WorldWideScience

Sample records for solid-water-lattice accommodates gas

  1. Application of lattice-gas cellular automata to the Brownian motion of solids in suspension

    International Nuclear Information System (INIS)

    Ladd, A.J.C.; Colvin, M.E.; Frenkel, D.

    1988-01-01

    An adaptation of lattice-gas cellular automata to the simulation of solid-fluid suspensions is described. The method incorporates both dissipative hydrodynamic forces and thermal fluctuations. At low solid densities, theoretical results for the drag force on a single disk and the viscosity of a suspension of disks are reproduced. The zero--shear-rate viscosity has been obtained over a range of packing fractions and results indicate that simulations of three-dimensional suspensions are feasible

  2. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  3. Statistical hydrodynamics of lattice-gas automata

    OpenAIRE

    Grosfils, Patrick; Boon, Jean-Pierre; Brito López, Ricardo; Ernst, M. H.

    1993-01-01

    We investigate the space and time behavior of spontaneous thermohydrodynamic fluctuations in a simple fluid modeled by a lattice-gas automaton and develop the statistical-mechanical theory of thermal lattice gases to compute the dynamical structure factor, i.e., the power spectrum of the density correlation function. A comparative analysis of the theoretical predictions with our lattice gas simulations is presented. The main results are (i) the spectral function of the lattice-gas fluctuation...

  4. Relationships between lattice energies of inorganic ionic solids

    Science.gov (United States)

    Kaya, Savaş

    2018-06-01

    Lattice energy, which is a measure of the stabilities of inorganic ionic solids, is the energy required to decompose a solid into its constituent independent gaseous ions. In the present work, the relationships between lattice energies of many diatomic and triatomic inorganic ionic solids are revealed and a simple rule that can be used for the prediction of the lattice energies of inorganic ionic solids is introduced. According to this rule, the lattice energy of an AB molecule can be predicted with the help of the lattice energies of AX, BY and XY molecules in agreement with the experimental data. This rule is valid for not only diatomic molecules but also triatomic molecules. The lattice energy equations proposed in this rule provides compatible results with previously published lattice energy equations by Jenkins, Kaya, Born-Lande, Born-Mayer, Kapustinskii and Reddy. For a large set of tested molecules, calculated percent standard deviation values considering experimental data and the results of the equations proposed in this work are in general between %1-2%.

  5. Concentration contours in lattics and grain boundary diffusion in a polycrystalline solid

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Jae, Won Mok; El Saied, Usama; Olander, Donald R.

    1995-01-01

    Grain boundary diffusion plays significant role in the fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated inside fuel pellet have to diffuse in the lattice and in the grain boundary before they reach open space in the fuel rod. In the mean time, the grains in the fuel pellet grow and shrink according to grain growth kinetics, especially at elevated temperature at which nuclear reactors are operating. Thus the boundary movement ascribed to the grain growth greatly influences the fission gas release rate by lengthening or shortening the lattice diffusion distance, which is the rate limiting step. Sweeping fission gases by the moving boundary contributes to the increment of the fission gas release as well. Lattice and grain boundary diffusion processes in the fission gas release can be studied by 'tracer diffusion' technique, by which grain boundary diffusivity can be estimated and used directly for low burn up fission gas release analysis. However, even for tracer diffusion analysis, taking both the intragranular grain growth and the diffusion processes simultaneously into consideration is not easy. Only a few models accounting for the both processes are available and mostly handle them numerically. Numerical solutions are limited in the practical use. Here in this paper, an approximate analytical solution of the lattice and stationary grain boundary diffusion in a polycrystalline solid is developed for the tracer diffusion techniques. This short closed form solution is compared to available exact and numerical solutions and turns out to be acceptably accurate. It can be applied to the theoretical modeling and the experimental analysis, especially PIE (post irradiation examination), of low burn up fission gas release

  6. Bulk diffusion in a kinetically constrained lattice gas

    Science.gov (United States)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2018-03-01

    In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.

  7. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    Science.gov (United States)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  8. Generalized hydrodynamic transport in lattice-gas automata

    Science.gov (United States)

    Luo, Li-Shi; Chen, Hudong; Chen, Shiyi; Doolen, Gary D.; Lee, Yee-Chun

    1991-01-01

    The generalized hydrodynamics of two-dimensional lattice-gas automata is solved analytically in the linearized Boltzmann approximation. The dependence of the transport coefficients (kinematic viscosity, bulk viscosity, and sound speed) upon wave number k is obtained analytically. Anisotropy of these coefficients due to the lattice symmetry is studied for the entire range of wave number, k. Boundary effects due to a finite mean free path (Knudsen layer) are analyzed, and accurate comparisons are made with lattice-gas simulations.

  9. Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang; Cheng, Ping [Ministry of Education Key Laboratory of Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiaotong University, DongChuan Road 800, Shanghai 200240 (China)

    2010-06-15

    The effect of wettability on water transport dynamics in gas diffusion layer (GDL) is investigated by simulating water invasion in an initially gas-filled GDL using the multiphase free-energy lattice Boltzmann method (LBM). The results show that wettability plays a significant role on water saturation distribution in two-phase flow in the uniform wetting GDL. For highly hydrophobicity, the water transport falls in the regime of capillary fingering, while for neutral wettability, water transport exhibits the characteristic of stable displacement, although both processes are capillary force dominated flow with same capillary numbers. In addition, the introduction of hydrophilic paths in the GDL leads the water to flow through the hydrophilic pores preferentially. The resulting water saturation distributions show that the saturation in the GDL has little change after water breaks through the GDL, and further confirm that the selective introduction of hydrophilic passages in the GDL would facilitate the removal of liquid water more effectively, thus alleviating the flooding in catalyst layer (CL) and GDL. The LBM approach presented in this study provides an effective tool to investigate water transport phenomenon in the GDL at pore-scale level with wettability distribution taken into consideration. (author)

  10. Towards the simplest hydrodynamic lattice-gas model.

    Science.gov (United States)

    Boghosian, Bruce M; Love, Peter J; Meyer, David A

    2002-03-15

    It has been known since 1986 that it is possible to construct simple lattice-gas cellular automata whose hydrodynamics are governed by the Navier-Stokes equations in two dimensions. The simplest such model heretofore known has six bits of state per site on a triangular lattice. In this work, we demonstrate that it is possible to construct a model with only five bits of state per site on a Kagome lattice. Moreover, the model has a simple, deterministic set of collision rules and is easily implemented on a computer. In this work, we derive the equilibrium distribution function for this lattice-gas automaton and carry out the Chapman-Enskog analysis to determine the form of the Navier-Stokes equations.

  11. Innovative in-line separators: removal of water or sand in oil/water and gas/liquid/solid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, Paul; Cheolho Kang; Gopal, Madan [CC Technologies, Dublin, OH (United States)

    2003-07-01

    In oil and gas production, multiphase mixtures are often separated before downstream processing. The separators are large, often 20 - 40 feet long and large diameter and use sophisticated internals. The costs are in the millions of dollars. Further, the sand and water in the flow can cause severe internal erosion and corrosion respectively before the flow reaches the separators. The CC Technologies/MIST In line Separation System is a cost-effective, efficient device for use in multiphase environments. The device is applicable for gas/solid, gas/liquid/solid and oil/water systems and offers exceptional separation between phases for a fraction of the cost of expensive gravity separators and hydro cyclones. The System contains no moving parts and is designed to be of the same diameter as the pipe, and experiences low shear forces. It can be fabricated with standard pipes. The efficiency of the separator has been determined in an industrial scale, pilot plant test facility at CC Technologies in 4-inch diameter pipes and has been found to be in excess of 98-99% for the removal of sand. Two phase oil/water separation effectiveness is in excess of 90% in 1-stage and 95% in 2 - stage. (author)

  12. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  13. Multisite Interactions in Lattice-Gas Models

    Science.gov (United States)

    Einstein, T. L.; Sathiyanarayanan, R.

    For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.

  14. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.

    Science.gov (United States)

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy

    2015-09-01

    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.

  15. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  16. Lattice gas cellular automata and lattice Boltzmann models an introduction

    CERN Document Server

    Wolf-Gladrow, Dieter A

    2000-01-01

    Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

  17. Lattice Model for Production of Gas

    KAUST Repository

    Marder, M.; Eftekhari, Behzad; Patzek, Tadeusz

    2017-01-01

    We define a lattice model for rock, absorbers, and gas that makes it possible to examine the flow of gas to a complicated absorbing boundary over long periods of time. The motivation is to deduce the geometry of the boundary from the time history

  18. Natural uranium lattice in heavy water

    International Nuclear Information System (INIS)

    Girard, Y.; Koechlin, J.C.; Moreau, J.; Naudet, R.

    1959-01-01

    all solid bars are considered and n an d the effective integrals are adjusted then a system of transposition of these results to more complex bars is sought. In the second step, one is compelled to improve the system in studying in greater detail each factor of the calculation of the lattice. A satisfactory interpretation of the results leads definitively to methods of calculation applicable to the most varied types of natural uranium-heavy water lattices. Attention has been given to results obtained in other countries, particularly in Canada. (author) [fr

  19. A lattice gas model on a tangled chain

    International Nuclear Information System (INIS)

    Mejdani, R.

    1993-04-01

    We have used a model of a lattice gas defined on a tangled chain to study the enzyme kinetics by a modified transfer matrix method. By using a simple iterative algorithm we have obtained different kinds of saturation curves for different configurations of the tangled chain and different types of the additional interactions. In some special cases of configurations and interactions we have found the same equations for the saturation curves, which we have obtained before studying the lattice gas model with nearest neighbor interactions or the lattice gas model with alternate nearest neighbor interactions, using different techniques as the correlated walks' theory, the partition point technique or the transfer matrix model. This more general model and the new results could be useful for the experimental investigations. (author). 20 refs, 6 figs

  20. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    International Nuclear Information System (INIS)

    Thies, C.; Geddis, A.M.; Guzman, A.G.

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1 degrees C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm 3 with less than 1% error

  1. Lattice Model for Production of Gas

    KAUST Repository

    Marder, M.

    2017-12-01

    We define a lattice model for rock, absorbers, and gas that makes it possible to examine the flow of gas to a complicated absorbing boundary over long periods of time. The motivation is to deduce the geometry of the boundary from the time history of gas absorption. We find a solution to this model using Green\\'s function techniques, and apply the solution to three absorbing networks of increasing complexity.

  2. Lattice Model for Production of Gas

    OpenAIRE

    Marder, M.; Eftekhari, Behzad; Patzek, Tadeusz W

    2017-01-01

    We define a lattice model for rock, absorbers, and gas that makes it possible to examine the flow of gas to a complicated absorbing boundary over long periods of time. The motivation is to deduce the geometry of the boundary from the time history of gas absorption. We find a solution to this model using Green's function techniques, and apply the solution to three absorbing networks of increasing complexity.

  3. Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    International Nuclear Information System (INIS)

    Pollet, L.; Rombouts, S.M.A.; Denteneer, P.J. H.

    2004-01-01

    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short-range correlations do not enhance the convergence to the hard-core limit

  4. Lattice distortion in hcp rare gas solids

    Science.gov (United States)

    Grechnev, A.; Tretyak, S. M.; Freiman, Yu. A.

    2010-04-01

    The lattice distortion parameter δ ≡c/a-√8/3 has been calculated as a function of molar volume for the hcp phases of He, Ar, Kr, and Xe. Results from both semi-empirical potentials and density functional theory are presented. Our study shows that δ is negative for helium in the entire pressure range. For Ar, Kr, and Xe δ changes sign from negative to positive as the pressure increases, growing rapidly in magnitude at higher pressures.

  5. Rapid estimate of solid volume in large tuff cores using a gas pycnometer

    Energy Technology Data Exchange (ETDEWEB)

    Thies, C. [ed.; Geddis, A.M.; Guzman, A.G. [and others

    1996-09-01

    A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.

  6. Solid NMR study of lithium ions accommodated in various transition metal oxides

    International Nuclear Information System (INIS)

    Kanzaki, Yasushi; Suzuki, Noriko

    2008-01-01

    Solid NMR was used to elucidate the lithium accommodation/extraction reaction in various transition metal oxides. The first study was the lithium ion exchange reaction of titanium antimonic acid (TiSbA). The effect of hydration on the selectivity of lithium ion in the solid phase was examined using 7 Li NMR. The second study was the irreversible ion exchange behavior of HNbO 3 . The selectivity for the lithium ion and the irreversible behavior were examined using 1 H and 7 Li NMR. The third study was the isotope separation between 6 Li and 7 Li in various inorganic ion exchangers. The high isotope separation coefficient was ascribed to the degree of dehydration during the ion exchange reaction. The degree of dehydration was examined by 1 H and 7 Li NMR studies. The last study was determining the mechanism of the lithium accommodation/extraction reaction of λ-MnO 2 in an aqueous solution. The different paths between the accommodation and extraction and the formation of MnO 4- during the accommodation were determined by chemical analysis. The Knight shift in the 7 Li MAS-NMR spectra of Li 0.5 MnO 2 suggested the localization of the electron density on the lithium nuclei. An XPS study also suggested the presence of an electron density on the lithium nuclei. A pH-independent redox couple was assumed to account for the accommodation/extraction reaction of lithium ions, such as Li(I)/Li(0). (author)

  7. Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation

    International Nuclear Information System (INIS)

    Song, Shaojie; Liu, Feng

    2016-01-01

    Considering a spherical misfitting precipitate growing into a finite elastic-perfectly plastic supersaturated matrix, a kinetic modeling for such solid-state partitioning phase transformation is presented, where the interactions of interface migration, solute diffusion and misfit accommodation are analyzed. The linkage between interface migration and solute diffusion proceeds through interfacial composition and interface velocity; their effects on misfit accommodation are mainly manifested in an effective transformation strain, which depends on instantaneous composition field and precipitate size. Taking γ to α transformation of a binary Fe-0.5 at.% C alloy under both isothermal and continuous cooling conditions as examples, the effects of misfit accommodation on the coupling interface migration and solute diffusion are well evaluated and discussed. For the isothermal transformation, a counterbalancing influence between mechanical and chemical driving forces is found so that the mixed-mode transformation kinetics is not sensitive with respect to the elastic–plastic accommodation of the effective misfit strain. Different from the isothermal process, during the continuous cooling condition, the effects of misfit accommodation on the kinetics of solid-state partitioning phase transformation are mainly manifested in the great decrease of the transformation starting temperature and the thermodynamic equilibrium composition. The present kinetic modeling was applied to predict the experimentally measured γ/α transformation of Fe-0.47 at.% C alloy conducted with a cooling rate of 10 K min −1 and a good agreement was achieved.

  8. Immobilizing Water into Crystal Lattice of Calcium Sulfate for its Separation from Water-in-Oil Emulsion.

    Science.gov (United States)

    Jiang, Guangming; Li, Junxi; Nie, Yunliang; Zhang, Sen; Dong, Fan; Guan, Baohong; Lv, Xiaoshu

    2016-07-19

    This work report a facile approach to efficiently separate surfactant-stabilized water (droplet diameter of around 2.0 μm) from water-in-oil emulsion via converting liquid water into solid crystal water followed by removal with centrifugation. The liquid-solid conversion is achieved through the solid-to-solid phase transition of calcium sulfate hemihydrate (CaSO4. 0.5H2O, HH) to dihydrate (CaSO4·2H2O, DH), which could immobilize the water into crystal lattice of DH. For emulsion of 10 mg mL(-1) water, the immobilization-separation process using polycrystalline HH nanoellipsoids could remove 95.87 wt % water at room temperature. The separation efficiency can be further improved to 99.85 wt % by optimizing the HH dosage, temperature, HH size and crystalline structure. Property examination of the recycled oil confirms that our method has neglectable side-effect on oil quality. The byproduct DH was recycled to alpha-HH (a valuable cemetitious material widely used in construction and binding field), which minimizes the risk of secondary pollution and promotes the practicality of our method. With the high separation efficiency, the "green" feature and the recyclability of DH byproduct, the HH-based immobilization-separation approach is highly promising in purifying oil with undesired water contamination.

  9. Lattice gas simulations of dynamical geometry in one dimension.

    Science.gov (United States)

    Love, Peter J; Boghosian, Bruce M; Meyer, David A

    2004-08-15

    We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society

  10. Emergent dynamic structures and statistical law in spherical lattice gas automata

    Science.gov (United States)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  11. Emergent dynamic structures and statistical law in spherical lattice gas automata.

    Science.gov (United States)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  12. Accommodative loss after retinal cryotherapy.

    Science.gov (United States)

    Uno, Tsuyoshi; Okuyama, Michiko; Tanabe, Tatsuro; Kawamura, Ryosuke; Ideta, Hidenao

    2009-01-01

    To investigate the effects of peripheral retinal cryotherapy on accommodative amplitude in patients with retinal lattice degeneration. Prospective, observational case series. We studied 92 eyes in 69 patients (age range, 13 to 79 years) treated with cryotherapy for lattice degeneration between December 2001 and September 2004. Pretreatment and posttreatment accommodative amplitudes were measured. Acute accommodative loss was calculated from the difference between accommodative amplitudes before treatment and one week after treatment. We investigated the time course of accommodative amplitudes, acute accommodative loss in different age groups and in pretreatment accommodative amplitude groups, the influence of cryotherapy numbers on accommodative amplitude, and the influence of cryotherapy sites on accommodative amplitude. No significant difference was noted between pretreatment and posttreatment accommodative amplitudes in the overall subject cohort. Dividing subjects by age revealed significant decreases in accommodative amplitude only among patients in their 10s and 20s at one and three weeks after treatment. Accommodative amplitude was lowest among those in their 10s, followed by that among those in their 20s (P < .01). Accommodative amplitudes recovered to pretreatment level by six weeks. Acute accommodative loss was greatest in those in their 10s compared with other age groups (P < .01). A significant correlation was observed between acute accommodative loss and cryotherapy numbers (P = .03; r = 0.41). The decrease in accommodative amplitude was greatest at one week after treatment and recovered to pretreatment levels after six weeks. Accommodative amplitude showed the greatest decrease after cryotherapy among patients in their 10s and 20s. A decrease in accommodative amplitude was observed with increased numbers of cryotherapy spots administered.

  13. The effects of gas diffusion layers structure on water transportation using X-ray computed tomography based Lattice Boltzmann method

    Science.gov (United States)

    Jinuntuya, Fontip; Whiteley, Michael; Chen, Rui; Fly, Ashley

    2018-02-01

    The Gas Diffusion Layer (GDL) of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) plays a crucial role in overall cell performance. It is responsible for the dissemination of reactant gasses from the gas supply channels to the reactant sites at the Catalyst Layer (CL), and the adequate removal of product water from reactant sites back to the gas channels. Existing research into water transport in GDLs has been simplified to 2D estimations of GDL structures or use virtual stochastic models. This work uses X-ray computed tomography (XCT) to reconstruct three types of GDL in a model. These models are then analysed via Lattice Boltzmann methods to understand the water transport behaviours under differing contact angles and pressure differences. In this study, the three GDL samples were tested over the contact angles of 60°, 80°, 90°, 100°, 120° and 140° under applied pressure differences of 5 kPa, 10 kPa and 15 kPa. By varying the contact angle and pressure difference, it was found that the transition between stable displacement and capillary fingering is not a gradual process. Hydrophilic contact angles in the region of 60°<θ < 90° showed stable displacement properties, whereas contact angles in the region of 100°<θ < 140° displayed capillary fingering characteristics.

  14. Quantum mechanics of lattice gas automata: One-particle plane waves and potentials

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1997-01-01

    Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. copyright 1997 The American Physical Society

  15. Lattice gas simulations of dynamical geometry in two dimensions.

    Science.gov (United States)

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  16. Thermodynamic Modeling of Natural Gas Systems Containing Water

    DEFF Research Database (Denmark)

    Karakatsani, Eirini K.; Kontogeorgis, Georgios M.

    2013-01-01

    As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...

  17. On the number of lattice points in three-dimensional solids of revolution

    International Nuclear Information System (INIS)

    Popov, D A

    2000-01-01

    We derive an accurate estimate for the order of magnitude of the remainder term in the problem of the number of lattice points in families of homothetic domains belonging to the class of three-dimensional solids of revolution with smooth boundaries (under certain additional conditions). This estimate is realized in the case of the solid bounded by a standardly embedded torus, for which the second term of the expansion, which describes the dependence of the number of lattice points on the dilation parameter, is written in explicit form

  18. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements

    Science.gov (United States)

    Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur

    2018-01-01

    Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429

  19. Canonical sampling of a lattice gas

    International Nuclear Information System (INIS)

    Mueller, W.F.

    1997-01-01

    It is shown that a sampling algorithm, recently proposed in conjunction with a lattice-gas model of nuclear fragmentation, samples the canonical ensemble only in an approximate fashion. A residual weight factor has to be taken into account to calculate correct thermodynamic averages. Then, however, the algorithm is numerically inefficient. copyright 1997 The American Physical Society

  20. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    Science.gov (United States)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  1. Method of storing radioactive rare gas. [gas occupies spaces in the zeolite crystal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, H; Miharada, H; Takiguchi, Y; Kanazawa, T; Soya, M

    1975-05-15

    A method is provided to prevent dispersion of radioactive rare gas atoms by sealing them in a pressurised state within zeolite and thereby confining them in position within the zeolite crystal lattice. Radioactive rare gas is separated from exhaust gas and concentrated by using a low temperature adsorption means or liquefaction distillation means and necessary accessory means, and then it is temporarily stored in a gas holder. When a predetermined quantity of storage is reached, the gas is led to a sealing tank containing zeolite heated to 300 to 400/sup 0/C and held at 3,000 to 4,000 atmospheres, and under this condition radioactive rare gas is brought to occupy the spaces in the zeolite crystal lattice. After equilibrium pressure is reached by the pressure in the tank at that temperature, the gas is cooled in the pressurised state down to room temperature. Subsequently, the rare gas remaining in the tank and duct is recovered by a withdrawal pump into the gas holder. Thereafter, the zeolite with radioactive rare gas sealed in it is taken out from the tank and sealed within a long period storage container, which is then housed in a predetermined place for storage.

  2. Hydration of ammonia, methylamine, and methanol in amorphous solid water

    Science.gov (United States)

    Souda, Ryutaro

    2016-02-01

    Interactions of polar protic molecules with amorphous solid water (ASW) have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. The ammonia and methylamine are incorporated into the interior of porous ASW films. They are caged by water molecules and are released during water crystallization. In contrast, the methanol-water interaction is not influenced by pores of ASW. The methanol additives tend to survive water crystallization and are released during ASW film evaporation. The hydration of n-hexane in ASW is influenced significantly by methanol additives because n-hexane is accommodated in a methanol-induced hydration shell.

  3. Symmetry Groups of the Austenite Lattice and Construction of Self-Accommodation Complexes of Martensite Crystals in Alloys with the Shape-Memory Effect

    Science.gov (United States)

    Khundjua, A. G.; Ptitsin, A. G.; Brovkina, E. A.

    2018-01-01

    The internal structure of experimentally observed self-accommodation complexes of martensite crystals, which is determined by the system of twinning planes, is studied in this work. The direct correlation of the construction type of the complexes with the subgroups of the austenite lattice symmetry group is shown.

  4. Lattice gas automata simulations of flow through porous media

    International Nuclear Information System (INIS)

    Matsukuma, Yosuke; Abe, Yutaka; Adachi, Hiromichi; Takahashi, Ryoichi

    1998-01-01

    In the course of a severe accident, a debris bed may be formed from once- molten and fragmented fuel elements. In order to avoid further degradation of the reactor core, it is necessary to remove the heat from the debris bed since the debris bed still release the decay heat. So as to predict the coolability of the debris bed, it is important to precisely estimate flow patterns through complex geometry of debris bed in microscopic level. Lattice gas automata could be powerful tool to simulate such a complex geometry. As a first step of the study, fundamental numerical simulation were conducted in two dimensional systems by using the lattice gas automata method to clarify single phase flow patterns through porous media in mesoscopic level. Immiscible lattice gas model is one of the lattice gas automata method and utilized for spinodal decomposition simulation of binary fluids. This model was applied to generate the complex flow geometry simulating porous media. It was approved that the complex flow geometries were successfully generated by the present method. Flow concentration was observed in specified flow channels for lower Reynolds number. Two dimensional flow concentration was caused by the irregular flow geometry generated by the present method, since the flow selects the channels of lower friction. Two dimensional pressure distribution was observed relating to the concentrations of flow in specified channels. The simulating results of the flow through the porous media by the present method qualitatively agree with the Ergun's equation. Quantitatively, the present results approach to Ergun's equation in higher Reynolds number than 10, although concentration of the flow in a specified flow channels were observed in lower Reynolds number than 10. It can be concluded that this technique is useful is useful to simulate flow through complex geometry like porous media. (author)

  5. ATTACK ON WATER BY CARBON OF SOLID FUEL

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2008-01-01

    Full Text Available The paper considers a continuous method for attack of high temperature water steam by carbon of solid fuel (coke. Design of water-coal gas generator and experimental stand, methodology for  measurements of parameters of water-coal gasification are described in the paper.

  6. Diffusion in heterogeneous lattices

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Jastrabík, Lubomír

    2010-01-01

    Roč. 256, č. 17 (2010), s. 5137-5144 ISSN 0169-4332 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : lattice- gas systems * diffusion * Monte Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010

  7. Influence of hydrostatic pressure on BCC-lattice parameter in molybdenum, niobium and vanadium with rhenium solid solutions

    International Nuclear Information System (INIS)

    Smol'yaninova, Eh.A.; Stribuk, E.K.; Tyavlovskij, V.I.

    1987-01-01

    Data on the effect of 1.8GPa hydrostatic pressure on bcc lattice parameters of solid solutions in Mo-Re, Nb-Re, V-re systems are presented. It is shown that after the application hydrostatic pressure a decrease in bcc lattice parameter is observed and the greatest change in the lattice parameter takes place in bcc of solid solutions in the Nb-Re system (DELTA A ∼ 0.0035 nm). Analysis of the experimental data obtained on the basis of calculations made for packing density change in the above-mentioned solid solutions under the pressure is carried out

  8. A lattice-gas model of the ion current across the solid interface: fast-ion conductor - intercalate

    International Nuclear Information System (INIS)

    Nachev, I.; Balkanski, M.

    1994-12-01

    The transport of Lithium ions across the material interface: fast-ion conducting glass - intercalate is simulated by a non-trivial lattice-gas model. The model takes explicitly into account the influence of the Coulomb correlations, the site-blocking effect and the boundary conditions on the ion kinetics. Potential device applications of the model are pointed out by computing the current density of Lithium ions for material parameters of the real interface: doped ternary borate glass - Indium Selenide, which constitute the electrolyte and the cathode, respectively, of a thin-film microbattery with improved performance. (author). 10 refs, 4 figs

  9. Ordering phenomena and non-equilibrium properties of lattice gas models

    International Nuclear Information System (INIS)

    Fiig, T.

    1994-03-01

    This report falls within the general field of ordering processes and non-equilibrium properties of lattice gas models. The theory of diffuse scattering of lattice gas models originating from a random distribution of clusters is considered. We obtain relations between the diffuse part of the structure factor S dif (q), the correlation function C(r), and the size distribution of clusters D(n). For a number of distributions we calculate S dif (q) exactly in one dimension, and discuss the possibility for a Lorentzian and a Lorentzian square lineshape to arise. We discuss the two- and three-dimensional oxygen ordering processes in the high T c superconductor YBa 2 Cu 3 O 6+x based on a simple anisotropic lattice gas model. We calculate the structural phase diagram by Monte Carlo simulation and compared the results with experimental data. The structure factor of the oxygen ordering properties has been calculated in both two and three dimensions by Monte Carlo simulation. We report on results obtained from large scale computations on the Connection Machine, which are in excellent agreement with recent neutron diffraction data. In addition we consider the effect of the diffusive motion of metal-ion dopants on the oxygen ordering properties on YBa 2 Cu 3 O 6+x . The stationary properties of metastability in long-range interaction models are studied by application of a constrained transfer matrix (CTM) formalism. The model considered, which exhibits several metastable states, is an extension of the Blume Capel model to include weak long-range interactions. We show, that the decay rate of the metastable states is closely related to the imaginary part of the equilibrium free-energy density obtained from the CTM formalism. We discuss a class of lattice gas model for dissipative transport in the framework of a Langevin description, which is capable of producing power law spectra for the density fluctuations. We compare with numerical results obtained from simulations of a

  10. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  11. Heavy water critical experiments on plutonium lattice

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Shiba, Kiminori

    1975-06-01

    This report is the summary of physics study on plutonium lattice made in Heavy Water Critical Experiment Section of PNC. By using Deuterium Critical Assembly, physics study on plutonium lattice has been carried out since 1972. Experiments on following items were performed in a core having 22.5 cm square lattice pitch. (1) Material buckling (2) Lattice parameters (3) Local power distribution factor (4) Gross flux distribution in two region core (5) Control rod worth. Experimental results were compared with theoretical ones calculated by METHUSELAH II code. It is concluded from this study that calculation by METHUSELAH II code has acceptable accuracy in the prediction on plutonium lattice. (author)

  12. Anisotropic ordering in a two-temperature lattice gas

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.

    1997-01-01

    We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T...

  13. Determination of Low Concentrations of Acetochlor in Water by Automated Solid-Phase Extraction and Gas Chromatography with Mass-Selective Detection

    Science.gov (United States)

    Lindley, C.E.; Stewart, J.T.; Sandstrom, M.W.

    1996-01-01

    A sensitive and reliable gas chromatographic/mass spectrometric (GC/MS) method for determining acetochlor in environmental water samples was developed. The method involves automated extraction of the herbicide from a filtered 1 L water sample through a C18 solid-phase extraction column, elution from the column with hexane-isopropyl alcohol (3 + 1), and concentration of the extract with nitrogen gas. The herbicide is quantitated by capillary/column GC/MS with selected-ion monitoring of 3 characteristic ions. The single-operator method detection limit for reagent water samples is 0.0015 ??g/L. Mean recoveries ranged from about 92 to 115% for 3 water matrixes fortified at 0.05 and 0.5 ??g/L. Average single-operator precision, over the course of 1 week, was better than 5%.

  14. Physical correlation effects in the lattice gas

    International Nuclear Information System (INIS)

    Murch, G.E.; Thorn, R.J.

    1979-01-01

    The circumstances of the existence of the physical correlation factor in the Nernst--Einstein relation are discussed. Use is then made of the linear phenomenological equations of irreversible thermodynamics to show that the physical correlation factor must also be present in the Darken equation. Computer simulation results in the nearest neighbor interacting lattice gas are then presented to verify this finding

  15. Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Molaeimanesh, Golamreza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-04-15

    A major challenge in the application of proton exchange membrane fuel cells (PEMFCs) is water management, with the flooding of electrodes as the main issue. The Lattice-Boltzmann method (LBM) is a relatively new technique that is superior in modeling the dynamic interface of multiphase fluid flow in complex microstructures such as non-homogeneous and anisotropic porous media of PEMFC electrodes. In this study, the dynamic behavior of a water droplet during removal from gas diffusion layer (GDL) of a PEMFC electrode with interdigitated flow field is simulated using LBM. The effects of GDL wettability and its spanwise and transverse gradients on the removal process are investigated. The results demonstrate great influence of wettability and its spanwise and transverse gradients on the dynamic behavior of droplets during the removal process. Although increasing the hydrophobicity of GDL results in better droplet removal, its increase beyond a critical value does not show a significant effect.

  16. Parallelization of simulation code for liquid-gas model of lattice-gas fluid

    International Nuclear Information System (INIS)

    Kawai, Wataru; Ebihara, Kenichi; Kume, Etsuo; Watanabe, Tadashi

    2000-03-01

    A simulation code for hydrodynamical phenomena which is based on the liquid-gas model of lattice-gas fluid is parallelized by using MPI (Message Passing Interface) library. The parallelized code can be applied to the larger size of the simulations than the non-parallelized code. The calculation times of the parallelized code on VPP500 (Vector-Parallel super computer with dispersed memory units), AP3000 (Scalar-parallel server with dispersed memory units), and a workstation cluster decreased in inverse proportion to the number of processors. (author)

  17. Light water lattices

    International Nuclear Information System (INIS)

    1962-01-01

    The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs

  18. Degenerate Fermi gas in a combined harmonic-lattice potential

    International Nuclear Information System (INIS)

    Blakie, P. B.; Bezett, A.; Buonsante, P.

    2007-01-01

    In this paper we derive an analytic approximation to the density of states for atoms in a combined optical lattice and harmonic trap potential as used in current experiments with quantum degenerate gases. We compare this analytic density of states to numerical solutions and demonstrate its validity regime. Our work explicitly considers the role of higher bands and when they are important in quantitative analysis of this system. Applying our density of states to a degenerate Fermi gas, we consider how adiabatic loading from a harmonic trap into the combined harmonic-lattice potential affects the degeneracy temperature. Our results suggest that occupation of excited bands during loading should lead to more favorable conditions for realizing degenerate Fermi gases in optical lattices

  19. Lattice dynamics in solid oxygen

    International Nuclear Information System (INIS)

    Kobashi, K.; Klein, M.L.; Chandrasekharan, V.

    1979-01-01

    Lattice dynamical calculations for the bulk α, β, and γ phases of solid O 2 and for the monolayer α and β phases have been made in the harmonic approximation. In the α and β phases, atom-atom 6-12 potentials are employed. In the γ phase, effective potentials are used between molecular centers and only the translational lattice vibrations are calculated. It is found that Laufer and Leroi's potential parameters give two k=O frequencies at 42.7 and 43.6 cm -1 in the bulk α-O 2 , and at 40.7 cm -1 for the degenerate k=0 modes in the β phase. The observed Raman lines for α-O 2 at 43 and 79 cm -1 , which are both known to exhibit isotope shifts, are thus tentatively assigned to an accidentally degenerate line and a two-phonon band, respectively, In view of the possible contribution from anharmonic effects, the agreement of the calculation with experiment (48-51 cm -1 ) in β-O 2 may be better than it seems. For the bulk γ-O 2 , a discrepancy is observed between the calculated elastic constants and those derived from Brillouin scattering experiments. This discrepancy may be due to the neglect of translation-rotation coupling. In the monolayer O 2 , Raman active modes at 28.3 and 40.6 cm -1 for the α phase, and 31.9 cm -1 for the β phase are predicted

  20. Local lattice-gas model for immiscible fluids

    International Nuclear Information System (INIS)

    Chen, S.; Doolen, G.D.; Eggert, K.; Grunau, D.; Loh, E.Y.

    1991-01-01

    We present a lattice-gas model for two-dimensional immiscible fluid flows with surface tension that uses strictly local collision rules. Instead of using a local total color flux as Somers and Rem [Physica D 47, 39 (1991)], we use local colored holes to be the memory of particles of the same color. Interactions between walls and fluids are included that produce arbitrary contact angles

  1. Anomalous diffusion in a lattice-gas wind-tree model

    International Nuclear Information System (INIS)

    Kong, X.P.; Cohen, E.G.D.

    1989-01-01

    Two new strictly deterministic lattice-gas automata derived from Ehrenfest's wind-tree model are studied. While in one model normal diffusion occurs, the other model exhibits abnormal diffusion in that the distribution function of the displacements of the wind particle is non-Gaussian, but its second moment, the mean-square displacement, is proportional to the time, so that a diffusion coefficient can be defined. A connection with the percolation problem and a self-avoiding random walk for the case in which the lattice is completely covered with trees is discussed

  2. Preparing a highly degenerate Fermi gas in an optical lattice

    International Nuclear Information System (INIS)

    Williams, J. R.; Huckans, J. H.; Stites, R. W.; Hazlett, E. L.; O'Hara, K. M.

    2010-01-01

    We propose a method to prepare fermionic atoms in a three-dimensional optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of degenerate atoms into multiple energy bands of an optical lattice followed by a filtering stage whereby atoms from all but the lowest band are removed. Of critical importance is the use of a nonharmonic trapping potential to provide external confinement for the atoms. For realistic experimental parameters, this procedure will produce a Fermi gas in a lattice with a reduced temperature T/T F ∼0.003 and an entropy per particle of s∼0.02 k B .

  3. Lattice parameters and electrical resistivity of Ceria-Yttria solid solutions

    International Nuclear Information System (INIS)

    Rey, Jose Fernando Queiruga

    2002-01-01

    Ce0 2 :u mol% Y 2 O 3 (u=0, 4, 6, 8, 10 and 12) solid solutions were prepared by the conventional powder mixture technique. The main purposes of this work are: the study of the dependence of the lattice parameter of the Ceria cubic phase on the Yttria content, comparing the experimental data with data calculated according to the existing theoretical models; to determine the dependence of the ionic conductivity on the Yttria content; and to study the stability of the cubic fluorite phase after extensive thermal treatments (aging) of the Ceria-Yttria specimens. The results show that the lattice parameter of the solid solutions follows the Vegard's law and can be described by the two reported theoretical models. The 8 mol% Yttria-doped Ceria was found to present the largest value of ionic conductivity. Preliminary results show that a large decrease is found for only 1 h aging at 700 deg C and that the ionic conductivity decreases for ceramic specimens aged for times up to 10 h. (author)

  4. Fermionic Collective Excitations in a Lattice Gas of Rydberg Atoms

    International Nuclear Information System (INIS)

    Olmos, B.; Gonzalez-Ferez, R.; Lesanovsky, I.

    2009-01-01

    We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van der Waals interaction among the Rydberg atoms, these many-body states are collective fermionic excitations. The first excited state is a spin wave that extends over the entire lattice. We demonstrate that our system permits us to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices.

  5. Lattice gas simulations of replicating domains

    International Nuclear Information System (INIS)

    Dawson, S.P.; Hasslacher, B.; Pearson, J.E.

    1993-01-01

    We use the lattice gas cellular automation (LGCA) developed to simulate a process of pattern-formation recently observed in reaction-diffusion systems. We study the reaction mechanism, which is an extension of the Selkov model for glycolytic oscillations. We are able to reproduce the self-replicating domains observed in this work. We use the LGCA simulation to estimate the smallest length-scale on which this process can occur under conditions encountered in the cell. These estimates are similar to those obtained for Turing patterns in the same setting

  6. Lattice gas simulations of replicating domains

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.P.; Hasslacher, B.; Pearson, J.E.

    1993-12-31

    We use the lattice gas cellular automation (LGCA) developed to simulate a process of pattern-formation recently observed in reaction-diffusion systems. We study the reaction mechanism, which is an extension of the Selkov model for glycolytic oscillations. We are able to reproduce the self-replicating domains observed in this work. We use the LGCA simulation to estimate the smallest length-scale on which this process can occur under conditions encountered in the cell. These estimates are similar to those obtained for Turing patterns in the same setting.

  7. Evaluation of a new solid boundary implementation in the lattice Boltzmann method for porous media considering permeability and apparent slip.

    Science.gov (United States)

    Moqtaderi, Hamed; Esfahanian, Vahid

    2011-06-13

    The accuracy of solid wall treatment in the lattice Boltzmann method (LBM) simulation of porous structures affects different hydraulic parameters including integral properties, such as permeability, or local phenomena, such as apparent slip. Based on an analysis of the advantages and disadvantages of the current methods, a new technique is introduced for exact boundary extraction from binary representation. Using this technique, the LBM model can simultaneously benefit from the advantages of existing approaches, i.e. the real micro-/nanostructure obtained with X-ray computed tomography, and a reduction in the resolution requirement. To evaluate the technique, permeability and slip length on the solid walls are investigated for a porous gas diffusion layer. The results show acceptable accuracy improvement balanced with computational costs.

  8. Flow regimes in vertical gas-solid contact systems

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Cankurt, N. T.; Geldart, D.; Liss, B.

    1976-01-01

    The flow characteristics in fluidized beds, i.e., gas-solid systems, was studied to determine the flow regimes, the interaction of gas and solid in the various flow regimes and the dependence of this interaction and of transition between flow regimes on the properties of the gas and solid, on the gas and solid flow rates, and on the containing vessel. Fluidized beds with both coarse and fine particles are considered. Test results using high speed photography to view the operation of a 2-dimensional bed are discussed. (LCL)

  9. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    Science.gov (United States)

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  10. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1982-12-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essencial singularity, when the excharge parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  11. Exact results on the one-dimensional Potts lattice gas

    International Nuclear Information System (INIS)

    Riera, R.; Chaves, C.M.G.F.

    1983-01-01

    An exact calculation of the Potts Lattice Gas in one dimension is presented. Close to T=O 0 K, the uniform susceptibility presents an essential singularity, when the exchange parameter is positive, and a power law behaviour with critical exponent γ=1, when this parameter is negative. (Author) [pt

  12. Gas chromatographic-mass spectrometric determination of hydrophilic compounds in environmental water by solid-phase extraction with activated carbon fiber felt.

    Science.gov (United States)

    Kawata, K; Ibaraki, T; Tanabe, A; Yagoh, H; Shinoda, A; Suzuki, H; Yasuhara, A

    2001-03-09

    Simple gas chromatographic-mass spectrometric determination of hydrophilic organic compounds in environmental water was developed. A cartridge containing activated carbon fiber felt was made by way of trial and was evaluated for solid-phase extraction of the compounds in water. The hydrophilic compounds investigated were acrylamide, N,N-dimethylacetamide, N,N-dimethylformamide, 1,4-dioxane, furfural, furfuryl alcohol, N-nitrosodiethylamine and N-nitrosodimethylamine. Overall recoveries were good (80-100%) from groundwater and river water. The relative standard deviations ranged from 4.5 to 16% for the target compounds. The minimum detectable concentrations were 0.02 to 0.03 microg/l. This method was successfully applied to several river water samples.

  13. Set-Up and Validation of a Dynamic Solid/Gas Bioreactor

    KAUST Repository

    Lloyd-Randol, Jennifer D.

    2012-05-01

    similar experiments. This project achieved its goal to design, establish and successfully verify a solid/- gas biocatalysis reactor. Future work will target optimization of the reactor\\'s operating conditions and the development of whole cell catalysts for energy production reactions. Potential experiments include the study of hydrogenolytic carbon dioxide reduction to methanol by free enzymes or methanogenic organisms [5], and the investigation of hydrogen production by water splitting of algae or cyanobacteria.

  14. Study of Drying Shrinkage Cracking by Lattice Gas Automaton and Environmental Scanning Electron Microscope

    NARCIS (Netherlands)

    Van Mier, J.G.M.; Jankovic, D.

    2005-01-01

    Numerical modeling of moisture flow, drying shrinkage and crack phenomena in cement microstructure, by coupling a Lattice Gas Automaton and a Lattice Fracture Model, highlighted the importance of a shrinkage coefficient (?sh) as the most significant parameter for achieving realistic numerical

  15. Heavy water lattices: Second panel report

    International Nuclear Information System (INIS)

    1963-01-01

    The panel was attended by prominent physicists from most of the laboratories engaged in the field of heavy water lattices throughout the world. The participants presented written contributions and status reports describing the past history and plans for further development of heavy-water reactors. Valuable discussions took place, during which recommendations for future work were formulated. Refs, figs, tabs

  16. Heavy water lattices: Second panel report

    Energy Technology Data Exchange (ETDEWEB)

    1963-09-15

    The panel was attended by prominent physicists from most of the laboratories engaged in the field of heavy water lattices throughout the world. The participants presented written contributions and status reports describing the past history and plans for further development of heavy-water reactors. Valuable discussions took place, during which recommendations for future work were formulated. Refs, figs, tabs.

  17. Excitons in the rare gas solids

    International Nuclear Information System (INIS)

    1988-01-01

    Excitons play a prominent role in the chemistry and physics of condensed matter. Excitons in the rare gas solids, the prototypical van der Waals insulators, will be the focus of the remainder of this report. The goal here is to investigate the controversies surrounding the description of excitons in insulators and, therefore the simplest class of these solids, namely the rare gas solids, is chosen as the exemplary system. Specific problems associated with molecular crystals are, therefore, avoided and only the salient features of excitons are thus considered. 47 refs., 9 figs., 4 tabs

  18. A heterogeneous lattice gas model for simulating pedestrian evacuation

    Science.gov (United States)

    Guo, Xiwei; Chen, Jianqiao; Zheng, Yaochen; Wei, Junhong

    2012-02-01

    Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.

  19. Axion cosmology, lattice QCD and the dilute instanton gas

    International Nuclear Information System (INIS)

    Borsanyi, S.; Fodor, Z.; Mages, S.W.; Nogradi, D.; Szabo, K.K.

    2015-08-01

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  20. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  1. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  2. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  3. Contributions to the study of elementary excitations in crystal lattice of real solids

    International Nuclear Information System (INIS)

    Vamanu, V.D.

    1978-01-01

    Two methods for the determination of magnon and phonon elementary excitation spectrum in crystal lattices of certain real solid models have been proposed, tracing down their efficiency in interpreting and predicting certain macroscopic characteristics and behaviour of the materials from the technological point of view, such as saturation magnetization, stability of magnetic phases, spin wave resonance spectra, specific heat, radiation emission and absorbtion etc. The models selected for the real solid are created by supplying the ideal solid model - i.e.a. boundless, periodic solid crystal - with limits, shape and inner defects. Therefore, the paper investigates two typical varieties: the thin monocrystal layer and the crystal itself characterized by impurities. (author)

  4. How to prepare water accommodated fractions from petroleum hydrocarbons for use in aquatic toxicity testing - the basics

    International Nuclear Information System (INIS)

    Blenkinsopp, S.; Boileau, P.; Kyle, D.; Sergy, G.; Fingas, M.

    1996-01-01

    A method to prepare water accommodated fractions (WAFs) from petroleum products for use in toxicity testing, was introduced. In order to develop a repeatable protocol, a systematic study of a range of experimental variables was conducted. One semi-solid oil and six liquid oils were exposed to artificial seawater. Studies were also performed on three liquid oils exposed to freshwater. Low energy mixing and fluorinated Nalgene carboys was used to produce the WAFs. The mixing time depended on the oil type and loading rate. Individual loading rates were prepared for each concentration, because WAF composition is influenced by loading rate rather than serial dilution. An overview of the basic concepts of WAF preparation was described. A draft protocol for preparing WAFs from liquid and semi-solid oil was also described and results were summarized. 5 refs., 3 tabs., 6 figs

  5. The dynamics of the Frustrated Ising Lattice Gas

    International Nuclear Information System (INIS)

    Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.

    2000-04-01

    The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)

  6. A multicomponent multiphase lattice Boltzmann model with large liquid–gas density ratios for simulations of wetting phenomena

    International Nuclear Information System (INIS)

    Zhang Qing-Yu; Zhu Ming-Fang; Sun Dong-Ke

    2017-01-01

    A multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann (LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudo-particle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio. The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young’s equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie’s law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to

  7. Migration of particles on heterogeneous bivariate lattices: the universal analytical expressions for the diffusion coefficients

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Boháč, Petr; Jastrabík, Lubomír

    2015-01-01

    Roč. 74, Nov (2015), s. 556-560 ISSN 1386-9477 R&D Projects: GA MŠk LO1409; GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : surface diffusion * heterogeneous lattices * lattice-gas models * kinetic Monte Carlo simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.904, year: 2015

  8. Heat transfer problems in gas-cooled solid blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  9. Comparison of approaches for measuring the mass accommodation coefficient for the condensation of water and sensitivities to uncertainties in thermophysical properties.

    Science.gov (United States)

    Miles, Rachael E H; Reid, Jonathan P; Riipinen, Ilona

    2012-11-08

    We compare and contrast measurements of the mass accommodation coefficient of water on a water surface made using ensemble and single particle techniques under conditions of supersaturation and subsaturation, respectively. In particular, we consider measurements made using an expansion chamber, a continuous flow streamwise thermal gradient cloud condensation nuclei chamber, the Leipzig Aerosol Cloud Interaction Simulator, aerosol optical tweezers, and electrodynamic balances. Although this assessment is not intended to be comprehensive, these five techniques are complementary in their approach and give values that span the range from near 0.1 to 1.0 for the mass accommodation coefficient. We use the same semianalytical treatment to assess the sensitivities of the measurements made by the various techniques to thermophysical quantities (diffusion constants, thermal conductivities, saturation pressure of water, latent heat, and solution density) and experimental parameters (saturation value and temperature). This represents the first effort to assess and compare measurements made by different techniques to attempt to reduce the uncertainty in the value of the mass accommodation coefficient. Broadly, we show that the measurements are consistent within the uncertainties inherent to the thermophysical and experimental parameters and that the value of the mass accommodation coefficient should be considered to be larger than 0.5. Accurate control and measurement of the saturation ratio is shown to be critical for a successful investigation of the surface transport kinetics during condensation/evaporation. This invariably requires accurate knowledge of the partial pressure of water, the system temperature, the droplet curvature and the saturation pressure of water. Further, the importance of including and quantifying the transport of heat in interpreting droplet measurements is highlighted; the particular issues associated with interpreting measurements of condensation

  10. Ultrasonic levitation for the examination of gas/solid reactions

    International Nuclear Information System (INIS)

    Kavouras, A.; Krammer, G.

    2003-01-01

    An experimental setup based on acoustic levitation for the examination of gas/solid reactions is presented. In this setup single particles in the diameter range 1 mm-30 μm can be held against gravity for any wanted time in a defined gas atmosphere at elevated temperatures. The change of particle size, shape, and position can be measured and recorded using an optical device, consisting of a camera and a long range microscope. Basic experiments with inert particles of different shape and solid density have shown that the axial position of a reacting particle can be employed to derive its weight change. A method to evaluate this change of the recorded position for the according weight change is proposed. Exemplary results in the context of dry flue gas cleaning using Ca(OH) 2 powder are presented. Single Ca(OH) 2 particles are exposed to a well defined gas atmosphere and after some time these particles are retrieved from the ultrasonic field for further analyses. Only an in situ measurement of the particle weight change (i.e., without removing the particle from the well defined reactive atmosphere) brings information regarding the uptake of water by the sorbent, which accompanies SO 2 and HCl absorption

  11. Influence of additives and impurities in sweep gas and solid tritium release behaviour from lithium ceramics (review)

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1991-01-01

    Tritium release from solid breeding material is affected by small amounts of additives or impurities in the sweep gas or solid itself. Addition of hydrogen or water vapor to the sweep gas is reported to enhance the surface reaction of tritium release. Doping to solid breeder with elements of different valence from lithium has a possibility to improve tritium diffusion in the solid. Surface reaction and migration behavior in bulk are believed to be also affected by impurities in the sweep gas and in the solid. In order to model tritium release behavior in the blanket of fusion reactor, the mechanism of interaction with these additives or impurities must be quantitatively formulated. However, the mechanism of these remains to be elucidated. In this paper effects of these additives and impurities on tritium migration are reviewed. The mechanism of surface reaction for He+H 2 sweep gas is also discussed. (orig.)

  12. Gas Generation from Solids in Aqueous Suspensions

    International Nuclear Information System (INIS)

    Meisel, D.; Schatz, T.

    1999-01-01

    The presence of solid particles suspended in solution may change the radiation-induced chemistry of a system in many ways. Catalytic surface effects may manifest themselves through the acceleration or inhibition of various reactions. As importantly, the yield of primary radiolysis products may be affected as the solids absorb a significant fraction of the radiation energy. The latter is the subject of this study. We explore the possibility that absorption of radiation by the solid particles may initiate chemistry in the water. This is a question of fundamental as well as practical significance. On the fundamental side we ask whether electron-hole pairs generated in the solid phase can escape and cross into the aqueous phase and initiate chemical reactions such as gas generation and how this possibility depends on the energy levels of the material and on particle size. From a practical angle, such questions are directly relevant to any heterogeneous system exposed to radiation. High-level waste temporarily stored in underground tanks, low-level waste permanently stored in humid grout, or soil particles migrating in geological formations are but a few examples

  13. Analytical study of solids-gas two phase flow

    International Nuclear Information System (INIS)

    Hosaka, Minoru

    1977-01-01

    Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)

  14. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lattice-enabled nuclear reactions in the nickel and hydrogen gas system

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    Thousands of lattice-enabled nuclear reaction (LENR) experiments involving electrochemical loading of deuterium into palladium have been conducted and reported in hundreds of papers. But, it appears that the first commercial LENR power generators will employ gas loading of hydrogen onto nickel. This article reviews the scientific base for LENR in the gas-loaded Ni-H system, and some of the tests of pre-commercial prototype generators based on this combination. (author)

  16. Reproductive effects of the water-accommodated fraction of a natural gas condensate in the Indo-Pacific reef-building coral Pocillopora damicornis.

    Science.gov (United States)

    Villanueva, R D; Yap, H T; Montaño, M N E

    2011-11-01

    Toxic effects of the water-accommodated fraction (WAF) of a natural gas condensate on the reproduction of the brooding coral Pocillopora damicornis were studied in short-term (24 h) laboratory experiments. Coral fragments were exposed to varying concentrations of condensate WAF during different reproductive phases: gametogenesis, early embryogenesis, and late embryogenesis (when nighttime planulation occurs). During gametogenesis, exposure to condensate WAF did not inhibit subsequent production of larvae. On the other hand, exposure to >25% WAF of gravid corals, at early and late embryogenesis, resulted in abortion and early release of larvae, respectively, with higher percentages of larvae expelled in fragments treated with higher concentrations of condensate WAF at least 3h after onset of exposure. Aborted larvae during early embryogenesis were 'premature', as they are of small size (0.06±0.03 mm³), low metamorphic competency (54%), and white in coloration, with a pale brown oral end (indicating low density of zooxanthellae). Those larvae released at the latter part of embryogenesis are bigger in size (0.22±0.08 mm³), possess 100% metamorphic competency, and are brown in coloration (high density of zooxanthellae). Aside from direct effects on reproduction, fragment mortality index was higher in samples exposed to higher concentrations of condensate WAF (>25%), hence lowering the number of potentially reproducing polyps. Altogether, exposure to >25% natural gas condensate WAF for at least 3h can potentially disrupt the replenishment of coral populations due to negative effects on reproduction and early life processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Layer features of the lattice gas model for self-organized criticality

    International Nuclear Information System (INIS)

    Pesheva, N.C.; Brankov, J.G.

    1995-06-01

    A layer-by-layer description of the asymmetric lattice gas model for 1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented. The power spectra of the lattice layers in the direction perpendicular to the particle flux is studied in order to understand how the white noise at the input boundary evolves, on the average, into 1/f-noise for the system. The effects of high boundary drive and uniform driving force on the power spectrum of the total number of diffusing particles are considered. In the case of nearest-neighbor particle interactions, high statistics simulation results show that the power spectra of single lattice layers are characterized by different β x exponents such that β x → 1.9 as one approaches the outer boundary. (author). 10 refs, 6 figs

  18. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...... degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid-liquid...... equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...

  19. Liquid water transport mechanism in the gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Wu, C.W. [State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2010-03-01

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water. (author)

  20. Water interactions with condensed organic phases: a combined experimental and theoretical study of molecular-level processes

    Science.gov (United States)

    Johansson, Sofia M.; Kong, Xiangrui; Thomson, Erik S.; Papagiannakopoulos, Panos; Pettersson, Jan B. C.; Lovrić, Josip; Toubin, Céline

    2016-04-01

    Water uptake on aerosol particles modifies their chemistry and microphysics with important implications for air quality and climate. A large fraction of the atmospheric aerosol consists of organic aerosol particles or inorganic particles with condensed organic components. Here, we combine laboratory studies using the environmental molecular beam (EMB) method1 with molecular dynamics (MD) simulations to characterize water interactions with organic surfaces in detail. The over-arching aim is to characterize the mechanisms that govern water uptake, in order to guide the development of physics-based models to be used in atmospheric modelling. The EMB method enables molecular level studies of interactions between gases and volatile surfaces at near ambient pressure,1 and the technique may provide information about collision dynamics, surface and bulk accommodation, desorption and diffusion kinetics. Molecular dynamics simulations provide complementary information about the collision dynamics and initial interactions between gas molecules and the condensed phase. Here, we focus on water interactions with condensed alcohol phases that serve as highly simplified proxies for systems in the environment. Gas-surface collisions are in general found to be highly inelastic and result in efficient surface accommodation of water molecules. As a consequence, surface accommodation of water can be safely assumed to be close to unity under typical ambient conditions. Bulk accommodation is inefficient on solid alcohol and the condensed materials appear to produce hydrophobic surface structures, with limited opportunities for adsorbed water to form hydrogen bonds with surface molecules. Accommodation is significantly more efficient on the dynamic liquid alcohol surfaces. The results for n-butanol (BuOH) are particularly intriguing where substantial changes in water accommodation taking place over a 10 K interval below and above the BuOH melting point.2 The governing mechanisms for the

  1. History dependent quantum random walks as quantum lattice gas automata

    Energy Technology Data Exchange (ETDEWEB)

    Shakeel, Asif, E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Love, Peter J., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu [Department of Physics, Haverford College, Haverford, Pennsylvania 19041 (United States); Meyer, David A., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu [Department of Mathematics, University of California/San Diego, La Jolla, California 92093-0112 (United States)

    2014-12-15

    Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice.

  2. The nature of turbulence in a triangular lattice gas automaton

    Science.gov (United States)

    Duong-Van, Minh; Feit, M. D.; Keller, P.; Pound, M.

    1986-12-01

    Power spectra calculated from the coarse-graining of a simple lattice gas automaton, and those of time averaging other stochastic times series that we have investigated, have exponents in the range -1.6 to -2, consistent with observation of fully developed turbulence. This power spectrum is a natural consequence of coarse-graining; the exponent -2 represents the continuum limit.

  3. Solid state gas sensors. Industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Maximilian [Siemens AG, Muenchen (Germany). Corporate Technology; Lehmann, Mirko (eds.) [Innovative Sensor Technology (IST) AG, Wattwil (Switzerland)

    2012-11-01

    Written by experts. Richly illustrated. Encourages future research and investments in the fascinating field of gas sensors. Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.

  4. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  5. Malignant human cell transformation of Marcellus shale gas drilling flow back water

    OpenAIRE

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of t...

  6. Studies with solid chlorine chemical for chlorination of sea water systems

    International Nuclear Information System (INIS)

    Sankar, N.; Kumaraswamy, P.; Santhanam, V.S.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chlorination is one of the conventional methods to control biofouling of condenser cooling water systems using either river water, reservoir water or sea water. However, there are many safety concerns associated with handling, storage and application of gaseous chlorine. Studies were carried out with suitable alternative chlorine chemical compounds which do not involve majority of these concerns but meet the functional requirement of gas chlorine. Trichloroisocyanuric Acid (TCCA) is one of the suitable alternatives to Gas chlorine. TCCA is a chlorine stabilized compound, stabilized with Cyanuric acid, thus similar to Gas Chlorine in its functions except that it is available in solid form. Release of chlorine is a gradual process in TCCA unlike Gaseous chlorine. Field studies with TCCA indicated gradual and near uniform release rate of chlorine, for longer duration with the requisite free residual chlorine levels (FRC). Thus, use of TCCA could be considered as a suitable alternative for gas chlorine for regular chlorination requirements. (author)

  7. First-principles lattice-gas Hamiltonian revisited: O-Pd(100)

    OpenAIRE

    Kappus, Wolfgang

    2016-01-01

    The methodology of deriving an adatom lattice-gas Hamiltonian (LGH) from first principles (FP) calculations is revisited. Such LGH cluster expansions compute a large set of lateral pair-, trio-, quarto interactions by solving a set of linear equations modelling regular adatom configurations and their FP energies. The basic assumption of truncating interaction terms beyond fifth nearest neighbors does not hold when adatoms show longer range interactions, e.g. substrate mediated elastic interac...

  8. Taylor flow hydrodynamics in gas-liquid-solid micro reactors

    NARCIS (Netherlands)

    Warnier, M.J.F.

    2009-01-01

    Chemical reactions in which a gas phase component reacts with a liquid phase omponent at the surface of a solid catalyst are often encountered in chemical industry. The rate of such a gas-liquid-solid reaction is often limited by the mass transfer rate of the gas phase component, which depends on

  9. Method development for the analysis of 1,4-dioxane in drinking water using solid-phase extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Grimmett, Paul E; Munch, Jean W

    2009-01-01

    1,4-Dioxane has been identified as a probable human carcinogen and an emerging contaminant in drinking water. The United States Environmental Protection Agency's (U.S. EPA) National Exposure Research Laboratory (NERL) has developed a method for the analysis of 1,4-dioxane in drinking water at ng/L concentrations. The method consists of an activated carbon solid-phase extraction of 500-mL or 100-mL water samples using dichloromethane as the elution solvent. The extracts are analyzed by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. In the NERL laboratory, recovery of 1,4-dioxane ranged from 94-110% in fortified laboratory reagent water and recoveries of 96-102% were demonstrated for fortified drinking water samples. The relative standard deviations for replicate analyses were less than 6% at concentrations exceeding the minimum reporting level.

  10. Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI.

    Science.gov (United States)

    He, Qin; Chen, Hong-zhang

    2015-12-01

    The water in a solid substrate is generally divided into three forms: hygroscopic, capillary, and free. However, there are few methods available for detecting the contents of different states of water in substrates. In this paper, low-field NMR and MRI were used to analyze the water occurrence characteristics of steam-exploded corn straw in solid-state fermentation (SSF). A significant linear relationship was found between the total NMR peak areas and the total water contents with a correlation coefficient of 0.993. It was further proved to be successful in comparing the contents and distributions of different states of water in static SSF and gas double-dynamic SSF (GDD-SSF). The results showed that among the three states of water, capillary water was the main form of water present and lost in substrates during fermentation. Total water and capillary water contents did not significantly differ as a result of different sample treatments, but hygroscopic water and free water contents in static SSF were respectively 0.38 and 2.98 times that in GDD-SSF with a packing height of 3 cm after fermentation. A relatively uniform water distribution and deep-depth region for microbial growth were found in GDD-SSF, suggesting that GDD-SSF was more suitable for industrialization. This technology has great potential for achieving efficient on-line water supply through water loss detection in SSF.

  11. Critical sizes of light-water moderated UO2 and PuO2-UO2 lattices

    International Nuclear Information System (INIS)

    Tsuruta, Harumichi; Kobayashi, Iwao; Suzuki, Takenori; Ohno, Akio; Murakami, Kiyonobu

    1978-02-01

    Experimental critical sizes are presented for a total of about 250 lattices with 2.6 w/o UO 2 and 3.0 w/o PuO 2 -natural UO 2 fuel rods. The moderator was H 2 O and water-to-fuel volume ratios in the lattice cells ranged from 1.50 to 3.00 in the UO 2 lattices and from 2.42 to 5.55 in the PuO 2 -UO 2 lattices. The critical sizes were determined with the number of the fuel rods and a water level which were required to make the lattice critical in the shape of a rectangular parallelepiped over the temperature range from room temperature to 80 0 C. Reactivity variations of the PuO 2 -UO 2 lattices due to decaying of 241 Pu to 241 Am were traced during 3 years. Some critical sizes of the UO 2 and PuO 2 -UO 2 lattices with a water gap and of the UO 2 lattices with liquid poison in the moderator are also reported. Some physics parameters, such as the temperature coefficient of reactivity, the water-level worth, the reflector saving, the ratio between a migration area and an infinite multiplication factor and the critical buckling, are shown in relation to the critical sizes of the unperturbed lattices without the water gap and liquid poison. (auth.)

  12. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.

    Science.gov (United States)

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-24

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  13. Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow, a promising new countercurrent operation, was evaluated using residence time distribution (RTD) experiments. The column was packed with dumped Pall rings, the gas phase was air at ambient conditions and the solid

  14. Phonon-mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-based Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chernatynskiy, Aleksandr [Univ. of Florida, Gainesville, FL (United States); Turney, Joseph E. [Carnegie Mellon Univ., Pittsburgh, PA (United States); McGaughey, Alan J. H. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Amon, Christina H. [Univ. of Toronto, ON (Canada); Phillpot, Simon R. [Univ. of Florida, Gainesville, FL (United States)

    2011-07-22

    Phonon properties predicted from lattice dynamics calculations and the Boltzmann Transport Equation (BTE) are used to elucidate the thermal-transport properties of ionic materials. It is found that a rigorous treatment of the Coulombic interactions within the harmonic analysis is needed for the analysis of the phonon structure of the solid, while a short-range approximation is sufficient for the third-order force constants. The effects on the thermal conductivity of the relaxation time approximation, the classical approximation to the phonon statistics, the direct summation method for the electrostatic interactions, and the quasi-harmonic approximation to lattice dynamics are quantified. Quantitative agreement is found between predictions from molecular dynamics simulations (a method valid at temperatures above the Debye temperature) and the BTE result within quasi-harmonic approximation over a wide temperature range.

  15. EPRI-LATTICE: a multigroup neutron transport code for light water reactor lattice physics calculations

    International Nuclear Information System (INIS)

    Jones, D.B.

    1986-01-01

    EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated

  16. Water-hammer prevention, mitigation, and accommodation: a perspective

    International Nuclear Information System (INIS)

    Kim, J.H.

    1987-01-01

    The purpose of this paper is to present an industry perspective on water hammer, revisit the issues, and renew interest in this area with aim to prevent, mitigate, and accommodate water hammer. Water hammer keeps recurring in nuclear power plants and damages plant components and impacts on plant operations and availability through forced outages of plants. The implication is that water hammer in nuclear power plants still needs attention and is a problem that has not been fundamentally resolved. The paper displays statistics of the reported water hammer events between 1969 and 1985. The consequences of these water hammer events were: pipe support damage (hangers, anchors, and snubbers), 60%; component damage (piping, pumps, and valves), 17%; reactor trip, 10%; and plant shutdown, 7%. Reactor trips and plant shutdowns account for 17% of the event consequences. At the request of the nuclear utility industry, a workshop on water hammer was sponsored by the Electric Power Research Institute (EPRI), with cosponsorship from Northeast Utility Service Company, Yankee Atomic Electric Company, and Boston Edison Company, which drew some 90 specialists representing 28 utility companies as well as other nuclear industry, academia, and the NRC. The workshop recommendations are summarized

  17. Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows

    Directory of Open Access Journals (Sweden)

    Y. Peng

    2017-01-01

    Full Text Available Inspired by the recent success of applying multispeed lattice Boltzmann models with a non-space-filling lattice for simulating transcritical shallow water flows, the capabilities of their space-filling counterpart are investigated in this work. Firstly, two lattice models with five integer discrete velocities are derived by using the method of matching hydrodynamics moments and then tested with two typical 1D problems including the dam-break flow over flat bed and the steady flow over bump. In simulations, the derived space-filling multispeed models, together with the stream-collision scheme, demonstrate better capability in simulating flows with finite Froude number. However, the performance is worse than the non-space-filling model solved by finite difference scheme. The stream-collision scheme with second-order accuracy may be the reason since a numerical scheme with second-order accuracy is prone to numerical oscillations at discontinuities, which is worthwhile for further study.

  18. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  19. Impact of Shale Gas Development on Water Resource in Fuling, China

    Science.gov (United States)

    Yang, Hong; Huang, Xianjin; Yang, Qinyuan; Tu, Jianjun

    2015-04-01

    As a low-carbon energy, shale gas rapidly developed in U.S. in last years due to the innovation of the technique of hydraulic fracture, or fracking. Shale gas boom produces more gas with low price and reduced the reliance on fuel import. To follow the American shale gas success, China made an ambitious plan of shale gas extraction, 6.5 billion m3 by 2015. To extract shale gas, huge amount water is needed to inject into each gas well. This will intensify the competition of water use between industry, agricultural and domestic sectors. It may finally exacerbate the water scarcity in China. After the extraction, some water was returned to the ground. Without adequate treatment, the flowback water can introduce heavy metal, acids, pesticides, and other toxic material into water and land. This may inevitably worsen the water and land contamination. This study analysed the potential water consumption and wastewater generation in shale gas development in Fuling, Southwest China. The survey found the average water consumption is 30,000 cubic meter for one well, higher than shale well in U.S. Some 2%-20% water flowed back to the ground. The water quality monitoring showed the Total Suspended Solid (TSS) and Chemical Oxygen Demand (COD) were the main factors above those specified by China's water regulation. Shale gas is a lower-carbon energy, but it is important to recognize the water consuming and environmental pollution during the fracking. Strict monitoring and good coordination during the shale gas exploitation is urgently needed for the balance of economic development, energy demand and environmental protection.

  20. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  1. Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part II: freely bubbling gas-solid fluidized beds

    NARCIS (Netherlands)

    Patil, D.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Correct prediction of spontaneous bubble formation in freely bubbling gas¿solid fluidized beds using Eulerian models, strongly depends on the description of the internal momentum transfer in the particulate phase. In this part, the comparison of the simple classical model, describing the solid phase

  2. Engineering self-organising helium bubble lattices in tungsten.

    Science.gov (United States)

    Harrison, R W; Greaves, G; Hinks, J A; Donnelly, S E

    2017-08-10

    The self-organisation of void and gas bubbles in solids into superlattices is an intriguing nanoscale phenomenon. Despite the discovery of these lattices 45 years ago, the atomistics behind the ordering mechanisms responsible for the formation of these nanostructures are yet to be fully elucidated. Here we report on the direct observation via transmission electron microscopy of the formation of bubble lattices under He ion bombardment. By careful control of the irradiation conditions, it has been possible to engineer the bubble size and spacing of the superlattice leading to important conclusions about the significance of vacancy supply in determining the physical characteristics of the system. Furthermore, no bubble lattice alignment was observed in the directions pointing to a key driving mechanism for the formation of these ordered nanostructures being the two-dimensional diffusion of self-interstitial atoms.

  3. Blends of natural rubber and polyurethane lattices studied by solid-state NMR

    International Nuclear Information System (INIS)

    Ricardo, Nagila M.P.S.; Franca, Francisco C.F. de; Price, Colin; Heatley, Frank

    2001-01-01

    Molecular mixing in films formed from a mixture of a polyurethane and natural rubber lattices has been studied using 1 H and 13 C solid-state NMR. The techniques employed include 1 H relaxation measurements, and 13 C cross-polarisation and direct excitation methods. The spectra of the blends were essentially a weighted superposition of the spectra of the individual components, indicating that the polyurethane and rubber remained phase-separated in large domains. (author)

  4. Preliminary report on the economics of gas production from natural gas hydrates

    International Nuclear Information System (INIS)

    Walsh, M.; Wilson, S.; Patil, S.; Moridis, G.; Boswell, R.; Koh, C.; Sloan, D.

    2008-01-01

    Gas hydrates are solid crystalline compounds in which gas molecules reside inside cages that are formed by hydrogen-bonded water molecules in a crystal lattice. At particularly low temperatures and high pressures, a guest molecule will combine with water to form gas hydrates. Gas hydrates are found in two different settings in which the temperature and pressure conditions are suitable for their existence, notably in Arctic permafrost regions and below the seafloor. Because of the size of this possible future resource, if any of the gas in hydrates can be proven to be economically recoverable, then production from gas hydrates could become an important portion of the world's energy portfolio as demand for natural gas increases along with the technology to compress and distribute natural gas to distant markets. This paper presented a compilation of economic research that was conducted on the resource potential of gas hydrates. The paper reported a preliminary estimate of the price of natural gas that may lead to economically-viable production from North American Arctic region hydrates. The paper also discussed the implications of a recent study on the production of class 3 marine hydrate deposits from the Gulf of Mexico. The state of the art technologies and methods in hydrate reservoir modeling and hydrate reservoir production and petrophysical testing were also discussed. It was concluded that the somewhat optimistic results presented in this report should be interpreted with caution, however, the economically-viable gas production from hydrates was not an unreasonable scenario. 23 refs., 2 tabs., 10 figs

  5. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction.

    Science.gov (United States)

    Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  6. Shale gas development impacts on surface water quality in Pennsylvania

    Science.gov (United States)

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  7. The effect of gas double-dynamic on mass distribution in solid-state fermentation.

    Science.gov (United States)

    Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang

    2014-05-10

    The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro/nano-channel : heat flux predictions using combined molecular dynamics and Monte Carlo techniques

    NARCIS (Netherlands)

    Gaastra - Nedea, S.V.; Steenhoven, van A.A.; Markvoort, A.J.; Spijker, P.; Giordano, D.

    2014-01-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and

  9. Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method

    Science.gov (United States)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2017-01-01

    In lattice Boltzmann simulations involving moving solid boundaries, the momentum exchange between the solid and fluid phases was recently found to be not fully consistent with the principle of local Galilean invariance (GI) when the bounce-back schemes (BBS) and the momentum exchange method (MEM) are used. In the past, this inconsistency was resolved by introducing modified MEM schemes so that the overall moving-boundary algorithm could be more consistent with GI. However, in this paper we argue that the true origin of this violation of Galilean invariance (VGI) in the presence of a moving solid-fluid interface is due to the BBS itself, as the VGI error not only exists in the hydrodynamic force acting on the solid phase, but also in the boundary force exerted on the fluid phase, according to Newton's Third Law. The latter, however, has so far gone unnoticed in previously proposed modified MEM schemes. Based on this argument, we conclude that the previous modifications to the momentum exchange method are incomplete solutions to the VGI error in the lattice Boltzmann method (LBM). An implicit remedy to the VGI error in the LBM and its limitation is then revealed. To address the VGI error for a case when this implicit remedy does not exist, a bounce-back scheme based on coordinate transformation is proposed. Numerical tests in both laminar and turbulent flows show that the proposed scheme can effectively eliminate the errors associated with the usual bounce-back implementations on a no-slip solid boundary, and it can maintain an accurate momentum exchange calculation with minimal computational overhead.

  10. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung [Tuskegee Univ., Tuskegee, AL (United States); Fan, Liang-Shih [The Ohio State Univ., Columbus, OH (United States); Zhou, Qiang [The Ohio State Univ., Columbus, OH (United States); Yang, Hui [The Ohio State Univ., Columbus, OH (United States)

    2014-09-30

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a

  11. Lattice gas methods for predicting intrinsic permeability of porous media

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.O.E.; Philippi, P.C. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Propriedades Termofisicas e Meios Porosos)]. E-mail: emerich@lmpt.ufsc.br; philippi@lmpt.ufsc.br; Damiani, M.C. [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil). Parque Tecnologico]. E-mail: damiani@lmpt.ufsc.br

    2000-07-01

    This paper presents a method for predicting intrinsic permeability of porous media based on Lattice Gas Cellular Automata methods. Two methods are presented. The first is based on a Boolean model (LGA). The second is Boltzmann method (LB) based on Boltzmann relaxation equation. LGA is a relatively recent method developed to perform hydrodynamic calculations. The method, in its simplest form, consists of a regular lattice populated with particles that hop from site to site in discrete time steps in a process, called propagation. After propagation, the particles in each site interact with each other in a process called collision, in which the number of particles and momentum are conserved. An exclusion principle is imposed in order to achieve better computational efficiency. In despite of its simplicity, this model evolves in agreement with Navier-Stokes equation for low Mach numbers. LB methods were recently developed for the numerical integration of the Navier-Stokes equation based on discrete Boltzmann transport equation. Derived from LGA, LB is a powerful alternative to the standard methods in computational fluid dynamics. In recent years, it has received much attention and has been used in several applications like simulations of flows through porous media, turbulent flows and multiphase flows. It is important to emphasize some aspects that make Lattice Gas Cellular Automata methods very attractive for simulating flows through porous media. In fact, boundary conditions in flows through complex geometry structures are very easy to describe in simulations using these methods. In LGA methods simulations are performed with integers needing less resident memory capability and boolean arithmetic reduces running time. The two methods are used to simulate flows through several Brazilian reservoir petroleum rocks leading to intrinsic permeability prediction. Simulation is compared with experimental results. (author)

  12. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui

    2012-01-01

    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  13. A multi-residue method for the analysis of pesticides and pesticide degradates in water using HLB solid-phase extraction and gas chromatography-ion trap mass spectrometry

    Science.gov (United States)

    Hladik, M.L.; Smalling, K.L.; Kuivila, K.M.

    2008-01-01

    A method was developed for the analysis of over 60 pesticides and degradates in water by HLB solid-phase extraction and gas-chromatography/mass spectrometry. Method recoveries and detection limits were determined using two surface waters with different dissolved organic carbon (DOC) concentrations. In the lower DOC water, recoveries and detection limits were 80%-108% and 1-12 ng/L, respectively. In the higher DOC water, the detection limits were slightly higher (1-15 ng/L). Additionally, surface water samples from four sites were analyzed and 14 pesticides were detected with concentrations ranging from 4 to 1,200 ng/L. ?? 2008 Springer Science+Business Media, LLC.

  14. Heat transfer across the interface between nanoscale solids and gas.

    Science.gov (United States)

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  15. Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.

    Science.gov (United States)

    Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A

    2017-11-01

    An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of lattice-gas atoms on the adsorption behaviour of thioether molecules.

    Science.gov (United States)

    Pan, Yi; Yang, Bing; Hulot, Catherine; Blechert, Siegfried; Nilius, Niklas; Freund, Hans-Joachim

    2012-08-21

    Using STM topographic imaging and spectroscopy, we have investigated the adsorption of two thioether molecules, 1,2-bis(phenylthio)benzene and (bis(3-phenylthio)-phenyl)sulfane, on noble and transition metal surfaces. The two substrates show nearly antipodal behaviour. Whereas complexes with one or two protruding centres are observed on Au(111), only flat and uniform ad-structures are found on NiAl(110). The difference is ascribed to the possibility of the thioethers to form metal-organic complexes by coordinating lattice-gas atoms on the Au(111), while only the pristine molecules adsorb on the alloy surface. The metal coordination in the first case is driven by the formation of strong Au-S bonds and enables the formation of characteristic monomer, dimer and chain-like structures of the thioethers, using the Au atoms as linkers. A similar mechanism is not available on the NiAl, because no lattice gas develops at this surface at room temperature. Our work demonstrates how surface properties, i.e. the availability of mobile ad-species, determine the interaction of organic molecules with metallic substrates.

  17. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Siegert, Christoph; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)

    2013-12-04

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.

  18. Electrostatic modulation of periodic potentials in a two-dimensional electron gas: From antidot lattice to quantum dot lattice

    International Nuclear Information System (INIS)

    Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam; Siegert, Christoph; Farrer, Ian; Ritchie, David A.; Pepper, Michael

    2013-01-01

    We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background

  19. Anomalous low-temperature desorption from preirradiated rare gas solids

    International Nuclear Information System (INIS)

    Savchenko, E.V.; Gumenchuk, G.B.; Yurtaeva, E.M.; Belov, A.G.; Khyzhniy, I.V.; Frankowski, M.; Beyer, M.K.; Smith-Gicklhorn, A.M.; Ponomaryov, A.N.; Bondybey, V.E.

    2005-01-01

    The role for the exciton-induced defects in the stimulation of anomalous low-temperature desorption of the own lattice atoms from solid Ar and Ne preirradiated by an electron beam is studied. The free electrons from shallow traps-structural defects-was monitored by the measurements of a yield of the thermally induced exoelectron emission (TSEE). The reaction of recombination of self-trapped holes with electrons is considered as a source of energy needed for the desorption of atoms from the surface of preirradiated solids. A key part of the exciton-induced defects in the phenomenon observed is demonstrated

  20. Static Q anti Q force from instanton gas and numerical lattice calculations

    International Nuclear Information System (INIS)

    Ilgenfrits, E.M.; Mueller-Preussker, M.

    1982-01-01

    Lattice Monte Carlo calculation predictions for the static strength between quarks are compared with the results obtained in the framework of instanton gas model and a typical instanton size is determined. Yang-Mills theory data for different ratios of Wilson loops in case of SU(3) for the string tension are presented. The instanton corrections to perturbation strength turn to be essential to reach an agreement with obtained by lattice calculations data inside the small-distance region up to approximately 0.3 fm. Arguments in favour of the statement that data difference in this region from the phenomenologically known value is connected with the notion of infinitely heavy quarks but not with neglect of virtual quark loops are presented

  1. The lattice correspondence and diffusional-displacive phase transformations

    International Nuclear Information System (INIS)

    Nie, J.F.; Muddle, B.C.

    1999-01-01

    When a coherent interface is maintained between parent and product phases in a solid state phase transformation, then it is always possible to define a lattice correspondence across this interface and describe the structural change by a homogeneous lattice deformation, S T . For certain transformations, this strain is an invariant plane strain, with the invariant plane defining the planar, coherent interface between parent and product. This group includes the familiar martensitic face-centred cubic to close-packed hexagonal transformation in, for example, cobalt-based alloys, but it is demonstrated here that it also contains transformations giving rise to a broad range of plate-shaped, diffusional precipitation products. For many such transformation products, the transformation strain has a significant shear component and the accommodation of shear strain energy is potentially an important, and often overlooked, factor in both the nucleation and growth of such products. More commonly S T is not an invariant plane strain and, if a planar interface is to be preserved between parent and product, it is necessary to combine S T with a lattice invariant strain to allow a partially-coherent interface that is macroscopically invariant. It is demonstrated that there are diffusional transformation products which also have the geometric and crystallographic features of both of the common forms of partially-coherent martensitic products

  2. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  3. Comprehensive modeling of solid phase epitaxial growth using Lattice Kinetic Monte Carlo

    International Nuclear Information System (INIS)

    Martin-Bragado, Ignacio

    2013-01-01

    Damage evolution of irradiated silicon is, and has been, a topic of interest for the last decades for its applications to the semiconductor industry. In particular, sometimes, the damage is heavy enough to collapse the lattice and to locally amorphize the silicon, while in other cases amorphization is introduced explicitly to improve other implanted profiles. Subsequent annealing of the implanted samples heals the amorphized regions through Solid Phase Epitaxial Regrowth (SPER). SPER is a complicated process. It is anisotropic, it generates defects in the recrystallized silicon, it has a different amorphous/crystalline (A/C) roughness for each orientation, leaving pits in Si(1 1 0), and in Si(1 1 1) it produces two modes of recrystallization with different rates. The recently developed code MMonCa has been used to introduce a physically-based comprehensive model using Lattice Kinetic Monte Carlo that explains all the above singularities of silicon SPER. The model operates by having, as building blocks, the silicon lattice microconfigurations and their four twins. It detects the local configurations, assigns microscopical growth rates, and reconstructs the positions of the lattice locally with one of those building blocks. The overall results reproduce the (a) anisotropy as a result of the different growth rates, (b) localization of SPER induced defects, (c) roughness trends of the A/C interface, (d) pits on Si(1 1 0) regrown surfaces, and (e) bimodal Si(1 1 1) growth. It also provides physical insights of the nature and shape of deposited defects and how they assist in the occurrence of all the above effects

  4. Dosimetric characteristics of water equivalent for two solid water phantoms

    International Nuclear Information System (INIS)

    Wang Jianhua; Wang Xun; Ren Jiangping

    2011-01-01

    Objective: To investigate the water equivalent of two solid water phantoms. Methods: The X-ray and electron beam depth-ion curves were measured in water and two solid water phantoms, RW3 and Virtual Water. The water-equivalency correction factors for the two solid water phantoms were compared. We measured and calculated the range sealing factors and the fluence correction factors for the two solid water phantoms in the case of electron beams. Results: The average difference between the measured ionization in solid water phantoms and water was 0.42% and 0.16% on 6 MV X-ray (t=-6.15, P=0.001 and t=-1.65, P=0.419) and 0.21% and 0.31% on 10 MV X-ray (t=1.728, P=0.135 and t=-2.296, P=0.061), with 17.4% and 14.5% on 6 MeV electron beams (t=-1.37, P=0.208 and t=-1.47, P=0.179) and 7.0% and 6.0% on 15 MeV electron beams (t=-0.58, P=0.581 and t=-0.90, P=0.395). The water-equivalency correction factors for the two solid water phantoms varied slightly largely, F=58.54, P=0.000 on 6 MV X-ray, F=0.211, P=0.662 on 10 MV X-ray, F=0.97, P=0.353 on 6 MeV electron beams, F=0.14, P=0.717 on 15 MeV electron beams. However, they were almost equal to 1 near the reference depths. The two solid water phantoms showed a similar tread of C pl increasing (F=26.40, P=0.014) and h pl decreasing (F=7.45, P=0.072) with increasing energy. Conclusion: The solid water phantom should undergo a quality control test before being clinical use. (authors)

  5. Tuneable diode laser gas analyser for methane measurements on a large scale solid oxide fuel cell

    Science.gov (United States)

    Lengden, Michael; Cunningham, Robert; Johnstone, Walter

    2011-10-01

    A new in-line, real time gas analyser is described that uses tuneable diode laser spectroscopy (TDLS) for the measurement of methane in solid oxide fuel cells. The sensor has been tested on an operating solid oxide fuel cell (SOFC) in order to prove the fast response and accuracy of the technology as compared to a gas chromatograph. The advantages of using a TDLS system for process control in a large-scale, distributed power SOFC unit are described. In future work, the addition of new laser sources and wavelength modulation will allow the simultaneous measurement of methane, water vapour, carbon-dioxide and carbon-monoxide concentrations.

  6. Potential for a solids fire during an ITP waste tank deflagration and the impact on gas pressure

    International Nuclear Information System (INIS)

    Thomas, J.K.

    1993-07-01

    During the In-Tank Precipitation (ITP) process, solid deposits may form at the water-line on internal waste tank surfaces. These solids may be combustible due to the presence of tetraphenylborate compounds and hence there is a potential that a waste tank deflagration could ignite a solids fire. The work described in this report evaluates the potential for a waste tank deflagration to ignite a solids fire and the subsequent effect on gas pressure. Thermal analyses were performed using a one-dimensional conduction model, radiative heat flux values calculated with the Deflagration Pressure Analysis Code (DPAC), and effective deposit properties calculated from the component properties. It was shown that a solids fire could only be ignited by a waste tank deflagration for a limited range of cases. For the best-estimate mixtures, a solids fire could not be ignited prior to the time the peak gas pressure is reached and would not increase the peak pressure. For the upper-bound mixtures, the thickness of the solid layer which could be ignited is insufficient to increase the energy released by the deflagration by a significant amount. It was also shown that these conclusions are relatively insensitive to uncertainties related to deposit composition. Thus, the contribution from a solids fire to the gas pressure resulting from a waste tank deflagration may be neglected

  7. Selected Topics on Mass Transport in Gas-solid Interactions

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2004-01-01

    The present article is a short review containing examples of the role of mass transport in the solid state during gas-solid interactions. Examples are taken from the authors' research on the interaction of carbon and/or nitrogen with iron-based metals. Topics dealt with are diffusion-controlled d......The present article is a short review containing examples of the role of mass transport in the solid state during gas-solid interactions. Examples are taken from the authors' research on the interaction of carbon and/or nitrogen with iron-based metals. Topics dealt with are diffusion...... on the kinetics of phenomena in the solid state. Various experimental techniques were applied to investigate these phenomena; it is however beyond the scope of the present article to treat experimental conditions in detail. The interested reader is referred to the original work for in depth discussions...

  8. Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations

    Science.gov (United States)

    Cheung, Ocean

    2014-01-01

    Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…

  9. Quantum Electric Dipole Lattice - Water Molecules Confined to Nanocavities in Beryl

    Science.gov (United States)

    Dressel, Martin; Zhukova, Elena S.; Thomas, Victor G.; Gorshunov, Boris P.

    2018-02-01

    Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.

  10. Solid/liquid interfacial free energies in binary systems

    Science.gov (United States)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  11. Solid Organic Deposition During Gas Injection Studies

    DEFF Research Database (Denmark)

    Dandekar, Abhijit Y.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    2000-01-01

    Recently a series of first contact miscibility (swelling) experiments have been performed on undersaturated light and heavy oils using LPG rich and methane rich injection gases, in which solid organic deposition was observed. A compositional gradient in the oils during the gas injection process....... The asphaltene content of the different oil samples were determined by the TP 143 method. The standard asphaltenes and the solid organic deposit recovered from the swelling tests were analyzed using FTIR, HPLC-SEC and H-1 NMR. The aim of these analyses is to reveal the molecular nature of the deposits formed...... during the gas injection process in comparison with the standard asphaltenes in order to understand the mechanisms involved in asphaltene deposition....

  12. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  13. The observation of helium gas bubble lattices in copper, nickel and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1978-10-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant, asub(l), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface. Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(l) obtained for copper, nickel and stainless steel are given. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300K. (author)

  14. Lattice gas automaton scheme with stochastic particle movement for a rotated fluid flow

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    2002-01-01

    Lattice gas automaton (LGA) models developed so far are just for Cartesian geometries, and no direct approach to rotated fluid flows is found. In this paper, LGA method is applied to model a two-dimensional rotated flow. Several problems specific to the rotated flow are to be solved: hexagonal lattice geometry to effectively identify the neighbors, boundary condition for irregular walls, multi-speed scheme to represent angular-oriented fluid velocity υ θ ≅γω, shape of macroscopic domain for statistics, formula to obtain macroscopic quantities such as density and mean fluid velocities, application method of Fermi-Dirac function to the initial particle arrangement. For this purpose, FHP-I type hexagonal lattice model is revised and a new LGA model with stochastic particle movement is proposed. The results of the trial calculation are shown. It is also investigated whether or not the underlying microscopic Boolean equations newly introduced leads to Navier-Stokes equation. (author)

  15. In situ TEM observation of solid-gas reactions

    International Nuclear Information System (INIS)

    Kishita, K; Kamino, T; Watabe, A; Kuroda, K; Saka, H

    2008-01-01

    Under a gaseous atmosphere at high temperatures, almost all the materials (metal, catalysts, etc.) change their structures and properties. For the research and development of materials, it is of vital importance to clarify mechanisms of solid-gas and liquid-gas reactions. Recently an in situ TEM system combined with an environmental holder, which has a gas injection nozzle close to a specimen-heating element, has been developed. The gas injection nozzle permits gas to flow around the specimens sitting on the heating element made of a fine W filament. The newly developed in situ TEM has a differential pumping system; therefore, the pressure in the specimen chamber is maintained in the range of higher than 1 Pa, while the pressure in the electron gun chamber can be kept in the range of 10 -5 Pa. This system was applied to in situ observation of chemical reactions of metals with gases: Observation of oxidation and reduction under a gas pressure ranging from 10 -5 Pa to 1 Pa at high temperatures (room temperature to ∼1473 K) were successfully carried out on pure metal and rare metal catalysts at near-atomic resolution. This in situ environmental TEM system is promising for clarifying mechanisms of many solid-gas and liquid-gas reactions that take place at high temperatures under a gas atmosphere.

  16. Study of deformation of droplet in external force field by using liquid-gas model of lattice-gas

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Watanabe, Tadashi

    2000-10-01

    The deformation of the droplet by the external force which is assumed to be gravity is studied by using the liquid-gas model of lattice-gas. Two types of liquid-gas models, one is the minimal model and the other is the maximal model, which are distinguished from each other by the added long-range interactions are used for the simulation of the droplet deformation. The difference of the droplet deformation between the maximal model and the minimal model was observed. While the droplet of the minimal model elongates in the direction of the external force, the droplet of the maximal model elongates in the perpendicular direction to the external force. Therefore the droplet deformation in the external force field of the maximal model is more similar to the droplet deformation which is observed in experiments than that of the minimal model. (author)

  17. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation.

    Science.gov (United States)

    Fontenot, Brian E; Hunt, Laura R; Hildenbrand, Zacariah L; Carlton, Doug D; Oka, Hyppolite; Walton, Jayme L; Hopkins, Dan; Osorio, Alexandra; Bjorndal, Bryan; Hu, Qinhong H; Schug, Kevin A

    2013-09-03

    Natural gas has become a leading source of alternative energy with the advent of techniques to economically extract gas reserves from deep shale formations. Here, we present an assessment of private well water quality in aquifers overlying the Barnett Shale formation of North Texas. We evaluated samples from 100 private drinking water wells using analytical chemistry techniques. Analyses revealed that arsenic, selenium, strontium and total dissolved solids (TDS) exceeded the Environmental Protection Agency's Drinking Water Maximum Contaminant Limit (MCL) in some samples from private water wells located within 3 km of active natural gas wells. Lower levels of arsenic, selenium, strontium, and barium were detected at reference sites outside the Barnett Shale region as well as sites within the Barnett Shale region located more than 3 km from active natural gas wells. Methanol and ethanol were also detected in 29% of samples. Samples exceeding MCL levels were randomly distributed within areas of active natural gas extraction, and the spatial patterns in our data suggest that elevated constituent levels could be due to a variety of factors including mobilization of natural constituents, hydrogeochemical changes from lowering of the water table, or industrial accidents such as faulty gas well casings.

  18. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  19. Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy

    Science.gov (United States)

    Carter, Layne; Tabb, David; Anderson, Molly

    2017-01-01

    Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.

  20. Detritiation of Tritiated Effluent Gas and Water

    International Nuclear Information System (INIS)

    Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Lee, Min Soo; Yim, Sung Paal; Chung Hong Suk

    2007-06-01

    In a demonstration scale equipment for treatment of tritium in off-gas, Pt/SDBC as oxidation catalyst and Zeolite 13X as adsorbent was charged in the beds, respectively. It was confirmed from the performance test that decontamination factor of the equipment showed more than 100 under the flow rate of off-gas of 90 l/hr and at the temperature of 65 ∼ 80 .deg. C. A small scale CECE process has been developed combining LPCE catalytic column with SPE (solid polymer electrolyte) electrolysis. The catalytic column was a trickle-bed type packed with the mixture of 1 wt% Pt/SDBC catalyst and 4 mm Dixon wire-mesh ring. The experimental results of the CECE process proved that the decontamination factor of 13 ∼ 20 under the operating conditions of the water of the 4 l/day and the effluent hydrogen gas of 16.2 mol/h. A design code of CECE process also developed which will be applied the tritium industry. An experimental method for the reduction of tritiated organic waste by using catalytic oxidation was tested in a heated catalytic reactor of 0.5 wt% Pd/Al 2 O 3 . The simulated organic liquid was converted to water over 99%. A gas chromatographic column material was developed for the separation of mixed hydrogen isotopes. 17 wt% Pd-Pt on alumina showed 90% separation efficiency at 77 % yield for the separation of 29.2 % D 2 -H 2 gas mixture

  1. Detritiation of Tritiated Effluent Gas and Water

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Lee, Min Soo; Yim, Sung Paal; Chung Hong Suk

    2007-06-15

    In a demonstration scale equipment for treatment of tritium in off-gas, Pt/SDBC as oxidation catalyst and Zeolite 13X as adsorbent was charged in the beds, respectively. It was confirmed from the performance test that decontamination factor of the equipment showed more than 100 under the flow rate of off-gas of 90 l/hr and at the temperature of 65 {approx} 80 .deg. C. A small scale CECE process has been developed combining LPCE catalytic column with SPE (solid polymer electrolyte) electrolysis. The catalytic column was a trickle-bed type packed with the mixture of 1 wt% Pt/SDBC catalyst and 4 mm Dixon wire-mesh ring. The experimental results of the CECE process proved that the decontamination factor of 13 {approx} 20 under the operating conditions of the water of the 4 l/day and the effluent hydrogen gas of 16.2 mol/h. A design code of CECE process also developed which will be applied the tritium industry. An experimental method for the reduction of tritiated organic waste by using catalytic oxidation was tested in a heated catalytic reactor of 0.5 wt% Pd/Al{sub 2}O{sub 3}. The simulated organic liquid was converted to water over 99%. A gas chromatographic column material was developed for the separation of mixed hydrogen isotopes. 17 wt% Pd-Pt on alumina showed 90% separation efficiency at 77 % yield for the separation of 29.2 % D{sub 2}-H{sub 2} gas mixture.

  2. Improvements in or relating to process for the production of fuel gas from a carbonaceous solid

    Energy Technology Data Exchange (ETDEWEB)

    1952-12-03

    A process was designed for the generation of fuel gas from a solid carbonaceous fuel containing volatilizable constituents, which comprises admixing the solid carbonaceous fuel in particle form with sufficient water to form a fluid suspension, passing the suspension through a heating zone at an elevated temperature such that substantially all of the water is vaporized, thereby forming a dispersion of coal in steam and causing the dispersion to attain a velocity of at least 60 ft. per second to shatter the particles of coal by collision, passing the resulting dispersion into a fluidized bed of solid carbonaceous material in a methanization zone into contact with carbon monoxide and hydrogen at a temperature within the range of from 900/sup 0/ to 1,800/sup 0/F whereby carbon monoxide and hydrogen are converted to methane and volatilizable constituents of the solid carbonaceous material are distilled therefrom, withdrawing carbonaceous material from the methanization zone and passing it into contact with oxygen and steam in dilute phase in a gasification zone maintained at a temperature within the range of 2,000/sup 0/ to about 3,000/sup 0/F, passing the resulting gases comprising carbon monoxide and hydrogen from the gasification zone into the methanization zone as the source of carbon monoxide and hydrogen, and discharging the gaseous products of the methanization zone as the raw-product fuel gas.

  3. Method for improved gas-solids separation

    Science.gov (United States)

    Kusik, C.L.; He, B.X.

    1990-11-13

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  4. Application of novel activated carbon fiber solid-phase, microextraction to the analysis of chlorinated hydrocarbons in water by gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Sun Tonghua; Jia Jinping; Fang Nenghu; Wang Yalin

    2005-01-01

    This paper presents a study on the performance of activated carbon fiber (ACF) used as extraction fiber for solid-phase microextraction (SPME) and its application for analysis of chlorinated hydrocarbons in water. By means of evaluating scanning electron microscope (SEM) images, specific surface area, pore volume, pore distribution, and properties of adsorption and desorption, the optimal active concentration of phosphoric acid has been determined. Coupled with gas chromatograph-mass spectrometry (GC-MS), ACF-SPME is suitable for determination chlorinated hydrocarbons in water with headspace. Experimental parameters such as adsorption and desorption conditions were studied. The optimized method has an acceptable linearity, good precision, with R.S.D. values <10% for each compound. Compared with commercial fibers, ACF has many advantages such as better resistance to organic solvents, better endurance to high temperature and longer lifetime

  5. Determination of steroids, caffeine and methylparaben in water using solid phase microextraction-comprehensive two dimensional gas chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Lima Gomes, Paulo C F; Barnes, Brian B; Santos-Neto, Álvaro J; Lancas, Fernando M; Snow, Nicholas H

    2013-07-19

    Analysis of several emerging contaminants (steroids, caffeine and methylparaben) in water using automated solid-phase microextraction with comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (SPME-GCxGC-ToF/MS) is presented. Experimental design was used to determine the best SPME extraction conditions and the steroids were not derivatized prior to injection. SPME-GCxGC-ToF/MS provided linear ranges from 0.6 to 1200μgL(-1) and limits of detection and quantitation from 0.02 to 100μgL(-1). A series of river water samples obtained locally were subjected to analysis. SPME-GCxGC-ToF/MS is readily automated, straightforward and competitive with other methods for low level analysis of emerging contaminants. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Extended Josephson Relation and Abrikosov lattice deformation

    International Nuclear Information System (INIS)

    Matlock, Peter

    2012-01-01

    From the point of view of time-dependent Ginzburg Landau (TDGL) theory, a Josephson-like relation is derived for an Abrikosov vortex lattice accelerated and deformed by applied fields. Beginning with a review of the Josephson Relation derived from the two ingredients of a lattice-kinematics assumption in TDGL theory and gauge invariance, we extend the construction to accommodate a time-dependent applied magnetic field, a Floating-Kernel formulation of normal current, and finally lattice deformation due to the electric field and inertial effects of vortex-lattice motion. The resulting Josephson-like relation, which we call an Extended Josephson Relation, applies to a much wider set of experimental conditions than the original Josephson Relation, and is explicitly compatible with the considerations of TDGL theory.

  7. Temperature effects studies in light water reactor lattices

    International Nuclear Information System (INIS)

    Erradi, Lahoussine.

    1982-02-01

    The CREOLE experiments performed in the EOLE critical facility located in the Nuclear Center of CADARACHE - CEA (UO 2 and UO 2 -PuO 2 lattice reactivity temperature coefficient continuous measurements between 20 0 C and 300 0 C; integral measurements by boron equivalent effect in the moderator; water density effects measurements with the use of over cladding aluminium tubes to remove moderator) allow to get an interesting and complete information on the temperature effects in the light water reactor lattices. A very elaborated calcurated scheme using the transport theory and the APOLLO cross sections library, has been developed. The analysed results of the whole lot of experiments show that the discrepancy between theory and experiment strongly depends on the temperature range and on the type of lattices considered. The error is mainly linked with the thermal spectrum effects. A study on the temperature coefficient sensitivity to the different cell neutron parameters has shown that only the shapes of the 235 U and 238 U thermal cross sections have enough weight and uncertainty margins to explain the observed experimental/calculation bias. Instead of arbitrarily fitting the identified wrong data on the calculation of the reactivity temperature coefficient we have defined a procedure of modification of the cross sections based on the consideration of the basic nuclear data: resonance parameters and associated statistic laws. The implementation of this procedure has led to propose new thermal cross sections sets for 235 U and 238 U consistent with the uncertainty margins associated with the previously accepted values and with some experimental data [fr

  8. Current quantization and fractal hierarchy in a driven repulsive lattice gas.

    Science.gov (United States)

    Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco

    2017-11-01

    Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.

  9. Current quantization and fractal hierarchy in a driven repulsive lattice gas

    Science.gov (United States)

    Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco

    2017-11-01

    Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.

  10. Distribution for fermionic discrete lattice gas within the canonical ensemble

    International Nuclear Information System (INIS)

    Kutner, R.; Barszczak, T.

    1991-01-01

    The distinct deviations from the Fermi-Dirac statistics ascertained recently at low temperatures for a one-dimensional, spinless fermionic discrete lattice gas with conserved number of noninteracting particles hopping on the nondegenerated, well-separated single-particle energy levels are studied in numerical and theoretical terms. The generalized distribution is derived in the form n(h) = {Y h exp[(var-epsilon h -μ)β]+1} -1 valid even in the thermodynamic limit, when the discreteness of the energy levels is kept. This distribution demonstrates good agreement with the data obtained numerically both by the canonical partition-function technique and by Monte Carlo simulation

  11. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    Basic information is required to understand fission gas generation and its consequence for swelling and embrittlement in fission reactors, for understanding and controlling first wall problems in fusion reactors and for attempting to design storage for active gas waste. In all of these areas the rare gas atoms are generated with kinetic energy and may thus interact differently, during their slowing down, with the solid than if they had been introduced more gently (e.g. via diffusion) into the solid. An important method of simulating the behaviour of such energetic rare gas atoms in solids is via external irradiation of the solid with rare gas ions of appropriate species and energies and it is the purpose of this review to evaluate studies of this nature. The review is divided into three parts. The first describes experimental techniques, discusses the results of measurements of how ions penetrate into and may be retained in a solid, and outlines theoretical interpretations of the data. The mechanisms of gas atom dissolution and thermal transport in solids are of profound importance and so, in the second part of this review, attention is devoted to how the technique of post-implantation thermal evolution spectrometry can be employed to attempt to understand some of these processes. Particular attention is paid to the difficulties of unique interpretation of evolution spectra. In the final section, consideration will be given to the processes which lead to the inevitable saturation of solids undergoing continued irradiation with rare gas ions and experimental measurements and their probable interpretation will be discussed. Since many materials are of importance in the context of this symposium, reference will be made to as broad a range of studies as possible. (author)

  12. Cyclodextrin-Based Solid-Gas Clathrates

    NARCIS (Netherlands)

    Pereva, Stiliana; Himitliiska, Tsveta; Spassov, Tony; Stoyanov, S.D.; Arnaudov, L.N.; Dudev, Todor

    2015-01-01

    "Cyclodextrin-gas" clathrates were obtained by crystallization from water solution of α-, β-, and γ-cyclodextrins (CDs) under pressure of the gas to be entrapped into the CD molecules. When the pressure is released, these clathrates are stable at ambient conditions and dissociate at elevated

  13. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.

    2001-01-01

    A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.

  14. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  15. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  16. Probe into Environmental Kuznets Characteristics and Causes of Wastewater,Waste Gas, and Solid Wastes in Wuhan City

    Institute of Scientific and Technical Information of China (English)

    刘耀彬; 李仁东

    2004-01-01

    Environmental Kuznets characteristics and causes of waste water, waste gas, and solid wastes in Wuhan city was researched; By comparing the variation of "three wastes", i.e. waste water, waste gas, and solid wastes, the model between standardized per capita GDP and values of "three wastes" discharge was established and the causes were analyzed based on the theory of environmental economics. The results show that 1) the total amount is fluctuantly increasing, but the discharges of the three kinds are temporarily different, 2) the curve conforms to the three-power function, in which the curve descends from 1985 to 1994, and the curve preliminary shows the environmental Kuznets characteristics from 1995 to 2001, 3) the simulated calculation illustrates that the turning point of this environmental Kuznets curve would be over 25007.25 Yuan per caprta, and 4) the economic development, changing of industry structure, energy resource structure, and environmental policies are the main factors leading to the Environmental Kuznets Curve in Wuhan city.

  17. Combined solid-phase extraction and gas chromatography-mass spectrometry used for determination of chloropropanols in water.

    Science.gov (United States)

    González, Paula; Racamonde, Inés; Carro, Antonia M; Lorenzo, Rosa A

    2011-10-01

    A sensitive and rapid derivatization method for the simultaneous determination of 1,3-dichloro-2-propanol (1,3-DCP) and 3-chloropropane-1,2-diol (3-MCPD) in water samples has been developed. The aim was to research the optimal conditions of the derivatization process for two selected reagents. A central composite design was used to determine the influence of derivatization time, derivatization temperature and reagent volume. A global desirability function was applied for multi-response optimization. The analysis was performed by gas chromatography-mass spectrometry. During the optimization of the extraction procedure, four different types of solid-phase extraction (SPE) columns were tested. It was demonstrated that the Oasis HLB cartridge produced the best recoveries of the target analytes. The pH value and the salinity were investigated using a Doehlert design. The best results for the SPE of both analytes were obtained with 1.5 g of NaCl and pH 6. The proposed method provides high sensitivity, good linearity (R(2)≥0.999) and repeatability (relative standard deviations % between 2.9 and 3.4%). Limits of detection and quantification were in the range of 1.4-11.2 ng/mL and 4.8-34.5 ng/mL, respectively. Recoveries obtained for water samples were ca. 100% for 1,3-DCP and 3-MCPD. The method has been successfully applied to the analysis of different samples including commercially bottled water, an influent and effluent sewage. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2012-01-01

    A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gas and water permeability of concrete for reactor buildings small specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1986-03-01

    The effect on permeability of artifical aging by drying shrinkage and by freeze-thaw was determined by observing mass transfer of gas and water under a pressure gradient. It was found that damage due to freeze-thaw was negligible but that cracking around aggregate caused by drying shrinkage resulted in significantly increased permeability to both gas and water. The absence of freeze-thaw damage was attributed to self-dessication. Since the concrete was not exposed to an external source of water, the chemical reaction was sustained by consumption of mixing water. The resulting air voids were, apparently, sufficient to absorb expansive pressures due to ice formation. The response to lateral prestress was different for cracked and uncracked concrete. Although, in all cases, increased prestress resulted in reduced leakage, the effect was stronger in cracked concrete. Mean pore diameter as determined by gas diffusion was not, however, substantially affected because the leakage in cracked concrete remained very low. Reinforcing steel did not have a great influence on permeability of small specimens. Gas transmission through concrete was strongly influenced by moisture content. Free moisture constituted a barrier to gas flow, acting as a virtual solid. This is important since aging of concrete results in reduced free moisture. Ultrasonic pulse velocity appeared to vary with moisture content and porosity of concrete in the same way as gas permeability and gave promise of being effective for in-situ monitoring of concrete in reactor buildings

  20. Electron stimulated reactions of methyl iodide coadsorbed with amorphous solid water

    International Nuclear Information System (INIS)

    Perry, C. C.; Faradzhev, N. S.; Madey, T. E.; Fairbrother, D. H.

    2007-01-01

    The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons

  1. Solid state proton spin-lattice relaxation in four structurally related organic molecules

    International Nuclear Information System (INIS)

    Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.

    2003-01-01

    We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure

  2. Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers.

    Science.gov (United States)

    Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L

    2017-10-17

    Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.

  3. Water recovery from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Heijboer, R.; Van Deelen-Bremer, M.H.; de Vos, F.; Zeijseink, A.G.L. [KEMA Nederland B.V. (Netherlands)

    2007-07-01

    In the power generation process a large amount of water is needed, for steam generation, flue gas cleaning etc. On the other hand a large amount of water is emitted to the atmosphere via the stack. For example a 400 MW coal fired power plant with a flue gas desulfurisation plant emits about 1,500,000 m{sup 3} per hour with a water concentration of about 11%. The emitted water has a rather good quality compared to surface water and needs less effort to be treated for use as make-up water. As the available amount of water in the flue gas from the earlier mentioned power plant is about 150 tons per hour, recovering 20% of this amount covers the make-up water needs of this 400 MW power plant. Direct condensation of the flue gas needs large cooling power and the condensed water is acidic and corrosive and needs cleanup treatment before it can be used in the water/steam cycle. KEMA developed a technology based on gas separation membranes which makes it possible to recover water from flue gas. The process is covered by a wide patent. The principle of the membrane is comparable to the material that is used in fabric like SympaTex{reg_sign} and GORE-TEX{reg_sign}. The GORE-TEX material is permeable to water vapor but rejects liquid water. The driving force is the water vapor pressure close to the human skin which is the higher than the water vapor pressure open the outside of the clothing. The selectivity of the GORE-TEX material however is not good enough to be used at the temperature of flue gas. The University of Twente (Netherlands) developed a membrane material based on modified PEEK which is highly selective of water vapor at flue gas temperatures. Based on the fact that flat membranes have an uneconomical surface to volume ratio, the choice has been made to use hollow fibre membranes. 6 figs.

  4. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  5. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  6. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC

  7. [Monitoring of the residue of fosthiazate in water samples using solid-phase extraction coupled with gas chromatography/mass spectrometry].

    Science.gov (United States)

    Zhu, Jing; Zhou, Xin; Fu, Chunmei; Liu, Sankang; Li, Zhangwan

    2004-11-01

    Solid-phase extraction (SPE) coupled with gas chromatography/mass spectrometry (GC/MS) was used to determine the fosthiazate residue in water samples. The water samples were first filtered through cellulose filters (0.45 microm pore size). A 100 mL volume of filtered water, in which 1 mL of methanol has been added, was then passed through a pre-conditioned 3 cm C18 cartridge at a flow-rate of 1.5 mL/min. Elution was performed by 1 mL of methanol. The eluant was finally dried under reduced pressure for solvent evaporation. The volume was quantitatively adjusted to 0.5 mL with methanol. The analysis was carried out on GC/MS. The mass spectrometer was operated in selected ion monitoring (SIM) mode. According to mass spectrum of fosthiazate, three selected ions at m/z of 126, 195, 283, respectively, were monitored for identification and quantification. High sensitivity and selectivity were achieved by using this method. The limit of detection for fosthiazate in water samples was determined to be 56.4 ng/L. The linearity was demonstrated over a wide range of concentrations covering from 0.282 to 141 microg/L. The recoveries were more than 85.5% and the relative standard deviations for the overall procedure were less than 4.42%. The fosthiazate residue was detected in the water samples from a pool near cropland where fosthiazate was used. The results demonstrate the suitability of the SPE-GC/MS approach for the analysis of fosthiazate in water.

  8. Contribution to the modelling of gas-solid reactions and reactors

    International Nuclear Information System (INIS)

    Patisson, F.

    2005-09-01

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  9. Natural gas adsorption on coal in anhydrous and in water saturated conditions: study of the adsorbed quantities and of the isotopic fractionation

    International Nuclear Information System (INIS)

    Caja, M.

    2000-02-01

    In order to understand the influence of adsorption in the migration of natural gas in sedimentary basins. we have developed an experimental device to measure the quantity of gas adsorbed on organic matter. We quantify the isotopic and chemical fractionation due to adsorption of natural gas on coal at representative gas field conditions (20 - 200 deg C and 1 - 1000 bar). These effects are investigated for gas / solid systems and for gas dissolved in water/water saturated solid systems. The solid sample considered in this work is a natural coal of Carboniferous age, taken from a mine in Lorraine, France. Its maturity corresponds to the end of the diagenesis zone. A first set of high pressure methane adsorption experiments on dry coal are compared with measurements done by another laboratory on the same solid. This allowed us to validate the experimental procedure. This measurements performed in the presence of water have shown that methane adsorption is significant even in presence of water. We have developed a simple adsorption model (Langmuir model in which fugacity is used in stead of partial pressure) in order to represent this phenomena. For a depth profile we compare the part of methane adsorbed on sedimentary rocks organic matter to methane dissolved in pore water. A second set of experiments realised on a multicomponent gas (C1, C2, C3, C4, CO 2 ) shows a preferential adsorption of carbon dioxide, but no significant fractionation on hydrocarbon gases of the mixture has been observed. Adsorption experiments of methane on dry medium and on water saturated medium yield on the same result: adsorption equilibrium do not induce a significant isotopic fractionation between 13 CH 4 and 12 CH 4 . However, we observe a significant fractionation during gas desorption. The interpretation is that we are not at equilibrium and diffusion phenomena is superimposed on adsorption. From this study two important geological consequences can be drawn. First. for rocks containing

  10. The water proton spin-lattice relaxation times in virus-infected cells

    International Nuclear Information System (INIS)

    Valensin, G.; Gaggelli, E.; Tiezzi, E.; Valensin, P.E.; Bianchi Bandinelli, M.L.

    1979-01-01

    The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T 1 was closely related to the multiplicity of infection, allowing direct inspections of the virus-cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water. (Auth.)

  11. Simulation of granular and gas-solid flows using discrete element method

    Science.gov (United States)

    Boyalakuntla, Dhanunjay S.

    2003-10-01

    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D

  12. Numerical analysis of the reactivity for the dry lattices above the water level of the critical fuel cores

    International Nuclear Information System (INIS)

    Nauchi, Yasushi; Kameyama, Takanori

    2003-01-01

    Criticality analysis has been performed for dozens of tank type cores in which fuel lattices are loaded vertically and partially immersed in light water. The reactivity effect of dry part of lattices stuck above the critical water level has been calculated using the continuous energy Monte Carlo method. The reactivity effect exceeds 0.8% both for MOX and UOX fuel lattices of large buckling (B z 2 > 0.0025 cm -2 ). It is evaluated that at least 20 cm length of fuel rods above the critical water level has significant reactivity effect. (author)

  13. Shale gas: the water myth

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, Kerry [Dillon Consulting Limited (Canada)

    2010-07-01

    In recent years, due to the depletion of traditional fossil fuel resources and the rising price of energy, production from unconventional gas activities has increased. Large shale gas plays are available in Quebec but environmental concerns, mainly in terms of water resources, have been raised. The aim of this paper is to provide information on the impact of shale gas exploitation on water resources. It is shown herein that shale gas water use is not significant, the water use of 250 wells represents only 0.3% of the Quebec pulp and paper industry's water use, or 0.0004% of the flow of the St Lawrence. It is also shown that the environmental risk associated with fracking and drilling activities is low. This paper demonstrated that as long as industry practices conform to a well-designed regulatory framework, shale gas development in Quebec will have a low impact on water resources and the environment.

  14. Derivatisation/solid-phase microextraction followed by gas chromatography-mass spectrometry for the analysis of phenoxy acid herbicides in aqueous samples

    DEFF Research Database (Denmark)

    Nilsson, Torben; Baglio, Daniela; Galdo-Miguez, Isabel

    1998-01-01

    Different combinations of derivatisation and solid-phase microextraction followed by gas chromatography-mass spectrometry were optimised and evaluated for the analysis of phenoxy acid herbicides in water. The most successful derivatisation approach was aqueous-phase derivatisation with benzyl...

  15. Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium

    Directory of Open Access Journals (Sweden)

    Dmitrienko Margarita A.

    2015-01-01

    Full Text Available This paper investigates the evaporation of a water droplet with a comparably sized solid nontransparent inclusion in a high-temperature (500–800 K gas medium. Water evaporates from the free surface of the inclusion. During this process, intensive vapor formation occurs on the inner interface “water droplet – solid inclusion” with the subsequent explosive decay of the droplet. Experiments have been conducted using high-speed (up to 105 fps video cameras “Phantom” and software “Phantom Camera Control”. The conditions of the explosive vapor formation of the heterogeneous water droplet were found. The typical phase change mechanisms of the heterogeneous water droplet under the conditions of intensive heat exchange were determined.

  16. Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-03-11

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with

  17. An integration scheme for stiff solid-gas reactor models

    Directory of Open Access Journals (Sweden)

    Bjarne A. Foss

    2001-04-01

    Full Text Available Many dynamic models encounter numerical integration problems because of a large span in the dynamic modes. In this paper we develop a numerical integration scheme for systems that include a gas phase, and solid and liquid phases, such as a gas-solid reactor. The method is based on neglecting fast dynamic modes and exploiting the structure of the algebraic equations. The integration method is suitable for a large class of industrially relevant systems. The methodology has proven remarkably efficient. It has in practice performed excellent and been a key factor for the success of the industrial simulator for electrochemical furnaces for ferro-alloy production.

  18. Water into gas

    International Nuclear Information System (INIS)

    Woodord, Julian.

    1997-01-01

    This article examines the move by water utilities into the gas market and potentially into the electricity supply market. Operation by Dee Valley Holdings, York Waterworks, York Gas, and North Wales Gas are reported, and investment, use of mail campaigns and telemarketing to secure customers, and the opportunities offered by diversification are considered. (UK)

  19. Analysis of isothiazolinones in environmental waters by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Rafoth, Astrid; Gabriel, Sabine; Sacher, Frank; Brauch, Heinz-Jürgen

    2007-09-14

    This paper describes an analytical method for the determination of five biocides of isothiazolinone type (2-methyl-3-isothiazolinone (MI), 5-chloro-2-methyl-3-isothiazolinone (CMI), 1,2-benzisothiazolinone (BIT), 2-octyl-3-isothiazolinone (OI), 4,5-dichloro-2-octyl-3-isothiazolinone (DCOI)) in environmental waters. The method is based on pre-concentration of the analytes by solid-phase extraction onto a mixture of a polymeric material and RP-C18 material and subsequent determination by gas chromatography-mass spectrometry (GC-MS). One of the target compounds (BIT) is derivatised with diazomethane after pre-concentration to improve its chromatographic performance. The method was optimised with respect to pre-concentration conditions (liquid-liquid extraction versus solid-phase extraction, solid-phase material, elution solvent and volume) and extensively validated. Applying the method to surface waters, groundwaters, and drinking waters, limits of detection between 0.01 and 0.1 microg/l could be achieved and the repeatability was below 10% for all compounds except for MI. Additional investigations showed that the stability of the isothiazolinones in environmental waters is limited and sample storage at 4 degrees C is mandatory to preserve the target biocides. First investigations of influents and effluents of a wastewater treatment plant showed that conventional wastewater treatment exhibits a high efficiency for removal of the isothiazolinones. In river waters, the target isothiazolinones could not be detected.

  20. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  1. Overview: Understanding nucleation phenomena from simulations of lattice gas models

    International Nuclear Information System (INIS)

    Binder, Kurt; Virnau, Peter

    2016-01-01

    Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.

  2. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    Science.gov (United States)

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  3. Finite-Size Scaling in a Two-Temperature Lattice Gas: a Monte Carlo Study of Critical Properties

    DEFF Research Database (Denmark)

    Larsen, Heine; Præstgaard, Eigil; Zia, R.K.P.

    1994-01-01

    We present computer studies of the critical properties of an Ising lattice gas driven to a non-equilibrium steady state by coupling to two temperature baths. Anisotropic scaling, a dominant feature near criticality, is used as a tool to extract the values of the critical temperature and some expo...

  4. Thermodynamics of gas adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Budrugeac, P.

    1979-01-01

    Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)

  5. [Determination of nitroaromatics and cyclo ketones in sea water' by gas chromatography coupled with activated carbon fiber solid-phase micro-extraction].

    Science.gov (United States)

    Ma, Hanna; Zhu, Mengya; Wang, Yalin; Sun, Tonghua; Jia, Jinping

    2009-05-01

    A gas chromatography (GC) coupled with solid-phase micro-extraction using a special activated carbon fiber (ACF) was developed for the analysis of 6 nitroaromatics and cyclic ketones, nitrobenzene (NB), 1,3-dinitrobenzene (1,3-DNB), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), isophorone, 1,4-naphthaquinone (1,4-NPQ), in sea water samples. The sample was extracted for 30 min under saturation of NaCl at 1,500 r/min and 60 degrees C in head space. The desorption was performance at 280 degrees C for 2 min. The linear ranges were from 0.01 to 400 microg/L. The limits of detection (LODs) were 1.4 - 3.2 ng/L. This method has been successfully applied to the determination of nitroaromatics and cyclic ketones in the sea water samples obtained from East China Sea. The concentrations of nitrobenzene, 1,3-dinitrobenzene and 2,6-dinitrotoluene in the sea water sample were 0.756, 0.944, 0.890 microg/L, respectively. The recoveries were 86.3% - 101.8% with the relative standard deviations (RSDs) of 3.7% -7.8%. The method is suitable for analyzing nitroaromatics and cyclic ketones at low concentration levels in sea water samples.

  6. Gas in your water well

    International Nuclear Information System (INIS)

    2011-03-01

    In Alberta, the presence of carbon dioxide, methane or hydrogen sulphide in water wells is common. The aim of this paper is to provide information to private owners of water wells. It is stated in this document that spurting taps or a gurgling noise indicate that there is gas in your water well; you can determine which gas it is by collecting a sample and having it analyzed. In order to address the risks associated with the presence of gas in the water well, the well pit or well pump should be properly vented to avoid any oxygen deficiency in the atmosphere. It is also possible to get rid of the gas by lowering the pump intake. It is also mentioned that the development of coalbed methane in Alberta should not contaminate private wells since regulations aimed at avoiding this have been implemented. This paper provided useful information to help private owners manage the presence of gas in their water wells.

  7. Automated solid-phase extraction of herbicides from water for gas chromatographic-mass spectrometric analysis

    Science.gov (United States)

    Meyer, M.T.; Mills, M.S.; Thurman, E.M.

    1993-01-01

    An automated solid-phase extraction (SPE) method was developed for the pre-concentration of chloroacetanilide and triazine herbicides, and two triazine metabolites from 100-ml water samples. Breakthrough experiments for the C18 SPE cartridge show that the two triazine metabolites are not fully retained and that increasing flow-rate decreases their retention. Standard curve r2 values of 0.998-1.000 for each compound were consistently obtained and a quantitation level of 0.05 ??g/l was achieved for each compound tested. More than 10,000 surface and ground water samples have been analyzed by this method.

  8. Quantum mechanical alternative to Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum

  9. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

    Science.gov (United States)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi

    2017-09-01

    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  10. Stability of mutualisms in a lattice gas system of two species

    Directory of Open Access Journals (Sweden)

    Yuanshi Wang

    2015-01-01

    Full Text Available This article considers mutualisms in a lattice gas system of two species. The species are mutualistic since each one can provide resources to the other. They are also competitive since they compete for empty sites on the same lattice. The mutualisms are assumed to have a saturated response, and the intraspecific competition is considered because of self-limitation. The mutualism system is characterized by differential equations, which are derived from reactions on lattice and are extension of a previous model. Global stability analysis demonstrates that (i When neither species can survive alone, they can coexist if mutualisms between them are strong and population densities are large, which exhibits the Allee effect in obligate mutualism; (ii When one species can survive alone but the other cannot, the latter one will survive if the mutualistic effect from the former is strong. Even if the effect is intermediate, the latter species can survive by strengthening its mutualistic effect on the former and enhancing its population density; (iii When either species can survive alone, a weak mutualism will lead to extinction of one species. When in coexistence, intermediate strength of mutualism is shown to be beneficial under certain parameter range, while over- or under- mutualism is not good. Furthermore, extremely strong/weak mutualism is exhibited to result in extinction of one/both species. While seven typical dynamics are displayed by numerical simulation in a previous work, they are proved in this work and the eighth one is exhibited. Numerical simul ations validate and extend our conclusions.

  11. Correlation dimension estimate and its potential use in analysis of gas-solid flows

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2005-01-01

    Gas-solid flows are nonlinear systems. Therefore state-space analysis, a tool developed within the framework of nonlinear dynamics, could provide more useful insights into complex gas-solid flows. One of the positive aspects of state-space analysis is that the major properties of a system can be ...

  12. Natural uranium lattice in heavy water; Reseaux uranium naturel-eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Y; Koechlin, J C; Moreau, J; Naudet, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    all solid bars are considered and n an d the effective integrals are adjusted then a system of transposition of these results to more complex bars is sought. In the second step, one is compelled to improve the system in studying in greater detail each factor of the calculation of the lattice. A satisfactory interpretation of the results leads definitively to methods of calculation applicable to the most varied types of natural uranium-heavy water lattices. Attention has been given to results obtained in other countries, particularly in Canada. (author) [French] Un ensemble de mesures de Laplaciens a ete realise en regime critique dans une pile a eau lourde construite specialement a cette fin, soit sur reseaux complets, soit sur echantillons de reseaux par une methode a deux zones. L'appareillage experimental est brievement decrit: il a ete etudie pour permettre des modifications rapides du chargement. On decrit egalement sommairement les methodes de mesure: on opere soit par cartes de flux, sur des reseaux qui servent ensuite de reference soit par remplacement progressif des barres par couronnes concentriques et mesures de reactivite. Dans ce cas, on cherche a atteindre l'ecart entre le laplacien-matiere du reseau central inconnu et celui du reseau de reference. La methode a fait l'objet d'une mise au point destinee a la rendre precice. On donne les resultats des mesures de laplaciens pour tous ces types de reseaux, ce qui permet de construire un ensemble de courbes en fonction du pas. Divers effets ont ete egalement mesure: equivalent en reactivite du millimetre d'eau - anisotropie - effet de temperature, etc. On a cependant prefere, dans cette premiere campagne de mesures tout au moins, obtenir une grande variete de laplaciens plutot que des mesures fines dans des cas particuliers. C'est dans cet esprit qu'a ete conduite l'interpretation des resultats. Nombre de phenomenes tres complexes echappant encore a nos possibilites de calcul, on estime qu'un certain nombre d

  13. Natural uranium lattice in heavy water; Reseaux uranium naturel-eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Y.; Koechlin, J.C.; Moreau, J.; Naudet, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    all solid bars are considered and n an d the effective integrals are adjusted then a system of transposition of these results to more complex bars is sought. In the second step, one is compelled to improve the system in studying in greater detail each factor of the calculation of the lattice. A satisfactory interpretation of the results leads definitively to methods of calculation applicable to the most varied types of natural uranium-heavy water lattices. Attention has been given to results obtained in other countries, particularly in Canada. (author) [French] Un ensemble de mesures de Laplaciens a ete realise en regime critique dans une pile a eau lourde construite specialement a cette fin, soit sur reseaux complets, soit sur echantillons de reseaux par une methode a deux zones. L'appareillage experimental est brievement decrit: il a ete etudie pour permettre des modifications rapides du chargement. On decrit egalement sommairement les methodes de mesure: on opere soit par cartes de flux, sur des reseaux qui servent ensuite de reference soit par remplacement progressif des barres par couronnes concentriques et mesures de reactivite. Dans ce cas, on cherche a atteindre l'ecart entre le laplacien-matiere du reseau central inconnu et celui du reseau de reference. La methode a fait l'objet d'une mise au point destinee a la rendre precice. On donne les resultats des mesures de laplaciens pour tous ces types de reseaux, ce qui permet de construire un ensemble de courbes en fonction du pas. Divers effets ont ete egalement mesure: equivalent en reactivite du millimetre d'eau - anisotropie - effet de temperature, etc. On a cependant prefere, dans cette premiere campagne de mesures tout au moins, obtenir une grande variete de laplaciens plutot que des mesures fines dans des cas particuliers. C'est dans cet esprit qu'a ete conduite l'interpretation des resultats. Nombre de phenomenes tres complexes echappant encore a nos possibilites de

  14. Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)

    2008-07-01

    Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.

  15. Study of minor actinides transmutation in heavy water cooled tight-pitch lattice

    International Nuclear Information System (INIS)

    Xu Xiaoqin; Shiroya, S.

    2002-01-01

    Minor actinides inhere long half-life and high toxicity. It is an alternative technical pathway and helpful for reducing environmental impact to incinerate minor actinides in spent fuel of nuclear power plants. Because of its high neutron, γ and β emitting rates and heat generation rate, it is necessary to imply more severe control and shielding techniques in the chemical treatment and fabrication. From economic view-point, it is suitable to transmute minor actinides in concentrated way. A technique for MA transmutation by heavy water cooled tight-pitch lattice system is proposed, and calculated with SRAC95 code system. It is shown that tight-pitch heavy water lattice can transmute MA effectively. The accelerator-driven subcritical system is practical for MA transmutation because of its low fraction of effective delay neutrons

  16. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    Science.gov (United States)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  17. Treatment of waste water from flue gas cleaning; Behandlung von Abwasser der Rauchgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Ogiermann, Klaus; Meyerhoff, Thomas [Berkefeld - VWS Deutschland GmbH, Celle (Germany); Hagen, Klaus [Berkefeld - VWS Deutschland GmbH, Bayreuth (Germany); Basabe, Juan Luis [HPD Process Engineering S.A., Bilbao (Spain); Vendrup, Michael [Krueger A/S, Soeborg (Denmark)

    2012-11-01

    Strict limits must be adhered to for treating waste water incurred during flue gas desulphurisation (FGD). One and two-stage precipitation processes have proven themselves in FGD waste water treatment. Metals can be removed with the MetClean {sup registered} process. Another option is evaporation. Waste water ZLD systems (Zero Liquid Discharge) recover, via a falling film evaporator with subsequent crystallisation, more than 98 % of the water and produce, aside from the condensate, only solid material that can be disposed of in landfill. A further development, named ZLD CoLD trademark, significantly reduces the investment and operating costs of this solution. (orig.)

  18. Acoustic probe for solid-gas-liquid suspensions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Sangani, A.S.; Tavlarides, L.L.

    1998-01-01

    'The proposed research will develop an acoustic probe for monitoring particle size and volume fraction in slurries in the absence and presence of gas. The goals are to commission and verify the probe components and system operation, develop theory for the forward and inverse problems for acoustic wave propagation through a three phase medium, and experimentally verify the theoretical analysis. The acoustic probe will permit measurement of solid content in gas-liquid-solid waste slurries in tanks across the DOE complex.'

  19. Finite element evaluation of elasto-plastic accommodation energies during solid state transformations: Coherent, spherical precipitate in finite matrix

    International Nuclear Information System (INIS)

    Sen, S.; Balasubramaniam, R.; Sethuraman, R.

    1996-01-01

    The molar volume difference between the matrix and the precipitate phases in the case of solid state phase transformations results in the creation of stain energy in the system due to the misfit strains. A finite element model based on the initial strain approach is proposed to evaluate elasto-plastic accommodation energies during solid state transformation. The three-dimensional axisymmetric model has been used to evaluate energies as a function of transformation for α-β hydrogen transformations in the Nb-H system. The transformation has been analyzed for the cases of transformation progressing both from the center to surface and from the surface to center of the system. The effect of plastic deformation has been introduced to make the model realistic, specifically to the Nb-NbH phase transformation which involves a 4% linear misfit strain. It has been observed that plastic deformation reduces the strain energies compared to the linear elastic analysis

  20. Solutions for correlations along the coexistence curve and at the critical point of a kagomé lattice gas with three-particle interactions

    Science.gov (United States)

    Barry, J. H.; Muttalib, K. A.; Tanaka, T.

    2008-01-01

    We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.

  1. Gas-solid alkali destruction of volatile chlorocarbons

    International Nuclear Information System (INIS)

    Foropoulos, J. Jr.

    1995-12-01

    Many chlorocarbons are environmental dangers and health hazards. The simplest perchlorinated hydrocarbon, carbon tetrachloride, is near the top of the list of hazardous compounds. Carbon tetrachloride was used as a cleaning fluid, solvent, and fire-extinguishing agent. The nuclear and defense complexes also employed great quantities of carbon tetrachloride and other chlorocarbons as cleaning and degreasing agents. Many sites nationwide have underground chlorocarbon contamination plumes. Bulk chlorocarbon inventories at many locations await treatment and disposal. Often the problem is compounded by the chlorocarbon being radioactively contaminated. Waste inventory and groundwater contamination problems exist for many other chlorocarbons, especially methylene chloride, chloroform, and tri- and tetrachloroethylene. In this work solid soda lime (a fused mixture of approximately 95% CaO and 5% NaOH in a coarse, granulated form) at 350 C to 400 C acts as the hydrolyzing degradation, and off-gas scrubbing medium. Within soda lime CO 2 and HCl from hydrolysis and degradation convert immediately to calcium and sodium chlorides and carbonates, with water vapor as a volatile byproduct

  2. Simulation of diffusion in a two-dimensional lattice gas cellular automaton: a test of mode-coupling theory

    NARCIS (Netherlands)

    Frenkel, D.; Ernst, M.H.

    1989-01-01

    We compute the velocity autocorrelation function of a tagged particle in a two-dimensional lattice-gas cellular automaton using a method that is about a million times more efficient than existing techniques. A t-1 algebraic tail in the tagged-particle velocity autocorrelation function is clearly

  3. Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure.

    Science.gov (United States)

    Rosciano, Fabio; Pescarmona, Paolo P; Houthoofd, Kristof; Persoons, Andre; Bottke, Patrick; Wilkening, Martin

    2013-04-28

    Lithium ion batteries have conquered most of the portable electronics market and are now on the verge of deployment in large scale applications. To be competitive in the automotive and stationary sectors, however, they must be improved in the fields of safety and energy density (W h L(-1)). Solid-state batteries with a ceramic electrolyte offer the necessary advantages to significantly improve the current state-of-the-art technology. The major limit towards realizing a practical solid-state lithium-ion battery lies in the lack of viable ceramic ionic conductors. Only a few candidate materials are available, each carrying a difficult balance between advantages and drawbacks. Here we introduce a new class of possible solid-state lithium-ion conductors with the spinel structure. Such compounds could be coupled with spinel-type electrode materials to obtain a "lattice matching" solid device where low interfacial resistance could be achieved. Powders were prepared by wet chemistry, their structure was studied by means of diffraction techniques and magic angle spinning NMR, and Li(+) self-diffusion was estimated by static NMR line shape measurements. Profound differences in the Li(+) diffusion properties were observed depending on the composition, lithium content and cationic distribution. Local Li(+) hopping in the spinel materials is accompanied by a low activation energy of circa 0.35 eV being comparable with that of, e.g., LLZO-type garnets, which represent the current benchmark in this field. We propose these novel materials as a building block for a lattice-matching all-spinel solid-state battery with low interfacial resistance.

  4. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  5. Origin of melting point depression for rare gas solids confined in carbon pores

    International Nuclear Information System (INIS)

    Morishige, Kunimitsu; Kataoka, Takaaki

    2015-01-01

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point

  6. Origin of melting point depression for rare gas solids confined in carbon pores

    Energy Technology Data Exchange (ETDEWEB)

    Morishige, Kunimitsu, E-mail: morishi@chem.ous.ac.jp; Kataoka, Takaaki [Department of Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan)

    2015-07-21

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  7. Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF).

    Science.gov (United States)

    Chen, Hongzhang; Shao, Meixue; Li, Hongqiang

    2014-03-05

    The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng; Liu, Chun; Qian, Tiezheng

    2012-01-01

    profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve

  9. Adsorption of gas mixtures on heterogeneous solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jaroniec, M; Rudzinski, W

    1977-01-01

    A review of theoretical studies on the physical adsorption from gas mixtures on heterogeneous solid surfaces, mainly by Jaroniec and coworkers, covers the vector notation used in the calculations; adsorption isotherms for multicomponent gases; the generalized integral equation for adsorption of gas mixtures, its numerical and analytical solutions, applied, (e.g., to interpret the experimental adsorption isotherms of ethane/ethylene on Nuxit-AL); thermodynamic relations, applied, (e.g., to calculating isosteric adsorption heats from experimental parameters for the adsorption of propylene from propane/propylene mixtures on Nuxit-AL); and the derivation and use of a simplified integral equation for describing the adsorption from gas mixtures on heterogeneous surfaces. 75 references.

  10. Capture and storage of hydrogen gas by zero-valent iron.

    Science.gov (United States)

    Reardon, Eric J

    2014-02-01

    Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Comparison of several solid-phase extraction sorbents for continuous determination of amines in water by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2009-08-15

    A semiautomatic method has been proposed for the determination of different types of amines in water samples including anilines, chloroanilines, N-nitrosamines and aliphatic amines. The analytes were retained on a solid-phase extraction sorbent column and after elution, 1 microL of the extract was analysed by gas chromatography coupled with electron impact ionization mass spectrometry. A systematic overview is given of the advantages and disadvantages of several sorbents (LiChrolut EN, Oasis HLB, RP-C(18), graphitized carbon black, fullerenes and nanotubes) in the retention of amine compounds and based on sensitivity, selectivity and reliability. The retention efficiency for the studied amines was higher (ca. 100%) with LiChrolut EN and Oasis HLB than it was with RP-C(18) and fullerenes (53 and 62%, respectively, on average). Detection limits of 0.5-16 ng L(-1) for the 27 amines studied were obtained when using a sorbent column containing 75 mg of LiChrolut EN for 100mL of sample, the RSD being lower than 6.5%. The method was applied with good accuracy and precision in the determination of amines in various types of water including river, pond, tap, well, drinking, swimming pool and waste.

  12. On the absence of reverse running waves in general displacement of lattice vibration in popular books on solid state theory

    Science.gov (United States)

    Xia, Shangda; Lou, Liren

    2018-05-01

    In this article we point out that there is a deficiency in the presentation of the general solution of harmonic lattice vibration, the omission of half of the allowed running waves, in many popular textbooks published since 1940, e.g. O Madelung’s 1978 Introduction to Solid-State Theory and J Solyom’s 2007 Fundamentals of the Physics of Solids, vol 1. So we provide a revised presentation, which gives a complete general solution and demonstrates clearly that the conventional complex normal coordinate should be a superposition of two coordinates (multiplied by a factor \\sqrt{1/2}) of running waves travelling oppositely along q and -q, not only a coordinate of a unidirectional running wave as many books considered. It is noticed that the book, Quantum Theory of the Solid State: An Introduction, by L Kantorovich, published in 2004, and the review article, ‘Phonons in perfect crystals’ by W Cochran and R A Cowly, published in 1967, for a one-dimensional single-atom chain gave correct (but not normalized) formulae for the general solution of lattice vibration and the normal coordinate. However, both of them stated still that each normal coordinate describes an independent mode of vibration, which in our opinion needs to be further discussed. Moreover, in books such as Fundamentals of the Physics of Solids, vol 1, by J Solyom, and The Physics and Chemistry of Solids, by S R Elliott, published in 2006 and 2007, respectively, the reverse waves were still lost. Hence, we also discuss a few related topics. In quantization of the lattice vibration, the introduction of the conventional two (not one) independent phonon operators in a normal coordinate is closely related to the ‘independence’ of the two constituent waves mentioned above, and we propose a simple propositional relation between the phonon operator and the corresponding running wave coordinate. Moreover, only the coordinate of the superposition wave (not the running wave), as the normal coordinate can

  13. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    Science.gov (United States)

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  14. Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun

    2018-01-01

    This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.

  15. Investigation of a Gas-Solid Separation Process for Cement Raw Meal

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Clement, Karsten

    2015-01-01

    The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation efficienc......The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation...

  16. Pressure drop characteristics in tight-lattice bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Kureta, Masatoshi; Yoshida, Hiroyuki; Akimoto, Hajime

    2004-01-01

    The reduced-moderation water reactor (RMWR) consists of several distinctive structures; a triangular tight-lattice configuration and a double-flat core. In order to design the RMWR core from the point of view of thermal-hydraulics, an evaluation method on pressure drop characteristics in the rod bundles at the tight-lattice configuration is required. In this study, calculated results by the Martinelli-Nelson's and Hancox's correlations were compared with experimental results in 4 x 5 rod bundles and seven-rod bundles. Consequently, the friction loss in two-phase flows becomes smaller at the tight-lattice configuration with the hydraulic diameter less than about 3 mm. This reason is due to the difference of the configuration between the multi-rod bundle and the circular tube and due to the effect of the small hydraulic diameter on the two-phase multiplier. (author)

  17. Extended Hubbard models for ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Juergensen, Ole

    2015-01-01

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  18. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  19. Processing of coke oven gas. Primary gas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)

    1976-11-01

    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  20. Water Recovery System Design to Accommodate Dormant Periods for Manned Missions

    Science.gov (United States)

    Tabb, David; Carter, Layne

    2015-01-01

    Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.

  1. The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.

    Energy Technology Data Exchange (ETDEWEB)

    Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard

    2005-07-01

    Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).

  2. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    Science.gov (United States)

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  3. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  4. Self-organization of voids, gas bubbles and dislocation patterns under irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Turkin, A.A.

    1993-01-01

    In the present paper three examples of self-organization in solids under irradiation are considered on the basis of original mechanisms, namely, the ordering of voids in void lattices under high temperature irradiation, the alignment of gas bubbles in bubble lattices under low-temperature gas atom implantation, and the formation of superdislocations (one-dimensional pile-ups of dislocation loops) and other dislocation patterns in the regimes of medium and high temperature irradiation. The ordering of cavities (i.e.voids or gas bubbles) is shown to arise due to a dissipative interaction between cavities induced by the interstitial dislocation loop absorption and punching, respectively, which represent anisotropic mechanisms of atomic transport. The dislocation patterning is shown to be driven by the dependence of dislocation bias for absorption of self-interstitial atoms on the dislocation arrangement. (author). 57 refs., 1 tab., 12 figs

  5. Method and system for purification of gas streams for solid oxide cells

    DEFF Research Database (Denmark)

    2011-01-01

    of: - providing at least one scrubber in the gas stream at the inlet side of the first electrode of the solid oxide cell; and/or providing at least one scrubber in the gas stream at the inlet side of the second electrode of the solid oxide cell; and - purifying the gas streams towards the first...... and second electrode; wherein the at least one scrubber in the gas stream at the inlet side of the first electrode and/or the at least one scrubber in the gas stream at the inlet side of the second electrode comprises a material suitable as an electrolyte material and a material suitable as an electrode...... material, and wherein the material suitable as an electrolyte material and a material suitable as an electrode material form triple phase boundaries similar to or identical to the triple phase boundaries of the electrode for which the gas stream is purified with the at least one scrubber....

  6. Differences in the Stimulus Accommodative Convergence/Accommodation Ratio using Various Techniques and Accommodative Stimuli.

    Science.gov (United States)

    Satou, Tsukasa; Ito, Misae; Shinomiya, Yuma; Takahashi, Yoshiaki; Hara, Naoto; Niida, Takahiro

    2018-04-04

    To investigate differences in the stimulus accommodative convergence/accommodation (AC/A) ratio using various techniques and accommodative stimuli, and to describe a method for determining the stimulus AC/A ratio. A total of 81 subjects with a mean age of 21 years (range, 20-23 years) were enrolled. The relationship between ocular deviation and accommodation was assessed using two methods. Ocular deviation was measured by varying the accommodative requirement using spherical plus/minus lenses to create an accommodative stimulus of 10.00 diopters (D) (in 1.00 D steps). Ocular deviation was assessed using the alternate prism cover test in method 1 at distance (5 m) and near (1/3 m), and the major amblyoscope in method 2. The stimulus AC/A ratios obtained using methods 1 and 2 were calculated and defined as the stimulus AC/A ratios with low and high accommodation, respectively, using the following analysis method. The former was calculated as the difference between the convergence response to an accommodative stimulus of 3 D and 0 D, divided by 3. The latter was calculated as the difference between the convergence response to a maximum (max) accommodative stimulus with distinct vision of the subject and an accommodative stimulus of max minus 3.00 D, divided by 3. The median stimulus AC/A ratio with low accommodation (1.0 Δ/D for method 1 at distance, 2.0 Δ/D for method 1 at near, and 2.7 Δ/D for method 2) differed significantly among the measurement methods (P accommodation (4.0 Δ/D for method 1 at distance, 3.7 Δ/D for method 1 at near, and 4.7 Δ/D for method 2) between method 1 at distance and method 2 were statistically significant (P accommodative stimuli. However, differences caused by measurement technique may be reduced by using a high accommodative stimulus during measurements.

  7. Measurement of flow characteristics of solid particles mixed with gas in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Siberev, S P; Nazarov, S I; Soldatkin, G I

    1983-01-01

    A mathematical model of the interaction of solid particles in a gas stream flowing through a pipeline comprises equations for the energy and material balances in the system and for force and energy interactions between the solid particles and transducers located within the pipeline. Soviet researchers confirmed that the average value of stress recorded by a transducer is proportional to the average kinetic energy of the particles; for a constant particle speed, the stress is proportional to the mass flow of the particles. The analysis and flow transducer measurements are valuable in measuring and controlling flowline sand and soil in natural gas transport from gas wells and undergound storage facilities.

  8. LWR-WIMS, a computer code for light water reactor lattice calculations

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-06-01

    LMR-WIMS is a comprehensive scheme of computation for studying the reactor physics aspects and burnup behaviour of typical lattices of light water reactors. This report describes the physics methods that have been incorporated in the code, and the modifications that have been made since the code was issued in 1972. (U.K.)

  9. Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice

    International Nuclear Information System (INIS)

    Budantsev, M. V.; Lavrov, R. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Pokhabov, D. A.

    2011-01-01

    Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0–0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called “memory effects,” are discussed.

  10. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating...

  11. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  12. Physicochemical characterization of some solid materials by inverse gas chromatography

    International Nuclear Information System (INIS)

    Hamieh, T.; Abdessater, S.

    2004-01-01

    Full text.New equations and models on two-dimensional state of solid surfaces were previously elaborated in many other studies. results obtained were used in this paper to the determination and the quantification of some physicochemical properties of some solid surfaces, and especially, to study the acid-base superficial characteristics of some solid substrates like oxides and/or polymer adsorbed on oxides, carbon fibers, cements, etc. The technique used was the inverse gas chromatography (CGI) at infinite dilution. The acid-base constants were calculated for many solid surfaces: Al 2 O 3 , SiO 2 , MgO, ZnO, some cements, textiles and carbon fibers

  13. A nanostructured surface increases friction exponentially at the solid-gas interface.

    Science.gov (United States)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E; Prashanthi, Kovur; Thundat, Thomas

    2016-09-06

    According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  14. A nanostructured surface increases friction exponentially at the solid-gas interface

    Science.gov (United States)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  15. Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, N.; Hofmann, Ph.; Spyrakis, S. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece); Kakaras, E. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece)

    2010-03-15

    The Solid Oxide Cells (SOCs) are able to operate in two modes: (a) the Solid Oxide Fuel Cells (SOFCs) that produce electricity and heat and (b) the Solid Oxide Electrolyser Cells (SOEC) that consume electricity and heat to electrolyse water and produce hydrogen and oxygen. The present paper presents a carbon free SOEC/SOFC combined system for the production of hydrogen, electricity and heat (tri-generation) from natural gas fuel. Hydrogen can be locally used as automobile fuel whereas the oxygen produced in the SOEC is used to combust the depleted fuel from the SOFC, which is producing electricity and heat from natural gas. In order to achieve efficient carbon capture in such a system, water steam should be used as the SOEC anode sweep gas, to allow the production of nitrogen free flue gases. The SOEC and SOFC operations were matched through modeling of all components in Aspenplus trademark. The exergetic efficiency of the proposed decentralised system is 28.25% for power generation and 18.55% for production of hydrogen. The system is (a) carbon free because it offers an almost pure pressurised CO{sub 2} stream to be driven for fixation via parallel pipelines to the natural gas feed, (b) does not require any additional water for its operation and (c) offers 26.53% of its energetic input as hot water for applications. (author)

  16. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorination by-products in drinking water and the coatings of water pipes by automated solid-phase microextraction followed by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Tillner, Jocelyn; Hollard, Caroline; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier

    2013-11-08

    In this study, an automated method for the simultaneous determination of polycyclic aromatic hydrocarbons (PAHs) and their chlorination by-products in drinking water was developed based on online solid-phase microextraction-gas chromatography-mass spectrometry. The main focus was the optimisation of the solid-phase microextraction step. The influence of the agitation rate, type of fibre, desorption time, extraction time, extraction temperature, desorption temperature, and solvent addition was examined. The method was developed and validated using a mixture of 17 PAHs, 11 potential chlorination by-products (chlorinated and oxidised PAHs) and 6 deuterated standards. The limit of quantification was 10 ng/L for all target compounds. The validated method was used to analyse drinking water samples from three different drinking water distribution networks and the presumably coal tar-based pipe coatings of two pipe sections. A number of PAHs were detected in all three networks although individual compositions varied. Several PAH chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also found, their presence correlating closely with that of their respective parent compounds. Their concentrations were always below 100 ng/L. In the coatings, all PAHs targeted were detected although concentrations varied between the two coatings (76-12,635 mg/kg and 12-6295 mg/kg, respectively). A number of chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also detected (from 40 to 985 mg/kg), suggesting that the reaction of PAHs with disinfectant agents takes place in the coatings and not in the water phase after migration. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.

    Science.gov (United States)

    Deiwert, G. S.

    1973-01-01

    Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.

  18. Measurements of thermal disadvantage factors in light-water moderated PuO2-UO2 and UO2 lattices

    International Nuclear Information System (INIS)

    Ohno, Akio; Kobayashi, Iwao; Tsuruta, Harumichi; Hashimoto, Masao; Suzaki, Takenori

    1980-01-01

    The disadvantage factor for thermal neutrons in light-water moderated PuO 2 -UO 2 and UO 2 square lattices were obtained from measurements of thermal neutron density distributions in a unit lattice cell, measured with Dy-Al wire detectors. The lattices consisted of 3.4 w/o PuO 2 .UO 2 and 2.6 w/o UO 2 fuel rods, and the water-to-fuel volume ratio within the unit cell was parametrically changed. The PuO 2 .UO 2 and UO 2 fuel rods were designed to realize equal fissile atomic number density. The disadvantage factors thus measured were 1.36 +- 0.07, 1.37 +- 0.08, 1.40 +- 0.06 and 1.38 +- 0.06 in the PuO 2 .UO 2 fuel lattices, and 1.30 +- 0.06, 1.31 +- 0.08, 1.30 +- 0.08 and 1.33 +- 0.06 in the UO 2 , for water-to-fuel volume ratios, of 1.76, 2.00, 2.38 and 2.95, respectively. This difference in disadvantage factor between PuO 2 .UO 2 and UO 2 fuel lattices corresponds to about 8%. Calculated results obtained by multigroup transport code LASER agreed well with the measured ones. (author)

  19. Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber.

    Science.gov (United States)

    Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad

    2014-12-29

    A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model

    Directory of Open Access Journals (Sweden)

    Dong-mei Sun

    2016-07-01

    Full Text Available Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase, and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes, TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC3D, which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.

  1. Cork as a new (green) coating for solid-phase microextraction: Determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Dias, Adriana Neves; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2013-01-01

    Highlights: ► Cork as a new coating for solid-phase microextraction was proposed. ► Good results were achieved, demonstrating the applicability of the cork as coating for SPME. ► The efficiency of cork fiber was very similar to commercially available fibers. -- Abstract: A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography–selected ion monitoring–mass spectrometry (GC–SIM–MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80 °C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L −1 , respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n = 3). The linear range was 0.1–10 μg L −1 with r ≥ 0.96 and the fiber-to-fiber reproducibility showed RSD ≤ 18.6% (n = 5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME

  2. Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    OpenAIRE

    Zhu, Zhuohui; Feng, Tao; Yuan, Zhigang; Xie, Donghai; Chen, Wei

    2018-01-01

    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation fiel...

  3. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yixin [Department of Epidemiology, Shanghai Jiaotong University School of Public Health (China); Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Chen, Tingting [School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Shen, Steven S. [Biochemistry and Molecular Pharmaceutical, New York University School of Medicine (United States); Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Lioy, Paul [Robert Wood Johnson Medical School Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kluz, Thomas; Chen, Lung-Chi [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Wu, Zhuangchun, E-mail: wuzhuangchun@mail.njust.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Costa, Max, E-mail: max.costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States)

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC{sub 50} values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  4. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    International Nuclear Information System (INIS)

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC 50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  5. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  6. Subchannel analysis of 37-rod tight-lattice bundle experiments for reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Nakatsuka, Toru; Tamai, Hidesada; Akimoto, Hajime

    2005-01-01

    R and D project to investigate thermal-hydraulic performance of tight-lattice fuel bundles for Reduced-Moderation Water Reactor (RMWR) started at Japan Atomic Energy Research Institute (JAERI) in collaboration with utilities, reactor vendors and universities from 2002. The RMWR realizes a high conversion ratio larger than 0.1 for sustainable energy supply through plutonium multiple recycling based on the well-experienced LWR technologies. The reactor core comprises tight-lattice fuel assemblies with gap clearance of around 1.0 mm to reduce the water volume ratio to achieve the high conversion ratio. A problem of utmost importance from a thermal-hydraulic point of view is the coolability of the tight-lattice assembly with such a small gap width. JAERI has been carrying out experimental study to investigate the system parameter effects on the thermal-hydraulic performance and to confirm the feasibility of the core. In the present study, the subchannel analysis code NASCA was applied to 37-rod tight-lattice bundle experiments. The NASCA can give good predictions of critical power for the gap width of 1.3 mm while the prediction accuracy decreases for the gap width of 1.0 mm. To improve the prediction accuracy, the code will be modified to take the effect of film thickness distribution around fuel rods on boiling transition. (author)

  7. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water

  8. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  9. Gas chromatography and isotope ratio mass spectrometry of Pinot Noir wine volatile compounds (δ13C) and solid residues (δ13C, δ15N) for the reassessment of vineyard water-status.

    Science.gov (United States)

    Spangenberg, Jorge E; Vogiatzaki, Maria; Zufferey, Vivian

    2017-09-29

    This paper describes a novel approach to reassess the water status in vineyards based on compound-specific isotope analysis (CSIA) of wine volatile organic compounds (δ 13 C VOC/VPDB ) and bulk carbon and nitrogen isotopes, and the C/N molar ratios of the wine solid residues (δ 13 C SR/VPDB , δ 15 N SR/Air-N2 ). These analyses link gas chromatography/combustion and elemental analysis to isotope ratio mass spectrometry (GC/C/IRMS, EA/IRMS). Field-grown cultivars of Pinot Noir grapevines were exposed during six growing seasons (2009-2014) to controlled soil water availability, while maintaining identical the other environmental variables and agricultural techniques. Wines were produced from the grapes by the same oenological protocol. This permitted for the assessment of the effects in the biochemistry of wines solely induced by the changes in the plant-soil water status. This mimicked the more recurrent and prolonged periods of soil water deficiency due to climate changes. Water stress in grapevine was assessed by the measurement of the predawn leaf water potential (Ψ pd ) and the stable carbon isotope composition of the berry sugars during harvest (must sugars). For quantitation purposes and the normalization of the measured stable carbon isotope ratios of the VOCs, the wine samples were spiked with three standard compounds with known concentration and δ 13 C VPDB values. VOCs were extracted by liquid-liquid extraction and analyzed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/mass spectrometry (GC/MS), and GC/C/IRMS. δ 13 C values were obtained for eighteen VOCs. The solid residues were obtained by freeze-drying wine aliquots and were analyzed for their C and N content and isotope composition by EA/IRMS. All the isotopic ratios (δ 13 C SR , δ 15 N SR , δ 13 C VOC ) are highly correlated with the Ψ pd values, indicating that the proposed gas chromatography and isotope ratio mass spectrometry approach is a useful tool to

  10. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    Science.gov (United States)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the

  11. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Morgan, P.E.D.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-01-01

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 1040 0 C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  12. Numerical Investigation of Cross Flow Phenomena in a Tight-Lattice Rod Bundle Using Advanced Interface Tracking Method

    Science.gov (United States)

    Zhang, Weizhong; Yoshida, Hiroyuki; Ose, Yasuo; Ohnuki, Akira; Akimoto, Hajime; Hotta, Akitoshi; Fujimura, Ken

    In relation to the design of an innovative FLexible-fuel-cycle Water Reactor (FLWR), investigation of thermal-hydraulic performance in tight-lattice rod bundles of the FLWR is being carried out at Japan Atomic Energy Agency (JAEA). The FLWR core adopts a tight triangular lattice arrangement with about 1 mm gap clearance between adjacent fuel rods. In view of importance of accurate prediction of cross flow between subchannels in the evaluation of the boiling transition (BT) in the FLWR core, this study presents a statistical evaluation of numerical simulation results obtained by a detailed two-phase flow simulation code, TPFIT, which employs an advanced interface tracking method. In order to clarify mechanisms of cross flow in such tight lattice rod bundles, the TPFIT is applied to simulate water-steam two-phase flow in two modeled subchannels. Attention is focused on instantaneous fluctuation characteristics of cross flow. With the calculation of correlation coefficients between differential pressure and gas/liquid mixing coefficients, time scales of cross flow are evaluated, and effects of mixing section length, flow pattern and gap spacing on correlation coefficients are investigated. Differences in mechanism between gas and liquid cross flows are pointed out.

  13. Spin-lattice relaxation of individual solid-state spins

    Science.gov (United States)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  14. The injection of inert gas ions into solids: their trapping and escape

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.; Donnelly, S.E.; Ingram, D.C.; Webb, R.P.

    1980-01-01

    The first part of this contribution will review experimental studies of the trapping probabilities of ions injected into solids as a function of ion energy and indicate how the data can be modelled theoretically. It will be demonstrated that trapping is a two stage process, the first involving penetration into the solid and the second requiring atom dissolution and experimental evidence will be cited to show how the latter process may be dominant for light ions which create little radiation damage. For low ion fluences, injected atoms are generally trapped in isolation but as fluence increases gas-defect complexes are formed and it will be shown how post bombardment thermal evaluation studies can provide evidence for the growth of these complexes. Concomitant with trapping however, dissolved gas may be evolved from the solid by some form of sputtering process, sometimes by mechanisms much more efficient than congruent sputtering of the solid together with the trapped species. Measurements of the trapped atom concentration-ion fluence behaviour and of the evolution of one initially trapped species by bombardment with a second species provide information on the physical processes involved in trapped atom sputtering and upon the mechanism of gas incorporation saturation and experimental studies in this area, together with some first approximation theoretical investigations will be discussed. It will be shown that an important mechanism in dictating incorporation saturation, in addition to sputtering, is the atomic saturation of the solid by the implant. (author)

  15. Formation of gas bubbles in gas superheated water

    International Nuclear Information System (INIS)

    Finkelstein, Y.

    1984-05-01

    The phenomenon of bubbles formation in supersaturated solutions of gases in water is a transport process, the final result of which is a separation of phases. In spite of its widespread appearance in industry and in nature, no model exists that can explain it and predict the degree of supersaturation which a gas-water solution can tolerate before bubbles are formed. The objective of this study was to fill this gap, and indeed, an extensive experimental work was carried out, a model was established and simple but accurate means were developed for predicting the tolerable degree of supersaturation of gas-water solutions. The model is also capable of predicting quite accurately the activation phenomenon in water. Superheating and supercooling phenomena were also examined in the light of the new model. (author)

  16. Non-linearity of the response accommodative convergence to accommodation ratio.

    Science.gov (United States)

    Johnston, Miriam S; Firth, Alison Y

    2013-09-01

    Previous studies have reported variation in stimulus accommodative convergence to accommodation (AC/A) ratio across differing accommodative stimuli. Response AC/A ratio was assessed across 4 accommodative demands to determine if these differences could be due to accommodative inaccuracies to stimuli. Twenty-three student participants aged 18 to 26 years (mean age 20.3 ± 1.7 years) successfully completed all testing conditions. The modified Thorington technique was used at 4 m to measure heterophoria. The Shin Nippon SRW 5000 infrared autorefractor was used to determine accommodative change to -1.50, -3.00, -4.50, and -6.00D lens stimuli. Significant differences were found in response AC/A ratio between different minus lens stimulated accommodative demands (p accommodative stimuli, but tended to increase with accommodative demand. Significant variability in response AC/A ratio was found, both within individuals to different accommodative demands, and between individuals across the data set.

  17. Determination of trace triazine and chloroacetamide herbicides in tile-fed drainage ditch water using solid-phase microextraction coupled with GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Cleonice [Catholic University of Goias, Av. Universitaria, 1440 S. Universitario, Cx (Brazil); Pappas, Elizabeth A. [USDA ARS, National Soil Erosion Research Laboratory, 275 S. Russell Street, West Lafayette, IN 47907 (United States)], E-mail: bets@purdue.edu; Huang, C.-H. [USDA ARS, National Soil Erosion Research Laboratory, 275 S. Russell Street, West Lafayette, IN 47907 (United States)

    2008-03-15

    Solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) was used to analyze two triazine (atrazine and simazine) and three chloroacetamide herbicides (acetochlor, alachlor, and metolachlor) in water samples from a midwest US agricultural drainage ditch for two growing seasons. The effects of salt concentration, sample volume, extraction time, and injection time on extraction efficiency using a 100-{mu}m polydimethylsiloxane-coated fiber were investigated. By optimizing these parameters, ditch water detection limits of 0.5 {mu}g L{sup -1} simazine and 0.25 {mu}g L{sup -1} atrazine, acetochlor, alachlor, and metolachlor were achieved. The optimum salt concentration was found to be 83% NaCl, while sample volume (10 or 20 mL) negligibly affected analyte peak areas. The optimum extraction time was 40 min, and the optimum injection time was 15 min. Results indicated that atrazine levels in the ditch water exceeded the US maximum contaminant level for drinking water 12% of the time, and atrazine was the most frequently detected among studied analytes. - Solid-phase microextraction methods were successfully developed to quantify low levels of herbicides in tile-fed drain water by gas chromatography-mass spectrometry.

  18. Immiscible multicomponent lattice Boltzmann model for fluids with ...

    Indian Academy of Sciences (India)

    College of Mechanical Engineering, Tongji University, 4800# Cao'an Road, ... was developed from a discretized fluid model known as the lattice gas automata ... of two immiscible fluids, several lattice Boltzmann (LB) models have been ...

  19. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    Science.gov (United States)

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  20. Aquatic ecotoxicity and biodegradability of cracked gas oils. Summary of relevant test data

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Leon Paumen, M.; Dmytrasz, B.; Del Castillo, F.

    2013-09-15

    This report describes the experimental procedures and the results obtained in acute and chronic ecotoxicity tests as well as a biodegradation study on cracked gas oil samples. In a CONCAWE study, three samples were tested for toxicity to the crustacean zooplankter, Daphnia magna and the algae, Pseudokirchneriella subcapitata (alternatively known as Selenastrum capricornutum) using water accommodated fractions. In addition, another sample was tested in a separate API study for toxicity to the fish, Oncorhynchus mykiss, the crustacean zooplankter, Daphnia magna (acute and chronic) and the algae, Pseudokirchneriella subcapitata using water accommodated fractions. The API sample was also tested for ready biodegradability in a manometric respirometry test. All these results assist in determining the environmental hazard posed by cracked gas oils.

  1. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  2. Solid-solid and gas-solid interactions induced during high-energy milling to produce PbTe nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: rojas_hugo@ittlahuac2.edu.mx [Instituto Tecnologico de Tlahuac - II (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM (Mexico); Garibay-Febles, V. [Instituto Mexicano del Petroleo, Laboratorio de Microscopia Electronica de Ultra Alta Resolucion (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN (Mexico)

    2013-05-15

    Transformations from precursors to nanoparticles by high-energy milling are promoted by two major driving forces, namely physical and/or chemical. While the former has been difficult to trace since stress, strain and recovery may occur almost simultaneously during milling, the latter has been sequentially followed as an evolution from precursors to intermediate phases and thereof to high purity nanocrystals. The specific objective of this work is to discern how solid-solid and partially solid-gas reactions manifest themselves correspondingly as a short-range diffusion through an interface or how vapor species, as a subliming phenomenon, grows as a different phase on an active local surface. These series of changes were traced by sub-cooling the as-milled powders extracted during a milling cycle. Through this experimental technique, samples were electron microscopically analyzed and where it was required, selected area electron diffraction images were obtained. High-resolution transmission electron microscopy results, unambiguously, confirm that nanocrystals in the last stage show a cubic morphology which average size distributions are around 17 nm.

  3. Phase stabilization in transparent Lu2O3:Eu ceramics by lattice expansion

    Science.gov (United States)

    Seeley, Z. M.; Dai, Z. R.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2012-11-01

    Gadolinium lutetium oxide transparent ceramics doped with europium (Gd,Lu)2O3:Eu were fabricated via vacuum sintering and hot isostatic pressing (HIP). Nano-scale starting powder with the composition GdxLu1.9-xEu0.1O3 (x = 0, 0.3, 0.6, 0.9, 1.0, and 1.1) were uniaxially pressed and sintered under high vacuum at 1625 °C to obtain ˜97% dense structures with closed porosity. Sintered compacts were then subjected to 200 MPa argon gas at temperatures between 1750 and 1900 °C to reach full density. It was observed that a small portion of the Eu3+ ions were exsolved from the Lu2O3 cubic crystal lattice and concentrated at the grain boundaries, where they precipitated into a secondary monoclinic phase creating optical scattering defects. Addition of Gd3+ ions into the Lu2O3 cubic lattice formed the solid solution (Gd,Lu)2O3:Eu and stretched the lattice parameter allowing the larger Eu3+ ions to stay in solid solution, reducing the secondary phase and improving the transparency of the ceramics. Excess gadolinium, however, resulted in a complete phase transformation to monoclinic at pressures and temperatures sufficient for densification. Light yield performance was measured and all samples show equal amounts of the characteristic Eu3+ luminescence, indicating gadolinium addition had no adverse effect. This material has potential to improve the performance of high energy radiography devices.

  4. Development of solid-gas equilibrium propulsion system for small spacecraft

    Science.gov (United States)

    Chujo, Toshihiro; Mori, Osamu; Kubo, Yuki

    2017-11-01

    A phase equilibrium propulsion system is a kind of cold-gas jet in which the phase equilibrium state of the fuel is maintained in a tank and its vapor is ejected when a valve is opened. One such example is a gas-liquid equilibrium propulsion system that uses liquefied gas as fuel. This system was mounted on the IKAROS solar sail and has been demonstrated in orbit. The system has a higher storage efficiency and a lighter configuration than a high-pressure cold-gas jet because the vapor pressure is lower, and is suitable for small spacecraft. However, the system requires a gas-liquid separation device in order to avoid leakage of the liquid, which makes the system complex. As another example of a phase equilibrium propulsion system, we introduce a solid-gas equilibrium propulsion system, which uses a sublimable substance as fuel and ejects its vapor. This system has an even lower vapor pressure and does not require such a separation device, instead requiring only a filter to keep the solid inside the tank. Moreover, the system is much simpler and lighter, making it more suitable for small spacecraft, especially CubeSat-class spacecraft, and the low thrust of the system allows spacecraft motion to be controlled precisely. In addition, the thrust level can be controlled by controlling the temperature of the fuel, which changes the vapor pressure. The present paper introduces the concept of the proposed system, and describes ejection experiments and its evaluation. The basic function of the proposed system is demonstrated in order to verify its usefulness.

  5. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd-Cu nanoparticles; size and alloying induced modifications in binding energy

    International Nuclear Information System (INIS)

    Sengar, Saurabh K.; Mehta, B. R.; Gupta, Govind

    2011-01-01

    In this letter, effect of size and alloying on the core and valence band shifts of Pd, Cu, and Pd-Cu alloy nanoparticles has been studied. It has been shown that the sign and magnitude of the binding energy shifts is determined by the contributions of different effects; with quantum confinement and lattice distortion effects overlapping for size induced shifts in case of core levels and lattice distortion and charge transfer effects overlapping for alloying induced shifts at smaller sizes. These results are important for understanding gas molecule-solid surface interaction in metal and alloy nanoparticles in terms of valance band positions.

  6. Methods of analysis by the U.S. Geological Survey Organic Geochemistry Research Group : determination of selected herbicides and their degradation products in water using solid-phase extraction and gas chromatography/mass spectrometry

    Science.gov (United States)

    Kish, J.L.; Thurman, E.M.; Scribner, E.A.; Zimmerman, L.R.

    2000-01-01

    A method for the extraction and analysis of eight herbicides and five degradation products using solid-phase extraction from natural water samples followed by gas chromatography/mass spectrometry is presented in this report. This method was developed for dimethenamid; flufenacet; fluometuron and its degradation products, demethylfluometuron (DMFM), 3-(trifluromethyl)phenylurea (TFMPU), 3-(trifluromethyl)-aniline (TFMA); molinate; norflurazon and its degradation product, demethylnorflurazon; pendamethalin; the degradation product of prometryn, deisopropylprometryn; propanil; and trifluralin. The eight herbicides are used primarily in the southern United States where cotton, rice, and soybeans are produced. The exceptions are dimethenamid and flufenacet, which are used on corn in the Midwest. Water samples received by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas, are filtered to remove suspended particulate matter and then passed through disposable solid-phase extraction columns containing octadecyl-bonded porous silica (C-18) to extract the compounds. The herbicides and their degradation products are removed from the column by ethyl acetate elution. The eluate is evaporated under nitrogen, and components then are separated, identified, and quantified by injecting an aliquot of the concentrated extract into a high-resolution, fused-silica capillary column of a gas chromatograph/mass spectrometer under selected-ion mode. Method detection limits ranged from 0.02 to 0.05 ?g/L for all compounds with the exception of TFMPU, which has a method detection limit of 0.32 ?g/L. The mean absolute recovery is 107 percent. This method for the determination of herbicides and their degradation products is valuable for acquiring information about water quality and compound fate and transport in water.

  7. Determining the asymptotic buckling for the reference RB reactor lattice

    International Nuclear Information System (INIS)

    Martinc, R.; Sotic, O.

    1969-01-01

    Material buckling was measured for reference lattice of the heavy water reflected system with 2% enriched uranium fuel. Experiments were done for cores with lattice pitch values: 8, 8√2, i 16 cm. Each of these cores had heavy water reflector, as well as active reflector - heavy water lattice with natural uranium fuel. The core was reflected by natural uranium lattice in order to approach asymptotic regime in the central zone. Buckling values obtained with the natural uranium lattice as reflector are, as a rule, lower then in case of heavy water reflector [sr

  8. Contribution to the modelling of gas-solid reactions and reactors; Contribution a la modelisation des reactions et des reacteurs gaz-solide

    Energy Technology Data Exchange (ETDEWEB)

    Patisson, F

    2005-09-15

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  9. Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles

    International Nuclear Information System (INIS)

    Kravitz, Keren; Kamyshny, Alexander; Gedanken, Aharon; Magdassi, Shlomo

    2010-01-01

    A solid state synthesis for obtaining nanocrystalline silicon was performed by high temperature reduction of commercial amorphous nanosilica with magnesium powder. The obtained silicon powder contains crystalline silicon phase with lattice spacings characteristic of diamond cubic structure (according to high resolution TEM), and an amorphous phase. In 29 Si CP MAS NMR a broad multicomponent peak corresponding to silicon is located at -61.28 to -69.45 ppm, i.e. between the peaks characteristic of amorphous and crystalline Si. The powder has displayed red luminescence while excited under UV illumination, due to quantum confinement within the nanocrystals. The silicon nanopowder was successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence with a band maximum at 710 nm, thus enabling future functional coating applications. - Graphical abstract: High temperature reduction of amorphous nanosilica with magnesium powder results in the formation of powder containing crystalline silicon phase The powder displays red luminescence while excited under UV illumination, due to quantum confinement within the Si nanocrystals, and can be successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence, thus enabling future functional coating applications.

  10. Modelling of non-catalytic reactors in a gas-solid trickle flow reactor: Dry, regenerative flue gas desulphurization using a silica-supported copper oxide sorbent

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A one-dimensional, two-phase dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with as downward-flowing dilute solids phase

  11. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    Science.gov (United States)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  12. Epithermal and Thermal Spectrum Indices in Heavy Water Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, E K; Jonsson, A

    1967-05-15

    Spectral indices have been measured by foil activation technique in a number of different D{sub 2}O-moderated lattices in the Swedish zero power reactor R0 and the pressurized exponential assembly TZ. In most cases the fuel was in the form of single rods, distributed uniformly in the lattice. Parameters in these cases were lattice pitch and fuel composition. A 31-rod cluster lattice was also investigated, with the moderator temperature varying up to 210 deg C. On the basis of these measurements, as well as measurements on cluster lattices, reported by other investigators, it has been possible to derive simple correlations for the spectral indices, which seem to be of fairly general validity for D{sub 2}O lattices. The experimental results have also been compared to calculations with the multigroup collision probability program FLEF.

  13. Epithermal and Thermal Spectrum Indices in Heavy Water Lattices

    International Nuclear Information System (INIS)

    Sokolowski, E.K.; Jonsson, A.

    1967-05-01

    Spectral indices have been measured by foil activation technique in a number of different D 2 O-moderated lattices in the Swedish zero power reactor R0 and the pressurized exponential assembly TZ. In most cases the fuel was in the form of single rods, distributed uniformly in the lattice. Parameters in these cases were lattice pitch and fuel composition. A 31-rod cluster lattice was also investigated, with the moderator temperature varying up to 210 deg C. On the basis of these measurements, as well as measurements on cluster lattices, reported by other investigators, it has been possible to derive simple correlations for the spectral indices, which seem to be of fairly general validity for D 2 O lattices. The experimental results have also been compared to calculations with the multigroup collision probability program FLEF

  14. Copper-chromium compounds formed in the preparation of a low-temperature water gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sharkina, V I; Salomatin, G I; Boevskaya, E A

    1978-12-01

    IR and X-ray phase analyses of commercial water gas shift catalyst samples prepared by mixing solid chromic anhydride, basic copper carbonate (malachite), aluminum hydroxide, and water at 70/sup 0/-100/sup 0/C and 0.35:1 to 1.2:1 ratio of water to solid components (R) showed the formation of a basic copper chromate (BCC) CuCrO/sub 4/-2CuO-2H/sub 2/O at 80/sup 0/C (any R) and at 100/sup 0/C and R Vertical Bar3: 1.2:1, but at 100/sup 0/C and lower R (especially at R 0.7:1), a different, unidentified phase was formed. The samples containing these two phases had different colors; the high-temperature, low-water phase showed lower thermal stability but higher catalytic activity than the BCC. The BCC catalyst samples contained less unreacted malachite and their IR spectra contained a 3100-3200/cm band characteristic of hydroxyls associated by hydrogen bonds, and more molecular water, suggesting the formation of a hydroxo-polymeric structured system.

  15. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  16. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  17. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  18. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  19. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  20. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

    Directory of Open Access Journals (Sweden)

    R. Amirante

    2014-04-01

    Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

  1. Development of acoustic flow instruments for solid/gas pipe flows

    International Nuclear Information System (INIS)

    Sheen, S.H.; Raptis, A.C.

    1986-05-01

    Two nonintrusive acoustic flow sensing techniques are reported. One technique, passive in nature, simply measures the bandpassed acoustic noise level produced by particle/particle and particle/wall collisions. The noise levels, given in true RMS voltages or in autocorrelations, show a linear relationship to particle velocity but increase with solid concentration. Therefore, the passive technique requires calibration and a separate measure of solid concentration before it can be used to monitor the particle velocity. The second technique is based on the active cross-correlation principle. It measures particle velocity directly by correlating flow-related signatures at two sensing stations. The velocity data obtained by this technique are compared with measurements by a radioactive-particle time-of-flight (TOF) method. A multiplier of 1.53 is required to bring the acoustic data into agreement with the radioactive TOF result. The difference may originate from the difference in flow fields where particles are detected. The radioactive method senses particles mainly in the turbulent region and essentially measures average particle velocity across the pipe, while the acoustic technique detects particles near the pipe wall, and so measures the particle velocity in the viscous sublayer. Both techniques were tested in flows of limestone and air and 1-mm glass beads and air at the Argonne National Laboratory Solid/Gas Test Facility (SGFTF). The test matrix covered solid velocities of 20 to 30 m/s in a 2-in. pipe and solid-to-gas loading ratios of 6 to 22. 37 refs., 19 figs., 4 tabs

  2. Gas-Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water.

    Science.gov (United States)

    Faust, Jennifer A; Sobyra, Thomas B; Nathanson, Gilbert M

    2016-02-18

    Liquid microjets provide a powerful means to investigate reactions of gases with salty water in vacuum while minimizing gas-vapor collisions. We use this technique to explore the fate of gaseous HCl and DCl molecules impinging on 8 molal LiCl and LiBr solutions at 238 K. The experiments reveal that HCl or DCl evaporate infrequently if they become thermally accommodated at the surface of either solution. In particular, we observe minimal thermal desorption of HCl following HCl collisions and no distinct evidence for rapid, interfacial DCl→HCl exchange following DCl collisions. These results imply that surface thermal motions are not generally strong enough to propel momentarily trapped HCl or DCl back into the gas phase before they ionize and disappear into solution. Instead, only HCl and DCl molecules that scatter directly from the surface escape entry. These recoiling molecules transfer less energy upon collision to LiBr/H2O than to LiCl/H2O, reflecting the heavier mass of Br(-) than of Cl(-) in the interfacial region.

  3. Measurement of Gas Velocities in the Presence of Solids in the Riser of a Cold Flow Circulating Fluidized Bed

    International Nuclear Information System (INIS)

    Spenik, J.; Ludlow, J.C.; Compston, R.; Breault, R.W.

    2007-01-01

    The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component of a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated

  4. Experimental and theoretical studies on the gas/solid/gas transformation cycle in extraterrestrial environments

    Science.gov (United States)

    Cottin, Hervé; Gazeau, Marie-Claire; Chaquin, Patrick; Raulin, François; Bénilan, Yves

    2001-12-01

    The ubiquity of molecular material in the universe, from hydrogen to complex organic matter, is the result of intermixed physicochemical processes that have occurred throughout history. In particular, the gas/solid/gas phase transformation cycle plays a key role in chemical evolution of organic matter from the interstellar medium to planetary systems. This paper focuses on two examples that are representative of the diversity of environments where such transformations occur in the Solar System: (1) the photolytic evolution from gaseous to solid material in methane containing planetary atmospheres and (2) the degradation of high molecular weight compounds into gas phase molecules in comets. We are currently developing two programs which couple experimental and theoretical studies. The aim of this research is to provide data necessary to build models in order to better understand (1) the photochemical evolution of Titan's atmosphere, through a laboratory program to determine quantitative spectroscopic data on long carbon chain molecules (polyynes) obtained in the SCOOP program (French acronym for Spectroscopy of Organic Compounds Oriented for Planetology), and (2) the extended sources in comets, through a laboratory program of quantitative studies of photochemical and thermal degradation processes on relevant polymers (e.g., Polyoxymethylene) by the SEMAPhOrE Cometaire program (French acronym for Experimental Simulation and Modeling Applied to Organic Chemistry in Cometary Environment).

  5. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Davis Energy Group, Davis, CA (United States); Weitzel, Elizabeth [Davis Energy Group, Davis, CA (United States); Backman, Christine [Davis Energy Group, Davis, CA (United States)

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  6. Assessment of a Hybrid Retrofit Gas Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-02-01

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.

  7. Modelling of interactions between variable mass and density solid particles and swirling gas stream

    International Nuclear Information System (INIS)

    Wardach-Święcicka, I; Kardaś, D; Pozorski, J

    2011-01-01

    The aim of this work is to investigate the solid particles - gas interactions. For this purpose, numerical modelling was carried out by means of a commercial code for simulations of two-phase dispersed flows with the in-house models accounting for mass and density change of solid phase. In the studied case the particles are treated as spherical moving grains carried by a swirling stream of hot gases. Due to the heat and mass transfer between gas and solid phase, the particles are losing their mass and they are changing their volume. Numerical simulations were performed for turbulent regime, using two methods for turbulence modelling: RANS and LES.

  8. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  9. Critical, statistical, and thermodynamical properties of lattice models

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Vipin Kerala

    2013-10-15

    In this thesis we investigate zero temperature and low temperature properties - critical, statistical and thermodynamical - of lattice models in the contexts of bosonic cold atom systems, magnetic materials, and non-interacting particles on various lattice geometries. We study quantum phase transitions in the Bose-Hubbard model with higher body interactions, as relevant for optical lattice experiments of strongly interacting bosons, in one and two dimensions; the universality of the Mott insulator to superfluid transition is found to remain unchanged for even large three body interaction strengths. A systematic renormalization procedure is formulated to fully re-sum these higher (three and four) body interactions into the two body terms. In the strongly repulsive limit, we analyse the zero and low temperature physics of interacting hard-core bosons on the kagome lattice at various fillings. Evidence for a disordered phase in the Ising limit of the model is presented; in the strong coupling limit, the transition between the valence bond solid and the superfluid is argued to be first order at the tip of the solid lobe.

  10. Critical, statistical, and thermodynamical properties of lattice models

    International Nuclear Information System (INIS)

    Varma, Vipin Kerala

    2013-10-01

    In this thesis we investigate zero temperature and low temperature properties - critical, statistical and thermodynamical - of lattice models in the contexts of bosonic cold atom systems, magnetic materials, and non-interacting particles on various lattice geometries. We study quantum phase transitions in the Bose-Hubbard model with higher body interactions, as relevant for optical lattice experiments of strongly interacting bosons, in one and two dimensions; the universality of the Mott insulator to superfluid transition is found to remain unchanged for even large three body interaction strengths. A systematic renormalization procedure is formulated to fully re-sum these higher (three and four) body interactions into the two body terms. In the strongly repulsive limit, we analyse the zero and low temperature physics of interacting hard-core bosons on the kagome lattice at various fillings. Evidence for a disordered phase in the Ising limit of the model is presented; in the strong coupling limit, the transition between the valence bond solid and the superfluid is argued to be first order at the tip of the solid lobe.

  11. Validation of mechanistic models for gas precipitation in solids during postirradiation annealing experiments

    Science.gov (United States)

    Rest, J.

    1989-12-01

    A number of different phenomenological models for gas precipitation in solids during postirradiation annealing experiments have been proposed. Validation of such mechanistic models for gas release and swelling is complicated by the use of data containing large systematic errors, and phenomena characterized by synergistic effects as well as uncertainties in materials properties. Statistical regression analysis is recommended for the selection of a reasonably well characterized data base for gas release from irradiated fuel under transient heating conditions. It is demonstrated that an appropriate data selection method is required in order to realistically examine the impact of differing descriptions of the phenomena, and uncertainties in selected materials properties, on the validation results. The results of the analysis show that the kinetics of gas precipitation in solids depend on bubble overpressurization effects and need to be accounted for during the heatup phase of isothermal heating experiments. It is shown that if only the total gas release values (as opposed to time-dependent data) were available, differentiation between different gas precipitation models would be ambiguous. The observed sustained increase in the fractional release curve at relatively high temperatures after the total precipitation of intragranular gas in fission gas bubbles is ascribed to the effects of a grain-growth/grain-boundary sweeping mechanism.

  12. Validation of mechanistic models for gas precipitation in solids during postirradiation annealing experiments

    International Nuclear Information System (INIS)

    Rest, J.

    1989-01-01

    A number of different phenomenological models for gas precipitation in solids during postirradiation annealing experiments have been proposed. Validation of such mechanistic models for gas release and swelling is complicated by the use of data containing large systematic errors, and phenomena characterized by synergistic effects as well as uncertainties in materials properties. Statistical regression analysis is recommended for the selection of a reasonably well characterized data base for gas release from irradiated fuel under transient heating conditions. It is demonstrated that an appropriate data selection method is required in order to realistically examine the impact of differing descriptions of the phenomena, and uncertainties in selected materials properties, on the validation results. The results of the analysis show that the kinetics of gas precipitation in solid depend on bubble overpressurization effects and need to be accounted for during the heatup phase of isothermal heating experiments. It is shown that if only the total gas release values (as opposed to time-dependent data) were available, differentiation between different gas precipitation models would be ambiguous. The observed sustained increase in the fractional release curve at relatively high temperatures after the total precipitation of intragranular gas in fission gas bubbles is ascribed to the effects of a grain-growth/grain-boundary sweeping mechanism. (orig.)

  13. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Haag, G.L.

    1980-01-01

    Although no restrictions have been placed on the release of carbon-14, it has been identified as a potential health hazard due to the ease in which it may be assimilated into the biosphere. The intent of the Carbon-14 Immobilization Program, funded through the Airborne Waste Program Management Office, is to develop and demonstrate a novel process for restricting off-gas releases of carbon-14 from various nuclear facilities. The process utilizes the CO 2 -Ba(OH) 2 hydrate gas-solid reaction to directly remove and immobilize carbon-14. The reaction product, BaCO 3 , possesses both the thermal and chemical stability desired for long-term waste disposal. The process is capable of providing decontamination factors in excess of 1000 and reactant utilization of greater than 99% in the treatment of high volumetric, airlike (330 ppM CO 2 ) gas streams. For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH) 2 .8H 2 O flakes to remove CO 2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH) 2 .8H 2 O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increasing humidity as the particles curl and degrade. Results have indicated that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH) 2 .8H 2 O to BaCO 3 and not from the hydration of the commercial Ba(OH) 2 .8H 2 O (i.e. Ba(OH) 2 .7.50H 2 O) to Ba(OH) 2 .8H 2 O

  14. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  15. S/sub N/ computational benchmark solutions for slab geometry models of a gas-cooled fast reactor (GCFR) lattice cell

    International Nuclear Information System (INIS)

    McCoy, D.R.

    1981-01-01

    S/sub N/ computational benchmark solutions are generated for a onegroup and multigroup fuel-void slab lattice cell which is a rough model of a gas-cooled fast reactor (GCFR) lattice cell. The reactivity induced by the extrusion of the fuel material into the voided region is determined for a series of partially extruded lattice cell configurations. A special modified Gauss S/sub N/ ordinate array design is developed in order to obtain eigenvalues with errors less than 0.03% in all of the configurations that are considered. The modified Gauss S/sub N/ ordinate array design has a substantially improved eigenvalue angular convergence behavior when compared to existing S/sub N/ ordinate array designs used in neutron streaming applications. The angular refinement computations are performed in some cases by using a perturbation theory method which enables one to obtain high order S/sub N/ eigenvalue estimates for greatly reduced computational costs

  16. Experimental determination of lattice parameters for 2% enriched uranium heavy water reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Takac, S; Markovic, H; Bosevski, T [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1963-04-15

    Systematic measurements of the buckling, infinite multiplication factor and the thermal utilization factor were made on a series of lattices for 2% enriched uranium tubular fuel elements in heavy water. This work represents the first phase of experimental verification of standard theoretical methods used for the determination of reactor parameters.

  17. Revisiting low-fidelity two-fluid models for gas-solids transport

    Science.gov (United States)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  18. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2012-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of a SOFC is fed wherein...

  19. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng

    2012-01-01

    Recently, liquid-gas flows related to droplets, bubbles, and thin films on solid surfaces with thermal and wettability gradients have attracted widespread attention because of the many physical processes involved and their promising potential applications in biology, chemistry, and industry. Various new physical effects have been discovered at fluid-solid interfaces by experiments and molecular dynamics simulations, e.g., fluid velocity slip, temperature slip (Kapitza resistance), mechanical-thermal cross coupling, etc. There have been various models and theories proposed to explain these experimental and numerical observations. However, to the best of our knowledge,a continuum hydrodynamic model capable of predicting the temperature and velocity profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve wettability gradients and thermal gradients. This model is able to describe fluid velocity slip, temperature slip, and mechanical-thermal coupling that may occur at fluid-solid interfaces. For this purpose, we first employ the diffuse interface modeling to formulate the hydrodynamic equations for one-component liquid-gas flows in the bulk region. This reproduces the dynamic van der Waals theory of Onuki [Phys. Rev. Lett., 94: 054501, 2005]. We then extendWaldmann\\'s method [Z. Naturforsch. A, 22: 1269-1280, 1967] to formulate the boundary conditions at the fluid-solid interface that match the hydrodynamic equations in the bulk. The effects of the solid surface curvature are also briefly discussed in the appendix. The guiding principles of our model derivation are the conservation laws and the positive definiteness of entropy production together with the Onsager reciprocal relation. The derived model is self-consistent in the sense that the boundary conditions are

  20. Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: a review

    Science.gov (United States)

    Sun, Jingyuan; Yan, Yong

    2016-11-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is, therefore, essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive techniques have been developed or proposed for measuring the fluidization dynamic parameters and monitoring the flow status without disturbing or distorting the flow fields. This paper presents a comprehensive review of the non-intrusive measurement techniques and the current state of knowledge and experience in the characterization and monitoring of gas-solid fluidized beds. These techniques are classified into six main categories as per sensing principles, electrostatic, acoustic emission and vibration, visualization, particle tracking, laser Doppler anemometry and phase Doppler anemometry as well as pressure-fluctuation methods. Trends and future developments in this field are also discussed.

  1. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  2. Effect of fluid–solid coupling on shale mechanics and seepage laws

    Directory of Open Access Journals (Sweden)

    Fuquan Song

    2018-02-01

    Full Text Available In this paper, the cores of outcropped black shale of Lower Silurian Longmaxi Fm in the Yibin area, Sichuan Basin, were taken as samples to investigate the effects of extraneous water on shale mechanics and seepage laws during the production of shale gas reservoirs. Firstly, the development of fractures in water saturated cores was observed by using a VHX-5000 optical superdepth microscope. Secondly, water, formation water and slick water, as well as the damage form and compression strength of water saturated/unsaturated cores were investigated by means of a uniaxial compression testing machine and a strain testing & analysis system. Finally, the effects of fluid–solid coupling on shale gas flowing performance in different water saturations were analyzed by using a DYQ-1 multi-function displacement device. Analysis on core components shows that the Longmaxi shale is a highly crushable reservoir with a high content of fragile minerals, so fracturing stimulation is suitable for it. Shale compression strength test reveals that the effects of deionized water, formation water and slick water on shale are different, so the compression strength of shale before being saturated is quite different from that after being saturated. Due to the existence of water, the compression strength of shale drops, so the shale can be fractured easily, more fractures are generated and thus its seepage capacity is improved. Experiments on shale gas seepage under different water saturations show that under the condition of fluid–solid coupling, the higher the water saturation is, the better the propagation and seepage capacity of micro-fractures in shale under the effect of pressure. To sum up, the existence of water is beneficial to fracturing stimulation of shale gas reservoirs and helps to achieve the goal of production improvement. Keywords: Shale gas, Core, Fluid–solid coupling, Water, Compression strength, Permeability, Seepage characteristic, Sichuan Basin

  3. Comparison Between Conventional Design and Cathode Gas Recirculation Design of a Direct-Syngas Solid Oxide Fuel Cell–Gas Turbine Hybrid Systems Part I: Design Performance

    Directory of Open Access Journals (Sweden)

    Vahid Azami

    2017-06-01

    Keywords: Solid oxide fuel cell, Gas turbine, Cathode gas recirculation, Exergy. Article History: Received Feb 23rd 2017; Received in revised form May 26th 2017; Accepted June 1st 2017; Available online How to Cite This Article: Azami, V, and Yari, M. (2017 Comparison between conventional design and cathode gas recirculation design of a direct-syngas solid oxide fuel cell–gas turbine hybrid systems part I: Design performance. International Journal of Renewable Energy Develeopment, 6(2, 127-136. https://doi.org/10.14710/ijred.6.2.127-136

  4. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  5. Simulations of small solid accretion on to planetesimals in the presence of gas

    Science.gov (United States)

    Hughes, A. G.; Boley, A. C.

    2017-12-01

    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  6. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M.

    2014-01-01

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  7. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  8. Feasibility study on thermal-hydraulic performance in tight-lattice rod bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Ohnuki, A.; Kureta, M.; Liu, W.; Tamai, H.; Akimoto, H.

    2004-01-01

    Research and development project for investigating thermal-hydraulic performance in tight-lattice rod bundles for Reduced-Moderation Water Reactor (RMWR) started at Japan Atomic Energy Research Institute (JAERI) in 2002. The RMWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured light-water reactor technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important issues for the RMWR because of the tight-lattice configuration. The project has mainly consisted of a large-scale thermal-hydraulic test and development of analytical methods named modeling engineering. In the large-scale test, 37-rod bundle experiments can be performed. Steady-state critical power experiments have been achieved in the test facility and the experimental data reveal the feasibility of RMWR

  9. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the supercritical region (Hovland et al., 2006). During the various stages of planet Mars’ development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the supercritical water zone during the down-going leg (the recharge leg) of the convective cell. The zones with supercritical out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal ‘hydrothermal salt model’, which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth. Hovland, et al., 2006. Salt formation by supercritical seawater and submerged boiling. Marine and Petrol. Geol. 23, 855-69

  10. Study of Parameters Effect on Hydrodynamics of a Gas-Solid Chamber Experimentally and Numerically

    Directory of Open Access Journals (Sweden)

    Rahimzadeh Hassan

    2012-04-01

    Full Text Available In this research, gas velocity, initial static bed height and particle size effect on hydrodynamics of a non-reactive gas–solid fluidized bed chamber were studied experimentally and computationally. A multi fluid Eulerian model incorporating the kinetic theory for solid particles was applied to simulate the unsteady state behavior of this chamber and momentum exchange coefficients were calculated by using the Syamlal- O’Brien drag functions. Simulation results were compared with the experimental data in order to validate the CFD model. Pressure drops predicted by the simulations at different particle sizes and initial static bed height were in good agreement with experimental measurements at superficial gas velocity higher than the minimum fluidization velocity. Simulation results also indicated that small bubbles were produced at the bottom of the bed. These bubbles collided with each other as they moved upwards forming larger bubbles. Furthermore, this comparison showed that the model can predict hydrodynamic behavior of gas solid fluidized bed chambers reasonably well.

  11. Method of analysis and quality-assurance practices for determination of pesticides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry at the U.S. Geological Survey California District Organic Chemistry Laboratory, 1996-99

    Science.gov (United States)

    Crepeau, Kathryn L.; Baker, Lucian M.; Kuivila, Kathryn

    2000-01-01

    A method of analysis and quality-assurance practices were developed to study the fate and transport of pesticides in the San Francisco Bay-Estuary by the U.S. Geological Survey. Water samples were filtered to remove suspended-particulate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide and the pesticides were eluted with three cartridge volumes of hexane:diethyl ether (1:1) solution. The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for pesticides ranged from 0.002 to 0.025 microgram per liter for 1-liter samples. Recoveries ranged from 44 to 140 percent for 25 pesticides in samples of organic-free reagent water and Sacramento-San Joaquin Delta and Suisun Bay water fortified at 0.05 and 0.50 microgram per liter. The estimated holding time for pesticides after extraction on C-8 solid-phase extraction cartridges ranged from 10 to 257 days.

  12. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  13. Development of solid water-equivalent radioactive certified reference materials

    International Nuclear Information System (INIS)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R.; Geske, G.

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides 90 Sr/ 90 Y, 137 Cs, 147 Pm and 204 Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author)

  14. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    Science.gov (United States)

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  15. Gas consumption for water heating in the Netherlands

    International Nuclear Information System (INIS)

    Bos, R.; Weegink, R.

    1995-01-01

    In 1994 the total gas consumption of Dutch households increased slightly. This is mainly due to an increase in the number of occupied homes by about 75,000, an advancing penetration of gas-fired tap water heaters and a marginal increase in gas consumption for space heating. Another striking feature is the stabilisation of gas consumption of an average household for hot water purposes, since it decreased in 1992 and 1993 by 3% and 4,5% respectively. The so-called Dutch BAK (basic survey of the small-scale gas consumption) study also shows that the penetration of gas appliances with higher outputs and changing water tapping behaviour, the major reasons for consumption increases in the previous years, have changed only moderately. Gas consumption for cooking purposes remained almost stable, though. 7 tabs., 1 ill

  16. Primary secondary amine as a sorbent material in dispersive solid-phase extraction clean-up for the determination of indicator polychlorinated biphenyls in environmental water samples by gas chromatography with electron capture detection.

    Science.gov (United States)

    Guo, Yuanming; Hu, Hongmei; Li, Tiejun; Xue, Lijian; Zhang, Xiaoning; Zhong, Zhi; Zhang, Yurong; Jin, Yanjian

    2017-08-01

    A simple, rapid, and novel method has been developed and validated for determination of seven indicator polychlorinated biphenyls in water samples by gas chromatography with electron capture detection. 1 L of water samples containing 30 g of anhydrous sodium sulfate was first liquid-liquid extracted with an automated Jipad-6XB vertical oscillator using n-hexane/dichloromethane (1:1, v/v). The concentrated extract was cleaned up by dispersive solid-phase extraction with 100 mg of primary secondary amine as sorbent material. The linearity of this method ranged from 1.25 to 100 μg/L, with regression coefficients ranging between 0.9994 and 0.9999. The limits of detection were in the ng/L level, ranging between 0.2 and 0.3 ng/L. The recoveries of seven spiked polychlorinated biphenyls with external calibration method at different concentration levels in tap water, lake water, and sea water were in the ranges of 85-112, 76-116, and 72-108%, respectively, and with relative standard deviations of 3.3-4.5, 3.4-5.6, and 3.1-4.8% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid-liquid extraction and solid-phase extraction clean-up methods, and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of polychlorinated biphenyls in different water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thorium Fuel Performance in a Tight-Pitch Light Water Reactor Lattice

    International Nuclear Information System (INIS)

    Kim, Taek Kyum; Downar, Thomas J.

    2002-01-01

    Research on the utilization of thorium-based fuels in the intermediate neutron spectrum of a tight-pitch light water reactor (LWR) lattice is reported. The analysis was performed using the Studsvik/Scandpower lattice physics code HELIOS. The results show that thorium-based fuels in the intermediate spectrum of tight-pitch LWRs have considerable advantages in terms of conversion ratio, reactivity control, nonproliferation characteristics, and a reduced production of long-lived radiotoxic wastes. Because of the high conversion ratio of thorium-based fuels in intermediate spectrum reactors, the total fissile inventory required to achieve a given fuel burnup is only 11 to 17% higher than that of 238 U fertile fuels. However, unlike 238 U fertile fuels, the void reactivity coefficient with thorium-based fuels is negative in an intermediate spectrum reactor. This provides motivation for replacing 238 U with 232 Th in advanced high-conversion intermediate spectrum LWRs, such as the reduced-moderator reactor or the supercritical reactor

  18. Thermodynamics of water intrusion in nanoporous hydrophobic solids.

    Science.gov (United States)

    Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H

    2008-08-28

    We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.

  19. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  20. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    Science.gov (United States)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  1. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Costandy, Joseph; Michalis, Vasileios K.; Economou, Ioannis G., E-mail: i.tsimpanogiannis@qatar.tamu.edu, E-mail: ioannis.economou@qatar.tamu.edu [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Tsimpanogiannis, Ioannis N., E-mail: i.tsimpanogiannis@qatar.tamu.edu, E-mail: ioannis.economou@qatar.tamu.edu [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece); Stubos, Athanassios K. [Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece)

    2016-03-28

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

  2. Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition

    International Nuclear Information System (INIS)

    Attar, Elham; Koerner, Carolin

    2011-01-01

    Purpose: The main objective of this work is to develop an algorithm to use the Lattice Boltzmann method for solving free surface thermal flow problems with solid/liquid phase changes. Approach: A multi-distribution function model is applied to simulate hydrodynamic flow and the coupled thermal diffusion-convection problem. Findings: The free surface problem, i.e. the reconstruction of the missing distribution functions at the interface, can be solved by applying a physical transparent momentum and heat flux based methodology. The developed method is subsequently applied to some test cases in order to assess its computational potentials. Practical implications: Many industrial processes involve problems where non-isothermal motion and simultaneous solidification of fluids with free surface is important. Examples are all castings processes and especially foaming processes which are characterized by a huge and strongly changing surface. Value: A reconstruction algorithm to treat a thermal hydrodynamic problem with free surfaces is presented which is physically transparent and easy to implement.

  3. Diffusion on unstructured triangular grids using Lattice Boltzmann

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2004-01-01

    In this paper, we present a Lattice Boltzmann scheme for diffusion on unstructured triangular grids. In this formulation there is no need for interpolation, as is required in other LB schemes on irregular grids. At the end of the propagation step, the lattice gas particles arrive exactly at

  4. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  5. Development of solid water-equivalent radioactive certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R. (Office for Standardization, Metrology and Quality Control (ASMW), Berlin (Germany, F.R.)); Geske, G. (Jena Univ. (Germany, F.R.))

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides {sup 90}Sr/{sup 90}Y, {sup 137}Cs, {sup 147}Pm and {sup 204}Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author).

  6. The formation of gas hydrates and the effect of inhibitiors on their ...

    African Journals Online (AJOL)

    Natural gas hydrate is a solid crystalline compound produced by combining water and gas and it is considered as the clathrates. Guest gas molecules are stuck insider the pores of water networks produced by hydrogen bonds between molecules of water. There are different ways to analyze the hydrate formation operating ...

  7. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  8. Treatment of discharge water from hydrostatic testing of natural gas pipelines. Volume 4. Topical report, January 1989-June 1992

    International Nuclear Information System (INIS)

    Tallon, J.T.; Lee-Ryan, P.B.; Volpi, K.A.; Fillo, J.P.

    1992-06-01

    The report presents results developed from bench- and full-scale treatment testing conducted on discharge water from hydrostatic testing of natural gas pipelines. Bench-scale testing examined sedimentation with and without chemical coagulants for reducing iron and total suspended solids, aeration for removal of volatile organics, and activated carbon adsorption for removal of organic constituents. Treatment results are provided for a full-scale treatment process, which utilized a hay bale structure and adsorbent booms for removing suspended solids and oil from the discharge water. Detailed characterization results are presented for test water collected before and after treatment. Results developed from an economic analysis of other potential treatment/disposal alternatives are also presented. A total of eight approaches that may be applied for managing constituents present in hydrostatic test waters are examined. The report is Volume 4 of a five-volume report series

  9. Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations.

    Science.gov (United States)

    Song, Lei; Kästner, Johannes

    2016-10-26

    Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.

  10. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    The nonequilibrium, steady-state phase transitions and the structure of the different phases of a two-dimensional system with two thermodynamic temperatures are studied via a simple lattice-gas model with mobile active impurities ("hot/cold spots'') whose activity is controlled by an external drive...... on the temperatures, microstructured phases of both lamellar and droplet symmetry arise, described by a length scale that is determined by the characteristic temperature controlling the diffusive motion of the active impurities....

  11. DEM-CFD simulation of purge gas flow in a solid breeder pebble bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China); Guo, Haibing [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: inpclane@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-12-15

    Solid tritium breeding blanket applying pebble bed concept is promising for fusion reactors. Tritium bred in the pebble bed is purged out by inert gas. The flow characteristics of the purge gas are important for the tritium transport from the solid breeder materials. In this study, a randomly packed pebble bed was generated by Discrete Element Method (DEM) and verified by radial porosity distribution. The flow parameters of the purge gas in channels were solved by Computational Fluid Dynamics (CFD) method. The results show that the normalized velocity magnitudes have the same damped oscillating patterns with radial porosity distribution. Besides, the bypass flow near the wall cannot be ignored in this model, and it has a slight increase with inlet velocity. Furthermore, higher purging efficiency becomes with higher inlet velocity and especially higher in near wall region.

  12. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  13. A light-gas gun for acceleration of pellets of solid D2

    International Nuclear Information System (INIS)

    Nordskov, A.; Skovgaard, H.; Soerensen, H.; Weisberg, K.V.

    1980-10-01

    A gun has been designed and built to be used for injecting solid D 2 pellets into a small tokamak for pellet-plasma interaction studies. The pellets are formed and accelerated at temperatures close to those of liquid helium. They are propelled with pressurised H 2 -gas; the pressure arises when a quantity of solid H 2 placed in the gun barrel behind the pellet is pulse heated. Pellet velocities up to 240 m/s have been obtained. The directional accuracy is better than 0.2deg and the repetition rate is one firing every five minutes. The pellet volume is 0.6 mm 3 (2 x 10 19 molecules) while the quantity of propeller gas used is around 12 x 10 19 molecules. (author)

  14. Effect of capillary condensation on gas transport properties in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-10-01

    We investigate the effect of capillary condensation on gas diffusivity in porous media composed of randomly packed spheres with moderate wettability. To simulate capillary phenomena at the pore scale while retaining complex pore networks of the porous media, we employ density functional theory (DFT) for coarse-grained lattice gas models. The lattice DFT simulations reveal that capillary condensations preferentially occur at confined pores surrounded by solid walls, leading to the occlusion of narrow pores. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while the effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Moreover, we find that the ratio of the porosity to the tortuosity factor, which is a crucial parameter that determines an effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  15. Ballistic magnetotransport in a suspended two-dimensional electron gas with periodic antidot lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, E. Yu., E-mail: zhdanov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Pokhabov, D. A.; Bakarov, A. K. [Siberian Branch of the Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics (Russian Federation)

    2017-01-15

    The magnetoresistance of suspended semiconductor nanostructures with a two-dimensional electron gas structured by periodic square antidot lattices is studied. It is shown that the ballistic regime of electron transport is retained after detaching the sample from the substrate. Direct comparative analysis of commensurability oscillations of magnetoresistance and their temperature dependences in samples before and after suspension is performed. It is found that the temperature dependences are almost identical for non-suspended and suspended samples, whereas significant differences are observed in the nonlinear regime, caused by direct current passage. Commensurability oscillations in the suspended samples are more stable with respect to exposure to direct current, which can be presumably explained by electron–electron interaction enhancement after detaching nanostructures from the high-permittivity substrate.

  16. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  17. Lattice Boltzmann scheme for diffusion on triangular grids

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2003-01-01

    In this paper we present a Lattice Boltzmann scheme for diffusion on it unstructured triangular grids. In this formulation of a LB for irregular grids there is no need for interpolation, which is required in other LB schemes on irregular grids. At the end of the propagation step the lattice gas

  18. Determination of volatile organic compounds in water by headspace solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer

    International Nuclear Information System (INIS)

    Cervera, M.I.; Beltran, J.; Lopez, F.J.; Hernandez, F.

    2011-01-01

    Highlights: → Employing a statistical optimization improves results reducing experiments. → Use of MS (QqQ) allows high sensitivity determination and improves identification capabilities. → Using Q/q intensity ratios is a powerful tool to ensure compound identification. → HS SPME GC-MS/MS method allows determination of VOCs in complex matrix water samples. - Abstract: In the present work, a rapid method with little sample handling has been developed for determination of 23 selected volatile organic compounds in environmental and wastewater samples. The method is based on headspace solid-phase microextraction (SPME) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) determination using triple quadrupole analyzer (QqQ) in electron ionization mode. The best conditions for extraction were optimised with a factorial design taking into account the interaction between different parameters and not only individual effects of variables. In the optimized procedure, 4 mL of water sample were extracted using a 10 mL vial and adding 0.4 g NaCl (final NaCl content of 10%). An SPME extraction with carboxen/polydimethylsiloxane 75 μm fiber for 30 min at 50 deg. C (with 5 min of previous equilibration time) with magnetic stirring was applied. Chromatographic determination was carried out by GC-MS/MS working in Selected Reaction Monitoring (SRM) mode. For most analytes, two MS/MS transitions were acquired, although for a few compounds it was difficult to obtain characteristic abundant fragments. In those cases, a pseudo selected reaction monitoring (pseudo-SRM) with three ions was used instead. The intensity ratio between quantitation (Q) and confirmation (q) signals was used as a confirmatory parameter. The method was validated by means of recovery experiments (n = 6) spiking mineral water samples at three concentration levels (0.1, 5 and 50 μg L -1 ). Recoveries between 70% and 120% were generally obtained with relative standard deviations (RSDs

  19. Determination of volatile organic compounds in water by headspace solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cervera, M.I. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain); Beltran, J., E-mail: joaquim.beltran@uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain); Lopez, F.J.; Hernandez, F. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain)

    2011-10-17

    Highlights: {yields} Employing a statistical optimization improves results reducing experiments. {yields} Use of MS (QqQ) allows high sensitivity determination and improves identification capabilities. {yields} Using Q/q intensity ratios is a powerful tool to ensure compound identification. {yields} HS SPME GC-MS/MS method allows determination of VOCs in complex matrix water samples. - Abstract: In the present work, a rapid method with little sample handling has been developed for determination of 23 selected volatile organic compounds in environmental and wastewater samples. The method is based on headspace solid-phase microextraction (SPME) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) determination using triple quadrupole analyzer (QqQ) in electron ionization mode. The best conditions for extraction were optimised with a factorial design taking into account the interaction between different parameters and not only individual effects of variables. In the optimized procedure, 4 mL of water sample were extracted using a 10 mL vial and adding 0.4 g NaCl (final NaCl content of 10%). An SPME extraction with carboxen/polydimethylsiloxane 75 {mu}m fiber for 30 min at 50 deg. C (with 5 min of previous equilibration time) with magnetic stirring was applied. Chromatographic determination was carried out by GC-MS/MS working in Selected Reaction Monitoring (SRM) mode. For most analytes, two MS/MS transitions were acquired, although for a few compounds it was difficult to obtain characteristic abundant fragments. In those cases, a pseudo selected reaction monitoring (pseudo-SRM) with three ions was used instead. The intensity ratio between quantitation (Q) and confirmation (q) signals was used as a confirmatory parameter. The method was validated by means of recovery experiments (n = 6) spiking mineral water samples at three concentration levels (0.1, 5 and 50 {mu}g L{sup -1}). Recoveries between 70% and 120% were generally obtained with

  20. Experimental investigation of attrition resistance of zeolite catalysts in two particle gas-solid-solid fluidization system

    International Nuclear Information System (INIS)

    Nawaz, Z.; Ziaoping, T.; Shu, Q.; Wei, F.; Naveed, S.

    2010-01-01

    In the study of mechanical degradation of 34 ZSM-5 and SAPO catalysts, using the gas jet attrition - ASTM standard fluidized bed test (D-5757), the effect of particle size and its quantitative analysis in co-fluidization environment was investigated on the air jet index (AJI) basis. In gas-solid-solid fluidized bed reactors (GSS-FBR), two different sized particles were fluidized under isothermal conditions. In case of ZSM-5 and SAPO-34, significant attrition resistance was observed, which was attributed to small pore size and specific structural strength of the mobile framework image (MFI) and chabasite (CHA) structures, respectively. The optimum AJI for SAPO-34 and ZSM-5 (of particle size 0.2 mm) in GSS-fluidization system was observed to be 0.0118 and 0.0062, respectively. In co-fluidization, deviations from Gwyn relationship were observed due to change in impact of collision. Therefore, zeolites are recommended as suitable catalysts or catalytic supports (for doping of expensive metals) and for commercial use in GSS-FBR. (author)

  1. Panorama 2011: Unconventional gas and water

    International Nuclear Information System (INIS)

    Vially, R.

    2011-01-01

    For a number of years now, the rapid development of unconventional gas use in North America has been revolutionising the natural gas market. This generic term refers to several production types, such as tight gas, shale gas and coal bed methane. What they have in common is that the rock needs to be 'stimulated' in order to extract gas from it that can be commercially produced. These methods (horizontal drilling, hydraulic fracturing) all involve sensible management of the water needed for gas production. (author)

  2. Description of the lattice code POWDERPUFS-V

    International Nuclear Information System (INIS)

    Rouben, B.; Tin, E.S.Y.; Loken, P.C.

    1995-10-01

    POWDERPUFS-V is a lattice code written specifically for CANDU lattices. The moderator is limited to reactor-grade heavy water, while the coolant may be light water, heavy water, air or HB-40 (organic fluid). The fuel can by UO 2 , U, U 3 Si, U-C or U-Zr, in the form of either a single rod or a cluster of pins. The program calculates the four-factor parameters and also provides lattice nuclear cross sections for use in finite-core neutron-diffusion codes. A burnup calculation is included. In this report, the general capabilities of the program are discussed. (author) 24 refs., 4 tabs., 12 figs

  3. Discrete Lattice effect of various forcing methods of body force on immersed Boundary-Lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Wan; Ha, Man Yeong; Yoon, Hyun Sik [Pusan National University, Busan (Korea, Republic of); Jeong, Hae Kwon [POSCO, Pohang (Korea, Republic of); Balachandar, S. [University of Florida, Florida (United States)

    2013-02-15

    We investigate the discrete lattice effect of various forcing methods in the lattice Boltzmann method (LBM) to include the body force obtained from the immersed boundary method (IBM). In the immersed boundary lattice Boltzmann method (IB-LBM), the LBM needs a forcing method to involve the body force on a forcing point near the immersed boundary that is calculated by IBM. The proper forcing method in LBM is derived to include the body force, which appears to resolve problems such as multiphase flow, non-ideal gas behavior, etc. Many researchers have adopted different forcing methods in LBM to involve the body force from IBM, even when they solved similar problems. However, it is necessary to evaluate the discrete lattice effect, which originates from different forcing methods in LBM, to include the effect of the body force from IBM on the results. Consequently, in this study, a rigorous analysis of the discrete lattice effect for different forcing methods in IB-LBM is performed by solving various problems.

  4. Discrete Lattice effect of various forcing methods of body force on immersed Boundary-Lattice Boltzmann method

    International Nuclear Information System (INIS)

    Son, Sung Wan; Ha, Man Yeong; Yoon, Hyun Sik; Jeong, Hae Kwon; Balachandar, S.

    2013-01-01

    We investigate the discrete lattice effect of various forcing methods in the lattice Boltzmann method (LBM) to include the body force obtained from the immersed boundary method (IBM). In the immersed boundary lattice Boltzmann method (IB-LBM), the LBM needs a forcing method to involve the body force on a forcing point near the immersed boundary that is calculated by IBM. The proper forcing method in LBM is derived to include the body force, which appears to resolve problems such as multiphase flow, non-ideal gas behavior, etc. Many researchers have adopted different forcing methods in LBM to involve the body force from IBM, even when they solved similar problems. However, it is necessary to evaluate the discrete lattice effect, which originates from different forcing methods in LBM, to include the effect of the body force from IBM on the results. Consequently, in this study, a rigorous analysis of the discrete lattice effect for different forcing methods in IB-LBM is performed by solving various problems.

  5. Numerical simulation of vapor film collapse behavior on high-temperature droplet surface with three-dimensional lattice gas cellular automata

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Abe, Yutaka; Matsukuma, Yosuke

    2008-01-01

    It is pointed out that a vapor film on a premixed high-temperature droplet surface is needed to be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In a previous study, it is suggested experimentally that vapor film collapse behavior is dominated by phase change phenomena rather than by the surrounding fluid motion. In the present study, vapor film collapse behavior is investigated to clarify the dominant factor of vapor film collapse behavior with lattice gas automata of three-dimensional immiscible lattice gas model (3-D ILG model). First, in order to represent the boiling and phase change phenomena, the thermal model of a heat wall model and a phase change model is newly constructed. Next, the numerical simulation of vapor film collapse behavior is performed with and without the phase change effect. As a result, the computational result with the phase change effect is observed to be almost same as the experimental result. It can be considered that vapor film collapse behavior is dominated by phase change phenomena. (author)

  6. Simple determination of hydrazine in waste water by headspace solid-phase micro extraction and gas chromatography-tandem mass spectrometry after derivatization with trifluoro pentanedione.

    Science.gov (United States)

    Oh, Jin-Aa; Shin, Ho-Sang

    2017-01-15

    A headspace solid-phase micro extraction (HS-SPME) and gas chromatography-tandem mass spectrometric (GC-MS/MS) method is described to detect hydrazine after derivatization with 1,1,1-trifluoro-2,4-pentanedione (1,1,1-TFPD) to 3-methyl-5-(trifluoromethyl) pyrazole in industrial waste water. The following optimal HS-SPME conditions were used: 85 μm-carboxen-polydimethylsiloxane fibre, 100 mg L -1 TFPD, saturated NaCl, an extraction/derivatization temperature of 80 °C, a heating time of 40 min, and a pH of 9.5. Under the established conditions, the detection and quantification limits were 0.002 μg L -1 and 0.007 μg L -1  by using 5 mL of waste water and the intra- and inter-day relative standard deviations were less than 10.2% at concentrations of 0.02 and 0.1 μg L -1 . The calibration curve showed good linearity, with r 2  = 0.998; the accuracy was in the range of 98.0-103%; and the precision of the assay was less than 10.2% in industrial waste water. Hydrazine was detected over a concentration range of 0.011-0.074 μg L -1 in 5 of 20 waste water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Lattice Waves, Spin Waves, and Neutron Scattering

    Science.gov (United States)

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  8. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  9. Sorption of colloids, organics, and metals onto gas-water interfaces: Transport mechanisms and potential remediation technology. 1998 annual progress report

    International Nuclear Information System (INIS)

    Tokunaga, T.K.; Wan, J.

    1998-01-01

    'Although contaminant sorption at mineral surfaces has received much recognition as a major mechanism controlling contaminant behavior in subsurface environments, virtually no attention has been given to the possibility of contaminant sorption at gas-water interfaces. Moreover, no effort has yet been advanced to optimize such interactions for the purpose of facilitating in-situ remediation. Gas-water interfaces, unlike water-solid interfaces, are mobile. Therefore, associations of contaminants with gas-water interfaces can be very important not only in subsurface contaminant distributions, but also in contaminant transport, and potentially in remediation. The first objective of this research is to develop a quantitative understanding of interactions between contaminants and gas-water interfaces. The anticipated results will provide insights into the poorly understood phenomenon of contaminant interactions with the gas-water interface, and improve the current conceptual models of contaminant behavior in subsurface environments. The second purpose of this research is to explore the possibility of using surfactant stabilized microbubbles for in-situ remediation. Both pump-and-treat, and air sparging remediation methods are ineffective at displacing contaminants in zones which are advectively inaccessible. Stable microbubbles can migrate beyond preferential flow pathways and enter lower permeability zones by buoyant rise. The microbubbles can deliver oxygen and nutrients for promoting aerobic degradation of organic contaminants, and also deliver surfactants for emulsifying NAPLs.'

  10. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.

    2012-01-01

    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  11. Calculation of the anti-trap factor in heavy water lattices

    International Nuclear Information System (INIS)

    Naudet, R.; Mougey, J.

    1965-01-01

    The calculation of the anti-trap factor of a lattice is complex when a large fraction of captures occurs in a range of energies where the spectrum in the fuel is considerably different from the simple dE/E law. This is particularly true for heavy water lattices in which the distances. between the bars are generally fairly large with respect to the slowing-down length. In order to take into account this effect it is necessary both to know the constitution of the effective resonance integral as a function of the energy, and to be able to calculate the distribution in the fuel. This report is devoted to these two problems. An improved method of treating the statistical domain makes it possible to plot the curves of the cross-sections per unit lethargy for various shapes of the fuel. Furthermore, the slowing-down of the neutrons is studied using a Monte-Carlo method which makes it possible in particular to take into account the perturbations caused by the non-moderating rods. A study is also made of the problem of shielding effects due to the captures themselves. (authors) [fr

  12. Tracer concentration contours in grain lattice and grain boundary diffusion

    International Nuclear Information System (INIS)

    Kim, Y. S.; Olander, D. R.

    1997-01-01

    Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low burn-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination). (author)

  13. Cork as a new (green) coating for solid-phase microextraction: determination of polycyclic aromatic hydrocarbons in water samples by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Dias, Adriana Neves; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2013-04-15

    A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80°C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L(-1), respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n=3). The linear range was 0.1-10 μg L(-1) with r≥0.96 and the fiber-to-fiber reproducibility showed RSD≤18.6% (n=5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Development and evaluation of a gas chromatographic method for the determination of triazine herbicides in natural water samples

    Science.gov (United States)

    Steinheimer, T.R.; Brooks, M.G.

    1984-01-01

    A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0.1 ??g/L in a 1-litre sample. Three different natural water samples were used for error analysis via evaluation of recovery efficiencies and estimation of overall method precision. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0. 1 mu g/L in a 1-litre sample. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.

  15. Dislocation Structure and Mobility in Hcp Rare-Gas Solids: Quantum versus Classical

    Directory of Open Access Journals (Sweden)

    Santiago Sempere

    2018-01-01

    Full Text Available We study the structural and mobility properties of edge dislocations in rare-gas crystals with the hexagonal close-packed (hcp structure by using classical simulation techniques. Our results are discussed in the light of recent experimental and theoretical studies on hcp 4 He, an archetypal quantum crystal. According to our simulations classical hcp rare-gas crystals present a strong tendency towards dislocation dissociation into Shockley partials in the basal plane, similarly to what is observed in solid helium. This is due to the presence of a low-energy metastable stacking fault, of the order of 0.1 mJ/m 2 , that can get further reduced by quantum nuclear effects. We compute the minimum shear stress that induces glide of dislocations within the hcp basal plane at zero temperature, namely, the Peierls stress, and find a characteristic value of the order of 1 MPa. This threshold value is similar to the Peierls stress reported for metallic hcp solids (Zr and Cd but orders of magnitude larger than the one estimated for solid helium. We find, however, that in contrast to classical hcp metals but in analogy to solid helium, glide of edge dislocations can be thermally activated at very low temperatures, T∼10 K, in the absence of any applied shear stress.

  16. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    International Nuclear Information System (INIS)

    Ray W. Sheldon

    2001-01-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (stripper gas water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program is intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research is to determine appropriate guidelines for field trials by accurately

  17. The relationships of wood-, gas-, and water fractions of tree stems to performance and life history variation in tropical trees

    NARCIS (Netherlands)

    Poorter, L.

    2008-01-01

    Background and Aims: The volume of tree stems is made up of three components: solid wood, gas and water. These components have important consequences for the construction costs, strength and stability of trees. Here, the importance of stem components for sapling growth and survival in the field was

  18. Method for excluding salt and other soluble materials from produced water

    Science.gov (United States)

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  19. Can current models of accommodation and vergence predict accommodative behavior in myopic children?

    Science.gov (United States)

    Sreenivasan, Vidhyapriya; Irving, Elizabeth L; Bobier, William R

    2014-08-01

    Investigations into the progression of myopia in children have long considered the role of accommodation as a cause and solution. Myopic children show high levels of accommodative adaptation, coupled with accommodative lag and high response AC/A (accommodative convergence per diopter of accommodation). This pattern differs from that predicted by current models of interaction between accommodation and vergence, where weakened reflex responses and a high AC/A would be associated with a low not high levels of accommodative adaptation. However, studies of young myopes were limited to only part of the accommodative vergence synkinesis and the reciprocal components of vergence adaptation and convergence accommodation were not studied in tandem. Accordingly, we test the hypothesis that the accommodative behavior of myopic children is not predicted by current models and whether that departure is explained by differences in the accommodative plant of the myopic child. Responses to incongruent stimuli (-2D, +2D adds, 10 prism diopter base-out prism) were investigated in 28 myopic and 25 non-myopic children aged 7-15 years. Subjects were divided into phoria groups - exo, ortho and eso based upon their near phoria. The school aged myopes showed high levels of accommodative adaptation but with reduced accommodation and high AC/A. This pattern is not explained by current adult models and could reflect a sluggish gain of the accommodative plant (ciliary muscle and lens), changes in near triad innervation or both. Further, vergence adaptation showed a predictable reciprocal relationship with the high accommodative adaptation, suggesting that departures from adult models were limited to accommodation not vergence behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Quantum Lattice-Gas Model for the Diffusion Equation

    National Research Council Canada - National Science Library

    Yepez, J

    2001-01-01

    .... It is a minimal model with two qubits per node of a one-dimensional lattice and it is suitable for implementation on a large array of small quantum computers interconnected by nearest-neighbor...

  1. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    International Nuclear Information System (INIS)

    Pan, Dongqing; Chien Jen, Tien; Li, Tao; Yuan, Chris

    2014-01-01

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired

  2. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.

  3. solid phase extraction method for selective determination

    African Journals Online (AJOL)

    FATOKI

    determination of phthalate ester plasticizers in rivers and marine water samples. Of the ... samples that receive effluent from industries that use phthalate esters. ... Keywords Phthalates, Plasticizers, Solid Phase Gas Chromatography.

  4. Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.

    Science.gov (United States)

    Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna

    2011-05-20

    We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.

  5. Gas-Liquid Precipitation of water dissolved heavy metal ions using hydrogen sulfide gas

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.

    2004-01-01

    Precipitation of solids promoted by gas-liquid reactions is applied in many industrial processes such as the production of ammonium phosphate, ammonium sulphate, barium carbonate, calcium carbonate, calcium fluoride, ypsum (calcium sulphate), goethite, sodium bicarbonate, strontium carbonate and

  6. The reactive solid-gas flow of a fluidized bed for UO2 conversion

    International Nuclear Information System (INIS)

    Juanico, L.E.

    1991-01-01

    The reactive solid-gas flow of a fluidized bed for UO 2 conversion was modeled. The sedimentation-reaction process was treated using the drift-flux equations. Also, the associated pressure transient due to the reaction gas release was analyzed. An experiment was carried out to compare the results, and pressure transient was numerically simulated, reaching interesting conclusions. (Author) [es

  7. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-01-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions. (paper)

  8. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    Science.gov (United States)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  9. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Science.gov (United States)

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Development of out-of-core concepts for a supercritical-water, pressure-tube reactor

    International Nuclear Information System (INIS)

    Diamond, W.T.

    2010-01-01

    One of the Generation IV programs at Chalk River Laboratories has as its prime focus the development of out-of-core concepts for the SuperCritical Water (SCW) pressure tube reactor under development in Canada. A number of technical issues associated with the interface of out-of-core components and the pressure tubes of a SCW pressure tube reactor are being investigated. This article focuses on several aspects of out-of-core components and layouts, building upon concepts that have been developed during the past few years. The efforts are strongly focused on concepts for a fuel channel that can be fabricated with the tight lattice pitch (typically 230 to 250 mm) that may be required for some applications such as utilization of a thorium fuel cycle. It is not practical to adapt concepts with a tight lattice pitch while using the thicker materials required for the higher temperatures and pressures required for supercritical operation. A change in lattice pitch or configuration is required to accommodate the component size increases. This presentation will cover a number of new concepts developed to produce feeders and end fittings for the harsh conditions of a SCW pressure tube reactor. These components are then developed into conceptual models of a Gen IV pressure tube reactor mounted in both horizontal and vertical orientations. Full 3-D solid models of both concepts will be demonstrated as well as a 1/10th-scale model of one face of a horizontal concept that has been built from components made with a 3-D printer. (author)

  11. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  12. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    Science.gov (United States)

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Dwayne [Florida International Univ., Miami, FL (United States); Dulikravich, George [Florida International Univ., Miami, FL (United States); Cizmas, Paul [Florida International Univ., Miami, FL (United States)

    2017-11-27

    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providing accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.

  14. Magnetically Enhanced Solid-Liquid Separation

    Science.gov (United States)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  15. Failing to Fix What is Found: Risk Accommodation in the Oil and Gas Industry.

    Science.gov (United States)

    Stackhouse, Madelynn R D; Stewart, Robert

    2017-01-01

    The present program of research synthesizes the findings from three studies in line with two goals. First, the present research explores how the oil and gas industry is performing at risk mitigation in terms of finding and fixing errors when they occur. Second, the present research explores what factors in the work environment relate to a risk-accommodating environment. Study 1 presents a descriptive evaluation of high-consequence incidents at 34 oil and gas companies over a 12-month period (N = 873), especially in terms of those companies' effectiveness at investigating and fixing errors. The analysis found that most investigations were fair in terms of quality (mean = 75.50%), with a smaller proportion that were weak (mean = 11.40%) or strong (mean = 13.24%). Furthermore, most companies took at least one corrective action for high-consequence incidents, but few of these corrective actions were confirmed as having been completed (mean = 13.77%). In fact, most corrective actions were secondary interim administrative controls (e.g., having a safety meeting) rather than fair or strong controls (e.g., training, engineering elimination). Study 2a found that several environmental factors explain the 56.41% variance in safety, including management's disengagement from safety concerns, finding and fixing errors, safety management system effectiveness, training, employee safety, procedures, and a production-over-safety culture. Qualitative results from Study 2b suggest that a compliance-based culture of adhering to liability concerns, out-group blame, and a production-over-safety orientation may all impede safety effectiveness. © 2016 Society for Risk Analysis.

  16. Impact of water-accommodated fractions of crude oil on Atlantic cod, Gadus morhua following chronic exposure

    International Nuclear Information System (INIS)

    Khan, R.

    2010-01-01

    This study examined the long-term effects of hydrocarbon exposure on the gonadal development of fish. Mature Atlantic cod (Gadus morhua) were exposed to low concentrations of water accommodated fractions (WAFs) of polycyclic aromatic hydrocarbons (PAHs) in an ambient flowthrough seawater system. Some PAH-exposed cod groups were depurated afterwards for 38 to 287 days. Mortality was rare, and external lesions occurred only in the PAH-exposed groups. The gonado-somatic index revealed that gonadal development was disrupted in both sexes and spawning and spermiation was delayed in the 33 depurated PAH-groups. The findings indicate that chronic exposure to WAFs in the water column may have an adverse effect on reproduction in Atlantic cod.

  17. Gas-driven pump for ground-water samples

    Science.gov (United States)

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  18. Lattice dynamics of intercalation and layer compounds by 119Sn Moessbauer effect spectroscopy

    International Nuclear Information System (INIS)

    Herber, R.H.; Davis, R.F.

    1976-01-01

    Gamma ray resonance spectroscopy using the 28-keV radiation from 119 Sn was employed to study the lattice dynamics of layer compounds and their metal atom intercalates. It was found that in solids in which the ( 119 Sn) Moessbauer atom is held either as an ion or as an isolated atom in the structure, both the characteristic lattice temperature (THETA/sub M/) value calculated from the temperature dependence of the recoil-free fraction (evaluated in the high temperature limit where T is greater than THETA/2 and in the absence of significant anharmonic effects) and characteristic temperature (THETA/sub CT/) value calculated by the Craig-Taylor procedure give internally consistent values for the lattice temperature of the solid as probed by the Moessbauer atom. In cases where this probe atom is part of a covalently bonded structure, as for example in the extended polymeric SnS 2 , SnSe 2 and related solids, the difference between THETA/sub M/ and THETA/sub CT/ will be significant, and this difference should be useful in the elucidation of the intermolecular and bonding forces in such solids and their relationship to the solid state properties of these materials. It is noted that the experimental determination of a unique lattice temperature by Moessbauer spectroscopic methods provides the solid state physicist with an additional parameter which should be useful in the characterization of solids, and, more importantly, may serve as a diagnostic tool in the assessment of the effects of systematic changes (such as, for example, compositional variations, radiation damage effects, implantation, and intercalation consequences) brought about in such materials

  19. Evaluation of genotoxic responses of Chaetoceros tenuissimus and Skeletonema costatum to water accommodated fraction of petroleum hydrocarbons as biomarker of exposure

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, S.R.; Verlecar, X.N.; Ansari, Z.A.; Jagtap, T.G.; Sarkar, A.; Vashistha, D.; Dalal, S.G.

    by water accommodated fraction of petroleum hydrocarbons was assessed in terms of the DNA integrity measured by alkaline unwinding assay. The comparative study of the growth pattern of C. tenuissimus with respect to DNA integrity and the DNA strand breaks...

  20. Optimisation of environmental gas cleaning routes for solid wastes cogeneration systems. Part II - Analysis of waste incineration combined gas/steam cycle

    International Nuclear Information System (INIS)

    Holanda, Marcelo R.; Perrella Balestieri, Jose A.

    2008-01-01

    In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I

  1. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  2. Numerical simulation of gas-solid flow in an interconnected fluidized bed

    Directory of Open Access Journals (Sweden)

    Canneto Giuseppe

    2015-01-01

    Full Text Available The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.

  3. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Directory of Open Access Journals (Sweden)

    M. Guevara-Bertsch

    2016-03-01

    Full Text Available We investigate the variation of the oscillation frequency of the Mg2+ and O2− ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  4. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Bertsch, M.; Avendaño, E. [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Ramírez-Hidalgo, G. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Sección de Física Teórica, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Chavarría-Sibaja, A.; Araya-Pochet, J. A. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Herrera-Sancho, O. A., E-mail: oscar-andrey.herrera@uibk.ac.at [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstr. 21a, 6020 Innsbruck (Austria)

    2016-03-15

    We investigate the variation of the oscillation frequency of the Mg{sup 2+} and O{sup 2−} ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  5. Numerical simulation of the gas-solid flow in a square circulating fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengyang [Harbin Institute of Technology, Harbin (China). Post-doctor Station of Civil Engineering; Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Sun, Shaozeng; Zhao, Ningbo; Wu, Shaohua [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Tan, Yufei [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering

    2013-07-01

    The dynamic behavior of gas-solid flow in an experimental square circulating fluidized bed setup (0.25 m x 0.25 m x 6.07 m) is predicted with numerical simulation based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation cases with secondary injection and without air-staging. The pressure drop profile, local solids concentration and particle velocity was compared with experimental results. Both simulation and experimental results show that solids concentration increases significantly below the secondary air injection ports when air-staging is adopted. Furthermore, the flow asymmetry in the solid entrance region of the bed was investigated based on the particle concentration/velocity profile. The simulation results are in agreement with the experimental results qualitatively.

  6. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  7. Gas chromatographic determination of impurities of inorganic compounds

    International Nuclear Information System (INIS)

    Drugov, Yu.S.

    1985-01-01

    Methods of concentration, separation, detection in gas chromatographic determination of impurities of inorganic compounds including low-boiling gases, reactive gases, organometallic compounds, free metals, anions, etc. are reviewed. Methods of reaction gas chromatography for determining reactive gases, water, anions, metal chelates are considered in detail as well as methods of reaction-sorption concentration and reaction gas extraction. The application of gas chromatograpny ior anaiysis of water and atmosphere contamination, for determination of impurities in highly pure solid substances and gases is described

  8. Dimensional crossover in Bragg scattering from an optical lattice

    International Nuclear Information System (INIS)

    Slama, S.; Cube, C. von; Ludewig, A.; Kohler, M.; Zimmermann, C.; Courteille, Ph.W.

    2005-01-01

    We study Bragg scattering at one-dimensional (1D) optical lattices. Cold atoms are confined by the optical dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser light incident on this chain is partially Bragg reflected. We observe an angular dependence of this Bragg reflection which is different from what is known from crystalline solids. In solids, the scattering layers can be taken to be infinitely spread (three-dimensional limit). This is not generally true for an optical lattice consistent of a 1D linear chain of pointlike scattering sites. By an explicit structure factor calculation, we derive a generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect ratio of the atomic lattice from the angular dependance of the Bragg scattered light

  9. Quantum lattice model solver HΦ

    Science.gov (United States)

    Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki

    2017-08-01

    HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).

  10. Photoemission from excited states in rare gas solids by combining synchrotronradiation with a laser

    International Nuclear Information System (INIS)

    Bernstorff, S.

    1984-09-01

    A new spectroscopic method has been developed to study excited states in rare gas solids: Excitons and conductionband-states are populated by synchrotron radiation (photon energy hw SR =5 - 30 eV). Subsequently electrons from these bound or conduction band-states are excited above the vacuum level of the solid by a pulsed dye laser (hw L =1.9 - 3.7 eV). This experimental technique was applied to solid Xe, Kr, Ar and Ne. (orig./GSCH)

  11. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    Directory of Open Access Journals (Sweden)

    Gerhard Müller

    2016-01-01

    Full Text Available The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  12. Greenhouse Gas Emissions from Solid and Liquid Organic Fertilizers Applied to Lettuce.

    Science.gov (United States)

    Toonsiri, Phasita; Del Grosso, Stephen J; Sukor, Arina; Davis, Jessica G

    2016-11-01

    Improper application of nitrogen (N) fertilizer and environmental factors can cause the loss of nitrous oxide (NO) to the environment. Different types of fertilizers with different C/N ratios may have different effects on the environment. The focus of this study was to evaluate the effects of environmental factors and four organic fertilizers (feather meal, blood meal, fish emulsion, and cyano-fertilizer) applied at different rates (0, 28, 56, and 112 kg N ha) on NO emissions and to track CO emissions from a lettuce field ( L.). The study was conducted in 2013 and 2014 and compared preplant-applied solid fertilizers (feather meal and blood meal) and multiple applications of liquid fertilizers (fish emulsion and cyano-fertilizer). Three days a week, NO and CO emissions were measured twice per day in 2013 and once per day in 2014 using a closed-static chamber, and gas samples were analyzed by gas chromatography. Preplant-applied solid fertilizers significantly increased cumulative NO emissions as compared with control, but multiple applications of liquid fertilizers did not. Emission factors for NO ranged from 0 to 0.1% for multiple applications of liquid fertilizers and 0.6 to 11% for preplant-applied solid fertilizers, which could be overestimated due to chamber placement over fertilizer bands. In 2014, solid fertilizers with higher C/N ratios (3.3-3.5) resulted in higher CO emissions than liquid fertilizers (C/N ratio, 0.9-1.5). Therefore, organic farmers should consider the use of multiple applications of liquid fertilizers as a means to reduce soil greenhouse gas emissions while maintaining high yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  14. Gas-Chromatographic Determination Of Water In Freon PCA

    Science.gov (United States)

    Melton, Donald M.

    1994-01-01

    Gas-chromatographic apparatus measures small concentrations of water in specimens of Freon PCA. Testing by use of apparatus faster and provides greater protection against accidental contamination of specimens by water in testing environment. Automated for unattended operation. Also used to measure water contents of materials, other than Freon PCA. Innovation extended to development of purgeable sampling accessory for gas chromatographs.

  15. Problems on one-dimensionally disordered lattices, and reliability of structural analysis of liquids and amorphous solids

    International Nuclear Information System (INIS)

    Kakinoki, J.

    1974-01-01

    Methods for obtaining the intensity of X-ray diffraction by one-dimensional by disordered lattices have been studied, and matrix method was developed. The method has been applied for structural analysis. Several problems concerning neutron diffraction were shown in the course of analysis. Large single crystals should be used for measurement. It is hard to grasp the local variation of structure. The technique of topography is still in development. Measurement of weak intensity diffraction is not sufficient. Technique of photography to observe overall feature is not good. General remarks concerning the one-dimensionally disordered lattices are as follows. A large number of parameters for analysis are not practical, and the disorder parameters are preferably two. In case of the disorder between two kinds of layers having same frequency and different structure, peak shift is not caused, and Laue term remains at the position. Reliability of the structural analysis of liquid and amorphous solid is discussed. The analysis is basically the analysis two atom molecule of same kind of atoms. The intensity of diffraction can be obtained from radial distribution function (RDF). Since practical observation is limited to a finite region, termination effect should be taken into consideration. Accuracy of analysis is not good in case of X-ray diffraction. The analysis by neutron diffraction is preferable. (Kato, T.)

  16. Ultracold Dipolar Gases in Optical Lattices

    OpenAIRE

    Trefzger, C.; Menotti, C.; Capogrosso-Sansone, B.; Lewenstein, M.

    2011-01-01

    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type m...

  17. Axisymmetric multiphase lattice Boltzmann method for generic equations of state

    NARCIS (Netherlands)

    Reijers, S.A.; Gelderblom, H.; Toschi, F.

    2016-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation

  18. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Radisav [Univ. of Pittsburgh, PA (United States)

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be

  19. Effect of disorder on condensation in the lattice gas model on a random graph.

    Science.gov (United States)

    Handford, Thomas P; Dear, Alexander; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2014-07-01

    The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells, is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range. Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite treating the pore space loops in a simplified manner, the random-graph model provides a good description of condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a structural model of mesoporous silica SBA-15.

  20. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  1. Solid adsorbents for removal of hydrogen sulphide from hot gas

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, Motoo

    1986-04-01

    A wide range of solids have been tested as potential adsorbents for H/sub 2/S removal from hot gas. These solids can be divided into two main groups, i.e., the adsorbents containing alkaline earth metals and those containing transition metals. Among the former, calcium oxide and naturally occurring materials such as limestone, dolomite and calcium silicate have attracted a great deal of attention. The adsorbents of the second group include iron oxide alone or in combination with some supports, zinc oxide, zinc ferrite and manganese oxide. The materials containing both the alkaline earth metals and transition metals, e.g., manganese nodules, fly ash and the reject from the aluminium industry (red mud) have been evaluated as well.

  2. From lattice gases to polymers

    NARCIS (Netherlands)

    Frenkel, D.

    1990-01-01

    The modification of a technique that was developed to study time correlations in lattice-gas cellular automata to facilitate the numerical simulation of chain molecules is described. As an example, the calculation of the excess chemical potential of an ideal polymer in a dense colloidal

  3. Melting of 2D monatomic solids: Lennard-Jones system

    International Nuclear Information System (INIS)

    Yi, Y.M.; Guo, Z.C.

    1987-09-01

    The Lennard-Jones interaction has been introduced into the Collins mix lattice of 2D liquids. By means of rigorous calculation of the total potential and the free area, the Gibbs functions for 2D liquid and solid have been derived. The melting line obtained from the phase transition equation agrees quite well with the result of recent computer simulation experiments. The obtained reduced temperature of the triple point T* t =0.438 agrees with the data measured in experiments of some inert gas monolayers adsorbed on graphite as well as in computer simulation experiments. (author). 11 refs, 7 figs, 3 tabs

  4. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  5. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  6. A compact copper nuclear demagnetization cryostat and a search for superfluidity in solid 4He

    International Nuclear Information System (INIS)

    Haar, P.G. van de.

    1991-01-01

    The subject of this thesis is the theoretical and experimental study of matter at low temperatures, and the development of techniques to reach and measure these temperatures. A copper nuclear demagnetization cryostat was developed in order to reach low temperatures. This system distinguishes itself from other cryostats by its compact construction. The lowest temperature recorded by a pulsed Pt-NMR thermometer was 115 μK. This system was used to search for superfluidity in solid 4 He. Due to the large zero-point motion of the atoms, 4He remains liquid down to zero temperature; a pressure of 25.3 bar is needed to force the atoms in a lattice. Even in solid state, the 4 He atoms remain very mobile, changing lattice sites at a frequency of approximately 10 7 Hz. It is possible that solid 4 He contains vacancies at zero temperature. These zero point vacancies are expected to behave like a gas of bosons, and should Bose-condense at some temperature. From experiments the upper limit to the vacancy concentration is set of 4·10-5. (author). 217 refs.; 46 figs.; 2 tabs

  7. Lattice dynamics of lithium oxide

    Indian Academy of Sciences (India)

    Abstract. Li2O finds several important technological applications, as it is used in solid- state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures ...

  8. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  9. The influence of interactions between accommodation and convergence on the lag of accommodation.

    Science.gov (United States)

    Schor, C

    1999-03-01

    Several models of myopia predict that growth of axial length is stimulated by blur. Accommodative lag has been suggested as an important source of blur in the development of myopia and this study has modeled how cross-link interactions between accommodation and convergence might interact with uncorrected distance heterophoria and refractive error to influence accommodative lag. Accommodative lag was simulated with two models of interactions between accommodation and convergence (one with and one without adaptable tonic elements). Simulations of both models indicate that both uncorrected hyperopia and esophoria increase the lag of accommodative and uncorrected myopia and exophoria decrease the lag or introduce a lead of accommodation in response to the near (40 cm) stimulus. These effects were increased when gain of either cross-link, accommodative convergence (AC/A) or convergence accommodation (CA/C), was increased within a moderate range of values while the other was fixed at a normal value (clamped condition). These effects were exaggerated when both the AC/A and CA/C ratios were increased (covaried condition) and affects of cross-link gain were negated when an increase of one cross-link (e.g. AC/A) was accompanied by a reduction of the other cross-link (e.g. CA/C) (reciprocal condition). The inclusion of tonic adaptation in the model reduced steady state errors of accommodation for all conditions except when the AC/A ratio was very high (2 MA/D). Combinations of cross-link interactions between accommodation and convergence that resemble either clamped or reciprocal patterns occur naturally in clinical populations. Simulations suggest that these two patterns of abnormal cross-link interactions could affect the progression of myopia differently. Adaptable tonic accommodation and tonic vergence could potentially reduce the progression of myopia by reducing the lag of accommodation.

  10. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  11. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    Science.gov (United States)

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  12. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  13. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Amount of water in an ideal gas. 1065... in an ideal gas. This section describes how to determine the amount of water in an ideal gas, which... of water in an ideal gas, x H20, as follows: ER30AP10.034 Where: x H20 = amount of water in an ideal...

  14. Simulation of diffusion in concentrated lattice gases

    International Nuclear Information System (INIS)

    Kehr, K.W.

    1986-01-01

    Recently the diffusion of particles in lattice gases was studied extensively by theoretical methods and numerical simulations. This paper reviews work on collective and, in particular, on tracer diffusion. The diffusion of tagged particles is characterized by a correlation factor whose behavior as a function of concentration is now well understood. Also the detailed kinetics of the tracer transitions was investigated. A special case is the one-dimensional lattice gas where the tracer diffusion coefficient vanishes. An interesting extension is the case of tagged atoms with a different transition rate. This model allows to study various physical situations, including impurity diffusion, percolation, and diffusion in partially blocked lattices. Finally some recent work on diffusion in lattice gases under the influence of a drift field will be reported. (author)

  15. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    in injection molding tools and lattice structures. This research examines the effect of cellular lattice structures on the strength of workpieces additively manufactured from ultra high-strength steel powder. Two commercial SLM machines are used to fabricate cellular samples based on four architectures— solid...... with experimental data and it is shown that they agree well. The results from this research show that using lattice structures significantly reduces the strength of material with respect to solid samples while indicating no serious increase of strength compared to hollow structures. In combination with an analysis...

  16. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    Science.gov (United States)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  17. Process for water-gas generation from degassed combustibles

    Energy Technology Data Exchange (ETDEWEB)

    1906-05-23

    A process for water-gas generation in a continuous operation from degassed combustibles in the lower part of a vertical exterior-heated retort, whose middle part can serve to degas the combustibles, is described. It is characterized in that the water vapor employed is obtained by vaporizing water in the upper part of the retort by means of the waste heat from the heating gases, which had effected the coking of the combustibles before the water-gas recovery or after the latter.

  18. A gas trapping method for high-throughput metabolic experiments.

    Science.gov (United States)

    Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E

    2018-01-01

    Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.

  19. Study of the lattice parameter evolution of PWR irradiated MOX fuel by X-Ray diffraction

    International Nuclear Information System (INIS)

    Clavier, B.

    1995-01-01

    Fuel irradiation leads to a swelling resulting from the formation of gaseous (Kr, Xe) or solid fission products which are found either in solution or as solid inclusions in the matrix. This phenomena has to be evaluated to be taken into account in fuel cladding Interaction. Fuel swelling was studied as a function of burn up by measuring the corresponding cell constant evolution by X-Ray diffraction. This study was realized on Mixed Oxide Fuels (MOX) irradiated in a Pressurized Water Reactor (PWR) at different burn-up for 3 initial Pu contents. Lattice parameter evolutions were followed as a function of burn-up for the irradiated fuel with and without an annealing thermal treatment. These experimental evolutions are compared to the theoretical evolutions calculated from the hard sphere model, using the fission product concentrations determined by the APPOLO computer code. Contribution of varying parameters influencing the unit cell value is discussed. Thermal treatment effects were checked by metallography, X-Ray diffraction and microprobe analysis. After thermal treatment, no structural change was observed but a decrease of the lattice parameter was measured. This modification results essentially from self-irradiation defect annealing and not from stoichiometry variations. Microprobe analysis showed that about 15% of the formed Molybdenum is in solid solution In the oxide matrix. Micrographs showed the existence of Pu packs in the oxide matrix which induces a broadening of diffraction lines. The RIETVELD method used to analyze the X-Ray patterns did not allow to characterize independently the Pu packs and the oxide matrix lattice parameters. Nevertheless, with this method, the presence of micro-strains in the irradiated nuclear fuel could be confirmed. (author)

  20. On factors influencing air-water gas exchange in emergent wetlands

    Science.gov (United States)

    Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.

    2018-01-01

    Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

  1. Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks

    International Nuclear Information System (INIS)

    Dunne, Lawrence J; Manos, George

    2015-01-01

    Here we present a statistical mechanical lattice model which is exactly solvable using a matrix method and allows treatment of adsorption induced gate opening structural transformations of metal-organic frameworks which are nanoporous materials with exceptional adsorption properties. Modelling of these structural changes presents a serious theoretical challenge when the solid and gas species are treated in an even handed way. This exactly solvable model complements other simulation based approaches. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms. (paper)

  2. Formation of diamonds out of hydrocarbon gas in the earth's mantle

    International Nuclear Information System (INIS)

    Krason, J.; Szymanski, A.; Savkevitch, S.S.

    1991-01-01

    This paper discusses the concept of formation of polycrystalline diamonds being discussed dint he context of a very rapid, dynamic decomposition of the hydrocarbon gas, initially biogenic or thermogenic condensed in gas hydrates, naturally locked and highly compressed in the hosting rocks. Gas hydrates are of solid, ice-like composition, mostly of hydrocarbon. Gas hydrates, composed of polyhedral cages, may have two types of structural forms: the body-centered structure or Structure I (small molecules) and diamond lattice or Structure II (large molecules). The crystal structure of the gas hydrate depends on the geometry of gas molecules. The thermodynamic conditions required for stabilization and preservation of the gas hydrates can be changed. Thus, in this concept, the principal source for at least some diamond deposits can originally be highly condensed hydrocarbons. In this case, if all the above indicated thermodynamic conditions and processes are met, naturally precondensed hydrocarbons can be directly converted into polycrystalline, extremely coherent diamonds

  3. Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner

    2018-06-01

    The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.

  4. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    Science.gov (United States)

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  5. Microstructure and gas sensitive properties of alpha-Fe2O3-MO2 (M: Sn and Ti) materials prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, R.; Mørup, Steen

    1998-01-01

    Metastable alpha-Fe2O3-MO2 (M: Sn and Ti) solid solutions can be synthesized by mechanical alloying. The alloy formation, microstructure, and gas sensitive properties of mechanically milled alpha-Fe2O3-SnO2 materials are discussed. Tin ions in alpha-Fe2O3 are found to occupy the empty octahedral...... holes in the alpha-Fe2O3 lattice. This interstitial model can also describe the structure of alpha-Fe2O3-TiO2 solid solutions. Finally, a correlation of gas sensitive properties with microstructure of alpha-Fe2O3-SnO2 materials is presented....

  6. Long-time tails of the velocity autocorrelation function in 2D and 3D lattice gas cellular automata: a test of mode-coupling theory

    NARCIS (Netherlands)

    Hoef, M.A. van der; Frenkel, D.

    1990-01-01

    We report simulations of the velocity autocorrelation function (VACF) of a tagged particle in two- and three-dimensional lattice-gas cellular automata, using a new technique that is about a million times more efficient than the conventional techniques. The simulations clearly show the algebraic

  7. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction.

    Science.gov (United States)

    Jackson, Robert B; Vengosh, Avner; Darrah, Thomas H; Warner, Nathaniel R; Down, Adrian; Poreda, Robert J; Osborn, Stephen G; Zhao, Kaiguang; Karr, Jonathan D

    2013-07-09

    Horizontal drilling and hydraulic fracturing are transforming energy production, but their potential environmental effects remain controversial. We analyzed 141 drinking water wells across the Appalachian Plateaus physiographic province of northeastern Pennsylvania, examining natural gas concentrations and isotopic signatures with proximity to shale gas wells. Methane was detected in 82% of drinking water samples, with average concentrations six times higher for homes gas wells (P = 0.0006). Ethane was 23 times higher in homes gas wells (P = 0.0013); propane was detected in 10 water wells, all within approximately 1 km distance (P = 0.01). Of three factors previously proposed to influence gas concentrations in shallow groundwater (distances to gas wells, valley bottoms, and the Appalachian Structural Front, a proxy for tectonic deformation), distance to gas wells was highly significant for methane concentrations (P = 0.007; multiple regression), whereas distances to valley bottoms and the Appalachian Structural Front were not significant (P = 0.27 and P = 0.11, respectively). Distance to gas wells was also the most significant factor for Pearson and Spearman correlation analyses (P gas wells was the only statistically significant factor (P gas (4)He to CH4 in groundwater were characteristic of a thermally postmature Marcellus-like source in some cases. Overall, our data suggest that some homeowners living gas wells have drinking water contaminated with stray gases.

  8. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  9. Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.

    Science.gov (United States)

    Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang

    2017-07-13

    In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.

  10. Vortex lattices in a rotating Fermi superfluid in the BCS–BEC crossover with many Landau levels

    International Nuclear Information System (INIS)

    Song, Tie-ling; Ma, C.R.; Ma, Yong-li

    2012-01-01

    We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross–Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS–BEC crossover. - Highlights: ► We present an analysis of vortex lattice in an interacting trapped rotating Fermi superfluid gas. ► Decomposing the vortex from the condensate, we can explain the vortex lattice. ► The calculation is consistent with numerical and experimental data. ► It can characterize experimentally properties in different regimes of the BCS–BEC crossover.

  11. DECREASE OF SOLIDS IN GRAY WATER BY AERATION PROCESS

    Directory of Open Access Journals (Sweden)

    Gerardo Alonso Torres-Avalos

    2017-07-01

    Full Text Available The activated sludge process is a biological treatment consisting basically of agitation and aeration of a waste water mixture and a selected microorganisms sludge. The oxidation of organic matter was determined with several tests such as BOD5 (Biochemical Oxygen Demand, TSS (Total Sedimented Solids, SS (Sediment Solids, TDS (Total Dissolved Solids, FVS (fixed and volatile solids and finally a measurement of treated water turbidity. The results obtained for the reduction of the organic load during the first two days of treatment (samples 1, 2 and 3 are visible in each of the organic loading tests; during the last two days according to the samples 4 and 5 the solids showed an increase in organic load. The related organoleptic properties such as color showed a notable decrease. As for the tests performed at pH show a change, samples 1, 2 and 3 approaching a range where they are neutral and the last two samples (4 and 5 the pH has an elevation until it becomes alkaline. The efficiency of the method used for the treatment of residual water during the first days reduced the organic load with a variation of TS and TSS of 760, 569 ppm respectively. This is a viable alternative since this is a low cost method with short term results because organoleptic properties such as odor and color were lost during the first day of treatment.

  12. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  13. Monte Carlo-based investigation of water-equivalence of solid phantoms at 137Cs energy

    International Nuclear Information System (INIS)

    Vishwakarma, Ramkrushna S.; Palani Selvam, T.; Sahoo, Sridhar; Mishra, Subhalaxmi; Chourasiya, Ghanshyam

    2013-01-01

    Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at 137 Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 x 10 9 to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at 137 Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively. (author)

  14. Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Deen, N.G.; Kuipers, J.A.M.

    2008-01-01

    Gas-solid fluidized beds are widely applied in many chemical processes involving physical and/or chemical transformations, and for this reason they are the subject of intense research in chemical engineering science. Over the years, researchers have developed a large number of numerical models of

  15. Numerical simulation of dense gas-solid fluidized beds : a multiscale modeling strategy

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Deen, N.G.; Kuipers, J.A.M.

    2008-01-01

    Gas-solid fluidized beds are widely applied in many chemical processes involving physical and/or chemical transformations, and for this reason they are the subject of intense research in chemical engineering science. Over the years, researchers have developed a large number of numerical models of

  16. MOLECULARLY IMPRINTED SOLID PHASE EXTRACTION FOR TRACE ANALYSIS OF DIAZINON IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    M. Rahiminejad ، S. J. Shahtaheri ، M. R. Ganjali ، A. Rahimi Forushani ، F. Golbabaei

    2009-04-01

    Full Text Available Amongst organophosphate pesticides, the one most widely used and common environmental contaminant is diazinon; thus methods for its trace analysis in environmental samples must be developed. Use of diazinon imprinted polymers such as sorbents in solid phase extraction, is a prominent and novel application area of molecular imprinted polymers. For diazinon extraction, high performance liquid chromatography analysis was demonstrated in this study. During optimization of the molecular imprinted solid phase extraction procedure for efficient solid phase extraction of diazinon, Plackett-Burman design was conducted. Eight experimental factors with critical influence on molecular imprinted solid phase extraction performance were selected, and 12 different experimental runs based on Plackett-Burman design were carried out. The applicability of diazinon imprinted polymers as the sorbent in solid phase extraction, presented obtained good recoveries of diazinon from LC-grade water. An increase in pH caused an increase in the recovery on molecular imprinted solid phase extraction. From these results, the optimal molecular imprinted solid phase extraction procedure was as follows: solid phase extraction packing with 100 mg diazinon imprinted polymers; conditioning with 5 mL of methanol and 6 mL of LC-grade water; sample loading containing diazinon (pH=10; washing with 1 mL of LC-grade water, 1 mL LC- grade water containing 30% acetonitrile and 0.5 mL of acetonitrile, respectively; eluting with 1 mL of methanol containing 2% acetic acid. The percentage recoveries obtained by the optimized molecular imprinted solid phase extraction were more than 90% with drinking water spiked at different trace levels of diazinon. Generally speaking, the molecular imprinted solid phase extraction procedure and subsequent high performance liquid chromatography analysis can be a relatively fast and proper approach for qualitative and quantitative analysis of diazinon in

  17. Application of process tomography in gas-solid fluidised beds in different scales and structures

    Science.gov (United States)

    Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.

    2018-04-01

    Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.

  18. Membranes for Flue Gas Treatment - Transport behavior of water and gas in hydrophilic polymer membranes

    NARCIS (Netherlands)

    Potreck, Jens

    2009-01-01

    Fossil fuel fired power plants produce electricity and in addition to that large volume flows of flue gas, which mainly contain N2, O2, and CO2, but also large quantities of water vapor. To prevent condensation of the water vapor present in this flue gas stream, water needs to be removed before

  19. Determination of Trichloroethylene in Water by Liquid–Liquid Microextraction Assisted Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Mengliang Zhang

    2015-02-01

    Full Text Available A method for the determination of trichloroethylene (TCE in water using portable gas chromatography/mass spectrometry (GC/MS was developed. A novel sample preparation method, liquid–liquid microextraction assisted solid phase microextraction (LLME–SPME, is introduced. In this method, 20 µL of hexane was added to 10 mL of TCE contaminated aqueous samples to assist headspace SPME. The extraction efficiency of SPME was significantly improved with the addition of minute amounts of organic solvents (i.e., 20 µL hexane. The absolute recoveries of TCE at different concentrations were increased from 11%–17% for the samples extracted by SPME to 29%–41% for the samples extracted by LLME–SPME. The method was demonstrated to be linear from 10 to 1000 ng mL−1 for TCE in water. The improvements on extraction efficiencies were also observed for toluene and 1, 2, 4-trichlorobenzene in water by using LLME–SPME method. The LLME–SPME method was optimized by using response surface modeling (RSM.

  20. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    BACKGROUND: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. RESULTS: Water migration in cellular solid foods

  1. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    Background: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Results: Water migration in cellular solid foods

  2. Rapid screening of selective serotonin re-uptake inhibitors in urine samples using solid-phase microextraction gas chromatography-mass spectrometry.

    Science.gov (United States)

    Salgado-Petinal, Carmen; Lamas, J Pablo; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael

    2005-07-01

    In this paper a solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)-venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline-in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, detection limits achieved were detected and tentatively identified.

  3. Thermodynamics of dilute 3He-4He solid solutions with hcp structure

    Science.gov (United States)

    Chishko, K. A.

    2018-02-01

    To interpret the anomalies in heat capacity CV(T) and temperature-dependent pressure P(T) of solid hexagonal close-packed (hcp) 4He we exploit the model of hcp crystalline polytype with specific lattice degrees of freedom and describe the thermodynamics of impurity-free 4He solid as superposition of phononic and polytypic contributions. The hcp-based polytype is a stack of 2D basal atomic monolayers on triangular lattice packed with arbitrary long (up to infinity) spatial period along the hexagonal c axis perpendicular to the basal planes. It is a crystal with perfect ordering along the layers, but without microscopic translational symmetry in perpendicular direction (which remains, nevertheless, the rotational crystallographic axis of third order, so that the polytype can be considered as semidisordered system). Each atom of the hcp polytype has twelve crystallographic neighbors in both first and second coordination spheres at any arbitrary packing order. It is shown that the crystal of such structure behaves as anisotropic elastic medium with specific dispersion law of phonon excitations along c axis. The free energy and the heat capacity consist of two terms: one of them is a normal contribution [with CV(T) ˜ T3] from phonon excitations in an anisotropic lattice of hexagonal symmetry, and another term (an "excessive" heat) is a contribution resulted by packing entropy from quasi-one-dimensional system of 2D basal planes on triangular lattice stacked randomly along c axis without braking the closest pack between neighboring atomic layers. The excessive part of the free energy has been treated within 1D quasi-Ising (lattice gas) model using the transfer matrix approach. This model makes us possible to interpret successfully the thermodynamic anomaly (heat capacity peak in hcp 4He) observed experimentally.

  4. Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations

    International Nuclear Information System (INIS)

    Xu Kun; He Xiaoyi

    2003-01-01

    Both lattice Boltzmann method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of the Boltzmann equation with collisional models, such as, the Bhatnagar-Gross-Krook (BGK) model. LBM tracks limited number of particles and the viscous flow behavior emerges automatically from the intrinsic particle stream and collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the time-dependent gas distribution function with continuous particle velocity space is constructed and used in the evaluation of the numerical fluxes across cell interfaces. Currently, LBM is mainly used for low Mach number, nearly incompressible flow simulation. For the gas-kinetic scheme, the application is focusing on the high speed compressible flows. In this paper, we are going to compare both schemes in the isothermal low-Mach number flow simulations. The methodology for developing both schemes will be clarified through the introduction of operator splitting Boltzmann model and operator averaging Boltzmann model. From the operator splitting Boltzmann model, the error rooted in many kinetic schemes, which are based on the decoupling of particle transport and collision, can be easily understood. As to the test case, we choose to use the 2D cavity flow since it is one of the most extensively studied cases. Detailed simulation results with different Reynolds numbers, as well as the benchmark solutions, are presented

  5. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  6. Neutronic investigations of an equilibrium core for a tight-lattice light water reactor

    International Nuclear Information System (INIS)

    Broeders, C.H.M.

    1992-01-01

    Calculation procedures and first results concerning the neutronic design of an equilibrium core of an advanced pressurized water reactor (APWR) with mixed oxide fuel in a compact light water moderated triangular lattice are presented. Principle and qualification of the cell burnup calculations with the KARBUS program are briefly discussed. The fuel assembly design with single control rod positions filled with control rod material or coolant water requires special transport theory calculations, which are performed with a one-dimensional supercell model. The macroscopic fuel assembly cross section data is collected in a special library to be used in a new calculational procedure, ARCOSI, for multi-cycle reactor core simulations. Its first application for a reference design resulted in an equilibrium configuration with moderator density reactivity coefficients which are satisfactory as regards safety. (orig.) [de

  7. Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Ahmed M. Ibrahem

    Full Text Available In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM enthalpy-based is employed. The collision model of lattice Bhatnagar-Gross-Krook (LBGK is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0–2% added to water-base fluid and Rayleigh numbers of 103–105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied. Keywords: Lattice Boltzmann method, Nanofluids, Conduction melting, Convection melting, BGK collision model

  8. Cluster properties of the one-dimensional lattice gas: the microscopic meaning of grand potential.

    Science.gov (United States)

    Fronczak, Agata

    2013-02-01

    Using a concrete example, we demonstrate how the combinatorial approach to a general system of particles, which was introduced in detail in an earlier paper [Fronczak, Phys. Rev. E 86, 041139 (2012)], works and where this approach provides a genuine extension of results obtained through more traditional methods of statistical mechanics. We study the cluster properties of a one-dimensional lattice gas with nearest-neighbor interactions. Three cases (the infinite temperature limit, the range of finite temperatures, and the zero temperature limit) are discussed separately, yielding interesting results and providing alternative proof of known results. In particular, the closed-form expression for the grand partition function in the zero temperature limit is obtained, which results in the nonanalytic behavior of the grand potential, in accordance with the Yang-Lee theory.

  9. Disabling accommodation barriers: A study exploring how to better accommodate government employees with anxiety disorders.

    Science.gov (United States)

    Mellifont, Damian; Smith-Merry, Jennifer; Scanlan, Justin Newton

    2016-11-22

    Accommodating mental health in the workplace is challenging. Despite policy efforts to encourage the availability of mental health accommodations in the workplace, employees experiencing mental illness are missing out on accommodations that they need. To inform vocational rehabilitation professionals and managers in the public service of best practice accommodations for government employees with anxiety disorders. Thematic analysis was applied to data collected from the online Accommodating Government Employees with Anxiety Disorders Survey undertaken by 71 Australian public service employees diagnosed with at least one anxiety disorder. Our research results include theme and sub-theme representations of accommodations received, accommodations reported as missing, accommodations that study participants felt they couldn't request, along with rejected accommodations. From the study participants' accounts, three key findings supporting desirable vocational outcomes become apparent. First, that the availability of 'standard' flexible work arrangements, along with personalised accommodations, can assist persons with anxiety disorders (where needed) to reach and retain government positions. Second, the chief barriers reported to making accommodation requests revolve around fears of being stigmatised and penalised. Finally, there is a need for managerial decision-makers to remain open-minded, particularly when assessing requests for accommodations that may break from government norms.

  10. Structural Investigation of Photocatalyst Solid Ag1−xCuxInS2 Quaternary Alloys Sprayed Thin Films Optimized within the Lattice Compatibility Theory (LCT Scope

    Directory of Open Access Journals (Sweden)

    A. Colantoni

    2014-01-01

    Full Text Available CuxAg1−xInS2 solid thin films were fabricated through a low-cost process. Particular process-related enhanced properties lead to reaching a minimum of lattice mismatch between absorber and buffer layers within particular solar cell devices. First, copper-less samples X-ray diffraction analysis depicts the presence of AgInS2 ternary compound in chalcopyrite tetragonal phase with privileged (112 peak (d112=1.70 Å according to JCPDS 75-0118 card. Second, when x content increases, we note a shift of the same preferential orientation (112 and its value reaches 1.63 Å corresponding to CuInS2 chalcopyrite tetragonal material according to JCPDS 89-6095 file. Finally, the formation and stability of these quaternaries have been discussed in terms of the lattice compatibility in relation with silver-copper duality within indium disulfide lattice structure. Plausible explanations for the extent and dynamics of copper incorporation inside AgInS2 elaborated ternary matrices have been proposed.

  11. Decomposition of water-insoluble organic waste by water plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Choi, S; Watanabe, T

    2012-01-01

    The water plasma was generated in atmospheric pressure with the emulsion state of 1-decanol which is a source of soil and ground water pollution. In order to investigate effects of operating conditions on the decomposition of 1-decanol, generated gas and liquid from the water plasma treatment were analysed in different arc current and 1-decanol concentration. The 1-decanol was completely decomposed generating hydrogen, carbon monoxide, carbon dioxide, methane, treated liquid and solid carbon in all experimental conditions. The feeding rate of 1- decanol emulsion was increased with increasing the arc current in virtue of enhanced input power. The generation rate of gas and the ratio of carbon dioxide to carbon monoxide were increased in the high arc current, while the generation rate of solid carbon was decreased due to enhanced oxygen radicals in the high input power. Generation rates of gas and solid carbon were increased at the same time with increasing the concentration of 1-decanol, because carbon radicals were increased without enhancement of oxygen radicals in a constant power level. In addition, the ratio of carbon dioxide to carbon monoxide was increased along with the concentration of 1-decanol due to enhanced carbon radicals in the water plasma flame.

  12. Designed defects in 2D antidot lattices for quantum information processing

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger

    2008-01-01

    We propose a new physical implementation of spin qubits for quantum information processing, namely defect states in antidot lattices defined in the two-dimensional electron gas (2DEG) at a semiconductor heterostructure. Calculations of the band structure of a periodic antidot lattice are presented...

  13. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  14. Tight-binding tunneling amplitude of an optical lattice

    Science.gov (United States)

    Arzamasovs, Maksims; Liu, Bo

    2017-11-01

    The particle in a periodic potential is an important topic in an undergraduate quantum mechanics curriculum and a stepping stone on the way to more advanced topics, such as courses on interacting electrons in crystalline solids, and graduate-level research in solid-state and condensed matter physics. The interacting many-body phenomena are usually described in terms of the second quantized lattice Hamiltonians which treat single-particle physics on the level of tight-binding approximation and add interactions on top of it. The aim of this paper is to show how the tight-binding tunneling amplitude can be related to the strength of the periodic potential for the case of a cosine potential used in the burgeoning field of ultracold atoms. We show how to approach the problem of computing the tunneling amplitude of a deep lattice using the JWKB (Jeffreys-Wentzel-Kramers-Brillouin, also known as semiclassical) approximation. We also point out that care should be taken when applying the method of the linear combination of atomic orbitals (LCAO) in an optical lattice context. A summary of the exact solution in terms of Mathieu functions is also given.

  15. Tight-binding tunneling amplitude of an optical lattice

    International Nuclear Information System (INIS)

    Arzamasovs, Maksims; Liu, Bo

    2017-01-01

    The particle in a periodic potential is an important topic in an undergraduate quantum mechanics curriculum and a stepping stone on the way to more advanced topics, such as courses on interacting electrons in crystalline solids, and graduate-level research in solid-state and condensed matter physics. The interacting many-body phenomena are usually described in terms of the second quantized lattice Hamiltonians which treat single-particle physics on the level of tight-binding approximation and add interactions on top of it. The aim of this paper is to show how the tight-binding tunneling amplitude can be related to the strength of the periodic potential for the case of a cosine potential used in the burgeoning field of ultracold atoms. We show how to approach the problem of computing the tunneling amplitude of a deep lattice using the JWKB (Jeffreys–Wentzel–Kramers–Brillouin, also known as semiclassical) approximation. We also point out that care should be taken when applying the method of the linear combination of atomic orbitals (LCAO) in an optical lattice context. A summary of the exact solution in terms of Mathieu functions is also given. (paper)

  16. Effective water influx control in gas reservoir development: Problems and countermeasures

    Directory of Open Access Journals (Sweden)

    Xi Feng

    2015-03-01

    Full Text Available Because of the diversity of geological characteristics and the complexity of percolation rules, many problems are found ineffective water influx control in gas reservoir development. The problems mainly focus on how to understand water influx rules, to establish appropriate countermeasures, and to ensure the effectiveness of technical measures. It is hard to obtain a complete applicable understanding through the isolated analysis of an individual gas reservoir due to many factors such as actual gas reservoir development phase, research work, pertinence and timeliness of measures, and so on. Over the past four decades, the exploration, practicing and tracking research have been conducted on water control in gas reservoir development in the Sichuan Basin, and a series of comprehensive water control technologies were developed integrating advanced concepts, successful experiences, specific theories and mature technologies. Though the development of most water-drive gas reservoirs was significantly improved, water control effects were quite different. Based on this background, from the perspective of the early-phase requirements of water influx control, the influencing factors of a water influx activity, the dynamic analysis method of water influx performance, the optimizing strategy of a water control, and the water control experience of typical gas reservoirs, this paper analyzed the key problems of water control, evaluated the influencing factors of water control effect, explored the practical water control strategies, and proposed that it should be inappropriate to apply the previous water control technological model to actual work but the pertinence should be improved according to actual circumstances. The research results in the paper provide technical reference for the optimization of water-invasion gas reservoir development.

  17. Fission gas in thoria

    Energy Technology Data Exchange (ETDEWEB)

    Kuganathan, Navaratnarajah, E-mail: n.kuganathan@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom); Ghosh, Partha S. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Galvin, Conor O.T. [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom); Arya, Ashok K. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Dutta, Bijon K. [Homi Bhabha National Institute, Trombay, Mumbai 400 094 (India); Dey, Gautam K. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Grimes, Robin W. [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom)

    2017-03-15

    The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO{sub 2} we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO{sub 2} is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO{sub 2} is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO{sub 2−x} the most favourable solution equilibrium site is the NTV1 while in ThO{sub 2} it is the DV. - Highlights: • We have considered Xe and Kr in point defects and defect clusters (neutral and charged) using Density Functional Theory (DFT) with a dispersion correction. • The most favourable charge state for a point defect (vacancy or interstitial) is that with full ionic charge and we have found that in all cases gas atoms occupy the fully charged vacancy sites. • The number of fission gas atoms accommodated in ThO{sub 2} is

  18. Migration of Gas in Water Saturated Clays by Coupled Hydraulic-Mechanical Model

    Directory of Open Access Journals (Sweden)

    Aliaksei Pazdniakou

    2018-01-01

    Full Text Available Understanding the gas migration in highly water saturated sedimentary rock formations is of great importance for safety of radioactive waste repositories which may use these host rocks as barrier. Recent experiments on drainage in argillite samples have demonstrated that they cannot be represented in terms of standard two-phase flow Darcy model. It has been suggested that gas flows along highly localized dilatant pathways. Due to very small pore size and the opacity of the material, it is not possible to observe this two-phase flow directly. In order to better understand the gas transport, a numerical coupled hydraulic-mechanical model at the pore scale is proposed. The model is formulated in terms of Smoothed Particle Hydrodynamics (SPH and is applied to simulate drainage within a sample reconstructed from the Focused Ion Beam (FIB images of Callovo-Oxfordian claystone. A damage model is incorporated to take into account the degradation of elastic solid properties due to local conditions, which may lead to formation of new pathways and thus to modifications of fluid transport. The influence of the damage model as well as the possible importance of rigid inclusions is demonstrated and discussed.

  19. Numerical Analysis of Moisture Flow and Concrete Cracking by means of Lattice Type Models

    NARCIS (Netherlands)

    Jankovic, D.; Küntz, M.; Van Mier, J.G.M.

    2001-01-01

    Modelling of fluid-flow and the resulting effects on shrinkage and microcracking by means of a combination of two lattice models are presented. For the moisture transport, a Lattice Gas Automaton (LGA) is adopted since it can effectively model moisture loss, whereas for cracking simulation a Lattice

  20. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    Science.gov (United States)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two

  1. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water

    Science.gov (United States)

    Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.

    2016-06-01

    The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.

  2. Solar-wind krypton and solid/gas fractionation in the early solar nebula

    Science.gov (United States)

    Wiens, Roger C.; Burnett, D. S.; Neugebauer, M.; Pepin, R. O.

    1991-01-01

    The solar-system Kr abundance is calculated from solar-wind noble-gas ratios, determined previously by low-temperature oxidations of lunar ilmenite grains, normalized to Si by spacecraft solar-wind measurements. The estimated Kr-83 abundance of 4.1 + or - 1.5 per million Si atoms is within uncertainty of estimates assuming no fractionation, determined from CI-chondrite abundances of surrounding elements. This is significant because it is the first such constraint on solid/gas fractionation, though the large uncertainty only confines it to somewhat less than a factor of two.

  3. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies

    Directory of Open Access Journals (Sweden)

    Hoang Minh Giang

    2013-11-01

    Full Text Available Current household solid waste treatment practices in most cities in Vietnam caused a great amount of direct greenhouse gas (GHG emissions. Available solid waste treatment technologies should be seriously taken  into consideration as a wedge of GHG mitigation in waste sector base on presently Vietnamese economic conditions. This study aim to evaluate the potential amount of GHG mitigation from current domestic solid waste treatment technologies in Vietnam including landfills and composting from various management scenarios. In oder to use Tier 2 model of IPCC 2006 for GHG estimation from landfills, an analysis on current household solid waste management system of the city was obtained by using material flow analysis approach. A case study in Hanoi, the capital city of Vietnam was carried out in this research. As a result, there was a reduced of over 70% of the amount of CH4 emissions and  up to 53% of total GHG saving (CO2-eq from avoiding organic waste to landfill. In addition, applying an energy recovery from LFG system to available landfills would lead to aproximately 75% of GHG saved compare to current emission of waste sector.Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16Citation: Giang, H.M.,Luong, N.D., and Huong, L.T.M.2013. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies. . Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16

  4. A study on properties of water substitute solid phantom using EGS code

    International Nuclear Information System (INIS)

    Saitoh, H.; Myojoyama, A.; Tomaru, T.; Fukuda, K.; Fujisaki, T.; Abe, S.

    2003-01-01

    To reduce the uncertainty in the calibration of radiation beams, absorbed dose to water for high energy electrons is recommended as the standards and reference absorbed dose by AAPM Report no.51, IAEA Technical Reports no.398 and JSMP Standard dosimetry for radiotherapy 2001. In these recommendations, water is defined as the reference medium, however, the water substitute solid phantoms are discouraged. Nevertheless, when accurate chamber positioning in water is not possible, or when no waterproof chamber is available, their use is permitted at beam qualities R 50 2 (E 0 pl and fluence-scaling factors h pl of several commercially available water substitute solid phantoms were determined using EGS Monte Carlo simulation. Furthermore, the electron dosimetry using these scaling method was evaluated. As a result, it is obviously that dose-distribution in solid phantom can be converted to appropriate dose-distribution in water by means of IAEA depth-scaling. (author)

  5. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: analysis of water an dissolved natural gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, B.E.; Karkalits, O.C.

    1978-09-01

    The Edna Delcambre et al. No. 1 gas well, shut-in since June 1975, was made available for the project. Two geopressured sand-bed aquifers were tested: sand No. 3 at a depth of 12,900 feet and sand No. 1 at a depth of 12,600 feet. Each aquifer was subjected to flow tests which lasted approximately three weeks in each case. Water samples were obtained during flow testing of the two geopressured aquifers. The water contained 11.3 to 13.3% dissolved solids. Several radioactive species were measured. Radium-226 was found to be approximately 10 times more concentrated than the average amount observed in surface waters. No appreciable amount of heavy metals was detected. Recombination studies at bottom-hole conditions indicate the solubility of natural gas per barrel of water to be about 24 SCF. The methane content was 93 to 95%, and the gas had a heating value in the range of 1020 to 1070 Btu/cu.ft. During the flow tests, the gas/water ratio at the well-head was observed to be 45 to 88 SCF/Bbl water produced. (MHR)

  6. Term value/band-gap energy correlations for solid rare gas excitons

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Term value/ionization energy correlation algorithms have proven to be of considerable utility in the assignment of atomic and molecular Rydberg states. Many examples of empirical term value/ionization energy correlations are known for diverse classes of atoms and molecules. The purpose of this paper is to demonstrate that similar correlations are also obtained for excitons in rare gas solids

  7. Lattice doped Zn–SnO{sub 2} nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Baraneedharan, P. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Alternative Energy and Nanotechnology Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Imran Hussain, S. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Dinesh, V.P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Siva, C. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203 (India); Biji, P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Sivakumar, M., E-mail: muthusiva@gmail.com [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India)

    2015-12-01

    Graphical abstract: - Highlights: • A simple, novel and surfactant free hydrothermal route to prepare SnO{sub 2} nanospheres. • A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images. • Incorporation of Zn ions into SnO{sub 2} lattices clearly elucidated with XRD and XPS spectrums. • Three fold time increased response in Zn–SnO{sub 2} nanospheres when compared to undoped SnO{sub 2}. - Abstract: A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn{sup 2+}) doped SnO{sub 2} nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn{sup 2+} ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn{sup 2+} ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn{sup 2+} ions has a significant effect on the electrical conductivity of SnO{sub 2} nanospheres. Comparative tests for gas sensors based on Zn doped SnO{sub 2} nanospheres and SnO{sub 2} nanospheres clearly show that the former exhibited excellent NO{sub 2} sensing performance. The responses of Zn{sup 2+} ions incorporated SnO{sub 2} nanospheres sensor were increased 3 fold at trace level NO{sub 2} gas concentrations ranging from 1 to 5 ppm. The excellent sensitivity, selectivity and fast response make the Zn{sup 2+} doped SnO{sub 2} nanospheres ideal for NO{sub 2} sensing.

  8. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  9. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Katsuta, H.; Naruse, Y.; Ohno, H.; Yoshida, H.

    1984-01-01

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 500 0 C to 950 0 C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  10. Development of Numerical Technique to Analyze the Flow Characteristics of Porous Media Using Lattice Boltzmann Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Min [Kyonggi Univ., Suwon (Korea, Republic of)

    2016-11-15

    The performance of proton exchange membrane fuel cells (PEMFC) is strongly related to the water flow and accumulation in the gas diffusion layer (GDL) and catalyst layer. Understanding the behavior of fluid from the characteristics of the media is crucial for the improvement of the performance and design of the GDL. In this paper, a numerical method is proposed to calculate the design parameters of the GDL, i.e., permeability, tortuosity, and effective diffusivity. The fluid flow in a channel filled with randomly packed hard spheres is simulated to validate the method. The flow simulation was performed by lattice Boltzmann method with bounce back condition for the solid volume fraction in the porous media, with different values of porosities. Permeability, which affects the flow, was calculated from the average pressure drop and the velocity in the porous media. Tortuosity, calculated by the ratio the average path length of the randomly injected massless particles to the thickness of the porous media, and the resultant effective diffusivity were in good agreement with the theoretical model. The suggested method can be used to calculate the parameters of real GDL accurately without any modification.

  11. Automatic fuel lattice design in a boiling water reactor using a particle swarm optimization algorithm and local search

    International Nuclear Information System (INIS)

    Lin Chaung; Lin, Tung-Hsien

    2012-01-01

    Highlights: ► The automatic procedure was developed to design the radial enrichment and gadolinia (Gd) distribution of fuel lattice. ► The method is based on a particle swarm optimization algorithm and local search. ► The design goal were to achieve the minimum local peaking factor. ► The number of fuel pins with Gd and Gd concentration are fixed to reduce search complexity. ► In this study, three axial sections are design and lattice performance is calculated using CASMO-4. - Abstract: The axial section of fuel assembly in a boiling water reactor (BWR) consists of five or six different distributions; this requires a radial lattice design. In this study, an automatic procedure based on a particle swarm optimization (PSO) algorithm and local search was developed to design the radial enrichment and gadolinia (Gd) distribution of the fuel lattice. The design goals were to achieve the minimum local peaking factor (LPF), and to come as close as possible to the specified target average enrichment and target infinite multiplication factor (k ∞ ), in which the number of fuel pins with Gd and Gd concentration are fixed. In this study, three axial sections are designed, and lattice performance is calculated using CASMO-4. Finally, the neutron cross section library of the designed lattice is established by CMSLINK; the core status during depletion, such as thermal limits, cold shutdown margin and cycle length, are then calculated using SIMULATE-3 in order to confirm that the lattice design satisfies the design requirements.

  12. The Value of Water in Extraction of Natural Gas from the Marcellus Shale

    Science.gov (United States)

    Rimsaite, R.; Abdalla, C.; Collins, A.

    2013-12-01

    Hydraulic fracturing of shale has increased the demand for the essential input of water in natural gas production. Increased utilization of water by the shale gas industry, and the development of water transport and storage related infrastructure suggest that the value of water is increasing where hydraulic fracturing is occurring. Few studies on the value of water in industrial uses exist and, to our knowledge, no studies of water's value in extracting natural gas from shale have been published. Our research aims to fill this knowledge gap by exploring several key dimensions of the value of water used in shale gas development. Our primary focus was to document the costs associated with water acquisition for shale gas extraction in West Virginia and Pennsylvania, two states located in the gas-rich Marcellus shale formation with active drilling and extraction underway. This research involved a) gathering data on the sources of and costs associated with water acquisition for shale gas extraction b) comparing unit costs with prices and costs paid by the gas industry users of water; c) determining factors that potentially impact total and per unit costs of water acquisition for the shale gas industry; and d) identifying lessons learned for water managers and policy-makers. The population of interest was all private and public entities selling water to the shale gas industry in Pennsylvania and West Virginia. Primary data were collected from phone interviews with water sellers and secondary data were gathered from state regulatory agencies. Contact information was obtained for 40 water sellers in the two states. Considering both states, the average response rate was 49%. Relatively small amounts of water, approximately 11% in West Virginia and 29% in Pennsylvania, were purchased from public water suppliers by the shale gas industry. The price of water reveals information about the value of water. The average price charged to gas companies was 6.00/1000 gallons and 7

  13. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  14. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Flueckiger, Reto [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Marone, Federica [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich (Switzerland); Wokaun, Alexander [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Buechi, Felix N., E-mail: felix.buechi@psi.c [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2011-02-01

    In polymer electrolyte fuel cells (PEFCs), condensation of water within the pore network of the gas diffusion layers (GDL) can influence the gas transport properties and thus reduce the electrochemical conversion rates. The use of X-ray tomographic microscopy (XTM), which allows for a resolution in the order of one micrometer is investigated for studying ex situ the local saturation in GDL's. The strength of XTM is the high spatial resolution with simultaneous contrast for water and carbon, allowing for non-destructive 3D-imaging of the solid and the contained water. The application of this method for imaging the ex situ water intrusion into the porous network of GDLs is explored using absorption and phase contrast methods. It is shown that the inhomogeneous filling behavior of GDL materials can indeed be visualized with sufficient resolution. For Toray paper TGP-H-060 the local saturation was measured as function of the water pressure. The results, evaluated in 1D, 2D and 3D show a liquid water retention effect at the denser layers near the surface. A comparison with established capillary pressure functions is presented. Altogether, the results show the potential of the XTM-method as a tool for studying the liquid water behavior in PEFC on a microscopic scale.

  15. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy

    International Nuclear Information System (INIS)

    Flueckiger, Reto; Marone, Federica; Stampanoni, Marco; Wokaun, Alexander; Buechi, Felix N.

    2011-01-01

    In polymer electrolyte fuel cells (PEFCs), condensation of water within the pore network of the gas diffusion layers (GDL) can influence the gas transport properties and thus reduce the electrochemical conversion rates. The use of X-ray tomographic microscopy (XTM), which allows for a resolution in the order of one micrometer is investigated for studying ex situ the local saturation in GDL's. The strength of XTM is the high spatial resolution with simultaneous contrast for water and carbon, allowing for non-destructive 3D-imaging of the solid and the contained water. The application of this method for imaging the ex situ water intrusion into the porous network of GDLs is explored using absorption and phase contrast methods. It is shown that the inhomogeneous filling behavior of GDL materials can indeed be visualized with sufficient resolution. For Toray paper TGP-H-060 the local saturation was measured as function of the water pressure. The results, evaluated in 1D, 2D and 3D show a liquid water retention effect at the denser layers near the surface. A comparison with established capillary pressure functions is presented. Altogether, the results show the potential of the XTM-method as a tool for studying the liquid water behavior in PEFC on a microscopic scale.

  16. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework

    KAUST Repository

    Neumann, Philipp

    2015-09-01

    © 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.

  17. Water resources and shale gas/oil production in the Appalachian Basin: critical issues and evolving developments

    Science.gov (United States)

    Kappel, William M.; Williams, John H.; Szabo, Zoltan

    2013-01-01

    Unconventional natural gas and oil resources in the United States are important components of a national energy program. While the Nation seeks greater energy independence and greener sources of energy, Federal agencies with environmental responsibilities, state and local regulators and water-resource agencies, and citizens throughout areas of unconventional shale gas development have concerns about the environmental effects of high volume hydraulic fracturing (HVHF), including those in the Appalachian Basin in the northeastern United States (fig. 1). Environmental concerns posing critical challenges include the availability and use of surface water and groundwater for hydraulic fracturing; the migration of stray gas and potential effects on overlying aquifers; the potential for flowback, formation fluids, and other wastes to contaminate surface water and groundwater; and the effects from drill pads, roads, and pipeline infrastructure on land disturbance in small watersheds and headwater streams (U.S. Government Printing Office, 2012). Federal, state, regional and local agencies, along with the gas industry, are striving to use the best science and technology to develop these unconventional resources in an environmentally safe manner. Some of these concerns were addressed in U.S. Geological Survey (USGS) Fact Sheet 2009–3032 (Soeder and Kappel, 2009) about potential critical effects on water resources associated with the development of gas extraction from the Marcellus Shale of the Hamilton Group (Ver Straeten and others, 1994). Since that time, (1) the extraction process has evolved, (2) environmental awareness related to high-volume hydraulic fracturing process has increased, (3) state regulations concerning gas well drilling have been modified, and (4) the practices used by industry to obtain, transport, recover, treat, recycle, and ultimately dispose of the spent fluids and solid waste materials have evolved. This report updates and expands on Fact Sheet 2009

  18. In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates

    Science.gov (United States)

    Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.

    2017-12-01

    Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and

  19. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  20. [Energy and memory efficient calculation of the accommodation demand in the artificial accommodation system].

    Science.gov (United States)

    Nagel, J A; Beck, C; Harms, H; Stiller, P; Guth, H; Stachs, O; Bretthauer, G

    2010-12-01

    Presbyopia and cataract are gaining more and more importance in the ageing society. Both age-related complaints are accompanied with a loss of the eye's ability to accommodate. A new approach to restore accommodation is the Artificial Accommodation System, an autonomous micro system, which will be implanted into the capsular bag instead of a rigid intraocular lens. The Artificial Accommodation System will, depending on the actual demand for accommodation, autonomously adapt the refractive power of its integrated optical element. One possibility to measure the demand for accommodation non-intrusively is to analyse eye movements. We present an efficient algorithm, based on the CORDIC technique, to calculate the demand for accommodation from magnetic field sensor data. It can be shown that specialised algorithms significantly shorten calculation time without violating precision requirements. Additionally, a communication strategy for the wireless exchange of sensor data between the implants of the left and right eye is introduced. The strategy allows for a one-sided calculation of the demand for accommodation, resulting in an overall reduction of calculation time by 50 %. The presented methods enable autonomous microsystems, such as the Artificial Accommodation System, to save significant amounts of energy, leading to extended autonomous run-times. © Georg Thieme Verlag KG Stuttgart · New York.