WorldWideScience

Sample records for solidification cooling rate

  1. Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.N., E-mail: prabhukn_2002@yahoo.co.in [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India); Deshapande, Parashuram; Satyanarayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Effect of cooling rate on tensile and impact properties of Sn-9Zn alloy was assessed. Black-Right-Pointing-Pointer Both DBTT and UTS of the solder alloy increased with increase in cooling rate. Black-Right-Pointing-Pointer An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile-brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn-9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 Degree-Sign C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the

  2. Effect of cooling rate during solidification of Sn–9Zn lead-free solder alloy on its microstructure, tensile strength and ductile–brittle transition temperature

    International Nuclear Information System (INIS)

    Prabhu, K.N.; Deshapande, Parashuram; Satyanarayan

    2012-01-01

    Highlights: ► Effect of cooling rate on tensile and impact properties of Sn–9Zn alloy was assessed. ► Both DBTT and UTS of the solder alloy increased with increase in cooling rate. ► An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile–brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn–9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 °C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the DBTT.

  3. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    Science.gov (United States)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  4. Altering the cooling rate dependence of phase formation during rapid solidification in the Nd{sub 2}Fe{sub 14}B system

    Energy Technology Data Exchange (ETDEWEB)

    Branagan, D.J. [USDOE, Ames, IA (United States). Ames Lab.]|[Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Materials Science and Engineering; McCallum, R.W. [USDOE, Ames, IA (United States). Ames Lab.]|[Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Materials Science and Engineering

    1995-04-26

    In order to evaluate the effects of additions on the solidification behavior of Nd{sub 2}Fe{sub 14}B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BH{sub max} versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling. ((orig.)).

  5. Rate of solidification of aluminium casting in varying wall thickness of cylindrical metallic moulds

    Directory of Open Access Journals (Sweden)

    Katsina Christopher BALA

    2014-02-01

    Full Text Available The quality of final casting mainly depends on the rate of solidification as rapid solidification produces fine grains structures with better mechanical properties. The analysis of heat transfer during the casting and solidification of aluminium alloy as well as the experimental investigation of the rate of solidification in varying thicknesses of cylindrical metallic mould was carried out. The temperature variation with time of the casting was recorded from which cooling curves were obtained for the determination of solidification time of the cast. The results showed that as the cylindrical mould thickness increases the solidification time decreases due to the chilling effect of the mould.

  6. EFFECT OF COOLING RATES ON THE MICROSTRUCTURE AND ...

    African Journals Online (AJOL)

    ... eutectic under three cooling conditions were proposed. In the DTA mode (slow cooling), the relationship between the two phases was stable. However as the cooling rates increased ( quenching and meltspun modes), the relationship tended towards metastability. KEY WORDS: alloy, solidification, microstructure, eutectic, ...

  7. The influence of cooling rate on the microstructure of stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J.W.

    1988-09-01

    The emergence of high energy density welding, laser surface modification and rapid solidification as commonly used metallurgical processing techniques has greatly increased the range of cooling rates that can be accessed during the solidification of metals and alloys. The microstructures which develop during these rapid cooling conditions may be significantly different from those which develop during low cooling rate conditions as the result of access to new metastable phases with the additional kinetic limitations that accompany rapid solidification. This investigation explores the influence of cooling rate on a series of seven ternary alloys which span the line of two-fold saturation in the Fe-Ni-Cr system. High speed electron beam surface melting was used to resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were estimated from dendrite arm spacing measurements and were confirmed by heat flow modeling to vary from 7 /times/ 10/sup 0/ /degree/C/s to 8 /times/ 10/sup 6/ /degree/C/s. The microstructures that developed from each solidification condition were examined using optical metallography, electron microprobe analysis, scanning electron microscopy and a vibrating sample magnetometer. These results were used to create diagrams to predict the primary mode of solidification, the ferrite content and the complex microstructural morphologies which develop as a function of interface velocity and composition. 158 refs., 90 figs., 45 tabs.

  8. Effects Disposal Condition and Ground Water to Leaching Rate of Radionuclides from Solidification Products

    International Nuclear Information System (INIS)

    Herlan Martono; Wati

    2008-01-01

    Effects disposal condition and ground water to leaching rate of radionuclides from solidification products have been studied. The aims of leaching test at laboratory to get the best composition of solidified products for continuous process or handling. The leaching rate of radionuclides from the many kinds of matrix from smallest to bigger are glass, thermosetting plastic, urea formaldehyde, asphalt, and cement. Glass for solidification of high level waste, thermosetting plastic and urea formaldehyde for solidification of low and intermediate waste, asphalt and cement for solidification of low and intermediate level waste. In shallow land burial, ground water rate is fast, debit is high, and high permeability, so the probability contact between solidification products and ground water is occur. The pH of ground water increasing leaching rate, but cation in the ground water retard leaching rate. Effects temperature radiation and radiolysis to solidification products is not occur. In the deep repository, ground water rate is slow, debit is small, and low permeability, so the probability contact between solidification products and ground water is very small. There are effect cooling time and distance between pits to rock temperature. Alfa radiation effects can be occur, but there is no contact between solidification products and ground water, so that there is not radiolysis. (author)

  9. Effect of cooling rate on the microstructure and properties of FeCrVC

    International Nuclear Information System (INIS)

    Bleckmann, M.; Gleinig, J.; Hufenbach, J.; Wendrock, H.; Giebeler, L.; Zeisig, J.; Diekmann, U.; Eckert, J.; Kühn, U.

    2015-01-01

    Highlights: • Effect of cooling rate on microstructure and microhardness of newly developed steel. • Intensive study of DSC measurements was done including different cooling rates. • Examinations by XRD, EDS and EBSD as well as microhardness on the DSC samples. • Matrix phase changes with cooling rates from ferrit to martensite. • Thermodynamic calculations of solidification process shows good agreement. - Abstract: In this work a systematic investigation of the influence of the cooling rate on the microstructure and properties of a newly developed Fe92.7Cr4.2V2.1C1 (FeCrVC) tool steel is presented. By applying a tailored casting process and sufficiently high cooling rates excellent mechanical properties are obtained for the presented alloy already in the as-cast state. Since no subsequent heat treatment is required, the cooling parameters applied during the casting process play a key role with respect to the evolving microstructure and resulting properties. In the present publication the effect of the cooling rate on the microstructure and properties of as-solidified FeCrVC was investigated. By using differential scanning calorimetry (DSC), several samples were heated up and cooled with continuous rates of 3–50 K/min. The received DSC data was used to investigate the alloy’s solidification and phase transformation behavior. Subsequently, these samples were studied regarding their properties and microstructure by different analysis methods (EDX/WDX, EBSD, XRD). With increasing cooling rates the liquidus and solidus temperature are lowered, whereas the solidification interval is enlarged. A higher cooling rate is accompanied by a lower solidification time which results in a refinement of the dendritic microstructure. Furthermore, with rising cooling rates the microhardness increased. This provides the opportunity to make predictions from the applied cooling parameters upon the hardness and vice versa and enables one to draw first conclusions on the

  10. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification

    Science.gov (United States)

    Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang

    2015-09-01

    The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.

  11. Radioactive gas solidification treatment device

    International Nuclear Information System (INIS)

    Igarashi, Ryokichi; Watanabe, Yu; Seki, Eiji.

    1992-01-01

    In a radioactive gas solidification treatment device by using sputtering, spiral pipelines are disposed with a gap therebetween for cooling an ion injection electrode by passing cooling water during operation of the solidification treatment. During the operation of the solidification treatment, cooling water is passed in the pipelines to cool the ion injection electrode. During storage, a solidification vessel is cooled by natural heat dissipation from an exposed portion at the surface of the solidification vessel. Accordingly, after-heat of radioactive gas solidified in a metal accumulation layer can be removed efficiently, safely and economically to improve the reliability. (N.H.)

  12. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  13. Relationships Between Solidification Parameters in A319 Aluminum Alloy

    Science.gov (United States)

    Vandersluis, E.; Ravindran, C.

    2018-03-01

    The design of high-performance materials depends on a comprehensive understanding of the alloy-specific relationships between solidification and properties. However, the inconsistent use of a particular solidification parameter for presenting materials characterization in the literature impedes inter-study comparability and the interpretation of findings. Therefore, there is a need for accurate expressions relating the solidification parameters for each alloy. In this study, A319 aluminum alloy castings were produced in a permanent mold with various preheating temperatures in order to control metal cooling. Analysis of the cooling curve for each casting enabled the identification of its liquidus, Al-Si eutectic, and solidus temperatures and times. These values led to the calculation of the primary solidification rate, total solidification rate, primary solidification time, and local solidification time for each casting, which were related to each other as well as to the average casting SDAS and material hardness. Expressions for each of their correlations have been presented with high coefficients of determination, which will aid in microstructural prediction and casting design.

  14. Microstructure and Corrosion Resistance Property of a Zn-AI-Mg Alloy with Different Solidification Processes

    Directory of Open Access Journals (Sweden)

    Jiang Guang-rui

    2017-01-01

    Full Text Available Zn-Al-Mg alloy coating attracted much attention due to its high corrosion resistance properties, especially high anti-corrosion performance at the cut edge. As the Zn-Al-Mg alloy coating was usually produced by hot-dip galvanizing method, solidification process was considered to influence its microstructure and corrosion properties. In this work, a Zn-Al-Mg cast alloy was melted and cooled to room temperature with different solidification processes, including water quench, air cooling and furnace cooling. Microstructure of the alloy with different solidification processes was characterized by scanning electron microscopy (SEM. Result shows that the microstructure of the Zn-Al-Mg alloy are strongly influenced by solidification process. With increasing solidification rate, more Al is remained in the primary crystal. Electrochemical analysis indicates that with lowering solidification rate, the corrosion current density of the Zn-Al-Mg alloy decreases, which means higher corrosion resistance.

  15. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  16. Microstructural evolution in Mg-Zn alloys during solidification: An experimental and simulation study

    Science.gov (United States)

    Paliwal, Manas; Jung, In-Ho

    2014-05-01

    A comprehensive microstructural evolution of Mg-1.5, 4.0 and 5.5 wt% Zn alloys with respect to the solidification parameters such as thermal gradient (G), solidification velocity (V), cooling rate (GV) and solute (Zn) content were investigated in the present study. Solidification techniques such as directional solidification and wedge casting were employed in order to obtain cooling rates between 0.05 and 250 K/s. Microstructural features such as secondary dendrite arm spacing (SDAS), primary dendrite arm spacing (PDAS), microsegregration along the secondary dendrites and secondary phase fractions were experimentally determined. A solidification model that incorporates solute back diffusion, secondary arm coarsening, dendrite tip undercooling and dynamically linked with accurate thermodynamic databases is used to explain the experimental results.

  17. Microstructure and fractal characteristics of the solid-liquid interface forming during directional solidification of Inconel 718

    Directory of Open Access Journals (Sweden)

    WANG Ling

    2007-08-01

    Full Text Available The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718, under different cooling rates during directional solidification, were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate, but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.

  18. Stabilization of iron and molybdenum amorphous state with interstitials under high rates of cooling

    International Nuclear Information System (INIS)

    Barmin, Yu.V.; Vavilova, V.V.; Verevkin, A.G.; Gertsen, A.T.; Kovneristyj, Yu.K.; Kotyurgin, E.A.; Mirkin, B.V.; Palij, N.A.

    1993-01-01

    Amorphous solidification of iron and molybdenum is investigated in thin films and on surface laser irradiated on air at 10 12 and 10 8 /Ks cooling rates correspondingly. Amorphous solidification occurs during ion plasma spraying in thin films of 50 nm at saturation of carbon and oxygen atoms in the ratio of C:0=2.3, but amorphous state is absent at room temperature. Metastable fcc phase, among bcc, is formed by crystallization

  19. Solidification microstructures of aluminium-uranium alloys

    International Nuclear Information System (INIS)

    Ambrozio Filho, F.; Vieira, R.R.

    1976-01-01

    The solidification of microstrutures of aluminium-uranium alloys in the range of 4 to 20% uranium is investigated. The solidification was obtained both in ingot molds and under controlled directional solidification. The conditions for the presence of primary crystals and eutectic are discussed and an analysis of the influence of variables (growth rate and thermal gradient in the liquid) on the alloy structure is made. The effect of cooling rate on the alloy structures has been determined. It is found that the resulting structure can be derived from the kinectics concept, as required by the coupled-zone theory. Suggestions on the qualitative intervals of composition and temperatures with eutectic growth are presented [pt

  20. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  1. Study and modeling of heat transfer during the solidification of semi-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, R.; Poutot, G.; Delaunay, D. [Laboratoire de Thermocinetique de l' ecole polytechnique de l' universite de Nantes, UMR CNRS 6607, rue Christian Pauc, BP 50609 44306 Nantes cedex 3 (France); Fulchiron, R.; Koscher, E. [Laboratoire des Materiaux Polymeres et des Biomateriaux, IMP/UMR CNRS 5627, Universite Claude Bernard, Lyon 1, 69622 Villeurbanne Cedex (France)

    2005-12-01

    Semi-crystalline polymers are materials whose behavior during their cooling is difficult to model because of the strong coupling between the crystallization, heat transfer, pressure and shear. Thanks to two original apparatus we study solidification of such a polymer without shear. Firstly the comparison between experimental results and a numerical model will permit to validate crystallization kinetic for cooling rate reachable by DSC. The second experiment makes it possible to analyze solidification for high cooling rate, corresponding to some manufacturing processes. It appears that crystallization has an influence on the thermal contact resistance. (author)

  2. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  3. Radioactive gas solidification apparatus

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji; Yabu, Tomohiko; Matsunaga, Hiroyuki.

    1990-01-01

    Handling of a solidification container from the completion for the solidifying processing to the storage of radioactive gases by a remote control equipment such as a manipulator requires a great cost and is difficult to realize. In a radioactive gas solidification device for injection and solidification in accumulated layers of sputtered metals by glow discharge, radiation shieldings are disposed surrounding the entire container, and cooling water is supplied to a cooling vessel formed between the container and the shielding materials. The shielding materials are divided into upper and lower shielding materials, so that solidification container can be taken out from the shielding materials. As a result, the solidification container after the solidification of radioactive gases can be handled with ease. Further, after-heat can be removed effectively from the ion injection electrode upon solidifying treatment upon storage, to attain a radioactive gas solidifying processing apparatus which is safe, economical and highly reliable. (N.H.)

  4. Species redistribution during solidification of nuclear fuel waste metal castings

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G F; Schneider, G E [Waterloo Univ., ON (Canada)

    1994-12-31

    An enthalpy-based finite element model and a binary system species redistribution model are developed and applied to problems associated with solidification of nuclear fuel waste metal castings. Minimal casting defects such as inhomogeneous solute segregation and cracks are required to prevent container corrosion and radionuclide release. The control-volume-based model accounts for equilibrium solidification for low cooling rates and negligible solid state diffusion for high cooling rates as well as intermediate conditions. Test problems involving nuclear fuel waste castings are investigated and correct limiting cases of species redistribution are observed. (author). 11 refs., 1 tab., 13 figs.

  5. Microstructural investigation of D2 tool steel during rapid solidification

    Science.gov (United States)

    Delshad Khatibi, Pooya

    Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.

  6. Solidification in direct metal deposition by LENS processing

    Science.gov (United States)

    Hofmeister, William; Griffith, Michelle

    2001-09-01

    Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.

  7. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    Science.gov (United States)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  8. Heat and fluid flow during rapid solidification of non-equilibrium materials

    International Nuclear Information System (INIS)

    Negli, S.C.; Eddingfield, D.L.; Brower, W.E. Jr.

    1990-01-01

    Rapid solidification technology (RST) is an advanced solidification process which is being utilized to produce non-equilibrium structures with properties not previously available with conventionally cast materials. An iron based alloy rapidly quenched to form a metallic glass is being installed on a large scale in electric power transformers where it cuts heat losses dramatically. The formation of a non-equilibrium structure usually requires a cooling rate of at least a million degrees per second. Achieving this high a cooling rate depends not only on the heat transfer conditions during the quenching process, but also on the fluid flow conditions in the molten metal before and during solidification. This paper presents a model of both heat and fluid flow during RST by the hammer and anvil method. The symmetry of two sided cooling permits analysis which is still applicable to the one sided cooling that occurs during melt spinning, the prevalent method of RST. The heat flow is modeled as one dimensional, normal to the quench surface. Previous models have shown the heat flow in the plane of the quench surface not to be significant. The fluid flow portion of the model utilizes the squeeze film solution for flow between two parallel flat plates. The model predicts the effects of superheat of the melt and of the quench hammer speed upon cooling rate during the formation of nonequilibrium phases. An unexpected result is that increased superheat results in much higher cooling rates, due to fluid flow before a potential transformation would take place; this enhanced liquid metal flow results in a thinner section casting which in turn has a dominant effect on the cooling rate. The model also predicts an expanded regime of Newtonian (interface controlled) cooling by about a factor of ten as compared to previous model of RST

  9. Method of storing solidification products

    International Nuclear Information System (INIS)

    Tani, Yutaro.

    1985-01-01

    Purpose: To enable to efficiently and satisfactorily cool and store solidification products of liquid wastes generated from the reactor spent fuel reprocessing process by a simple facility. Method: Liquid wastes generated from the reactor spent fuel reprocessing process are caused to flow from the upper opening to the inside of a spherical canistor. The opening of the spherical canistor is welded with a lid by a remote control and the liquid wastes are tightly sealed within the spherical canistor as glass solidification products. Spherical canistors having the solidification products tightly sealed therein are sent into and stored in a hopper by the remote control. Further, a blower is driven upon storing to suck cooling air from the cooling air intake port to the inside of the hopper to absorb the decay heat of radioactive materials in the solidification products and the air is discharged from the duct and through the stack to the atmosphere. (Kawakami, Y.)

  10. Variations of Microsegregation and Second Phase Fraction of Binary Mg-Al Alloys with Solidification Parameters

    Science.gov (United States)

    Paliwal, Manas; Kang, Dae Hoon; Essadiqi, Elhachmi; Jung, In-Ho

    2014-07-01

    A systematic experimental investigation on microsegregation and second phase fraction of Mg-Al binary alloys (3, 6, and 9 wt pct Al) has been carried out over a wide range of cooling rates (0.05 to 700 K/s) by employing various casting techniques. In order to explain the experimental results, a solidification model that takes into account dendrite tip undercooling, eutectic undercooling, solute back diffusion, and secondary dendrite arm coarsening was also developed in dynamic linkage with an accurate thermodynamic database. From the experimental data and solidification model, it was found that the second phase fraction in the solidified microstructure is not determined only by cooling rate but varied independently with thermal gradient and solidification velocity. Lastly, the second phase fraction maps for Mg-Al alloys were calculated from the solidification model.

  11. Prediction of mechanical properties of Al alloys with change of cooling rate

    Directory of Open Access Journals (Sweden)

    Quan-Zhi Dong

    2012-11-01

    Full Text Available The solidification process significantly affects the mechanical properties and there are lots of factors that affect the solidification process. Much progress has been made in the research on the effect of solidification on mechanical properties. Among them, the PF (Phase Field model and CA (Cellular Automata model are widely used as simulation methods which can predict nucleation and its growth, and the size and morphology of the grains during solidification. Although they can give accurate calculation results, it needs too much computational memory and calculation time. So it is difficult to apply the simulation to the real production process. In this study, a more practical simulation approach which can predict the mechanical properties of real aluminum alloys is proposed, by identifying through experiment the relationship between cooling rate and SDAS (Secondary Dendrite Arm Spacing and mechanical properties. The experimentally measured values and the values predicted by simulation have relatively small differences and the mechanical properties of a variety of Al alloys are expected to be predicted before casting through use of the simulation.

  12. Modelling of solidification processing and continuous strip casting for copper-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Jafar [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Processing

    2000-04-01

    An experimental and numerical study was carried out to investigate the solidification process in a copper continuous strip casting process. Heat flow and solidification process has been experimentally studied. Cooling curves during solidification were registered using a thermocouple of type K connected to a data acquisition system. Temperature measurements in the mould and cooling water were also performed. The numerical model considers a generalized set of mass, momentum and heat equations that is valid for the solid, liquid and solidification interval in the cast. A k-{epsilon} turbulence model, produced with the commercial program CFX, is used to analyse the solidification process of pure copper in the mould region of the caster. The fluid flow, temperature and heat flux distributions in the mould region of the caster were computed. The shape and location of the solidification front were also determined. The effects of the parameters such as heat transfer coefficient, casting speed, casting temperature, heat of fusion and specific heat on the shape and location of the solidification front and the heat transport at the mould-cast interface were investigated. The predicted temperature and heat flux distributions were compared with experimental measurements, and reasonable agreement was obtained. The solidification behaviour of pure copper and different copper base alloys has been studied. A series of solidification experiments using DTA furnace, mirror furnace and levitation technique were performed on different copper-base alloys. The undercooling, cooling rates of the liquid and the solid states, solidification times and temperatures were evaluated from the curves. The cooling curves for different samples were simulated using a FEM solidification program. It was found that the calculated values of the heat of fusion were much lower than the tabulated ones. The fraction of solid formed before quenching, in the DTA experiments, has been observed to be much higher

  13. Geometrical modulus of a casting and its influence on solidification process

    Directory of Open Access Journals (Sweden)

    F. Havlicek

    2011-10-01

    Full Text Available Object: The work analyses the importance of the known criterion for evaluating the controlled solidification of castings, so called geometrical modulus defined by N. Chvorinov as the first one. Geometrical modulus influences the solidification process. The modulus has such specificity that during the process of casting formation it is not a constant but its initial value decreases with the solidification progress because the remaining melt volume can decrease faster than its cooling surface.Methodology: The modulus is determined by a simple calculation from the ratio of the casting volume after pouring the metal in the mould to the cooled mould surface. The solidified metal volume and the cooled surface too are changed during solidification. That calculation is much more complicated. Results were checked up experimentally by measuring the temperatures in the cross-section of heavy steel castings during cooling them.Results: The given experimental results have completed the original theoretical calculations by Chvorinov and recent researches done with use of numerical calculations. The contribution explains how the geometrical modulus together with the thermal process in the casting causes the higher solidification rate in the axial part of the casting cross-section and shortening of solidification time. Practical implications: Change of the geometrical modulus negatively affects the casting internal quality. Melt feeding by capillary filtration in the dendritic network in the casting central part decreases and in such a way the shrinkage porosity volume increases. State of stress character in the casting is changed too and it increases.

  14. MODELING SOLIDIFICATION-INDUCED STRESSES IN CERAMIC WASTE FORMS CONTAINING NUCLEAR WASTES

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Bateman, Kenneth J.

    2010-01-01

    The goal of this work is to produce a ceramic waste form (CWF) that permanently occludes radioactive waste. This is accomplished by absorbing radioactive salts into zeolite, mixing with glass frit, heating to a molten state 915 C to form a sodalite glass matrix, and solidifying for long-term storage. Less long term leaching is expected if the solidifying cooling rate doesn't cause cracking. In addition to thermal stress, this paper proposes that a stress is formed during solidification which is very large for fast cooling rates during solidification and can cause severe cracking. A solidifying glass or ceramic cylinder forms a dome on the cylinder top end. The temperature distribution at the time of solidification causes the stress and the dome. The dome height, ''the length deficit,'' produces an axial stress when the solid returns to room temperature with the inherent outer region in compression, the inner in tension. Large tensions will cause cracking of the specimen. The temperature deficit, derived by dividing the length deficit by the coefficient of thermal expansion, allows solidification stress theory to be extended to the circumferential stress. This paper derives the solidification stress theory, gives examples, explains how to induce beneficial stresses, and compares theory to experimental data.

  15. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    solidification. The first stage, which was relatively short, had none or very little recalescence. Further under cooling, followed by reheating during recalescence, was necessary to initiate the second part of the eutectic solidification. Both the secondary under cooling and recalescence was larger in the 3 mm...... a higher Si content in the ferrite around the larger nodules compared to the ferrite around the rest of the nodules. This indicates that solidification took place along the following path: The solidification starts with nucleation and growth of primary graphite nodules. This probably starts during...

  16. A comparison of acoustic levitation with microgravity processing for containerless solidification of ternary Al-Cu-Sn alloy

    Science.gov (United States)

    Yan, N.; Hong, Z. Y.; Geng, D. L.; Wei, B.

    2015-07-01

    The containerless rapid solidification of liquid ternary Al-5 %Cu-65 %Sn immiscible alloy was accomplished at both ultrasonic levitation and free fall conditions. A maximum undercooling of 185 K (0.22 T L) was obtained for the ultrasonically levitated alloy melt at a cooling rate of about 122 K s-1. Meanwhile, the cooling rate of alloy droplets in drop tube varied from 102 to 104 K s-1. The macrosegregation was effectively suppressed through the complex melt flow under ultrasonic levitation condition. In contrast, macrosegregation became conspicuous and core-shell structures with different layers were formed during free fall. The microstructure formation mechanisms during rapid solidification at containerless states were investigated in comparison with the conventional static solidification process. It was found that the liquid phase separation and structural growth kinetics may be modulated by controlling both alloy undercooling and cooling rate.

  17. Effect of Grain Refinement and Cooling Rate on the Microstructure and Mechanical Properties of Secondary Al-Si-Cu Alloys

    Science.gov (United States)

    Timelli, Giulio; Camicia, Giordano; Ferraro, Stefano

    2014-02-01

    The effect of AlTi5B1 grain refinement and different solidification rates on metallurgical and mechanical properties of a secondary AlSi7Cu3Mg alloy is reported. While the Ti content ranges from 0.04 up to 0.225 wt.%, the cooling rate varies between 0.1 and 5.5 °C/s. Metallographic and thermal analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with grain refiner addition at various cooling rates. The results indicate that a small AlTi5B1 addition produces the greatest refinement, while no significant reduction of grain size is obtained with a great amount of grain refiner. On increasing the cooling rate, a lower amount of AlTi5B1 master alloy is necessary to produce a uniform grain size throughout the casting. The combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. The grain refinement improves the plastic behavior of the alloy and increases the reliability of castings, as evidenced by the Weibull statistics.

  18. Microstructural evolution and mechanical properties of a novel FeCrNiBSi advanced high-strength steel: Slow, accelerated and fast casting cooling rates

    Energy Technology Data Exchange (ETDEWEB)

    Askari-Paykani, Mohsen; Shahverdi, Hamid Reza, E-mail: shahverdi@modares.ac.ir; Miresmaeili, Reza

    2016-06-21

    In the current work, three different solidification routes and a two-step heat treatment process were applied to a novel FeCrNiBSi alloy system to introduce a new candidate for advanced high-strength steels. The evolution of the microstructure after solidification, heat treatment, and tensile deformation was characterized using optical and electron microscopy techniques, as well as hardness and room temperature uniaxial tensile tests. The effects of the different solidification routes and heat treatment parameters on the deformation and fracture mechanisms of this steel are discussed. Grain refinement, precipitation hardening, and solid solution as a result of the fast casting cooling rate led to an increase in strength at improved ductility. This result can be explained partly by the less severe stress/strain partitioning at the matrix grain/M{sub 2}B interfaces and better interface cohesion. Moreover, the stress/strain partitioning characteristics between the matrix grains and M{sub 2}B led to a higher initial strain hardening rate. The fast casting cooling rate further promoted ductile fracture mechanisms, which is a result of increased cleavage fracture stress. The higher casting cooling rate and two-step heat treatment resulted in a strong increase in formability index, from 8 GPa% to 24 GPa%, at which the mechanical properties occupy the TRIP envelope. Heat treatment of the fast-cooling specimens led to a small reduction in yield and tensile strength and 22% total elongation percentage improvement (from 10% to 32%).

  19. Laboratory micro- and nanoscale X-ray tomographic investigation of Al–7 at.%Cu solidification structures

    International Nuclear Information System (INIS)

    Patterson, B.M.; Henderson, K.C.; Gibbs, P.J.; Imhoff, S.D.; Clarke, A.J.

    2014-01-01

    X-ray computed tomography across multiple length scales provides an opportunity to non-destructively visualize and quantify the micro- to nano-scale microstructural features of solidification structures in three dimensions. Aluminum–7 at.%copper samples were directionally solidified at three cooling rates (0.44, 0.67, and 1.33 °C/s), resulting in systematic changes in the as-solidified microstructure, which are difficult to quantify using traditional microscopic techniques. The cooling rate of a material affects its ultimate microstructure, and characterizing that microstructure is key to predicting and understanding its bulk properties. Here, two different laboratory X-ray computed tomography instruments were used to characterize as-solidified microstructures, including micro-scale computed tomography with approximately 1 mm field-of-view, ∼ 1.7 μm resolution, and nano-scale X-ray computed tomography ∼ 65 μm FOV, 150 nm resolution. Micro-scale X-ray radiography and computed tomography enabled a quantitative investigation of changes in the primary dendritic solidification structure with increasing cooling rate. Nano-scale absorption contrast X-ray computed tomography resolved the distinct phases of the lamellar eutectic structure and three dimensional measurements of the ∼ 1 μm interlamellar spacing. It is found that the lamella eutectic structure thickness is inversely proportional to the cooling rate. Nano-scale Zernike phase contrast was also used to image voids at eutectic colony boundaries. The application and resolution of these two instruments are discussed with respect to the resolvable features of the solidification structures. - Highlights: • Al–Cu eutectic is a model system for studying solidification microstructure. • X-ray computed tomography provides a 3D picture of these complex structures. • Micro-scale tomography images the primary and secondary dendritic structures. • Nano-scale tomography images the eutectic lamella and

  20. Laboratory micro- and nanoscale X-ray tomographic investigation of Al–7 at.%Cu solidification structures

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, B.M., E-mail: bpatterson@lanl.gov; Henderson, K.C.; Gibbs, P.J.; Imhoff, S.D.; Clarke, A.J.

    2014-09-15

    X-ray computed tomography across multiple length scales provides an opportunity to non-destructively visualize and quantify the micro- to nano-scale microstructural features of solidification structures in three dimensions. Aluminum–7 at.%copper samples were directionally solidified at three cooling rates (0.44, 0.67, and 1.33 °C/s), resulting in systematic changes in the as-solidified microstructure, which are difficult to quantify using traditional microscopic techniques. The cooling rate of a material affects its ultimate microstructure, and characterizing that microstructure is key to predicting and understanding its bulk properties. Here, two different laboratory X-ray computed tomography instruments were used to characterize as-solidified microstructures, including micro-scale computed tomography with approximately 1 mm field-of-view, ∼ 1.7 μm resolution, and nano-scale X-ray computed tomography ∼ 65 μm FOV, 150 nm resolution. Micro-scale X-ray radiography and computed tomography enabled a quantitative investigation of changes in the primary dendritic solidification structure with increasing cooling rate. Nano-scale absorption contrast X-ray computed tomography resolved the distinct phases of the lamellar eutectic structure and three dimensional measurements of the ∼ 1 μm interlamellar spacing. It is found that the lamella eutectic structure thickness is inversely proportional to the cooling rate. Nano-scale Zernike phase contrast was also used to image voids at eutectic colony boundaries. The application and resolution of these two instruments are discussed with respect to the resolvable features of the solidification structures. - Highlights: • Al–Cu eutectic is a model system for studying solidification microstructure. • X-ray computed tomography provides a 3D picture of these complex structures. • Micro-scale tomography images the primary and secondary dendritic structures. • Nano-scale tomography images the eutectic lamella and

  1. Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel

    Science.gov (United States)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N.

    2018-06-01

    In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.

  2. Influence of cooling rate on the microstructure and corrosion behavior of Al–Fe alloys

    International Nuclear Information System (INIS)

    Dorin, T.; Stanford, N.; Birbilis, N.; Gupta, R.K.

    2015-01-01

    Highlights: • Increasing the cooling rate from 0.1 to 500 °C/s, mass loss rate decreased by 6 times. • Increase in corrosion resistance was attributed to the refined Fe-intermetallics. • Increased cooling rate resulted in increased Fe content in solid solution. • Direct strip casting can produce alloys with higher acceptable content of impurities. • Direct Strip Casting is a potential candidate to improve recyclability of Al alloys - Abstract: The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al–Fe alloys prepared with wide-ranging cooling rates (0.1 °C/s to 500 °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al–Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.

  3. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    Science.gov (United States)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  4. Solidification behavior and rheo-diecasting microstructure of A356 aluminum alloy prepared by self-inoculation method

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semisolid slurry of A356 aluminum alloy can be prepared by self-inoculation method at 600 °C. Primary α-Al particles with fine and spherical morphologies are uniformly distributed when the isothermal holding time of slurry is 3 min. Liquid phase segregation occurs during rheo-diecasting process of semisolid slurry and the primary particles (α1 show obvious plastic deformation in the area of high stress and low cooling rate. A small amount of dendrites resulting from the relatively low temperature of the shot chamber at the initial stage of secondary solidification are fragmented as they pass through the in-gate during the mould filling process. The amount of dendrite fragments decreases with the increase of filling distance. During the solidification process of the remaining liquid, the nucleation rate of secondary particles (α2 increases with the increase of cooling rate, and the content of Si in secondary particles (α2 are larger than primary particles (α1. With the increase of cooling rate, the content of Si in secondary particles (α2 gradually increases. The morphologies of eutectic Si in different parts of die casting are noticeably different. The low cooling rate in the first filling positions leads to coarse eutectic structures, while the high cooling rate in the post filling positions promotes small and compact eutectic structures.

  5. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  6. The effect of the melt spinning processing parameters on the solidification structures in Ti-30 at.% Ni-20 at.% Cu shape memory alloys

    International Nuclear Information System (INIS)

    Kim, Yeon-wook; Yun, Young-mok; Nam, Tae-hyun

    2006-01-01

    Solidification structures and shape memory characteristics of Ti-30 at.% Ni-20 at.% Cu alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change the ejection temperature of the melt from 1350 to 1500 deg. C and the velocity of cooling wheel from 33 to 55 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on solidification structures and martensitic transformation behaviors is discussed

  7. Solidification Sequence of Spray-Formed Steels

    Science.gov (United States)

    Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro

    2016-02-01

    Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.

  8. Matemathical description of solidification cooling curves of pure metals

    Directory of Open Access Journals (Sweden)

    Arno Müller

    1998-10-01

    Full Text Available The introduction of an "incubation time" to the Schwarz classical mathematical description of metals solidification, resulted in a new model called Modified Schwarz Model. By doing so it was possible to identify and quantify the "delay time" that separates the two heat waves traveling independently in a casting during the solidification: the Supercooled / Superheated Liquid and the Solid / Liquid. The thermal shock produced in the initial stage of the undercooling generation process, can be used as an important parameter in the forecasting of the solidification's behavior of pure metals and alloys, when changing mold's materials, pouring and ambient temperatures. The hypercooling proneness degree of metals and alloys, can also be calculated.

  9. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  10. On the stable eutectic solidification of iron–carbon–silicon alloys

    International Nuclear Information System (INIS)

    Stefanescu, Doru M.; Alonso, Gorka; Larrañaga, Pello; Suarez, Ramon

    2016-01-01

    Extensive effort was expanded to elucidate the growth and morphology of the stable eutectic grains during early solidification of continuous cooled Fe–C–Si alloys. To this purpose, quenching experiments at successive stages during solidification have been carried out on five cast irons with various magnesium and titanium levels designed to produce graphite morphologies ranging from lamellar to mixed compacted–spheroidal. The graphite shape factors were measured on the metallographic samples, and their evolution as a function of the chemical composition and the solid fraction was analyzed. Extensive scanning electron microscopy was carried on to evaluate the change in graphite shape during early solidification, to establish the fraction of solid at which the transition from spheroidal-to-compacted-to-lamellar graphite occurs, and to outline the early morphology of the eutectic grains. It was confirmed that solidification of Mg containing irons started with the development of spheroidal graphite even at Mg levels as low as 0.013 mass%. Then, as solidification proceeds, when some spheroids developed one or more tails (tadpole graphite), the spheroidal-to-compacted graphite transition occurs. The new findings were then integrated in previous knowledge to produce an understanding of the eutectic solidification of these materials. It was concluded that in hypoeutectic lamellar graphite iron austenite/graphite eutectic grains can nucleate at the austenite/liquid interface or in the bulk of the liquid, depending on the sulfur content and on the cooling rate. When graphite nucleation occurs on the primary austenite, several eutectic grains can nucleate and grow on the same dendrite. The primary austenite continues growing as eutectic austenite and therefore the two have the same crystallographic orientation. Thus, a final austenite grain may include several eutectic grains. In eutectic irons the eutectic grains nucleate and grow mostly in the liquid. The eutectic

  11. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    Science.gov (United States)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  12. Effects of high pressure on microstructure evolution and crystallization mechanisms during solidification of nickel

    Science.gov (United States)

    Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping

    2018-03-01

    To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.

  13. Micro-scale thermocapillary convection with solidification

    International Nuclear Information System (INIS)

    Yang, W.J.; Liu, J.C.; Chai, A.T.

    1991-01-01

    This paper reports on an experimental study performed on heat transfer in sessile drops of lysozyme solutions with solidification. Solidification inside the sessile drop is initiated by means of the center cooling method. The internal flow behavior and solidification front movement are observed using a microscope-video monitor system. Results are obtained for lysozyme, and buffer solutions, and water, representing media possessing surface tension coefficients. It is disclosed that the time history of the solidification front movement can be divided into two stages; initial and stable. In the stable stage, the front movement x follows the power-law behavior x = Ct n . C is an empirical constant, and t denotes time. The exponent n takes on a value close to unity in the stable stage

  14. Direct observation of spatially isothermal equiaxed solidification of an Al-Cu alloy in microgravity on board the MASER 13 sounding rocket

    Science.gov (United States)

    Murphy, A. G.; Mathiesen, R. H.; Houltz, Y.; Li, J.; Lockowandt, C.; Henriksson, K.; Melville, N.; Browne, D. J.

    2016-11-01

    For the first time, isothermal equiaxed solidification of a metallic alloy has been observed in situ in space, providing unique benchmark experimental data. The experiment was completed on board the MASER 13 sounding rocket, launched in December 2015, using a newly developed isothermal solidification furnace. A grain-refined Al-20 wt%Cu sample was fully melted and solidified during 360 s of microgravity and the solidification sequence was recorded using time-resolved X-radiography. Equiaxed nucleation, dendritic growth, solutal impingement, and eutectic transformation were thus observed in a gravity-free environment. Equiaxed nucleation was promoted through application of a controlled cooling rate of -0.05 K/s producing a 1D grain density of 6.5 mm-1, uniformly distributed throughout the field of view (FOV). Primary growth slowed to a visually imperceptible level at an estimated undercooling of 7 K, after which the cooling rate was increased to -1.0 K/s for the remainder of solidification and eutectic transformation, ensuring the sample was fully solidified inside the microgravity time window. The eutectic transformation commenced at the centre of the FOV proceeding radially outwards covering the entire FOV in 3 s Microgravity-based solidification is compared to an identical pre-flight ground-based experiment using the same sample and experiment timeline. The ground experiment was designed to minimise gravity effects, by choice of a horizontal orientation for the sample, so that any differences would be subtle. The first equiaxed nucleation occurred at an apparent undercooling of 0.6 K less than the equivalent event during microgravity. During primary equiaxed solidification, as expected, no buoyant grain motion was observed during microgravity, compared to modest grain rotation and reorientation observed during terrestrial-based solidification. However, when the cooling rate was increased from -0.05 K/s to -1.0 K/s during the latter stages of solidification, in

  15. Long-lived magnetism from solidification-driven convection on the pallasite parent body

    DEFF Research Database (Denmark)

    Bryson, James F.J.; Nichols, Claire I. O.; Herrero-Albillos, Julia

    2015-01-01

    of long-lived magnetic activity on the pallasite parent body, capturing the decay and eventual shutdown of the magnetic field as core solidification completed.We demonstrate that magnetic activity driven by progressive solidification of an inner core is consistent with our measuredmagnetic field......Palaeomagnetic measurements of meteorites suggest that, shortly after the birth of the Solar System, themolten metallic cores ofmany small planetary bodies convected vigorously and were capable of generating magnetic fields. Convection on these bodies is currently thought to have been thermally...... characteristics and cooling rates. Solidification-driven convectionwas probably commonamong small body cores, and, in contrast to thermally driven convection, will have led to a relatively late (hundreds of millions of years after accretion), long-lasting, intense and widespread epoch of magnetic activity among...

  16. Simulation of continuous cast steel product solidification

    Directory of Open Access Journals (Sweden)

    Ardelean, E.

    2007-06-01

    Full Text Available Primary cooling – inside the tundish – has a great impact over the thickness of the solidified steel crust. If on exiting the tundish the crust is too thin, it can punch and break, as a result of the ferrostatic pressure exerted from the inside by the liquid steel as well as because of the weight of the molten steel. The parameters that influence the amount of dissipated heat depend on the cooling water flow of the tundish, on the pressure and temperature of the cooling water but also on the overheating of the continuously cast steel. The secondary cooling takes place at the exit of the semi-finished product from the tundish, when the solidification is supposed to take place all along the cross section of the strand. In order to achieve it, in addition to a correctly managed primary cooling, it is necessary to obtain the proper correlation of the factors that influence the secondary cooling as well: the water flow rate long the three zones of the installation and its pressure in the secondary circuit. All these have in view a proper solidification length; an intense cooling can generate cracks due to the thermal stress, while a too slow cooling can generate a partial solidification of the strand up to the cropping machine area. The paper presents a mathematical simulation of the continuously cast steel solidification.

    El enfriamiento primario del cristalizador tiene una gran importancia sobre el espesor de la costra de acero solidificado. Si al salir del cristalizador, esta costra es demasiado sutil, bajo la acción de la presión ferro estática ejercitada por el acero líquido del interior y gracias el peso propio del hilo, ésta, puede perforar resultando su rompimiento. Los parámetros que influenyen sobre la cantidad de calor cedida dependen del agua de enfriamiento del catalizador, de la presión y de la temperatura de agua de enfriamiento, pero también del sobrecalentamiento del acero fundido continuamente. A la salida del

  17. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  18. Effect of Sr and solidification conditions on characteristics of intermetallic in Al-Si 319 industrial alloys

    International Nuclear Information System (INIS)

    Espinoza-Cuadra, J.; Gallegos-Acevedo, P.; Mancha-Molinar, H.; Picado, A.

    2010-01-01

    An experimental study was carried out to determine the effect of strontium (Sr) on the characteristic of intermetallic phases, particularly the Al 5 FeSi phase which present morphology of platelets or needle-like. The results showed that within the range of variables studied, the modification process caused the disappearance of the needles and only occur the precipitation of phase α (chinese script-like). Refinement of the intermetallic phases occurs in conjunction with the refinement in grain size. Both parameters depend strongly on local cooling rate (T), temperature gradient (G) and apparent rate of solidification front (V). In the case of equiaxed structures the refinement of grain size and intermetallic occurs with increasing local cooling rate and temperature gradient and decrease the apparent rate of solidification front. In the case of columnar structures, refinement of grains and intermetallic requires the increase in values of the three variables indicated. Moreover, the addition of Sr resulted in the modification of silicon eutectic, as noted in others research works.

  19. The Effect of Water Mist Cooling of Casting Die on the Solidification, Microstructure and Properties of AlSi20 Alloy

    Directory of Open Access Journals (Sweden)

    Władysiak R.

    2017-03-01

    Full Text Available Unmodified AlSi20 alloy were casted at the research station, allowing for sequential multipoint cooling using a dedicated computer- controlled program. This method allows for the formation of the microstructure of hypereutectic AlSi20 alloy and also increases hardness. Primary silicon dendrites were found in the microstructure of cooled samples. Based on these dendrites, the formation of primary silicon particles is explained. Cooling of casting die with a water mist stream causes changes in solidification, which leads to expansion of the boundary layer with columnar crystals and shrinkage of the core zone with equiaxed crystals. It also causes more regular hardness distribution around pre-eutectic Si crystals, which can lead to tensile strength and machinability improvement.

  20. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    Science.gov (United States)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  1. Solidification effects on sill formation: An experimental approach

    Science.gov (United States)

    Chanceaux, L.; Menand, T.

    2014-10-01

    Sills represent a major mechanism for constructing continental Earth's crust because these intrusions can amalgamate and form magma reservoirs and plutons. As a result, numerous field, laboratory and numerical studies have investigated the conditions that lead to sill emplacement. However, all previous studies have neglected the potential effect magma solidification could have on sill formation. The effects of solidification on the formation of sills are studied and quantified with scaled analogue laboratory experiments. The experiments presented here involved the injection of hot vegetable oil (a magma analogue) which solidified during its propagation as a dyke in a colder and layered solid of gelatine (a host rock analogue). The gelatine solid had two layers of different stiffness, to create a priori favourable conditions to form sills. Several behaviours were observed depending on the injection temperature and the injection rate: no intrusions (extreme solidification effects), dykes stopping at the interface (high solidification effects), sills (moderate solidification effects), and dykes passing through the interface (low solidification effects). All these results can be explained quantitatively as a function of a dimensionless temperature θ, which describes the experimental thermal conditions, and a dimensionless flux ϕ, which describes their dynamical conditions. The experiments reveal that sills can only form within a restricted domain of the (θ , ϕ) parameter space. These experiments demonstrate that contrary to isothermal experiments where cooling could not affect sill formation, the presence of an interface that would be a priori mechanically favourable is not a sufficient condition for sill formation; solidification effects restrict sill formation. The results are consistent with field observations and provide a means to explain why some dykes form sills when others do not under seemingly similar geological conditions.

  2. Joining of superalloy Inconel 600 by diffusion induced isothermal solidification of a liquated insert metal

    International Nuclear Information System (INIS)

    Egbewande, A.T.; Chukwukaeme, C.; Ojo, O.A.

    2008-01-01

    The effect of process variables on the microstructure of transient liquid phase bonded IN 600 using a commercial filler alloy was studied. Microstructural examination of bonded specimens showed that isothermal solidification of the liquated insert occurred during holding at the joining temperatures. In cases where the holding time was insufficient for complete isothermal solidification, the residual liquid transformed on cooling into a centerline eutectic product. The width of the eutectic decreased with increased holding time and an increase in initial gap width resulted in thicker eutectic width in specimens bonded at the same temperature and for equivalent holding times. In addition to the centerline eutectic microconstituent, precipitation of boron-rich particles was observed within the base metal region adjacent to the substrate-joint interface. Formation of these particles appeared to have influenced the rate of solidification of the liquated interlayer during bonding. In contrast to the conventional expectation of an increase in the rate of isothermal solidification with an increase in temperature, a decrease in the rate was observed with an increase in temperatures above 1160 deg. C. This could be related to a decrease in solubility of boron in nickel above the Ni-B eutectic temperature

  3. Modeling solute segregation during the solidification of γ-phase U-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M.A., E-mail: mas4cw@virginia.edu [University of Virginia, Material Science and Engineering, 395 McCormick Rd, Charlottesville, VA 22904 (United States); Garlea, E. [Y-12 National Security Complex, Oak Ridge, TN 37831 (United States); Agnew, S.R. [University of Virginia, Material Science and Engineering, 395 McCormick Rd, Charlottesville, VA 22904 (United States)

    2016-06-15

    Using first principles calculations, it is demonstrated that solute segregation during U-Mo solidification can be modeled using the classic Brody-Fleming limited diffusion framework. The necessary supporting equations specific to the U-Mo alloy, along with careful verification of the assumptions underpinning the Brody-Fleming model are developed, allowing for concentration profile predictions as a function of alloy composition and cooling rate. The resulting model is compared to experimental solute concentration profiles, showing excellent agreement. Combined with complementary modeling of dendritic feature sizes, the solute segregation model can be used to predict the complete microstructural state of individual U-Mo volume elements based upon cooling rates, informing ideal processing routes.

  4. Solidification of HLLW by glass-ceramic process

    International Nuclear Information System (INIS)

    Oguino, N.; Masuda, S.; Tsunoda, N.; Yamanaka, T.; Ninomiya, M.; Sakane, T.; Nakamura, S.; Kawamura, S.

    1979-01-01

    The compositions of glass-ceramics for the solidification of HLLW were studied, and the glass-ceramics in the diopside system was concluded to be the most suitable. Compared with the properties of HLW borosilicate glasses, those of diopside glass-ceramic were thought to be almost equal in leach rate and superior in thermal stability and mechanical strength. It was also found that the glass in this system can be crystallized simply by pouring it into a thermally insulated canister and then allowing it to cool to room temperature. 2 figures, 5 tables

  5. Effect of liquid nitrogen flow rate on solidification of stagnant water in a horizontal tube

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    1995-01-01

    Five experiments are conducted to study the effect of liquid nitrogen flow rate on the solidification of stagnant water inside a horizontal stainless steel tube of inner diameter 19.6 cm and 12 mm thick. This tube simulates the down-comer of the nuclear reactor ET-R R-1. The apparatus design is mentioned more detail description. The results show that for the first experiment where the liquid nitrogen flow rate is 30 1/hr, the progress of solidification of water has stopped at a diameter of 12 cm. By increasing the flow rate from 30 1/hr to 40,50 and 60 1/hr, the time of freezing the water inside the tube is decreased from 86 to 67 and 60 minutes respectively. By increasing the liquid nitrogen flow rate to 70 1/hr, there is no much effect on the time of frozen. In all experiments, where the solidification is happened, the ice block formed inside the tube is subjected to a pressure of 3 at mg least, and is succeed to withstand this pressure without any leak. 7 figs

  6. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    International Nuclear Information System (INIS)

    Fabrizi, A; Timelli, G

    2016-01-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al 15 (Fe,Mn,Cr) 3 Si 2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al 5 (Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates. (paper)

  7. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    solidification range, refinement in grain size from 63 to 51 {mu}m, centerline columnar grains disappearance, and decreased cooling rate from 113 to 89 C/s. Moreover, in order to make direct comparison with literature, castings of controlled mixtures of alloys 6060 and 4043 were also investigated, thereby simulating weld metal composition under controlled cooling conditions. Castings showed a different trend than welds with small increases in silicon content (i.e. increase in 4043 filler dilution) resulting in huge effect on microstructure, no effect on liquidus temperature, drop in solidus temperature from 577 C to 509 C, increase in quantity of interdendritic constituent from 2% to 14%, and different phase formation. Binary {beta}-Al{sub 5}FeSi, Mg{sub 2}Si, and Si phases are replaced with ternary {beta}-Al{sub 5}FeSi, {pi}-Al{sub 8}FeMg{sub 3}Si{sub 6}, and a low melting quaternary eutectic involving Mg{sub 2}Si, {pi}, and Si. Also, variation of the cooling conditions in castings revealed the existence of a critical cooling rate, above which the solidification path and microstructure undergo a major change. Cracking Model. Implementing the critical conditions for cracking into the Rappaz- Drezet-Gremaud (RDG) model revealed a pressure drop in the interdendritic liquid on the order of 10{sup -1} atm, originating primarily from straining conditions. Since, according to literature, a minimum of 1,760 atm is required to fracture pure aluminum liquid (theoretical), this demonstrates that cavitation as a liquid fracture mechanism is not likely to occur, even when accounting for dissolved hydrogen gas. Instead, a porosity-based crack initiation model has been developed based upon pore stability criteria, assuming that gas pores expand from pre-existing nuclei. Crack initiation is taken to occur when stable pores form within the coherent dendrite region, critical to crack initiation being weld metal hydrogen content. Following initiation, a mass-balance approach developed by Braccini

  8. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  9. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows

    Science.gov (United States)

    Degraff, James M.; Long, Philip E.; Aydin, Atilla

    1989-09-01

    Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part

  10. Formation of Nitrogen Bubbles During Solidification of Duplex Stainless Steels

    Science.gov (United States)

    Dai, Kaiju; Wang, Bo; Xue, Fei; Liu, Shanshan; Huang, Junkai; Zhang, Jieyu

    2018-04-01

    The nucleation and growth of nitrogen bubbles for duplex stainless steels are of great significance for the formation mechanism of bubbles during solidification. In the current study, numerical method and theoretical analysis of formula derivation were used to study the formation of nitrogen bubbles during solidification. The critical sizes of the bubble for homogeneous nucleation and heterogeneous nucleation at the solid-liquid interface during solidification were derived theoretically by the classical nucleation theory. The results show that the calculated values for the solubility of nitrogen in duplex stainless steel are in good agreement with the experimental values which are quoted by references: for example, when the temperature T = 1823 K and the nitrogen partial pressure P_{{N2 }} = 40P^{Θ} , the calculated value (0.8042 wt pct) for the solubility of Fe-12Cr alloy nitrogen in molten steel is close to the experimental value (0.780 wt pct). Moreover, the critical radii for homogeneous nucleation and heterogeneous nucleation are identical during solidification. On the one hand, with the increasing temperature or the melt depth, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. On the other hand, with the decreasing initial content of nitrogen or the cooling rate, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. Furthermore, when the melt depth is greater than the critical depth, which is determined by the technological conditions, the change in the Gibbs free energy for the nucleation is not conducive enough to form new bubbles.

  11. Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization

    DEFF Research Database (Denmark)

    Kotas, Petr; Tutum, Cem Celal; Thorborg, Jesper

    2012-01-01

    A methodology of how to exploit the Niyama criterion for the elimination of various defects such as centerline porosity, macrosegregation, and hot tearing in steel castings is presented. The tendency of forming centerline porosity is governed by the temperature distribution close to the end...... of the solidification interval, specifically by thermal gradients and cooling rates. The physics behind macrosegregation and hot tears indicate that these two defects also are dependent heavily on thermal gradients and pressure drop in the mushy zone. The objective of this work is to show that by optimizing...... the solidification pattern, i.e., establishing directional and progressive solidification with the help of the Niyama criterion, macrosegregation and hot tearing issues can be both minimized or eliminated entirely. An original casting layout was simulated using a transient three-dimensional (3-D) thermal fluid model...

  12. Effect of chemical composition and cooling conditions on solidification hot cracking of Ni-based alloys

    International Nuclear Information System (INIS)

    De Vito, Sophie

    2000-01-01

    Ni-based alloys 690 present solidification hot cracks during welding of vapour generators. Hot cracks are qualitatively known to be due to the formation of inter-dendritic liquid films and of secondary phases down to low temperatures. This study aims at establishing the link between thermodynamics, solidification and hot cracking. Experimental solidification paths of high purity alloys (with varying Nb and Si contents) are obtained from quenching during directional solidification and TIG-welding experiments. They are compared to Thermo-Calc computations, assuming no diffusion in the solid. From directional solidification samples, good agreement between computed and experimental solidification paths is shown in the quenched liquid. Secondary arms of dendrites are affected by solid state diffusion of Nb. Combined effect of diffusion and solute build-up in the liquid phase modifies micro-segregation in the solid region. Solidification paths from welding specimens are similar to those of the solid region of quenched samples. Nb solid state diffusion is negligible but undercooling compensates the effect of solid state diffusion in directional solidification. Evolution of liquid fraction at the end of the solidification is in accordance with the hot cracking classification of the alloys. Nb favours formation of inter-dendritic liquid films and eutectic-like phases down to low temperature. (author) [fr

  13. The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Xin, Xiu-Ling; Wang, Rui-Zhi; Xu, Long-Yun

    2016-04-01

    In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s-1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s-1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s-1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.

  14. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    International Nuclear Information System (INIS)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-01-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  15. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Science.gov (United States)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  16. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan [Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435 (United States)

    2016-07-12

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  17. Process gas solidification system

    International Nuclear Information System (INIS)

    1980-01-01

    A process for withdrawing gaseous UF 6 from a first system and directing same into a second system for converting the gas to liquid UF 6 at an elevated temperature, additionally including the step of withdrawing the resulting liquid UF 6 from the second system, subjecting it to a specified sequence of flash-evaporation, cooling and solidification operations, and storing it as a solid in a plurality of storage vessels. (author)

  18. Rapid Solidification of a New Generation Aluminum-Lithium Alloy via Electrospark Deposition

    Science.gov (United States)

    Heard, David W.; Boselli, Julien; Gauvin, Raynald; Brochu, Mathieu

    Electrospark deposition (ESD) is a rapid solidification processing technique capable of depositing a metal onto a conductive substrate. The short pulse duration and high pulse frequency, combined with the small amount of material transferred during each pulse, results in high cooling rates being realized, on the order of 105-106 C/sec. This study investigates the ability to induce solute trapping behavior, for a new generation aluminum-lithium alloy, AA2199, using ESD.

  19. Finite-element solidification modelling of metals and binary alloys

    International Nuclear Information System (INIS)

    Mathew, P.M.

    1986-12-01

    In the Canadian Nuclear Fuel Waste Management Program, cast metals and alloys are being evaluated for their ability to support a metallic fuel waste container shell under disposal vault conditions and to determine their performance as an additional barrier to radionuclide release. These materials would be cast to fill residual free space inside the container and allowed to solidify without major voids. To model their solidification characteristics following casting, a finite-element model, FAXMOD-3, was adopted. Input parameters were modified to account for the latent heat of fusion of the metals and alloys considered. This report describes the development of the solidification model and its theoretical verification. To model the solidification of pure metals and alloys that melt at a distinct temperature, the latent heat of fusion was incorporated as a double-ramp function in the specific heat-temperature relationship, within an interval of +- 1 K around the solidification temperature. Comparison of calculated results for lead, tin and lead-tin eutectic melts, unidirectionally cooled with and without superheat, showed good agreement with an alternative technique called the integral profile method. To model the solidification of alloys that melt over a temperature interval, the fraction of solid in the solid-liquid region, as calculated from the Scheil equation, was used to determine the fraction of latent heat to be liberated over a temperature interval within the solid-liquid zone. Comparison of calculated results for unidirectionally cooled aluminum-4 wt.% copper melt, with and without superheat, showed good agreement with alternative finite-difference techniques

  20. Evaluation of thermophysical properties of Al–Sn–Si alloys based on computational thermodynamics and validation by numerical and experimental simulation of solidification

    International Nuclear Information System (INIS)

    Bertelli, Felipe; Cheung, Noé; Ferreira, Ivaldo L.; Garcia, Amauri

    2016-01-01

    Highlights: • A numerical routine coupled to a computational thermodynamics software is proposed to calculate thermophysical properties. • The approach encompasses numerical and experimental simulation of solidification. • Al–Sn–Si alloys thermophysical properties are validated by experimental/numerical cooling rate results. - Abstract: Modelling of manufacturing processes of multicomponent Al-based alloys products, such as casting, requires thermophysical properties that are rarely found in the literature. It is extremely important to use reliable values of such properties, as they can influence critically on simulated output results. In the present study, a numerical routine is developed and connected in real runtime execution to a computational thermodynamic software with a view to permitting thermophysical properties such as: latent heats; specific heats; temperatures and heats of transformation; phase fractions and composition and density of Al–Sn–Si alloys as a function of temperature, to be determined. A numerical solidification model is used to run solidification simulations of ternary Al-based alloys using the appropriate calculated thermophysical properties. Directional solidification experiments are carried out with two Al–Sn–Si alloys compositions to provide experimental cooling rates profiles along the length of the castings, which are compared with numerical simulations in order to validate the calculated thermophysical data. For both cases a good agreement can be observed, indicating the relevance of applicability of the proposed approach.

  1. Solidification behaviors of a single-crystal superalloy under lateral constraints

    International Nuclear Information System (INIS)

    Zhuangqi Hu; Huaming Wang

    1993-01-01

    The effect of lateral constraints ahead of solidification interface on the solidification behaviors of a newly developed hot corrosion resistant single-crystal nickel-base superalloy was investigated under commercial single-crystal production conditions. The lateral constraints or section variations ahead of solidification front were found to have drastic influences both on the modes of solidification and the profiles of solute segregation. As lateral constraints were imposed ahead of the directionally solidifying interface, the solidification microstructure of the single-crystal superalloy changed suddenly, through a γ/γ' eutectic-free zone which is characterized by an extremely-fine and highly-developed dendrite network, from the original well-branched dendritic structure to a fine cellular-dendrite or regular cell structure, accompanying which the primary arm spacing, the severity of segregation and the amount of microporosity decreased remarkably. The newly formed cellular dendrite or cell structure transforms always gradually to the initial coarse dendrite structure as the lateral constraint is finally released whether gradually or sharply. Moreover, an abnormal porosity zone was readily observed in the initial section beneath and away from the eutectic-free zone. The solidification microstructural changes were attributed to the drastic dynamical changes in local solidification cooling conditions and in momentum transport during solidification due to the presence of lateral constraint

  2. The effects of solidification on sill propagation dynamics and morphology

    Science.gov (United States)

    Chanceaux, L.; Menand, T.

    2016-05-01

    Sills are an integral part of the formation and development of larger plutons and magma reservoirs. Thus sills are essential for both the transport and the storage of magma in the Earth's crust. However, although cooling and solidification are central to magmatism, their effects on sills have been so far poorly studied. Here, the effects of solidification on sill propagation dynamics and morphology are studied by means of analogue laboratory experiments. Hot fluid vegetable oil (magma analogue), that solidifies during its propagation, is injected as a sill in a colder layered gelatine solid (elastic host rock analogue). The injection flux and temperature are maintained constant during an experiment and systematically varied between each experiment, in order to vary and quantify the amount of solidification between each experiments. The oil is injected directly at the interface between the two gelatine layers. When solidification effects are small (high injection temperatures and fluxes), the propagation is continuous and the sill has a regular and smooth surface. Inversely, when solidification effects are important (low injection temperatures and fluxes), sill propagation is discontinuous and occurs by steps of surface-area creation interspersed with periods of momentary arrest. The morphology of these sills displays folds, ropy structures on their surface, and lobes with imprints of the leading fronts that correspond to each step of area creation. These experiments show that for a given, constant injected volume, as solidification effects increase, the area of the sills decreases, their thickness increases, and the number of propagation steps increases. These results have various geological and geophysical implications. The morphology of sills, such as lobate structures (interpretation of 3D seismic studies in sedimentary basin) and ropy flow structures (field observations) can be related to solidification during emplacement. Moreover, a non-continuous morphology

  3. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  4. On the Effect of Pouring Temperature on Spheroidal Graphite Cast Iron Solidification

    Directory of Open Access Journals (Sweden)

    Alex Escobar

    2015-04-01

    Full Text Available This work is focused on the effect of pouring temperature on the thermal-microstructural response of an eutectic spheroidal graphite cast iron (SGCI. To this end, experiments as well as numerical simulations were carried out. Solidification tests in a wedge-like part were cast at two different pouring temperatures. Five specific locations exhibiting distinct cooling rates along the sample were chosen for temperature measurements and metallographic analysis to obtain the number and size of graphite nodules at the end of the process. The numerical simulations were performed using a multinodular-based model. Reasonably good numerical-experimental agreements were obtained for both the cooling curves and the graphite nodule counts.

  5. Wax solidification of drying agents containing tritiated water

    International Nuclear Information System (INIS)

    Mishikawa, M.; Kido, H.

    1984-01-01

    It is necessary to immobilize the tritium not to give any impact on the environmental biosphere because tritium may give profound effects in the metabolic pathway. One of the most probable methods of immobilizing tritium would be incorporation of tritiated water in solid forms. Any drying or dehydration technique would be effective in a tritium cleanup system for off-gas streams containing tritium or tritiated water. Commonly used drying agents such as activated alumina, silica gel, molecular sieves and calcium sulfate are of value for removal of water vapour from air or other gases. For long term tritium storage, however, these adsorptive materials should be enveloped to prevent contact with water or water vapour because the rate of leaching, evaporation or diffusion of tritium from these porous materials is so large. The beeswax solidification method of the packed bed of drying agents adsorbing tritiated water is developed in this study, where the wax solidification procedure is performed by pouring the melt of wax into the void space of the packed bed of the drying agents and successive gradual cooling. The observed values of diffusivity or permeability of tritium in the wax solidified materials are about one-thousandth of those obtained for the cement block. Effect of coating on the rate of leaching is also discussed

  6. Cooling Rates of Lunar Volcanic Glass Beads

    Science.gov (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  7. Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization

    Science.gov (United States)

    Kotas, Petr; Tutum, Cem Celal; Thorborg, Jesper; Hattel, Jesper Henri

    2012-06-01

    A methodology of how to exploit the Niyama criterion for the elimination of various defects such as centerline porosity, macrosegregation, and hot tearing in steel castings is presented. The tendency of forming centerline porosity is governed by the temperature distribution close to the end of the solidification interval, specifically by thermal gradients and cooling rates. The physics behind macrosegregation and hot tears indicate that these two defects also are dependent heavily on thermal gradients and pressure drop in the mushy zone. The objective of this work is to show that by optimizing the solidification pattern, i.e., establishing directional and progressive solidification with the help of the Niyama criterion, macrosegregation and hot tearing issues can be both minimized or eliminated entirely. An original casting layout was simulated using a transient three-dimensional (3-D) thermal fluid model incorporated in a commercial simulation software package to determine potential flaws and inadequacies. Based on the initial casting process assessment, multiobjective optimization of the solidification pattern of the considered steel part followed. That is, the multiobjective optimization problem of choosing the proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity, the macrosegregation pattern, and primarily on hot tear formation.

  8. Analysis of the heat transfer mechanisms during energy storage in a Phase Change Material filled vertical finned cylindrical unit for free cooling application

    International Nuclear Information System (INIS)

    Solomon, Gnanadurai Ravikumar; Velraj, Ramalingam

    2013-01-01

    Highlights: • Freezing behavior of a PCM, in a cylinder with annular longitudinal fins is presented. • Among various fin heights, 20 mm fin contribute maximum heat transfer enhancement. • Addition of fins plays a contradictory role during the sensible cooling of liquid PCM. • The fin effect along with external cooling, vary the sensible cooling rate of liquid PCM. • The surface convective resistance dominated over the conductive resistance of PCM. - Abstract: The heat transfer performance of the Phase Change Material (PCM) used in free cooling application is low due to poor thermal conductivity. The addition of fins to enhance the heat transfer during solidification process is commonly employed, to address this. However for application such as free cooling, where the driving temperature potential is very less, the present experimental study is intended to investigate the sensible and subcooling phenomena during the outward cylindrical solidification of the PCM stored on the annulus side, along with 8 longitudinal uniformly spaced copper fins of different heights. The performance of the fins during solidification is analyzed, and the best suitable height is arrived at. The addition of fins plays a contradicting role during the sensible cooling of the liquid PCM, due to the suppression of free convection. The external cooling conditions along with the effect of the fin, vary the sensible cooling rate of the liquid PCM, that influences the subcooling effect, and also drifts the temperature at which major phase change occurs. In addition, the effects due to the inlet velocity of the heat transfer fluid, and its temperature on heat transfer are investigated and reported. The increase in velocity decreases the duration of solidification, and this effect is more pronounced towards the entry region, due to the higher local convective heat transfer co-efficient and a comparatively higher driving temperature potential

  9. The Effects of Cooling Rate on the Microstructure and Mechanical Properties of Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 Metallic Glass Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seon Yong; Lim, Ka Ram; Na, Young Sang; Kim, Seong Eon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Choi, Youn Suk [Pusan National University, Busan (Korea, Republic of)

    2016-11-15

    In this paper, we demonstrate that the microstructure and mechanical properties in the Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 alloy can be tailored by controlling the cooling rate during solidification. A lower cooling rate increases the volume fraction of crystalline phase such as B2 but decreases the free volume of the glassy matrix. The increase of the B2 volume fraction can dramatically enhance the toughness of the composites, since the B2 phase is relatively ductile compared to the glassy matrix and seems to have good interface stability with the matrix. From the experimental results, it was found that there is a transition point in the plasticity of the composites depending on the cooling rate. Here, we explain how the toughness of the composites varies in accordance with the cooling rate in the Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 alloy system.

  10. A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness

    Directory of Open Access Journals (Sweden)

    Junli Guo

    2018-04-01

    Full Text Available The contraction of peritectic steels in the initial solidification has an important influence on the formation of surface defects of continuously cast slabs. In order to understand the contraction behavior of the initial solidification of steels in the mold, the solidification process and surface roughness in a commercial hypo-peritectic and several non-peritectic steels were investigated using Confocal Scanning Laser Microscope (CSLM. The massive transformation of delta-Fe (δ to austenite (γ was documented in the hypo-peritectic steel, which caused surface wrinkles and greatly increases the surface roughness of samples in the experiments. Surface roughness (Ra(δ→γ was calculated to evaluate the contraction level of the hypo-peritectic steel due to δ–γ transformation. The result shows that the surface roughness method can facilitate the estimation of the contraction level of peritectic transformation over a wide range of cooling rates.

  11. Investigation of the effects of cooling rate on the microstructure of investment cast biomedical grade Co alloys

    International Nuclear Information System (INIS)

    Kaiser, R; Browne, D J; Williamson, K

    2012-01-01

    The objective of this work is to determine the microstructural characteristics of investment cast cobalt alloy as the cross-sectional area is varied, thus changing the local effective cooling rates and solidification times. The extent of published work on the as-cast properties of cobalt alloys is minimal. The primary aim of this work is therefore to extend knowledge of the behaviour of such alloys as they solidify, which will influence the design of new products as well as the industrial optimisation of the casting process. Wedge-shaped parts were cast from a biomedical grade cobalt alloy employing the method of lost wax investment casting. Analytical techniques such as optical microscopy, image analysis and microhardness testing were used to characterise the as-cast parts. Parameters studied include variations in grain structure, nature of the columnar and equiaxed zones and the spread of porosity (both shrinkage and gas). Changes in microstructure were compared to microhardness values obtained. The solidification profile of the alloy through the prototype cast component was investigated based on measurement of the dendrite arm spacings. A discussion on the physical phenomena controlling the microstructural variations is presented.

  12. Numerical model for dendritic solidification of binary alloys

    Science.gov (United States)

    Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.

    1993-01-01

    A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.

  13. Two-dimensional time-resolved X-ray diffraction study of directional solidification in steels

    International Nuclear Information System (INIS)

    Yonemura, Mitsuharu

    2009-01-01

    Full text: The high intensity heat source used for fusion welding creates steep thermal gradients of 100 degree C/s from 1800 degree Celsius. Further, the influence of a preferred orientation is serious for observation of a directional solidification that follows the dendrite growth along the direction toward the moving heat source. Therefore, we observed the rapid solidification of weld metal at a time resolution of 0.01∼0.1seconds by the Two-Dimensional Time-Resolved X-ray Diffraction (2DTRXRD) system for real welding. The diffraction ring was dynamically observed by 2DTRXRD during arc-passing over the irradiation area of X-ray with synchrotron energy of 18 KeV. The arc power output was 10 V - 150 A, and a scan speed of the arc was 1.0 mm/s. The temperature rise of instruments was suppressed by the water-cooled copper plate under the sample. Further, the temperature distribution of the weld metal was measured by the thermocouple and related to the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low-carbon steel, the microstructure is formed in the 2 step process; (i) formation of crystallites and (ii) increase of crystallinity. In the stainless steel, the irregular interface layer of σ/y in the quenched metal after solidification is expected that it is easy for dendrites to move at the lower temperature. In the carbide precipitation stainless steel, it is easy for NbC to grow on σ phase with a little under cooling. Further, a mist-like pattern, which differs from the halo-pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD. (author)

  14. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation

    Science.gov (United States)

    Rahmani, Farzin; Jeon, Jungmin; Jiang, Shan; Nouranian, Sasan

    2018-05-01

    Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated. [Figure not available: see fulltext.

  15. Influence of Ultrasonic Melt Treatment and Cooling Rates on the Microstructural Development and Elevated Temperature Mechanical Properties of a Hypereutectic Al-18Si-4Cu-3Ni Piston Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jea-Hee; Cho, Young-Hee; Jung, Jae-Gil; Lee, Jung-Moo [Korea Institute of Materials Science (KIMS), Changwon (Korea, Republic of); Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The influence of ultrasonic melt treatment (UST) combined with a change in cooling rates on the microstructure and elevated temperature mechanical properties of a hypereutectic Al-18Si-4Cu-3Ni piston alloy was investigated. Microstructural observation confirmed that UST effectively refined the sizes of primary Si and intermetallic compounds (e.g. ε-Al{sub 3}Ni) while promoting their homogeneous distribution. Besides the refinement of the constituent phases, the size of the dendrite arm spacing (DAS), which was hardly affected by UST, significantly deceased with increasing cooling rates. The refinement of the solidification structure in the alloy achieved through both UST and increased cooling rates resulted in an improvement in tensile properties, ultimate tensile strength and elongation in particular, after T5 heat treatment followed by overaging at 350 ℃. However, the elevated temperature yield strength of the alloy was not associated with the refinement, but was rather correlated with the 3-D interconnectivity, morphology and volume fraction of the primary Si.

  16. Cation ordering in orthopyroxenes and cooling rates of meteorites: Low temperature cooling rates of Estherville, Bondoc and Shaw

    Science.gov (United States)

    Ganguly, J.; Yang, H.; Ghose, S.

    1993-01-01

    The cooling rates of meteorites provide important constraints on the size of their parent bodies, and their accretionary and evolutionary histories. However, the cooling rates obtained so far from the commonly used metallographic, radiometric and fission-track methods have been sometimes quite controversial, such as in the case of the mesosiderites and the meteorite Shaw. We have undertaken a systematic study of the cooling rates of meteorites using a different approach, which involves single crystal x-ray determination of Fe(2+)-Mg ordering in orthopyroxenes (OP(x)) in meteorites, subject to bulk compositional constraints, and numerical simulation of the evolution of the ordering state as a function of cooling rate, within the framework of the thermodynamic and kinetic principles governing cation ordering. We report the results obtained for OP(x) crystals from Shaw and two mesosiderites, Estherville and Bondoc.

  17. Onset of solid state mantle convection and mixing during magma ocean solidification

    Science.gov (United States)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris

    2017-04-01

    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  18. Variation in diffusion-induced solidification rate of liquated Ni-Cr-B insert during TLP bonding of Waspaloy superalloy

    International Nuclear Information System (INIS)

    Tokoro, K.; Wikstrom, N.P.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    A microstructural study was performed on transient liquid phase (TLP) bonded Waspaloy superalloy with a Ni-Cr-B filler. The applicability of a diffusion model based on Fick's second law of diffusion to determine the time required for complete isothermal solidification (t f ) was investigated. Over the temperature range of 1065-1110 deg. C, experimental observations of t f were in reasonable agreement with t f values predicted by the diffusion model. However, a notable deviation was observed in joints prepared between 1175 and 1225 deg. C in that the rate of isothermal solidification was reduced at these temperatures resulting in the formation of a centerline eutectic-type microconstituent, which in contrast, was prevented from forming after holding the brazing assembly for an equivalent bonding time at a lower temperature of 1145 deg. C. Boride particles were observed as part of the eutectic product, which suggested that diffusion of boron out of the liquated insert was also reduced at these higher temperatures. A decrease in solubility of the melting point depressing solute, boron, with increase in temperature is suggested to be an important factor contributing to the reduction in isothermal solidification rate observed at the higher bonding temperatures

  19. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    The heating and cooling rates of adult Chersina angulata were investigated to ascertain whether these tortoises can physiologically alter their rates of heat exchange. In addition, heart rates were recorded to provide an insight into the control of heat exchange. C. angulata heats significantly faster than it cools. Heart rates ...

  20. Effect of the delta ferrite solidification morphology of austenitic steels weld metal on the joint properties

    International Nuclear Information System (INIS)

    Bilmes, P.; Gonzalez, A.; Llorente, C.; Solari, M.

    1996-01-01

    The properties of austenitic stainless steel weld metals are largely influenced by the appearance in the microstructure of delta ferrite of a given morphology. The susceptibility to hot cracks and low temperature toughness are deeply conditioned by the mixed complex austenitic-ferritic structures which depending on the steel chemical composition and on the cooling rate may be developed. The latest research on this issue points out the importance of the sodification mode as regards to the influence in the appearance of delta ferrite of a certain morphology. In fact, it is very important to understand the solidification sequences, the primary solidification modes which are possible and the subsequent solid state transformations to correlate the structural elements of the weld metal with the parameters of the welding process on the one had, and the weld joint properties on the other. (Author) 19 refs

  1. In situ observations of graphite formation during solidification of cast iron

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten

    solidification and growth continues throughout solid state cooling and the eutectoid transformation. Years of research have greatly improved the understanding of the basic mechanisms that control graphite growth as well as the ability to control graphite morphology during industrial production of cast components......, the solidification of cast iron is studied with focus on formation and growth of spheroidal graphite. To this end, an experiment is conducted at the Diamond Light Source synchrotron facility in Harwell, UK: Employing an environmental cell devel-oped at the Manchester X-ray Imaging Facility at the University...... state growth presented in the present thesis. From the analysis it is clear that the presented data is of an unprecedented quality and that it represents a solid basis for validation of future models. Solidification simulations of a ductile cast iron component highlights the importance of the nucleation...

  2. Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in Direct Metal Laser Sintering Process

    Science.gov (United States)

    Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev

    2018-03-01

    Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.

  3. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  4. Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions

    Science.gov (United States)

    Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong

    2018-06-01

    In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.

  5. Numerical Simulation of Bulging Deformation for Wide-Thick Slab Under Uneven Cooling Conditions

    Science.gov (United States)

    Wu, Chenhui; Ji, Cheng; Zhu, Miaoyong

    2018-02-01

    In the present work, the bulging deformation of a wide-thick slab under uneven cooling conditions was studied using finite element method. The non-uniform solidification was first calculated using a 2D heat transfer model. The thermal material properties were derived based on a microsegregation model, and the water flux distribution was measured and applied to calculate the cooling boundary conditions. Based on the solidification results, a 3D bulging model was established. The 2D heat transfer model was verified by the measured shell thickness and the slab surface temperature, and the 3D bulging model was verified by the calculated maximum bulging deflections using formulas. The bulging deformation behavior of the wide-thick slab under uneven cooling condition was then determined, and the effect of uneven solidification, casting speed, and roll misalignment were investigated.

  6. Efficient estimation of diffusion during dendritic solidification

    Science.gov (United States)

    Yeum, K. S.; Poirier, D. R.; Laxmanan, V.

    1989-01-01

    A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.

  7. Phase-Field Simulation of Microstructure Evolution in Industrial A2214 Alloy During Solidification

    Science.gov (United States)

    Wei, Ming; Tang, Ying; Zhang, Lijun; Sun, Weihua; Du, Yong

    2015-07-01

    By linking to the thermodynamic and atomic mobility databases in Al alloys well established in our research group, the microstructure evolution in industrial A2214 alloy (Al-4.5Cu-0.5Mg-1.0Si, in wt pct) during solidification process was studied by means of two-dimensional phase-field simulation via MICRostructure Evolution Simulation Software in the framework of the multi-phase-field formalism. The thermophysical parameters including interfacial energies and interfacial mobilities were carefully chosen for reproducing the experimental features. The solidification sequence due to the present phase-field simulation conforms to both equilibrium calculation and Scheil simulation. The predicted microstructure reproduces the experimental data very well. These facts indicate that a quantitative phase-field simulation was achieved in the present work. Moreover, the mechanisms of characteristic patterns and microstructure formation were revealed with the aid of the phase-field simulation. In addition, the effect of cooling rate on the secondary dendrite arm spacing and microsegregation was also investigated through comprehensive comparison with the experimental data.

  8. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  9. A Comparative study of solidification of Al-Cu alloy under flow of cylindrical radial heat and the unidirectional vertically

    Directory of Open Access Journals (Sweden)

    Jean Robert P. Rodrigues

    2014-09-01

    Full Text Available In spite of technological importance of solidification of metallic alloys under radial heat flow, relatively few studies have been carried out in this area. In this work the solidification of Al 4.5 wt% Cu cylinders against a steel massive mold is analyzed and compared with unidirectional solidification against a cooled mold. Initially temperature variations at different positions in the casting and in the mold were measured during solidification using a data acquisition system. These temperature variations were introduced in a numerical method in order to determine the variation of heat transfer coefficient at metal/mold interface by inverse method. The primary and secondary dendrite arm spacing variations were measured through optical microscopy. Comparisons carried out between experimental and numerical data showed that the numerical method describes well the solidification processes under radial heat flux.

  10. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 648 Benedum Hall, 3700 OHara Street, Pittsburgh, Pennsylvania 15261 (United States); McKeown, J. T.; LaGrange, T.; Reed, B. W.; Campbell, G. H. [Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States)

    2016-08-07

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  11. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    cooing curves in thin wall ductile iron castings. The experiments show how TC’s of different design interact with the melt and how TC design and surface quality affect the results of the data acquisition. It is discussed which precautions should be taken to ensure reliable acquisition of cooling curves....... Measurement error depending on TC design and cooling conditions is shown. A method is presented that allows acquisition of cooling curves in thin walled ductile iron castings down to thickness of at least 2.8 mm. The obtained cooling curves can be used to compare nucleation and growth during solidification...

  12. Solidification microstructures and solid-state parallels: Recent developments, future directions

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M. [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Beckermann, C. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115 (United States); Kurz, W. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)], E-mail: wilfried.kurz@epfl.ch; Napolitano, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States); Plapp, M. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Purdy, G. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ont., L8S 4L7 (Canada); Rappaz, M. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Trivedi, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States)

    2009-02-15

    Rapid advances in atomistic and phase-field modeling techniques as well as new experiments have led to major progress in solidification science during the first years of this century. Here we review the most important findings in this technologically important area that impact our quantitative understanding of: (i) key anisotropic properties of the solid-liquid interface that govern solidification pattern evolution, including the solid-liquid interface free energy and the kinetic coefficient; (ii) dendritic solidification at small and large growth rates, with particular emphasis on orientation selection; (iii) regular and irregular eutectic and peritectic microstructures; (iv) effects of convection on microstructure formation; (v) solidification at a high volume fraction of solid and the related formation of pores and hot cracks; and (vi) solid-state transformations as far as they relate to solidification models and techniques. In light of this progress, critical issues that point to directions for future research in both solidification and solid-state transformations are identified.

  13. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Hekmat-Ardakan, Alireza [École Polytechnique de Montréal, Dép. de Génie Chimique, P.O. Box 6079, Centre-ville, Montreal, Quebec H3C 3A7 (Canada)

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (β),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(θ) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  14. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    Science.gov (United States)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  15. Experimental investigation of solidification in metal foam enhanced phase change material

    Science.gov (United States)

    Beyne, W.; Bağci, O.; Huisseune, H.; Canière, H.; Danneels, J.; Daenens, D.; De Paepe, M.

    2017-10-01

    A major challenge for the use of phase change materials (PCMs) in thermal energy storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, however, has been found to enhance the heat transfer. On the other hand, the effect of foam parameters such as porosity, pore size and material type has remained unclear. In this paper, the effect of these foam parameters on the solidification time is investigated. Different samples of PCM-impregnated metal foam were experimentally tested and compared to one without metal foam. The samples varied with respect to choice of material, porosity and pore size. They were placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification times by at least 25 %. However, the difference between the best performing and worst performing metal foam is about 28 %. This shows a large potential for future research.

  16. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    International Nuclear Information System (INIS)

    Gorny, Anton; Manickaraj, Jeyakumar; Cai, Zhonghou; Shankar, Sumanth

    2013-01-01

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al 13 Fe 4 , τ 5 -Al 8 Fe 2 Si and τ 6 -Al 9 Fe 2 Si 2 phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s −1 . Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ 5 -Al 8 SiFe 2 and τ 6 -Al 9 Fe 2 Si 2 . The τ 5 -Al 8 SiFe 2 phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ 6 -Al 9 Fe 2 Si 2 through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al 13 Fe 4 binary phase precludes the evolution of the τ 5 during solidification and subsequently transforms into the τ 6 phase during solidification. These observations are anomalous to the publications as prior art and simulation predictions of thermodynamic phase diagrams of these alloys, wherein, only one intermetallic phases in the

  17. MEASURING THE EVOLUTIONARY RATE OF COOLING OF ZZ Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Fraser, Oliver; Riecken, T. S.; Kronberg, M. E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Bischoff-Kim, Agnes [Georgia College and State University, Milledgeville, GA 31061 (United States); Corsico, A. H. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata (Argentina); Montgomery, M. H.; Winget, D. E.; Hermes, J. J.; Winget, K. I.; Falcon, Ross E.; Reaves, D. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Kepler, S. O.; Romero, A. D. [Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS (Brazil); Chandler, D. W. [Meyer Observatory, Central Texas Astronomical Society, 3409 Whispering Oaks, Temple, TX 76504 (United States); Kuehne, J. W. [McDonald Observatory, Fort Davis, TX 79734 (United States); Sullivan, D. J. [Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand); Von Hippel, T. [Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114 (United States); Mullally, F. [SETI Institute, NASA Ames Research Center, MS 244-30, Moffet Field, CA 94035 (United States); Shipman, H. [Delaware Asteroseismic Research Center, Mt. Cuba Observatory, Greenville, DE 19807 (United States); and others

    2013-07-01

    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 {+-} 1.4) Multiplication-Sign 10{sup -15} s s{sup -1} employing the O - C method and (5.45 {+-} 0.79) Multiplication-Sign 10{sup -15} s s{sup -1} using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 {+-} 1.0) Multiplication-Sign 10{sup -15} s s{sup -1}. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 {+-} 1.1) Multiplication-Sign 10{sup -15} s s{sup -1}. This value is consistent within uncertainties with the measurement of (4.19 {+-} 0.73) Multiplication-Sign 10{sup -15} s s{sup -1} for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.

  18. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurements in castings are carried out with thermocouples (TC’s), which are inserted in the melt. The TC influence solidification of the casting, especially in thin wall castings where the heat content of the melt is small compared to the cooling power of the TC. A numerical analysi...

  19. Effect of solidification rate on the microstructure and microhardness of a melt-spun Al-8Si-1Sb alloy

    International Nuclear Information System (INIS)

    Karakoese, E.; Keskin, M.

    2009-01-01

    The properties of rapidly solidified hypoeutectic Al-8Si-1Sb alloy, produced by melt-spinning technique at a different solidification rates, were investigated using the X-ray diffraction (XRD), the optical microscopy (OM), the scanning electron microscopy (SEM) together with the energy dispersive spectroscopy (EDS), the differential scanning calorimetry (DSC) and the microhardness technique. The properties of rapidly solidified ribbons were then compared with those of the chill-casting alloy. The results show that rapid solidification has influence on the phase constitution of the hypoeutectic Al-8Si-1Sb alloy. The phases present in the hypoeutectic Al-8Si-1Sb ingot alloy were determined to be α-Al, fcc Si and intermetallic AlSb phases whereas only α-Al and fcc Si phases were identified in the melt-spinning alloy. The rapid solidification has a significant effect on the microstructure of the hypoeutectic Al-8Si-1Sb alloy. Particle size in the microstructure of the ribbons is too small to compare with particle size in the microstructure of the ingot alloy. Moreover, the significant change in hardness occurs that is attributed to changes in the microstructure.

  20. Effect of solidification rate on the microstructure and microhardness of a melt-spun Al-8Si-1Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, E. [Erciyes University, Institute of Science, 38039 Kayseri (Turkey); Keskin, M. [Erciyes University, Institute of Science, 38039 Kayseri (Turkey); Erciyes University, Physics Department, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2009-06-24

    The properties of rapidly solidified hypoeutectic Al-8Si-1Sb alloy, produced by melt-spinning technique at a different solidification rates, were investigated using the X-ray diffraction (XRD), the optical microscopy (OM), the scanning electron microscopy (SEM) together with the energy dispersive spectroscopy (EDS), the differential scanning calorimetry (DSC) and the microhardness technique. The properties of rapidly solidified ribbons were then compared with those of the chill-casting alloy. The results show that rapid solidification has influence on the phase constitution of the hypoeutectic Al-8Si-1Sb alloy. The phases present in the hypoeutectic Al-8Si-1Sb ingot alloy were determined to be {alpha}-Al, fcc Si and intermetallic AlSb phases whereas only {alpha}-Al and fcc Si phases were identified in the melt-spinning alloy. The rapid solidification has a significant effect on the microstructure of the hypoeutectic Al-8Si-1Sb alloy. Particle size in the microstructure of the ribbons is too small to compare with particle size in the microstructure of the ingot alloy. Moreover, the significant change in hardness occurs that is attributed to changes in the microstructure.

  1. Effect of Rapid Solidification and Addition of Cu3P on the Mechanical Properties of Hypereutectic Al-Si Alloys

    OpenAIRE

    Suárez-Rosales,Miguel Ángel; Pinto-Segura,Raúl; Palacios-Beas,Elia Guadalupe; Hernández-Herrera,Alfredo; Chávez-Alcalá,José Federico

    2016-01-01

    The combined processes; rapid solidification, addition of Cu3P compound and heat treatments to improve the mechanical properties of the hypereutectic Al-13Si, Al-20Si and Al-20Si-1.5Fe-0.7Mn alloys (in wt. %) was studied. Optical microscopy and scanning electron microscopy were used to characterize the microstructures. The mechanical properties were evaluated by tensile tests. It was found that the cooling rate (20-50°C/s) used to solidify the alloys plus the addition of Cu3P compound favored...

  2. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Anton; Manickaraj, Jeyakumar [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada)

    2013-11-15

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al{sub 13}Fe{sub 4}, τ{sub 5}-Al{sub 8}Fe{sub 2}Si and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s{sup −1}. Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ{sub 5}-Al{sub 8}SiFe{sub 2} and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2}. The τ{sub 5}-Al{sub 8}SiFe{sub 2} phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al{sub 13}Fe{sub 4} binary phase precludes the evolution of the τ{sub 5} during solidification and subsequently transforms into the τ{sub 6} phase during solidification. These observations are anomalous to the publications as prior art and

  3. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting ......, the opalescence of the glass can be tuned by adjusting the cooling rate. This makes the production of opal glasses or transparent glass ceramics more efficient and energy saving, since the conventional isothermal treatment procedure can be left out....

  4. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    Science.gov (United States)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  5. Inspection method for solidification product of radioactive waste and method of preparing solidification product of radiation waste

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Tamada, Shin; Matsuda, Masami; Kamata, Shoji; Kikuchi, Makoto.

    1993-01-01

    A powerful X-ray generation device using an electron-ray accelerator is used for inspecting presence or absence of inner voids in solidification products of radioactive wastes during or after solidification. By installing the X-ray CT system and the radioactive waste solidifying facility together, CT imaging for solidification products is conducted in a not-yet cured state of solidifying materials during or just after the injection. If a defect that deteriorates the durability of the solidification products should be detected, the solidification products are repaired, for example, by applying vibrations to the not-yet cured solidification products. Thus, since voids or cracks in the radioactive wastes solidification products, which were difficult to be measured so far, can be measured in a short period of time accurately thereby enabling to judge adaptability to the disposal standards, inspection cost for the radioactive waste solidification product can be saved remarkably. Further, the inside of the radioactive waste solidification products can be evaluated correctly and visually, so that safety in the ground disposal storage of the radioactive solidification products can be improved remarkably. (N.H.)

  6. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    Science.gov (United States)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  7. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Matthew G. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  8. Numerical Simulation on the Origin of Solidification Cracking in Laser Welded Thick-Walled Structures

    Directory of Open Access Journals (Sweden)

    Nasim Bakir

    2018-06-01

    Full Text Available One of the main factors affecting the use of lasers in the industry for welding thick structures is the process accompanying solidification cracks. These cracks mostly occurring along the welding direction in the welding center, and strongly affect the safety of the welded components. In the present study, to obtain a better understanding of the relation between the weld pool geometry, the stress distribution and the solidification cracking, a three-dimensional computational fluid dynamic (CFD model was combined with a thermo-mechanical model. The CFD model was employed to analyze the flow of the molten metal in the weld pool during the laser beam welding process. The weld pool geometry estimated from the CFD model was used as a heat source in the thermal model to calculate the temperature field and the stress development and distributions. The CFD results showed a bulging region in the middle depth of the weld and two narrowing areas separating the bulging region from the top and bottom surface. The thermo-mechanical simulations showed a concentration of tension stresses, transversally and vertically, directly after the solidification during cooling in the region of the solidification cracking.

  9. Controlled rate cooling of fungi using a stirling cycle freezer.

    Science.gov (United States)

    Ryan, Matthew J; Kasulyte-Creasey, Daiva; Kermode, Anthony; San, Shwe Phue; Buddie, Alan G

    2014-01-01

    The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.

  10. Calculation of solidification microstructure maps for the system Al-Fe-Si

    International Nuclear Information System (INIS)

    Gilgien, P.

    1996-01-01

    Computer programs have been developed in order to calculate solidification microstructure maps for binary and ternary alloys. These programs are based on recent analytical models for the constrained growth of dendrites and eutectics. Due to the importance of phase diagrams data, programs for the calculation of growth kinetics are coupled with ThermoCalc, a commercial software for phase diagram calculations. These programs have been used to calculate a solidification microstructure map for the Al-Fe system from 0 to 4 at%Fe. Comparison of the calculated results with an experimental solidification microstructure map from the literature shows that all microstructure transitions were predicted. Nevertheless there remain significant discrepancies between some calculated and experimental transition velocities. The programs were also used to calculate solidification microstructure maps in the Al-rich corner of the Al-Fe-Si system (0 to 8 at% Fe and 0 to 8 at% Si). In this case also, calculated results were in satisfactory agreement with experimental solidification microstructure maps, although the comparison was only partial since experimental ternary microstructure maps are less complete than for the binary system, and because the available thermodynamic database does not, as yet, include metastable phases. Laser surface remelting experiments were carried out on an Al-4 at% Fe alloy in order to link results from the literature, obtained at high solidification rates by laser surface remelting and at low solidification rates by Bridman experiments. Finally, Bridman experiments were carried out with an Al-2.63 wt% Fe alloy in order to determine the critical velocity at which a planar Al-Al 13 Fe 4 eutectic front is destabilised in a cellular eutectic by a small amount of Si. The critical solidification velocity thus obtained was in agreement with a criterion of constitutional undercooling. (author) figs., tabs., refs

  11. Low-level radwaste solidification

    International Nuclear Information System (INIS)

    Naughton, M.D.; Miller, C.C.; Nelson, R.A.; Tucker, R.F.

    1983-01-01

    This paper reports on a study of ''Advanced Low-Level Radioactive Waste Treatment Systems'' conducted under an EPRI contract. The object of the study is to identify advanced lowlevel radwaste treatment systems that are commercially available or are expected to be in the near future. The current state-ofthe-art in radwaste solidification technology is presented. Related processing technologies, such as the compaction of dry active waste (DAW), containers available for radwaste disposal, and the regulatory aspects of radwaste transportation and solidification, are described. The chemical and physical properties of the currently acceptable solidification agents, as identified in the Barnwell radwaste burial site license, are examined. The solidification agents investigated are hydraulic cements, thermoplastic polymers, and thermosetting polymers. It is concluded that solidification processes are complex and depend not only on the chemical and physical properties of the binder material and the waste, but also on how these materials are mixed

  12. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  13. Effects of heat pipe cooling on permanent mold castings of aluminum alloys

    International Nuclear Information System (INIS)

    Zhang, C.; Mucciardi, F.; Gruzleski, J.E.

    2002-01-01

    The temperature distribution within molds is a critical parameter in determining the ultimate casting quality in permanent mold casting processes, so there is a considerable incentive to develop a more effective method of mold cooling. Based on this consideration, a novel, effective and controllable heat pipe has been successfully developed and used as a new method of permanent mold cooling. Symmetric step casting of A356 alloy have been produced in an experimental permanent mold made of H13 tool steel, which is cooled by such heat pipes. The experimental results show that heat pipes can provide extremely high cooling rates in permanent mold castings of aluminum. The dendrite arm spacing of A356 alloy is refined considerably, and porosity and shrinkage of the castings are redistributed by the heat pipe cooling. Moreover, the heat pipe can be used to determine the time when the air gap forms at the interface between the mold and the casting. The effect of heat pipe cooling on solidification time of castings of A356 alloy with different coating types is also discussed in this paper. (author)

  14. The influence of the mould cooling temperature on the surface appearance and the internal quality of ESR ingots

    Science.gov (United States)

    Kubin, M.; Ofner, B.; Holzgruber, H.; Schneider, R.; Enzenhofer, D.; Filzwieser, A.; Konetschnik, S.

    2016-07-01

    One of the main benefits of the ESR process is to obtain an ingot surface which is smooth and allows a subsequent forging operation without any surface dressing. The main influencing factor on surface quality is the precise controlling of the process such as melt rate and electrode immersion depth. However, the relatively strong cooling effect of water as a cooling medium can result in the solidification of the meniscus of the liquid steel on the boundary liquid steel and slag which is most likely the origin of surface defects. The usage of different cooling media like ionic liquids, a salt solution which can be heated up to 250°C operating temperature might diminish the meniscus solidification phenomenon. This paper shows the first results of the usage of an ionic liquid as a mould cooling medium. In doing so, 210mm diameter ESR ingots were produced with the laboratory scale ESR furnace at the university of applied science using an ionic liquid cooling device developed by the company METTOP. For each trial melt different inlet and outlet temperatures of the ionic liquid were chosen and the impact on the surface appearance and internal quality were analyzed. Furthermore the influence on the energy balance is also briefly highlighted. Ultimately, an effect of the usage of ionic liquids as a cooling medium could be determined and these results will be described in detail within the scope of this paper.

  15. Effects of Cooling Rate on 6.5% Silicon Steel Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jun [Ames Lab. and Iowa State Univ., Ames, IA (United States); Macziewski, Chad [Iowa State Univ., Ames, IA (United States); Jensen, Brandt [Ames Lab., Ames, IA (United States); Ouyang, Gaoyuan [Iowa State Univ., Ames, IA (United States); Zhou, Lin [Ames Lab., Ames, IA (United States); Dennis, Kevin [Ames Lab., Ames, IA (United States); Zarkevich, Nikolai [Ames Lab., Ames, IA (United States); Jiang, Xiujuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tang, Wei [Ames Lab., Ames, IA (United States); Zhou, Shihuai [Ames Lab., Ames, IA (United States); Simsek, Emrah [Ames Lab., Ames, IA (United States); Napolitano, Ralph [Iowa State Univ., Ames, IA (United States); Kramer, Matt [Ames Lab., Ames, IA (United States)

    2017-03-02

    Increasing Si content improves magnetic and electrical properties of electrical steel, with 6.5% Si as the optimum. Unfortunately, when Si content approaches 5.7%, the Fe-Si alloy becomes brittle. At 6.5%, the steel conventional cold rolling process is no longer applicable. The heterogeneous formation of B2 and D03 ordered phases is responsible for the embrittlement. The formation of these ordered phases can be impeded by rapid cooling. However, only the cooling rates of water and brine water were investigated. A comprehensive study of the effect of rapid cooling rate on the formation of the ordered phases was carried out by varying wheel speed and melt-injection rate. Thermal imaging employed to measure cooling rates while microstructures of the obtained ribbons are characterized using X-ray diffraction and TEM. The electrical, magnetic and mechanical properties are characterized using 4-pt probe, VSM, and macro-indentation methods. The relations between physical properties and ordered phases are established.

  16. Combined effect of non-equilibrium solidification and thermal annealing on microstructure evolution and hardness behavior of AZ91 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.Z.; Yang, W., E-mail: weiyang@mail.nwpu.edu.cn; Chen, S.H.; Yu, H.; Xu, Z.F.

    2014-06-15

    Non-equilibrium solidification of commercial AZ91 magnesium alloy was performed by copper mold spray-casting technique and the thermal stability property of as-formed meta-stable microstructure was investigated by subsequent annealing at different temperatures and times. Remarkable grain refinement appears with increasing cooling rate during solidification process, which is accompanied by a visible cellular/dendrite transition for the grain morphology of primary phase. Moreover, the non-equilibrium solidified alloy exhibits obvious precipitation hardening effect upon annealing at 200 °C, and the precipitation mode of β-Mg{sub 17}Al{sub 12} phase changes from discontinuous to continuous with extending isothermal time from 4 h to 16 h, which generates an increase of resultant micro-hardness value. After solid solution treatment at the elevated temperature of 420 °C, the volume fraction of β-Mg{sub 17}Al{sub 12} phase decreases and a notable grain growth phenomenon occurs, which give rise to a reduction of hardness in comparison with that of as-quenched alloy.

  17. Solidification of eutectic system alloys in space (M-19)

    Science.gov (United States)

    Ohno, Atsumi

    1993-01-01

    cast by the Ohno Continuous Casting Process and they show the unidirectionally solidified structure. Each flight and ground sample was made of these same rods. The dimensions of all samples are 4.5 mm in diameter and 23.5 mm in length. Each sample is put in a graphite capsule and then vacuum sealed in a double silica ampoule. Then the ampoule is put in the tantalum cartridge and sealed by electron beam welding. For onbard experiments, a Continuous Heating Furnance (CHF) will be used for melting and solidifying samples under microgravity conditions. Six flight samples will be used. Four samples are hypo-eutectic and two are hyper-eutectic alloys. The surface of the two hypo-eutectic alloy samples are covered with aluminum oxide film to prevent Marangoni convection expected under microgravity conditions. Each sample will be heated to 700 C and held at that temperature for 5 min. After that the samples will be allowed to cool to 500 C in the furnace and they will be taken out of the furnace for He gas cooling. The heating and cooling diagrams for the flight experiments are shown. After collecting the flight samples, the solidified structures of the samples will be examined and the mechanisms of eutectic solidification under microgravity conditions will be determined. It is likely that successful flight experiment results will lead to production of high quality eutectic alloys and eutectic composite materials in space.

  18. A dendritic solidification experiment under large gravity - implications for the Earth's inner core solidification regime.

    Science.gov (United States)

    Deguen, R.; Alboussière, T.; Brito, D.; La Rizza, P.; Masson, J.

    2009-05-01

    The Earth's inner core solidification regime is usually thought to be dendritic, which should results in the formation of a mushy layer at the inner core boundary, possibly extending deep in the inner core. The release of latent heat and solute associated with crystallization provides an important boyancy source to drive thermo- chemical convection in the core. In the laboratory, two modes of convection associated with the crystallization of mushy layers have been observed. One is a boundary layer mode originating from the destabilisation of the chemical boundary layer present at the mush-liquid interface; the second is the so-called 'mushy layer mode' which involves the whole mushy layer. In the mushy layer mode, convection usually takes the form of narrow plumes rising through crystal free conduits called chimneys. One particularity of inner core crystallization is its extremely small solidification rate compared to typical outer core convective timescales. We have designed and build an experiment devoted to the study of crystallization under a large gravity field, using a centrifuge, of an aqueous solution of ammonium chloride, which is a good analogue to metallic alloys. The large gravity field allows to reach Rayleigh numbers much larger than in typical solidification experiments. Under large gravity fields, we observe the disappearance of chimney convection and show that the large gravity field promotes the boundary layer convection mode at the expent of the mushy layer mode. As the gravitationnal forcing is increased, convective heat and solute transport are significantly enhanced, which results in larger solid fraction directly below the mush-liquid interface. The increase in solid fraction results in a dramatic decrease of the permeability in the mushy layer, which eventually becomes subcritical in respect to the mushy layer mode. Because of the very slow solidification rate of the inner core, convective transport of heat and solute from the ICB is

  19. Solidification microstructure development

    Indian Academy of Sciences (India)

    Unknown

    A majority of manufacturing processes involve melting and solidification of metals and ... In such a case (for example, chill casting), the solidification thickness (S) is ... (5). Here, LX is the system length scale in one dimension and DS is the solute diffusivity in solid. Thermal and solutal diffusivities are finite and usually very ...

  20. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    Science.gov (United States)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  1. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels

    International Nuclear Information System (INIS)

    Shanmugam, S.; Ramisetti, N.K.; Misra, R.D.K.; Mannering, T.; Panda, D.; Jansto, S.

    2007-01-01

    We describe here the effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels that were processed as structural beams at three different cooling rates. Nb-microalloyed steels exhibited increase in yield strength with increase in cooling rate during processing. However, the increase in the yield strength was not accompanied by loss in toughness. The microstructure at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while at intermediate cooling rate besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite and lath-type ferrite. At higher cooling rate, predominantly, lath-type (acicular) or bainitic ferrite was obtained. The precipitation characteristics were similar at the three cooling rates investigated with precipitation occurring at grain boundaries, on dislocations, and in the ferrite matrix. The fine scale (∼8-12 nm) precipitates in the ferrite matrix were MC type of niobium carbides. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels with increase in cooling rate is related to the change in the microstructure from predominantly ferrite-pearlite to predominantly bainitic ferrite

  2. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Ramisetti, N.K. [Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Misra, R.D.K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States)], E-mail: dmisra@louisiana.edu; Mannering, T. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Panda, D. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Jansto, S. [Reference Metals, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2007-07-15

    We describe here the effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels that were processed as structural beams at three different cooling rates. Nb-microalloyed steels exhibited increase in yield strength with increase in cooling rate during processing. However, the increase in the yield strength was not accompanied by loss in toughness. The microstructure at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while at intermediate cooling rate besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite and lath-type ferrite. At higher cooling rate, predominantly, lath-type (acicular) or bainitic ferrite was obtained. The precipitation characteristics were similar at the three cooling rates investigated with precipitation occurring at grain boundaries, on dislocations, and in the ferrite matrix. The fine scale ({approx}8-12 nm) precipitates in the ferrite matrix were MC type of niobium carbides. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels with increase in cooling rate is related to the change in the microstructure from predominantly ferrite-pearlite to predominantly bainitic ferrite.

  3. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    Science.gov (United States)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  4. Cooling rate effects on structure of amorphous graphene

    International Nuclear Information System (INIS)

    Van Hoang, Vo

    2015-01-01

    Simple monatomic amorphous 2D models with Honeycomb structure are obtained from 2D simple monatomic liquids with Honeycomb interaction potential (Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005)) via molecular dynamics (MD) simulations. Models are observed by cooling from the melt at various cooling rates. Temperature dependence of thermodynamic and structural properties including total energy, mean ring size, mean coordination number is studied in order to show evolution of structure and thermodynamics upon cooling from the melt. Structural properties of the amorphous Honeycomb structures are studied via radial distribution function (RDF), coordination number and ring distributions together with 2D visualization of the atomic configurations. Amorphous Honeycomb structures contain a large amount of structural defects including new ones which have not been previously reported yet. Cooling rate dependence of structural properties of the obtained amorphous Honeycomb structures is analyzed. Although amorphous graphene has been proposed theoretically and/or recently obtained by the experiments, our understanding of structural properties of the system is still poor. Therefore, our simulations highlight the situation and give deeper understanding of structure and thermodynamics of the glassy state of this novel 2D material

  5. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  6. Advances in Solidification Processing

    Directory of Open Access Journals (Sweden)

    Hugo F. Lopez

    2015-08-01

    Full Text Available Melt solidification is the shortest and most viable route to obtain components, starting from the design to the finished products. Hence, a sound knowledge of the solidification of metallic materials is essential for the development of advanced structural metallic components that drive modern technological societies. As a result, there have been innumerable efforts and full conferences dedicated to this important subject [1–6]. In addition, there are various scientific journals fully devoted to investigating the various aspects which give rise to various solidification microstructures [7–9]. [...

  7. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  8. External field effects on diffusion and solidification derived from the free-volume model

    Science.gov (United States)

    Miller, R. I.; Ruff, R. C.

    1975-01-01

    Expressions for the diffusion coefficient and the solidification rate from the free-volume model of liquids developed by Turnbull and Cohen have been used to estimate the effects which microgravity and magnetic fields will have on these quantities. The mathematical formalism describing changes of the diffusion coefficient and the solidification rate is the same for both the microgravity and magnetic field cases, but the difference between the magnitudes of the two effects is quite large. The change in the two parameters is found to be less than .0001% for the microgravity case and on the order of 0.1 to 1.1% for the magnetic field case for four representative materials. The diffusion coefficient and the solidification rate are found to increase under the influence of an applied magnetic field, and this is in agreement with experimental observations.

  9. Solidification paths of multicomponent monotectic aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany)], E-mail: schmid-fetzer@tu-clausthal.de

    2008-10-15

    Solidification paths of three ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, are studied using thermodynamic calculations, both for the pertinent phase diagrams and also for specific details concerning the solidification of selected alloy compositions. The coupled composition variation in two different liquids is quantitatively given. Various ternary monotectic four-phase reactions are encountered during solidification, as opposed to the simple binary monotectic, L' {yields} L'' + solid. These intricacies are reflected in the solidification microstructures, as demonstrated for these three aluminum alloy systems, selected in view of their distinctive features. This examination of solidification paths and microstructure formation may be relevant for advanced solidification processing of multicomponent monotectic alloys.

  10. Fundamental Metallurgy of Solidification

    DEFF Research Database (Denmark)

    Tiedje, Niels

    2004-01-01

    The text takes the reader through some fundamental aspects of solidification, with focus on understanding the basic physics that govern solidification in casting and welding. It is described how the first solid is formed and which factors affect nucleation. It is described how crystals grow from...

  11. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it [University of Genoa, Dept. of Chemistry and Industrial Chemistry, Via Dodecaneso 31, 16146 Genoa (Italy); Portale, Giuseppe [ESRF, Dubble CRG, Netherlands Organization of Scientific Research (NWO), 38043 Grenoble (France); Androsch, René [Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, D-06099 Halle/S. (Germany)

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  12. Characteristics of Cement Solidification of Metal Hydroxide Waste

    Directory of Open Access Journals (Sweden)

    Dae-Seo Koo

    2017-02-01

    Full Text Available To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  13. Characteristics of cement solidification of metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Seung Soo; Kim, Gye Nam; Choi, Jong Won [Dept. of Decontemination Decommission Technology Development, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  14. Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keming [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Jiang, Zhengyi; Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zou, Jin; Chen, Zhibao [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Lu, Deping, E-mail: llludp@163.com [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2014-11-05

    Highlights: • Effect of directional solidification (DS) rate on a Cu–Cr–Ag in situ composite. • The microstructure and properties of the DS in situ composite were investigated. • The second-phase Cr grains were parallel to drawing direction, and were finer. • The tensile strength was higher and the combination of properties was better. - Abstract: The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu–7Cr–0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu–7Cr–0.1Ag alloys with different growth rates. At a growth rate of 200 μm s{sup −1}, the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu–7Cr–0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu–7Cr–0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s{sup −1} and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS.

  15. Weld solidification cracking in 304 to 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  16. Weld solidification cracking in 304 to 204L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  17. Performance analysis on utilization of sky radiation cooling energy for space cooling. Part 2; Hosha reikyaku riyo reibo system ni kansuru kenkyu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Marushima, S; Saito, T [Tohoku University, Sendai (Japan)

    1996-10-27

    Studies have been made about a heat accumulation tank type cooling system making use of radiation cooling that is a kind of natural energy. The daily operating cycle of the cooling system is described below. A heat pump air conditioner performs cooling during the daytime and the exhaust heat is stored in a latent heat accumulation tank; the heat is then used for the bath and tapwater in the evening; at night radiation cooling is utilized to remove the heat remnant in the tank for the solidification of the phase change material (PCM); the solidified PCM serves as the cold heat source for the heat pump air conditioner to perform cooling. The new system decelerates urban area warming because it emits the cooler-generated waste heat not into the atmosphere but into space taking advantage of radiation cooling. Again, the cooler-generated waste heat may be utilized for energy saving and power levelling. For the examination of nighttime radiation cooling characteristics, CaCl2-5H2O and Na2HPO4-12H2O were tested as the PCM. Water was used as the heating medium. In the case of a PCM high in latent heat capacity, some work has to be done for insuring sufficient heat exchange for it by, for instance, rendering the flow rate low. The coefficient of performance of the system discussed here is three times higher than that of the air-cooled type heat pump system. 8 refs., 5 figs., 4 tabs.

  18. Can reptile embryos influence their own rates of heating and cooling?

    Directory of Open Access Journals (Sweden)

    Wei-Guo Du

    Full Text Available Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. In a nest with diel thermal fluctuations, that hysteresis could increase the embryo's effective incubation temperature. The mechanisms for controlling rates of thermal exchange are unclear, but may involve facultative adjustment of blood flow. Heart rates of snake embryos were higher during cooling than during heating, the opposite pattern to that seen in adult reptiles. Our data challenge the view of reptile eggs as thermally passive, and suggest that embryos of reptile species with large eggs can influence their own rates of heating and cooling.

  19. Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    Science.gov (United States)

    Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.

    2017-08-01

    During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

  20. Phase selection and microstructure in directional solidification of glass forming Pd-Si-Cu alloys

    Science.gov (United States)

    Huo, Yang

    Phase selection and microstructure formation during the rapid solidification of alloy melts has been a topic of substantial interest over the last several decades, attributed mainly to the access to novel structures involving metastable crystalline and non-crystalline phases. In this work, Bridgeman type directional solidification was conducted in Pd-Si-Cu glass forming system to study such cooling rate dependent phase transition and microstructure formation. The equilibrium state for Pd-Si-Cu ternary system was investigated through three different works. First of all, phase stabilities for Pd-Si binary system was accessed with respects of first-principles and experiments, showing Pd5Si, Pd9Si2, Pd3Si and Pd 2Si phase are stable all way to zero Kevin while PdSi phase is a high temperature stable phase, and Pd2Si phase with Fe2P is a non-stoichiometry phase. A thermodynamic database was developed for Pd-Si system. Second, crystal structures for compounds with ternary compositions were studied by XRD, SEM and TEM, showing ordered and disordered B2/bcc phases are stable in Pd-rich part. At last, based on many phase equilibria and phase transitions data, a comprehensive thermodynamic discrption for Pd-Si-Cu ternary system was first time to be developed, from which different phase diagrams and driving force for kinetics can be calculated. Phase selection and microstructure formation in directional solidification of the best glass forming composition, Pd 77.5Si16.5Cu6, in this system with growth velocities from 0.005 to 7.5mm/s was systematically studied and the solidification pathways at different conditions were interpreted from thermodynamic simulation. The results show that for growth velocities are smaller than 0.1mm/s Pd 3Si phase is primary phase and Pd9Si2 phase is secondary phase, the difficulty for Pd9Si2 phase nucleation gives rise to the formation of two different eutectic structure. For growth velocities between 0.4 and 1mm/s, instead of Pd3Si phase, Pd9Si2

  1. The solidification velocity of nickel and titanium alloys

    Science.gov (United States)

    Altgilbers, Alex Sho

    2002-09-01

    The solidification velocity of several Ni-Ti, Ni-Sn, Ni-Si, Ti-Al and Ti-Ni alloys were measured as a function of undercooling. From these results, a model for alloy solidification was developed that can be used to predict the solidification velocity as a function of undercooling more accurately. During this investigation a phenomenon was observed in the solidification velocity that is a direct result of the addition of the various alloying elements to nickel and titanium. The additions of the alloying elements resulted in an additional solidification velocity plateau at intermediate undercoolings. Past work has shown a solidification velocity plateau at high undercoolings can be attributed to residual oxygen. It is shown that a logistic growth model is a more accurate model for predicting the solidification of alloys. Additionally, a numerical model is developed from simple description of the effect of solute on the solidification velocity, which utilizes a Boltzmann logistic function to predict the plateaus that occur at intermediate undercoolings.

  2. Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule – An experimental study

    International Nuclear Information System (INIS)

    Chandrasekaran, P.; Cheralathan, M.; Velraj, R.

    2015-01-01

    The present study aims to investigate the solidification characteristics of water, as the PCM (phase change material), due to the effect of fill volume of PCM in a spherical capsule. The experiments were conducted with the spherical capsule, filling it with water of 80, 85, 90, 92 and 95 percentage of its full volume and immersing it in a constant temperature bath maintained at various temperatures. It was observed that the increase in fill volume had a significant influence in reducing the degree of supercooling and it was eliminated with 95% fill volume. Further, the increase in fill volume had a considerable effect in advancing the commencement of solidification. Increasing the temperature potential enhanced the heat flux during the solidification of first 50% of PCM mass and its effect was more pronounced at higher fill volumes. The heat flux was increased several fold particularly at 95% fill volume making it highly suitable for applications that demand large cooling load in a short duration. Hence the proper selection of fill volume and temperature driving potential is essential to achieve overall energy efficiency while designing the CTES (cool thermal energy storage) system. - Highlights: • Supercooling was eliminated with 95% fill volume at all surrounding bath temperature. • The effect of higher fill volume is more pronounced with higher temperature potential. • 50% mass is solidified in 10% of solidification duration with 95% fill volume at −12 °C. • Several fold increase in heat flux is achieved with 95% fill volume at −12 °C. • Combination of fill volume and temperature potential is essential for good design.

  3. Grain Floatation During Equiaxed Solidification of an Al-Cu Alloy in a Side-Cooled Cavity: Part II—Numerical Studies

    Science.gov (United States)

    Kumar, Arvind; Walker, Mike J.; Sundarraj, Suresh; Dutta, Pradip

    2011-08-01

    In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.

  4. Preliminary calculations on the cooling rate of the Renca batholit, Sierra de San Luis, Argentina

    International Nuclear Information System (INIS)

    Lopez de Luchi, M.G.; Ostera, H.A.; Linares, E; Rosello, E.A

    2001-01-01

    Cooling rates can be used to constrain the unroofing history of plutonic-metamorphic system. Geocronological cooling rates (Spear and Parrish, 1996) can be unravelled using age calculations on minerals that were open systems and subsequently passed through their closure temperatures (Dodson, 1973) during cooling. Several age determinations on different minerals are needed in order to accurately constrain the cooling path of a pluton (Hodges 1991, Spear and Parrish, 1996 and references therein). Isotopic open-system behaviour in minerals can be modelled as volume diffusion process (Hodges, 1991 and references therein), which depends on the cooling rate of the whole system. We present the first results on the calculation of the cooling rate of the Renca batholith on the basis of the combination of both thermometric calculations and available crystallization and cooling ages (au)

  5. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible.

    Science.gov (United States)

    Fan, Meng; Wang, Minglei; Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2017-02-01

    Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotemporal response to applied deformations. In contrast to crystalline solids, during loading, amorphous solids exhibit a smooth crossover from elastic response to plastic flow. In this study, we investigate the mechanical response of binary Lennard-Jones glasses to athermal, quasistatic pure shear as a function of the cooling rate used to prepare them. We find several key results concerning the connection between strain-induced particle rearrangements and mechanical response. We show that the energy loss per strain dU_{loss}/dγ caused by particle rearrangements for more rapidly cooled glasses is larger than that for slowly cooled glasses. We also find that the cumulative energy loss U_{loss} can be used to predict the ductility of glasses even in the putative linear regime of stress versus strain. U_{loss} increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating enhanced ductility. In addition, we characterized the degree of reversibility of particle motion during a single shear cycle. We find that irreversible particle motion occurs even in the linear regime of stress versus strain. However, slowly cooled glasses, which undergo smaller rearrangements, are more reversible during a single shear cycle than rapidly cooled glasses. Thus, we show that more ductile glasses are also less reversible.

  6. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  7. Method of plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Oikawa, Yasuo; Tokimitsu, Fujio.

    1986-01-01

    Purpose: To prevent occurrence of deleterious cracks to the inside and the surface of solidification products, as well as eliminate gaps between the products and the vessel inner wall upon plastic solidification processing for powdery or granular radioactive wastes. Method: An appropriate amount of thermoplastic resins such as styrenic polymer or vinyl acetate type polymer as a low shrinking agent is added and mixed with unsaturated polyester resins to be mixed with radioactive wastes so as to reduce the shrinkage-ratio to 0 % upon curing reaction. Thus, a great shrinkage upon hardening the mixture is suppressed to prevent the occurrence of cracks to the surface and the inside of the solidification products, as well as prevent the gaps between the inner walls of a drum can vessel and the products upon forming solidification products to the inside of the drum can. The resultant solidification products have a large compression strength and can sufficiently satisfy the evaluation standards as the plastic solidification products of radioactive wastes. (Horiuchi, T.)

  8. Statement of research in the field of solidification of high level radioactive wastes in France

    International Nuclear Information System (INIS)

    Bonniaud, R.; Sombret, C.

    1975-01-01

    Researches undertaken in France on the solidification of fission products are presented. Examples of glass compositions suitable for several types of fuels are given. The irradiation effects, crystallization, leaching and effects of α emitters have been studied. Two processes, one discontinuous, the other continuous have been studied and developed. In Marcoule, a continuous vitrification plant is under building and an experimental air-cooling storage is carried out [fr

  9. Simulation of Microstructure during Laser Rapid Forming Solidification Based on Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Zhi-jian Wang

    2014-01-01

    Full Text Available The grain microstructure of molten pool during the solidification of TC4 titanium alloy in the single point laser cladding was investigated based on the CAFE model which is the cellular automaton (CA coupled with the finite element (FE method. The correct temperature field is the prerequisite for simulating the grain microstructure during the solidification of the molten pool. The model solves the energy equation by the FE method to simulate the temperature distribution in the molten pool of the single point laser cladding. Based on the temperature field, the solidification microstructure of the molten pool is also simulated with the CAFE method. The results show that the maximum temperature in the molten pool increases with the laser power and the scanning rate. The laser power has a larger influence on the temperature distribution of the molten pool than the scanning rate. During the solidification of the molten pool, the heat at the bottom of the molten pool transfers faster than that at the top of the molten pool. The grains rapidly grow into the molten pool, and then the columnar crystals are formed. This study has a very important significance for improving the quality of the structure parts manufactured through the laser cladding forming.

  10. Solidification of ion-exchange resins by hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Kaneko, M.

    1993-01-01

    The solidification reaction which easily occurs while continuously keeping the mixture of cation and anion exchange resins compressed under hydrothermal conditions has been demonstrated. Dehydration was considered to occur between sulphonic acid (-SO 3 H) from the cation exchange resin and quaternary ammonium [-CH 2 -N(CH 3 ) 3 OH] from anion-exchange resin-on terminal groups. The cation-and anion-exchange resins were mixed in a 1:1 weight ratio, put in a hot-pressing autoclave and compressed between pistons from the top and bottom at 600 kg cm -2 pressure. The material was continuously compressed during hydrothermal treatment at 200 kg cm -2 by a hydraulic jack and heated to a desired temperature with an induction heater. This system could be used for rapid temperature increasing up to 30 o c min -1 . The pressure and temperature were kept constant for 10 min. The autoclave was cooled to room temperature after the hydrothermal treatment. After the specimen was taken out, the ion-exchange radical reactions were estimated and the product structures were examined. The cation- and anion-exchange resin mixture was solidified. The resultant solidified body at a 300 o C reaction condition for 10 min had a 1.0 g cm -3 density and 700 kg cm -2 compressive strength, and the weight loss did not change in distilled water for 2 weeks. On the other hand, a solidification reaction did not occur at below 250 o C when only the cation or anion was solidified, but they were decomposed. These results suggest that a mixture of cation- and anion-exchange resins causes a solidification reaction under hydrothermal hot-pressing conditions at 300 o C. (author)

  11. Method of processing solidification product of radioactive waste

    International Nuclear Information System (INIS)

    Daime, Fumiyoshi.

    1988-01-01

    Purpose: To improve the long-time stability of solidification products by providing solidification products with liquid tightness, gas tightness, abrasion resistance, etc., of the products in the course of the solidification for the treatment of radioactive wastes. Method: The surface of solidification products prepared by mixing solidifying agents with powder or pellets is entirely covered with high molecular polymer such as epoxy resin. The epoxy resin has excellent properties such as radiation-resistance, heat resistance, water proofness and chemical resistance, as well as have satisfactory mechanical properties. This can completely isolate the solidification products of radioactive wastes from the surrounding atmosphere. (Yoshino, Y.)

  12. Solidification process for toxic and hazardous wastes. Second part: Cement solidification matrices

    International Nuclear Information System (INIS)

    Donato, A.; Arcuri, L.; Dotti, M.; Pace, A.; Pietrelli, L.; Ricci, G.; Basta, M.; Cali, V.; Pagliai, V.

    1989-05-01

    This paper reports the second part of a general study carried out at the Nuclear Fuel Division aiming at verifying the possible application of the radioactive waste solidification processes to industrial hazardous wastes (RTN). The cement solidification of several RTN types has been taken into consideration, both from the technical and from the economic point of view. After a short examination of the Italian juridical and economical situation in the field, which demonstrates the need of the RTN solidification, the origin and characteristics of the RTN considered in the study and directly provided by the producing industries are reviewed. The laboratory experimental results of the cementation of RTN produced by gold manufacturing industries and by galvanic industries are reported. The cementation process can be considered a very effective mean for reducing both the RTN management costs and the environmental impact of RTN disposal. (author)

  13. Atomic size effect on critical cooling rate and glass formation

    International Nuclear Information System (INIS)

    Jalali, Payman; Li Mo

    2005-01-01

    Atomic size effect on critical cooling rate and glass formability in a model binary system is investigated using molecular dynamics simulation. To isolate atomic size effect from the rest of the factors that critically influence the glass formation, a hard sphere model is employed in conjunction with a newly developed densification method. The glass formability is defined as a set of optimal conditions that result in the slowest cooling rate of the glass-forming liquid. Critical cooling rates are identified from extensive molecular dynamics simulations. A kinetic glass-forming diagram is mapped out that marks the boundary between the glass-forming regions and competing crystalline phases in terms of the parameters of the atomic size ratio and alloy concentration. It is found that the potency of the atomic size difference on glass formation is influenced greatly by the competing metastable and equilibrium crystalline phases in the system, and the kinetic processes leading to the formation of these phases. The mechanisms of the atomic size effect on topological instability of crystal packing and glass formation are discussed

  14. Solidification Mapping of a Nickel Alloy 718 Laboratory VAR Ingot

    Science.gov (United States)

    Watt, Trevor J.; Taleff, Eric M.; Lopez, Felipe; Beaman, Joe; Williamson, Rodney

    The solidification microstructure of a laboratory-scale Nickel alloy 718 vacuum arc remelted (VAR) ingot was analyzed. The cylindrical, 210-mm-diameter ingot was sectioned along a plane bisecting it length-wise, and this mid-plane surface was ground and etched using Canada's reagent to reveal segregation contrast. Over 350 photographs were taken of the etched mid-plane surface and stitched together to form a single mosaic image. Image data in the resulting mosaic were processed using a variety of algorithms to extract quantities such as primary dendrite orientation, primary dendrite arm spacing (PDAS), and secondary dendrite arm spacing (SDAS) as a function of location. These quantities were used to calculate pool shape and solidification rate during solidification using existing empirical relationships for Nickel Alloy 718. The details and outcomes of this approach, along with the resulting comparison to experimental processing conditions and computational models, are presented.

  15. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  16. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    Science.gov (United States)

    Wei, Jiuan

    moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based

  17. Solidification and vitrification life-cycle economics study

    International Nuclear Information System (INIS)

    Gimpel, R.F.

    1992-01-01

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450 000 cm 3 of low-level radioactive and mixed wastes at the Fernald Environmental Management Project (FEMP) located near Cincinnati, Ohio. This paper summarizes a detailed study done to: (1) compare the economics of the solidification and vitrification processes, (2) determine if the stigma assigned to vitrification is warranted and, (3) determine if investing millions of dollars into vitrification development, along with solidification development, at Fernald is warranted

  18. Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry

    International Nuclear Information System (INIS)

    Zhao, Bingge; Li, Linfang; Yang, Bin; Yan, Ming; Zhai, Qijie; Gao, Yulai

    2013-01-01

    Highlights: •Controllable quenching rate up to 15,000 K/s was realized by FSC. •FSC sample was novelly characterized by FIB and HRTEM. •Solidification structure with undercooling of 110.9 K was investigated. •This study opens a new approach in rapid solidification and FSC measurement. -- Abstract: Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate

  19. Influence of the cooling rate on the ageing of lead-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [LaBoMaP, Arts et Metiers ParisTech, Rue porte de Paris, 71250 Cluny (France); Delfaut-Durut, L. [CEA, centre de Valduc [SEMP, LECM], 21120 Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et Techniques, 87060 Limoges (France); Vilasi, M. [LCSM, Universite Nancy I, 54506 Vandoeuvre les Nancy (France)

    2009-03-01

    Cast lead-calcium alloys were known to be sensitive to experimental parameters, which cause large variations on the ageing and overageing behaviour. From the study of these parameters, the quenching rate was the only significant parameter. A critical cooling rate was defined based on hardness, electrical resistivity and metallographical observations. The inconsistencies in the literature noticed on the evolutions of lead-calcium alloys can now be explained by whether or not this critical cooling rate was respected. (author)

  20. On the cooling rate of strip cast ingots for sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.Q. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yan, M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)]. E-mail: mse_yanmi@dial.zju.edu.cn; Wu, J.M. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Luo, W. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Cui, X.G. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Ying, H.G. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2007-04-30

    Effects of the cooling rate of strip cast ingots on magnetic properties of sintered NdFeB magnets were studied. It is found that the magnetic properties greatly depend on wheel speed due to different alloy microstructures, which affect readily the particle size distribution of powders obtained after the subsequent jet milling. At higher cooling rate, interlamellar spacing between Nd-rich platelets of the alloy was small, resulting in a lower saturated magnetization due to increased amounts of small particles after jet milling. With further decreasing cooling rate, the resultant larger interlamellar spacing led to too large particle sizes as well as a more irregular shape; thus deteriorated the magnetic properties of the final magnet. A model was developed to disclose the effects of particle sizes on the magnetic alignment process. In the current investigation, optimum magnetic properties of the final magnets were obtained with a cooling rate of 2.6 m/s for preparing the strip. The magnets made by conventionally cast ingot technique exhibited the lowest magnetic properties because of the slowest cooling rate.

  1. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  2. Effect of solution cooling rate on the γ' precipitation behaviors of a Ni-base P/M superalloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of cooling rate on the cooling "/' precipitation behaviors was investigated in a Ni-base powder/metallurgy (P/M)superalioy (FGH4096).The empirical equations were established between the cooling rate and the average sizes of secondary and tertiary γ' precipitates within grains and tertiary γ' precipitates at grain boundaries,as well as the apparent width of grain boundaries.The results show that the average sizes of secondary or tertiary γ' precipitates are inversely correlated with the cooling rate.The shape of secondary γ' precipitates within grains changes from butterfly-like to spherical with the increase of cooling rate,but all the tertiary γ' precipitates formed are spherical in shape.It is also found that tertiary γ' may be precipitated in the latter part of the cooling cycle only if the cooling rate is not faster than 4.3℃/s,and the apparent width of grain boundaries decreases linearly with the increase of cooling rate.

  3. Finite volume modeling of the solidification of an axial steel cast impeller

    Directory of Open Access Journals (Sweden)

    M. Copur

    2014-04-01

    Full Text Available In the foundry industry, obtaining the solidification contours in cast geometries are extremely important to know the last location(s to solidify in order to define the correct feeding path and the number of risers. This paper presents three-dimensional simulation of transient conduction heat transfer within an axial impeller, made of AISI 1016 steel, poured and solidified in chemically bonded mold and core medium, by using FVM technique and ANSYS CFX. Specific heat, density and thermal conductivity of AISI 1016 steel, mold and Core materials are considered as functions of temperatures. In this transient thermal analysis, the convection heat transfer phenomenon is also considered at the outer surfaces of the mold. In order to shorten the run-time, the nonlinear transient analysis has been made for 600/3600 segment of the impeller, core and mold. The solidification contours of the impeller as well as isothermal lines in core and mold have been obtained in 3-D. The cooling curves of diff erent points are also shown in the result section.

  4. Solidification and vitrification life-cycle economics study

    International Nuclear Information System (INIS)

    Gimpel, R.F.

    1992-01-01

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method, whereas vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ex situ solidification and vitrification are the competing methods for treating in excess of 450,000 m 3 of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper s a detailed study done to: compare the economics of the solidification and vitrification processes; determine if the stigma assigned to vitrification is warranted; determine if investing millions of dollars into vitrification development, along with solidification development, at Fernald is warranted. Common parameters were determined and detailed life-cycle cost estimates were made. Incorporating the unit costs into a computer spreadsheet allowed 'what if' scenarios to be performed. Some scenarios investigated included variation of: remediation times, amount of wastes treated, treatment efficiencies, electrical and material costs and escalation

  5. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    Science.gov (United States)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  6. Origin of grain orientation during solidification of an aluminum alloy

    International Nuclear Information System (INIS)

    Wei, H.L.; Elmer, J.W.; DebRoy, T.

    2016-01-01

    The evolution of grain morphology during solidification of a moving aluminum alloy pool is simulated by considering heat transfer, flow of liquid metal in the molten pool and solidification parameters. The computationally efficient model consists of a 3D coupled heat transfer and fluid flow simulation to predict the molten pool shape and temperature field, and a 2D model of grain formation in the molten pool. The results demonstrate that columnar grains grow in a curved pattern rather than along straight lines from the fusion boundary towards the center of the molten pool. The calculated results are validated with independent experimental data. The computed ratio of local temperature gradient to solidification rate, G/R, is used to model the columnar to equiaxed transition during solidification. The simulated results show that only curved columnar grains are formed when the scanning speed is low (2.0 mm/s). In contrast, a transition from curved columnar to equiaxed morphologies occurs at the higher scanning speeds of 8.0 mm/s and 11.5 mm/s, with higher equiaxed grain fraction at higher speed. The similarities between the physical processes governing fusion welding and additive manufacturing (AM) make the model capable of predicting grain orientation in both processes.

  7. Solidification process for sludge residue

    International Nuclear Information System (INIS)

    Pearce, K.L.

    1998-01-01

    This report investigates the solidification process used at 100-N Basin to solidify the N Basin sediment and assesses the N Basin process for application to the K Basin sludge residue material. This report also includes a discussion of a solidification process for stabilizing filters. The solidified matrix must be compatible with the Environmental Remediation Disposal Facility acceptance criteria

  8. Premature melt solidification during mold filling and its influence on the as-cast structure

    Science.gov (United States)

    Wu, M.; Ahmadein, M.; Ludwig, A.

    2018-03-01

    Premature melt solidification is the solidification of a melt during mold filling. In this study, a numerical model is used to analyze the influence of the pouring process on the premature solidification. The numerical model considers three phases, namely, air, melt, and equiaxed crystals. The crystals are assumed to have originated from the heterogeneous nucleation in the undercooled melt resulting from the first contact of the melt with the cold mold during pouring. The transport of the crystals by the melt flow, in accordance with the socalled "big bang" theory, is considered. The crystals are assumed globular in morphology and capable of growing according to the local constitutional undercooling. These crystals can also be remelted by mixing with the superheated melt. As the modeling results, the evolutionary trends of the number density of the crystals and the volume fraction of the solid crystals in the melt during pouring are presented. The calculated number density of the crystals and the volume fraction of the solid crystals in the melt at the end of pouring are used as the initial conditions for the subsequent solidification simulation of the evolution of the as-cast structure. A five-phase volume-average model for mixed columnar-equiaxed solidification is used for the solidification simulation. An improved agreement between the simulation and experimental results is achieved by considering the effect of premature melt solidification during mold filling. Finally, the influences of pouring parameters, namely, pouring temperature, initial mold temperature, and pouring rate, on the premature melt solidification are discussed.

  9. Economic analysis of a volume reduction/polyethylene solidification system for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-01-01

    A study was conducted at Brookhaven National Laboratory to determine the economic feasibility of a fluidized bed volume reduction/polyethylene solidification system for low-level radioactive wastes. These results are compared with the ''null'' alternative of no volume reduction and solidification of aqueous waste streams in hydraulic cement. The economic analysis employed a levelized revenue requirement (LRR) technique conducted over a ten year period. An interactive computer program was written to conduct the LRR calculations. Both of the treatment/solidification options were considered for a number of scenarios including type of plant (BWR or PWR) and transportation distance to the disposal site. If current trends in the escalation rates of cost components continue, the volume reduction/polyethylene solidification option will be cost effective for both BWRs and PWRs. Data indicate that a minimum net annual savings of $0.8 million per year (for a PWR shipping its waste 750 miles) and a maximum net annual savings of $9 million per year (for a BWR shipping its waste 2500 miles) can be achieved. A sensitivity analysis was performed for the burial cost escalation rate, which indicated that variation of this factor will impact the total levelized revenue requirement. The burial cost escalation rate which yields a break-even condition was determined for each scenario considered. 11 refs., 8 figs., 39 tabs

  10. Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Das, A., E-mail: A.Das@swansea.ac.uk [Materials Research Centre, School of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Kotadia, H.R. [Brunel Centre for Advanced Solidification Technology, Brunel University, Uxbridge, UB8 3PH (United Kingdom)

    2011-02-15

    Effect of high-intensity ultrasound irradiation in modifying complex solidification microstructure is explored in a high Si containing Al-Si alloy and the origin of microstructural changes explained on the basis of nucleation and growth behaviour. Complete suppression of dendritic growth and dramatic refinement to globular morphology were observed for primary {alpha}-Al grains. Strong supportive evidence is presented towards enhanced and prolonged heterogeneous nucleation triggered by cavitation induced increase in the equilibrium melting point and effective dissipation of latent heat at the solidification front. Morphological evolution of eutectic Si and intermetallic particles is found to be dominated by coarsening and spherodisation from strong fluid flow in areas of intense cavitation near the ultrasonic radiator. Outside the region of direct energy transfer, Si particle morphology appears to be controlled predominantly by the imposed cooling conditions. Extremely fine and short Si-platelets observed in the intergranular spaces near the radiator are explained on the basis of probable rapid cooling of final liquid pockets of small volume and large surface area, rather than refinement through ultrasound.

  11. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy

    International Nuclear Information System (INIS)

    Siquieri, R; Emmerich, H; Doernberg, E; Schmid-Fetzer, R

    2009-01-01

    In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al 3 Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.

  12. Cellular Automaton Study of Hydrogen Porosity Evolution Coupled with Dendrite Growth During Solidification in the Molten Pool of Al-Cu Alloys

    Science.gov (United States)

    Gu, Cheng; Wei, Yanhong; Yu, Fengyi; Liu, Xiangbo; She, Lvbo

    2017-09-01

    Welding porosity defects significantly reduce the mechanical properties of welded joints. In this paper, the hydrogen porosity evolution coupled with dendrite growth during solidification in the molten pool of Al-4.0 wt pct Cu alloy was modeled and simulated. Three phases, including a liquid phase, a solid phase, and a gas phase, were considered in this model. The growth of dendrites and hydrogen gas pores was reproduced using a cellular automaton (CA) approach. The diffusion of solute and hydrogen was calculated using the finite difference method (FDM). Columnar and equiaxed dendrite growth with porosity evolution were simulated. Competitive growth between different dendrites and porosities was observed. Dendrite morphology was influenced by porosity formation near dendrites. After solidification, when the porosities were surrounded by dendrites, they could not escape from the liquid, and they made pores that existed in the welded joints. With the increase in the cooling rate, the average diameter of porosities decreased, and the average number of porosities increased. The average diameter of porosities and the number of porosities in the simulation results had the same trend as the experimental results.

  13. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    International Nuclear Information System (INIS)

    Suplicz, A.; Szabo, F.; Kovacs, J.G.

    2013-01-01

    Highlights: • BN, talc and TiO 2 in 30 vol% were compounded with polypropylene matrix. • According to the DSC measurements, the fillers are good nucleating agents. • The thermal conductivity of the fillers influences the cooling rate of the melt. • The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO 2 )) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly

  14. Effect of cooling rate on achieving thermodynamic equilibrium in uranium–plutonium mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vauchy, Romain, E-mail: romain.vauchy@cea.fr [CEA, DEN, DTEC, Marcoule, 30207, Bagnols-sur-Cèze (France); CEA, DEN, DEC, Cadarache, 13108, Saint-Paul-lez-Durance (France); Belin, Renaud C.; Robisson, Anne-Charlotte [CEA, DEN, DEC, Cadarache, 13108, Saint-Paul-lez-Durance (France); Hodaj, Fiqiri [Univ. Grenoble Alpes, SIMAP, F-38000, Grenoble (France); CNRS, Grenoble INP, SIMAP, F-38000, Grenoble (France)

    2016-02-15

    In situ X-ray diffraction was used to study the structural changes occurring in uranium–plutonium mixed oxides U{sub 1−y}Pu{sub y}O{sub 2−x} with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H{sub 2} atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s{sup −1} and 0.005 K s{sup −1}, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U{sub 1−y}Pu{sub y}O{sub 2−x} uranium–plutonium mixed oxides.

  15. ''New ' technology of solidification of liquid radioactive waste'

    International Nuclear Information System (INIS)

    Sytyl, V.A.; Svistova, L.M.; Spiridonova, V.P.

    1998-01-01

    It is generally accepted that the best method of processing of radioactive waste is its solidification and then storage. At present time, three methods of solidification of radioactive waste are widely used in the world: cementation, bituminous grouting and vitrification. But they do not solve the problem of ecologically processing of waste because of different disadvantages. General disadvantages are: low state of filling, difficulties in solidification of the crystalline hydrated forms of radioactive waste; particular sphere of application and economical difficulties while processing the great volume of waste. In connection with it the urgent necessity is emerging: to develop less expensive and ecologically more reliable technology of solidification of radioactive waste. A new method of solidification is presented with its technical schema. (N.C.)

  16. Method of reprocessing radioactive asphalt solidification products

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Inagaki, Yuzo.

    1986-01-01

    Purpose: To obtain heat-stable solidification products and decrease the total volume thereof by modifying the solidified form by the reprocessing of existent radioactive asphalt solidification products. Method: Radioactive asphalt solidification products are heated into a fluidized state. Then, incombustible solvents such as perchloroethylene or trichloroethylene are added to a dissolving tank to gradually dissolve the radioactive asphalt solidification products. Thus, organic materials such as asphalts are transferred into the solvent layer, while inorganic materials containing radioactive materials remain as they are in the separation tank. Then, the inorganic materials containing the radioactive materials are taken out and then solidified, for example, by converting them into a rock or glass form. (Kawakami, Y.)

  17. Effect of Cooling Rates on Shape and Crystal Size Distributions of Mefenamic Acid Polymorph in Ethyl Acetate

    Science.gov (United States)

    Mudalip, S. K. Abdul; Adam, F.; Parveen, J.; Abu Bakar, M. R.; Amran, N.; Sulaiman, S. Z.; Che Man, R.; Arshad, Z. I. Mohd; Shaarani, S. Md.

    2017-06-01

    This study investigate the effect of cooling rates on mefenamic acid crystallisation in ethyl acetate. The cooling rate was varied from 0.2 to 5 °C/min. The in-line conductivity system and turbidity system were employed to detect the onset of the crystallization process. The crystals produced were analysed using optical microscopy and Fourier transform infrared spectroscopy (FTIR). It was found that the crystals produced at different cooling rates were needle-like and exhibit polymorphic form type I. However, the aspect ratio and crystal size distributions were varied with the increased of cooling rate. A high crystals aspect ratio and narrower CSD (100-900 μm) was obtained at cooling rate of 0.5 °C/min. Thus, can be suggested as the most suitable cooling rate for crystallization of mefenamic acid in ethyl acetate.

  18. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    Science.gov (United States)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  19. Low level waste solidification practice in Japan

    International Nuclear Information System (INIS)

    Sakata, S.; Kuribayashi, H.; Kono, Y.

    1981-01-01

    Both sea dumping and land isolation are planned to be accomplished for low level waste disposal in Japan. The conceptual design of land isolation facilities has been completed, and site selection will presently get underway. With respect to ocean dumping, safety surveys are being performed along the lines of the London Dumping Convention and the Revised Definitions and Recommendations of the IAEA, and the review of Japanese regulations and applicable criteria is being expedited. This paper discusses the present approach to waste solidification practices in Japan. It reports that the bitumen solidification process and the plastic solidification process are being increasingly used in Japan. Despite higher investment costs, both processes have advantages in operating cost, and are comparable to the cement solidification process in overall costs

  20. Dual-scale phase-field simulation of Mg-Al alloy solidification

    International Nuclear Information System (INIS)

    Monas, A; Shchyglo, O; Tegeler, M; Steinbach, I; Höche, D

    2015-01-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities. (paper)

  1. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis

    International Nuclear Information System (INIS)

    Farahany, S.; Ourdjini, A.; Idrsi, M.H.; Shabestari, S.G.

    2013-01-01

    Highlights: • Combined effect of Bi, Sb and Sr additions, and cooling condition was evaluated. • Two different scenarios of recalecense in response to cooling rate were observed. • Fraction solid increased in the order of Sr > Bi > Sb, corresponds to Si morphologies. • Only Bi decreased the nucleation temperature of Al 2 Cu eutectic phase. - Abstract: Al–Si and Al–Cu eutectic phases strongly affect the properties of Al–Si–Cu cast alloys. The characteristic parameters of these two eutectic phases with addition of bismuth, antimony and strontium under different cooling rates (0.6–2 °C/s) were investigated in ADC12 alloy using in situ thermal analysis. Results show that additives affect the Al–Si phase more than the Al–Cu (Al 2 Cu) phase. Addition elements showed two different scenarios in response to cooling rate in terms of recalescence of the Al–Si eutectic phase. Both Bi and Sb caused an increase in recalescence with increased cooling rate but Sr addition reduced the recalescence. Additions of Sb and Sr increased the nucleation temperature of Al 2 Cu, but addition of Bi produced an opposite effect. There seems to be relationship between the solidification temperature range and fraction solid of Al–Si and Al 2 Cu eutectic phases. As the cooling rate increases the fraction solid of Al–Si decreased and that of Al 2 Cu increased

  2. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai, E-mail: fengkai@sjtu.edu.cn; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    2016-06-15

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  3. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    International Nuclear Information System (INIS)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai; Li, Zhuguo

    2016-01-01

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  4. On the Role of Mantle Overturn during Magma Ocean Solidification

    Science.gov (United States)

    Boukaré, C. E.; Parmentier, E.; Parman, S. W.

    2017-12-01

    Solidification of potential global magma ocean(s) (MO) early in the history of terrestrial planets may play a key role in the evolution of planetary interiors by setting initial conditions for their long-term evolution. Constraining this initial structure of solid mantles is thus crucial but remains poorly understood. MO fractional crystallization has been proposed to generate gravitationally unstable Fe-Mg chemical stratification capable of driving solid-state mantle overturn. Fractional solidification and overturn hypothesis, while only an ideal limiting case, can explain important geochemical features of both the Moon and Mars. Current overturn models consider generally post-MO overturn where the cumulate pile remains immobile until the end of MO solidification. However, if the cumulate pile overturns during MO solidification, the general picture of early planet evolution might differ significantly from the static crystallization models. We show that the timing of mantle overturn can be characterized with a dimensionless number measuring the ratio of the MO solidification time and the purely compositional overturn timescale. Syn-solidification overturn occurs if this dimensionless parameter, Rc, exceeds a critical value. Rc is mostly affected by the competition between the MO solidification time and mantle viscosity. Overturn that occurs during solidification can result in smaller scales of mantle chemical heterogeneity that could persist for long times thus influencing the whole evolution of a planetary body. We will discuss the effects of compaction/percolation on mantle viscosity. If partially molten cumulate do not have time to compact during MO solidification, viscosity of cumulates would be significantly lower as the interstitcial melt fraction would be large. Both solid mantle remelting during syn-solidification overturn and porous convection of melt retained with the cumulates are expected to reduce the degree of fractional crystallization. Syn-solidification

  5. Effect of Cooling Rate on the Microstructure of Al-Zn Alloys with Addition of Silicon as Nanocomposite

    Directory of Open Access Journals (Sweden)

    S. García-Villarreal

    2013-01-01

    Full Text Available Al-43.5Zn-1.5Si (wt% alloys are widely used as coatings on steel substrates. This kind of coatings is manufactured by hot-dip process, in which Si is added as solid particles or master alloy. The role of Si during formation of the coating is to control the metallurgical reactions between solid steel and liquid Al-Zn-Si alloy initially forming an AlZnFeSi intermetallic layer and next the excess of Si forms intermetallic compounds, which grows over this alloy layer, segregates into the Zn rich interdendritic regions, and solidifies as eutectic reaction product as massive particles with needle like morphology. Therefore, during the experimental procedure is very difficult to control the final morphology and distribution of the silicon phase. The acicular morphology of this phase greatly affects the mechanical properties of the alloy because it acts as stress concentrators. When the coated steel sheet is subjected to bending, the coating presents huge cracks due to the presence of silicon phase. Therefore, the aim of the paper was to propose a new methodology to control the silicon phase through its addition to Al-Zn alloy as nanocomposite and additionally determine the effect of cooling rate (between 10 and 50°Cs−1 on the solidification microstructure and mechanical properties of Al-Zn alloy.

  6. AN EMPIRICAL MEASURE OF THE RATE OF WHITE DWARF COOLING IN 47 TUCANAE

    International Nuclear Information System (INIS)

    Goldsbury, R.; Heyl, J.; Richer, H. B.; Woodley, K. A.

    2012-01-01

    We present an empirical determination of the white dwarf cooling sequence in the globular cluster 47 Tucanae. Using spectral models, we determine temperatures for 887 objects from Wide Field Camera 3 data, as well as 292 objects from data taken with the Advanced Camera for Surveys. We make the assumption that the rate of white dwarf formation in the cluster is constant. Stellar evolution models are then used to determine the rate at which objects are leaving the main sequence, which must be the same as the rate at which objects are arriving on the white dwarf sequence in our field. The result is an empirically derived relation between temperature (T eff ) and time (t) on the white dwarf cooling sequence. Comparing this result to theoretical cooling models, we find general agreement with the expected slopes between 20,000 K and 30,000 K and between 6000 K and 20,000 K, but the transition to the Mestel cooling rate of T eff ∝t –0.4 is found to occur at hotter temperatures, and more abruptly than is predicted by any of these models.

  7. Sufficient condition for generation of multiple solidification front in one-dimensional solidification of binary alloys

    International Nuclear Information System (INIS)

    Bobula, E.; Kalicka, Z.

    1981-10-01

    In the paper we consider the one-dimensional solidification of binary alloys in the finite system. The authors present the sufficient condition for solidification in the liquid in front of the moving solid-liquid interface. The effect may produce a fluctuating concentration distributin in the solid. The convection in the liquid and supercooling required for homogeneous nucleation are omitted. A local-equilibrium approximation at the liquid-solid interface is supposed. (author)

  8. Finite element modelling of solidification phenomena

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation ...

  9. Effect of cooling rates on the weld heat affected zone coarse grain microstructure

    Directory of Open Access Journals (Sweden)

    Roman Celin

    2018-04-01

    Full Text Available The effect of a cooling rate on the S690Q quenched and tempered steel welded joint coarse grain heat affected zone microstructure was investigated using a dilatometer with controlled heating and cooling fixture. Steel samples were heated to a peak temperature of 1350 °C and cooled at the different cooling time Dt8/5. A dilatometric analysis and hardness measurements of the simulated thermal cycle coarse grain samples were done. Transformation start and finish temperature were determined using dilatation vs. temperature data analysis. The microstructure of the sample with a cooling time 5 s consists of martensite, whereas at cooling time 80 s a bainitic microstructure was observed. The investigated steel cooling cycle using simulation approach makes possible to determine the range of an optimum CG HAZ cooling time for the welding.

  10. Evolution of solidification texture during additive manufacturing

    Science.gov (United States)

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246

  11. Polymer solidification national program

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1993-04-01

    Brookhaven National Laboratory (BNL) has developed several new and innovative polymer processes for the solidification of low-level radioactive, hazardous and mixed wastes streams. Polyethylene and modified sulfur cement solidification technologies have undergone steady, gradual development at BNL over the past nine years. During this time they have progressed through each of the stages necessary for logical technology maturation: from process conception, parameter optimization, waste form testing, evaluation of long-term durability, economic analysis, and scale-up feasibility. This technology development represents a significant investment which can potentially provide DOE with both short- and long-term savings

  12. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    Science.gov (United States)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  13. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  14. Direct numerical simulation of solidification microstructures affected by fluid flow

    International Nuclear Information System (INIS)

    Juric, D.

    1997-12-01

    The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a plutonium-gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow

  15. Solidification with back-diffusion of irregular eutectics

    Directory of Open Access Journals (Sweden)

    M. Trepczyńska-Łent

    2008-10-01

    Full Text Available The definition of the α - parameter back-diffusion has been introduced in the work. The alternative models of solidification were describedtaking into consideration back-diffusion process. The possibility of using those models for eutectic alloys solidification is worthyof interest.

  16. Solidification control in continuous casting of steel

    Indian Academy of Sciences (India)

    Unknown

    Solidification in continuous casting (CC) technology is initiated in a water- ..... to fully austenitic solidification, and FP between 0 and 1 indicates mixed mode. ... the temperature interval (LIT – TSA) corresponding to fs = 0⋅9 → 1, is in reality the.

  17. Pattern selection in single-component systems coupling Benard convection and solidification

    International Nuclear Information System (INIS)

    Davis, S.H.; Mueller, U.; Dietsche, C.

    1983-12-01

    A horizontal layer is heated from below and cooled from above so that the enclosed single-component liquid is frozen in the upper part of the layer. When the imposed temperature difference is such that the Rayleigh number across the liquid is supercritical, there is Benard convection coupled with the dynamics of the solidification interface. An experiment is presented which shows that the interfacial corrugations that result are two-dimensional when this ''ice'' is thin but hexagonal when the ''ice'' is thick. A weakly-nonlinear convective instability theory is presented which explains this behavior, and isolates the mechanism of the pattern selection. Jump behavior is seen in the liquid-layer thickness at the onset of hexagonal convection. (orig.) [de

  18. Solidification at the micro-scale

    International Nuclear Information System (INIS)

    Howe, A.

    2003-01-01

    The experimental determination and computer simulation of the micro-segregation accompanying the solidification of alloys continues to be a subject of much academic and industrial interest. Both are subject to progressively more sophisticated analyses, and a discussion is offered regarding the development and practical use of such studies. Simple steels are particularly difficult targets for such work: solidification does not end conveniently in a eutectic, the rapid diffusion particularly in the delta-ferrite phase obscures most evidence of what had occurred at the micro-scale during solidification, and one or more subsequent solid state phase transformations further obscure such details. Also, solidification at the micro-scale is inherently variable: the usual, dendrite morphologies encountered are, after all, instabilities in growth behaviour, and therefore such variability should be expected. For questions such as the relative susceptibility of different grades to particular problems, it is the average, typical behaviour that is of interest, whereas for other questions such as the on-set of macro-segregation, the local variability is paramount. Depending on the question being asked, and indeed the accuracy with which validatory data are available, simple pseudo-analytical equations employing various limiting assumptions, or sophisticated models which remove the need for most such limitations, could be appropriate. This paper highlights the contribution to such studies of various collaborative research forums within the European Union with which the author is involved. (orig.) [de

  19. Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

    Science.gov (United States)

    Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping

    2018-05-01

    A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

  20. Evaporation Loss of Light Elements as a Function of Cooling Rate: Logarithmic Law

    Science.gov (United States)

    Xiong, Yong-Liang; Hewins, Roger H.

    2003-01-01

    Knowledge about the evaporation loss of light elements is important to our understanding of chondrule formation processes. The evaporative loss of light elements (such as B and Li) as a function of cooling rate is of special interest because recent investigations of the distribution of Li, Be and B in meteoritic chondrules have revealed that Li varies by 25 times, and B and Be varies by about 10 times. Therefore, if we can extrapolate and interpolate with confidence the evaporation loss of B and Li (and other light elements such as K, Na) at a wide range of cooling rates of interest based upon limited experimental data, we would be able to assess the full range of scenarios relating to chondrule formation processes. Here, we propose that evaporation loss of light elements as a function of cooling rate should obey the logarithmic law.

  1. Effect of local cooling on sweating rate and cold sensation

    Science.gov (United States)

    Crawshaw, L. I.; Nadel, E. R.; Stolwijk, J. A. J.; Stamford, B. A.

    1975-01-01

    Subjects resting in a 39 C environment were stimulated in different skin regions with a water-cooled thermode. Results indicate that cooling different body regions produces generally equivalent decreases in sweating rate and increases in cold sensation, with the forehead showing a much greater sensitivity per unit area and temperature decrease than other areas. The high thermal sensitivity of the face may have evolved when it was the thinnest-furred area of the body; today's clothing habits have reestablished the importance of the face in the regulation of body temperature.

  2. Advanced modeling of solidification

    International Nuclear Information System (INIS)

    Bousquet-Melou, P.; Fichot, F.; Goyeau, B.; Gobin, D.; Quintard, M.

    2001-01-01

    A theoretical and numerical macroscopic modeling of the solidification of binary mixtures is presented. The growth of a solid-liquid region (mushy zone), represented by a non-homogeneous porous medium, is considered. A macroscopic model for momentum, heat and mass transfer during solidification is derived using the volume averaging method, and the effective transport properties (permeability, effective diffusivities, mass exchange coefficients) are defined by associated closure problems (set of microscopic balance equations). Consequently, the effects of the dendritic geometry (tortuosity) and of microscopic transfer phenomena (dispersion, interfacial exchange) are introduced in the averaged balance equations and in the representation of the effective transport coefficients. This closure method provides an original approach of solidification modeling. The resulting macroscopic model is based on the local thermal equilibrium assumption (one-temperature model) while a two-phase description of macroscopic species transfer is introduced using solid and liquid mass exchange coefficients. The phase diagram is used to predict the solid and liquid equilibrium concentrations at the solid-liquid interface. This two-phase approach extends the classical limiting cases that correspond to the lever-rule and Scheil descriptions. (authors)

  3. Predicting temperature drop rate of mass concrete during an initial cooling period using genetic programming

    Science.gov (United States)

    Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei

    2018-02-01

    Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.

  4. Plastic solidification system at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Okajima, Hiroyuki; Iokibe, Hiroyuki; Tsukiyama, Shigeru; Suzuki, Michio; Yamaguchi, Masato

    1987-01-01

    In Unit 1 and 2 of the Hamaoka Nuclear Power Station, radioactive waste was previously solidified in cement. By this method, the quantity of waste thus treated is relatively small, resulting in large number of the solidified drums. In order to solve this problem, the solidification facility using a thermosetting resin was employed, which is in operation since January 1986 for Unit 1, 2 and 3. As compared with the cement solidification, the solidified volume of concentrated liquid is about 1/12 and of spent-resin slurry is about 1/4 in plastic solidification. The following are described: course leading to the employment, the plastic solidification facility, features of the facility, operation results so far with the facility, etc. (Mori, K.)

  5. Thermal analysis and microstructural characterization of Mg-Al-Zn system alloys

    Science.gov (United States)

    Król, M.; Tański, T.; Sitek, W.

    2015-11-01

    The influence of Zn amount and solidification rate on the characteristic temperature of the evaluation of magnesium dendrites during solidification at different cooling rates (0.6-2.5°C) were examined by thermal derivative analysis (TDA). The dendrite coherency point (DCP) is presented with a novel approach based on second derivative cooling curve. Solidification behavior was examined via one thermocouple thermal analysis method. Microstructural assessments were described by optical light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These studies showed that utilization of d2T/dt2 vs. the time curve methodology provides for analysis of the dendrite coherency point

  6. Solidification of oils and organic liquids

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.; Neilson, R.M. Jr.

    1982-07-01

    The suitability of selected solidification media for application in the disposal of low-level oil and other organic liquid wastes has been investigated. In the past, these low-level wastes (LLWs) have commonly been immobilized by sorption onto solid absorbents such as vermiculite or diatomaceous earth. Evolving regulations regarding the disposal of these materials encourage solidification. Solidification media which were studied include Portland type I cement; vermiculite plus Portland type I cement; Nuclear Technology Corporation's Nutek 380-cement process; emulsifier, Portland type I cement-sodium silicate; Delaware Custom Materiel's cement process; and the US Gypsum Company's Envirostone process. Waste forms have been evaluated as to their ability to reliably produce free standing monolithic solids which are homogeneous (macroscopically), contain < 1% free standing liquids by volume and pass a water immersion test. Solidified waste form specimens were also subjected to vibratory shock testing and flame testing. Simulated oil wastes can be solidified to acceptable solid specimens having volumetric waste loadings of less than 40 volume-%. However, simulated organic liquid wastes could not be solidified into acceptable waste forms above a volumetric loading factor of about 10 volume-% using the solidification agents studied

  7. The Influence of Cooling Rates on Paleointensity of Volcanic Glasses: an Experimental Approach on Synthetic Glass

    Science.gov (United States)

    von Aulock, F. W.; Ferk, A.; Leonhardt, R.; Hess, K.-U.; Dingwell, D. B.

    2009-04-01

    The suitability of volcanic glass for paleointensity determinations has been proposed in many studies throughout the last years. Besides the mainly single domain magnetic remanence carriers and the pristine character of the volcanic glass, this was also reasoned by the possibility to correct paleointensity data for cooling rate dependency using relaxation geospeedometry. This method gives the cooling rate of a glass at the glass transition interval which marks the change of a ductile supercooled liquid to a brittle glass. In this study the cooling rate correction as carried out for example by Leonhardt et al. 2006 is tested on synthetic volcanic glass. In order to obtain a stable multicomponent glass with ideal magnetic properties, a natural phonolithic glass from Tenerife (Spain) was melted to avoid heterogeneity and degassing. Further it was tempered for 5 hours at 900 °C to yield a sufficient concentration of magnetic remanence carriers. To exclude nucleation or crystallisation 7 samples were then heated to about 50 °C above the glass transition temperature at around 720 °C and quenched at different rates from 0.1 to 15 K/min. After carrying out a paleointensity experiment using a modified Thellier method, which incorporated alteration, additivity and tail checks, the dependence of the thermoremance on cooling rate was investigated. Using the original cooling rates we corrected the data and obtained paleointensities of around 46 T, which is a good approximation of the ambient field of 48 T. Taking into account that the uncorrected mean paleointensity is about 57 T, this suggests that cooling rate correction is not only working, but also a necessary tool to yield the true field value. R. Leonhardt , J. Matzka, A.R.L. Nichols , D.B. Dingwell Cooling rate correction of paleointensity determination for volcanic glasses by relaxation geospeedometry; Earth and Planetary Science Letters 243 (2006) 282-292

  8. General characteristics of eutectic alloy solidification mechanisms

    International Nuclear Information System (INIS)

    Lemaignan, Clement.

    1977-01-01

    The eutectic alloy sodification was studied in binary systems: solidification of non facetted - non facetted eutectic alloy (theoretical aspects, variation of the lamellar spacing, crystallographic relation between the various phases); solidification of facetted - non facetted eutectic alloy; coupled growth out of eutectic alloy; eutectic nucleation [fr

  9. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, S., E-mail: saeedfarahany@gmail.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Ourdjini, A.; Idrsi, M.H. [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Shabestari, S.G. [Center of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), 16846-13114 Tehran (Iran, Islamic Republic of)

    2013-05-10

    Highlights: • Combined effect of Bi, Sb and Sr additions, and cooling condition was evaluated. • Two different scenarios of recalecense in response to cooling rate were observed. • Fraction solid increased in the order of Sr > Bi > Sb, corresponds to Si morphologies. • Only Bi decreased the nucleation temperature of Al{sub 2}Cu eutectic phase. - Abstract: Al–Si and Al–Cu eutectic phases strongly affect the properties of Al–Si–Cu cast alloys. The characteristic parameters of these two eutectic phases with addition of bismuth, antimony and strontium under different cooling rates (0.6–2 °C/s) were investigated in ADC12 alloy using in situ thermal analysis. Results show that additives affect the Al–Si phase more than the Al–Cu (Al{sub 2}Cu) phase. Addition elements showed two different scenarios in response to cooling rate in terms of recalescence of the Al–Si eutectic phase. Both Bi and Sb caused an increase in recalescence with increased cooling rate but Sr addition reduced the recalescence. Additions of Sb and Sr increased the nucleation temperature of Al{sub 2}Cu, but addition of Bi produced an opposite effect. There seems to be relationship between the solidification temperature range and fraction solid of Al–Si and Al{sub 2}Cu eutectic phases. As the cooling rate increases the fraction solid of Al–Si decreased and that of Al{sub 2}Cu increased.

  10. Oxygen and carbon transfer during solidification of semiconductor grade silicon in different processes

    Science.gov (United States)

    Ribeyron, P. J.; Durand, F.

    2000-03-01

    A model is established for comparing the solute distribution resulting from four solidification processes currently applied to semiconductor grade silicon: Czochralski pulling (CZ), floating zone (FZ), 1D solidification and electromagnetic continuous pulling (EMCP). This model takes into account solid-liquid interface exchange, evaporation to or contamination by the gas phase, container dissolution, during steady-state solidification, and in the preliminary preparation of the melt. For simplicity, the transfers are treated in the crude approximation of perfectly mixed liquid and boundary layers. As a consequence, only the axial ( z) distribution can be represented. Published data on oxygen and carbon transfer give a set of acceptable values for the thickness of the boundary layers. In the FZ and EMCP processes, oxygen evaporation can change the asymptotic behaviour of the reference Pfann law. In CZ and in 1D-solidification, a large variety of solute profile curves can be obtained, because they are very sensitive to the balance between crucible dissolution and evaporation. The CZ process clearly brings supplementary degrees of freedom via the geometry of the crucible, important for the dissolution phenomena, and via the rotation rate of the crystal and of the crucible, important for acting on transfer kinetics.

  11. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    Science.gov (United States)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  12. Glass-solidification method for high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kometani, Masayuki; Sasage, Ken-ichi.

    1996-01-01

    High level liquid wastes are removed with precipitates mainly comprising Mo and Zr, thereafter, the high level liquid wastes are mixed with a glass raw material comprising a composition having a B 2 O 3 /SiO 2 ratio of not less than 0.41, a ZnO/Li 2 O ratio of not less than 1.00, and an Al 2 O 3 /Li 2 O ratio of not less than 2.58, and they are melted and solidified into glass-solidification products. The liquid waste content in the glass-solidification products can be increased up to about 45% by using the glass raw material having such a predetermined composition. In addition, deposition of a yellow phase does not occur, and a leaching rate identical with that in a conventional case can be maintained. (T.M.)

  13. Study of Neutron Induced Effects in Nuclear Materials by Computer Simulation: Ultra-Fast Solidification at the Nanoscopic Scale

    International Nuclear Information System (INIS)

    Lopasso, Edmundo

    2003-01-01

    (∼0.1), and if the cooling rates are also low (solidification interface speed ∼0.2 A/psec). This is the case in one dimensional symmetry, as in shock waves experiments of plane nature were both thermomigration and solidification effects could influence the solute redistribution.In displacement cascades only thermomigration is likely to occur depending on the heat of transport of the solute.In dilute alloys of Cu in Fe where the heat of transport of the solute is Q* ≅ 0, displacement cascades have no direct influence in the formation of solute clusters, in agreement with experimental observations and other model results, supporting the requisite of including the vacancy effect in the modelling of the formation of Cu clusters. The possibility y of lower mass solute clustering by thermomigration ion is suggested

  14. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  15. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    Science.gov (United States)

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  16. The influence of cooling rate from annealing temperature on the microstructure of Haynes 230

    International Nuclear Information System (INIS)

    Sah, Injin; Hong, Sunghoon; Jang, Changheui

    2015-01-01

    The effects of cooling rate from annealing temperature, which simulated the diffusion bonding process, on the microstructure of Haynes 230 (Ni-22Cr-14W-5Co) were investigated. While the grain boundaries are slightly covered with Cr-rich M 23 C 6 carbides for the diffusion-bonded and quenched condition, precipitates were extensively present on/near the grain boundaries for the furnace-cooled specimens. For the furnace-cooled specimens, lamellar precipitates were extensively formed near the grain boundaries below 1 000 deg. C, with intervals of a few hundred nanometers. Also, grain boundaries were severely serrated for the furnace-cooled specimens. Through electron probe micro analysis and transmission electron microscope, the lamellar precipitates were identified as (Cr,W)-rich M 23 C 6 -type lamellar carbides. Despite the differences in microstructure, tensile properties were not much affected by the cooling rate. Creep tests are underway and results will be presented. (authors)

  17. Dendritic solidification in undercooled Ni-Zr-Al melts: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Galenko, P.K., E-mail: Peter.Galenko@dlr.de [Institut fuer Materialsphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), D-51170 Koeln (Germany); Reutzel, S.; Herlach, D.M. [Institut fuer Materialsphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), D-51170 Koeln (Germany); Fries, S.G. [ICAMS, Ruhr-Universitaet Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany)] [SGF Scientific Consultancy, Arndtstr 9, D-52064 Aachen (Germany); Steinbach, I. [ICAMS, Ruhr-Universitaet Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany); Apel, M. [ACCESS eV, Intzestrasse 5, D-52072 Aachen (Germany)

    2009-12-15

    The kinetics of dendritic solidification in a ternary Ni{sub 98}Zr{sub 1}Al{sub 1} alloy is investigated experimentally in a range of melt undercoolings 40K{<=}{Delta}T{<=}320K. The growth velocity is measured for samples processed by the electromagnetic levitation technique using a high-speed video camera. With {Delta}T{<=}220K the measured growth rates are the same as those of a binary Ni{sub 99}Zr{sub 1} alloy. In the regime of rapid solidification, especially within the regime of thermal dendritic growth at {Delta}T{>=}220K, growth rates are decreased. Sharp-interface modeling predicts growth rates over the whole range of undercooling. Phase-field simulations give quantitative predictions for the dendritic growth velocity in the solute-controlled growth regime. Results show that the composition and temperature dependency of the thermodynamic data, e.g. liquidus slope and solute partition coefficient, are important for describing the alloys. Our findings give improved sharp-interface model predictions compared to calculations based on an approximation of the thermodynamic data derived from binary phase diagrams.

  18. Enthalpies of a binary alloy during solidification

    Science.gov (United States)

    Poirier, D. R.; Nandapurkar, P.

    1988-01-01

    The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.

  19. Study on segregation of aluminium-uranium alloys

    International Nuclear Information System (INIS)

    Lima, Rui Marques de

    1979-01-01

    The relations between alloy solidification and solute segregation were considered. The solidification structure and the solute redistribution during the solidification of alloys with dendritic micro morphology were studied. The macro and micro segregation theories were reviewed. The mechanisms that could change the solidification structure were taken into account in the context of more homogeneous alloy production. Aluminum alloys solidification structures and segregation were studied experimentally in the 13 to 45% uranium range, usually considering solidification in static molds. The uranium alloys with up to 20% uranium were studied both for solidification in ingot molds and for controlled directional solidification. It was verified that these alloy compositions had structures similar to those of hipoeutectic alloys, showing an a phase with dendritic morphology and inter dendritic eutectic. For the alloys with more than 25% uranium, it was observed the formation of UAl 3 and UAl 4 phases with dendritic morphology. The dendritic UAl 3 , phase morphology was affected both by the solute concentration in the alloy and by the growth rate. The dendritic UAl 3 phase non-singular aspect could be destroyed with decrease of the alloy solute concentration. In the alloys obtained with higher cooling rates it was found a tendency for the formation of substantial quantities of equi axial crystals of the solute enriched phases in the central regions of the ingot upper half. In the more external regions it was observed dendritic growth of these phases, for alloy compositions with over 25% uranium. An adequate reduction in the cooling rate changed the solidification structure form and distribution, as well as the segregation type and intensity. The uranium content in the solidified macro structures is presented as a function of: cooling rate, superheating, mold size, mold form and its temperature, number of remelting and time for the melt homogenization and agitation. It was

  20. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D.L.; Xie, W.J.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2012-10-15

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition. (orig.)

  1. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  2. Effect of thermodiffusion on the fluid flow, heat transfer, and solidification of molten metal alloys

    Directory of Open Access Journals (Sweden)

    E. Jafar-Salehi

    2016-03-01

    Full Text Available In this paper, a transient Finite Element (FE method has been employed to solve the transport equations to investigate the heat transfer and fluid flow and the effect of thermodiffusion on vertical solidification of a binary molten metal alloy, forming a rod. The binary system considered in this study is SnBi composed of 65% Sn and 35% Bi subjected to bottom cooling. It is found that the flow of molten metal at the boundary of the mushy region plays an important role in the shape and geometry of the zone. The presence of thermodiffusion shows considerable difference in the composition of the solidified rod, compared with the one without considering the effect of thermodiffusion. Thermodiffusion also causes a faster solidification and a more uniform concentration distribution. The results of this study may be extended to similar binary and multicomponent systems in which a temperature gradient exists and the Soret coefficient is large enough so as to affect the fluid flow and concentration of the species.

  3. A phenomenological approach of solidification of polymeric phase change materials

    Science.gov (United States)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  4. Disaster forming reasons on fire explosion at an asphalt solidification processing facility

    International Nuclear Information System (INIS)

    Hasegawa, Kazutoshi; Li Yongfu; Sun Jinhua

    2002-01-01

    Disaster forming reasons on fire explosion accident at an asphalt solidification processing facility of the Power Reactor and Nuclear Fuel Development Corporation formed on 1997 was elucidated. Mixture of salts composing of nitrates, nitrites, and so on with asphalt was filled into a drum at about 180 centigrade, and generated disaster during its natural cooling after about 20 hours. Its reason consisted in change of production condition to make liquid wastes of batches 29 and 30 producing the mixture to contain about 7.7 g/L of salts and liquid wastes supplying rate to reduce to about 160 mL/h. The liquid wastes were mixed with asphalt heated to temperature of about 250 centigrade, when it contained a lot of NaHCO 3 into the salts particles on filling the mixture because moisture was evaporated more rapidly under pressure of phosphates based on the change of production condition. NaHCO 3 directly decomposed to make the salts particles porous and to form a weak redox reaction based on boundary reaction appearing at temperature range from 160 to 200 centigrades. By this reaction, the mixture filled into drum generated thermal accumulation to fire the mixture. (G.K.)

  5. Heat transfer analytical models for the rapid determination of cooling time in crystalline thermoplastic injection molding and experimental validation

    Science.gov (United States)

    Didier, Delaunay; Baptiste, Pignon; Nicolas, Boyard; Vincent, Sobotka

    2018-05-01

    Heat transfer during the cooling of a thermoplastic injected part directly affects the solidification of the polymer and consequently the quality of the part in term of mechanical properties, geometric tolerance and surface aspect. This paper proposes to mold designers a methodology based on analytical models to provide quickly the time to reach the ejection temperature depending of the temperature and the position of cooling channels. The obtained cooling time is the first step of the thermal conception of the mold. The presented methodology is dedicated to the determination of solidification time of a semi-crystalline polymer slab. It allows the calculation of the crystallization time of the part and is based on the analytical solution of the Stefan problem in a semi-infinite medium. The crystallization is then considered as a phase change with an effective crystallization temperature, which is obtained from Fast Scanning Calorimetry (FSC) results. The crystallization time is then corrected to take the finite thickness of the part into account. To check the accuracy of such approach, the solidification time is calculated by solving the heat conduction equation coupled to the crystallization kinetics of the polymer. The impact of the nature of the contact between the polymer and the mold is evaluated. The thermal contact resistance (TCR) appears as significant parameter that needs to be taken into account in the cooling time calculation. The results of the simplified model including or not TCR are compared in the case of a polypropylene (PP) with experiments carried out with an instrumented mold. Then, the methodology is applied for a part made with PolyEtherEtherKetone (PEEK).

  6. Effects of Cooling Rates on Hydride Reorientation and Mechanical Properties of Zirconium Alloy Claddings under Interim Dry Storage Conditions

    International Nuclear Information System (INIS)

    Min, Su-Jeong; Kim, Myeong-Su; Won, Chu-chin; Kim, Kyu-Tae

    2013-01-01

    As-received Zr-Nb cladding tubes and 600 ppm hydrogen-charged tubes were employed to evaluate the effects of cladding cooling rates on the extent of hydride reorientation from circumferential hydrides to radial ones and mechanical property degradations with the use of cooling rates of 2, 4 and 15 °C/min from 400 °C to room temperature simulating cladding cooling under interim dry storage conditions. The as-received cladding tubes generated nearly the same ultimate tensile strengths and plastic elongations, regardless of the cooling rates, because of a negligible hydrogen content in the cladding. The 600 ppm-H cladding tubes indicate that the slower cooling rate generated the larger radial hydride fraction and the longer radial hydrides, which resulted in greater mechanical performance degradations. The cooling rate of 2 °C/min generates an ultimate tensile strength of 758 MPa and a plastic elongation of 1.0%, whereas the cooling rate of 15 °C/min generates an ultimate tensile strength of 825 MPa and a plastic elongation of 15.0%. These remarkable mechanical property degradations of the 600 ppm-H cladding tubes with the slowest cooling rate may be characterized by cleavage fracture surface appearance enhanced by longer radial hydrides and their higher fraction that have been precipitated through a relatively larger nucleation and growth rate.

  7. Spreading and solidification behavior of molten Si droplets impinging on substrates

    International Nuclear Information System (INIS)

    Nagashio, K.; Murata, H.; Kuribayashi, K.

    2004-01-01

    This paper focuses on an effect of initial undercoolings on the spreading and solidification behavior of Si dropped on a silicon wafer, which was directly observed through it by the infrared imaging system. For an overheated droplet, the melt spreading occurred first and solidified later. The final splat shape was a typical disc. On the other hand, for a droplet with large initial undercooling, the solidification took place at the faster rate than the melt spreading, which resulted in a spherical shape of final splat. It is indicated that the final shape is considerably affected by the initial undercooling in the measurable-scale experiment with large droplets (∼mm size) and low impingement rates (∼m/s order). Moreover, equiaxed grains were found throughout the quenched surface by an electron backscatter pattern analysis. That is, the microstructure formation was nucleation-controlled since the growth parallel to the substrate was suppressed by the time-dependent contact of melt/substrate governed by the melt deformation

  8. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP)

    KAUST Repository

    Wafai, Husam

    2016-09-20

    Fiber-reinforced composites with improved dissipation of energy during impact loading have recently been developed based on a polypropylene copolymer commonly called impact polypropylene (IPP). Composites made of IPP reinforced with glass fibers (GF) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF-IPP composites on shear behavior, which is critical in impact applications, using [±45]s monotonic and cyclic (load/unload) tensile specimens. The specimens were manufactured under a wide range of cooling rates (3 °C/min, 22 °C/min, 500–1000 °C/min). Mainly dominated by the properties of the matrix, the global shear behavior of GF-IPP composites differed considerably with respect to the cooling rate. However, the performance of the fiber-matrix interface (chemically modified) appeared to be unaffected by the range of cooling rates used in this study. We found that the cooling rate has a minor effect on the rate of damage accumulation, while it strongly modifies the shear-activated rate-dependant viscoelastic behavior. © 2016 Elsevier Ltd

  9. Treatment of cooling appliances. Interrelations between environmental protection, resource conservation, and recovery rates

    International Nuclear Information System (INIS)

    Laner, David; Rechberger, Helmut

    2007-01-01

    The treatment of cooling appliances in Austria is primarily influenced by two factors. On the one hand is their changing composition and on the other hand the ordinance on Waste Prevention, Collection and Treatment of Waste Electrical and Electronic Equipment (WEEE ordinance), which stipulates a minimum recycling rate of 75% for cooling appliances. This paper investigates whether this recycling rate leads to optimal treatment practices for cooling appliances with respect to resource conservation and environmental protection. Two different treatment technologies which achieve recycling rates between 50-60% and 80-90%, respectively, are compared both for cooling appliances containing Chlorofluorocarbons (CFCs) and for appliances containing Volatile Organic Compounds (VOC). Materials and energy balances are developed for each model. To evaluate resource consumption, expenditures as well as savings of energy and materials are incorporated via the Cumulative Energy Demand (CED). In order to analyse the environmental impact of the different practices, balances for CFC, CO 2 , HF, HCl and solid residues are established. The results show that the treatment type aiming for a maximum of materials recycling contributes more to resource conservation than the other treatment type. But for CFC appliances the former is associated with substantial CFC emissions, which turn out to be most relevant when treating these appliances. Generally, it is found that the optimum recycling rate is a function of the composition of the appliance and the technologies applied, both in recycling and in primary production. A high recycling rate per se does not automatically result in an optimal solution with regard to resource conservation and environmental protection. (author)

  10. Influence of the post-annealing cooling rate on the superconducting and mechanical properties of LFZ textured Bi-2212 rods

    CERN Document Server

    Natividad, E; Angurel, L A; Salazar, A; Pastor, J Y; Llorca, J

    2002-01-01

    Laser floating zone textured Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta (Bi-2212) thin rods were manufactured and subjected to a two-step annealing process at 870 deg C and 801 deg C in air. It was found that the subsequent cooling process led to marked changes in electrical properties. Three cooling rates were tested: (i) quenching in liquid nitrogen, (ii) cooling in air inside an alumina tube and (iii) cooling inside the furnace. The results showed that the faster the cooling rate, the higher the normal state resistivity. The T sub c distribution across the rods was also affected by the cooling rate, but no large differences were observed in the magnitude of the critical current at 77 K since the homogeneity of furnace-cooled samples compensated for the higher outer J sub c values of fast-cooled ones. The mechanical properties (elastic modulus and flexure strength) were not influenced by the cooling rate, but the samples quenched in liquid nitrogen were often cracked by thermal shock. The elastic m...

  11. Solidification of refractory materials processed in the ultra high vacuum drop tube at the CEREM-Grenoble

    International Nuclear Information System (INIS)

    Vinet, B.; Cini, E.; Tournier, S.; Cortella, L.

    1994-01-01

    Undercooling experiments have been performed on refractory materials by processing in a high drop-tube. Emphasis is put on general aspects of surface and bulk microstructures of solidified droplets, including pure metals (W, Re, Ta, Mo, Nb, Ir, Zr) and alloys (W-Re, Mo-Re, Ta-Zr). It is shown that recrystallization often causes polycrystallinity. Moreover, the microstructure is closely related to undercooling amount prior solidification. The effect of secondary cooling on microstructure can also be studied by quenching the samples in solid tin at the end of free-fall. (authors). 20 refs., 11 figs

  12. Chemical radwaste solidification processes

    International Nuclear Information System (INIS)

    Malloy, C.W.

    1979-01-01

    Some of these processes and their problems are briefly reviewed: early cement systems; urea-formaldehyde; Dow solidification process; low-viscosity chemical agents (POLYPAC); and water-extensible polyester. 9 refs

  13. Influence of different cooling rates on the microstructure of the HAZ and welding CCT diagram of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Shuhui, E-mail: shzheng@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wu Qingsheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Huang Qunying [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Liu Shaojun; Han Yangyang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2011-10-15

    The evolution of microstructure in the weld HAZ (Heat Affected Zone) under welding thermal cycle was simulated by Gleeble-1500. The microstructures and properties of HAZ at different cooling rates were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and microhardness test. The results showed that when the cooling rates ranged from 3600 K/min to 60 K/min, fully martensitic transformations were achieved, and the cooling rates had little influence on the microstructure and microhardness of martensite. The maximum cooling rate to form ferrite was 60 K/min. When the cooling rates ranged from 60 K/min to 1 K/min, the microhardness of the HAZ began to decrease due to the presence of ferrite, and the lath sizes grew up to 0.13-0.15 {mu}m. The critical cooling rate to gain fully ferrite was found to be slower than 1 K/min. The welding CCT diagram of CLAM steel was constructed and it showed that there were ferrite and martensite transformation regions only. The diagram made it possible to predict the microstructures and properties of HAZ and became an important tool to evaluate weldability of CLAM steel.

  14. Influence of different cooling rates on the microstructure of the HAZ and welding CCT diagram of CLAM steel

    International Nuclear Information System (INIS)

    Zheng Shuhui; Wu Qingsheng; Huang Qunying; Liu Shaojun; Han Yangyang

    2011-01-01

    The evolution of microstructure in the weld HAZ (Heat Affected Zone) under welding thermal cycle was simulated by Gleeble-1500. The microstructures and properties of HAZ at different cooling rates were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and microhardness test. The results showed that when the cooling rates ranged from 3600 K/min to 60 K/min, fully martensitic transformations were achieved, and the cooling rates had little influence on the microstructure and microhardness of martensite. The maximum cooling rate to form ferrite was 60 K/min. When the cooling rates ranged from 60 K/min to 1 K/min, the microhardness of the HAZ began to decrease due to the presence of ferrite, and the lath sizes grew up to 0.13-0.15 μm. The critical cooling rate to gain fully ferrite was found to be slower than 1 K/min. The welding CCT diagram of CLAM steel was constructed and it showed that there were ferrite and martensite transformation regions only. The diagram made it possible to predict the microstructures and properties of HAZ and became an important tool to evaluate weldability of CLAM steel.

  15. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dong; Harkin-Jones, Eileen [School of Mechanical and Aerospace Engineering, Queen’s University Belfast, BT9 5AH (United Kingdom); Linton, David [School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT9 5AH (United Kingdom)

    2015-05-22

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

  16. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    International Nuclear Information System (INIS)

    Xiang, Dong; Harkin-Jones, Eileen; Linton, David

    2015-01-01

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites

  17. Development of a numerical simulation method for melting/solidification and dissolution/precipitation phenomena. 1. Literature survey for computer program design

    International Nuclear Information System (INIS)

    Uchibori, Akihiro; Ohshima, Hiroyuki

    2004-04-01

    Survey research of numerical methods for melting/solidification and dissolution/precipitation phenomena was performed to determine the policy for a simulation program development. Melting/solidification and dissolution/ precipitation have been key issues for feasibility evaluation of several techniques applied in the nuclear fuel cycle processes. Physical models for single-component melting/solidification, two-component solution solidification or precipitation by cooling and precipitation by electrolysis, which are moving boundary problems, were made clear from the literature survey. The transport equations are used for thermal hydraulic analysis in the solid and the liquid regions. Behavior of the solid-liquid interface is described by the heat and mass transfer model. These physical models need to be introduced into the simulation program. The numerical methods for the moving boundary problems are categorized into two types: interface tracking method and interface capturing method. Based on the classification, performance of each numerical method was evaluated. The interface tracking method using the Lagrangian moving mesh requires relatively complicated algorithm. The algorithm has high accuracy for predicting the moving interface. On the other hand, the interface capturing method uses the Eulerian fixing mesh, leading to simple algorithm. Prediction accuracy of the method is relatively low. The extended finite element method classified as the interface capturing method can predict the interface behavior accurately even though the Eulerian fixing mesh is used. We decided to apply the extended finite element method to the simulation program. (author)

  18. Thermoelectric Cooling-Aided Bead Geometry Regulation in Wire and Arc-Based Additive Manufacturing of Thin-Walled Structures

    Directory of Open Access Journals (Sweden)

    Fang Li

    2018-01-01

    Full Text Available Wire and arc-based additive manufacturing (WAAM is a rapidly developing technology which employs a welding arc to melt metal wire for additive manufacturing purposes. During WAAM of thin-walled structures, as the wall height increases, the heat dissipation to the substrate is slowed down gradually and so is the solidification of the molten pool, leading to variation of the bead geometry. Though gradually reducing the heat input via adjusting the process parameters can alleviate this issue, as suggested by previous studies, it relies on experience to a large extent and inevitably sacrifices the deposition rate because the wire feed rate is directly coupled with the heat input. This study introduces for the first time an in-process active cooling system based on thermoelectric cooling technology into WAAM, which aims to eliminate the difference in heat dissipation between upper and lower layers. The case study shows that, with the aid of thermoelectric cooling, the bead width error is reduced by 56.8%, the total fabrication time is reduced by 60.9%, and the average grain size is refined by 25%. The proposed technique provides new insight into bead geometry regulation during WAAM with various benefits in terms of geometric accuracy, productivity, and microstructure.

  19. Influence of cooling rate on microstructure of NdFeB strip casting flakes

    Energy Technology Data Exchange (ETDEWEB)

    Binglin Guo; Bo Li; Dongling Wang; Xiaojun Yu [Central Iron and Steel Research Inst., Beijing, BJ (China); Jifan Hu [Shandong Univ., Jinan (China)

    2005-07-01

    In this paper, flakes of NdFeB cast alloys were prepared by using the strip casting technique. Microstructure and composition of phases in NdFeB SC flakes were studied by SEM and energy spectra. Especially, the influences of cooling rate on the microstructure of SC flakes were discussed, helping us to master strip casting technology. The results show that the cooling rate plays an important role in obtaining the perfect microstructure of SC flakes, which thickness is supposed not less than 0.32mm in these studies. (orig.)

  20. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  1. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  2. Solidification of AM and AZ magnesium alloys characterized by heat-transfer modeled thermal and calorimetric analysis and microsegregation study of directionally solidified microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje

    2008-05-09

    The micro-scale solidification of commercial Mg alloys of the AZ and AM series is in the focus of the present thesis. Two approaches of investigating solidification are implemented, complementary regarding temperature gradient and solidification rate, and also with respect to the generated microstructure. The first approach considers solidification under a negligible spatial temperature gradient. Here the solidification curves, i.e. fraction solid versus temperature, were determined by developing an improved heat-transfer modeling applicable on both differential thermal analysis (DTA) and differential scanning calorimetry (DSC) signals. The correlation between solidification enthalpy and fraction solid during solidification was tested in detail. A better evaluation of the measured DTA and DSC signals is attained through an independent measurement of the time constant as function of temperature for the applied equipment. A further improvement is achieved through a more impartial interpretation of the measured curves. Both improvements enable a better desmearing of measured signals and reduce the error induced by the operator. The novel tantalum encapsulation enabled appropriate handling of challenging Mg-alloys. The viability and limitations of thermal analysis in general to determine start and end of solidification of AZ magnesium alloys was also studied. The second approach is based on directional solidification in a high temperature gradient and at constant solidification rate, achieved by the Bridgman technique. The resulting dendritic microstructure and inherent microsegregation are studied in this work. The solute profiles, i.e. solute content versus solid phase fraction during solidification, are determined by an advanced treatment of the EPMA data. Problems that are demonstrated in this work are Al-loss and melt pollution due to reaction with typical sample container material made of unprotected steel. The development of an optimized boron nitride (BN

  3. Method of manufacturing borosilicate glass solidification products

    International Nuclear Information System (INIS)

    Tanaka, Tsuneya.

    1986-01-01

    Purpose: To obtain glass solidification products efficiently in a dry process from medium and high level radioactive liquid wastes discharged from PWR type reactors. Method: Boric acid-containing radioactive liquid wastes generated from primary coolants of PWR type reactors are evaporated to condensate as the pre-treatment. The concentrated liquid wastes are supplied to a drum type rotary kiln. While on the other hand, usual glass frits are introduced into the kiln. The liquid wastes are dried in the rotary kiln, as well as B 2 O 3 and the glass frits in the liquid wastes are combined into glass particles. In this case, since the kiln is rotated, no glass particles are deposited on the wall of the kiln. Then, the glass particles are introduced for melting into a high frequency melting furnace made of metal. The melting temperature is set to 1100 - 1150 deg C. The molten borosilicate glass is recovered from the bottom of the melting furance, contained in a canister and cooled for several hours, and then a cover is welded to the canister. (Ikeda, J.)

  4. Polymer Solidification Technology - Technical Issues and Challenges

    International Nuclear Information System (INIS)

    Jensen, Charles; Kim, Juyoul

    2010-01-01

    Many factors come into play, most of which are discovered and resolved only during full-scale solidification testing of each of the media commonly used in nuclear power plants. Each waste stream is unique, and must be addressed accordingly. This testing process is so difficult that Diversified's Vinyl Ester Styrene and Advanced Polymer Solidification are the only two approved processes in the United States today. This paper summarizes a few of the key obstacles that must be overcome to achieve a reliable, repeatable process for producing an approved Stable Class B and C waste form. Before other solidification and encapsulation technologies can be considered compliant with the requirements of a Stable waste form, the tests, calculations and reporting discussed above must be conducted for both the waste form and solidification process used to produce the waste form. Diversified's VERI TM and APS TM processes have gained acceptance in the UK. These processes have also been approved and gained acceptance in the U. S. because we have consistently overcome technical hurdles to produce a complaint product. Diversified Technologies processes are protected intellectual property. In specific instances, we have patents pending on key parts of our process technology

  5. Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lorazo, Patrick; Lewis, Laurent J.; Meunier, Michel

    2006-01-01

    The thermodynamic pathways involved in laser irradiation of absorbing solids are investigated in silicon for pulse durations of 500 fs and 100 ps. This is achieved by accounting for carrier and atom dynamics within a combined Monte Carlo and molecular-dynamics scheme and simultaneously tracking the time evolution of the irradiated material in ρ-T-P space. Our simulations reveal thermal changes in long-range order and state of aggregation driven, in most cases, by nonequilibrium states of rapidly heated or promptly cooled matter. Under femtosecond irradiation near the ablation threshold, the system is originally pulled to a near-critical state following rapid ( -12 s) disordering of the mechanically unstable crystal and isochoric heating of the resulting metallic liquid. The latter is then adiabatically cooled to the liquid-vapor regime where phase explosion of the subcritical, superheated melt is initiated by a direct conversion of translational, mechanical energy into surface energy on a ∼10 -12 -10 -11 s time scale. At higher fluences, matter removal involves, instead, the fragmentation of an initially homogeneous fluid subjected to large strain rates upon rapid, supercritical expansion in vacuum. Under picosecond irradiation, homogeneous and, at later times, heterogeneous melting of the superheated solid are followed by nonisochoric heating of the molten metal. In this case, the subcritical liquid material is subsequently cooled onto the binodal by thermal conduction and explosive boiling does not take place; as a result, ablation is associated with a ''trivial'' fragmentation process, i.e., the relatively slow expansion and dissociation into liquid droplets of supercritical matter near thermodynamic equilibrium. This implies a liquid-vapor equilibration time of ∼10 -11 -10 -10 s and heating along the binodal under nanosecond irradiation. Solidification of the nonablated, supercooled molten material is eventually observed on a ∼10 -11 -10 -9 s time scale

  6. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  7. Solidification paths in modified Inconel 625 weld overlay material

    DEFF Research Database (Denmark)

    Chandrasekaran, Karthik; Tiedje, Niels Skat; Hald, John

    2009-01-01

    Inconel 625 is commonly used for overlay welding to protect the base metal against high temperature corrosion. The efficiency of corrosion protection depends on effective mixing of the overlay weld with the base metal and the subsequent segregation of alloy elements during solidification....... Metallographic analysis of solidified samples of Inconel 625 with addition of selected elements is compared with thermodynamic modelling of segregation during solidification. The influence of changes in the melt chemistry on the formation of intermetallic phases during solidification is shown. In particular...

  8. Measurement of the radiative cooling rates for high-ionization species of krypton using an electron beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.; Fuchs, T.; Fussmann, G.; Beiersdorfer, P.

    2000-01-01

    We describe a measurement of the radiative cooling rate for krypton made at the Berlin electron beam ion trap (EBIT). The EBIT was tuned to a charge-state distribution approaching the ionization balance of a plasma at a temperature of about 5 keV. To determine the cooling rate, we made use of EBIT's capabilities to sample a wide range of electron-beam energies and distinguish between different radiation channels. We have measured the x-ray emission from bremsstrahlung, radiative recombination, dielectronic recombination, and line radiation following electron-impact excitation. The dominant contribution to the cooling rate is made by the n=3-2, n=4-2,... x rays of the L-shell spectra of krypton, which produce more than 75% of the total radiation loss. A difference with theoretical calculations is noted for the measured total cooling rate. The predicted values are lower by a factor of 1.5-2, depending on the theoretical model. For our measurement of the cooling rate, we estimate an uncertainty interval of 22-30 %. (c) 2000 The American Physical Society

  9. Rock solidification method

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Funakoshi, Toshio; Inagaki, Yuzo; Hashimoto, Yasuhide.

    1985-01-01

    Purpose: To convert radioactive wastes into the final state for storage (artificial rocks) in a short period of time. Method: Radioactive burnable wastes such as spent papers, cloths and oils and activated carbons are burnt into ashes in a burning furnace, while radioactive liquid wastes such as liquid wastes of boric acid, exhausted cleaning water and decontaminating liquid wastes are powderized in a drying furnace or calcining furnace. These powders are joined with silicates as such as white clay, silica and glass powder and a liquid alkali such as NaOH or Ca(OH) 2 and transferred to a solidifying vessel. Then, the vessel is set to a hydrothermal reactor, heated and pressurized, then taken out about 20 min after and tightly sealed. In this way, radioactive wastes are converted through the hydrothermal reactions into aqueous rock stable for a long period of time to obtain solidification products insoluble to water and with an extremely low leaching rate. (Ikeda, J.)

  10. Influence of Cooling Conditions on a Slab’s Chill Zone Formation During Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Drożdż P.

    2017-06-01

    Full Text Available The cooling conditions of a slab during continuous casting of steel have an impact on the crystalline structure formation. Numerical methods allow real processes to be modelled. Professional computer programs are available on the market, so the results of their simulations allow us to understand the processes that occur during the casting and solidification of the slab. The study attempts to evaluate the impact of the intensity of the secondary cooling on the chilled zone size. The calculations show the differences in the structure of a slab cast with various speeds while maintaining industrial cooling parameters during operation of a continuous casting machine.

  11. Simulations of rapid pressure-induced solidification in molten metals

    International Nuclear Information System (INIS)

    Patel, Mehul V.; Streitz, Frederick H.

    2004-01-01

    The process of interest in this study is the solidification of a molten metal subjected to rapid pressurization. Most details about solidification occurring when the liquid-solid coexistence line is suddenly transversed along the pressure axis remain unknown. We present preliminary results from an ongoing study of this process for both simple models of metals (Cu) and more sophisticated material models (MGPT potentials for Ta). Atomistic (molecular dynamics) simulations are used to extract details such as the time and length scales that govern these processes. Starting with relatively simple potential models, we demonstrate how molecular dynamics can be used to study solidification. Local and global order parameters that aid in characterizing the phase have been identified, and the dependence of the solidification time on the phase space distance between the final (P,T) state and the coexistence line has been characterized

  12. Directional Solidification and Liquidus Projection of the Sn-Co-Cu System

    Science.gov (United States)

    Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei

    2013-04-01

    This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.

  13. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  14. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  15. Predictive modeling of solidification during laser additive manufacturing of nickel superalloys: recent developments, future directions

    Science.gov (United States)

    Ghosh, Supriyo

    2018-01-01

    Additive manufacturing (AM) processes produce parts with improved physical, chemical, and mechanical properties compared to conventional manufacturing processes. In AM processes, intricate part geometries are produced from multicomponent alloy powder, in a layer-by-layer fashion with multipass laser melting, solidification, and solid-state phase transformations, in a shorter manufacturing time, with minimal surface finishing, and at a reasonable cost. However, there is an increasing need for post-processing of the manufactured parts via, for example, stress relieving heat treatment and hot isostatic pressing to achieve homogeneous microstructure and properties at all times. Solidification in an AM process controls the size, shape, and distribution of the grains, the growth morphology, the elemental segregation and precipitation, the subsequent solid-state phase changes, and ultimately the material properties. The critical issues in this process are linked with multiphysics (such as fluid flow and diffusion of heat and mass) and multiscale (lengths, times and temperature ranges) challenges that arise due to localized rapid heating and cooling during AM processing. The alloy chemistry-process-microstructure-property-performance correlation in this process will be increasingly better understood through multiscale modeling and simulation.

  16. Incorporating interfacial phenomena in solidification models

    Science.gov (United States)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  17. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Roehling, John D.; Coughlin, Daniel R.; Gibbs, John W.; Baldwin, J. Kevin; Mertens, James C.E.; Campbell, Geoffrey H.; Clarke, Amy J.; McKeown, Joseph T.

    2017-01-01

    In situ dynamic transmission electron microscope (DTEM) imaging of Al-Si thin-film alloys was performed to investigate rapid solidification behavior. Solidification of alloys with compositions from 1 to 15 atomic percent Si was imaged during pulsed laser melting and subsequent solidification. Solely α-Al solidification was observed in Al-1Si and Al-3Si alloys, and solely kinetically modified eutectic growth was observed in Al-6Si and Al-9Si alloys. A transition in the solidification mode in eutectic and hypereutectic alloys (Al-12Si and Al-15Si) from nucleated α-Al dendrites at lower solidification velocities to planar eutectic growth at higher solidification velocities was observed, departing from trends previously seen in laser-track melting experiments. Comparisons of the growth modes and corresponding velocities are compared with previous solidification models, and implications regarding the models are discussed.

  18. Effects of Non-equilibrium Solidification on the Material Properties of Brick Silicon for Photovoltaics

    Science.gov (United States)

    Regnault, W. F.; Yoo, K. C.; Soltani, P. K.; Johnson, S. M.

    1984-01-01

    Silicon ingot growth technologies like the Ubiquitous Crystallization Process (UCP) are solidified within a shaping crucible. The rate at which heat can be lost from this crucible minus the rate at which heat is input from an external source determines the rate at which crystallization will occur. Occasionally, when the process parameters for solidification are exceeded, the normally large multi-centimeter grain size material assocated with the UCP will break down into regions containing extremely small, millimeter or less, grain size material. Accompanying this breakdown in grain growth is the development of so called sinuous grain boundaries. The breakdown in grain growth which results in this type of small grain structure with sinuous boundaries is usually associated with the rapid crystallization that would accompany a system failure. This suggests that there are limits to the growth velocity that one can obtain and still expect to produce material that would possess good photovoltaic properties. It is the purpose to determine the causes behind the breakdown of this material and what parameters will determine the best rates of solidification.

  19. Multi-scale Modeling of Dendritic Alloy Solidification

    OpenAIRE

    Dagner, Johannes

    2009-01-01

    Solidification of metallic melts is one of the most important processes in material science. The microstructure, which is formed during freezing, determines the mechanical properties of the final product largely. Many physical phenomena influence the solidification process and hence the resulting microstructure. One important parameter is influence of melt flow, which may modify heat and species transport on a large range of length- and time-scales. On the micro-scale, it influences the conce...

  20. More accurate determination of the quantity of ice crystallized at low cooling rates in the glycerol and 1,2-propanediol aqueous solutions: comparison with equilibrium.

    Science.gov (United States)

    Boutron, P

    1984-04-01

    It is generally assumed that when cells are cooled at rates close to those corresponding to the maximum of survival, once supercooling has ceased, above the eutectic melting temperature the extracellular ice is in equilibrium with the residual solution. This did not seem evident to us due to the difficulty of ice crystallization in cryoprotective solutions. The maximum quantities of ice crystallized in glycerol and 1,2-propanediol solutions have been calculated from the area of the solidification and fusion peaks obtained with a Perkin-Elmer DSC-2 differential scanning calorimeter. The accuracy has been improved by several corrections: better defined baseline, thermal variation of the heat of fusion of the ice, heat of solution of the water from its melting with the residual solution. More ice crystallizes in the glycerol than in the 1,2-propanediol solutions, of which the amorphous residue contains about 40 to 55% 1,2-propanediol. The equilibrium values are unknown in the presence of 1,2-propanediol. With glycerol, in our experiments, the maximum is first lower than the equilibrium but approaches it as the concentration increases. It is not completely determined by the colligative properties of the solutes.

  1. Simulation of Cooling Rate Effects on Ti-48Al-2Cr-2Nb Crack Formation in Direct Laser Deposition

    Science.gov (United States)

    Yan, Lei; Li, Wei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joe; Liou, Frank; Dietrich, David

    2017-03-01

    Transient temperature history is vital in direct laser deposition (DLD) as it reveals the cooling rate at specific temperatures. Cooling rate directly relates to phase transformation and types of microstructure formed in deposits. In this paper, finite element analysis simulation was employed to study the transient temperature history and cooling rate at different experimental setups in the Ti-48Al-2Cr-2Nb DLD process. An innovative prediction strategy was developed to model with a moving Gaussian distribution heat source and element birth and death technology in ANSYS®, and fabricate crack-free deposits. This approach helps to understand and analyze the impact of cooling rate and also explain phase information gathered from x-ray diffraction.

  2. Effect of Solidification Behavior on Microstructures and Mechanical Properties of Ni-Cr-Fe Superalloy Investment Casting

    Science.gov (United States)

    Kang, Maodong; Wang, Jun; Gao, Haiyan; Han, Yanfeng; Wang, Guoxiang; He, Shuxian

    2017-01-01

    The effect of solidification behavior on the microstructures and mechanical properties of Ni-Cr-Fe superalloy investment casting is given. Metallographic and image analysis have been used to quantitatively examine the microstructures’ evolution. For the parts with the thickness of 3 mm and 24 mm, the volume fraction and maximum equivalent radius of the Laves phase increases from 0.3% to 1.2%, from 11.7 μm to 23.4 μm, respectively. Meanwhile, the volume fraction and maximum equivalent radius of carbides increase from 0.3% to 0.5%, from 8.1 μm to 9.9 μm, respectively. In addition, the volume fraction of microporosity increases from 0.3% to 2.7%. As a result, the ultimate tensile strength is reduced from 1125.5 MPa to 820.9 MPa, the elongation from 13.3% to 7.7%, and the quality index from 1294.2 MPa to 954.0 MPa, respectively. A typical brittle fracture is observed on the tensile fracture. As the cooling rate decreases, the microstructures become coarser. PMID:28772611

  3. Application of the Method of Direct Solidification for Obtaining New Materials

    International Nuclear Information System (INIS)

    Grankin, S.S.

    2007-01-01

    The influence of the method of direct solidification on the formation of the material structure has been considered. The main methods of single crystal growth have been described. A considerable influence of the crystal growth parameters (temperature gradient at the front of solidification and the speed of moving of the front of solidification) on the type of the structure and morphology of single crystals has been shown. The examples of application of the method of direct solidification in experimental and industrial production are showed: production of directly crystallized blades for turbines of nuclear power plants and gas-turbine engines

  4. Influence of cooling and annealing procedure on the intergranular coupling of Ag-Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub x] screen-printed tape. [BiSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Noji, H; Zhou, W [IRC in Superconductivity, Univ. of Cambridge (United Kingdom); Glowacki, B A [IRC in Superconductivity, Univ. of Cambridge (United Kingdom) Dept. of Materials Science and Metallurgy, Univ. of Cambridge (United Kingdom); Oota, A [IRC in Superconductivity, Univ. of Cambridge (United Kingdom) Dept. of Electric and Electronic Engineering, Toyohashi Univ. of Tech. (Japan)

    1993-02-01

    A study of the influence of the processing conditions of screen-printed ''Bi-2212'' tapes on their intergranular coupling properties, measured by AC susceptibility and DC transport critical current density, has been conducted. Samples have been prepared by melt-solidification and sintering on silver substrates under the same conditions but with different cooling procedures, such as slow cooling, slow cooling and reannealing, rapid cooling and quenching. The cooling rate and the annealing procedure strongly affect not only the superconducting critical temperature, Tc, but also the intergranular coupling properties of the samples. It was found that the Tc value decreases with a decrease in cooling rate. The reannealing in N[sub 2] can improve the Tc value of the slow-cooled samples. The different cooling procedures lead to the crossover of the field dependence of the AC loss-peak temperature of [chi]'' characteristics for all investigated samples. The crossover phenomena do not alter the correlation between the transport critical current density, J[sub c], versus temperature and the AC loss-peak temperature versus AC applied field for the samples in the range of the LN[sub 2] temperature (90-65 K), except for the slow-cooled one. The lack of correlation for the slow-cooled sample in this temperature range can be explained by a very significant difference of flux creep between the slow-cooled sample and the rest of the fast-cooled or reannealed samples. (orig.).

  5. Polyethylene solidification of low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs

  6. Effect Of Natural Convection On Directional Solidification Of Pure Metal

    Directory of Open Access Journals (Sweden)

    Skrzypczak T.

    2015-06-01

    Full Text Available The paper is focused on the modeling of the directional solidification process of pure metal. During the process the solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D. The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys, etc.

  7. High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Helo, Christoph; Clague, David A.; Dingwell, Donald B.; Stix, John

    2013-03-01

    We present a calorimetric analysis of pyroclastic glasses and glassy sheet lava flow crusts collected on Axial Seamount, Juan de Fuca Ridge, NE Pacific Ocean, at a water depth of about 1400 m. The pyroclastic glasses, subdivided into thin limu o Pele fragments and angular, blocky clasts, were retrieved from various stratigraphic horizons of volcaniclastic deposits on the upper flanks of the volcanic edifice. Each analysed pyroclastic sample consists of a single type of fragment from one individual horizon. The heat capacity (cp) was measured via differential scanning calorimetry (DSC) and analysed using relaxation geospeedometry to obtain the natural cooling rate across the glass transition. The limu o Pele samples (1 mm grain size fraction) and angular fragments (0.5 mm grain size fraction) exhibit cooling rates of 104.3 to 106.0 K s- 1 and 103.9 to 105.1 K s- 1, respectively. A coarser grain size fraction, 2 mm for limu o Pele and 1 mm for the angular clasts yields cooling rates at the order of 103.7 K s- 1. The range of cooling rates determined for the different pyroclastic deposits presumably relates to the size or intensity of the individual eruptions. The outer glassy crusts of the sheet lava flows were naturally quenched at rates between 63 K s- 1 and 103 K s- 1. By comparing our results with published data on the very slow quenching of lava flow crusts, we suggest that (1) fragmentation and cooling appear to be coupled dynamically and (2) ductile deformation upon the onset of cooling is restricted due to the rapid increase in viscosity. Lastly, we suggest that thermally buoyant plumes that may arise from rapid heat transfer efficiently separate clasts based on their capability to rise within the plume and as they subsequently settle from it.

  8. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  9. The Impact of Cooling Rate on the Safety of Food Products as Affected by Food Containers

    DEFF Research Database (Denmark)

    Coorey, Ranil; Ng, Denise Sze Hu; Jayamanne, Vijith S.

    2018-01-01

    In recent decades, the demand for ready‐to‐eat (RTE) food items prepared by the food catering sector has increased together with the value of cook‐serve, cook‐chill, and cook‐freeze food products. The technologies by which foods are cooked, chilled, refrigerated for storage, and reheated before...... serving are of prime importance to maintain safety. Packaging materials and food containers play an important role in influencing the cooling rate of RTE foods. Food items that are prepared using improper technologies and inappropriate packaging materials may be contaminated with foodborne pathogens....... Numerous research studies have shown the impact of deficient cooling technologies on the survival and growth of foodborne pathogens, which may subsequently pose a threat to public health. The operating temperatures and cooling rates of the cooling techniques applied must be appropriate to inhibit...

  10. Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni–Si–B ternary filler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pouranvari, M., E-mail: mpouranvari@yahoo.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365-11155 (Iran, Islamic Republic of); Ekrami, A.; Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365-11155 (Iran, Islamic Republic of)

    2013-06-25

    Highlights: ► Microstructure evolution during TLP bonding of IN718 using Ni–Si–B filler. ► Athermal solidification path is influenced by severe segregation of B and Si in residual liquid. ► High hardness of ASZ microconstituents necessitates designing a PBHT to avert brittleness. ► Diffusion induced Cr–Mo–Nb based boride precipitation was observed in DAZ. ► Boride precipitates in DAZ influence the corrosion resistance and aging behavior. -- Abstract: This paper addresses solidification and solid state precipitation phenomena during transient liquid phase (TLP) bonding of wrought IN718 nickel base superalloy using Ni–4.5Si–3.2B (wt.%) ternary filler alloy. The solidification sequence of the residual liquid in the joint centerline was found to be (1) formation of proeutectic γ, followed by (2) γ/Ni{sub 3}B eutectic reaction, followed by (3) ternary eutectic of γ/Ni{sub 3}B/Ni{sub 6}Si{sub 2}B. Extensive fine Ni{sub 3}Si formed within the eutectic-γ via solid state precipitation during cooling. Extensive Cr–Mo–Nb rich boride precipitates were formed in the substrate region due to boron diffusion into the base metal during bonding process. The implications of the phase transformations on the mechanical properties, corrosion resistance and aging behavior of the joint, which are pertinent to the development of an optimum post bond heat treatment, are highlighted.

  11. Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni–Si–B ternary filler alloy

    International Nuclear Information System (INIS)

    Pouranvari, M.; Ekrami, A.; Kokabi, A.H.

    2013-01-01

    Highlights: ► Microstructure evolution during TLP bonding of IN718 using Ni–Si–B filler. ► Athermal solidification path is influenced by severe segregation of B and Si in residual liquid. ► High hardness of ASZ microconstituents necessitates designing a PBHT to avert brittleness. ► Diffusion induced Cr–Mo–Nb based boride precipitation was observed in DAZ. ► Boride precipitates in DAZ influence the corrosion resistance and aging behavior. -- Abstract: This paper addresses solidification and solid state precipitation phenomena during transient liquid phase (TLP) bonding of wrought IN718 nickel base superalloy using Ni–4.5Si–3.2B (wt.%) ternary filler alloy. The solidification sequence of the residual liquid in the joint centerline was found to be (1) formation of proeutectic γ, followed by (2) γ/Ni 3 B eutectic reaction, followed by (3) ternary eutectic of γ/Ni 3 B/Ni 6 Si 2 B. Extensive fine Ni 3 Si formed within the eutectic-γ via solid state precipitation during cooling. Extensive Cr–Mo–Nb rich boride precipitates were formed in the substrate region due to boron diffusion into the base metal during bonding process. The implications of the phase transformations on the mechanical properties, corrosion resistance and aging behavior of the joint, which are pertinent to the development of an optimum post bond heat treatment, are highlighted

  12. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    Science.gov (United States)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  13. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP)

    KAUST Repository

    Wafai, Husam; Lubineau, Gilles; Yudhanto, Arief; Mulle, Matthieu; Schijve, W.; Verghese, N.

    2016-01-01

    ) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF

  14. Influence of the post-annealing cooling rate on the superconducting and mechanical properties of LFZ textured Bi-2212 rods

    International Nuclear Information System (INIS)

    Natividad, E; Gomez, J A; Angurel, L A; Salazar, A; Pastor, J Y; Llorca, J

    2002-01-01

    Laser floating zone textured Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) thin rods were manufactured and subjected to a two-step annealing process at 870 deg C and 801 deg C in air. It was found that the subsequent cooling process led to marked changes in electrical properties. Three cooling rates were tested: (i) quenching in liquid nitrogen, (ii) cooling in air inside an alumina tube and (iii) cooling inside the furnace. The results showed that the faster the cooling rate, the higher the normal state resistivity. The T c distribution across the rods was also affected by the cooling rate, but no large differences were observed in the magnitude of the critical current at 77 K since the homogeneity of furnace-cooled samples compensated for the higher outer J c values of fast-cooled ones. The mechanical properties (elastic modulus and flexure strength) were not influenced by the cooling rate, but the samples quenched in liquid nitrogen were often cracked by thermal shock. The elastic modulus and the flexure strength of the rods were deteriorated by the existence of an outer ring of compact, poorly textured material and by the large bubbles found in the central region of the rod. Samples processed by a two-step texturing process which reduced the thickness of the outer ring and eliminated the bubbles had better electrical and mechanical properties

  15. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  16. Simulating solidification in metals at high pressure: The drive to petascale computing

    International Nuclear Information System (INIS)

    Streitz, Frederick H; Glosli, James N; Patel, Mehul V; Chan, Bor; Yates, Robert K; Supinski, Bronis R de; Sexton, James; Gunnels, John A

    2006-01-01

    We investigate solidification in metal systems ranging in size from 64,000 to 524,288,000 atoms on the IBM BlueGene/L computer at LLNL. Using the newly developed ddcMD code, we achieve performance rates as high as 103 TFlops, with a performance of 101.7 TFlop sustained over a 7 hour run on 131,072 cpus. We demonstrate superb strong and weak scaling. Our calculations are significant as they represent the first atomic-scale model of metal solidification to proceed, without finite size effects, from spontaneous nucleation and growth of solid out of the liquid, through the coalescence phase, and into the onset of coarsening. Thus, our simulations represent the first step towards an atomistic model of nucleation and growth that can directly link atomistic to mesoscopic length scales

  17. Effect of Cooling Rate on the Microstructure and Mechanical Properties of C-Mn-Al-Si-Nb Hot-Rolled TRIP Steels

    Science.gov (United States)

    Fu, B.; Y Lu, M.; Y Yang, W.; Li, L. F.; Y Zhao, Z.

    2017-12-01

    A novel thermomechanical process to manufacture hot-rolled TRIP steels has been proposed based on dynamic transformation of undercooled austenite (DTUA). The cooling rate between DTUA and isothermal bainitic treatment in the novel process is important. In the present study, effect of this cooling rate on the final microstructures and mechanical properties of a C-Mn-Al-Si-Nb TRIP steel was investigated. The results showed that the volume fractions of acicular ferrite and retained austenite were increased with the increment of cooling rate. As a consequence, higher yield strength and larger total elongation were obtained for the investigated steel with higher cooling rate. In addition, a value of 30.24 GPa% for the product of tensile strength and total elongation was acquired when the cooling rate was 25 K/s. This value has met the standard of the “Third Generation” of advanced high strength sheet steels.

  18. Solidification of radioactive aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Aikawa, Hideaki; Kato, Kiyoshi; Wadachi, Yoshiki

    1970-09-07

    A process for solidifying a radioactive waste solution is provided, using as a solidifying agent a mixture of calcined gypsum and burnt vermiculite. The quantity ratio of the mixture is preferred to be 1:1 by volume. The quantity of impregnation is 1/2 of the volume of the total quantity of the solidifying agent. In embodiments, 10 liters of plutonium waste solution was mixed with a mixture of 1:1 calcined gypsum and burnt vermiculite contained in a 20-liter cylindrical steel container lined with asphalt. The plutonium waste solution from the laboratory was neutralized with a caustic soda aqueous solution to prevent explosion due to the nitration of organic compounds. The neutralization is not always necessary. A market available dental gypsum was calcined at 400 to 500/sup 0/C and a vermiculite from Illinois was burnt at 1,100/sup 0/C to prepare the agents. The time required for the impregnation with 10 liters of plutonium solution was four minutes. After impregnation, the temperature rose to 40/sup 0/C within 30 minutes to one hour. Next, it was cooled to room temperature by standing for 3-4 hours. Solidification time was about 1 hour. The Japan Atomic Energy Research Insitute had treated and disposed about 1,000 tons of plutonium waste by this process as of August 19, 1970.

  19. Influence of cooling rates on the transformation behaviour of 9Cr-1Mo-0.07C steel

    International Nuclear Information System (INIS)

    Saroja, S.; Vijayalakshmi, M.; Raghunathan, V.S.

    1992-01-01

    The choice of various decomposition mechanisms of austenite in a 9Cr-1 Mo-0.07C steel under different rates of cooling has been studied. The techniques employed were electron probe micro-analysis, X-ray diffraction and electron microscopy. The observed morphological features may be explained based on the predominance of the two types of transformation, austenite → martensite and austenite → ferrite during cooling. In the steel used in this study, decomposition of austenite to proeutectoid ferrite was favoured at cooling rates less than about 2 Ks -1 . The mechanism by which the supersaturated proeutectoid ferrite relieves its excess solute concentration was also studied. A ''microstructural map'' has been proposed to predict the constitution at the end of any given cooling rate for 9Cr-1 Mo-0.07C steel. The choice of commercial treatment has been rationalized with respect to the resultant microstructural constituents. (Author)

  20. Effect of Cooling Rate and Chemical Modification on the Tensile Properties of Mg-5wt% Si Alloy

    Science.gov (United States)

    Mirshahi, Farshid; Meratian, Mahmood; Zahrani, Mohsen Mohammadi; Zahrani, Ehsan Mohammadi

    Hypereutectic Mg-Si alloys are a new class of light materials usable for aerospace and other advanced engineering applications. In this study, the effects of both cooling rate and bismuth modification on the micro structure and tensile properties of hypereutectic Mg-5wt% Si alloy were investigated. It was found that the addition of 0.5% Bi, altered the morphology of primary Mg2Si particles from bulky to polygonal shape and reduced their mean size from more than 70 μm to about 30 (am. Also, the tensile strength and elongation of the modified alloy increased about 10% and 20%, respectively, which should be ascribed to the modification of Mg2Si morphology and more uniform distribution of the primary particles. Moreover, an increase in tensile strength value with increase in cooling rate were observed which is attributed to finer micro structure of alloy in higher cooling rates. It was observed that Bi addition is significantly more effective in refining the morphology of primary Mg2Si particles than applying faster cooling rates.

  1. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Characteristics of bulk liquid undercooling and crystallization behaviors ... cooling rate is fixed, the change of undercooling depends on the melt processing tem- ... solidification and a deep knowledge of undercooling of ... evolution, to obtain the information for the nucleation and ..... When cooling rate is fixed, the change.

  2. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel

    International Nuclear Information System (INIS)

    Nikravesh, M.; Naderi, M.; Akbari, G.H.

    2012-01-01

    Highlights: ► Reduction of cooling rate, can cause to increase or decrease M s and M f . ► 40% hot plastic deformation hindered the martensitic transformation. ► Hot plastic deformation, caused to decrease M f and M s , while B s increased. ► The critical cooling rate increased 40 °C/s due to apply 40% hot deformation. - Abstract: During hot stamping process, hot forming, cooling and phase transformations are performed in a single step. As a matter of fact, multifunctional phenomena happen and affect each other. Among these phenomena, martensitic and bainitic transformations have the greatest importance. In the current research, the start temperatures of martensite and bainite of 22MnB5 boron steel have been measured in undeformed and 40% deformed conditions, and in various cooling rates from 0.4 °C/s to 100 °C/s by means of deformation dilatometer. It is concluded that, reduction of cooling rate, could bring about an increase or decrease in M s and M f , depending on other phases formation before martensite. Also, hot plastic deformation, hindered the martensitic transformation and decreased M f and M s especially at lower cooling rates, while B s increased. Furthermore, the critical cooling rate, increased about 40 °C/s by applying 40% hot plastic deformation.

  3. Susceptibility of ternary aluminum alloys to cracking during solidification

    International Nuclear Information System (INIS)

    Liu, Jiangwei; Kou, Sindo

    2017-01-01

    The crack susceptibility map of a ternary Al alloy system provides useful information about which alloy compositions are most susceptible to cracking and thus should be avoided by using a filler metal with a significantly different composition. In the present study the crack susceptibility maps of ternary Al alloy systems were calculated based on the maximum |dT/d(f S ) 1/2 | as an index for the crack susceptibility, where T is temperature and f S fraction solid. Due to the complexity associated with ternary alloy solidification, commercial thermodynamic software Pandat and Al database PanAluminum, instead of analytical equations, were used to calculate f S as a function of T and hence the maximum |dT/d(f S ) 1/2 | for ternary Al-Mg-Si, Al-Cu-Mg and Al-Cu-Si alloy systems. A crack susceptibility map covering 121 alloy compositions was constructed for each of the three ternary alloy systems at each of the following three levels of back diffusion: no back diffusion, back diffusion under a 100 °C/s cooling rate, and back diffusion under 20° C/s. The location of the region of high crack susceptibility, which is the most important part of the map, was shown in each of the nine calculated maps. These locations were compared with those observed in crack susceptibility tests by previous investigators. With back diffusion considered, either under 20 or 100 °C/s, the agreement between the calculated and observed maps was good especially for Al-Mg-Si and Al-Cu-Mg. Thus, the maximum |dT/d(f S ) 1/2 | can be used as a crack susceptibility index to construct crack susceptibility maps for ternary Al alloys and to evaluate the effect of back diffusion on their crack susceptibility. - Graphical abstract: The crack susceptibility map of a ternary alloy system indicates the composition range most susceptible to cracking, which should be avoided in welding or casting. The crack susceptibility maps of ternary Al alloy systems Al-Mg-Si, Al-Cu-Mg and Al-Cu-Si were calculated based

  4. Defect generation during solidification of aluminium foams

    International Nuclear Information System (INIS)

    Mukherjee, M.; Garcia-Moreno, F.; Banhart, J.

    2010-01-01

    The reason for the frequent occurrence of cell wall defects in metal foams was investigated. Aluminium foams often expand during solidification, a process which is referred as solidification expansion (SE). The effect of SE on the structure of aluminium foams was studied in situ by X-ray radioscopy and ex situ by X-ray tomography. A direct correlation between the magnitude of SE and the number of cell wall ruptures during SE and finally the number of defects in the solidified foams was found.

  5. Plastic solidification system for radioactive waste

    International Nuclear Information System (INIS)

    Kani, Jiro; Irie, Hiromitsu; Obu, Etsuji; Nakayama, Yasuyuki; Matsuura, Hiroyuki.

    1979-01-01

    The establishment of a new solidification system is an important theme for recent radioactive-waste disposal systems. The conditions required of new systems are: (1) the volume of the solidified product to be reduced, and (2) the property of the solidified product to be superior to the conventional ones. In the plastic solidification system developed by Toshiba, the waste is first dried and then solidified with thermosetting resin. It has been confirmed that the property of the plastic solidified product is superior to that of the cement-or bitumen-solidified product. Investigation from various phases is being carried on for the application of this method to commercial plants. (author)

  6. Influence of additional heat exchanger block on directional solidification system for growing multi-crystalline silicon ingot - A simulation investigation

    Science.gov (United States)

    Nagarajan, S. G.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2018-04-01

    Transient simulation has been carried out for analyzing the heat transfer properties of Directional Solidification (DS) furnace. The simulation results revealed that the additional heat exchanger block under the bottom insulation on the DS furnace has enhanced the control of solidification of the silicon melt. Controlled Heat extraction rate during the solidification of silicon melt is requisite for growing good quality ingots which has been achieved by the additional heat exchanger block. As an additional heat exchanger block, the water circulating plate has been placed under the bottom insulation. The heat flux analysis of DS system and the temperature distribution studies of grown ingot confirm that the established additional heat exchanger block on the DS system gives additional benefit to the mc-Si ingot.

  7. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-xun, E-mail: zhangyuxun198@163.com; Yi, You-ping, E-mail: yyp@csu.edu.cn; Huang, Shi-quan, E-mail: huangsqcsu@sina.com; Dong, Fei

    2016-09-30

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  8. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    International Nuclear Information System (INIS)

    Zhang, Yu-xun; Yi, You-ping; Huang, Shi-quan; Dong, Fei

    2016-01-01

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  9. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M., E-mail: nikravesh@yahoo.com [Department of Material Science and Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Naderi, M. [Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Akbari, G.H. [Department of Material Science and Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

    2012-04-01

    Highlights: Black-Right-Pointing-Pointer Reduction of cooling rate, can cause to increase or decrease M{sub s} and M{sub f}. Black-Right-Pointing-Pointer 40% hot plastic deformation hindered the martensitic transformation. Black-Right-Pointing-Pointer Hot plastic deformation, caused to decrease M{sub f} and M{sub s}, while B{sub s} increased. Black-Right-Pointing-Pointer The critical cooling rate increased 40 Degree-Sign C/s due to apply 40% hot deformation. - Abstract: During hot stamping process, hot forming, cooling and phase transformations are performed in a single step. As a matter of fact, multifunctional phenomena happen and affect each other. Among these phenomena, martensitic and bainitic transformations have the greatest importance. In the current research, the start temperatures of martensite and bainite of 22MnB5 boron steel have been measured in undeformed and 40% deformed conditions, and in various cooling rates from 0.4 Degree-Sign C/s to 100 Degree-Sign C/s by means of deformation dilatometer. It is concluded that, reduction of cooling rate, could bring about an increase or decrease in M{sub s} and M{sub f}, depending on other phases formation before martensite. Also, hot plastic deformation, hindered the martensitic transformation and decreased M{sub f} and M{sub s} especially at lower cooling rates, while B{sub s} increased. Furthermore, the critical cooling rate, increased about 40 Degree-Sign C/s by applying 40% hot plastic deformation.

  10. Effects of the Cooling Rate After Annealing Treatment on the Microstructure and the Mechanical Properties of Super-Duplex Stainless Steel

    International Nuclear Information System (INIS)

    Kwon, Gi-Hyoun; Park, Yong-Ho; Na, Young-Sang; Yoo, Wee-Do; Lee, Jong-Hoon

    2012-01-01

    The aim of this study was to analyze the effect of the cooling rate after heat treatment on the microstructure and mechanical properties of 2507 duplex stainless steels. Heat treatment was carried out at 1050°C for 1 hr, followed by controlled cooling. The cooling rates were 175.6 × 10 - 3°C/s, 47.8 × 10 - 3°C/s, 33.3 × 10 - 3°C/s, 16.7 × 10 - 3°C/s, 11.7 × 10 - 3°C/s, 5.8 × 10 - 3°C/s and 2.8 × 10 - 3°C/s, which resulted in variations of the microstructure, such as the fractional change of the ferrite phase and sigma phase formation. Fatigue, hardness, impact and tensile tests were performed on the specimens with different cooling rates. The precipitation of the σ phase caused a hardness increase and a sharp decrease of toughness and tensile elongation. The fatigue limit of the sample with a cooling rate of 5.8 × 10 - 3°C/s was 26 MPa higher than that of the sample with a cooling rate of 175.6 × 10 - 3°C/s. Our observations of the fracture surface confirmed that the higher fatigue resistance of the specimen with a cooling rate of 5.8 × 10 - 3°C/s was caused by the delay of the fatigue crack growth, in addition to higher yield strength.

  11. Solidification technique of radioactive elements. Research using zirconium phosphates

    International Nuclear Information System (INIS)

    Nakayama, Susumu; Ito, Katsuhiko

    2005-01-01

    Proton type zirconium phosphates HZr 2 (PO 4 ) 3 , NASICON type three-dimensional net work structure, is used for solidification of Cs in the high level radioactive waste. Two kinds of solidification methods such as the dry method and autoclave method are explained. Cs ion entered into 0.6nm space of HZr 2 (PO 4 ) 3 , and formed ionic bonding, which made the difficult situation to remove. When mixture of HZr 2 (PO 4 ) 3 and 23 kinds of M(NO 3 )n (M= Li, Na, K, Pb, Sr, Bi, Y, Mg, Ca, Sc, Mn, Fe, Co, Ni, Cu, Zn, Ag, Cd, Ba, La, Ce, Tl, and Pb; n=1,2 or 3) was treated at 400-700degC by dry method, solidification of the subject metals was succeeded. Amount of solidification of Cs by autoclave at 250degC is almost same as the dry method and its leachability resistance increased 40 times than that of dry method after heat treatment in atmosphere at 700degC. (S.Y.)

  12. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-09-01

    The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Influence of cooling rate and cerium addition on rapidly solidified Al-TM alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Klementová, Mariana; Šerák, J.; Mudrová, M.; Valdaufová, J.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 1-7 ISSN 0023-432X Institutional research plan: CEZ:AV0Z40320502 Keywords : rapid solidification * Al-TM * microstructure * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2010

  14. Effect of cooling rate on tetragonal to monoclinic transformation in hot pressed ZrO2(Y2O3) ceramics

    International Nuclear Information System (INIS)

    Zhu, W.Z.; Ding, Z.S.; Lei, T.C.; Zhou, Y.

    1995-01-01

    It is well documented that the tetragonal (T) to monoclinic (M) transition in either pure zirconia or partially stabilized zirconia is the origin of toughening in that resistance to the propagation of cracks can be greatly enhanced by the concurrent appearance of the stress field of the transformation. In the present paper, the effect of cooling rate on the T → M phase transformation in yttria-containing zirconia and its resultant mechanical properties have been studied by means of thermal expansion analysis. Both the T → M and M → T transformations are affected by the cooling and heating rates, respectively. The amount of M-phase decreases with increasing cooling rate. T → M transition occurring within the interior part of specimen can be completely inhibited by the cooling rate of 100 C/min for ZrO 2 (2mol% Y 2 O 3 ) ceramic sintered at 1,600 C. The start point and end point of the T → M transformation decreases and increases, respectively, with increasing cooling rate. Both the start point and end point of the M → T transformation increase with increasing cooling rate. The divergence between the results of X-ray diffraction and the thermal expansion analysis has been rationalized in terms of the both internal and external factors, namely, preferential sites of surface for the formation of the M-phase and limited sensitivity of measurement of the thermal expansion apparatus. Both the water-cooled and air-cooled specimens show much improved mechanical properties regardless of the sintering temperatures or yttria content because of the relatively higher T-phase fraction retained to room temperature

  15. Diffusively cooled thin-sheath high-repetition-rate TEA and TEMA lasers

    Science.gov (United States)

    Yatsiv, Shaul; Gabay, Amnon; Sintov, Yoav

    1993-05-01

    Transverse electric atmospheric (TEA), or multi atmospheric (TEMA) lasers deliver intense short laser pulses of considerable energies. Recurrent high repetition rate pulse trains afford substantial average power levels. In a high rep-rate operation the gas flows across the cavity and is externally cooled to maintain a reasonably low temperature. The gas flow gear and heat exchanger are bulky and costly. In this work we present a repetitively pulsed TEA or TEMA laser that combines energy and peak power features in an individual pulse with the substantial average power levels of a pulse train in a thin layer of gas. Excess heat is disposed of, by conduction through the gas, to cooled enclosing walls. The gas does not flow. The method applies to vibrational transition molecular lasers in the infrared, where elevated temperatures are deleterious to the laser operation. The gist of the method draws on the law that heat conductivity in gases does not depend on their pressure. The fact lends unique operational flexibility and compactness, desirable for industrial and research purposes.

  16. [Solidification of volatile oil with graphene oxide].

    Science.gov (United States)

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao

    2015-02-01

    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.

  17. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process.

    Science.gov (United States)

    Xuan, Yang; Nastac, Laurentiu

    2018-02-01

    Recent studies showed that the microstructure and mechanical properties of aluminum based nanocomposites can be significantly improved when ultrasonic cavitation and solidification processing is used. This is because ultrasonic cavitation processing plays an important role not only in degassing and dispersion of the nanoparticles, but also in breaking up the dendritic grains and refining the as-cast microstructure. In the present study, A356 alloy and Al 2 O 3 nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles were added into the molten A356 alloy and dispersed via ultrasonic cavitation processing. Ultrasonic cavitation was applied over various temperature ranges during molten alloy cooling and solidification to investigate the grain structure formation and the nanoparticle dispersion behavior. Optical Microscopy and Scanning Electron Microscopy were used to investigate in detail the differences in the microstructure characteristics and the nanoparticle distribution. Experimental results indicated that the ultrasonic cavitation processing and Al 2 O 3 nanoparticles play an important role for microstructure refinement. In addition, it was shown in this study that the Al 2 O 3 nanoparticles modified the eutectic phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... inverse thermal analysis was tested on both experimental and simulated data....

  19. Choosing solidification or vitrification for low-level radioactive and mixed waste treatment

    International Nuclear Information System (INIS)

    Gimpel, R.F.

    1992-01-01

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450 000m 3 of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarizes how Fernald is choosing between solidification and vitrification as the primary waste treatment method

  20. Choosing solidification or vitrification for low-level radioactive and mixed waste treatment

    International Nuclear Information System (INIS)

    Gimpel, R.F.

    1992-01-01

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450,000 m 3 of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarized how Fernald is choosing between solidification and vitrification as the primary waste treatment method

  1. Development of sodium disposal technology. Experiment of sodium compound solidification process

    International Nuclear Information System (INIS)

    Matsumoto, Toshiyuki; Ohura, Masato; Yatoh, Yasuo

    2007-07-01

    A large amount of sodium containing radioactive waste will come up at the time of final shutdown/decommission of FBR plant. The radioactive waste is managed as solid state material in a closed can in Japan. As for the sodium, there is no established method to convert the radioactive sodium to solid waste. Further, the sodium is highly reactive. Thus, it is recommended to convert the sodium to a stable substance before the solidification process. One of the stabilizing methods is conversion of sodium into sodium hydroxide solution. These stabilization and solidification processes should be safe, economical, and efficient. In order to develop such sodium disposal technology, nonradioactive sodium was used and a basic experiment was performed. Waste-fluid Slag Solidification method was employed as the solidification process of sodium hydroxide solution. Experimental parameters were mixing ratio of the sodium hydroxide and the slag solidification material, temperature and concentration of the sodium hydroxide. The best parameters were obtained to achieve the maximum filling ratio of the sodium hydroxide under a condition of enough high compressive strength of the solidified waste. In a beaker level test, the solidified waste was kept in a long term and it was shown that there was no change of appearance, density, and also the compressive strength was kept at a target value. In a real scale test, homogeneous profiles of the density and the compressive strength were obtained. The compressive strength was higher than the target value. It was shown that the Waste-fluid Slag Solidification method can be applied to the solidification process of the sodium hydroxide solution, which was produced by the stabilization process. (author)

  2. Effect of Y additions on the solidification behavior of a copper mold cast CuZrAl alloy with high oxygen content

    International Nuclear Information System (INIS)

    Coury, F.G.; Batalha, W.; Botta, W.J.; Bolfarini, C.; Kiminami, C.S.

    2014-01-01

    Bulk glassy samples of the CuAlZr system were produced by copper mold casting in the form of wedges with different amounts of yttrium (0 , 0.3 and 2 at%) , the processing conditions led to high oxygen contents on the samples (1000ppm). A reportedly good glass-former composition was chosen as the base alloy, it’s nominal composition is Cu47Zr45Al8. This study aimed to understand the influence of oxygen and yttrium in the solidification of these alloys. The samples were analyzed by scanning and transmission electron microscopy, differential scanning calorimetry and X-Ray diffraction. The sequence of formation of crystalline phases in these alloys was determined as a function of the different cooling rates inherent in the process. It was observed that the formation of CuZr2 phase was inhibited in samples with Y allowing the production of a fully glassy 8mm. (author)

  3. Effect of thermophysical property and coating thickness on microstructure and characteristics of a casting

    Directory of Open Access Journals (Sweden)

    Ai-chao Cheng

    2017-01-01

    Full Text Available A new improved investment casting technology (IC has been presented and compared with the existing IC technology such as lost foam casting (LFC. The effect of thermophysical property and coating thickness on casting solidification temperature field, microstructure and hardness has been investigated. The results show that the solidification rate decreases inversely with the coating thickness when the coating contains silica sol, zircon powder, mullite powder and defoaming agent. In contrast, the solid cooling rate increases as the coating thickness increases. However, the solidification rate and solid cooling rate of the casting produced by the existing IC and the improved IC are very similar when the coating thickness is 5 mm, so the microstructure and hardness of a container corner fitting produced by the improved IC and the existing IC are similar. The linear regression equation for the grain size (d and cooling rate (v of the castings is d= –0.41v+206.1. The linear regression equation for the content of pearlite (w and solid cooling rate (t is w=1.79t + 6.71. The new improved IC can greatly simplify the process and decrease the cost of production compared with the existing IC. Contrasting with LFC, container corner fittings produced by the new improved IC have fewer defects and better properties. It was also found that the desired microstructure and properties can be obtained by changing the thermophysical property and thickness of the coating.

  4. Cooling Curve Analysis of Micro- and Nanographite Particle-Embedded Salt-PCMs for Thermal Energy Storage Applications

    Science.gov (United States)

    Sudheer, R.; Prabhu, K. N.

    2017-08-01

    In recent years, the focus of phase change materials (PCM) research was on the development of salt mixtures with particle additives to improve their thermal energy storage (TES) functionalities. The effect of addition of microsized (50 μm) and nanosized (400 nm) graphite particles on TES parameters of potassium nitrate was analyzed in this work. A novel technique of computer-aided cooling curve analysis was employed here to study the suitability of large inhomogeneous PCM samples. The addition of graphite micro- and nanoparticles reduced the solidification time of the PCM significantly enhancing the heat removal rates, in the first thermal cycle. The benefits of dispersing nanoparticles diminished in successive 10 thermal cycles, and its performance was comparable to the microparticle-embedded PCM thereafter. The decay of TES functionalities on thermal cycling is attributed to the agglomeration of nanoparticles which was observed in SEM images. The thermal diffusivity property of the PCM decreased with addition of graphite particles. With no considerable change in the cooling rates and a simultaneous decrease in thermal diffusivity, it is concluded that the addition of graphite particles increased the specific heat capacity of the PCM. It is also suggested that the additive concentration should not be greater than 0.1% by weight of the PCM sample.

  5. Effects of the Cooling Rate After Annealing Treatment on the Microstructure and the Mechanical Properties of Super-Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Gi-Hyoun; Park, Yong-Ho [Pusan National University, Pusan (Korea, Republic of); Na, Young-Sang; Yoo, Wee-Do; Lee, Jong-Hoon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2012-10-15

    The aim of this study was to analyze the effect of the cooling rate after heat treatment on the microstructure and mechanical properties of 2507 duplex stainless steels. Heat treatment was carried out at 1050°C for 1 hr, followed by controlled cooling. The cooling rates were 175.6 × 10{sup -}3°C/s, 47.8 × 10{sup -}3°C/s, 33.3 × 10{sup -}3°C/s, 16.7 × 10{sup -}3°C/s, 11.7 × 10{sup -}3°C/s, 5.8 × 10{sup -}3°C/s and 2.8 × 10{sup -}3°C/s, which resulted in variations of the microstructure, such as the fractional change of the ferrite phase and sigma phase formation. Fatigue, hardness, impact and tensile tests were performed on the specimens with different cooling rates. The precipitation of the σ phase caused a hardness increase and a sharp decrease of toughness and tensile elongation. The fatigue limit of the sample with a cooling rate of 5.8 × 10{sup -}3°C/s was 26 MPa higher than that of the sample with a cooling rate of 175.6 × 10{sup -}3°C/s. Our observations of the fracture surface confirmed that the higher fatigue resistance of the specimen with a cooling rate of 5.8 × 10{sup -}3°C/s was caused by the delay of the fatigue crack growth, in addition to higher yield strength.

  6. Macrosegregation Resulting from Directional Solidification Through an Abrupt Change in Cross-Sections

    Science.gov (United States)

    Lauer, M.; Poirier, D. R.; Ghods, M.; Tewari, S. N.; Grugel, R. N.

    2017-01-01

    Simulations of the directional solidification of two hypoeutectic alloys (Al-7Si alloy and Al-19Cu) and resulting macrosegregation patterns are presented. The casting geometries include abrupt changes in cross-section from a larger width of 9.5 mm to a narrower 3.2 mm width then through an expansion back to a width of 9.5 mm. The alloys were chosen as model alloys because they have similar solidification shrinkages, but the effect of Cu on changing the density of the liquid alloy is about an order of magnitude greater than that of Si. The simulations compare well with experimental castings that were directionally solidified in a graphite mold in a Bridgman furnace. In addition to the simulations of the directional solidification in graphite molds, some simulations were effected for solidification in an alumina mold. This study showed that the mold must be included in numerical simulations of directional solidification because of its effect on the temperature field and solidification. For the model alloys used for the study, the simulations clearly show the interaction of the convection field with the solidifying alloys to produce a macrosegregation pattern known as "steepling" in sections with a uniform width. Details of the complex convection- and segregation-patterns at both the contraction and expansion of the cross-sectional area are revealed by the computer simulations. The convection and solidification through the expansions suggest a possible mechanism for the formation of stray grains. The computer simulations and the experimental castings have been part of on-going ground-based research with the goal of providing necessary background for eventual experiments aboard the ISS. For casting practitioners, the results of the simulations demonstrate that computer simulations should be applied to reveal interactions between alloy solidification properties, solidification conditions, and mold geometries on macrosegregation. The simulations also presents the

  7. Solidification of ash from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Roberson, W.A.; Albenesius, E.L.; Becker, G.W.

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process

  8. Toxic and hazardous waste disposal. Volume 1. Processes for stabilization/solidification

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1979-01-01

    Processes for the stabilization and/or solidification of toxic, hazardous, and radioactive wastes are reviewed. The types of wastes classified as hazardous are defined. The following processes for the solidification of hazardous wastes are described: lime-based techniques; thermoplastic techniques; organic polymer techniques; and encapsulation. The following processes for the solidification of high-level radioactive wastes are described: calcination; glassification; and ceramics. The solidification of low-level radioactive wastes with asphalt, cement, and polymeric materials is also discussed. Other topics covered include: the use of an extruder/evaporator to stabilize and solidify hazardous wastes; effect disposal of fine coal refuse and flue gas desulfurization slurries using Calcilox additive stabilization; the Terra-Tite Process; the Petrifix Process; the SFT Terra-Crete Process; Sealosafe Process; Chemfix Process; and options for disposal of sulfur oxide wastes

  9. Effect of cooling rates on bare bulk and silver wrapped pellets of Bi-2223 superconductor

    International Nuclear Information System (INIS)

    Terzioglu, C.; Oztuerk, O.; Kilic, A.; Gencer, A.; Belenli, I.

    2006-01-01

    We have examined the effect of cooling rates on oxygen content of Bi-2223 phase samples with and without silver sheating. Two sets of samples with and without silver sheating were annealed under identical conditions and cooled with rates of 10 deg. C/h, 25 deg. C/h, 50 deg. C/h, 75 deg. C/h, and 100 deg. C/h. XRD examination of the samples showed that a high percentage of Bi-2223 was obtained. Microstructure examinations were performed by scanning electron microscopy. Resistive and magnetic transitions of the samples were studied. All the reported data were discussed and related

  10. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  11. Nuclear waste solidification

    International Nuclear Information System (INIS)

    Bjorklund, W.J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition

  12. Solidification Segregation and Homogenization Behavior of 1Cr-1.25Mo-0.25V Steel Ingot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Bae [Dae-gu Mechatronics and Materials Institute, Daegu (Korea, Republic of); Na, Young-Sang; Seo, Seong-Moon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Je-Hyun [Changwon National University, Changwon (Korea, Republic of)

    2016-09-15

    As a first step to optimizing the homogenization heat treatment following high temperature upset forging, the solidification segregation and the homogenization behaviors of solute elements were quantitatively analyzed for 1Cr-1.25Mo-0.25V steel ingot by electron probe micro-analysis (EPMA). The random sampling approach, which was designed to generate continuous compositional profiles of each solute element, was employed to clarify the segregation and homogenization behaviors. In addition, ingot castings of lab-scale and a 16-ton-sized 1Cr-1.25Mo-0.25V steel were simulated using the finite element method in three dimensions to understand the size effect of the ingot on the microsegregation and its reduction during the homogenization heat treatment. It was found that the microsegregation in a large-sized ingot was significantly reduced by the promotion of solid state diffusion due to the extremely low cooling rate. On the other hand, from the homogenization point of view, increasing the ingot size causes a dramatic increase in the dendrite arm spacing, and hence the homogenization of microsegregation in a large-sized ingot appears to be practically difficult.

  13. Real-time synchrotron x-ray observations of equiaxed solidification of aluminium alloys and implications for modelling

    Science.gov (United States)

    Prasad, A.; Liotti, E.; McDonald, S. D.; Nogita, K.; Yasuda, H.; Grant, P. S.; StJohn, D. H.

    2015-06-01

    Recently, in-situ observations were carried out by synchrotron X-ray radiography to observe the nucleation and growth in Al alloys during solidification. The nucleation and grain formation of a range of Al-Si and Al-Cu binary alloys were studied. When grain refiner was added to the alloys, the location of the nucleation events was readily observed. Once nucleation began it continued to occur in a wave of events with the movement of the temperature gradient across the field of view due to cooling. Other features observed were the settling of the primary phase grains in the Al-Si alloys and floating in the Al-Cu alloys, the effects of convection with marked fluctuation of the growth rate of the solid-liquid interface in the Al-Si alloys, and an absence of fragmentation. The microstructures are typical of those produced in the equiaxed zone of actual castings. These observations are compared with predictions arising from the Interdependence model. The results from this comparison have implications for further refinement of the model and simulation and modelling approaches in general. These implications will be discussed.

  14. Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.

    Science.gov (United States)

    Jin, Yifei; Compaan, Ashley; Chai, Wenxuan; Huang, Yong

    2017-06-14

    Additive manufacturing (AM) enables the freeform fabrication of complex structures from various build materials. The objective of this study is to develop a novel Laponite nanoclay-enabled "printing-then-solidification" additive manufacturing approach to extrude complex three-dimensional (3D) structures made of various liquid build materials. Laponite, a member of the smectite mineral family, is investigated to serve as a yield-stress support bath material for the extrusion printing of liquid build materials. Using the printing-then-solidification approach, the printed structure remains liquid and retains its shape with the help of the Laponite support bath. Then the completed liquid structures are solidified in situ by applying suitable cross-linking mechanisms. Finally, the solidified structures are harvested from the Laponite nanoclay support bath for any further processing as needed. Due to its chemical and physical stability, liquid build materials with different solidification/curing/gelation mechanisms can be fabricated in the Laponite bath using the printing-then-solidification approach. The feasibility of the proposed Laponite-enabled printing-then-solidification approach is demonstrated by fabricating several complicated structures made of various liquid build materials, including alginate with ionic cross-linking, gelatin with thermal cross-linking, and SU-8 with photo-cross-linking. During gelatin structure printing, living cells are included and the postfabrication cell viability is above 90%.

  15. Containerless solidification of BiFeO3 oxide under microgravity

    Science.gov (United States)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  16. The effect of major alloying elements on the size of the secondary dendrite arm spacing in the as-cast Al-Si-Cu alloys

    Directory of Open Access Journals (Sweden)

    M. B. Djurdjevič

    2012-01-01

    Full Text Available A comprehensive understanding of melt quality is of paramount importance for the control and prediction of actual casting characteristics. Among many phenomenons that occur during the solidification of castings, there are four that control structure and consequently mechanical properties: chemical composition, liquid metal treatment, cooling rate and temperature gradient. The cooling rate and alloy composition are among them most important. This paper investigates the effect of some major alloying elements (silicon and copper of Al-Si-Cu alloys on the size of the secondary dendrite arm spacing. It has been shown that both alloying elements have reasonable influence on the refinement of this solidification parameter.

  17. Numerical simulation of freckle formation in directional solidification of binary alloys

    Science.gov (United States)

    Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.

    1992-01-01

    A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The upper solidified layer grows at a faster rate than the lower solidified layer. Similarly, solidification of magma intrusion within the crust is also non-uniform due to the presence of thermal gradient in the crust. Available analytical solution for solidification of a melt layer assumes only symmetric cooling about the centre of the ...

  19. Lamellar boundary alignment of DS-processed TiAl-W alloys by a solidification procedure

    Science.gov (United States)

    Jung, In-Soo; Oh, Myung-Hoon; Park, No-Jin; Kumar, K. Sharvan; Wee, Dang-Moon

    2007-12-01

    In this study, a β solidification procedure was used to align the lamellae in a Ti-47Al-2W (at.%) alloy parallel to the growth direction. The Bridgman technique and the floating zone process were used for directional solidification. The mechanical properties of the directionally solidified alloy were evaluated in tension at room temperature and at 800°C. At a growth rate of 30 mm/h (with the floating zone approach), the lamellae were well aligned parallel to the growth direction. The aligned lamellae yielded excellent room temperature tensile ductility. The tensile yield strength at 800°C was similar to that at room temperature. The orientation of the γ lamellar laths in the directionally solidified ingots, which were manufactured by means of a floating zone process, was identified with the aid of electron backscattered diffraction analysis. On the basis of this analysis, the preferred growth direction of the bcc-β dendrites that formed at high temperatures close to the melting point was inferred to be [001]β at a growth rate of 30 mm/h and [111]β at a growth rate of 90 mm/h.

  20. The Faceted Discrete Growth and Phase Differentiation During the Directional Solidification of 20SiMnMo5 Steel

    Science.gov (United States)

    Ma, Xiaoping; Li, Dianzhong

    2018-07-01

    The microstructures, segregation and cooling curve were investigated in the directional solidification of 20SiMnMo5 steel. The typical characteristic of faceted growth is identified. The microstructures within the single cellular and within the single dendritic arm, together with the contradictive segregation distribution against the cooling curve, verify the discrete crystal growth in multi-scales. Not only the single cellular/dendritic arm but also the single martensite zone within the single cellular/dendritic arm is produced by the discrete growth. In the viewpoint of segregation, the basic domain following continuous growth has not been revealed. Along with the multi-scale faceted discrete growth, the phase differentiation happens for both the solid and liquid. The differentiated liquid phases appear and evolve with different sizes, positions, compositions and durations. The physical mechanism for the faceted discrete growth is qualitatively established based on the nucleation of new faceted steps induced by the composition gradient and temperature gradient.

  1. The Faceted Discrete Growth and Phase Differentiation During the Directional Solidification of 20SiMnMo5 Steel

    Science.gov (United States)

    Ma, Xiaoping; Li, Dianzhong

    2018-03-01

    The microstructures, segregation and cooling curve were investigated in the directional solidification of 20SiMnMo5 steel. The typical characteristic of faceted growth is identified. The microstructures within the single cellular and within the single dendritic arm, together with the contradictive segregation distribution against the cooling curve, verify the discrete crystal growth in multi-scales. Not only the single cellular/dendritic arm but also the single martensite zone within the single cellular/dendritic arm is produced by the discrete growth. In the viewpoint of segregation, the basic domain following continuous growth has not been revealed. Along with the multi-scale faceted discrete growth, the phase differentiation happens for both the solid and liquid. The differentiated liquid phases appear and evolve with different sizes, positions, compositions and durations. The physical mechanism for the faceted discrete growth is qualitatively established based on the nucleation of new faceted steps induced by the composition gradient and temperature gradient.

  2. Solidification of acidic liquid waste from 99Mo isotope production

    International Nuclear Information System (INIS)

    Parsons, G.J.

    2001-01-01

    results in the solidification of the deammoniated product in stainless steel vessels designed for long term storage. The process was developed and commissioned through sequential steps. Initial testing was conducted on natural uranium nitrate based solutions followed by similar solutions with increasing levels of trace activity derived from the stored waste. The process was commissioned on stored liquid waste in 1999 and is now a routine operation. Initial processing through the concentration phase has been successful in removing 82-95% of the original liquor volume at a throughput rate of generally 4-4.5 L/h. The ammonia content in the acid waste had arisen principally from the addition of ammonia bearing condensate from the molybdenum extraction and initial purification process. This practice of combining these two liquid wastes is no longer continued but has resulted in an inventory of historical acid waste containing small concentrations of ammonia. A deammoniation process was developed to treat batches of concentrate before solidification. This processing step has been successful in reducing NH 3 -N to less than 10ppm under controlled conditions. Nitrogen oxides (NOx gasses) are a product of this chemical process and off gas is treated through a catalytic converter. Solidification to date has resulted in a product of 0.6-2.3% of the original liquor volume (or 1.7- 5.7% of the original solution weight). The solidification takes place in thick- walled once-use stainless steel vessels. The vessel is heated in a thermic oil bath with slow continuous feed of deammoniated concentrate and withdrawal of condensate. This phase is slower with throughput rates of around 1L/h decreasing to less than 0.5L/h as processing continues. When the required amount has been added to the vessel it is further heated, resulting in a product which solidifies on cooling. When this process is complete the connections to the vessel are removed and the vessel ports plugged. The vessel is then

  3. Microstructure and electrochemical corrosion behavior of a Pb-1 wt%Sn alloy for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 612, 13083-970, Campinas - SP (Brazil)

    2009-07-15

    The aim of this study was to evaluate the effect of solidification cooling rates on the as-cast microstructural morphologies of a Pb-1 wt%Sn alloy, and to correlate the resulting microstructure with the corresponding electrochemical corrosion resistance in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. Cylindrical low-carbon steel and insulating molds were employed permitting the two extremes of a significant range of solidification cooling rates to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response of Pb-1 wt%Sn alloy samples. It was found that lower cooling rates are associated with coarse cellular arrays which result in better corrosion resistance than fine cells which are related to high cooling rates. The experimental results have shown that that the pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance. (author)

  4. Non-Equilibrium Solidification of Undercooled Metallic Melts

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2014-06-01

    Full Text Available If a liquid is undercooled below its equilibrium melting temperature an excess Gibbs free energy is created. This gives access to solidification of metastable solids under non-equilibrium conditions. In the present work, techniques of containerless processing are applied. Electromagnetic and electrostatic levitation enable to freely suspend a liquid drop of a few millimeters in diameter. Heterogeneous nucleation on container walls is completely avoided leading to large undercoolings. The freely suspended drop is accessible for direct observation of rapid solidification under conditions far away from equilibrium by applying proper diagnostic means. Nucleation of metastable crystalline phases is monitored by X-ray diffraction using synchrotron radiation during non-equilibrium solidification. While nucleation preselects the crystallographic phase, subsequent crystal growth controls the microstructure evolution. Metastable microstructures are obtained from deeply undercooled melts as supersaturated solid solutions, disordered superlattice structures of intermetallics. Nucleation and crystal growth take place by heat and mass transport. Comparative experiments in reduced gravity allow for investigations on how forced convection can be used to alter the transport processes and design materials by using undercooling and convection as process parameters.

  5. Solidification processing of intermetallic Nb-Al alloys

    Science.gov (United States)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  6. Heat transfer and solidification processes of alloy melt with undercooling: I. Experimental results

    International Nuclear Information System (INIS)

    Yoshioka, Hideaki; Tada, Yukio; Kunimine, Kanji; Furuichi, Taira; Hayashi, Yujiro

    2006-01-01

    The solidification process of Pb-Sn and Bi-Sn alloy melts is discussed to obtain a basic understanding of the essential phenomena of solidification with undercooling. First, from macroscopic observations, it is shown that the solidification process consists of the following three stages: (1) free growth with recalescence dissipation of thermal undercooling (2) expansion of crystals with the relaxation of constitutional undercooling or with the recovering process of interrupted quasi-steady heat conduction, and (3) equilibrium solidification. The specific features of free growth under non-uniform undercooling are also shown by comparison with the Lipton, Glicksman, and Kurz model. Next, from microscopic observations, the distribution of the solute concentration and the change of crystal morphology in the solidified materials were investigated quantitatively using scanning electron microscopy and energy-dispersive spectroscopy. Finally, the solidification path during the above three fundamental processes is dynamically represented on phase diagrams

  7. Melting, solidification, remelting, and separation of glass and metal

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending

  8. Modified sulfur cement solidification of low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  9. Modified sulfur cement solidification of low-level wastes

    International Nuclear Information System (INIS)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended

  10. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review

    Science.gov (United States)

    Tajudin, S. A. A.; Azmi, M. A. M.; Nabila, A. T. A.

    2016-07-01

    Stabilization/Solidification (S/S) is typically a process that involves a mixing of waste with binders to reduce the volume of contaminant leachability by means of physical and chemical characteristics to convert waste in the environment that goes to landfill or others possibly channels. Stabilization is attempts to reduce the solubility or chemical reactivity of the waste by changing the physical and chemical properties. While, solidification attempt to convert the waste into easily handled solids with low hazardous level. These two processes are often discussed together since they have a similar purpose of improvement than containment of potential pollutants in treated wastes. The primary objective of this review is to investigate the materials used as a binder in Stabilization/Solidification (S/S) method as well as the ability of these binders to remediate the contaminated soils especially by heavy metals.

  11. Solidification of low-level wastes by inorganic binder

    International Nuclear Information System (INIS)

    Sasaki, M.T.; Shimojo, M.; Suzuki, K.; Kajikawa, A.; Karasawa, Y.

    1995-01-01

    The use of an alkali activated slag binder has been studied for solidification and stabilization of low-level wastes in nuclear power stations and spent fuel processing facilities. The activated slag effectively formed waste products having good physical properties with high waste loading for sodium sulfate, sodium nitrate, calcium pyrophosphate/phosphate and spent ion-exchange resins. Moreover, the results of the study suggest the slag has the ability to become a common inorganic binder for the solidification of various radioactive wastes. This paper also describes the fixation of radionuclides by the activated slag binder

  12. Three-dimensional phase-field simulations of directional solidification

    Science.gov (United States)

    Plapp, Mathis

    2007-05-01

    The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.

  13. DKDP crystal growth controlled by cooling rate

    Science.gov (United States)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  14. Solidification in Multicomponent Multiphase Systems (SIMMS)

    Science.gov (United States)

    Rex, S.; Hecht, U.

    2005-06-01

    The multiphase microstructures that evolve during the solidification of multicomponent alloys are attracting widespread interest for industrial applications and fundamental research.Thermodynamic databases are now well-established for many alloy systems. Thermodynamic calculations provide all the required information about phase equilibria, forming an integral part of both dedicated and comprehensive microstructure models. Among the latter, phase-field modelling has emerged as the method of choice. Solidification experiments are intended to trigger model development or to serve as benchmarks for model validation. For benchmarking, microgravity conditions offer a unique opportunity for avoiding buoyancy-induced convection and buoyancy forces in bulk samples. However, diffusion and the free-energy of interfaces and its anisotropy need to be determined.The measurement of chemical diffusivities in the liquid state can equally benefit from microgravity experiments.

  15. Measuring device for weight of glass of glass solidification product to be charged

    International Nuclear Information System (INIS)

    Yasutake, Nobuhiro; Arai, Masaki; Akashi, Ken-ichi

    1998-01-01

    The present invention provides a device for accurately calculating the weight of molten glass to be charged during manufacturing glass solidification products of radioactive liquid wastes. Namely, a discharge nozzle at the lower end of a glass melting furnace and an upper end of a vessel for glass solidification materials are connected by a connecting device extensible vertically in a cylindrical shape. Molten glasses are flown down by way of the connecting device and filled into the vessel for solidification products. A first scale is constituted so as to measure the weight of load, and the vessel for solidification products are loaded. A second scale is constituted so as to measure the own weight and a weight of load, and is interposed between a flange at the circumference of a charging port and the lower end of the connecting device, and has an opening for flowing down the molten glass at the central portion. With such a constitution, the first scale can weigh the total of the weight of molten glass charged to the vessel for solidification products, the weight of the vessel for solidification products, the counterforce from the connecting device and the weight of the second scale. If the measured value of the secondary scale and the weight of the vessel for solidification products are subtracted from the former value, the weight of the charged molten glass can be determined. (I.S.)

  16. Effects of different cooling rates during two casting processes on the microstructures and mechanical properties of extruded Mg–Al–Ca–Mn alloy

    International Nuclear Information System (INIS)

    Xu, S.W.; Oh-ishi, K.; Kamado, S.; Takahashi, H.; Homma, T.

    2012-01-01

    Highlights: ► Ordered monolayer GP zone was formed by increasing cooling rate. ► Finer extruded microstructure was obtained by increasing cooling rate. ► Higher number density precipitates was obtained by increasing cooling rate. ► Tensile 0.2% proof stress was increased by 105 MPa by increasing cooling rate. ► Extruded DC-cast alloy shows higher tensile 0.2% proof stress of 409 MPa. - Abstract: In this study, Mg–3.6Al–3.4Ca–0.3Mn (wt.%) (which is denoted AXM4303) alloy ingots were prepared by two casting processes with different cooling rates: permanent mold (PM) casting, which has a lower cooling rate of 10–20 °C/s and direct chill (DC) casting, which has a higher cooling rate of 100–110 °C/s. Then, these two types of AXM4303 alloy ingots were hot extruded at 400 °C under the same conditions. The microstructures of the as-cast and extruded alloy samples were systematically investigated by field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) systems. The effects of the different cooling rates during the casting process on the microstructures and mechanical properties of the extruded AXM4303 alloy samples were evaluated. The results show that the strength of the extruded Mg–Al–Ca–Mn alloy can be substantially increased by microstructural control during the casting process. Because the cooling rate of the DC casting process is much faster than the cooling rate of PM casting, the DC-cast AXM4303 has the following properties: (i) the lamellar eutectic structure and dendrite cell size are significantly refined, (ii) the ordered monolayer GP zones enriched with Al and Ca nucleate with no growth, and (iii) most of the Mn remains in solution in the matrix. Thus, after hot extrusion, the DC-cast AXM4303 has finer dynamically recrystallized (DRXed) grain size, finer and more uniformly distributed fragmented eutectic particles, finer planar Al 2 Ca precipitates

  17. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  18. PREFACE: Third International Conference on Advances in Solidification Processes (ICASP - 3)

    Science.gov (United States)

    Zimmermann, Gerhard; Ratke, Lorenz

    2012-01-01

    The 3rd International Conference on Advances in Solidification Processes was held in the Rolduc Abbey in the Netherlands a few kilometres away from Aachen. Around 200 scientists from 24 countries come in for the four day meeting. They found a stimulating but also relaxing environment and atmosphere, with beautiful weather and the medieval abbey inviting for walks, discussions, sitting outside and drinking a beer or wine. The contributions given at the conference reflected recent advances in various topics of solidification processes, ranging from fundamental aspects to applied casting technologies. In 20 oral sessions and a large poster session innovative results of segregation phenomena, microstructure evolution, nucleation and growth, phase formation, polyphase solidification, rapid solidification and welding, casting technology, thermophysics of molten alloys, solidification with forced melt flow and growth of single crystals and superalloys together with innovative diagnostic techniques were presented. Thereby, findings from experiments as well as from numerical modeling on different lengths scales were jointly discussed and contribute to new insight in solidification behaviour. The papers presented in this open access proceedings cover about half the oral and poster presentations given. They were carefully reviewed as in classical peer reviewed journals by two independent referees and most of them were revised and thus improved according to the reviewers comments. We think that this collection of papers presented at ICASP-3 gives an impression of the excellent contributions made. The papers embrace both the basic and applied aspects of solidification. We especially wish to express our appreciation for the team around Georg Schmitz and Margret Nienhaus organising this event and giving us their valued advice and support at every stage in preparing the conference. We also thank Lokasenna Lektorat for taking the task of checking all language-associated issues and

  19. Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water

    International Nuclear Information System (INIS)

    Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik

    2004-01-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes

  20. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  1. Rate dependency and role of nitric oxide in the vascular response to direct cooling in human skin.

    Science.gov (United States)

    Yamazaki, Fumio; Sone, Ryoko; Zhao, Kun; Alvarez, Guy E; Kosiba, Wojciech A; Johnson, John M

    2006-01-01

    Local cooling of nonglabrous skin without functional sympathetic nerves causes an initial vasodilation followed by vasoconstriction. To further characterize these responses to local cooling, we examined the importance of the rate of local cooling and the effect of nitric oxide synthase (NOS) inhibition in intact skin and in skin with vasoconstrictor function inhibited. Release of norepinephrine was blocked locally (iontophoresis) with bretylium tosylate (BT). Skin blood flow was monitored from the forearm by laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as the ratio of LDF to blood pressure. Local temperature was controlled over 6.3 cm2 around the sites of LDF measurement. Local cooling was applied at -0.33 or -4 degrees C/min. At -4 degrees C/min, CVC increased (P cooling (-4 degrees C/min) to 24 degrees C decreased (P cooling, CVC decreased at BT + saline sites relative to the precooling levels (P cooling, but not functional NOS, is an important determinant of the early non-adrenergic vasodilator response to local cooling and that functional NOS, adrenergic nerves, as well as other mechanisms play roles in vasoconstriction during prolonged local cooling of skin.

  2. On the relation between primary and eutectic solidification structures in gray iron

    International Nuclear Information System (INIS)

    Elmquist, L; Sonawane, P A

    2012-01-01

    The solidification of hypoeutectic gray cast iron starts with the nucleation of primary austenite crystals. Before graphite is nucleated, and the eutectic structure is formed, these crystals start to grow as columnar or equiaxed dendrites. However, very little is known about these dendrites, and especially how they influence the subsequent eutectic structure. Besides, it has previously been shown that the primary solidification structure influences the formation of defects. Shrinkage porosity was found between the dendrites, in the grain boundaries, and the formation of the primary solidification structure was found to influence problems related to metal expansion penetration. Therefore a better understanding about the formation of this structure is of importance. In this work, different inoculants and their influence on the formation of the micro- and macrostructures has been investigated. The inoculants considered are commercially used inoculants, i.e. inoculants used in the foundries, as well as different iron powders. The addition of iron powder is used to promote the primary solidification structure. It is shown that the nucleation of the dendrites is influenced by the amount of iron powder. Secondary dendrite arm spacing is a quantitative measurement in the microstructure related to these dendrites, which in turn depends on the solidification time. Eutectic cell size, on the other hand, is found to depend on secondary dendrite arm spacing. It is shown how the addition of inoculants influences both primary and eutectic solidification structures, and how they are related to each other.

  3. Overview of the Tusas Code for Simulation of Dendritic Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Amelia J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newman, Christopher Kyle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Marianne M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-07

    The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than it is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].

  4. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni–Al–TiC composites

    International Nuclear Information System (INIS)

    Karantzalis, A.E.; Lekatou, A.; Tsirka, K.

    2012-01-01

    Monolithic Ni 3 Al and Ni–25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution–reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt–particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni 3 Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) material detachment and d) debris–counter surfaces interactions. - Highlights: ► Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. ► Solidification phenomena examination. ► TiC crystal formation and growth mechanisms. ► Sliding wear examination.

  5. Optimisation of the microstructure of YBa2Cu3O7-δ superconducting ceramics textured by horizontal solidification. Effects of a magnetic field applied vertically during the solidification process

    International Nuclear Information System (INIS)

    Durand, L.

    1995-01-01

    We have shown that il was possible to disperse in a very homogeneous way, into the 123 matrix, 211 particles regular in size around 1μm, by directional solidification of a mixture of 123 plus 211 sol-gel powders. The addition of 0.5 wt% of Pt lo this precursor mixture has permitted us to refine further the size of the 211 particles. Moreover, we have established that the finer the 123 powder and the faster the heating rate, the smaller the 211 particles. From another hand, we have found that the size and the microstructure of the solidified single domain was dependant upon numerous parameters. In particular, we have noted that if the cold pressed green body was not sintered before being melted, grains of solid CuO appeared into the liquid which next hardly recombined with it, giving rise to a comb like solidification front, witness of a local un-stability. Moreover, in these particular conditions, the 123 formed was found to be understoichiometric in Cu and the single domains severely limited in extension. Finally, we have observed that the application of a 4 T magnetic field during the solidification of a bar the longest axis of which was horizontal tended to align the c axis of the 123 grains parallel to the field. Incidentally, we have discovered that in the same conditions, the 211 particles trapped into the 123 matrix were also preferentially oriented. (author)

  6. Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model...

  7. A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification

    Science.gov (United States)

    Zhao, Y.; Qin, R. S.; Chen, D. F.

    2013-08-01

    A three-dimensional (3D) cellular automata (CA) model has been developed for the simulation of microstructure evolution in alloy solidification. The governing rule for the CA model is associated with the phase transition driving force which is obtained via a thermodynamic database. This determines the migration rate of the non-equilibrium solid-liquid (SL) interface and is calculated according to the local temperature and chemical composition. The curvature of the interface and the anisotropic property of the surface energy are taken into consideration. A 3D finite element (FE) method is applied for the calculation of transient heat and mass transfer. Numerical calculations for the solidification of Fe-1.5 wt% C alloy have been performed. The morphological evolution of dendrites, carbon segregation and temperature distribution in both isothermal and non-isothermal conditions are studied. The parameters affecting the growth of equiaxed and columnar dendrites are discussed. The calculated results are verified using the analytical model and previous experiments. The method provides a sophisticated approach to the solidification of multi-phase and multi-component systems.

  8. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  9. Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Ryltsev, R. E. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Klumov, B. A. [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20 (France); High Temperature Institute, Russian Academy of Sciences, 13/2 Izhorskaya Str., 125412 Moscow (Russian Federation); Chtchelkatchev, N. M. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, 141700 Moscow Region (Russian Federation); All-Russia Research Institute of Automatics, 22 Sushchevskaya, 127055 Moscow (Russian Federation); Shunyaev, K. Yu. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation)

    2016-07-21

    Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{sup 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.

  10. Implications for Metallographic Cooling Rates, Derived from Fine-Scale Analytical Traverses Across Kamacite, Taenite, and Tetrataenite in the Butler Iron Meteorite

    Science.gov (United States)

    Jones, J. H.; Ross, D. K.; Chabot, N. L.; Keller, L. P.

    2016-01-01

    The "M-shaped" Ni concentrations across Widmanstatten patterns in iron meteorites, mesosiderites, and ordinary chondrites are commonly used to calculate cooling rates. As Ni-poor kamacite exolves from Ni-rich taenite, Ni concentrations build up at the kamacite-taenite interface because of the sluggish diffusivity of Ni. Quantitative knowledge of experimentally-determined Ni diffusivities, coupled with the shape of the M-profile, have been used to allow calculation of cooling rates that pertained at low temperatures, less than or equal to 500 C. However, determining Ni metallographic cooling rates are challenging, due to the sluggish diffusivity of Ni at low temperatures. There are three potential difficulties in using Ni cooling rates at low temperatures: (i) Ni diffusivities are typically extrapolated from higher-temperature measurements; (ii) Phase changes occur at low temperatures that may be difficult to take into account; and (iii) It appears that Ge in kamacite and taenite has continued to equilibrate (or attempted to equilibrate) at temperatures below those that formed the M-shaped Ni profile. Combining Ni measurements with those of other elements has the potential to provide a way to confirm or challenge Ni-determined cooling rates, as well as provide insight into the partitioning behaviors of elements during the cooling of iron meteorites. Despite these benefits, studies that examine elemental profiles of Ni along with other elements in iron meteorites are limited, often due to the low concentration levels of the other elements and associated analytical challenges. The Butler iron meteorite provides a good opportunity to conduct a multi-element analytical study, due to the higher concentration levels of key elements in addition to Fe and Ni. In this work, we perform combined analysis for six elements in the Butler iron to determine the relative behaviors of these elements during the evolution of iron meteorites, with implications for metallographic cooling

  11. Dimensionless numbers in additive manufacturing

    Science.gov (United States)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  12. Thermal performance of a multiple PCM thermal storage unit for free cooling

    International Nuclear Information System (INIS)

    Mosaffa, A.H.; Infante Ferreira, C.A.; Talati, F.; Rosen, M.A.

    2013-01-01

    Highlights: ► Numerical analysis on the performance of a thermal storages as free cooling system. ► Employing multiple PCMs to enhance heat transfer rate in thermal storages. ► Using an effective heat capacity method, the phase change parameters are determined. ► The effect of the slabs size and air channel thickness on COP is investigated. - Abstract: As demand for refrigeration and air conditioning increased during the last decade, the opportunities have expanded for using thermal energy storage (TES) systems in an economically advantageous manner in place of conventional cooling plants. Many cool storage systems use phase change materials (PCMs) and achieve peak load shifting in buildings. This work presents numerical investigations of the performance enhancement of a free cooling system using a TES unit employing multiple PCMs. The TES unit is composed of a number of rectangular channels for the flowing heat transfer fluid, separated by PCM slabs. Using the effective heat capacity method, the melting and solidification of the PCM is solved. The forced convective heat transfer inside the channels is analyzed by solving the energy equation, which is coupled with the heat conduction equation in the container wall. The effect of design parameters such as PCM slab length, thickness and fluid passage gap on the storage performance is also investigated using an energy based optimization. The results show that a system which can guarantee comfort conditions for the climate of Tabriz, Iran has an optimum COP of 7.0. This could be achieved by a combination of CaCl 2 ·6H 2 O with RT25 with the optimum air channel thickness of 3.2 mm, length of 1.3 m and PCM slab thickness of 10 mm

  13. Alternative solidification techniques for radioactive ion exchange resins and liquid concentrates

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-01-01

    Methods, that are used or are under development for solidification of radioactive ion exchange resins or liquid concentrates, utilize normally cement, bitumen or some polymere as matrix material. This report contains a review and a description of these solidification processes and their products, especially of relatively new techniques that are under development in different countries. It is possible that solidification in thermosetting resins will be more used in the future, especially when product quality requirements are high (for instance when solidifying medium level resins) or when special waste categories has to be solidified. However it is not probable that thermosetting resins will be extensively used in a broad application as matrix material. In that case the methods are to complicated and expensive compared to, for instance, solidification in concrete. Systems for incorporation in polyesteremulsions (Dow-process) have a potential as they are quite simple and can accept a large variation of liquid wastes. Some methods in an early stage of development (for instance Inert Carrier Radwaste Process) will have to be tested in active application before they can be further evaluated. (author)

  14. Correlation of Mechanical Properties with Diameter and Cooling Rate of 1080 Wire-Rod

    Science.gov (United States)

    Kohli, A.; Poirier, D. R.

    2017-12-01

    More than 540 heats of 1080 wire-rod were statistically analyzed by regression analyses to see whether tensile strength and percent reduction in area (%RA) relate to wire-rod diameter and composition. As diameter increases from 5.6 to 12.7 mm, the trend in %RA shows a decrease with negligible effect on the trend of the tensile strength. It was found that the estimated cooling rate at 700 °C during controlled cooling is responsible for the "diameter effect." The effect of composition on %RA is minor when contrasted to the "diameter effect." In particular, the effect of the concentrations of the residual elements on %RA within the compositional range studied is negligible.

  15. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  16. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  17. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Motemani, Y. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Nili-Ahmadabadi, M. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of); Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: mmjtan@ntu.edu.sg; Bornapour, M.; Rayagan, Sh. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of)

    2009-02-05

    TiNi alloy is a well-known shape memory alloy and has been widely used for bio-medical, mechanical and electrical applications. In this study, a Ni-rich NiTi alloy was prepared by vacuum arc melting in a water-cooled copper crucible. Three samples of this alloy were heated to 1000 deg. C and cooled in three media: furnace, water, and dry-ice bath. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), hardness measurement and tensile test were carried out to investigate the effect of cooling rate on transformation temperature and mechanical properties. The results show that Ni{sub 3}Ti intermetallic compounds have a great influence on martensitic phase transformation temperature. These tests clearly showed the correlation between cooling rate and properties of the alloy.

  18. Al-Si-Re Alloys Cast by the Rapid Solidification Process / Stopy Al-Si-Re Odlewane Metodą Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymanek M.

    2015-12-01

    Full Text Available The aim of the studies described in this article was to present the effect of rare earth elements on aluminium alloys produced by an unconventional casting technique. The article gives characteristics of the thin strip of Al-Si-RE alloy produced by Rapid Solidification (RS. The effect of rare earth elements on structure refinement, i.e. on the size of near-eutectic crystallites in an aluminium-silicon alloy, was discussed. To determine the size of crystallites, the Scherrer X-ray diffraction method was used. The results presented capture relationships showing the effect of variable casting parameters and chemical composition on microstructure of the examined alloys. Rapid Solidification applied to Al-Si alloys with the addition of mischmetal (Ce, La, Ne, Pr refines their structure.

  19. A simplified simulation model for a HPDC die with conformal cooling channels

    Science.gov (United States)

    Frings, Markus; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    In general, the cooling phase of the high-pressure die casting process is based on complex physical phenomena: so-lidification of molten material; heat exchange between cast part, die and cooling fluid; turbulent flow inside the cooling channels that needs to be considered when computing the heat flux; interdependency of properties and temperature of the cooling liquid. Intuitively understanding and analyzing all of these effects when designing HPDC dies is not feasible. A remedy that has become available is numerical design, based for example on shape optimization methods. However, current computing power is not sufficient to perform optimization while at the same time fully resolving all physical phenomena. But since in HPDC suitable objective functions very often lead to integral values, e.g., average die temperature, this paper identifies possible simplifications in the modeling of the cooling phase. As a consequence, the computational effort is reduced to an acceptable level. A further aspect that arises in the context of shape optimization is the evaluation of shape gradients. The challenge here is to allow for large shape deformations without remeshing. In our approach, the cooling channels are described by their center lines. The flow profile of the cooling fluid is then estimated based on experimental data found in literature for turbulent pipe flows. In combination, the heat flux throughout cavity, die, and cooling channel can be described by one single advection-diffusion equation on a fixed mesh. The parameters in the equation are adjusted based on the position of cavity and cooling channel. Both results contribute towards a computationally efficient, yet accurate method, which can be employed within the frame of shape optimization of cooling channels in HPDC dies.

  20. Microstructural Development in Al-Si Powder During Rapid Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Genau, Amber Lynn [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  1. Microwave solidification project overview

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  2. Microwave solidification project overview

    International Nuclear Information System (INIS)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included

  3. Effect of HIP temperature and cooling rate on microstructure and hardness of joints for ODS-RAFM steels and JLF-1 steel

    International Nuclear Information System (INIS)

    Fu, Haiying; Nagasaka, Takuya; Muroga, Takeo; Kimura, Akihiko; Ukai, Shigeharu

    2016-01-01

    Dissimilar-metal joints between ODS-RAFM (oxide-dispersion-strengthened reduced activation ferritic/martensitic) steels and JLF-1 steel were fabricated by hot isostatic pressing (HIP) at 1000 - 1100degC with a cooling rate of 5degC/min. After the HIP, it was always quenched martensite for JLF-1 steel. However, coarse precipitates were found in 9Cr-ODS. Additional annealing experiments to simulate HIP conditions were conducted for 9Cr-ODS with cooling rate ranged from 0.5 to 36degC/min at 800 - 1100degC. The results showed that, to form quenched martensite for 9Cr-ODS, the HIP temperature should be above 1000degC with cooling rate no less than 25dgeC/min. When the cooling rate is increased to 36degC/min, the microstructure of 9Cr-ODS is quenched martensite with precipitate size similar as that before HIP. If the limitation of precipitate size in 9Cr-ODS is 0.2 µm, HIP temperature above 1050degC with cooling rate no less than 30degC/min is needed. In this case, post-weld heat treatment (PWHT) with only tempering is necessary to recover the microstructure of 9Cr-ODS to tempered martensite. For 12Cr-ODS, the HIP temperature and cooling rate has no effect on hardness and precipitate size. PWHT is not necessary for the single-metal joint of 12Cr-ODS from the view point of precipitation control. However, for the dissimilar-metal joints between ODS-RAFM steels and JLF-1 steel, the PWHT condition should be comprehensively determined by considering microstructural evolution of each part in the joints after HIP. (author)

  4. Solute redistribution in dendritic solidification with diffusion in the solid

    Science.gov (United States)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  5. Development of heat pipe technology for permanent mold casting of magnesium alloys

    International Nuclear Information System (INIS)

    Elalem, K.; Mucciardi, F.; Gruzleski, J.E.; Carbonneau, Y.

    2002-01-01

    One of the key techniques for producing sound permanent mold castings is to use controlled mold cooling such as air cooling, water cooling and heat pipe cooling. Air-cooling has limited applications in permanent mold casting due to its low cooling capability and high cost. Water-cooling is widely used in permanent mold casting, but has some disadvantages such as safety issues and the facilities required. The early applications of heat pipes in permanent mold casting have shown tremendous results due to their high cooling rates, low cost and safety. In this work, a permanent mold for magnesium casting has been designed with the intention of producing shrinkage defects in the castings. Novel heat pipes that can generate high cooling rates have been constructed and used to direct the solidification in order to reduce the shrinkage. In this paper, the design of the mold and that of the heat pipes are presented. The results of some of the computer simulations that were conducted to determine casting conditions along with the potential of using heat pipes to direct the solidification are also presented. Moreover, a preliminary evaluation of the performance of heat pipes in the permanent mold casting of magnesium will also be discussed. (author)

  6. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  7. Study of cooling rates during metallic glass formation in a hammer and anvil apparatus

    International Nuclear Information System (INIS)

    Kroeger, D.M.; Coghlan, W.A.; Easton, D.S.; Koch, C.C.; Scarbrough, J.O.

    1982-01-01

    A model is presented of the simultaneous spreading and cooling of the liquid drop in a hammer and anvil apparatus for rapid quenching of liquid metals. The viscosity of the melt is permitted to vary with temperature, and to avoid mathematical complications which would be associated with spatial variation of the viscosity, Newtonian cooling is assumed. From an expression for the force required to spread the specimen, coupled equations for the mechanical energy balance for the system and the heat transfer from the sample to the hearth and hammer were obtained, and solved numerically. The sample reaches its final thickness when the force required to deform it becomes greater than the force exerted on it by the decelerating hammer. The model was fit to measurements of sample thickness versus hammer speed, using the interface heat transfer coefficient, h, as an adjustable parameter. The values of h so obtained vary somewhat with the melt alloy/substrate metal combination. From predicted cooling curves, the effects of hammer speed, sample size, and initial melt temperature on the cooling rate and the efficiency of glass formation can be assessed. Addition of sample superheat shifts the cooling curve relative to the expected position of the time-temperature-transformation curve for formation of crystalline material from the melt, and thus is an effective means of increasing the probability of glass formation in this type of apparatus

  8. Solidification of highly active liquid waste

    International Nuclear Information System (INIS)

    Morris, J.B.

    1985-03-01

    This document contains the annual progress reports on the following subjects: Joule ceramic melter; microwave vitrification; glass technology; identification, evaluation and review of potential alternative solidification processes; rotary kiln calcination; alternative glass feedstocks; volatile ruthenium trapping by solid adsorbents; irrigated baffle column dust scrubber. (author)

  9. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  10. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  11. Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy

    Science.gov (United States)

    Wang, Changshuai; Su, Haijun; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang

    2017-09-01

    Solidification characteristics and segregation behavior of a P-containing Ni-Fe-Cr-based alloy, considered as boiler and turbine materials in 700 °C advanced ultra-supercritical coal-fired power plants, have been investigated by differential thermal analysis and directional solidification quenching technique. Results reveal that P decreases the solidus temperature, but only has negligible influence on liquidus temperature. After P was added, the solidification sequence has no apparent change, but the width of the mushy zone increases and dendritic structures become coarser. Moreover, P increases the amount and changes the morphology of MC carbide. Energy-dispersive spectroscopy analysis reveals that P has obvious influence on the segregation behavior of the constitute elements with equilibrium partition coefficients (ki) far away from unity, whereas has negligible effect on the constituent elements with ki close to unity and has more influence on the final stage of solidification than at early stage. The distribution profiles reveal that P atoms pile up ahead of the solid/liquid (S/L) interface and strongly segregate to the interdendritic liquid region. The influence of P on solidification characteristics and segregation behavior of Ni-Fe-Cr-based alloy could be attributed to the accumulation of P ahead of the S/L interface during solidification.

  12. A dilatometer to measure the influence of cooling rate and melt shearing on specific volume

    NARCIS (Netherlands)

    van der Beek, M.H.E.; Peters, G.W.M.; Meijer, H.E.H.

    2005-01-01

    We developed a dilatometer to investigate the specific volume of polymers as a function of pressure (to 100 MPa), temperature (to 260 oC), cooling rate (to 80 C/s), and shear rate (to 77 1/s). The dilatometeris based on the principle of con¯ned compression and comprises of a pressure cell used in

  13. Optimization of heat transfer during the directional solidification process of 1600 kg silicon feedstock

    Science.gov (United States)

    Hu, Chieh; Chen, Jyh Chen; Nguyen, Thi Hoai Thu; Hou, Zhi Zhong; Chen, Chun Hung; Huang, Yen Hao; Yang, Michael

    2018-02-01

    In this study, the power ratio between the top and side heaters and the moving velocity of the side insulation are designed to control the shape of the crystal-melt interface during the growth process of a 1600 kg multi-crystalline silicon ingot. The power ratio and insulation gap are adjusted to ensure solidification of the melt. To ensure that the crystal-melt interface is slightly convex in relation to the melt during the entire solidification process, the power ratio should be augmented gradually in the initial stages while being held to a constant value in the middle stages. Initially the gap between the side and the bottom insulation is kept small to reduce thermal stress inside the seed crystals. However, the growth rate will be slow in the early stages of the solidification process. Therefore, the movement of the side insulation is fast in the initial stages but slower in the middle stages. In the later stages, the side insulation gap is fixed. With these modifications, the convexity of the crystal-melt interface in relation to the melt can be maintained during the growth process with an approximately 41% reduction in the thermal stress inside the growing ingot and an 80% reduction in dislocation density along the center line of the ingot compared with the original case.

  14. Tolerance of brown bear spermatozoa to conditions of pre-freezing cooling rate and equilibration time.

    Science.gov (United States)

    López-Urueña, E; Alvarez, M; Gomes-Alves, S; Martínez-Rodríguez, C; Borragan, S; Anel-López, L; de Paz, P; Anel, L

    2014-06-01

    Specific protocols for the cryopreservation of endangered Cantabrian brown bear spermatozoa are critical to create a genetic resource bank. The aim of this study was to assess the effect of cooling rates and equilibration time before freezing on post-thawed brown bear spermatozoa quality. Electroejaculates from 11 mature bears were extended to 100 × 10(6) spermatozoa/mL in a TES-Tris-Fructose-based extender, cryopreserved following performance of the respective cooling/equilibration protocol each sample was assigned to, and stored at -196 °C for further assessment. Before freezing, after thawing, and after 1 hour's incubation post-thawing at 37 °C (thermal stress test), the quality of the samples was assessed for motility by computer-assisted semen analysis, and for viability (SYBR-14/propidium iodide), acrosomal status (peanut agglutinin-fluorescein isothiocyanate /propidium iodide), and sperm chromatin stability (SCSA) by flow cytometry. In experiment 1, three cooling rates (0.25 °C/min, 1 °C/min, and 4 °C/min) to 5 °C were assessed. After thawing, total motility (%TM) was higher and percentage of damaged acrosomes (%dACR) was lower (P bear sperm. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Solidification of low-level waste - a dilemma for the small user

    International Nuclear Information System (INIS)

    Harris, S.; Gilmore, A.

    1980-01-01

    The requirement that radioactive waste for sea disposal must be solidified by the originator is discussed. Attempts to solidify small quantities of radioactive waste such as contaminated oils and labelled benzyopyrene with other solvents are described. Encapsulation media tested were concrete and interior and exterior grade Polyfilla (a plaster and cellulose based filler). Problems were presented by the difficulty of mixing the materials and by the maximum uptake of solvents while still allowing solidification. In all cases a soft crumbling material resulted. It is concluded that solidification processing on a small scale does not make economic or scientific sense and that if solidification is necessary it would be better carried out as a national operation by collecting liquids from users. (U.K.)

  16. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  17. The Effect of Wind Velocity on the Cooling Rate of Water

    OpenAIRE

    Shrey Aryan

    2016-01-01

    The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  18. Detailed characterization of complex banding in air-cooled bainitic steels

    Directory of Open Access Journals (Sweden)

    Morales-Rivas L.

    2015-01-01

    Full Text Available The presence of banding in a hot-rolled air-cooled bainitic steel has been thoroughly characterized. The banded microstructure was observed due to distinctive sensitivities to the etching agent. Microstructural and crystallographic studies by means of Scanning Electron Microscopy and Electron Backscatter Diffraction did not reveal any substantial differences between bands and matrix. However, solute segregation of some alloying elements was detected by Wavelength- Dispersive Spectroscopy, being found that bands are enriched in Cr, Mo and Si and depleted in Mn. Finally, a set of theoretical calculations suggested that the solidification mode is responsible for such unusual partitioning behavior, which is beneficial in terms of the bainitic transformation.

  19. Retrofit of radwaste solidification systems in Spain

    International Nuclear Information System (INIS)

    Rorcillo, R.; Virzi, E.

    1983-01-01

    In order to meet current Spanish engineering criteria as well as to provide for likely future Spanish Regulatory requirements, utilities committed to a major policy change in the preferred radwaste solidification media. In the early 1970's Spanish utilities, following the United States experience, purchased inexpensive solidification systems which used urea formaldehyde (UF) as the binding matrix. By the late 1970's the Spanish utilities, seeing the deterioration of the UF position and slow progress toward its improvement, unilaterally changed their binding matrix to cement. This paper illustrates the implementation of this change at the ASCO Nuclear Plant. The problems of layout modifications, shortened delivery schedule and criteria unique for Spain are addressed. Also presented is the operating experience acquired during the pre-operational start-up of the ASCO I Radwaste System

  20. Solidification processing of monotectic alloy matrix composites

    Science.gov (United States)

    Frier, Nancy L.; Shiohara, Yuh; Russell, Kenneth C.

    1989-01-01

    Directionally solidified aluminum-indium alloys of the monotectic composition were found to form an in situ rod composite which obeys a lambda exp 2 R = constant relation. The experimental data shows good agreement with previously reported results. A theoretical boundary between cellular and dendritic growth conditions was derived and compared with experiments. The unique wetting characteristics of the monotectic alloys can be utilized to tailor the interface structure in metal matrix composites. Metal matrix composites with monotectic and hypermonotectic Al-In matrices were made by pressure infiltration, remelted and directionally solidified to observe the wetting characteristics of the alloys as well as the effect on structure of solidification in the constrained field of the fiber interstices. Models for monotectic growth are modified to take into account solidification in these constrained fields.

  1. Investigation of columnar-to-equiaxed transition in solidification processing of AlSi alloys in microgravity – The CETSOL project

    International Nuclear Information System (INIS)

    Zimmermann, G; Sturz, L; Billia, B; Mangelinck-Noël, N; Thi, H Nguyen; Gandin, Ch- A; Browne, D J; Mirihanage, W U

    2011-01-01

    Grain structures observed in most casting processes of metallic alloys are the result of a competition between the growth of several arrays of dendrites that develop under constrained and unconstrained conditions. Often this leads to a transition from columnar to equiaxed grain growth during solidification (CET). A microgravity environment results in suppression of buoyancy-driven melt flow and so enables growth of equiaxed grains free of sedimentation and buoyancy effects. This contribution presents first results obtained in experiments on-board the International Space Station (ISS), which were performed in the frame of the ESA-MAP programme CETSOL. Hypoeutectic aluminium-silicon alloys with and without grain refiners were processed successfully in a low gradient furnace (MSL-LGF). First analysis shows that in the non grain refined samples columnar dendritic growth exists, whereas CET is observed in the grain refined samples. From analysis of the thermal data and the grain structure the critical parameters for the temperature gradient and the cooling rate describing CET are determined. These data are used for initial numerical simulations to predict the position of the columnar-to-equiaxed transition and will form a unique database for calibration and further development of numerical CET-modeling.

  2. Analysis of weld solidification cracking in cast nickel aluminide alloys

    International Nuclear Information System (INIS)

    Santella, M.L.; Feng, Z.

    1995-01-01

    A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni 5 Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results

  3. Simultaneous Synchrotron WAXD and Fast Scanning (Chip) Calorimetry: On the (Isothermal) Crystallization of HDPE and PA11 at High Supercoolings and Cooling Rates up to 200 °C s(-1).

    Science.gov (United States)

    Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart

    2015-06-01

    An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Expanded calculation of weak-interaction-mediated neutrino cooling rates due to 56Ni in stellar matter

    International Nuclear Information System (INIS)

    Nabi, Jameel-Un

    2010-01-01

    An accurate estimate of the neutrino cooling rates is required in order to study the various stages of stellar evolution of massive stars. Neutrino losses from proto-neutron stars play a crucial role in deciding whether these stars would be crushed into black holes or explode as supernovae. Both pure leptonic and weak-interaction processes contribute to the neutrino energy losses in stellar matter. At low temperatures and densities, the characteristics of the early phase of presupernova evolution, cooling through neutrinos produced via the weak interaction, are important. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently been used with success for the calculation of stellar weak-interaction rates of fp-shell nuclide. The lepton-to-baryon ratio (Y e ) during early phases of stellar evolution of massive stars changes substantially, mainly due to electron captures on 56 Ni. The stellar matter is transparent to the neutrinos produced during the presupernova evolution of massive stars. These neutrinos escape the site and assist the stellar core in maintaining a lower entropy. Here, an expanded calculation of weak-interaction-mediated neutrino and antineutrino cooling rates due to 56 Ni in stellar matter using the pn-QRPA theory is presented. This detailed scale is appropriate for interpolation purposes and is of greater utility for simulation codes. The calculated rates are compared with earlier calculations. During the relevant temperature and density regions of stellar matter the reported rates show few differences compared with the shell model rates and might contribute in fine-tuning of the lepton-to-baryon ratio during the presupernova phases of stellar evolution of massive stars.

  5. Solidification of high-level radioactive wastes. Final report

    International Nuclear Information System (INIS)

    1979-06-01

    A panel on waste solidification was formed at the request of the Nuclear Regulatory Commission to study the scientific and technological problems associated with the conversion of liquid and semiliquid high-level radioactive wastes into a stable form suitable for transportation and disposition. Conclusions reached and recommendations made are as follows. Many solid forms described in this report could meet standards as stringent as those currently applied to the handling, storage, and transportation of spent fuel assemblies. Solid waste forms should be selected only in the context of the total radioactive waste management system. Many solid forms are likely to be satisfactory for use in an appropriately designed system, The current United States policy of deferring the reprocessing of commercial reactor fuel provides additional time for R and D solidification technology for this class of wastes. Defense wastes which are relatively low in radioactivity and thermal power density can best be solidified by low-temperature processes. For solidification of fresh commercial wastes that are high in specific activity and thermal power density, the Panel recommends that, in addition to glass, the use of fully-crystalline ceramics and metal-matrix forms be actively considered. Preliminary analysis of the characteristics of spent fuel pins indicates that they may be eligible for consideration as a waste form. Because the differences in potential health hazards to the public resulting from the use of various solid form and disposal options are likely to be small, the Panel concludes that cost, reliability, and health hazards to operating personnel will be major considerations in choosing among the options that can meet safety requiremens. The Panel recommends that responsibility for all radioactive waste management operations (including solidification R and D) should be centralized

  6. Solidification process for toxic and hazardous wastes. Second part: Cement solidification matrices; Inertizzazione di rifiuti tossici e nocivi (RTN). Parte seconda: Inertizzazione in matrici cementizie

    Energy Technology Data Exchange (ETDEWEB)

    Donato, A; Arcuri, L; Dotti, M; Pace, A; Pietrelli, L; Ricci, G [ENEA - Dipartimento Ciclo del Combustibile, Centro Ricerche Energia, Casaccia (Italy); Basta, M; Cali, V; Pagliai, V [ENEA - Dipartimento Ciclo del Combustibile, Centro Ricerche Energia, Saluggia (Italy)

    1989-05-15

    This paper reports the second part of a general study carried out at the Nuclear Fuel Division aiming at verifying the possible application of the radioactive waste solidification processes to industrial hazardous wastes (RTN). The cement solidification of several RTN types has been taken into consideration, both from the technical and from the economic point of view. After a short examination of the Italian juridical and economical situation in the field, which demonstrates the need of the RTN solidification, the origin and characteristics of the RTN considered in the study and directly provided by the producing industries are reviewed. The laboratory experimental results of the cementation of RTN produced by gold manufacturing industries and by galvanic industries are reported. The cementation process can be considered a very effective mean for reducing both the RTN management costs and the environmental impact of RTN disposal. (author)

  7. Solidification interface shape control in a continuous Czochralski silicon growth system

    Science.gov (United States)

    Wang, Chenlei; Zhang, Hui; Wang, Tihu; Zheng, Lili

    2006-01-01

    In a continuous Czochralski (CCZ) growth system with a shallow and replenished melt proposed earlier, large-diameter crystals may be grown at a high pull rate and reduced melt convection. The proposed system consists of two heaters. In this paper, the relationship between the solidification interface and the power levels is established. An interface control algorithm is developed to achieve the desired interface shape by adjusting the power level of the bottom heater. The control algorithm is incorporated into an existing process model, and the efficiency of the control algorithm is tested.

  8. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  9. The Effect of Wind Velocity on the Cooling Rate of Water

    Directory of Open Access Journals (Sweden)

    Shrey Aryan

    2016-01-01

    Full Text Available The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  10. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tilocca, Antonio [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-09-21

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10{sup 3} atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their

  11. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Tilocca, Antonio

    2013-01-01

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10 3 atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their application

  12. A method for measuring the corrosion rate of materials in spallation neutron source target/blanket cooling loops

    International Nuclear Information System (INIS)

    Lillard, R.S.; Butt, D.P.

    1999-01-01

    This paper summarizes the ongoing evaluation of the susceptibility of materials in accelerator target/blanket cooling loops to corrosion. To simulate the exposure environment in a target/blanket cooling loop, samples were irradiated by an 800 MeV proton beam at the A6 Target Station of the Los Alamos Neutron Science Center (LANSCE). To accomplish this, a cooling water loop capable of exposing corrosion samples to an 800 MeV proton beam at currents upwards of 1 mA was constructed. This loop allowed control and evaluation hydrogen water chemistry, water conductivity, and solution pH. Specially designed ceramic sealed samples were used to measure the real-time corrosion rates of materials placed directly in the proton beam using electrochemical impedance spectroscopy (EIS). EIS was also used to measure real-time corrosion rates of samples that were out of the proton beam and downstream from the in-beam samples. These out-of-beam probes primarily examined the effects of long lived water radiolysis products from proton irradiation on corrosion rates. An overview of the LANSCE corrosion loop, the corrosion probes, and data from an in-beam alloy 718 probe are presented

  13. Directional solidification of filamentary shapes of Pb--Cd and Pb--Sn eutectic alloys

    International Nuclear Information System (INIS)

    Dhindaw, B.K.; Verhoeven, J.D.; Spencer, C.R.; Gibson, E.D.

    1978-01-01

    Eutectic alloys of Pb--Cd and Pb--Sn were directionally solidified as thin filamentary strips contained in stainless steel and quartz capillaries. As the solidification rate increased the filament width, w, had to be reduced to maintain complete alignment of the lamellae clear across the filament. It was determined that in order to achieve complete alignment the ratio of filament width to lamellar spacing, w/lambda had to be less than about 30. Experiments were carried out at rates of 2-400 μm/s and at temperature gradients of 130 and 320 0 C/cm

  14. Effect of Cooling Rate on Microstructures and Mechanical Properties in SA508 Gr4N High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minchul; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The microstructure of Ni-Cr-Mo low alloy steel is a mixture of tempered martensite and tempered lower bainite and that of Mn-Mo-Ni low alloy steel is predominantly tempered upper bainite. Higher strength and toughness steels are very attractive as an eligible RPV steel, so several researchers have studied to use the Ni-Cr-Mo low alloy steel for the NPP application. Because of the thickness of reactor vessel, there are large differences in austenitizing cooling rates between the surface and the center locations of thickness in RPV. Because the cooling rates after austenitization determine the microstructure, it would affect the mechanical properties in Ni-Cr-Mo low alloy steel, and it may lead to inhomogeneous characteristics when the commercial scale of RPV is fabricated. In order to apply the Ni-Cr-Mo low alloy steel to RPV, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite and bainite fractions on mechanical properties in Ni-Cr-Mo low alloy steel were examined by controlling the cooling rate after austenitization. First of all, continuous cooling transformation(CCT) diagram was established from the dilatometric analyses. Then, the phase fractions at each cooling rate were quantitatively evaluated. Finally, the mechanical properties were correlated with the phase fraction, especially fraction of martensite in Ni-Cr-Mo low alloy steel.

  15. Solidification of radioactive waste in a cement/lime mixture

    International Nuclear Information System (INIS)

    Zhou, H.; Colombo, P.

    1984-01-01

    The suitability of a cement/lime mixture for use as a solidification agent for different types of wastes was investigated. This work includes studies directed towards determining the wasted/binder compositional field over which successful solidification occurs with various wastes and the measurement of some of the waste from properties relevant to evaluating the potential for the release of radionuclides to the environment. In this study, four types of low-level radioactive wastes were simulated for incorporation into a cement/lime mixture. These were boric acid waste, sodium sulfate wastes, aion exchange resins and incinerator ash. 7 references, 3 figures, 2 tables

  16. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  17. INEL studies concerning solidification of low-level waste in cement

    International Nuclear Information System (INIS)

    Mandler, J.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL) has performed numerous studies addressing issues concerning the solidification of low-level radioactive waste in cement. These studies have been performed for both the Nuclear Regulatory Commission (NRC) and the Department of Energy (DOE). This short presentation will only outline the major topics addressed in some of these studies, present a few conclusions, and identify some of the technical concerns we have. More details of the work and pertinent results will be given in the Working Group sessions. The topics that have been addressed at the INEL which are relevant to this Workshop include (1) solidification of ion-exchange resins and evaporator waste in cement at commercial nuclear power plants, (2) leachability and compressive strength of power plant waste solidified in cement, (3) suggested guidelines for preparation of a solid waste process control program (PCP), (4) cement solidification of EPICOR-II resin wastes, and (5) performance testing of cement-solidified EPICOR-II resin wastes

  18. INFLUENCE OF THE COOLING RATE AND THE BLEND RATIO ON THE PHYSICAL STABILTIY OF CO-AMORPHOUS NAPROXEN/INDOMETHACIN

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian

    2016-01-01

    Co-amorphisation represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method and the b......Co-amorphisation represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method...... and the blend ratio play major roles with regard to the resulting physical stability. Therefore, in the present study, co-amorphous naproxen-indomethacin (NAP/IND) was prepared by melt-quenching at three different cooling rates and at ten different NAP/IND blend ratios. The samples were analyzed using XRPD...... and FTIR, both directly after preparation and during storage to investigate their physical stabilities. All cooling methods led to fully amorphous samples, but with significantly different physical stabilities. Samples prepared by fast cooling had a higher degree of crystallinity after 300 d of storage...

  19. Quantitative theoretical analysis of lifetimes and decay rates relevant in laser cooling BaH

    Science.gov (United States)

    Moore, Keith; Lane, Ian C.

    2018-05-01

    Tiny radiative losses below the 0.1% level can prove ruinous to the effective laser cooling of a molecule. In this paper the laser cooling of a hydride is studied with rovibronic detail using ab initio quantum chemistry in order to document the decays to all possible electronic states (not just the vibrational branching within a single electronic transition) and to identify the most populated final quantum states. The effect of spin-orbit and associated couplings on the properties of the lowest excited states of BaH are analysed in detail. The lifetimes of the A2Π1/2, H2Δ3/2 and E2Π1/2 states are calculated (136 ns, 5.8 μs and 46 ns respectively) for the first time, while the theoretical value for B2 Σ1/2+ is in good agreement with experiments. Using a simple rate model the numbers of absorption-emission cycles possible for both one- and two-colour cooling on the competing electronic transitions are determined, and it is clearly demonstrated that the A2Π - X2Σ+ transition is superior to B2Σ+ - X2Σ+ , where multiple tiny decay channels degrade its efficiency. Further possible improvements to the cooling method are proposed.

  20. The Effect of Nb on the Continuous Cooling Transformation Curves of Ultra-Thin Strip CASTRIP© Steels

    Directory of Open Access Journals (Sweden)

    Kristin R. Carpenter

    2015-10-01

    Full Text Available The effect of Nb on the hardenability of ultra-thin cast strip (UCS steels produced via the unique regime of rapid solidification, large austenite grain size, and inclusion engineering of the CASTRIP© process was investigated. Continuous cooling transformation (CCT diagrams were constructed for 0, 0.014, 0.024, 0.04, 0.06 and 0.08 wt% Nb containing UCS steels. Phase nomenclature for the identification of lower transformation product in low carbon steels was reviewed. Even a small addition of 0.014 wt% Nb showed a potent effect on hardenability, shifting the ferrite C-curve to the right and expanding the bainitic ferrite and acicular ferrite phase fields. Higher Nb additions increased hardenability further, suppressed the formation of ferrite to even lower cooling rates, progressively lowered the transformation start and finish temperatures and promoted the transformation of bainite instead of acicular ferrite. The latter was due to Nb suppressing the formation of allotriomorphic ferrite and allowing bainite to nucleate at prior austenite grain boundaries, a lower energy site than that for the intragranular nucleation of acicular ferrite at inclusions. Strength and hardness increased with increasing Nb additions, largely due to microstructural strengthening and solid solution hardening, but not from precipitation hardening.

  1. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel, P.; Minguez, E.

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range of plasma conditions considered in this work. -- Highlights: ► We compute the average ionization, cooling rates and emissivities of carbon plasmas. ► We compare LTE and NLTE calculations of these magnitudes. ► We perform a parametrization of these magnitudes in a wide range of plasma conditions. ► We provide information about where LTE regime assumption is accurate

  3. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  4. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  5. Physicochemical characterization of solidification agents used and products formed with radioactive wastes at LWR nuclear power plants

    International Nuclear Information System (INIS)

    Kibbey, A.H.; Godbee, H.W.

    1978-01-01

    Solidification of evaporator concentrates, filter sludges, and spent ion exchange resins used in LWR streams is discussed. The introduction of solidification agents to immobilize these sludges and resins can increase the volume of these wastes by a factor of slightly over 1 to greater than 2, depending on the binder chosen. The agents and methods used or proposed for use in solidification of LWR power plant wastes are generally suitable for treating most of the other-than-high-level wastes generated throughout the entire fuel cycle. Among the solidification agents most commonly used or suggested for use are the inorganic cements and organic plastics, which are listed and compared. A summary of considerations important in choosing a solidification agent is presented tabularly

  6. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping.

    Science.gov (United States)

    Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain

    2017-06-13

    The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.

  7. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  8. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals.

    Science.gov (United States)

    Hosokawa, Yuri; Adams, William M; Belval, Luke N; Vandermark, Lesley W; Casa, Douglas J

    2017-03-01

    We investigated the efficacy of tarp-assisted cooling as a body cooling modality. Participants exercised on a motorized treadmill in hot conditions (ambient temperature 39.5°C [103.1°F], SD 3.1°C [5.58°F]; relative humidity 38.1% [SD 6.7%]) until they reached exercise-induced hyperthermia. After exercise, participants were cooled with either partial immersion using a tarp-assisted cooling method (water temperature 9.20°C [48.56°F], SD 2.81°C [5.06°F]) or passive cooling in a climatic chamber. There were no differences in exercise duration (mean difference=0.10 minutes; 95% CI -5.98 to 6.17 minutes or end exercise rectal temperature (mean difference=0.10°C [0.18°F]; 95% CI -0.05°C to 0.25°C [-0.09°F to 0.45°F] between tarp-assisted cooling (48.47 minutes [SD 8.27 minutes]; rectal temperature 39.73°C [103.51°F], SD 0.27°C [0.49°F]) and passive cooling (48.37 minutes [SD 7.10 minutes]; 39.63°C [103.33°F], SD 0.40°C [0.72°F]). Cooling time to rectal temperature 38.25°C (100.85°F) was significantly faster in tarp-assisted cooling (10.30 minutes [SD 1.33 minutes]) than passive cooling (42.78 [SD 5.87 minutes]). Cooling rates for tarp-assisted cooling and passive cooling were 0.17°C/min (0.31°F/min), SD 0.07°C/min (0.13°F/min) and 0.04°C/min (0.07°F/min), SD 0.01°C/min (0.02°F/min), respectively (mean difference=0.13°C [0.23°F]; 95% CI 0.09°C to 0.17°C [0.16°F to 0.31°F]. No sex differences were observed in tarp-assisted cooling rates (men 0.17°C/min [0.31°F/min], SD 0.07°C/min [0.13°F/min]; women 0.16°C/min [0.29°F/min], SD 0.07°C/min [0.13°F/min]; mean difference=0.02°C/min [0.04°F/min]; 95% CI -0.06°C/min to 0.10°C/min [-0.11°F/min to 0.18°F/min]). Women (0.04°C/min [0.07°F/min], SD 0.01°C/min [0.02°F/min]) had greater cooling rates than men (0.03°C/min [0.05°F/min], SD 0.01°C/min [0.02°F/min]) in passive cooling, with negligible clinical effect (mean difference=0.01°C/min [0.02°F/min]; 95% CI 0.001

  9. Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation.

    Science.gov (United States)

    Aryana, Arash; O'Neill, Padraig Gearoid; Pujara, Deep K; Singh, Steve K; Bowers, Mark R; Allen, Shelley L; d'Avila, André

    2016-08-01

    The optimal irrigation flow rate (IFR) during epicardial radiofrequency (RF) ablation has not been established. This study specifically examined the impact of IFR and intrapericardial fluid (IPF) accumulation during epicardial RF ablation. Altogether, 452 ex vivo RF applications (10 g for 60 seconds) delivered to the epicardial surface of bovine myocardium using 3 open-irrigated ablation catheters (ThermoCool SmartTouch, ThermoCool SmartTouch-SF, and FlexAbility) and 50 in vivo RF applications delivered (ThermoCool SmartTouch-SF) in 4 healthy adult swine in the presence or absence of IPF were examined. Ex vivo, RF was delivered at low (≤3 mL/min), reduced (5-7 mL/min), and high (≥10 mL/min) IFRs using intermediate (25-35 W) and high (35-45 W) power. In vivo, applications were delivered (at 9.3 ± 2.2 g for 60 seconds at 39 W) using reduced (5 mL/min) and high (15 mL/min) IFRs. Ex vivo, surface lesion diameter inversely correlated with IFR, whereas maximum lesion diameter and depth did not differ. While steam pops occurred more frequently at low IFR using high power (ThermoCool SmartTouch and ThermoCool SmartTouch-SF), tissue disruption was rare and did not vary with IFR. In vivo, charring/steam pop was not detected. Although there were no discernible differences in lesion size with IFR, surface lesion diameter, maximum diameter, depth, and volume were all smaller in the presence of IPF at both IFRs. Cooled-tip epicardial RF ablation created using reduced IFRs (5-7 mL/min) yields lesion sizes similar to those created using high IFRs (≥10 mL/min) without an increase in steam pop/tissue disruption, whereas the presence of IPF significantly reduces the lesion size. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Cement solidification of spent ion exchange resins produced by the nuclear industry

    International Nuclear Information System (INIS)

    Jaouen, C.; Vigreux, B.

    1988-01-01

    Cement solidification technology has been applied to spent ion exchange resins for many years in countries throughout the world (at reactors, research centers and spent fuel reprocessing plants). Changing specifications for storage of radioactive waste have, however, confronted the operators of such facilities with a number of problems. Problems related both to the cement solidification process (water/cement/resin interactions and chemical interactions) and to its utilization (mixing, process control, variable feed composition, etc.) have often led waste producers to prefer other, polymer-based processes, which are very expensive and virtually incompatible with water. This paper discusses research on cement solidification of ion exchange resins since 1983 and the development of application technologies adapted to nuclear service conditions and stringent finished product quality requirements

  11. Integral solution of equiaxed solidification with an interface kinetics model for nuclear waste management

    International Nuclear Information System (INIS)

    Naterer, G.F.

    1996-01-01

    In this paper, a one-dimensional analysis of energy and species transport during binary dendritic solidification is presented and compared to experimental results. The paper's objective is a continuation of previous studies of solidification control for the waste management of nuclear materials in the underground disposal concept. In the present analysis, interface kinetics at the solid - liquid interface accounts for recalescent thermal behaviour during solidification. The theoretical results were compared to available experimental results and the agreement appears fair although some discrepancies have been attributed to uncertainties with thermophysical properties. (author)

  12. Pressure and cooling rate effect on polyhedron clusters in Cu-Al alloy by using molecular dynamics simulation

    Science.gov (United States)

    Celik, Fatih Ahmet

    2014-10-01

    In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu-50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.

  13. Pressure and cooling rate effect on polyhedron clusters in Cu–Al alloy by using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Fatih Ahmet, E-mail: facelik@beu.edu.tr

    2014-10-01

    In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu–50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.

  14. Processing and solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Kelley, J.A.

    1981-01-01

    The entire flowsheet for processing and solidification of Savannah River Plant (SRP) high-level wastes has been demonstrated. A new small-scale integrated pilot plant is operating with actual radioactive wastes, and large-scale equipment is being demonstrated with nonradioactive simulated wastes. Design of a full-scale waste solidification plant is in progress. Plant construction is expected to begin in 1983, and startup is anticipated in 1988. The plant will poduce about 500 cans of glass per year with each can containing about 1.5 tons of glass

  15. Some techniques for the solidification of radioactive wastes in concrete

    International Nuclear Information System (INIS)

    Colombo, P.; Neilson, R. Jr.

    1976-06-01

    Some techniques for the solidification of radioactive wastes in concrete are discussed. The sources, storage, volume reduction, and solidification of liquid wastes at Brookhaven National Laboratory (BNL) using the cement-vermiculite process is described. Solid waste treatment, shipping containers, and off-site shipments of solid wastes at BNL are also considered. The properties of low-heat-generating, high-level wastes, simulating those in storage at the Savannah River Plant (SRP), solidified in concrete were determined. Polymer impregnation was found to further decrease the leachability and improve the durability of these concrete waste forms

  16. A mesoscale granular model for the mechanical behavior of alloys during solidification

    Energy Technology Data Exchange (ETDEWEB)

    Vernede, Stephane [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland); Alcan Centre de Recherches de Voreppe, ZI Centr' Alp, 725 rue Aristide Berges, BP 27, Voreppe FR-38341 (France)], E-mail: stephane.vernede@alcan.com; Dantzig, Jonathan A. [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland); Department of Mechanical Science and Engineering, University of Illinois, 1206 West Green Street Urbana, IL 61801 (United States); Rappaz, Michel [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland)

    2009-03-15

    We present a two-dimensional granular model for the mechanical behavior of an ensemble of globular grains during solidification. The grain structure is produced by a Voronoi tessellation based on an array of predefined nuclei. We consider the fluid flow caused by grain movement and solidification shrinkage in the network of channels that is formed by the faces of the grains in the tessellation. We develop the governing equations for the flow rate and pressure drop across each channel when the grains are allowed to move, and we then assemble the equations into a global expression that conserves mass and force in the system. We show that the formulation is consistent with dissipative formulations of non-equilibrium thermodynamics. Several example problems are presented to illustrate the effect of tensile strains and the availability of liquid to feed the deforming microstructure. For solid fractions below g{sub s}=0.97, we find that the fluid is able to feed the deformation at low strain, even if external feeding is not permitted. For solid fractions above g{sub s}=0.97, clusters of grains with 'dry' boundaries form and fluid flow becomes highly localized.

  17. The melting and solidification of nanowires

    International Nuclear Information System (INIS)

    Florio, B. J.; Myers, T. G.

    2016-01-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  18. The melting and solidification of nanowires

    Science.gov (United States)

    Florio, B. J.; Myers, T. G.

    2016-06-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  19. The melting and solidification of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Florio, B. J., E-mail: brendan.florio@ul.ie [University of Limerick, Mathematics Applications Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics (Ireland); Myers, T. G., E-mail: tmyers@crm.cat [Centre de Recerca Matemàtica (Spain)

    2016-06-15

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  20. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  1. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    Science.gov (United States)

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Preparation and Properties of Mg-Cu-Y-Al bulk Amorphous Alloys

    DEFF Research Database (Denmark)

    Pryds, Nini; Eldrup, Morten Mostgaard; Ohnuma, M.

    2000-01-01

    Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial and tempo......Bulk amorphous (Mg(1-gamma)Al(gamma))(60)CU(30)Y(10) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper wedge mould. The temperature vs, time was recorded during the cooling and solidification process of the melt and compared with a spacial...... temperatures in specimens containing a few percent Al. The alloy with no Al crystallises apparently without the formation of nanoparticles. The critical cooling rate for the formation of an amorphous Mg(60)CU(30)Y(10) specimen was determined experimentally by a combination of DSC data and temperature vs, time...

  3. Evaporative cooling in polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shimotori, S; Sonai, A [Toshiba Corp. Tokyo (Japan)

    1996-06-05

    The concept of the evaporative cooling for the internally humidified PEFC was confirmed by the experiment. The evaporative cooling rates at the anode and the cathode were mastered under the various temperatures and air utilizations. At a high temperature the proportion of the evaporative cooling rate to the heat generation rate got higher, the possibility of the evaporative cooling was demonstrated. 2 refs., 7 figs., 1 tab.

  4. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    International Nuclear Information System (INIS)

    Zhu Tianping; Chen, Zhan W.; Gao Wei

    2008-01-01

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the α-Mg/β-Mg 17 Al 12 phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a more regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, α-Mg re-solidified with a cellular growth, resulting in a serrated interface between α-Mg and α-Mg/β-Mg 17 Al 12 in the weld sample and between α-Mg and β-Mg 17 Al 12 (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained

  5. Closed solutions to a differential-difference equation and an associated plate solidification problem.

    Science.gov (United States)

    Layeni, Olawanle P; Akinola, Adegbola P; Johnson, Jesse V

    2016-01-01

    Two distinct and novel formalisms for deriving exact closed solutions of a class of variable-coefficient differential-difference equations arising from a plate solidification problem are introduced. Thereupon, exact closed traveling wave and similarity solutions to the plate solidification problem are obtained for some special cases of time-varying plate surface temperature.

  6. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  7. Critical heat flux analysis on change of plate temperature and cooling water flow rate for rectangular narrow gap with bilateral-heated cases

    International Nuclear Information System (INIS)

    M Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan

    2013-01-01

    Boiling heat transfer phenomena on rectangular narrow gap was related to the safety of nuclear reactors. Research done in order to study the safety of nuclear reactors in particular relating to boiling heat transfer and useful on the improvement of next-generation reactor designs. The research focused on calculation of the heat flux during the cooling process in rectangular narrow gap size 1.0 mm. with initial temperatures 200°C. 400°C, and 600°C, also the flow rates of cooling water 0,1 liters/second. 0,2 liters/second. and 0,3 liters/second. Experiments carried out by injecting water at a certain flow rate with the water temperature 85°C. Transient temperature measurement data recorded by the data acquisition system. Transient temperature measurement data is used to calculate the flux of heat gain is then used to obtain the heat transfer coefficient. This research aimed to obtain the correlation between critical heat flux and heat transfer coefficient to changes in temperatures and water flow rates for bilaterally-heated cases on rectangular narrow gap. The results obtained for a constant cooling water flow rate, critical heat flux will increase when hot plate temperature also increased. While on a constant hot plate temperature, coefficient heat transfer will increase when cooling water flow rate also increased. Thus it can be said that the cooling water flow rate and temperature of the hot plate has a significant effect on the critical heat flux and heat transfer coefficient resulted in quenching process of vertical rectangular narrow gap with double-heated cases. (author)

  8. NPP radioactive waste processing and solidification

    International Nuclear Information System (INIS)

    Nikiforov, A.S.; Polyakov, A.S.; Zakharova, K.P.

    1983-01-01

    The problems of proce-sing NPP intermediate level- and low-level liquid radioactive wastes (LRW) are considered. Various methods are compared of LWR solidification on the base of bituminization, cement grouting and inclusion into synthetic resins. It is concluded that the considered methods ensure radioactive radionuclides effluents into open hydronetwork at the level below the sanitary, standards

  9. Effect of Fe content, cooling rate and porosity on the tensile properties of cast 319 and 356 aluminum alloys

    International Nuclear Information System (INIS)

    Ma, Z.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S.

    2002-01-01

    The present study was carried out to investigate the effects of Fe content, cooling rate and porosity on the tensile properties of cast 319 and 356 alloys. Both experimental and industrial 319 alloys (containing 0.1 and 0.4 wt% Mg) and industrial 356 alloys were used, with 200-300 ppm strontium additions to study the modification effect. The Fe content was varied from 0.2 to 0.8 wt% in the 319 alloys, and from 0.1 to 0.6 wt% in the 356 alloy in keeping with Fe levels observed in industry. An end-chilled mold was employed to obtain directionally solidified castings, where the cooling rate varied with the height of the casting. Tensile and microstructural samples were sectioned at heights corresponding to dendrite arm spacings of ∼23 to ∼83 μm. The microstructures were examined using optical- and scanning electron microscopy. The effect of Fe content and cooling rate was investigated through measurements of the β-Al 5 FeSi platelets, using image analysis. Porosity measurements were also made. Phase identification was done using EPMA, EDX and XRD. The results show that the β-Al 5 FeSi platelet size has a significant effect on ductility and tensile strength up to sizes of ∼100 μm in the 319 alloys and ∼70 μm in the 356 alloy, but has no significant effect on the yield strength. While tensile properties are interpreted by means of UTS vs. log Elongation plots (after the Quality index concept of Drouzy et al. (5)), in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log Elongation plots, where the properties increased linearly within low cooling rate-high Fe and high cooling rate-low Fe condition extremities. The results are explained in terms of the β-Al 5 FeSi platelet size and porosity values obtained. (author)

  10. Wafer level hermetic packaging based on Cu-Sn isothermal solidification technology

    International Nuclear Information System (INIS)

    Cao Yuhan; Luo Le

    2009-01-01

    A novel wafer level bonding method based on Cu-Sn isothermal solidification technology is established. A multi-layer sealing ring and the bonding processing are designed, and the amount of solder and the bonding parameters are optimized based on both theoretical and experimental results. Verification shows that oxidation of the solder layer, voids and the scalloped-edge appearance of the Cu 6 Sn 5 phase are successfully avoided. An average shear strength of 19.5 MPa and an excellent leak rate of around 1.9 x 10 -9 atm cc/s are possible, meeting the demands of MIL-STD-883E. (semiconductor technology)

  11. The effect of the melting spinning cooling rate on transformation temperatures in ribbons Ti-Ni-Cu shape memory

    International Nuclear Information System (INIS)

    Ramos, A.P.; Castro, W.B.; Anselmo, G.C. dos S.

    2014-01-01

    Ti-Ni-Cu alloys have been attracting attention by their high performance of shape memory effect and decrease of thermal and stress hysteresis in comparison with Ti-Ni binary alloys. One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. Shape memory characteristics of Ti-37,8Cu-18,7Ni alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change of the velocity of cooling wheel from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on austenitic and martensitic transformations behaviors is discussed. (author)

  12. ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS

    Science.gov (United States)

    Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...

  13. Positive segregation as a function of buoyancy force during steel ingot solidification

    International Nuclear Information System (INIS)

    Radovic, Zarko; Jaukovic, Nada; Lalovic, Milisav; Tadic, Nebojsa

    2008-01-01

    We analyze theoretically and experimentally solute redistribution in the dendritic solidification process and positive segregation during solidification of steel ingots. Positive segregation is mainly caused by liquid flow in the mushy zone. Changes in the liquid steel velocity are caused by the temperature gradient and by the increase in the solid fraction during solidification. The effects of buoyancy and of the change in the solid fraction on segregation intensity are analyzed. The relationships between the density change, liquid fraction and the steel composition are considered. Such elements as W, Ni, Mo and Cr decrease the effect of the density variations, i.e. they show smaller tendency to segregate. Based on the modeling and experimental results, coefficients are provided controlling the effects of chemical composition, secondary dendrite arm spacing and the solid fraction.

  14. Microstructural evolution of Ni57Nb33Zr5Co5 metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Dulnee, S.; Gargarella, P.; Kiminami, C.S. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Kaufman, M. [Colorado School of Mines, (United States)

    2016-07-01

    Full text: The Ni57Nb33Zr5Co5 metallic glass is a promising alloy to be used as bipolar plates in proton exchange membrane (PEM) fuel cells. It is important to know which phase forms in this alloy under different cooling rates in order to investigate its influence in the thermal stability and mechanical properties of this alloy. In this work, different rapid solidified samples were prepared and their phase formation and microstructure were investigated by X ray diffraction (XRD), differential scanning calorimetry (DSC), optical microscopy, and scanning electron microscopy (SEM). It is found that in the samples with the highest cooling rate (ribbons) a fully glassy structure is attained. For the lower cooling rate samples (ingot, 2mm and 3 mm diameter rods), an complete crystalline structure forms with the presence of the equilibrium phases of Ni3(Nb,Zr) and Nb7Ni6 as primary phase or in an eutectic structure. As for the samples with an intermediate cooling rate (1 mm diameter rods) a polymorphic solidification occurs. Crystals of a metastable phase with spherical morphology precipitate in a glassy matrix with virtually the same composition and the spherical morphology is connected with the absence of constitutional undercooling during solidification. (author)

  15. Heat generation and cooling of SSC magnets at high ramp rates

    International Nuclear Information System (INIS)

    Snitchler, G.; Capone, D.; Kovachev, V.; Schermer, R.

    1992-01-01

    This presentation will address a summary of AC loss calculations (SSCL), experimental results on cable samples (Westinghouse STC), short model magnets test results (FNAL, KEK-Japan), and recent full length magnets test data on AC losses and quench current ramp rate sensitivity (FNAL, BNL). Possible sources of the observed enhanced heat generation and quench sensitivity for some magnets will be discussed. A model for cooling conditions of magnet coils considering heat generation distribution and specific anisotropy of the heat transfer will be presented. The crossover contact resistance in cables and curing procedure influence on resistivity, currently under study, will be briefly discussed. (author)

  16. Solidification and performance of cement doped with phenol

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Krishnan, S.

    1991-01-01

    Treating mixed hazardous wastes using the solidification/stabilization technology is becoming a critical element in waste management planning. The effect of phenol, a primary constituent in many hazardous wastes, on the setting and solidification process of Type I Portland cement was evaluated. The leachability of phenol from solidified cement matrix (TCLP test) and changes in mechanical properties were studied after curing times up to 28 days. The changes in cement hydration products due to phenol were studied using the X-ray diffraction (XRD) powder technique. Results show that phenol interferes with initial cement hydration by reducing the formation of calcium hydroxide and also reduces the compressive strength of cement. A simple model has been proposed to quantify the phenol leached from the cement matrix during the leachate test

  17. Continuous Solidification of Immiscible Alloys and Microstructure Control

    Science.gov (United States)

    Jiang, Hongxiang; Zhao, Jiuzhou

    2018-05-01

    Immiscible alloys have aroused considerable interest in last few decades due to their excellent physical and mechanical characteristics as well as potential industrial applications. Up to date, plenty of researches have been carried out to investigate the solidification of immiscible alloys on the ground or in space and great progress has been made. It is demonstrated that the continuous solidification technique have great future in the manufacturing of immiscible alloys, it also indicates that the addition of surface active micro-alloying or inoculants for the nucleation of the minority phase droplets and proper application of external fields, e.g., static magnetic field, electric current, microgravity field, etc. may promote the formation of immiscible alloys with an expected microstructure. The objective of this article is to review the research work in this field.

  18. Metastable and unstable cellular solidification of colloidal suspensions

    Science.gov (United States)

    Deville, Sylvain; Maire, Eric; Bernard-Granger, Guillaume; Lasalle, Audrey; Bogner, Agnès; Gauthier, Catherine; Leloup, Jérôme; Guizard, Christian

    2009-12-01

    Colloidal particles are often seen as big atoms that can be directly observed in real space. They are therefore becoming increasingly important as model systems to study processes of interest in condensed-matter physics such as melting, freezing and glass transitions. The solidification of colloidal suspensions has long been a puzzling phenomenon with many unexplained features. Here, we demonstrate and rationalize the existence of instability and metastability domains in cellular solidification of colloidal suspensions, by direct in situ high-resolution X-ray radiography and tomography observations. We explain such interface instabilities by a partial Brownian diffusion of the particles leading to constitutional supercooling situations. Processing under unstable conditions leads to localized and global kinetic instabilities of the solid/liquid interface, affecting the crystal morphology and particle redistribution behaviour.

  19. Ensemble averaged multi-phase Eulerian model for columnar/equiaxed solidification of a binary alloy: II. Simulation of the columnar-to-equiaxed transition (CET)

    International Nuclear Information System (INIS)

    Ciobanas, A I; Fautrelle, Y

    2007-01-01

    A new multi-phase Eulerian model for the columnar and equiaxed dendritic solidification has been developed. In this paper we first focus on the numerical simulation of quasi-steady solidification experiments in order to obtain corresponding CET maps. We have identified three main zones on the CET map: the pure columnar, the pure equiaxed zone and finally the mixed columnar+equiaxed zone. The mixed c/e zone was further quantified by means of a columnar fraction ε c which quantifies in a rigorous way the two coexisting structures. Since it intrinsically includes the solutal and the mechanical blocking effects, the new ensemble model unifies the semi-empirical Hunt's approach (pure mechanical blocking mechanism) and the Martorano et al approach (pure solutal blocking mechanism). Secondly the present model was used to simulate unidirectional solidification experiments. It was found that the columnar front evolved in a quasi-steady state until a time very close to the critical CET moment. It is also found that the equiaxed nucleation undercooling is close to the maximum columnar dendrite tip undercooling and that the CET is virtually independent of the equiaxed zone ahead of the columnar front. If the equiaxed zone is not taken into account it is observed that the columnar front velocity exhibits a sudden increase at the beginning of the solidification followed by a quasi-plateau corresponding to a quasi-state at the columnar tips and finally, above a critical time, an oscillatory evolution. The beginning of the oscillatory evolution of the columnar front was well correlated with the CET position measured in the experiments. We also find that this oscillatory evolution of the columnar front is very favourable for the fragmentation of the columnar dendrites and thus for the CET. In this respect, it seems that the unsteady regime of the columnar front with respect to the local cooling conditions represents the main cause for the CET phenomena, at least for the non

  20. Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal

    Science.gov (United States)

    Kadoi, Kota; Shinozaki, Kenji

    2017-12-01

    The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (Δ T) calculated by solidification simulation based on Scheil model. Δ T increased with increasing content of alloying elements such as niobium. The distribution of Δ T was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in Δ T and the segregation behavior of niobium with the chemical composition.

  1. Metallurgical phenomena in laser finishing: Interdependences between solidification morphologies and hot cracking in laser welding of mostly austenitic materials. Final reportc; Metallkundliche Phaenomene der Laserstrahlmaterialbearbeitung. Teilvorhaben: Zusammenhaenge zwischen Erstarrungsmorphologien und Heissrissentstehung beim Laserschweissen von vornehmlich austenitischen Werkstoffen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schobbert, H.

    2000-06-01

    Austentic stainless steels are widely used in safety relevant applications such as chemical plant industry or off-shore industry. Due to the rapid development of laser welding processes, the economical efficiency increases and leads to a growing interest in industry for the production of, for example, straight bead welded pipes. A specific problem of laser welding is the economically desirable high welding speed, which leads in austenitic stainless steels to a change of solidification mode and thus, to a restricted hot cracking resistance. Thus, the solidification morphologies of austenitic stainless steels near the eutectic trough during laser welding were investigated. Thereby, the main aspect was the evaluation of a short-term metallurgical kinetic effects under rapid solidification conditions. It was proven that three widely used stainless steels (1.4828, 1.4306, and 1.4404) show a transition of primary solidifcation mode from primary ferritic to primary austenitic solidification depending on the solidification rate. The approximate value of the critical soldification rate can be determined using a newly developed model by analyzing the geometric structures of solidification. The critical solidification rate for the transition of the solidification mode depends on the chemical composition of the base metal. It was shown that austenitic stainless steels have a critical solidification rate of approximately 1 m/min. As a main result, it was proven that a transition of the solidification mode to primary austenitic solidification promotes the predicted susceptibiliyy of hot cracking. For this, a hot cracking test assembly has been developed in order to determine the hot cracking behavior under laser beam conditions. In contrast to existing hot crack tests, a critical strain rate for hot crack initiation could be measured. A classification of the materials with respect to their hot cracking susceptibility under the solidification conditions during laser welding can

  2. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.; Peppin, S. S. L.

    2011-01-01

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related

  3. Geochronological and mineralogical constraints on depth of emplacement and ascencion rates of epidote-bearing magmas from northeastern Brazil

    Science.gov (United States)

    Sial, Alcides N.; Vasconcelos, Paulo M.; Ferreira, Valderez P.; Pessoa, Ricardo R.; Brasilino, Roberta G.; Morais Neto, João M.

    2008-10-01

    Calc-alkalic to high-K calc-alkalic granitoid plutons in the Borborema province, northeastern Brazil, have been studied to constrain depth of emplacement by mineralogical and geological methods and to estimate upward magma transport rate based on partial dissolution of magmatic epidote. Laser-probe incremental heating 40Ar/ 39Ar dating of biotite and hornblende single crystals from the Neoproterozoic Tavares and Brejinho high-K calc-alkalic magmatic epidote (mEp)-bearing plutons reveals age differences of around 60 M.y. between these two minerals in each of these two intrusions. These data suggest solidification at relatively great depth followed by prolonged cooling interval between the closure temperatures of biotite and hornblende. Al-in-hornblende barometry indicates that hornblende in several mEp-bearing plutons in the Transversal Domain of the Borborema province solidified at 5 to 7 kbar, whereas in the Seridó and Macururé terranes, solidification pressures range from 3 to 4 kbar. Partial dissolution of epidote indicates very rapid upward transport. Partial corrosion occurred during 15-35 years (Cachoerinha-Salgueiro terrane), 10-30 years (Alto Pajeú), 15 years (Seridó), and 10 years (Macururé) corresponding to upward transport rates of 450-1300, 650-1050, 1200, and 1800 m/year respectively in these four terranes. Rapid upward magma migration in most cases was probably facilitated by diking simultaneous with regional shearing.

  4. Solidification of liquid concentrate and solid waste generated as by-products of the liquid radwaste treatment systems in light-water reactors

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1977-01-01

    The treatment of liquid concentrate and solid waste produced in light-water reactors as by-products of liquid radwaste treatment systems consists of five basic operations: waste collection, waste pretreatment, solidification agent handling, mixing/packaging (solidification) and waste package handling. This paper will concern itself primarily with the solidification operation, however, the other operations enumerated as well as the types of wastes treated and their origins will be briefly described, especially with regards to their effects on solidification. During solidification, liquid concentrate and solid wastes are incorporated with a solidification agent to form a monolithic, free-standing solid. The basic solidification agent types either currently used in the United States or proposed for use include absorbants, hydraulic cement, urea-formaldehyde, other polymer systems, and bitumen. The operation, formulations and limitations of these agents as used for radwaste solidification will be discussed. Properties relevant to the evaluation of solidified waste forms will be identified and relative comparisons made for wastes solidified by various processes

  5. Effects of different casting mould cooling rates on microstructure and properties of sand-cast Al-7.5Si-4Cu alloy

    Directory of Open Access Journals (Sweden)

    Liu Guanglei

    2013-11-01

    Full Text Available In this work, Al-7.5Si-4Cu alloy melt modified by Al-10Sr, RE and Al-5Ti-B master alloys was poured into multi-step moulds made from three moulding sands, including quartz, alumina and chromite, to investigate comparatively the effects of different cooling rates of the casting mould on the alloy's microstructures and mechanical properties. The results show that with an increase in wall thickness, the cooling rate decreases, the dendrite arm spacing (DAS increases significantly and the mechanical properties decrease steadily. The elongation is more sensitive to the cooling rate than the tensile strength. No obvious trend of the effect of wall thickness on hardness of the alloy was found. When the cooling rate is at its greatest, the microstructures and mechanical properties are the best when using chromite sand. The improvement of the properties is mainly attributed to the decrease of the DAS, the grain refinement and the metamorphic effect. Each of the three has a strong impact on the microstructures. Furthermore, a series of fitting models was established based on the data of the DAS to predict the mechanical properties of the multivariate sand-cast Al-7.5Si-4Cu alloy.

  6. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  7. Micromechanical modeling of stress-induced strain in polycrystalline Ni–Mn–Ga by directional solidification

    International Nuclear Information System (INIS)

    Zhu, Yuping; Shi, Tao; Teng, Yao

    2015-01-01

    Highlights: • A micromechanical model of directional solidification Ni–Mn–Ga is developed. • The stress–strain curves in different directions are tested. • The martensite Young’s moduli in different directions are predicted. • The macro reorientation strains in different directions are investigated. - Abstract: Polycrystalline ferromagnetic shape memory alloy Ni–Mn–Ga produced by directional solidification possess unique properties. Its compressive stress–strain behaviors in loading–unloading cycle show nonlinear and anisotropic. Based on the self-consistent theory and thermodynamics principle, a micromechanical constitutive model of polycrystalline Ni–Mn–Ga by directional solidification is developed considering the generating mechanism of the macroscopic strain and anisotropy. Then, the stress induced strains at different angles to solidification direction are calculated, and the results agree well with the experimental data. The predictive curves of martensite Young’s modulus and macro reorientation strain in different directions are investigated. It may provide theoretical guidance for the design and use of ferromagnetic shape memory alloy

  8. Survival of mouse embryos after vitrification depending on the cooling rate of the cryoprotectant solution.

    Science.gov (United States)

    Hredzák, R; Ostró, A; Zdilová, Viera; Maracek, I; Kacmárik, J

    2006-03-01

    The aim of the study was to determine the relationship between the rate of cooling of eight-cell mouse embryos to the temperature of liquid nitrogen (-196 degrees C) and their developmental capacity after thawing on the basis of their ability to leave the zona pellucida ('hatching') during in vitro culturing. Eight-cell embryos were obtained from superovulated female mice and divided into three experimental and one control group. Embryos from the experimental groups were cryopreserved by the vitrification method using ethylene glycol as cryoprotectant. The vitrification protocols used in the study differed in the rate of cooling of the cryoprotectant solution. Embryos from the first group were frozen in conventional 0.25-ml plastic straws, those from the second group in pipetting 'tips', and embryos from the third group, placed in vitrification solution, were introduced dropwise directly into liquid nitrogen. The control group of embryos was cultured in vitro without freezing in a culturing medium in an environment consisting of 95% air and 5% CO2. The developmental capacity of thawed embryos was assessed on the basis of their ability to leave the zona pellucida ('hatching') after three days of in vitro culturing. In the control group 95.1% of embryos 'hatched'. A significantly higher number of embryos that 'hatched' after thawing was observed in the group introduced dropwise directly into liquid nitrogen (60.0%) compared to the group frozen in pipetting 'tips' (37.9%). The group frozen in straws yielded significantly the lowest proportion of 'hatching' embryos (8.1%). These results showed that increasing cooling rates during vitrification of embryos improved their survival.

  9. Melt cooling by bottom flooding. The COMET core-catcher concept

    International Nuclear Information System (INIS)

    Foit, Jerzy Jan; Alsmeyer, Hans; Tromm, Walter; Buerger, Manfred; Journeau, Christophe

    2009-01-01

    The COMET concept has been developed to cool an ex-vessel corium melt in case of a hypothetical severe accident leading to vessel melt-through. After erosion of a sacrificial concrete layer the melt is passively flooded by bottom injection of coolant water. The open porosities and large surface that are generated during melt solidification form a porous permeable structure that is permanently filled with the evaporating water and thus allows an efficient short-term as well as long-term removal of the decay heat. The advantages of this concept are the fast cool-down and complete solidification of the melt within less than one hour typically. This stops further release of fission products from the corium. A drawback may be the fast release of steam during the quenching process. Several experimental series have been performed by FZK (Germany) to test and optimise the functionality of the different variants of the COMET concept. Thermite generated melts of iron and aluminium oxide were used. The large scale COMET-H test series with sustained inductive heating includes nine experiments performed with an array of water injection channels embedded in a sacrificial concrete layer. Variation of the water inlet pressure and melt height showed that melts up to 50 cm height can be safely cooled with an overpressure of the coolant water of 0.2 bar. The CometPC concept is based on cooling by flooding the melt from the bottom through layers of porous, water filled concrete. The third variant of the COMET design, CometPCA, uses a layer of porous, water filled concrete CometPCA from which flow channels protrude into the layer of sacrificial concrete. This modified concept combines the advantages of the original COMET concept with flow channels and the high resistance of a water-filled porous concrete layer against downward melt attack. Four large scale CometPCA experiments (FZK, Germany) have demonstrated an efficient cooling of melts up to 50 cm height using the recommended water

  10. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  11. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    Science.gov (United States)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  12. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification

    International Nuclear Information System (INIS)

    Aziz, M.J.; Boettinger, W.J.

    1994-01-01

    Short-range diffusion-limited growth, collision-limited growth, and the transition between the two regimes are explained as natural consequences of a single model for the kinetics of alloy solidification. Analytical expressions are developed for the velocity-undercooling function of a planar interface during dilute alloy solidification, using Turnbull's collision-limited growth model and the Continuous Growth Solute Trapping Model of Aziz and Kaplan both with and without a solute drag effect. The interface mobility, -dv/dT, is shown to be very high (proportional to the speed of sound) if the alloy is sufficiently dilute or if the growth rate is sufficiently rapid for nearly complete solute trapping. The interface mobility is reduced by the three orders of magnitude (becoming proportional to the diffusive speed) at intermediate growth rates where partial solute trapping occurs. Differences in low velocity predictions of the models with and without solute drag are also discussed. Comparison of the results of the analytical expressions to numerical solutions of the non-dilute kinetic model for Al-Be alloys shows that the dilute approximation breaks down at melt compositions on the order of 10 at.%. Similar variations in the interface mobility are shown for the disorder-trapping model of Boettinger and Aziz

  13. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  14. Gravitational Acceleration Effects on Macrosegregation: Experiment and Computational Modeling

    Science.gov (United States)

    Leon-Torres, J.; Curreri, P. A.; Stefanescu, D. M.; Sen, S.

    1999-01-01

    Experiments were performed under terrestrial gravity (1g) and during parabolic flights (10-2 g) to study the solidification and macrosegregation patterns of Al-Cu alloys. Alloys having 2% and 5% Cu were solidified against a chill at two different cooling rates. Microscopic and Electron Microprobe characterization was used to produce microstructural and macrosegregation maps. In all cases positive segregation occurred next to the chill because shrinkage flow, as expected. This positive segregation was higher in the low-g samples, apparently because of the higher heat transfer coefficient. A 2-D computational model was used to explain the experimental results. The continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the solidification phenomena, for a two-phase system. The model considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The solidification event was divided into two stages. In the first one, the liquid containing freely moving equiaxed grains was described through the relative viscosity concept. In the second stage, when a fixed dendritic network was formed after dendritic coherency, the mushy zone was treated as a porous medium. The macrosegregation maps and the cooling curves obtained during experiments were used for validation of the solidification and segregation model. The model can explain the solidification and macrosegregation patterns and the differences between low- and high-gravity results.

  15. On the role of solidification modelling in Integrated Computational Materials Engineering “ICME”

    International Nuclear Information System (INIS)

    Schmitz, G J; Böttger, B; Apel, M

    2016-01-01

    Solidification during casting processes marks the starting point of the history of almost any component or product. Integrated Computational Materials Engineering (ICME) [1-4] recognizes the importance of further tracking the history of microstructure evolution along the subsequent process chain. Solidification during joining processes in general happens quite late during production, where the parts to be joined already have experienced a number of processing steps which affected their microstructure. Reliable modelling of melting and dissolution of these microstructures represents a key issue before eventually modelling ‘re’-solidification e.g. during welding or soldering. Some instructive examples of microstructure evolution during a joining process obtained on the basis of synthetic and simulated initial microstructures of an Al-Cu binary model system are discussed. (paper)

  16. Flame-Sprayed Y2O3 Films with Metal-EDTA Complex Using Various Cooling Agents

    Science.gov (United States)

    Komatsu, Keiji; Toyama, Ayumu; Sekiya, Tetsuo; Shirai, Tomoyuki; Nakamura, Atsushi; Toda, Ikumi; Ohshio, Shigeo; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2017-01-01

    In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film's temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit's temperatures.

  17. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    OpenAIRE

    Lin Zheng; Wei Zhang; Fei Liang; Shuang Lin; Xiangyu Jin

    2017-01-01

    The paper presents the different properties of phase change material (PCM) and Microencapsulated phase change material (MEPCM) employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC) tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compar...

  18. Mobile concrete solidification systems for power reactor waste

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Bordas, Y.

    1990-01-01

    In late 1988 SGN received an order from Electricite de France (EDF) for the construction of a mobile concrete solidification system to process secondary system resins generated by the P'4 and N4 series PWR power plants in France. This order was placed in view of SGN's experience with low- and medium-level radioactive waste treatment and conditioning over a period of almost 20 years. In addition to the construction of fixed waste processing facilities using more conventional technologies, SGN has been involved in application of the mobile system concept to the bituminization process in the United States, which led to the construction and commissioning of two transportable systems in collaboration with its American licensee US Ecology. It has also conducted large-scale R ampersand D on LLW/MLW concrete solidification, particularly for ion exchange resins. 5 figs

  19. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Q n distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3 B and 4 B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  20. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  1. Solidification processing of high-Tc superconductors

    CERN Document Server

    Shiohara, Y; Nakamura, Y; Izumi, T

    2001-01-01

    Recent progress in the solidification processing of RE-system (RE:Y, Sm, Nd etc.) oxide superconducting materials is reviewed. The superconducting YBa/sub 2/Cu/sub 3/O/sub y/(Y123) phase is solidified from Y/sub 2/BaCuO/sub 5/(Y211) and liquid phases, by a peritectic reaction. The solidified micro and macro structure can not be explained by the peritectic reaction with diffusion in the solid but rather by diffusion in the liquid. A solidification model for this reaction is developed. It is confirmed that the prediction from the model calculation is in good agreement with the experimental results. Furthermore, the basic idea is expanded to develop a novel single crystal pulling process. Y211 powders were placed at the bottom of the crucible as the solute source for the growth and a BaO-CuO composite (Ba to Cu cation ratio was 3 to 5) was placed on the layer of Y211 powders. Temperature gradient was provided in the melt. Large bulk single crystals were obtained by this technique, and the growth mechanism was al...

  2. Low-level waste cement solidification design, installation, and start-up

    International Nuclear Information System (INIS)

    Jezek, G.R.

    1988-08-01

    This report describes the design, installation, and start-up activities of the Cement Solidification System (CSS) at the West Valley Demonstration Project (WVDP), West Valley, New York. The CSS, designed to operate within an existing process cell, automatically and remotely solidifies low-level nuclear waste by mixing it with Portland Type I cement. The qualified waste form mixture is placed into square, 270-litre (71-gallon) metal drums. The drums have an integral polyethylene liner to protect the carbon-steel material from potential corrosion. The CSS produces drums at a continuous operation rate of four drums per hour. All system processing data is monitored by a computerized Data Acquisition System (DAS). 6 figs

  3. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form

  4. Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel

    International Nuclear Information System (INIS)

    Mun, Dong Jun; Shin, Eun Joo; Choi, Young Won; Lee, Jae Sang; Koo, Yang Mo

    2012-01-01

    Highlights: ► Non-equilibrium segregation of B in steel depends strongly on the cooling rate. ► A higher austenitization temperature reduced the B hardenability effect. ► An increase in B concentration at γ grain boundaries accelerates the B precipitation. ► The loss of B hardenability effect is due to intragranular borocarbide precipitation. ► The controlled cooling after hot deformation increased the B hardenability effect. - Abstract: The phase transformation behavior of high-strength boron steel was studied considering the segregation and precipitation behavior of boron (B). The effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of B-bearing steel as compared with B-free steel were investigated by using dilatometry, microstructural observations and analysis of B distribution. The effects of these variables on hardenability were discussed in terms of non-equilibrium segregation mechanism and precipitation behavior of B. The retardation of austenite-to-ferrite transformation by B addition depends strongly on cooling rate (CR); this is mainly due to the phenomenon of non-equilibrium grain boundary segregation of B. The hardenability effect of B-bearing steel decreased at higher austenitizing temperature due to the precipitation of borocarbide along austenite grain boundaries. Analysis of B distribution by second ion mass spectroscopy confirmed that the grain boundary segregation of B occurred at low austenitizing temperature of 900 °C, whereas B precipitates were observed along austenite grain boundaries at high austenitizing temperature of 1200 °C. The significant increase in B concentration at austenite grain boundaries due to grain coarsening and a non-equilibrium segregation mechanism may lead to the B precipitation. In contrast, solute B segregated to austenite grain boundaries during cooling after heavy deformation became more stable because the increase in boundary area by grain

  5. Cold-Water Immersion Cooling Rates in Football Linemen and Cross-Country Runners With Exercise-Induced Hyperthermia.

    Science.gov (United States)

    Godek, Sandra Fowkes; Morrison, Katherine E; Scullin, Gregory

    2017-10-01

      Ideal and acceptable cooling rates in hyperthermic athletes have been established in average-sized participants. Football linemen (FBs) have a small body surface area (BSA)-to-mass ratio compared with smaller athletes, which hinders heat dissipation.   To determine cooling rates using cold-water immersion in hyperthermic FBs and cross-country runners (CCs).   Cohort study.   Controlled university laboratory.   Nine FBs (age = 21.7 ± 1.7 years, height = 188.7 ± 4 cm, mass = 128.1 ± 18 kg, body fat = 28.9% ± 7.1%, lean body mass [LBM] = 86.9 ± 19 kg, BSA = 2.54 ± 0.13 m 2 , BSA/mass = 201 ± 21.3 cm 2 /kg, and BSA/LBM = 276.4 ± 19.7 cm 2 /kg) and 7 CCs (age = 20 ± 1.8 years, height = 176 ± 4.1 cm, mass = 68.7 ± 6.5 kg, body fat = 10.2% ± 1.6%, LBM = 61.7 ± 5.3 kg, BSA = 1.84 ± 0.1 m 2 , BSA/mass = 268.3 ± 11.7 cm 2 /kg, and BSA/LBM = 298.4 ± 11.7 cm 2 /kg).   Participants ingested an intestinal sensor, exercised in a climatic chamber (39°C, 40% relative humidity) until either target core temperature (T gi ) was 39.5°C or volitional exhaustion was reached, and were immediately immersed in a 10°C circulated bath until T gi declined to 37.5°C. A general linear model repeated-measures analysis of variance and independent t tests were calculated, with P LBM/mass (r = 0.72, P LBM (r = -0.72, P 11 minutes) than smaller, leaner athletes (7.7 minutes). Cooling rates varied widely from 0.332°C·min -1 in a small runner to only 0.101°C·min -1 in a lineman, supporting the use of rectal temperature for monitoring during cooling.

  6. Solidification method for organic solution and processing method of aqueous solution

    International Nuclear Information System (INIS)

    Kamoshida, Mamoru; Fukazawa, Tetsuo; Yazawa, Noriko; Hasegawa, Toshihiko

    1998-01-01

    The relative dielectric constant of an organic solution containing polar ingredients is controlled to 13 or less to enable its solidification. The polarity of the organic solution can be evaluated quantitatively by using the relative dielectric constant. If the relative dielectric constant is high, it can be controlled by dilution using a non-polar organic solvent of low relative dielectric constant. With such procedures, solidification can be conducted by using an economical 12-hydroxy stearic acid, process of liquid wastes can be facilitated and the safety can be ensured. (T.M.)

  7. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons. © 2014 Wiley Periodicals, Inc.

  8. Improved cement solidification of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1993-01-01

    Cementation was the first and is still the most widely applied technique for the conditioning of low and intermediate level radioactive wastes. Compared with other solidification techniques, cementation is relatively simple and inexpensive. However, the quality of the final cemented waste forms depends very much on the composition of the waste and the type of cement used. Different kinds of cement are used for different kinds of waste and the compatibility of a specific waste with a specific cement type should always be carefully evaluated. Cementation technology is continuously being developed in order to improve the characteristics of cemented waste in accordance with the increasing requirements for quality of the final solidified waste. Various kinds of additives and chemicals are used to improve the cemented waste forms in order to meet all safety requirements. This report is meant mainly for engineers and designers, to provide an explanation of the chemistry of cementation systems and to facilitate the choice of solidification agents and processing equipment. It reviews recent developments in cementation technology for improving the quality of cemented waste forms and provides a brief description of the various cement solidification processes in use. Refs, figs and tabs

  9. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  10. Solidification of ion exchange resin wastes in hydraulic cement

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Kalb, P.; Fuhrmann, M.; Colombo, P.

    1982-01-01

    Work has been conducted to investigate the solidification of ion exchange resin wastes with portland cements. These efforts have been directed toward the development of acceptable formulations for the solidification of ion exchange resin wastes and the characterization of the resultant waste forms. This paper describes formulation development work and defines acceptable formulations in terms of ternary phase compositional diagrams. The effects of cement type, resin type, resin loading, waste/cement ratio and water/cement ratio are described. The leachability of unsolidified and solidified resin waste forms and its relationship to full-scale waste form behavior is discussed. Gamma irradiation was found to improve waste form integrity, apparently as a result of increased resin crosslinking. Modifications to improve waste form integrity are described. 3 tables

  11. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinbao [National Energy R and D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi' an Thermal Power Research Institute Co. Ltd., Xi' an (China); Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China); Liu, Lin; Zhang, Jun [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China)

    2015-08-15

    Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains. (orig.)

  12. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  13. Cooling system upon reactor isolation

    International Nuclear Information System (INIS)

    Yamamoto, Kohei; Oda, Shingo; Miura, Satoshi

    1992-01-01

    A water level indicator for detecting the upper limit value for a range of using a suppression pool and a thermometer for detecting the temperature of water at the cooling water inlet of an auxiliary device are disposed. When a detection signal is intaken and the water level in the suppression pool reach the upper limit value for the range of use, a secondary flow rate control value is opened and a primary flow rate control valve is closed. When the temperature of the water at the cooling water inlet of the auxiliary device reaches the upper limit value, the primary and the secondary flow rate control valves are opened. During a stand-by state, the first flow rate control valve is set open and the secondary flow rate control valve is set closed respectively. After reactor isolation, if a reactor water low level signal is received, an RCIC pump is actuated and cooling water is sent automatically under pressure from a condensate storage tank to the reactor and the auxiliary device requiring coolants by way of the primary flow rate control valve. Rated flow rate is ensured in the reactor and cooling water of an appropriate temperature can be supplied to the auxiliary device. (N.H.)

  14. Influence of cooling rate on the development of multiple generations of {gamma}' precipitates in a commercial nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.R.P. [Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Nag, S., E-mail: nag.soumya@gmail.com [Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Hwang, J.Y. [Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Viswanathan, G.B.; Tiley, J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH (United States); Srinivasan, R. [ExxonMobil Research and Engineering Company, Annandale, NJ (United States); Fraser, H.L. [Center for the Accelerated Maturation of Materials and Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Banerjee, R. [Center for Advanced Research and Technology and Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States)

    2011-09-15

    The compositional and microstructural evolution of different generations of {gamma}' precipitates during the continuous cooling of a commercial nickel base superalloy, Rene88DT, has been characterized by three dimensional atom probe tomography coupled with energy-filtered transmission electron microscopy studies. After solutionizing in the single {gamma} phase field, continuous cooling at a very high rate results in a monomodal size distribution of {gamma}' precipitates with a high nucleation density and non-equilibrium compositions. In contrast, a relatively slower cooling rate ({approx} 24 deg. C/min) results in a multi-modal size distribution of {gamma}' precipitates with the larger first generation primary precipitates exhibiting close to equilibrium composition, along with the smaller scale secondary {gamma}' precipitates, exhibiting non-equilibrium composition (excess of Co and Cr, depleted in Al and Ti). The composition of the {gamma} matrix near these precipitates also exhibits similar trends with the composition being closer to equilibrium near the primary precipitates as compared to the secondary precipitates. - Highlights: {yields} Effect of cooling rate on the precipitation of {gamma}' particles in commercial nickel base superalloy. {yields} Couples EFTEM and 3DAP studies to determine the composition and morphology of {gamma}' precipitates. {yields} Determination of near and far field compositional variations within the gamma matrix leading to subsequent precipitation.

  15. Fluid mechanics of directional solidification at reduced gravity

    Science.gov (United States)

    Chen, C. F.

    1992-01-01

    The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.

  16. Development of high-level waste solidification technology 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Hwan Young; Kim, In Tae [and others

    1999-02-01

    Spent nuclear fuel contains useful nuclides as valuable resource materials for energy, heat and catalyst. High-level wastes (HLW) are expected to be generated from the R and D activities and reuse processes. It is necessary to develop vitrification or advanced solidification technologies for the safe long-term management of high level wastes. As a first step to establish HLW vitrification technology, characterization of HLWs that would arise at KAERI site, glass melting experiments with a lab-scale high frequency induction melter, and fabrication and property evaluation of base-glass made of used HEPA filter media and additives were performed. Basic study on the fabrication and characterization of candidate ceramic waste form (Synroc) was also carried out. These HLW solidification technologies would be directly useful for carrying out the R and Ds on the nuclear fuel cycle and waste management. (author). 70 refs., 29 tabs., 35 figs.

  17. Retrofit of existing Dow solidification system at quad cities nuclear station

    International Nuclear Information System (INIS)

    Dekitis, L.; Jarvis, N.; Petri, R.; Testa, J.

    1983-01-01

    Over the past year ATCOR has been involved in the design, testing and supply of an In-container Mixing System Retrofit for Commonwealth Edison's Quad Cities Nuclear Station Solidification System. The system supplied by DOW, itself a retrofit of a urea formaldehyde system, was based upon use of 50 cubic foot containers (liners). ATCOR's retrofit increased liner capacity to 170 cubic feet and allowed in-cask solidification of highly radioactive material. This paper discusses the reasons for the decision to replace equipment within the originally furnished system and the development of the ATCOR plan to proof-test this equipment prior to delivery at the site. Results of this pre-testing, and a comparison between pre-tested conditions and the actual in-plan start-up tests are presented. Development of improved instrumentation and mechanical modifications which enhance the reliability of the ATCOR/DOW process In-container Mixing System was provided as a part of this project. Test results are presented on instruments, controls and the unique method of mechanical attachment of the Mixing Head to the solidification container

  18. A scaling analysis of alloy solidification in presence of electromagnetic stirring

    International Nuclear Information System (INIS)

    Kumar, Arvind; Dutta, Pradip

    2006-01-01

    Application of electromagnetic stirring (EMS) during continuous casting shears off the dendrites from the solidification front to produce billets with a non-dendritic microstructure. In the present study, a systematic approach to the scaling analysis of momentum, energy and species conservation equations pertaining to the case of the solidification of a binary alloy in the presence of EMS is outlined. With suitable choices of non-dimensionalizing parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and then the relative significance of various terms appearing in them are analysed. In the physical domain two regions are identified, one where the electromagnetic forces play a dominant role in the momentum equations, and the other where the inertia and viscous effects play major roles. Using the scaling predictions, the influence of various processing parameters on the system variables can be utilized for the selection of appropriate electromagnetic forces to shear off the dendrites from the solidification area. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results

  19. Mechanical Properties of Al-Si-Mg Alloy Castings as a Function of Structure Refinement and Porosity Fraction

    Directory of Open Access Journals (Sweden)

    Hajkowski M.

    2012-12-01

    Full Text Available During design of the casting products technology, an important issue is a possibility of prediction of mechanical properties resulting from the course of the casting solidification process. Frequently there is a need for relations describing mechanical properties of silumin alloys as a function of phase refinement in a structure and a porosity fraction, and relations describing phase refinement in the structure and the porosity fraction as a function of solidification conditions. The study was conducted on castings of a 22 mm thick plate, made of EN AC-AlSi7Mg0,3 alloy in moulds: of quartz sand, of quartz sand with chill and in permanent moulds. On the basis of cooling curves, values of cooling rate in various casting parts were calculated. The paper also presents results of examination of distance between arms in dendrites of a solid solution α (DASL, precipitations length of silicon in an eutectic (DlSi and gas-shrinkage porosity (Por as a function of cooling rate. Statistical relations of DASL, DlSi, Por as a function of cooling rate and statistical multiparameter dependencies describing mechanical properties (tensile strength, yield strength, elongation of alloy as a function of DASL, DlSi and Por are also presented in the paper.

  20. Nucleation behavior of melted Bi films at cooling rates from 101 to 104 K/s studied by combining scanning AC and DC nano-calorimetry techniques

    International Nuclear Information System (INIS)

    Xiao, Kechao; Vlassak, Joost J.

    2015-01-01

    Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10 1 to 10 4 K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials