incident photons) that is proportional to the energy resolution of the recording telescope (and so could be orders of magnitude larger than any intrinsic broadening). Notably, for a range of possible initial conditions we find the possibility of spectral line `narrowing' whereby a telescope could observe a spectral line which is narrower than it should conventionally be able to resolve. We briefly discuss implications for the indirect search for dark matter.

  1. Conditional reversibility in nonequilibrium stochastic systems

    Bonança, Marcus V. S.; Jarzynski, Christopher


    For discrete-state stochastic systems obeying Markovian dynamics, we establish the counterpart of the conditional reversibility theorem obtained by Gallavotti for deterministic systems [Ann. de l'Institut Henri Poincaré (A) 70, 429 (1999)]. Our result states that stochastic trajectories conditioned on opposite values of entropy production are related by time reversal, in the long-time limit. In other words, the probability of observing a particular sequence of events, given a long trajectory with a specified entropy production rate σ , is the same as the probability of observing the time-reversed sequence of events, given a trajectory conditioned on the opposite entropy production, -σ , where both trajectories are sampled from the same underlying Markov process. To obtain our result, we use an equivalence between conditioned ("microcanonical") and biased ("canonical") ensembles of nonequilibrium trajectories. We provide an example to illustrate our findings.

  2. Fluctuations When Driving Between Nonequilibrium Steady States

    Riechers, P M


    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balance dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify constraints on excess thermodynamic quantities that ride above the NESS housekeeping background. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. Altogether, these point to universal thermodynamic laws that are immediately app...

  3. An efficient self-optimized sampling method for rare events in nonequilibrium systems

    JIANG HuiJun; PU MingFeng; HOU ZhongHuai


    Rare events such as nucleation processes are of ubiquitous importance in real systems.The most popular method for nonequilibrium systems,forward flux sampling(FFS),samples rare events by using interfaces to partition the whole transition process into sequence of steps along an order parameter connecting the initial and final states.FFS usually suffers from two main difficulties:low computational efficiency due to bad interface locations and even being not applicable when trapping into unknown intermediate metastable states.In the present work,we propose an approach to overcome these difficulties,by self-adaptively locating the interfaces on the fly in an optimized manner.Contrary to the conventional FFS which set the interfaces with equal distance of the order parameter,our approach determines the interfaces with equal transition probability which is shown to satisfy the optimization condition.This is done by firstly running long local trajectories starting from the current interface i to get the conditional probability distribution Pc(〉i|i),and then determining i+1by equaling Pc(i+1|i)to a give value p0.With these optimized interfaces,FFS can be run in a much more efficient way.In addition,our approach can conveniently find the intermediate metastable states by monitoring some special long trajectories that neither end at the initial state nor reach the next interface,the number of which will increase sharply from zero if such metastable states are encountered.We apply our approach to a two-state model system and a two-dimensional lattice gas Ising model.Our approach is shown to be much more efficient than the conventional FFS method without losing accuracy,and it can also well reproduce the two-step nucleation scenario of the Ising model with easy identification of the intermediate metastable state.

  4. Mesoscopic thermodynamics of stationary non-equilibrium states

    SantamarIa-Holek, I [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Circuito exterior de Ciudad Universitaria, 04510 DF (Mexico); RubI, J M [Facultad de FIsica, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona (Spain); Perez-Madrid, A [Facultad de FIsica, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona (Spain)


    Thermodynamics for systems at non-equilibrium stationary states have been formulated, based on the assumption of the existence of a local equilibrium in phase space which enables one to interpret the probability density and its conjugated non-equilibrium chemical potential as mesoscopic thermodynamic variables. The probability current is obtained from the entropy production related to the probability diffusion process and leads to the formulation of the Fokker-Planck equation. For the case of a gas of Brownian particles under steady flow in the dilute and concentrated regimes, we derive non-equilibrium equations of state.

  5. Quasicritical brain dynamics on a nonequilibrium Widom line

    Williams-García, Rashid V.; Moore, Mark; Beggs, John M.; Ortiz, Gerardo


    Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom line where the correlation length and information transmission are optimized. We simulate the network and introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system exhibits a "quasiperiodic" phase corresponding to synchronous activity in simulations, which may be related to the pathological synchronization associated with epilepsy.

  6. Dynamic renormalization in the framework of nonequilibrium thermodynamics.

    Ottinger, Hans Christian


    We show how the dynamic renormalization of nonequilibrium systems can be carried out within the general framework of nonequilibrium thermodynamics. Whereas the renormalization of Hamiltonians is well known from equilibrium thermodynamics, the renormalization of dissipative brackets, or friction matrices, is the main new feature for nonequilibrium systems. Renormalization is a reduction rather than a coarse-graining technique; that is, no new dissipative processes arise in the dynamic renormalization procedure. The general ideas are illustrated for dilute polymer solutions where, in renormalizing bead-spring chain models, dissipative hydrodynamic interactions between different smaller beads contribute to the friction coefficient of a single larger bead.

  7. Interface dermatitis

    Rajiv Joshi


    Full Text Available Interface dermatitis includes diseases in which the primary pathology involves the dermo-epidermal junction. The salient histological findings include basal cell vacuolization, apoptotic keratinocytes (colloid or Civatte bodies, and obscuring of the dermo-epidermal junction by inflammatory cells. Secondary changes of the epidermis and papillary dermis along with type, distribution and density of inflammatory cells are used for the differential diagnoses of the various diseases that exhibit interface changes. Lupus erythematosus, dermatomyositis, lichen planus, graft versus host disease, erythema multiforme, fixed drug eruptions, lichen striatus, and pityriasis lichenoides are considered major interface diseases. Several other diseases (inflammatory, infective, and neoplastic may show interface changes.

  8. Interaction of Porosity with a Planar Solid/Liquid Interface

    Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu; Kaukler, William F.


    In this article, an investigation of the interaction between gas porosity and a planar solid/liquid (SL) interface is reported. A two-dimensional numerical model able to accurately track sharp SL interfaces during solidification of pure metals and alloys is proposed. The finite-difference method and a rectangular undeformed grid are used for computation. The SL interface is described through the points of intersection with the grid lines. Its motion is determined by the thermal and solute gradients at each particular point. Changes of the interface temperature because of capillarity or solute redistribution as well as any perturbation of the thermal and solute field produced by the presence of non-metallic inclusions can be computed. To validate the model, the dynamics of the interaction between a gas pore and a solidification front in metal alloys was observed using a state of the art X-ray transmission microscope (XTM). The experiments included observation of the distortion of the SL interface near a pore, real-time measurements of the growth rate, and the change in shape of the porosity during interaction with the SL interface in pure Al and Al-0.25 wt pct Au alloy. In addition, porosity-induced solute segregation patterns surrounding a pore were also quantified.

  9. Pattern formation in directional solidification under shear flow. II. Morphologies and their characterization.

    Marietti, Y; Debierre, J M; Bock, T M; Kassner, K


    In the preceding paper, we have established an interface equation for directional solidification under the influence of a shear flow parallel to the interface. This equation is asymptotically valid near the absolute stability limit. The flow, described by a nonlocal term, induces a lateral drift of the whole pattern due to its symmetry-breaking properties. We find that at not-too-large flow strengths, the transcritical nature of the transition to hexagonal patterns shows up via a hexagonal modulation of the stripe pattern even when the linear instability threshold of the flowless case has not yet been attained. When the flow term is large, the linear description of the drift velocity breaks down and transitions to flow-dominated morphologies take place. The competition between flow-induced and diffusion-induced patterns (controlled by the temperature gradient) leads to new phenomena such as the transition to a different lattice structure in an array of hexagonal cells. Several methods to characterize the morphologies and their transitions are investigated and compared. In particular, we consider two different ways of defining topological defects useful in the description of patterns and we discuss how they are related to each other.

  10. Nonequilibrium phase transitions and a nonequilibrium critical point from anti-de Sitter space and conformal field theory correspondence.

    Nakamura, Shin


    We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N = 4 large-N(c) SU(N(c)) supersymmetric Yang-Mills theory with a single flavor of fundamental N = 2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.

  11. Effects of Gravity on the Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to HgCdTe

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.


    A general 2-D and 3-D finite element model of non-dilute alloy solidification was used to simulate growth of HgCdTe in terrestrial and microgravity conditions. Verification of the 3-D model was undertaken by comparison with previously published results on convection in an inclined cylinder. For low growth velocities, plane front solidification occurs. The location and the shape of the interface were determined using melting temperatures obtained from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes a thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion due to the combined effects of composition and temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors, dimensional rather than non-dimensional modeling was performed. the predicted interface shape is in agreement with one obtained experimentally by quenching.

  12. A diffuse interface model with immiscibility preservation

    Tiwari, Arpit, E-mail: [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Freund, Jonathan B., E-mail: [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Pantano, Carlos [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)


    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical-bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results.

  13. Interface Screenings

    Thomsen, Bodil Marie Stavning


    and memories. From a transvisual perspective, the question is whether or not these (by now realized) diagrammatic modes involving the body in ubiquitous global media can be analysed in terms of the affects and events created in concrete interfaces. The examples used are filmic as felt sensations...... of an interface are invisible and not easy to describe....

  14. Fluid Interfaces

    Hansen, Klaus Marius


    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  15. Interface Realisms

    Pold, Søren


    This article argues for seeing the interface as an important representational and aesthetic form with implications for postmodern culture and digital aesthetics. The interface emphasizes realism due in part to the desire for transparency in Human-Computer Interaction (HCI) and partly to the devel...

  16. Structural Properties of Liquid SiC during Rapid Solidification

    WanJun Yan


    Full Text Available The rapid solidification of liquid silicon carbide (SiC is studied by molecular dynamic simulation using the Tersoff potential. The structural properties of liquid and amorphous SiC are analyzed by the radial distribution function, angular distribution function, coordination number, and visualization technology. Results show that both heteronuclear and homonuclear bonds exist and no atomic segregation occurs during solidification. The bond angles of silicon and carbon atoms are distributed at around 109° and 120°, respectively, and the average coordination number is <4. Threefold carbon atoms and fourfold silicon atoms are linked together by six typical structures and ultimately form a random network of amorphous structure. The simulated results help understand the structural properties of liquid and amorphous SiC, as well as other similar semiconductor alloys.

  17. Kinetic model of ductile iron solidification with experimental verification

    W. Kapturkiewicz


    Full Text Available A solidification model for ductile iron, including Weibull formula for nodule count has been presented. From this model, the following can be determined: cooling curves, kinetics of austenite and eutectic nucleation, austenite and eutectic growth velocity, volume fraction, distribution of Si and P both in austenite and eutectic grain with distribution in casting section.In the developed model of nodular graphite iron casting solidification, the correctness of the mathematical model has been experimentally verified in the range of the most significant factors, which include temperature field, the value of maximum undercooling, and the graphite nodule count interrelated with the casting cross-section. Literature offers practically no data on so confronted process model and simulation program.

  18. Modeling of solidification of MMC composites during gravity casting process

    R. Zagórski


    Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.

  19. Computer modelling of solidification of pure metals and alloys

    Barkhudarov, M R


    differencing advection algorithm used in the simulations, the Leith's method is incorporated into the public domain two-dimensional SOLA code. It is shown that the resulting scheme is unconditionally stable despite being explicit. Two numerical models have been developed to describe the volumetric changes during solidification in pure metals and alloys and to predict shrinkage defects in the castings of general three-dimensional configuration. The first model is based on the full system of the Continuity, Navier-Stokes and Enthalpy Equations. Volumetric changes are described by introducing a source term in the Continuity Equation which is a function of the rate of local phase transformation. The model is capable of simulating both volumetric shrinkage and expansion. The second simplified shrinkage model involves the solution of only the Enthalpy Equation. Simplifying assumptions that the feeding flow is governed only by gravity and solidification rate and that phase transformation proceeds only from liquid to...

  20. Solidification and ordering during directional drying of a colloidal dispersion.

    Goehring, Lucas; Clegg, William J; Routh, Alexander F


    During drying, colloidal dispersions undergo processes such as solidification, cracking, and the draining of interstitial pores. Here we show that the solidification of polystyrene and silica dispersions, during directional drying, occurs in two separate stages. These correspond to the initial ordering and subsequent aggregation of the colloidal particles. Transitions between these stages are observed as changes in transparency and color that propagate as distinct fronts along the drying layer. The dynamics of these fronts are shown to arise from a balance between compressive capillary forces and the electrostatic and van der Waals forces described by DLVO theory. This suggests a simple method by which the maximum interparticle repulsion between particles can be measured through the optical inspection of the dynamics of a drying dispersion, under a microscope.

  1. Inverse problem for porosity estimation during solidification of TNT

    Aldélio Bueno Caldeira


    Full Text Available In the present study, the porosity formed during the solidification process is estimated by an inverse problem technique based on particle swarm optimization. The effective heat capacity method is adopted to model the heat transfer problem. The transient-diffusive heat transfer equation is solved numerically by the finite volume method with an explicit scheme, employing the central difference interpolation function. The solution of the direct problem is compared to reference solutions. The model is applied to trinitrotoluene (TNT solidification process. The results show that the proposed procedure was able to estimate the porosity for different Stefan numbers. The analysis of the heat flux in the mold is indicated to predict the porosity formation during the casting process.

  2. Growth directions of microstructures in directional solidification of crystalline materials.

    Deschamps, J; Georgelin, M; Pocheau, A


    In directional solidification, as the solidification velocity increases, the growth direction of cells or dendrites rotates from the direction of the thermal gradient to that of a preferred cristalline orientation. Meanwhile, their morphology varies with important implications for microsegregation. Here, we experimentally document the growth directions of these microstructures in a succinonitrile alloy in the whole accessible range of directions, velocities, and spacings. For this, we use a thin sample made of a single crystal on which the direction of the thermal gradient can be changed. This allows a fine monitoring of the misorientation angle between thermal gradient and preferred crystalline orientation. Data analysis shows evidence of an internal symmetry which traces back to a scale invariance of growth directions with respect to a Péclet number. This enables the identification of the relationship between growth directions and relevant variables, in fair agreement with experiment. Noticeable variations of growth directions with misorientation angles are evidenced and linked to a single parameter.

  3. Fluid mechanics of directional solidification at reduced gravity

    Chen, C. F.


    The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.

  4. Testing Interfaces

    Holbøll, Joachim T.; Henriksen, Mogens; Nilson, Jesper K.;


    The wide use of solid insulating materials combinations in combinations has introduced problems in the interfaces between components. The most common insulating materials are cross-linked polyethylene (XLPE), silicone rubber (SIR) and ethylene-propylene rubbers (EPR). Assemblies of these materials...... have caused major failures. In the Netherlands, a major black out was caused by interface problems in 150kV cable terminations, causing a cascade of breakdowns. There is a need to investigate the reasons for this and other similar breakdowns.The major problem is expected to lie in the interface between...... two different materials. Environmental influence, surface treatment, defects in materials and interface, design, pressure and rubbing are believed to have an effect on interface degradation. These factors are believed to increase the possibility of partial discharges (PD). PD will, with time, destroy...

  5. Analysis of Solid-Liquid Interface Behavior during Continuous Strip-Casting Process Using Sharp-Interface Technique

    Changbum Lee


    Full Text Available Continuous strip casting (CSC has been developed to fabricate thin metal plates while simultaneously controlling the microstructure of the product. A numerical analysis to understand the solid-liquid interface behaviors during CSC was carried out and used to identify the solidification morphologies of the plate, which were then used to obtain the optimum process conditions. In this study, we used a modified level contour reconstruction method and the sharp-interface method to modify the interface tracking, and we performed a simulation analysis to identify the differences in the material properties that affect the interface behavior. The effects of the process parameters such as the heat transfer coefficient and extrusion velocity on the behavior of the solid-liquid interface are estimated and also used to improve the CSC process.

  6. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics

    Ruelle, D


    This paper reviews various applications of the theory of smooth dynamical systems to conceptual problems of nonequilibrium statistical mechanics. We adopt a new point of view which has emerged progressively in recent years, and which takes seriously into account the chaotic character of the microscopic time evolution. The emphasis is on nonequilibrium steady states rather than the traditional approach to equilibrium point of view of Boltzmann. The nonequilibrium steady states, in presence of a Gaussian thermostat, are described by SRB measures. In terms of these one can prove the Gallavotti-Cohen fluctuation theorem. One can also prove a general linear response formula and study its consequences, which are not restricted to near equilibrium situations. Under suitable conditions the nonequilibrium steady states satisfy the pairing theorem of Dettmann and Morriss. The results just mentioned hold so far only for classical systems; they do not involve large size, i.e., they hold without a thermodynamic limit.

  7. Non-equilibrium thermodynamics of small-scale systems

    Rubi, J. Miguel [Departament de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona, Marti i Franques, 1, 08028-Barcelona (Spain)]. E-mail:


    Small thermodynamic systems exhibit peculiar behavior different from that observed in long-scale systems. Non-equilibrium processes taking place in those systems are strongly influenced by the presence of fluctuations which can be large. Contributions to the free energy which vanish at the infinite number of particles limit cannot be neglected and may exert an important influence on the dynamics. We show that in spite of these important differences, the method of non-equilibrium thermodynamics still applies when reducing the size of the system. By using this method, assumption of local equilibrium at the mesoscale thereby leads to the formulation of a mesoscopic non-equilibrium thermodynamics from which expressions for the non-equilibrium currents and kinetic equations for the probability density can be obtained.

  8. Nonequilibrium electron transport through quantum dots in the Kondo regime

    Wölfle, Peter; Paaske, Jens; Rosch, Achim


    Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how the ...

  9. Non-equilibrium in low-temperature plasmas

    Taccogna, Francesco; Dilecce, Giorgio


    The wide range of applications of cold plasmas originates from their special characteristic of being a physical system out of thermodynamic equilibrium. This property enhances its reactivity at low gas temperature and allows to obtain macroscopic effects with a moderate energy consumption. In this review, the basic concepts of non-equilibrium in ionized gases are treated by showing why and how non-equilibrium functions of the degrees of freedom are formed in a variety of natural and man-made plasmas with particular emphasis on the progress made in the last decade. The modern point of view of a molecular basis of non-equilibrium and of a state-to-state kinetic approach is adopted. Computational and diagnostic techniques used to investigate the non-equilibrium conditions are also surveyed.

  10. Non-Equilibrium Thermodynamics of Self-Replicating Protocells

    Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs


    We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....

  11. Spectral learning of dynamic systems from nonequilibrium data

    Wu, Hao


    Observable operator models (OOMs) and related models are one of the most important and powerful tools for modeling and analyzing stochastic systems. They can exactly describe dynamics of finite-rank systems, and be efficiently learned from data by moment based algorithms. Almost all OOM learning algorithms are developed based on the assumption of equilibrium data which is very difficult to guarantee in real life, especially for complex processes with large time scales. In this paper, we derive a nonequilibrium learning algorithm for OOMs, which dismisses this assumption and can effectively extract the equilibrium dynamics of a system from nonequilibrium observation data. In addition, we propose binless OOMs for the application of nonequilibrium learning to continuous-valued systems. In comparison with the other OOMs with continuous observations, binless OOMs can achieve consistent estimation from nonequilibrium data with only linear computational complexity.

  12. Dynamics of liquid solidification thermal resistance of contact layer

    Lipnicki, Zygmunt


    This monograph comprehensively describes phenomena of heat flow during phase change as well as the dynamics of liquid solidification, i.e. the development of a solidified layer. The book provides the reader with basic knowledge for practical designs, as well as with equations which describe processes of energy transformation. The target audience primarily comprises researchers and experts in the field of heat flow, but the book may also be beneficial for both practicing engineers and graduate students.

  13. Supporting the model of ductile iron dendritic solidification

    Santos, H.M.C.M. [Porto Univ. (Portugal). Metall. and Mater. Dept.; Pinto, A.M.P. [Minho Univ. (Portugal). Mechanical Engineering Dept.; Jacinto, M.C.P.L. [Porto Polytechnic Inst. and INEGI, Porto (Portugal). Mechanical Engineering Dept.; Sa, C.P.M. [Porto Univ. (Portugal). Materials Center


    Microsegregation in ductile iron is generally accepted as modelled by a regular pattern: the graphite promoter elements are assumed to concentrate in the neighborhood of the graphite nodules and the carbide forming elements in the eutectic cell boundaries. The authors have conducted several microanalyses in several ductile irons and concluded that the microsegregation pattern does not agree with this model but supports the mechanism of dendritic ductile iron solidification. (orig.)

  14. [Application of solidification technology in ecological protection of rural riverbank].

    Fu, Rong-bing; Chen, Xiao-hua; Luo, Qi-shi; Zhang, Shu-jiu; Li, Xiao-ping; Geng, Chun-nü


    A self-developed binder was used for the solidification of construction refuse piles and whole soil matrix, and a technology of this solidification combining with grass-planting was adopted to ecologically protect the rural riverbanks at Tianshan Village of Shanghai. This technology and other ecological engineering techniques were also employed to reconstruct the ecological environment of a sewage pond at the Village. The results showed that the solidified piles had an anti-compression strength of up to 7.3 MPa, with good hydraulic permeability, fast hardening rate, and low drying shrinkage, which met the requirements for ecological safety. The solidified stakes could be used at a low temperature of above -18 degrees C with addition of certain anti-freezing agents. The riverbank underpinned with the solidified stakes had higher anti-compressive strength, higher ability of anti-soil erosion, and better hydraulic permeability; and its soil had the similar moisture content to bare riverbank soil, with no detrimental effects on the root growth of planted grass. After soil solidification, the shearing strength of the riverbank increased by 50 times, and its soil loss was only 5% of the bare riverbank. In the first 10 days after adopting this technology, parts of Cynodon dactylon roots on the surface of solidified soil matrix began to extend into soil; after one month, 60% of the roots penetrated into deeper soil layer; and 11 months later, the grass roots completely grew in-depth in the soil. The combination of our solidification technique with vegetation reconstruction satisfied the requirements of both stabilizing riverbank and improving riparian habitat.

  15. Development Of A Magnetic Directional-Solidification Furnace

    Aldrich, Bill R.; Lehoczky, Sandor L.


    Report describes development of directional-solidification furnace in which axial magnetic field is imposed by surrounding ring permanent magnets and/or electromagnets and pole pieces. Furnace provides controlled axial temperature gradients in multiple zones, through which ampoule containing sample of material to be solidified is translated at controlled speed by low-vibration, lead-screw, stepping-motor-driven mechanism. Intended for use in low-gravity (spaceflight) experiments on melt growth of high-purity semiconductor crystals.

  16. Advances on Microstructure Modeling of Solidification Process of Shape Casting

    柳百成; 许庆彦


    Simulation technology for shape casting at macro-scale has been successfully put into engineering application in a number of casting plants and as a result the quality of castings is assured, the research and development time is shortened, and the manufacturing cost is greatly saved as well. In this paper, modeling and simulation technologies of solidification process of shape casting at microstructure-scale, especially deterministic, cellular automaton, and phase field models are studied and reviewed.

  17. Fluid mechanics and solidification investigations in low-gravity environments

    Fichtl, G. H.; Lundquist, C. A.; Naumann, R. J.


    Fluid mechanics of gases and liquids and solidification processes were investigated under microgravity conditions during Skylab and Apollo-Soyuz missions. Electromagnetic, acoustic, and aerodynamic levitation devices, drop tubes, aircraft parabolic flight trajectories, and vertical sounding rockets were developed for low-g simulation. The Spacelab 3 mission will be carried out in a gravity gradient flight attitude; analyses of sources of vehicle dynamic accelerations with associated g-levels and angular rates will produce results for future specific experiments.

  18. Solidification and microstructure of thin walled ductile cast iron

    Pedersen, Karl Martin


    In the recent years there has been an increasing interest in light constructions in order to save weight in e.g. cars. Ductile cast iron has good mechanical properties but it is necessary to re­duce the wall thicknesses of the castings in order to reduce the weight. Reducing the wall thicknesses...... of the casting will increase the cooling rates and by that change the conditions for nucleation and growth during solidification....

  19. The solidification of two-phase heterogeneous materials: Theory versus experiment

    ZHANG Bin; KIM Tongbeum; LU TianJian


    The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ε), ε=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.

  20. Density-functional method for nonequilibrium electron transport

    Brandbyge, Mads; Mozos, J.L.; Ordejon, P.


    the contact and the electrodes on the same footing. The effect of the finite bias (including self-consistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme...... wires connected to aluminum electrodes with extended or finite cross section, (ii) single atom gold wires, and finally (iii) large carbon nanotube systems with point defects....