A quantum phase switch between a single solid-state spin and a photon
Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo
2016-06-01
Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.
A quantum phase switch between a single solid-state spin and a photon.
Sun, Shuo; Kim, Hyochul; Solomon, Glenn S; Waks, Edo
2016-06-01
Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-01
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
Decoherence-protected quantum gates for a hybrid solid-state spin register.
van der Sar, T; Wang, Z H; Blok, M S; Bernien, H; Taminiau, T H; Toyli, D M; Lidar, D A; Awschalom, D D; Hanson, R; Dobrovitski, V V
2012-04-04
Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key challenge for solid-state quantum information processing. An idle quantum bit (qubit) can be efficiently insulated from the outside world by dynamical decoupling, as has recently been demonstrated for individual solid-state qubits. However, protecting qubit coherence during a multi-qubit gate is a non-trivial problem: in general, the decoupling disrupts the interqubit dynamics and hence conflicts with gate operation. This problem is particularly salient for hybrid systems, in which different types of qubit evolve and decohere at very different rates. Here we present the integration of dynamical decoupling into quantum gates for a standard hybrid system, the electron-nuclear spin register. Our design harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate operation and decoupling. We experimentally demonstrate these gates using a two-qubit register in diamond operating at room temperature. Quantum tomography reveals that the qubits involved in the gate operation are protected as accurately as idle qubits. We also perform Grover's quantum search algorithm, and achieve fidelities of more than 90% even though the algorithm run-time exceeds the electron spin dephasing time by two orders of magnitude. Our results directly allow decoherence-protected interface gates between different types of solid-state qubit. Ultimately, quantum gates with integrated decoupling may reach the accuracy threshold for fault-tolerant quantum information processing with solid-state devices.
Experimental realization of universal geometric quantum gates with solid-state spins.
Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M
2014-10-02
Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.
Quantum error correction in a solid-state hybrid spin register.
Waldherr, G; Wang, Y; Zaiser, S; Jamali, M; Schulte-Herbrüggen, T; Abe, H; Ohshima, T; Isoya, J; Du, J F; Neumann, P; Wrachtrup, J
2014-02-13
Error correction is important in classical and quantum computation. Decoherence caused by the inevitable interaction of quantum bits with their environment leads to dephasing or even relaxation. Correction of the concomitant errors is therefore a fundamental requirement for scalable quantum computation. Although algorithms for error correction have been known for some time, experimental realizations are scarce. Here we show quantum error correction in a heterogeneous, solid-state spin system. We demonstrate that joint initialization, projective readout and fast local and non-local gate operations can all be achieved in diamond spin systems, even under ambient conditions. High-fidelity initialization of a whole spin register (99 per cent) and single-shot readout of multiple individual nuclear spins are achieved by using the ancillary electron spin of a nitrogen-vacancy defect. Implementation of a novel non-local gate generic to our electron-nuclear quantum register allows the preparation of entangled states of three nuclear spins, with fidelities exceeding 85 per cent. With these techniques, we demonstrate three-qubit phase-flip error correction. Using optimal control, all of the above operations achieve fidelities approaching those needed for fault-tolerant quantum operation, thus paving the way to large-scale quantum computation. Besides their use with diamond spin systems, our techniques can be used to improve scaling of quantum networks relying on phosphorus in silicon, quantum dots, silicon carbide or rare-earth ions in solids.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
Collective dynamics of solid-state spin chains and ensembles in quantum information processing
Ping, Yuting
This thesis is concerned with the collective dynamics in different spin chains and spin ensembles in solid-state materials. The focus is on the manipulation of electron spins, through spin-spin and spin-photon couplings controlled by voltage potentials or electromagnetic fields. A brief review of various systems is provided to describe the possible physical implementation of the ideas, and also outlines the basis of the adopted effective interaction models. The first two ideas presented explore the collective behaviour of non-interacting spin chains with external couplings. One focuses on mapping the identical state of spin-singlet pairs in two currents onto two distant, static spins downstream, creating distributed entanglement that may be accessed. The other studies a quantum memory consisting of an array of non-interacting, static spins, which may encode and decode multiple flying spins. Both chains could effectively `enhance' weak couplings in a cumulative fashion, and neither scheme requires active quantum control. Moreover, the distributed entanglement generated can offer larger separation between the qubits than more conventional protocols that only exploit the tunnelling effects between quantum dots. The quantum memory can also `smooth' the statistical fluctuations in the effects of local errors when the stored information is spread. Next, an interacting chain of static spins with nearest-neighbour interactions is introduced to connect distant end spins. Previously, it has been shown that this approach provides a cubic speed-up when compared with the direct coupling between the target spins. The practicality of this scheme is investigated by analysing realistic error effects via numerical simulations, and from that perspective relaxation of the nearest-neighbour assumption is proposed. Finally, a non-interacting electron spin ensemble is reviewed as a quantum memory to store single photons from an on-chip stripline cavity. It is then promoted to a full
An Electron-Nucleon Double Spin Solid-State Quantum Computer
Long, G L; Chen, H M; Long, Gui Lu; Ma, Ying-Jun; Chen, Hao-Ming
2003-01-01
An electron-nucleon double spin(ENDOS) solid-state quantum computer scheme is proposed. In this scheme, the qubits are the nuclear spins of phosphorus ion implanted on the (111) surface of $^{28}$Si substrate. An $^{13}$C atom on a scanning tunnelling probe tip is used both to complete single qubit and two-qubit control-not operation, and single qubit measurement. The scheme does not require interactions between qubits, and can accomplish two qubits without the use of SWAP gate. This scheme is scalable, and can be implemented with present-day or near-future technologies.
Mitrikas, George; Papavassiliou, Georgios
2009-01-01
Since the idea of quantum information processing (QIP) fascinated the scientific community, electron and nuclear spins have been regarded as promising candidates for quantum bits (qubits). A fundamental challenge in the realization of a solid-state quantum computer is the construction of fast and reliable two-qubit quantum gates. Of particular interest in this direction are hybrid systems of electron and nuclear spins, where the two qubits are coupled through the hyperfine interaction. However, the significantly different gyromagnetic ratios of electron and nuclear spins do not allow for their coherent manipulation at the same time scale. Here we demonstrate the control of the alpha-proton nuclear spin, I=1/2, coupled to the stable radical CH(COOH)2, S=1/2, in a gamma-irradiated malonic acid single crystal using only microwave pulses. We show that, depending on the state of the electron spin (mS=+1/2 or -1/2), the nuclear spin can be locked in a desired state or oscillate between mI=+1/2 and mI=-1/2 on the na...
Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories
Rieländer, Daniel; Lenhard, Andreas; Mazzera, Margherita; de Riedmatten, Hugues
2016-12-01
We report on a source of heralded narrowband (≈ 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW-1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.
Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies
Seo, Hosung; Govoni, Marco; Galli, Giulia
2016-02-01
Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.
Seo, Hosung; Govoni, Marco; Galli, Giulia
2016-02-15
Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities
Li, Tao; Deng, Fu-Guo
2016-12-01
We present an efficient proposal for error-rejecting quantum computing with quantum dots (QDs) embedded in single-sided optical microcavities based on the interface between the circularly polarized photon and QDs. An almost unity fidelity of the quantum entangling gate (EG) can be implemented with a detectable error that leads to a recycling EG procedure, which improves further the efficiency of our proposal along with the robustness to the errors involved in imperfect input-output processes. Meanwhile, we discuss the performance of our proposal for the EG on two solid-state spins with currently achieved experiment parameters, showing that it is feasible with current experimental technology. It provides a promising building block for solid-state quantum computing and quantum networks.
Observation of the Quantum Zeno Effect on a Single Solid State Spin
Wolters, Janik; Schoenfeld, Rolf Simon; Benson, Oliver
2013-01-01
The quantum Zeno effect, i.e. the inhibition of coherent quantum dynamics by projective measurements is one of the most intriguing predictions of quantum mechanics. Here we experimentally demonstrate the quantum Zeno effect by inhibiting the microwave driven coherent spin dynamics between two ground state spin levels of the nitrogen vacancy center in diamond nano-crystals. Our experiments are supported by a detailed analysis of the population dynamics via a semi-classical model.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-11-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the
Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)
2015-11-15
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy
Kampermann, H; Veeman, W S
2005-06-01
NMR quantum computing with qubit systems represented by nuclear spins (I=12) in small molecules in liquids has led to the most successful experimental quantum information processors so far. We use the quadrupolar spin-32 sodium nuclei of a NaNO3 single crystal as a virtual two-qubit system. The large quadrupolar coupling in comparison with the environmental interactions and the usage of strongly modulating pulses allow us to manipulate the system fast enough and at the same time keeping the decoherence reasonably slow. The experimental challenge is to characterize the "calculation" behavior of the quantum processor by process tomography which is here adapted to the quadrupolar spin system. The results of a selection of quantum gates and algorithms are presented as well as a detailed analysis of experimental results.
Single excitation transfer in the quantum regime. A spin-based solid-state approach
Zollitsch, Christoph Wilhelm
2016-12-02
Realisation of strong coupling between a superconducting microwave resonator and an ensemble of phosphorus donor spins, contained in an isotopically purified silicon host crystal. Investigation of the dynamical properties of the coupled system at mK temperatures and ultra-low microwave powers. The relaxation and coherence times of the coupled system were extracted by pulsed microwave spectroscopy, with the result that the hybrid system's coherence time is enhanced compared to the uncoupled spin system.
Ferguson, Kate R.; Beavan, Sarah E.; Longdell, Jevon J.; Sellars, Matthew J.
2016-07-01
Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr3 + ions doped into a Y2 SiO5 crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μ s . RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.
Ferguson, Kate R; Beavan, Sarah E; Longdell, Jevon J; Sellars, Matthew J
2016-07-01
Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr^{3+} ions doped into a Y_{2}SiO_{5} crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.
Coherent manipulation of single quantum systems in the solid state
Childress, Lilian Isabel
2007-12-01
The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.
Entanglement in a Solid State Spin Ensemble
Simmons, Stephanie; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2010-01-01
Entanglement is the quintessential quantum phenomenon and a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing (QIP) and the strongest forms of quantum cryptography. Spin ensembles, such as those in liquid state nuclear magnetic resonance, have been powerful in the development of quantum control methods, however, these demonstrations contained no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered phosphorus-doped silicon. We combined high field/low temperature electron spin resonance (3.4 T, 2.9 K) with hyperpolarisation of the 31P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% compared with the ideal state a...
Goldbourt, A
2002-01-01
Experimental and theoretical aspects of the multiple-quantum magic-angle spinning experiment (MQMAS) are discussed in this review. The significance of this experiment, introduced by Frydman and Harwood, is in its ability to provide high-resolution NMR spectra of half-integer quadrupolar nuclei (I /geq 3/2). This technique has proved to be useful in various systems ranging from inorganic materials to biological samples. This review addresses the development of various pulse schemes aimed at improving the signal-to-noise ratio and anisotropic lineshapes. Representative spectra are shown to underscore the importance and applications of the MQMAS experiment. Refs. 97 (author)
Solid-State Quantum Refrigeration
2013-03-01
determine the tilt angle of the ridge waveguide with respect to the cleavage plane. MQW Design: The designs which demonstrate the blueshift of...Photoluminescence (PL) by the photogenerated carriers are introduced. In this section the mechanisms which lead to the blueshift are explained. The...subject of this report. We propose the use of quantum confined stark shift as a method to blueshift the spectra of Matrix element of transition by
Maruyoshi, Keisuke; Iuga, Dinu; Watts, Abigail E; Hughes, Colan E; Harris, Kenneth D M; Brown, Steven P
2017-07-25
The lower detection limit for 2 distinct crystalline phases by (1)H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is investigated for a minority amount of cimetidine (anhydrous polymorph A) in a physical mixture with the anhydrous HCl salt of cimetidine. Specifically, 2-dimensional (1)H double-quantum (DQ) MAS NMR spectra of polymorph A and the anhydrous HCl salt constitute fingerprints for the presence of each of these solid forms. For solid-state NMR data recorded at a (1)H Larmor frequency of 850 MHz and a MAS frequency of 30 kHz on ∼10 mg of sample, it is shown that, by following the pair of cross-peaks at a (1)H DQ frequency of 7.4 + 11.6 = 19.0 ppm that are unique to polymorph A, the level of detection for polymorph A in a physical mixture with the anhydrous HCl salt is a concentration of 1% w/w. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Nakai, Toshihito; Toda, Mitsuru; Ashida, Jun; Hobo, Fumio; Endo, Yuki; Utsumi, Hiroaki; Nemoto, Takahiro; Mizuno, Takashi
2017-06-01
Sensitivity enhancement in solid-state nuclear magnetic resonance using a cryocoil magic-angle-spinning system was investigated, by comparing, at room temperature and at cryogenic temperature, the signal-to-noise ratios of the multiple-quantum magic-angle-spinning spectra as well as the conventional spectra for a low-γ nucleus 85Rb in RbNO3. The increase of the sample-coil quality-factor and the thermal noise reduction were found to enhance the sensitivities by approximately 4.5 times; the former yielded the further doubled signal increase in the multiple-quantum spectroscopy via the increase of the radio-frequency field strengths. Eventually, 20-30 times of the sensitivity enhancement were realized in the two-dimensional multiple-quantum magic-angle-spinning spectra.
Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.
Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P
2006-07-21
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
Hybrid Quantum Processors: molecular ensembles as quantum memory for solid state circuits
Rabl, P; Doyle, J M; Lukin, M D; Schölkopf, R J; Zoller, P
2006-01-01
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $\\mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
2015-07-15
Progress Report (ONR Award No. N00014-14-1-0804) Quantum Spin Gyroscope August 2014-July 2015 Report Type: Annual Report Primary Contact E-mail... Quantum Spin Gyroscope Grant/Contract Number: N00014-14-1-0804 Principal Investigator Name: Paola Cappellaro Program Manager: Richard Tommy Willis...required large volumes. Our project aims at overcoming these drawbacks by developing a novel solid-state quantum spin gyro- scope associated with the
Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory
Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2017-05-01
The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated photon-pair source and a quantum memory in atomic gases, which has enabled fast progress towards elementary quantum networks. In this Letter, we demonstrate a solid-state source of correlated photon pairs with embedded spin-wave quantum memory, using a rare-earth-ion-doped crystal. We show strong quantum correlations between the photons, high enough for performing quantum communication. Unlike the original DLCZ proposal, our scheme is inherently multimode thanks to a built-in rephasing mechanism, allowing us to demonstrate storage of 11 temporal modes. These results represent an important step towards the realization of complex quantum networks architectures using solid-state resources.
All-optical control of a solid-state spin using coherent dark states
Yale, Christopher G; Christle, David J; Burkard, Guido; Heremans, F Joseph; Bassett, Lee C; Awschalom, David D
2013-01-01
The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin selective intersystem crossing, while microwave electron spin resonance (ESR) techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be directly performed ...
Perspectives on a Solid State NMR Quantum Computer
Fel'dman, Edward B.; Lacelle, Serge
2001-01-01
A quantum information processing device, based on bulk solid state NMR of the quasi-one dimensional material hydroxyapatite, is proposed following the magnetic resonance force microscopy work of Yamamoto et al (quant-ph/0009122). In a macroscopic sample of hydroxyapatite, our solid state NMR model yields a limit of 10^8 qubits imposed by physics, while development of current technological considerations should allow an upper bound in the range of hundreds to thousands of qubits.
Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State
Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon
2016-10-01
Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.
Witnessing Quantum Coherence: from solid-state to biological systems
Li, Che-Ming; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco; 10.1038/srep00885
2012-01-01
Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.
Selective addressing of solid-state spins at the nanoscale via magnetic resonance frequency encoding
Zhang, H.; Arai, K.; Belthangady, C.; Jaskula, J.-C.; Walsworth, R. L.
2017-08-01
The nitrogen vacancy centre in diamond is a leading platform for nanoscale sensing and imaging, as well as quantum information processing in the solid state. To date, individual control of two nitrogen vacancy electronic spins at the nanoscale has been demonstrated. However, a key challenge is to scale up such control to arrays of nitrogen vacancy spins. Here, we apply nanoscale magnetic resonance frequency encoding to realize site-selective addressing and coherent control of a four-site array of nitrogen vacancy spins. Sites in the array are separated by 100 nm, with each site containing multiple nitrogen vacancies separated by 15 nm. Microcoils fabricated on the diamond chip provide electrically tuneable magnetic field gradients 0.1 G/nm. Tailored application of gradient fields and resonant microwaves allow site-selective nitrogen vacancy spin manipulation and sensing applications, including Rabi oscillations, imaging, and nuclear magnetic resonance spectroscopy with nanoscale resolution. Microcoil-based magnetic resonance of solid-state spins provides a practical platform for quantum-assisted sensing, quantum information processing, and the study of nanoscale spin networks.
All-optical control of a solid-state spin using coherent dark states.
Yale, Christopher G; Buckley, Bob B; Christle, David J; Burkard, Guido; Heremans, F Joseph; Bassett, Lee C; Awschalom, David D
2013-05-07
The study of individual quantum systems in solids, for use as quantum bits (qubits) and probes of decoherence, requires protocols for their initialization, unitary manipulation, and readout. In many solid-state quantum systems, these operations rely on disparate techniques that can vary widely depending on the particular qubit structure. One such qubit, the nitrogen-vacancy (NV) center spin in diamond, can be initialized and read out through its special spin-selective intersystem crossing, while microwave electron spin resonance techniques provide unitary spin rotations. Instead, we demonstrate an alternative, fully optical approach to these control protocols in an NV center that does not rely on its intersystem crossing. By tuning an NV center to an excited-state spin anticrossing at cryogenic temperatures, we use coherent population trapping and stimulated Raman techniques to realize initialization, readout, and unitary manipulation of a single spin. Each of these techniques can be performed directly along any arbitrarily chosen quantum basis, removing the need for extra control steps to map the spin to and from a preferred basis. Combining these protocols, we perform measurements of the NV center's spin coherence, a demonstration of this full optical control. Consisting solely of optical pulses, these techniques enable control within a smaller footprint and within photonic networks. Likewise, this unified approach obviates the need for both electron spin resonance manipulation and spin addressability through the intersystem crossing. This method could therefore be applied to a wide range of potential solid-state qubits, including those which currently lack a means to be addressed.
Entanglement in a solid-state spin ensemble.
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2011-02-03
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.
Quantum theory of the solid state
Callaway, Joseph
1991-01-01
This new edition presents a comprehensive, up-to-date survey of the concepts and methods in contemporary condensed matter physics, emphasizing topics that can be treated by quantum mechanical methods. The book features tutorial discussions of a number of current research topics.Also included are updated treatments of topics that have developed significantly within the past several years, such as superconductivity, magnetic impurities in metals, methods for electronic structure calculations, magnetic ordering in insulators and metals, and linear response theory. Advanced level graduate students
Entanglement entropy scaling in solid-state spin arrays via capacitance measurements
Banchi, Leonardo; Bayat, Abolfazl; Bose, Sougato
2016-12-01
Solid-state spin arrays are being engineered in varied systems, including gated coupled quantum dots and interacting dopants in semiconductor structures. Beyond quantum computation, these arrays are useful integrated analog simulators for many-body models. As entanglement between individual spins is extremely short ranged in these models, one has to measure the entanglement entropy of a block in order to truly verify their many-body entangled nature. Remarkably, the characteristic scaling of entanglement entropy, predicted by conformal field theory, has yet to be measured. Here, we show that with as few as two replicas of a spin array, and capacitive double-dot singlet-triplet measurements on neighboring spin pairs, the above scaling of the entanglement entropy can be verified. This opens up the controlled simulation of quantum field theories, as we exemplify with uniform chains and Kondo-type impurity models, in engineered solid-state systems. Our procedure remains effective even in the presence of typical imperfections of realistic quantum devices and can be used for thermometry, and to bound entanglement and discord in mixed many-body states.
Robust Solid State Quantum System Operating at 800 K
Kianinia, Mehran; Regan, Blake; Tran, Toan Trong; Ford, Michael J; Aharonovich, Igor; Toth, Milos
2016-01-01
Realization of Quantum information and communications technologies requires robust, stable solid state single photon sources. However, most existing sources cease to function above cryogenic or room temperature due to thermal ionization or strong phonon coupling which impede their emissive and quantum properties. Here we present an efficient single photon source based on a defect in a van der Waals crystal that is optically stable and operates at elevated temperatures of up to 800 K. The quantum nature of the source and the photon purity are maintained upon heating to 800 K and cooling back to room temperature. Our report of a robust high temperature solid state single photon source constitutes a significant step to-wards practical, integrated quantum technologies for real-world environments.
Seri, Alessandro; Lenhard, Andreas; Rieländer, Daniel; Gündoǧan, Mustafa; Ledingham, Patrick M.; Mazzera, Margherita; de Riedmatten, Hugues
2017-04-01
Quantum correlations between long-lived quantum memories and telecom photons that can propagate with low loss in optical fibers are an essential resource for the realization of large-scale quantum information networks. Significant progress has been realized in this direction with atomic and solid-state systems. Here, we demonstrate quantum correlations between a telecom photon and a multimode on-demand solid state quantum memory. This is achieved by mapping a correlated single photon onto a spin collective excitation in a Pr3 +:Y2SiO5 crystal for a controllable time. The stored single photons are generated by cavity-enhanced spontaneous parametric down-conversion and heralded by their partner photons at telecom wavelength. These results represent the first demonstration of a multimode on-demand solid state quantum memory for external quantum states of light. They provide an important resource for quantum repeaters and pave the way for the implementation of quantum information networks with distant solid state quantum nodes.
1D quantum simulation using a solid state platform
Kirkendall, Megan; Irvin, Patrick; Huang, Mengchen; Levy, Jeremy; Lee, Hyungwoo; Eom, Chang-Beom
Understanding the properties of large quantum systems can be challenging both theoretically and numerically. One experimental approach-quantum simulation-involves mapping a quantum system of interest onto a physical system that is programmable and experimentally accessible. A tremendous amount of work has been performed with quantum simulators formed from optical lattices; by contrast, solid-state platforms have had only limited success. Our experimental approach to quantum simulation takes advantage of nanoscale control of a metal-insulator transition at the interface between two insulating complex oxide materials. This system naturally exhibits a wide variety of ground states (e.g., ferromagnetic, superconducting) and can be configured into a variety of complex geometries. We will describe initial experiments that explore the magnetotransport properties of one-dimensional superlattices with spatial periods as small as 4 nm, comparable to the Fermi wavelength. The results demonstrate the potential of this solid-state quantum simulation approach, and also provide empirical constraints for physical models that describe the underlying oxide material properties. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL), FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).
Quantum theory of the solid state part B
Callaway, Joseph
1974-01-01
Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed
Progress of solid-state quantum computers at NRIM
Kido, G.; Shinagawa, H.; Terai, K.; Hashi, K.; Goto, A.; Yakabe, T.; Takamasu, T.; Uji, S.; Shimizu, T.; Kitazawa, H.
2001-04-01
In the last five years, we have investigated quantum phenomena of low-dimensional materials and strongly correlated electron systems at high-magnetic fields under the Center of Excellence Development Program (COE project) at the National Research Institute for Metal. The second stage towards the realization of the solid-state quantum devices and measurement of the quantum properties began in April of this year. NMR spectra have been studied in CeP and various lithium fluoride crystals in anticipation of the crystal lattice quantum computer. The magneto-transport effect on tiny aluminum devices fabricated on semiconductors has been studied, and negative magnetoresistance has clearly been observed. An SPM which can be operated at various temperatures in the presence of high-magnetic fields has been developed to construct a magnetic resonance force microscope. The magnetic field effect on the magnetic recording pattern of an HDD was clearly measured up to 7 T.
Optimized multiple quantum MAS lineshape simulations in solid state NMR
Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.
2009-10-01
The majority of nuclei available for study in solid state Nuclear Magnetic Resonance have half-integer spin I>1/2, with corresponding electric quadrupole moment. As such, they may couple with a surrounding electric field gradient. This effect introduces anisotropic line broadening to spectra, arising from distinct chemical species within polycrystalline solids. In Multiple Quantum Magic Angle Spinning (MQMAS) experiments, a second frequency dimension is created, devoid of quadrupolar anisotropy. As a result, the center of gravity of peaks in the high resolution dimension is a function of isotropic second order quadrupole and chemical shift alone. However, for complex materials, these parameters take on a stochastic nature due in turn to structural and chemical disorder. Lineshapes may still overlap in the isotropic dimension, complicating the task of assignment and interpretation. A distributed computational approach is presented here which permits simulation of the two-dimensional MQMAS spectrum, generated by random variates from model distributions of isotropic chemical and quadrupole shifts. Owing to the non-convex nature of the residual sum of squares (RSS) function between experimental and simulated spectra, simulated annealing is used to optimize the simulation parameters. In this manner, local chemical environments for disordered materials may be characterized, and via a re-sampling approach, error estimates for parameters produced. Program summaryProgram title: mqmasOPT Catalogue identifier: AEEC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3650 No. of bytes in distributed program, including test data, etc.: 73 853 Distribution format: tar.gz Programming language: C, OCTAVE Computer: UNIX
Moussa, Osama; Ryan, Colm A; Laflamme, Raymond
2011-01-01
We report the implementation of a 3-qubit quantum error correction code (QECC) on a quantum information processor realized by the magnetic resonance of Carbon nuclei in a single crystal of Malonic Acid. The code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian. We also experimentally demonstrate sufficiently high fidelity control to implement two rounds of quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic resonance, a leading test-bed for the implementation of quantum algorithms.
Moussa, Osama; Baugh, Jonathan; Ryan, Colm A; Laflamme, Raymond
2011-10-14
We report the implementation of a 3-qubit quantum error-correction code on a quantum information processor realized by the magnetic resonance of carbon nuclei in a single crystal of malonic acid. The code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian. We also experimentally demonstrate sufficiently high-fidelity control to implement two rounds of quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic resonance, a leading test bed for the implementation of quantum algorithms.
Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance
Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.
2016-04-01
We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.
Optical manipulation of Berry phase in a solid-state spin qubit
Yale, Christopher G; Zhou, Brian B; Auer, Adrian; Burkard, Guido; Awschalom, David D
2015-01-01
The phase relation between quantum states represents an essential resource for the storage and processing of quantum information. While quantum phases are commonly controlled dynamically by tuning energetic interactions, utilizing geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase control in solid-state systems rely on microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method based on stimulated Raman adiabatic passage to accumulate a geometric phase, the Berry phase, in an individual nitrogen-vacancy (NV) center in diamond. Using diffraction-limited laser light, we guide the NV center's spin along loops on the Bloch sphere to enclose arbitrary Berry phase and characterize these trajectories through time-resolved state tomography. We investigate the limits of this control due to loss of adiabiaticity and decoherence, as well as its robustness to noise intentionally introduced into t...
A long-lived and solid-state quantum memory for photons (Conference Presentation)
Afzelius, Mikael
2016-04-01
A major challenge in quantum technologies is to build an efficient and long-lived quantum memory, particularly using solid-state devices. I will here report on an experiment where we combine the AFC optical memory with spin-echo techniques to extend the memory time from a few microseconds to about 1 ms, using an Europium-doped crystal. In general the spin-echo technique allows one to control the inhomogeneous spin dephasing which often sets the storage-time limit both in solid-state systems and laser-cooled gases. However, theoretically it is has been argued that spin-echo techniques would be extremely difficult to apply without creating noise in the case of a single quanta stored in a large spin ensemble. We here show how this noise can be limited and demonstrate high signal-to-noise ratio in the output mode when storing pulses at the single-photon level. Furthermore we stored polarization qubits encoded onto weak coherent , with fidelities surpassing a classical storage scheme.
Optical manipulation of the Berry phase in a solid-state spin qubit
Yale, Christopher G.; Heremans, F. Joseph; Zhou, Brian B.; Auer, Adrian; Burkard, Guido; Awschalom, David D.
2016-03-01
Phase relations between quantum states represent a resource for storing and processing quantum information. Although quantum phases are commonly controlled dynamically by tuning energetic interactions, the use of geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase in solid-state systems employ microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method to accumulate a geometric phase, the Berry phase, in an individual nitrogen-vacancy centre in diamond. Using stimulated Raman adiabatic passage controlled by diffraction-limited laser light, we loop the nitrogen-vacancy centre's spin around the Bloch sphere to enclose an arbitrary Berry phase. We investigate the limits of this control due to the loss of adiabaticity and decoherence, as well as its robustness to noise introduced into the experimental control parameters. These techniques set the foundation for optical geometric manipulation in photonic networks of solid-state qubits linked and controlled by light.
A quantum logic gate between a solid-state quantum bit and a photon
Kim, Hyochul; Shen, Thomas C; Solomon, Glenn S; Waks, Edo; 10.1038/nphoton.2013.48
2013-01-01
Integrated quantum photonics provides a promising route towards scalable solid-state implementations of quantum networks, quantum computers, and ultra-low power opto-electronic devices. A key component for many of these applications is the photonic quantum logic gate, where the quantum state of a solid-state quantum bit (qubit) conditionally controls the state of a photonic qubit. These gates are crucial for development of robust quantum networks, non-destructive quantum measurements, and strong photon-photon interactions. Here we experimentally realize a quantum logic gate between an optical photon and a solid-state qubit. The qubit is composed of a quantum dot (QD) strongly coupled to a nano-cavity, which acts as a coherently controllable qubit system that conditionally flips the polarization of a photon on picosecond timescales, implementing a controlled-NOT (cNOT) gate. Our results represent an important step towards solid-state quantum networks and provide a versatile approach for probing QD-photon inter...
Entanglement distillation between solid-state quantum network nodes
Kalb, N.; Reiserer, A. A.; Humphreys, P. C.; Bakermans, J. J. W.; Kamerling, S. J.; Nickerson, N. H.; Benjamin, S. C.; Twitchen, D. J.; Markham, M.; Hanson, R.
2017-06-01
The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.
Theoretical Study of Solid State Quantum Information Processing
2013-08-28
Physical Review A, (02 2013): 0. doi: 10.1103/PhysRevA.87.022332 08/28/2013 30.00 Peihao Huang, Xuedong Hu. Spin qubit relaxation in a moving quantum dot, Physical Review B, (08 2013): 0. doi: 10.1103/PhysRevB.88.075301 08/28/2013 29.00 Lukasz Cywinski, Xuedong Hu, S. Das Sarma, Jo-Tzu Hung. Hyperfine interaction induced dephasing of coupled spin qubits in semiconductor double quantum dots, Physical Review B, (08 2013): 0. doi: 10.1103/PhysRevB.88.085314 08/28/2013 28.00 Ting Yu, WenXian Zhang, XueDong Hu,
All-optical quantum computing with a hybrid solid-state processing unit
Pei, Pei; Li, Chong
2011-01-01
We develop an architecture of hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have prominent advantage of the insensitivity to dissipation process due to the virtual excitation of subsystems. Moreover, the QND measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid systems can merge and be integrated into one quantum processor afterwards.
Engineering the quantum-classical interface of solid-state qubits
Reilly, David J.
2015-10-01
Spanning a range of hardware platforms, the building-blocks of quantum processors are today sufficiently advanced to begin work on scaling-up these systems into complex quantum machines. A key subsystem of all quantum machinery is the interface between the isolated qubits that encode quantum information and the classical control and readout technology needed to operate them. As few-qubit devices are combined to construct larger, fault-tolerant quantum systems in the near future, the quantum-classical interface will pose new challenges that increasingly require approaches from the engineering disciplines in combination with continued fundamental advances in physics, materials and mathematics. This review describes the subsystems comprising the quantum-classical interface from the viewpoint of an engineer, experimental physicist or student wanting to enter the field of solid-state quantum information technology. The fundamental signalling operations of readout and control are reviewed for a variety of qubit platforms, including spin systems, superconducting implementations and future devices based on topological degrees-of-freedom. New engineering opportunities for technology development at the boundary between qubits and their control hardware are identified, transversing electronics to cryogenics.
Quantum dots enabled LCD displays and solid-state lighting
Bi, Wengang; Xu, Shu; Geng, Chong; Zhao, Fei; Jiang, Xiaofang
2016-09-01
Quantum dots (QDs) with unique properties have evolved to be a key player in the next generation display and lighting applications. Followed by studies on the optimization of QD nanomaterials with low self-absorption properties, we analyze and identify the key parameters of the QDs that impact the color gamut and energy efficiency features of LCD displays using QD-enabled LED backlights, which consist of red and green QDs as well as blue LEDs that act as pumping sources. It is found that both the full width at half maximum (FWHM) and the emission peak positions of the green and the red QDs affect the color gamut. A narrower FWHM for both color QDs is preferred to achieve a wider color gamut while a combination of green QDs with shorter wavelength and red QDs with longer wavelength within the studied wavelength range (520 nm to 540 nm for the green and 610 nm to 635 nm for the red) is also desired. Nevertheless, QD-enabled LED backlight with a combination of longer-wavelength green QDs and shorter-wavelength red QDs is more energy efficient than the reverse case. Therefore, one needs balance these two key factors based on the targeted display performance requirements. On the solid-state lighting application side with QDs, we propose and show a QD-enabled LED light engine architecture that is more energy efficient with high light quality.
Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
Bussieres, Felix [Group of Applied Physics, University of Geneva (Switzerland)
2014-07-01
Quantum teleportation is a cornerstone of quantum information science due to its essential role in several important tasks such as the long-distance transmission of quantum information using quantum repeaters. In this context, a challenge of paramount importance is the distribution of entanglement between remote nodes, and to use this entanglement as a resource for long-distance light-to-matter quantum teleportation. In this talk I will report on the demonstration of quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying qubit carrying the polarization state to be teleported, which heralds the teleportation. The fidelity of the polarization state of the photon retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. This light-to-matter teleportation channel paves the way towards long-distance implementations of quantum networks with solid-state quantum memories.
Zhang, Kai; Nusran, N. M.; Slezak, B. R.; Gurudev Dutt, M. V.
2016-05-01
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically by careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (∼10) operations. This occurs inspite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. We have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.
1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.
Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke
2015-12-01
This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.
Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance.
Qiang, Wei; Tycko, Robert
2012-09-14
We present the theoretical description and experimental demonstration of a zero-quantum stochastic dipolar recoupling (ZQ-SDR) technique for solid state nuclear magnetic resonance (NMR) studies of (13)C-labeled molecules, including proteins, under magic-angle spinning (MAS). The ZQ-SDR technique combines zero-quantum recoupling pulse sequence blocks with randomly varying chemical shift precession periods to create randomly amplitude- and phase-modulated effective homonuclear magnetic dipole-dipole couplings. To a good approximation, couplings between different (13)C spin pairs become uncorrelated under ZQ-SDR, leading to spin dynamics (averaged over many repetitions of the ZQ-SDR sequence) that are fully described by an orientation-dependent N × N polarization transfer rate matrix for an N-spin system, with rates that are inversely proportional to the sixth power of internuclear distances. Suppression of polarization transfers due to non-commutivity of pairwise couplings (i.e., dipolar truncation) does not occur under ZQ-SDR, as we show both analytically and numerically. Experimental demonstrations are reported for uniformly (13)C-labeled L-valine powder (at 14.1 T and 28.00 kHz MAS), uniformly (13)C-labeled protein GB1 in microcrystalline form (at 17.6 T and 40.00 kHz MAS), and partially labeled (13)C-labeled protein GB1 (at 14.1 T and 40.00 kHz MAS). The experimental results verify that spin dynamics under ZQ-SDR are described accurately by rate matrices and suggest the utility of ZQ-SDR in structural studies of (13)C-labeled solids.
Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
Bussières, Félix; Clausen, Christoph; Tiranov, Alexey; Korzh, Boris; Verma, Varun B.; Nam, Sae Woo; Marsili, Francesco; Ferrier, Alban; Goldner, Philippe; Herrmann, Harald; Silberhorn, Christine; Sohler, Wolfgang; Afzelius, Mikael; Gisin, Nicolas
2014-10-01
Quantum teleportation is a cornerstone of quantum information science due to its essential role in important tasks such as the long-distance transmission of quantum information using quantum repeaters. This requires the efficient distribution of entanglement between remote nodes of a network. Here, we demonstrate quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion-doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying polarization qubit to be teleported, which heralds the teleportation. The fidelity of the qubit retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. Our results demonstrate the possibility of long-distance quantum networks with solid-state resources.
Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.
Fekete, Julia; Rieländer, Daniel; Cristiani, Matteo; de Riedmatten, Hugues
2013-05-31
We report on a source of ultranarrow-band photon pairs generated by widely nondegenerate cavity-enhanced spontaneous down-conversion. The source is designed to be compatible with Pr(3+) solid state quantum memories and telecommunication optical fibers, with signal and idler photons close to 606 nm and 1436 nm, respectively. Both photons have a spectral bandwidth around 2 MHz, matching the bandwidth of Pr(3+) doped quantum memories. This source is ideally suited for long distance quantum communication architectures involving solid state quantum memories.
Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR
Rosay, Melanie; Blank, Monica; Engelke, Frank
2016-03-01
Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.
Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system
Sun, Guozhu; Wen, Xueda; Mao, Bo; Chen, Jian; Yu, Yang; Wu, Peiheng; Han, Siyuan
2010-01-01
Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling single- and bi-partite quantum systems, coherent control of quantum wave function in multipartite systems involving artificial solid-state qubits has been hampered due to the relatively short decoherence time and lack of precise control methods. Here we report the creation and coherent manipulation of quantum states in a tripartite quantum system, which is formed by a superconducting qubit coupled to two microscopic two-level systems (TLSs). The avoided crossings in the system's energy-level spectrum due to the qubit–TLS interaction act as tunable quantum beam splitters of wave functions. Our result shows that the Landau–Zener–Stückelberg interference has great potential in precise control of the quantum states in the tripartite system. PMID:20975719
Quantum control and coherence of interacting spins in diamond
De Lange, G.
2012-01-01
The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum comp
Quantum control and coherence of interacting spins in diamond
De Lange, G.
2012-01-01
The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum comp
Emulating weak localization using a solid-state quantum circuit.
Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M
2014-10-14
Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.
Theoretical approaches to control spin dynamics in solid-state nuclear magnetic resonance
Eugene Stephane Mananga
2015-12-01
This article reviews theoretical approaches for controlling spin dynamics in solid-state nuclear magnetic resonance. We present fundamental theories in the history of NMR, namely, the average Hamiltonian and Floquet theories. We also discuss emerging theories such as the Fer and Floquet-Magnus expansions. These theories allow one to solve the time-dependent Schrodinger equation, which is still the central problem in spin dynamics of solid-state NMR. Examples from the literature that highlight several applications of these theories are presented, and particular attention is paid to numerical integrators and propagator operators. The problem of time propagation calculated with Chebychev expansion and the future development of numerical directions with the Cayley transformation are considered. The bibliography includes 190 references.
A rubidium Mx-magnetometer for measurements on solid state spins
Arnold, Daniel; Siegel, Steven; Grisanti, Emily; Wrachtrup, Jörg; Gerhardt, Ilja
2017-02-01
The detection of environmental magnetic fields is well established by optically pumped atomic magnetometers. Another focus of magnetometry can be the research on magnetic or spin-active solid-state samples. Here we introduce a simple and compact design of a rubidium-based Mx magnetometer, which allows for hosting solid-state samples. The optical, mechanical, and electrical design is reported, as well as simple measurements which introduce the ground-state spin-relaxation time, the signal-to-noise ratio of a measurement, and subsequently the overall sensitivity of the magnetometer. The magnetometer is optimized for the most sensitive operation with respect to laser power and magnetic field excitation at the Larmor frequency.
A Rubidium M$_{\\mathrm{x}}$-magnetometer for Measurements on Solid State Spins
Arnold, Daniel; Grisanti, Emily; Wrachtrup, Jörg; Gerhardt, Ilja
2016-01-01
The detection of environmental magnetic fields is well established by optically pumped atomic magnetometers. Another focus of magnetometry can be the research on magnetic or spin-active solid-state samples. Here we introduce a simple and compact design of a rubidium-based M$_{\\mathrm{x}}$-magnetometer, which allows for hosting solid-state samples. The optical, mechanical and electrical design is reported, as well as simple measurements which introduce the ground-state spin-relaxation time, the signal-to-noise ratio of a measurement, and subsequently the overall sensitivity of the magnetometer. The magnetometer is optimized for the most sensitive operation with respect to laser power and magnetic field excitation at the Larmor frequency.
Principles of spin-echo modulation by J-couplings in magic-angle-spinning solid-state NMR.
Duma, Luminita; Lai, Wai Cheu; Carravetta, Marina; Emsley, Lyndon; Brown, Steven P; Levitt, Malcolm H
2004-06-21
In magic-angle-spinning solid-state NMR, the homonuclear J-couplings between pairs of spin-1/2 nuclei may be determined by studying the modulation of the spin echo induced by a pi-pulse, as a function of the echo duration. We present the theory of J-induced spin-echo modulation in magic-angle-spinning solids, and derive a set of modulation regimes which apply under different experimental conditions. In most cases, the dominant spin-echo modulation frequency is exactly equal to the J-coupling. Somewhat surprisingly, the chemical shift anisotropies and dipole-dipole couplings tend to stabilise--rather than abscure--the J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing 13C spin pairs.
Third emission mechanism in solid-state nanocavity quantum electrodynamics.
Yamaguchi, Makoto; Asano, Takashi; Noda, Susumu
2012-09-01
Photonic crystal (PC) nanocavities have been receiving a great deal of attention recently because of their ability to strongly confine photons in a tiny space with a high quality factor. According to cavity quantum electrodynamics (cavity QED), such confined photons can achieve efficient interactions with excitons in semiconductors, leading to the Purcell effect in the weak coupling regime and vacuum Rabi splitting (VRS) in the strong coupling regime. These features are promising for applications such as quantum information processing, highly efficient single photon sources and ultra-low threshold lasers. In this context, the coupled system of a semiconductor quantum dot (QD) and a PC nanocavity has been intensively investigated in recent years.Although experimental reports have demonstrated such fundamental features, two anomalous phenomena have also been observed. First, photon emission from the cavity occurs even when it is significantly detuned from the QD. Second, spectral triplets are formed by additional bare-cavity lines between the VRS lines. These features cannot be explained by standard cavity QED theories and have prompted controversy regarding their physical mechanisms. In this review we describe the recent experimental and theoretical progress made in the investigation of these phenomena. Similar mechanisms will also occur in many other coupled quantum systems, and thus the findings are applicable to a wide range of fields.
Quantum Error Correction and the Future of Solid State Quantum Computing
Divincenzo, David
Quantum error correction (QEC) theory has provided a very challenging but well defined goal for the further development of solid state qubit systems: achieve high enough fidelity so that fault-tolerant, error-corrected quantum computation in networks of these qubits becomes possible. I will begin by touching on some historical points: initial work on QEC is actually more than 20 years old, and the landmark work of Kitaev in 1996 which established 2D lattice structures as a suitable host for effective error correction, has its roots in theoretical work in many-body theory from Wegner in the 1970s. I will give some perspective on current developments in the implementation of small fragments of the surface code. The surface-code concept has driven a number of distinct requirements, beyond the reduction of error rates below the 1% range, that are actively considered as experiments are scaled beyond the 10-qubit level. Support of JARA FIT is acknolwedged.
Lupulescu, Adonis; Frydman, Lucio
2011-10-01
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice.
Fully tuneable, Purcell-enhanced solid-state quantum emitters
Petruzzella, M., E-mail: m.petruzzella@tue.nl; Xia, T.; Pagliano, F.; Birindelli, S.; Zobenica, Z.; Fiore, A. [COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, NL-5600MB Eindhoven (Netherlands); Midolo, L. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Li, L. H.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)
2015-10-05
We report the full energy control over a semiconductor cavity-emitter system, consisting of single Stark-tunable quantum dots embedded in mechanically reconfigurable photonic crystal membranes. A reversible wavelength tuning of the emitter over 7.5 nm as well as an 8.5 nm mode shift are realized on the same device. Harnessing these two electrical tuning mechanisms, a single exciton transition is brought on resonance with the cavity mode at several wavelengths, demonstrating a ten-fold enhancement of its spontaneous emission. These results open the way to bring several cavity-enhanced emitters mutually into resonance and therefore represent a key step towards scalable quantum photonic circuits featuring multiple sources of indistinguishable single photons.
Graphene quantum dots as the electrolyte for solid state supercapacitors
Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu
2016-01-01
We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization.
Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.
Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko
2014-03-01
Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.
Application Of Density Matrix Methods To Quadrupolar Spins In Solid State Nmr And Nqr
Ageev, S Z
1997-01-01
Spin dynamics in solid state NMR and NQR are studied using spin density matrix theory. First, the response of spin 7/2 subject to the first order quadrupolar interaction, excited by one and two pulse sequences is examined. Specific pulse sequences with appropriate phase cycling designed for detection of MQ coherences developed during the first pulse are calculated analytically. The results are applied to the determination of quadrupolar parameters and true chemical shifts utilizing a 1D nutation experiment. Solomon echoes under soft pulse excitation are also considered for spin 7/2. Second, analytical solutions of off-resonance nutation line intensities for spin 3/2 are presented. The first order quadrupolar interaction is retained during the pulse. The third case puts forward a new theory of composite pulses in NQR. Shaped pulses are also considered. The calculation is valid for a non-zero asymmetry parameter and arbitrary orientation of the rf field. The results are generalized for half integer spins of mag...
Del Duce, A; Bayvel, P
2009-01-01
We analyse the design and optimisation of quantum logic circuits suitable for the experimental demonstration of a three-qubit quantum computation prototype based on optically-controlled, solid-state quantum logic gates. In these gates, the interaction between two qubits carried by the electron-spin of donors is mediated by the optical excitation of a control particle placed in their proximity. First, we use a geometrical approach for analysing the entangling characteristics of these quantum gates. Then, using a genetic programming algorithm, we develop circuits for the refined Deutsch-Jozsa algorithm investigating different strategies for obtaining short total computational times. We test two separate approaches based on using different sets of entangling gates with the shortest possible gate computation time which, however, does not introduce leakage of quantum information to the control particles. The first set exploits fast approximations of controlled-phase gates as entangling gates, while the other one a...
Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor
Yao, Norman Y; Gorshkov, Alexey V; Maurer, Peter C; Giedke, Geza; Cirac, J Ignacio; Lukin, Mikhail D
2010-01-01
The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Much progress has been made towards this goal. Indeed, quantum operations have been demonstrated on several trapped ion qubits, and other solid-state systems are approaching similar levels of control. Extending these techniques to achieve fault-tolerant operations in larger systems with more qubits remains an extremely challenging goal, in part, due to the substantial technical complexity of current implementations. Here, we propose and analyze an architecture for a scalable, solid-state quantum information processor capable of operating at or near room temperature. The architecture is applicable to realistic conditions, which include disorder and relevant decoherence mechanisms, and includes a hierarchy of control at successive length scales. Our approach is based upon recent experimental advances involving Nitrogen-Vacancy colo...
Dissipative preparation of entanglement in quantum optical and solid state systems
Reiter, Florentin
Quantum mechanics is an immensely successful theory which is essential for the explanation of numerous phenomena in atomic physics, solid state physics, nuclear physics and elementary particle physics. Quantum theory also involves effects which have no analogy in the classical world. In particular...... superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of two qubits. We find that high fidelities......, quantum entanglement is a correlation predicted by quantum mechanics, but not by classical physics. As an observable property it is indispensable for our understanding of nature. In addition, entangled states are important in quantum computation, quantum communication and quantum measurement protocols...
Solid state multi-ensemble quantum computer in waveguide circuit model
Moiseev, Sergey A; Gubaidullin, Firdus F
2010-01-01
The first realization of solid state quantum computer was demonstrated recently by using artificial atoms -- transmons in superconducting resonator. Here, we propose a novel architecture of flexible and scalable quantum computer based on a waveguide circuit coupling many quantum nodes of controlled atomic ensembles. For the first time, we found the optimal practically attainable parameters of the atoms and circuit for 100{%} efficiency of quantum memory for multi qubit photon fields and confirmed experimentally the predicted perfect storage. Then we revealed self modes for reversible transfer of qubits between the quantum memory node and arbitrary other nodes. We found a realization of iSWAP gate via direct coupling of two arbitrary nodes with a processing rate accelerated proportionally to number of atoms in the node. A large number of the two-qubit gates can be simultaneously realized in the circuit for implementation of parallel quantum processing. Dynamic coherent elimination procedure of excess quantum s...
Riedel, Kerstin; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai [Institut fuer Molekulare Biotechnologie, Abteilung Molekulare Biophysik/NMR-Spektroskopie (Germany)], E-mail: raman@imb-jena.de
2005-04-15
It is demonstrated that the spatial proximity of {sup 1}H nuclei in hydrogen bonded base-pairs in RNAs can be conveniently mapped via magic angle spinning solid state NMR experiments involving proton spin diffusion driven chemical shift correlation of low gamma nuclei such as the imino and amino nitrogens of nucleic acid bases. As different canonical and non-canonical base-pairing schemes encountered in nucleic acids are characterised by topologically different networks of proton dipolar couplings, different base-pairing schemes lead to characteristic cross-peak intensity patterns in such correlation spectra. The method was employed in a study of a 100 kDa RNA composed of 97 CUG repeats, or (CUG){sub 97} that has been implicated in the neuromuscular disease myotonic dystrophy. {sup 15}N-{sup 15}N chemical shift correlation studies confirm the presence of Watson-Crick GC base pairs in (CUG){sub 97}.
Quantum information storage and state transfer based on spin systems
Song, Z
2004-01-01
The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.
Prati, Enrico
2015-07-01
Long living coherent quantum states have been observed in biological systems up to room temperature. Light harvesting in chromophoresis realized by excitonic systems living at the edge of quantum chaos, where energy level distribution becomes semi-Poissonian. On the other hand, artificial materials suffer the loss of coherence of quantum states in quantum information processing, but semiconductor materials are known to exhibit quantum chaotic conditions, so the exploitation of similar conditions are to be considered. The advancements of nanofabrication, together with the control of implantation of individual atoms at nanometric precision, may open the experimental study of such special regime at the edge of the phase transitions for the electronic systems obtained by implanting impurity atoms in a silicon transistor. Here I review the recent advancements made in the field of theoretical description of the light harvesting in biological system in its connection with phase transitions at the few atoms scale and how it would be possible to achieve transition point to quantum chaotic regime. Such mechanism may thus preserve quantum coherent states at room temperature in solid state devices, to be exploited for quantum information processing as well as dissipation-free quantum electronics.
Scalable architecture for a room temperature solid-state quantum information processor.
Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D
2012-04-24
The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.
Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.
Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj
2016-02-01
Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.
Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.
High-resolution vector microwave magnetometry based on solid-state spins in diamond.
Wang, Pengfei; Yuan, Zhenheng; Huang, Pu; Rong, Xing; Wang, Mengqi; Xu, Xiangkun; Duan, Changkui; Ju, Chenyong; Shi, Fazhan; Du, Jiangfeng
2015-03-23
The measurement of the microwave field is crucial for many developments in microwave technology and related applications. However, measuring microwave fields with high sensitivity and spatial resolution under ambient conditions remains elusive. In this work, we propose and experimentally demonstrate a scheme to measure both the strength and orientation of the microwave magnetic field by utilizing the quantum coherent dynamics of nitrogen vacancy centres in diamond. An angular resolution of 5.7 mrad and a sensitivity of 1.0 μT Hz(-1/2) are achieved at a microwave frequency of 2.6000 GHz, and the microwave magnetic field vectors generated by a copper wire are precisely reconstructed. The solid-state microwave magnetometry with high resolution and wide frequency range that can work under ambient conditions proposed here enables unique potential applications over other state-of-art microwave magnetometry.
Epitaxial lift-off for solid-state cavity quantum electrodynamics
Greuter, Lukas; Najer, Daniel; Kuhlmann, Andreas V.; Starosielec, Sebastian; Warburton, Richard J. [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056 (Switzerland); Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
2015-08-21
We demonstrate an approach to incorporate self-assembled quantum dots into a Fabry-Pérot-like microcavity. Thereby, a 3λ/4 GaAs layer containing quantum dots is epitaxially removed and attached by van der Waals bonding to one of the microcavity mirrors. We reach a finesse as high as 4100 with this configuration limited by the reflectivity of the dielectric mirrors and not by scattering at the semiconductor-mirror interface, demonstrating that the epitaxial lift-off procedure is a promising procedure for cavity quantum electrodynamics in the solid state. As a first step in this direction, we demonstrate a clear cavity-quantum dot interaction in the weak coupling regime with a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell factor suggest that we are close to the strong coupling regime.
Epitaxial lift-off for solid-state cavity quantum electrodynamics
Greuter, Lukas; Kuhlmann, Andreas V; Valentin, Sascha; Ludwig, Arne; Wieck, Andreas D; Starosielec, Sebastian; Warburton, Richard J
2015-01-01
We present a new approach to incorporate self-assembled quantum dots into a Fabry-P\\'{e}rot-like microcavity. Thereby a 3$\\lambda$/4 GaAs layer containing quantum dots is epitaxially removed and attached by van der Waals bonding to one of the microcavity mirrors. We reach a finesse as high as 4,100 with this configuration limited by the reflectivity of the dielectric mirrors and not by scattering at the semiconductor - mirror interface, demonstrating that the epitaxial lift-off procedure is a promising procedure for cavity quantum electrodynamics in the solid state. As a first step in this direction, we demonstrate a clear cavity-quantum dot interaction in the weak coupling regime with a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell factor suggests that we are close to the strong coupling regime.
Dissipative preparation of entanglement in quantum optical and solid state systems
Reiter, Florentin
Quantum mechanics is an immensely successful theory which is essential for the explanation of numerous phenomena in atomic physics, solid state physics, nuclear physics and elementary particle physics. Quantum theory also involves effects which have no analogy in the classical world. In particular....... Entangled states are, however, sensitive to interactions with the environment, which are present in any open system. Here, in particular decoherence, i.e. loss of coherence, and dissipation, i.e. loss of energy, destroy the desired correlations. The novel approach of “dissipative quantum computing......-particle entangled states in several concrete physical systems such as optical cavities, trapped ions, and superconducting qubits. To study the dynamics of open quantum systems, we first develop an operator formalism which allows us to identify the effective interactions. Eliminating the decaying states from...
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
Faithful solid state optical memory with dynamically decoupled spin wave storage.
Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe
2013-07-12
We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.
Madhu, P K
2009-02-01
High-resolution NMR spectroscopy of (1)H spins in the solid state is normally rendered difficult due to the strong homonuclear (1)H-(1)H dipolar couplings. Even under very high-speed magic-angle spinning (MAS) at ca. 60-70kHz, these couplings are not completely removed. An appropriate radiofrequency pulse scheme is required to average out the homonuclear dipolar interactions in combination with MAS to get high-resolution (1)H NMR spectrum in solid state. Several schemes have been introduced in the recent past with a variety of applications also envisaged. Development of some of these schemes has been made possible with a clear understanding of the underlying spin physics based on bimodal Floquet theory. The utility of these high-resolution pulse schemes in combination with MAS has been demonstrated for spinning speeds of 10-65kHz in a range of (1)H Larmor frequencies from 300 to 800MHz.
Direct observation of large quantum interference effect in anthraquinone solid-state junctions.
Rabache, Vincent; Chaste, Julien; Petit, Philippe; Della Rocca, Maria Luisa; Martin, Pascal; Lacroix, Jean-Christophe; McCreery, Richard L; Lafarge, Philippe
2013-07-17
Quantum interference in cross-conjugated molecules embedded in solid-state devices was investigated by direct current-voltage and differential conductance transport measurements of anthraquinone (AQ)-based large area planar junctions. A thin film of AQ was grafted covalently on the junction base electrode by diazonium electroreduction, while the counter electrode was directly evaporated on top of the molecular layer. Our technique provides direct evidence of a large quantum interference effect in multiple CMOS compatible planar junctions. The quantum interference is manifested by a pronounced dip in the differential conductance close to zero voltage bias. The experimental signature is well developed at low temperature (4 K), showing a large amplitude dip with a minimum >2 orders of magnitude lower than the conductance at higher bias and is still clearly evident at room temperature. A temperature analysis of the conductance curves revealed that electron-phonon coupling is the principal decoherence mechanism causing large conductance oscillations at low temperature.
Recombination barrier layers in solid-state quantum dot-sensitized solar cells
Roelofs, Katherine E.
2012-06-01
By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.
Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing
Gullans, Michael John
Quantum information science involves the use of precise control over quantum systems to explore new technologies. However, as quantum systems are scaled up they require an ever deeper understanding of many-body physics to achieve the required degree of control. Current experiments are entering a regime which requires active control of a mesoscopic number of coupled quantum systems or quantum bits (qubits). This thesis describes several approaches to this goal and shows how mesoscopic quantum systems can be controlled and utilized for quantum information tasks. The first system we consider is the nuclear spin environment of GaAs double quantum dots containing two electrons. We show that the through appropriate control of dynamic nuclear polarization one can prepare the nuclear spin environment in three distinct collective quantum states which are useful for quantum information processing with electron spin qubits. We then investigate a hybrid system in which an optical lattice is formed in the near field scattering off an array of metallic nanoparticles by utilizing the plasmonic resonance of the nanoparticles. We show that such a system would realize new regimes of dense, ultra-cold quantum matter and can be used to create a quantum network of atoms and plasmons. Finally we investigate quantum nonlinear optical systems. We show that the intrinsic nonlinearity for plasmons in graphene can be large enough to make a quantum gate for single photons. We also consider two nonlinear optical systems based on ultracold gases of atoms. In one case, we demonstrate an all-optical single photon switch using cavity quantum electrodynamics (QED) and slow light. In the second case, we study few photon physics in strongly interacting Rydberg polariton systems, where we demonstrate the existence of two and three photon bound states and study their properties.
Quantum Computation and Spin Electronics
DiVincenzo, David P.; Burkard, Guido; Loss, Daniel; Sukhorukov, Eugene V.
1999-01-01
In this chapter we explore the connection between mesoscopic physics and quantum computing. After giving a bibliography providing a general introduction to the subject of quantum information processing, we review the various approaches that are being considered for the experimental implementation of quantum computing and quantum communication in atomic physics, quantum optics, nuclear magnetic resonance, superconductivity, and, especially, normal-electron solid state physics. We discuss five ...
Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise
Bellomo, B.; Compagno, G.; D'Arrigo, A.; Falci, G.; Lo Franco, R.; Paladino, E.
2010-06-01
We study entanglement degradation of two noninteracting qubits subject to independent baths with broadband spectra typical of solid-state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low-frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high-frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility of implementing on-chip local and entangling operations is briefly discussed.
Entanglement degradation in the solid state: interplay of adiabatic and quantum noise
Bellomo, B; D'Arrigo, A; Falci, G; Franco, R Lo; Paladino, E
2010-01-01
We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.
A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters
Sara L. Mouradian
2017-04-01
Full Text Available Photonic nanocavities in diamond have emerged as useful structures for interfacing photons and embedded atomic color centers, such as the nitrogen vacancy center. Here, we present a hybrid nanocavity design that enables (i a loaded quality factor exceeding 50 000 (unloaded Q>106 with 75% of the enhanced emission collected into an underlying waveguide circuit, (ii MEMS-based cavity spectral tuning without straining the diamond, and (iii the use of a diamond waveguide with straight sidewalls to minimize surface defects and charge traps. This system addresses the need for scalable on-chip photonic interfaces to solid-state quantum emitters.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2015-08-01
We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ˜0.7 ms up to ˜30 ms . We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
Quantum Effects in Higher-Order Correlators of a Quantum-Dot Spin Qubit
Bechtold, A.; Li, F.; Müller, K.; Simmet, T.; Ardelt, P.-L.; Finley, J. J.; Sinitsyn, N. A.
2016-07-01
We measure time correlators of a spin qubit in an optically active quantum dot beyond the second order. Such higher-order correlators are shown to be directly sensitive to pure quantum effects that cannot be explained within the classical framework. They allow direct determination of ensemble and quantum dephasing times, T2* and T2, using only repeated projective measurements and without the need for coherent spin control. Our method enables studies of purely quantum behavior in solid state systems, including tests of the Leggett-Garg type of inequalities that rule out local hidden variable interpretation of the quantum-dot spin dynamics.
A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy
Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk [Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Madhu, P. K., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075 (India)
2015-05-14
A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multi-photons (multi-photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with $1$, $20$ and $100$ narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scal...
Stranius, K.; Börjesson, K.
2017-01-01
Photoswitchable molecules are able to isomerize between two metastable forms through light stimuli. Originally being studied by photochemists, this type of molecule has now found a wide range of applications within physics, chemistry and biology. The extensive usage of photochromic molecules is due to the two isomers having fundamentally different physical and chemical properties. The most important attribute of a photoswitch is the photoisomerization quantum yield, which defines the efficiency of the photoisomerization event. Here we show how to determine the photoisomerization quantum yield in the solid state and in solution when taking thermal processes into account. The described method together with provided software allows for rapid and accurate determination of the isomerization process for this important class of molecules.
Tunable Solid-State Quantum Memory Using Rare-Earth-Ion-Doped Crystal, Nd3(+):GaN
2017-04-26
Research Initiative was to work on developing solid-state quantum memory using cryogenically cooled rare- earth -ion-doped crystal, Nd3+:GaN. The samples...Initiative (DRI) was to work on developing solid-state quantum memory using cryogenically cooled rare- earth -ion- doped crystal, Nd3+:GaN. The samples were...Caltech group has been working in the area of quantum information of rare- earth doped solids for a number of years and is well equipped to perform
Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling
Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.
2016-04-01
In this work, we optimize a dynamical decoupling (DD) protocol to improve the spin coherence properties of a dense ensemble of nitrogen-vacancy (NV) centers in diamond. Using liquid nitrogen-based cooling and DD microwave pulses, we increase the transverse coherence time T2 from ˜ 0.7 ms up to ˜ 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. After performing a detailed analysis of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the concatenated XY8 pulse sequences serves as the optimal control scheme for preserving an arbitrary spin state. Finally, we use the concatenated sequences to demonstrate an immediate improvement of the AC magnetic sensitivity up to a factor of two at 250 kHz. For future work, similar protocols may be used to increase coherence times up to NV-NV interaction time scales, a major step toward the creation of quantum collective NV spin states.
Building a spin quantum bit register using semiconductor nanowires.
Baugh, J; Fung, J S; Mracek, J; LaPierre, R R
2010-04-02
This paper reviews recent advances in engineering spin quantum bits (qubits) in semiconductor quantum dots and describes an approach based on top-gated semiconductor nanowire devices. Fast electrical single-spin manipulation is achievable, in principle, using the spin-orbit interaction intrinsic to III-V materials, such as InAs, in concert with AC electric fields. Combined with sub-nanosecond gate control of the nearest-neighbor exchange interaction and spin readout by spin-to-charge conversion, a fully electrical solid-state quantum processor is within reach. We outline strategies for spin manipulation, robust readout and mitigation of decoherence due to nuclear fields that, when combined in a single device, should give a viable multi-qubit testbed and a building block for larger scale quantum devices.
Improved color metrics in solid-state lighting via utilization of on-chip quantum dots
Mangum, Benjamin D.; Landes, Tiemo S.; Theobald, Brian R.; Kurtin, Juanita N.
2017-02-01
While Quantum Dots (QDs) have found commercial success in display applications, there are currently no widely available solid state lighting products making use of QD nanotechnology. In order to have real-world success in today's lighting market, QDs must be capable of being placed in on-chip configurations, as remote phosphor configurations are typically much more expensive. Here we demonstrate solid-state lighting devices made with on-chip QDs. These devices show robust reliability under both dry and wet high stress conditions. High color quality lighting metrics can easily be achieved using these narrow, tunable QD downconverters: CRI values of Ra > 90 as well as R9 values > 80 are readily available when combining QDs with green phosphors. Furthermore, we show that QDs afford a 15% increase in overall efficiency compared to traditional phosphor downconverted SSL devices. The fundamental limit of QD linewidth is examined through single particle QD emission studies. Using standard Cd-based QD synthesis, it is found that single particle linewidths of 20 nm FWHM represent a lower limit to the narrowness of QD emission in the near term.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Optimization of a solid-state electron spin qubit using gate set tomography
Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin; Rudinger, Kenneth M.; King Gamble, John; Nielsen, Erik; Laucht, Arne; Simmons, Stephanie; Kalra, Rachpon; Dzurak, Andrew S.; Morello, Andrea
2016-10-01
State of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate set tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereas GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of 99.942(8) % , an improvement on the previous value of 99.90(2) % . Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Coherence and control of quantum registers based on electronic spin in a nuclear spin bath.
Cappellaro, P; Jiang, L; Hodges, J S; Lukin, M D
2009-05-29
We consider a protocol for the control of few-qubit registers comprising one electronic spin embedded in a nuclear spin bath. We show how to isolate a few proximal nuclear spins from the rest of the bath and use them as building blocks for a potentially scalable quantum information processor. We describe how coherent control techniques based on magnetic resonance methods can be adapted to these solid-state spin systems, to provide not only efficient, high fidelity manipulation but also decoupling from the spin bath. As an example, we analyze feasible performances and practical limitations in the realistic setting of nitrogen-vacancy centers in diamond.
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
STRUCTURAL STUDIES OF BIOMATERIALS USING DOUBLE-QUANTUM SOLID-STATE NMR SPECTROSCOPY
Drobny, Gary P.; Long, J. R.; Karlsson, T.; Shaw, Wendy J.; Popham, Jennifer M.; Oyler, N.; Bower, Paula M.; Stringer, J.; Gregory, D.; Mehta, M.; Stayton, Patrick S.
2004-10-31
Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition mechanisms at this interface may provide design principles for advanced materials development in medical and ceramic composites technologies. Here, we describe both the theory and practice of double-quantum solid-stateNMR(ssNMR) structure-determination techniques, as they are used to determine the secondary structures of surface-adsorbed peptides and proteins. In particular, we have used ssNMR dipolar techniques to provide the first high-resolution structural and dynamic characterization of a hydrated biomineralization protein, salivary statherin, adsorbed to its biologically relevant hydroxyapatite (HAP) surface. Here, we also review NMR data on peptides designed to adsorb from aqueous solutions onto highly porous hydrophobic surfaces with specific helical secondary structures. The adsorption or covalent attachment of biological macromolecules onto polymer materials to improve their biocompatibility has been pursued using a variety of approaches, but key to understanding their efficacy is the verification of the structure and dynamics of the immobilized biomolecules using double-quantum ssNMR spectroscopy.
Ma, Chong-Bo
2015-05-05
Graphene quantum dots (GQDs) have attracted increasing interest because of their excellent properties such as strong photoluminescence, excellent biocompatibility and low cost. Herein, we develop a general method for the synthesis of doped and undoped GQDs, which relies on direct carbonization of organic precursors at solid state.
Avram, Liat; Goldbourt, Amir; Cohen, Yoram
2016-01-18
Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid-state NMR (MAS ssNMR). Evaporation selectively removed non-encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, (1)H/(13)C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state.
Perturbation approach for nuclear magnetic resonance solid-state quantum computation
G. P. Berman
2003-01-01
Full Text Available A dynamics of a nuclear-spin quantum computer with a large number (L=1000 of qubits is considered using a perturbation approach. Small parameters are introduced and used to compute the error in an implementation of an entanglement between remote qubits, using a sequence of radio-frequency pulses. The error is computed up to the different orders of the perturbation theory and tested using exact numerical solution.
Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells
Brennan, Thomas P.
2011-10-04
Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO 2, we are able to grow QDs of adjustable size which act as sensitizers for solid-state QDsensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1-10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2\\',7,7\\'-tetrakis-(N,N-di-p methoxyphenylamine) 9,9\\'-spirobifluorene (spiro-OMeTAD) as the solid-state hole conductor. The ALD approach described here can be applied to fabrication of quantum-confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magic-Angle-Spinning Solid-State NMR of Membrane Proteins
Baker, Lindsay A.; Folkers, Gert E.; Sinnige, Tessa; Houben, Klaartje; Kaplan, M.; van der Cruijsen, Elwin A W; Baldus, Marc
2015-01-01
Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging from synthetic bilayers to whole cells. This flexibility often enables ssNMR experiments to be directly correlated with membrane protein function. In this
Topics in quantum transport of charge and heat in solid state systems
Choi, Yunjin
In the thesis, we present a series of investigations for quantum transport of charge and heat in solid state systems. The first topic of the thesis focuses on the fundamental quantum problems which can be studied with electron transport along with the correlations of detectors to measure physical properties. We theoretically describe a generalized ``which-path'' measurement using a pair of coupled electronic Mach-Zehnder Interferometers. In the second topic of thesis, we investigate an operational approach to measure the tunneling time based on the Larmor clock. To handle the cases of indirect measurement from the first and second topics, we introduce the contextual values formalism. The form of the contextual values provides direct physical insight into the measurement being performed, providing information about the correlation strength between system and detector, the measurement inefficiency, the proper background removal, and the conditioned average value of the system operator. Additionally, the weak interaction limit of these conditioned averages produces weak values of the system operator and an additional detector dependent disturbance term for both cases. In our treatment of the third topic of the thesis, we propose a three terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window to allow electron transport. We find that this device delivers a large amount of power, nearly twice that produced by the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk
Sabarinathan, Venkatachalam; Wu, Zhen; Cheng, Ren-Hao; Ding, Shangwu
2013-05-30
(1)H, (17)O, and (19)F solid state NMR spectroscopies have been used to investigate water penetration in Nafion-117 under mechanical spinning. It is found that both (1)H and (17)O spectra depend on the orientation of the membrane with respect to the magnetic field. The intensities of the side chain (19)F spectra depend slightly on the orientation of membrane with respect to the magnetic field, but the backbone (19)F spectra do not exhibit orientation dependence. By analyzing the orientation dependent (1)H and (17)O spectra and time-resolved (1)H spectra, we show that the water loaded in Nafion-117, under high spinning speed, may penetrate into regions that are normally inaccessible by water. Water penetration is enhanced as the spinning speed is increased or the spinning time is increased. In the meantime, mechanical spinning accelerates water exchange. It is also found that water penetration by mechanical spinning is persistent; i.e., after spinning, water remains in those newly found regions. While water penetration changes the pores and channels in Nafion, (19)F spectra indicate that the chemical environments of the polymer backbone do not show change. These results provide new insights about the structure and dynamics of Nafion-117 and related materials. They are relevant to proton exchange membrane aging and offer enlightening points of view on antiaging and modification of this material for better proton conductivity. It is also interesting to view this phenomenon in the perspective of forced nanofiltration.
Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy
2017-04-18
Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong (1)H-(1)H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, (1)H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow (1)H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity
Mariappan Balasekaran, Samundeeswari; Todorova, Tanya K; Pham, Chien Thang; Hartmann, Thomas; Abram, Ulrich; Sattelberger, Alfred P; Poineau, Frederic
2016-06-01
A simple method for the high-yield preparation of (NH4)2[Re2F8]·2H2O has been developed that involves the reaction of (n-Bu4N)2[Re2Cl8] with molten ammonium bifluoride (NH4HF2). Using this method, the new salt [NH4]2[Re2F8]·2H2O was prepared in ∼90% yield. The product was characterized in solution by ultraviolet-visible light (UV-vis) and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopies and in the solid-state by elemental analysis, powder X-ray diffraction (XRD), and infrared (IR) spectroscopy. Multiconfigurational CASSCF/CASPT2 quantum chemical calculations were performed to investigate the molecular and electronic structure, as well as the electronic absorption spectrum of the [Re2F8](2-) anion. The metal-metal bonding in the Re2(6+) unit was quantified in terms of effective bond order (EBO) and compared to that of its [Re2Cl8](2-) and [Re2Br8](2-) analogues.
Recent progress in all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells
Wang, Qingyao, E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Chen, Chao; Liu, Wei [Tongji University, School of Materials Science and Engineering (China); Gao, Shanmin [Ludong University, School of Chemistry and Materials Science (China); Yang, Xiuchun, E-mail: yangxc@tongji.edu.cn [Tongji University, School of Materials Science and Engineering (China)
2016-01-15
All-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO{sub 2} films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO{sub 2} nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO{sub 2} nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO{sub 2} nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell.
Quantum Cryptography in Spin Networks
DENG Hong-Liang; FANG Xi-Ming
2007-01-01
In this paper we propose a new scheme of long-distance quantum cryptography based on spin networks with qubits stored in electron spins of quantum dots. By conditional Faraday rotation, single photon polarization measurement, and quantum state transfer, maximal-entangled Bell states for quantum cryptography between two long-distance parties are created. Meanwhile, efficient quantum state transfer over arbitrary distances is obtained in a spin chain by a proper choice of coupling strengths and using spin memory technique improved. We also analyse the security of the scheme against the cloning-based attack which can be also implemented in spin network and discover that this spin network cloning coincides with the optimal fidelity achieved by an eavesdropper for entanglement-based cryptography.
Halling, Merrill David
In this work 13C solid-state NMR and quantum mechanical studies of strained molecular systems are discussed. The chemical shift tensor values reported in this document were obtained using the FIREMAT method. Theoretical analyses of chemical shielding tensors were performed through the computer nodes operated by the Utah Center for High Performance Computing. Analyses were performed on sumanene, indenofluoranthene, tetrathiafulvalene, tetrathiafulvalene dimer, [2,2]paracyclophane, and 1,8-dioxa[8](2,7)pyrenophane. The FIREMAT data were fit using the TIGER data processing technique. TIGER provides a means to fit the FIREMAT data, accommodating its unique phase and relaxation characteristics. The details of the FIREMAT experiment are discussed in Chapter 1. The experimentally obtained chemical shift data were compared with calculated chemical shielding data. For these molecular systems, density functional theory was used along with the B3LYP exchange and correlation functionals. Multiple basis sets were used and relatively low errors are reported, between 2.0 ppm and 4.2 ppm. The errors reflect the difference between experimental and theoretical results. The relatively small errors are consistent with those of other polycyclic aromatic hydrocarbons (PAHs) and similar molecular systems. Chapter 2 discusses the three-dimensional aspect of tensor error analysis and how it is used in determining the errors associated with comparing two chemical shift tensors, i.e., theoretically derived and experimentally determined tensors. All error values reported and discussed in this dissertation are determined using this error analysis method. Molecular conformation may be explored by variation in chemical shift tensor principal values. The ring strain in curved polycyclic aromatic hydrocarbons can be associated with downfield shifts in the delta33 component of the chemical shift tensor. This is discussed in Chapters 3 and 5, as it relates to sumanene, indenofluoranthene, [2
Quantum annealing with manufactured spins.
Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G
2011-05-12
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.
Quantum Entanglement Channel based on Excited States in a Spin Chain
张少良; 杜良辉; 郭光灿; 周幸祥; 周正威
2011-01-01
We study the possibility of using a spin chain to construct a quantum entanglement channel that can be used for quantum state transmission in a solid state system.We analyze the spin chain's states under various z-directional magnetic field and spin interactions to determine the entanglement between Alice and Bob's spins.We derive the conditions under which this entanglement can be distilled,and find that a spin chain of arbitrary length can be used as a quantum channel for quantum state transmission when the number of spin flips in the chain is large.%We study the possibility of using a spin chain to construct a quantum entanglement channel that can be used for quantum state transmission in a solid state system. We analyze the spin chain's states under various z-directional magnetic field and spin interactions to determine the entanglement between Alice and Bob's spins. We derive the conditions under which this entanglement can be distilled, and find that a spin chain of arbitrary length can be used as a quantum channel for quantum state transmission when the number of spin Hips in the chain is large.
Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit
Feng, Guanru; Wallman, Joel J.; Buonacorsi, Brandon; Cho, Franklin H.; Park, Daniel K.; Xin, Tao; Lu, Dawei; Baugh, Jonathan; Laflamme, Raymond
2016-12-01
To exploit a given physical system for quantum information processing, it is critical to understand the different types of noise affecting quantum control. Distinguishing coherent and incoherent errors is extremely useful as they can be reduced in different ways. Coherent errors are generally easier to reduce at the hardware level, e.g., by improving calibration, whereas some sources of incoherent errors, e.g., T2* processes, can be reduced by engineering robust pulses. In this work, we illustrate how purity benchmarking and randomized benchmarking can be used together to distinguish between coherent and incoherent errors and to quantify the reduction in both of them due to using optimal control pulses and accounting for the transfer function in an electron spin resonance system. We also prove that purity benchmarking provides bounds on the optimal fidelity and diamond norm that can be achieved by correcting the coherent errors through improving calibration.
Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.
Kempgens, Pierre; Britton, Jonathan
2016-05-01
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and 'high speed' (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.
Decoherence in quantum spin systems
De Raedt, H; Dobrovitski, VV; Landau, DP; Lewis, SP; Schuttler, HB
2003-01-01
Computer simulations of decoherence in quantum spin systems require the solution of the time-dependent Schrodinger equation for interacting quantum spin systems over extended periods of time. We use exact diagonalization, the Chebyshev polynomial technique, four Suzuki-formula algorithms, and the sh
Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.
2012-02-15
The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.
Mariappan Balasekaran, Samundeeswari; Todorova, Tanya K.; Pham, Chien Thang; Hartmann, Thomas; Abram, Ulrich; Sattelberger, Alfred P.; Poineau, Frederic
2016-06-06
A simple method for the high-yield preparation of (NH_{4})_{2}[Re_{2}F_{8}]· 2H_{2}O has been developed that involves the reaction of (n-Bu_{4}N)2[Re_{2}Cl_{8}] with molten ammonium bifluoride (NH_{4}HF_{2}). Using this method, the new salt [NH_{4}]_{2}[Re_{2}F_{8}]·2H_{2}O was prepared in ~90% yield. The product was characterized in solution by ultraviolet-visible light (UV-vis) and ^{19}F nuclear magnetic resonance (19F NMR) spectroscopies and in the solid-state by elemental analysis, powder X-ray diffraction (XRD), and infrared (IR) spectroscopy. Multiconfigurational CASSCF/CASPT2 quantum chemical calculations were performed to investigate the molecular and electronic structure, as well as the electronic absorption spectrum of the [Re_{2}F_{8}] ^{2-} anion. The metal-metal bonding in the Re_{2} ^{6+} unit was quantified in terms of effective bond order (EBO) and compared to that of its [Re_{2}Cl_{8}] ^{2-} and [Re_{2}Br_{8}] ^{2-} analogues.
A solid state paramagnetic maser device driven by electron spin injection
Watts, S. M.; van Wees, B. J.
2006-01-01
In response to an external, microwave-frequency magnetic field, a paramagnetic medium will absorb energy from the field that drives the magnetization dynamics. Here we describe a new process by which an external spin-injection source, when combined with the microwave field spin pumping, can drive
A solid state paramagnetic maser device driven by electron spin injection
Watts, S. M.; van Wees, B. J.
2006-01-01
In response to an external, microwave-frequency magnetic field, a paramagnetic medium will absorb energy from the field that drives the magnetization dynamics. Here we describe a new process by which an external spin-injection source, when combined with the microwave field spin pumping, can drive th
Byrd, M S; Byrd, Mark S.; Lidar, Daniel A.
2002-01-01
Proposals for physical systems to act as quantum computers are inevitably plagued by the unavoidable coupling with the environment (bath) that causes decoherence, and by technological difficulties connected with the controllability of quantum states. Several techniques exist for achieving reliable quantum computation by countering the effects of decoherence. At this time, however, not one, by itself, will serve as a panacea for error correction. In this paper, we introduce a method that combines system-bath decoupling operations with error avoidance or active error correction to address these major concerns. By using an empirical approach to error correction based on experimental data, and an efficient set of decoupling operations that will serve to protect encoded quantum information, we are able to propose a comprehensive method for reducing the adverse effects of decoherence, in particular in scalable solid state quantum computing devices. Our method has the added benefit of significantly reducing design c...
Spin Equilibria in Monomeric Manganocenes: Solid State Magnetic and EXAFS Studies
Walter, M. D.; Sofield, C. D.; Booth, C. H.; Andersen, R. A.
2009-02-09
Magnetic susceptibility measurements and X-ray data confirm that tert-butyl-substituted manganocenes [(Me{sub 3}C){sub n}C{sub 5}H{sub 5?n}]{sub 2}Mn (n = 1, 2) follow the trend previously observed with the methylated manganocenes; that is, electron-donating groups attached to the Cp ring stabilize the low-spin (LS) electronic ground state relative to Cp{sub 2}Mn and exhibit higher spin-crossover (SCO) temperatures. However, introducing three CMe{sub 3} groups on each ring gives a temperature-invariant high-spin (HS) state manganocene. The origin of the high-spin state in [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sub 2}Mn is due to the significant bulk of the [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sup -} ligand, which is sufficient to generate severe inter-ring steric strain that prevents the realization of the low-spin state. Interestingly, the spin transition in [1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}]{sub 2}Mn is accompanied by a phase transition resulting in a significant irreversible hysteresis ({Delta}T{sub c} = 16 K). This structural transition was also observed by extended X-ray absorption fine-structure (EXAFS) measurements. Magnetic susceptibility studies and X-ray diffraction data on SiMe{sub 3}-substituted manganocenes [(Me{sub 3}Si){sub n}C{sub 5}H{sub 5-n}]{sub 2}Mn (n = 1, 2, 3) show high-spin configurations in these cases. Although tetra- and hexasubstituted manganocenes are high-spin at all accessible temperatures, the disubstituted manganocenes exhibit a small low-spin admixture at low temperature. In this respect it behaves similarly to [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn, which has a constant low-spin admixture up to 90 K and then gradually converts to high-spin. Thermal spin-trapping can be observed for [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn on rapid cooling.
An electron spin injection driven, paramagnetic solid-state MASER device
Watts, S. M.; van Wees, B. J.
2006-01-01
In response to an external, microwave-frequency magnetic field, a paramagnetic medium will absorb energy from the field that drives the magnetization dynamics. Here we describe a new process by which an external spin injection source, when combined with the microwave field spin-pumping, can drive the paramagnetic medium from one that absorbs microwave energy to one that emits microwave energy. We derive a simple condition for the crossover from absorptive to emissive behavior. Based on this p...
Quantum spin liquids: a review
Savary, Lucile; Balents, Leon
2017-01-01
Quantum spin liquids may be considered ‘quantum disordered’ ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.
Advances in Solid State Physics
Kramer, B
2006-01-01
The present volume 45 of Advances in Solid-State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft in the World Year of Physics 2005, the Einstein Year, which was held from 4 - 11 March 2005 in Berlin, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The book presents, to some extent, the status of the field of solid-state physics in 2005 not only in Germany but also internationally. It is ''nanoscience'', namely the physics of quantum dots and wires, electrical transport, optical properties, spin transport in nanostructures, and magnetism on the nanoscale, that is of central interest to the physics community. Also, soft matter and biological systems are covered.
Thurber, Kent R; Tycko, Robert
2014-05-14
We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
Quantum measurement and entanglement of spin quantum bits in diamond
Pfaff, W.
2013-01-01
This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for
Quantum measurement and entanglement of spin quantum bits in diamond
Pfaff, W.
2013-01-01
This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for appli
Tondra, Mark; Nordman, Catherine A.; Lange, Erik H.; Reed, Daniel; Jander, Albrect; Akou, Seraphin; Daughton, James
2001-09-01
Micro Unattended Ground Sensor Networks will likely employ magnetic sensors, primarily for discrimination of objects as opposed to initial detection. These magnetic sensors, then, must fit within very small cost, size, and power budgets to be compatible with the envisioned sensor suites. Also, a high degree of sensitivity is required to minimize the number of sensor cells required to survey a given area in the field. Solid state magnetoresistive sensors, with their low cost, small size, and ease of integration, are excellent candidates for these applications assuming that their power and sensitivity performance are acceptable. SDT devices have been fabricated into prototype magnetic field sensors suitable for use in micro unattended ground sensor networks. They are housed in tiny SOIC 8-pin packages and mounted on a circuit board with required voltage regulation, signal amplification and conditioning, and sensor control and communications functions. The best sensitivity results to date are 289 pT/rt. Hz at 1 Hz, and and 7 pT/rt. Hz at f > 10 kHz. Expected near term improvements in performance would bring these levels to approximately 10 pT/rt Hz at 1 Hz and approximately 1 pT/rt. Hz at > 1 kHz.
Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy
Sengupta, Ishita; Nadaud, Philippe S.; Helmus, Jonathan J.; Schwieters, Charles D.; Jaroniec, Christopher P.
2012-01-01
Biomacromolecules that are challenging for the usual structural techniques can be studied with atomic resolution by solid-state nuclear magnetic resonance. However, the paucity of >5 Å distance restraints, traditionally derived from measurements of magnetic dipole-dipole couplings between protein nuclei, is a major bottleneck that hampers such structure elucidation efforts. Here we describe a general approach that enables the rapid determination of global protein fold in the solid phase via measurements of nuclear paramagnetic relaxation enhancements (PREs) in several analogs of the protein of interest containing covalently-attached paramagnetic tags, without the use of conventional internuclear distance restraints. The method is demonstrated using six cysteine-EDTA-Cu2+ mutants of the 56-residue B1 immunoglobulin-binding domain of protein G, for which ~230 longitudinal backbone 15N PREs corresponding to ~10-20 Å distances were obtained. The mean protein fold determined in this manner agrees with the X-ray structure with a backbone atom root-mean-square deviation of 1.8 Å. PMID:22522262
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Robust Quantum State Transfer in Random Unpolarized Spin Chains
Yao, Norman Y; Gorshkov, Alexey V; Gong, Zhe-Xuan; Zhai, Alex; Duan, L -M; Lukin, Mikhail D
2010-01-01
We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized spin chains. Our method is robust to coupling strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between Nitrogen-Vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.
Robust quantum state transfer in random unpolarized spin chains.
Yao, N Y; Jiang, L; Gorshkov, A V; Gong, Z-X; Zhai, A; Duan, L-M; Lukin, M D
2011-01-28
We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust to coupling-strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over an arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between nitrogen-vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.
Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-08-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Scalable quantum register based on coupled electron spins in a room temperature solid
Neumann, P; Naydenov, B; Beck, J; Rempp, F; Steiner, M; Jacques, V; Balasubramanian, G; Markham, M L; Twitchen, D J; Pezzagna, S; Meijer, J; Twamley, J; Jelezko, F; Wrachtrup, J; 10.1038/nphys1536
2010-01-01
Realization of devices based on quantum laws might lead to building processors that outperform their classical analogues and establishing unconditionally secure communication protocols. Solids do usually present a serious challenge to quantum coherence. However, owing to their spin-free lattice and low spin orbit coupling, carbon materials and particularly diamond are suitable for hosting robust solid state quantum registers. We show that scalable quantum logic elements can be realized by exploring long range magnetic dipolar coupling between individually addressable single electron spins associated with separate color centers in diamond. Strong distance dependence of coupling was used to characterize the separation of single qubits 98 A with unprecedented accuracy (3 A) close to a crystal lattice spacing. Our demonstration of coherent control over both electron spins, conditional dynamics, selective readout as well as switchable interaction, opens the way towards a room temperature solid state scalable quant...
Hu, X; Hu, Xuedong
2000-01-01
We study theoretically a double quantum dot hydrogen molecule in the GaAs conduction band as the basic elementary gate for a quantum computer with the electron spins in the dots serving as qubits. Such a two-dot system provides the necessary two-qubit entanglement required for quantum computation. We determine the excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its dependence on an external magnetic field. In particular, we focus on the splitting of the lowest singlet and triplet states, the double occupation probability of the lowest states, and the relative energy scales of these states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We critically discuss the applicability of the envelope funct...
1974-01-01
The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.
Spin network quantum simulator
Marzuoli, Annalisa; Rasetti, Mario
2002-12-30
We propose a general setting for a universal representation of the quantum structure on which quantum information stands, whose dynamical evolution (information manipulation) is based on angular momentum recoupling theory. Such scheme complies with the notion of 'quantum simulator' in the sense of Feynman, and is shown to be related with the topological quantum field theoretical approach to quantum computation.
Erlingsson, S.I.
2003-01-01
The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis, stro
High-resolution vector microwave magnetometry based on solid-state spins in diamond
Wang, Pengfei; Yuan, Zhenheng; Huang, Pu; Rong, Xing; Wang, Mengqi; Xu, Xiangkun; Duan, Changkui; Ju, Chenyong; Shi, Fazhan; Du, Jiangfeng
2015-01-01
The measurement of the microwave field is crucial for many developments in microwave technology and related applications. However, measuring microwave fields with high sensitivity and spatial resolution under ambient conditions remains elusive. In this work, we propose and experimentally demonstrate a scheme to measure both the strength and orientation of the microwave magnetic field by utilizing the quantum coherent dynamics of nitrogen vacancy centres in diamond. An angular resolution of 5....
Solid-state pulsed microwave bridge for electron spin echo spectrometers of 8-mm wavelength range
Kalabukhova E. N.
2012-12-01
Full Text Available The article presents a construction of a coherent pulsed microwave bridge with an output power up to 10 Wt with a time resolution of 10–8 seconds at a pulse repetition rate of 1 kHz designed for electron spin echo spectrometers. The bridge is built on a homodyne scheme based on IMPATT diodes, which are used for modulation and amplification of microwave power coming from the reference Gunn diode oscillator. The advantages of the bridge are optimal power and minimum pulse width, simple operation, low cost.
Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays
Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando
2015-04-01
We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.
Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells
Ardalan, Pendar
2011-02-22
Quantum dot sensitized solar cells (QDSSCs) are of interest for solar energy conversion because of their tunable band gap and promise of stable, low-cost performance. We have investigated the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state QDSSCs. CdS quantum dots ∼2 to ∼6 nm in diameter were grown on SAM-passivated planar or nanostructured TiO 2 surfaces by successive ionic layer adsorption and reaction (SILAR), and photovoltaic devices were fabricated with spiro-OMeTAD as the solid-state hole conductor. X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, water contact angle measurements, ellipsometry, and electrical measurements were employed to characterize the materials and the resulting device performance. The data indicate that the nature of the SAM tailgroup does not significantly affect the uptake of CdS quantum dots on TiO2 nor their optical properties, but the presence of the SAM does have a significant effect on the photovoltaic device performance. Interestingly, we observe up to ∼3 times higher power conversion efficiencies in devices with a SAM compared to those without the SAM. © 2011 American Chemical Society.
Brennan, Thomas P.
2013-01-01
Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.
Iles-Smith, Jake; McCutcheon, Dara; Mørk, Jesper
2016-01-01
The desire to produce high-quality single photons for applications in quantum information science has lead to renewed interest in exploring solid-state emitters in the weak excitation regime. Under these conditions it is expected that photons are coherently scattered, and so benefit from...... find that the sideband resulting from non-Markovian relaxation of the phonon environment leads to a fundamental limit to the fraction of coherently scattered light and to the visibility of two-photon coalescence at weak driving, both of which are absent for atomic systems or within simpler Markovian...
Designing defect spins for wafer-scale quantum technologies
Koehl, William F. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States); Seo, Hosung [Univ. of Chicago, IL (United States); Galli, Giulia [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States); Awschalom, David D. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States)
2015-11-27
The past decade has seen remarkable progress in the development of the nitrogen-vacancy (NV) defect center in diamond, which is one of the leading candidates for quantum information technologies. The success of the NV center as a solid-state qubit has stimulated an active search for similar defect spins in other technologically important and mature semiconductors, such as silicon carbide. If successfully combined with the advanced microfabrication techniques available to such materials, coherent quantum control of defect spins could potentially lead to semiconductor-based, wafer-scale quantum technologies that make use of exotic quantum mechanical phenomena like entanglement. In this article, we describe the robust spin property of the NV center and the current status of NV center research for quantum information technologies. We then outline first-principles computational modeling techniques based on density functional theory to efficiently search for potential spin defects in nondiamond hosts suitable for quantum information applications. The combination of computational modeling and experimentation has proven invaluable in this area, and we describe the successful interplay between theory and experiment achieved with the divacancy spin qubit in silicon carbide.
Gopinath, T.; Veglia, Gianluigi
2016-06-01
Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.
Solid-state ZnS quantum dot-sensitized solar cell fabricated by the Dip-SILAR technique
Mehrabian, M.; Mirabbaszadeh, K.; Afarideh, H.
2014-08-01
Solid-state quantum dot sensitized solar cells (QDSSCs) were fabricated with zinc sulfide quantum dots (ZnS QDs), which served as the light absorber and the recombination blocking layer simultaneously. ZnS QDs were prepared successfully by a novel successive ionic layer adsorption and reaction technique based on dip-coating (Dip-SILAR). The dependences of the photovoltaic parameters on the number of SILAR cycles (n) were investigated. The cell with n = 6 (particle average size ˜9 nm) showed an energy conversion efficiency of 2.72% under the illumination of one sun (AM 1.5, 100 mW cm-2). Here we investigate also the cohesion between ZnS QDs and ZnO film to obtain a well-covering QD layer.
Conversion from Single Photon to Single Electron Spin Using Electrically Controllable Quantum Dots
Oiwa, Akira; Fujita, Takafumi; Kiyama, Haruki; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2017-01-01
Polarization is a fundamental property of light and could provide various solutions to the development of secure optical communications with high capacity and high speed. In particular, the coherent quantum state conversion between single photons and single electron spins is a prerequisite for long-distance quantum communications and distributed quantum computation. Electrically defined quantum dots have already been proven to be suitable for scalable solid state qubits by demonstrations of single-spin coherent manipulations and two-qubit gate operations. Thus, their capacity for quantum information technologies would be considerably extended by the achievement of entanglement between an electron spin in the quantum dots and a photon. In this review paper, we show the basic technologies for trapping single electrons generated by single photons in quantum dots and for detecting their spins using the Pauli effect with sensitive charge sensors.
Towards hybrid quantum systems: Trapping a single atom near a nanoscale solid-state structure
Tiecke T.G.
2013-08-01
Full Text Available We describe and demonstrate a method to deterministically trap single atoms near nanoscale solid-state objects. The trap is formed by the interference of an optical tweezer and its reflection from the nano object, creating a one-dimensional optical lattice where the first lattice site is at z0 ∼ λ/4 from the surface. Using a tapered optical fiber as the nanoscopic object, we characterize the loading into different lattice sites by means of the AC-Stark shift induced by a guided fiber mode. We demonstrate a loading efficiency of 94(6% into the first lattice site, and measure the cooperativity for the emission of the atom into the guided mode of the nanofiber. We show that by tailoring the dimensions of the nanofiber the distance of the trap to the surface can be adjusted. This method is applicable to a large variety of nanostructures and represents a promising starting point for interfacing single atoms with arbitrary nanoscale solid-state systems.
Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A
2011-11-01
Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.
Parthasarathy, Sudhakar
2013-09-17
Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the
PARTHASARATHY, SUDHAKAR; NISHIYAMA, YUSUKE; ISHII, YOSHITAKA
2013-01-01
CONSPECTUS Recent research in fast magic angle spinning (MAS) methods has drastically improved in the resolution and sensitivity for NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarizes recent and ongoing developments in this area by presenting 13C and 1H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of 20 kHz allows us to overcome major difficulties in 1H and 13C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (~ms/scan) using short 1H T1 values we can perform 1H SSNMR micro-analysis of paramagnetic systems in the μg scale with greatly improved sensitivity over that for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ~40 kHz can enhance the sensitivity and resolution of 13C biomolecular SSNMR measurements. Low-power 1H decoupling schemes under VFMAS offer excellent spectral resolution for 13C SSNMR by nominal 1H RF irradiation at ~10 kHz. By combining the VFMAS approach and enhanced 1H T1 relaxation by paramagnetic doping we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments for 13C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine 13C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary 13C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at 1H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and the ultra-high fields could allow for routine multi-dimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the prospects for studying bimolecules using 13
Quantum crystals and spin chains
Dijkgraaf, Robbert [KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam (Netherlands); Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Orlando, Domenico [Institut de Physique, Universite de Neuchatel, Rue Breguet 1, CH-2000 Neuchatel (Switzerland); Reffert, Susanne [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)], E-mail: sreffert@gmail.com
2009-04-21
In this article, we discuss the quantum version of the melting crystal corner in one, two, and three dimensions, generalizing the treatment for the quantum dimer model. Using a mapping to spin chains we find that the two-dimensional case (growth of random partitions) is integrable and leads directly to the Hamiltonian of the Heisenberg XXZ ferromagnet. The three-dimensional case of the melting crystal corner is described in terms of a system of coupled XXZ spin chains. We give a conjecture for its mass gap and analyze the system numerically.
Quantum crystals and spin chains
Dijkgraaf, Robbert; Orlando, Domenico; Reffert, Susanne
2009-04-01
In this article, we discuss the quantum version of the melting crystal corner in one, two, and three dimensions, generalizing the treatment for the quantum dimer model. Using a mapping to spin chains we find that the two-dimensional case (growth of random partitions) is integrable and leads directly to the Hamiltonian of the Heisenberg XXZ ferromagnet. The three-dimensional case of the melting crystal corner is described in terms of a system of coupled XXZ spin chains. We give a conjecture for its mass gap and analyze the system numerically.
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-01-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-10-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.
Spin squeezing and quantum correlations
K S Mallesh; Swarnamala Sirsi; Mahmoud A A Sbaih; P N Deepak; G Ramachandran
2002-08-01
We discuss the notion of spin squeezing considering two mutually exclusive classes of spin- states, namely, oriented and non-oriented states. Our analysis shows that the oriented states are not squeezed while non-oriented states exhibit squeezing. We also present a new scheme for construction of spin- states using 2 spinors oriented along different axes. Taking the case of = 1, we show that the `non-oriented’ nature and hence squeezing arise from the intrinsic quantum correlations that exist among the spinors in the coupled state.
Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline
2010-04-01
The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.
Sharma, Kshama; Madhu, P K; Agarwal, Vipin
2016-09-01
The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.
Position sensitive solid state detectors
Schnatterly, S.E.; Husk, D.
1986-05-15
Solid state detectors have been used for years as high quantum efficiency detectors for visible light. In this paper the use of PDA and CCD, solid state detectors, in the X-ray region will be discussed. In particular examples of data in the soft X-ray region are presented. Finally the use of phosphor coatings to enhance the sensitivity of solid state detectors is described.
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.
Spin-dependent quantum transport in nanoscaled geometries
Heremans, Jean J.
2011-10-01
We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).
Grange, T.; Somaschi, N.; Antón, C.; De Santis, L.; Coppola, G.; Giesz, V.; Lemaître, A.; Sagnes, I.; Auffèves, A.; Senellart, P.
2017-06-01
Solid-state emitters are excellent candidates for developing integrated sources of single photons. Yet, phonons degrade the photon indistinguishability both through pure dephasing of the zero-phonon line and through phonon-assisted emission. Here, we study theoretically and experimentally the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity as a function of temperature. We show that a large coupling to a high quality factor cavity can simultaneously reduce the effect of both phonon-induced sources of decoherence. It first limits the effect of pure dephasing on the zero-phonon line with indistinguishabilities above 97% up to 18 K. Moreover, it efficiently redirects the phonon sidebands into the zero-phonon line and brings the indistinguishability of the full emission spectrum from 87% (24%) without cavity effect to more than 99% (76%) at 0K (20K). We provide guidelines for optimal cavity designs that further minimize the phonon-induced decoherence.
Improved Performance of Solid-State Gr(a)tzel Solar Cell by Cosensitization of Quantum Dot and Dye
LI Bin; WANG Li-Duo; LI Jiang-Wei; QIU Yong
2004-01-01
We report a new cosensitization utilizing quantum dot (QD) PbS and Cis-(SCN)2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium (N3) dye on the nanoporous TiO2 film. Solid-state Gratzel solar cells with the cosensitized films show an improved overall efficiency by 200% relative to the cells assembled with only N3 sensitization and an extremely high open-circuit voltage of 840mV, and a fill factor of 70.5%. Back reaction characteristics of the above cells are also investigated, demonstrating a great suppression of recombination due to cosensitization. It seems that the cosensitization also facilitates the electron injection into the conduction band of TiO2.
Magnetocaloric effect in quantum spin-s chains
A. Honecker
2009-01-01
Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.
Harrison, Walter A
2011-01-01
""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o
Advances in Solid State Physics
Haug, Rolf
2009-01-01
The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...
Mananga, Eugene Stephane
2013-01-01
The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence.
Spin waves and spin instabilities in quantum plasmas
Andreev, P A
2014-01-01
We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.
Effect of Environment on the Fidelity of Control and Measurements of Solid-State Quantum Devices
2013-07-22
Scientific Publishing Co. Pte. Ltd, 1998. [24] Y. Liu, L. F. Wei, and F. Nori , “Generation of nonclassical photon states using a superconducting qubit in... Nori , “Atomic physics and quantum optics using superconducting circuits,” Nature, vol. 474, p. 589, 2011. 120 [86] J. Q. You and F. Nori , “Quantum...information processing with superconducting qubits in a microwave field,” Phys. Rev. B, vol. 68, p. 064509, 2003. [87] I. Buluta, S. Ashhab, and F. Nori
Introduction to quantum spin systems
A. Langari
2008-06-01
Full Text Available This manuscript is the collection of lectures given in the summer school on strongly correlated electron systems held at Isfahan university of technology, June 2007. A short overview on quantum magnetism and spin systems is presented. The numerical exact diagonalization (Lanczos alghorithm is explained in a pedagogical ground. This is a method to get some ground state properties on finite cluster of lattice models. Two extensions of Lanczos method to get the excited states and also finite temperature properties of quantum models are also explained. The basic notions of quantum phase transition is discussed in term of Ising model in transverse field. Its phase diagram and critical properties are explained using the quantum renormalization group approach. Most of the topics are in tutorial level with hints to recent research activities.
Experimental Realization of a Quantum Spin Pump
Watson, Susan; Potok, R.; M. Marcus, C.;
2003-01-01
We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin......-dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector....
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-01
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin.
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-11
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796±0.020. Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
Scalable solid-state quantum processor using subradiant two-atom states.
Petrosyan, David; Kurizki, Gershon
2002-11-11
We propose a realization of a scalable, high-performance quantum processor whose qubits are represented by the ground and subradiant states of effective dimers formed by pairs of two-level systems coupled by resonant dipole-dipole interaction. The dimers are implanted in low-temperature solid host material at controllable nanoscale separations. The two-qubit entanglement either relies on the coherent excitation exchange between the dimers or is mediated by external laser fields.
Spin photocurrents in quantum wells
Ganichev, S D
2003-01-01
Spin photocurrents generated by homogeneous optical excitation with circularly polarized radiation in quantum wells (QWs) are reviewed. The absorption of circularly polarized light results in optical spin orientation due to the transfer of the angular momentum of photons to electrons of a two-dimensional electron gas. It is shown that in QWs belonging to one of the gyrotropic crystal classes a non-equilibrium spin polarization of uniformly distributed electrons causes a directed motion of electrons in the plane of the QW. A characteristic feature of this electric current, which occurs in unbiased samples, is that it reverses its direction upon changing the radiation helicity from left-handed to right-handed and vice versa. Two microscopic mechanisms are responsible for the occurrence of an electric current linked to a uniform spin polarization in a QW: the spin polarization-induced circular photogalvanic effect and the spin-galvanic effect. In both effects the current flow is driven by an asymmetric distribut...
Effects of QD surface coverage in solid-state PbS quantum dot-sensitized solar cells
Roelofs, Katherine E.
2013-06-01
Lead sulfide quantum dots (QDs) were grown in situ on nanoporous TiO 2 by successive ion layer adsorption and reaction (SILAR) and by atomic layer deposition (ALD), to fabricate solid-state quantum-dot sensitized solar cells (QDSSCs). With the ultimate goal of increasing QD surface coverage, this work compares the impact of these two synthetic routes on the light absorption and electrical properties of devices. A higher current density was observed in the SILAR-grown QD devices under reverse bias, as compared to ALD-grown QD devices, attributed to injection problems of the lower-band-gap QDs present in the SILAR-grown QD device. To understand the effects of QD surface coverage on device performance, particularly interfacial recombination, electron lifetimes were measured for varying QD deposition cycles. Electron lifetimes were found to decrease with increasing SILAR cycles, indicating that the expected decrease in recombination between electrons in the TiO2 and holes in the hole-transport material, due to increased QD surface coverage, is not the dominant effect of increased deposition cycles. © 2013 IEEE.
Ardalan, Pendar
2010-06-01
We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state quantum dot sensitized solar cells (QDSSCs). ∼2 to ∼6 nm size CdS quantum dots (QDs) were grown on the SAM-passivated TiO2 surfaces by successive ionic layer adsorption and reaction (SILAR). Our results show differences in the bonding of the CdS QDs at the TiO2 surfaces with a SAM linker. Moreover, our data indicate that presence of a SAM increases the CdS uptake on TiO2 as well as the performance of the resulting devices. Importantly, we observe ∼2 times higher power conversion efficiencies in the devices with a SAM compared to those that lack a SAM. © 2010 IEEE.
Semiconductor quantum dots for electron spin qubits
van der Wiel, Wilfred Gerard; Stopa, M.; Kodera, T.; Hatano, T.; Tarucha, S.
2006-01-01
We report on our recent progress in applying semiconductor quantum dots for spin-based quantum computation, as proposed by Loss and DiVincenzo (1998 Phys. Rev. A 57 120). For the purpose of single-electron spin resonance, we study different types of single quantum dot devices that are designed for
Hu, Kan-Nian; Tycko, Robert
2009-07-28
We describe a method for measuring magnetic dipole-dipole interactions, and hence distances, between pairs of like nuclear spins in a many-spin system under magic-angle spinning (MAS). This method employs a homonuclear dipolar recoupling sequence that creates an average dipole-dipole coupling Hamiltonian under MAS with full zero-quantum symmetry, including both secular and flip-flop terms. Flip-flop terms are then attenuated by inserting rotor-synchronized periods of chemical shift evolution between recoupling blocks, leaving an effective Hamiltonian that contains only secular terms to a good approximation. Couplings between specific pairs of nuclear spins can then be selected with frequency-selective pi pulses. We demonstrate this technique, which we call zero-quantum shift evolution assisted homonuclear recoupling, in a series of one-dimensional and two-dimensional (13)C NMR experiments at 17.6 T and 40.00 kHz MAS frequency on uniformly (13)C-labeled L-threonine powder and on the helix-forming peptide MB(i+4)EK, synthesized with a pair of uniformly (13)C-labeled L-alanine residues. Experimental demonstrations include measurements of distances between (13)C sites that are separated by three bonds, placing quantitative constraints on both sidechain and backbone torsion angles in polypeptides.
Equbal, Asif; Shankar, Ravi; Leskes, Michal; Vega, Shimon; Nielsen, Niels Chr.; Madhu, P. K.
2017-03-01
Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.
Quantum spin transport in semiconductor nanostructures
Schindler, Christoph
2012-05-15
In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.
Solid-state NMR basic principles and practice
Apperley, David C; Hodgkinson, Paul
2012-01-01
Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...
Solid-state NMR basic principles and practice
Apperley, David C; Hodgkinson, Paul
2014-01-01
Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...
Free spin quantum computation with semiconductor nanostructures
Zhang, W M; Soo, C; Zhang, Wei-Min; Wu, Yin-Zhong; Soo, Chopin
2005-01-01
Taking the excess electron spin in a unit cell of semiconductor multiple quantum-dot structure as a qubit, we can implement scalable quantum computation without resorting to spin-spin interactions. The technique of single electron tunnelings and the structure of quantum-dot cellular automata (QCA) are used to create a charge entangled state of two electrons which is then converted into spin entanglement states by using single spin rotations. Deterministic two-qubit quantum gates can also be manipulated using only single spin rotations with help of QCA. A single-short read-out of spin states can be realized by coupling the unit cell to a quantum point contact.
Spin dynamics of heavy-holes in (InGa)As quantum dots
Dahbashi, Ramin; Wiegand, Julia; Huebner, Jens; Oestreich, Michael [Insitute for Solid State Physics, Leibniz Universitaet Hannover, Appelstr. 2, D-30167 Hannover (Germany); Marie, Xavier [Universite de Toulouse, INSA, UPS, CNRS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse (France); Pierz, Klaus; Schumacher, Hans Werner [Physikalisch Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig (Germany)
2013-07-01
The spin dynamics of heavy-holes confined in (InGa)As quantum dots (QDs) are of particular interest for future applications in solid state quantum information processing. We employ spin noise spectroscopy as a quantum non-demolition experiment to get access to the intrinsic spin dynamics. The spin noise method is transferred from ensembles of QDs to single dot heavy-hole measurements. Numerical simulations show an extremely long spin dephasing time if light absorption is negligible. The investigated QDs are characterized by polarization resolved photoluminescence measurements and via a Hanbury Brown-Twiss setup. The discharging of the QDs via Auger recombination due to residual light absorption is deactivated by co-pumping the dots with low intensity light.
Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins
Casanova, J.; Wang, Z.-Y.; Plenio, M. B.
2016-09-01
Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.
Spin transport through quantum dots
Lima, A.T. da Cunha; Anda, Enrique V. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)
2003-07-01
Full text: We investigate the spin polarized transport properties of a nanoscopic device constituted by a quantum dot connected to two leads. The electrical current circulates with a spin polarization that is modulated via a gate potential that controls the intensity of the spin-orbit coupling, the Rashba effect. We study a polarized field-effect transistor when one of its parts is constituted by a small quantum dot, which energies are controlled by another gate potential operating inside the confined region. The high confinement and correlation suffered by the charges inside the dot gives rise to novel phenomena. We show that through the manipulation of the gate potential applied to the dot it is possible to control, in a very efficient way, the intensity and polarization of the current that goes along the system. Other crucial parameters to be varied in order to understand the behavior of this system are the intensity of the external applied electric and magnetic field. The system is represented by the Anderson Impurity Hamiltonian summed to a spin-orbit interaction, which describes the Rashba effect. To obtain the current of this out-of-equilibrium system we use the Keldysh formalism.The solution of the Green function are compatible with the Coulomb blockade regime. We show that under the effect of a external magnetic field, if the dot is small enough the device operates as a complete spin filter that can be controlled by the gate potential. The behavior of this device when it is injected into it a polarized current and modulated by the Rashba effect is as well studied. (author)
High-field spin dynamics of antiferromagnetic quantum spin chains
Enderle, M.; Regnault, L.P.; Broholm, C.;
2000-01-01
The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Calladine, James A; Horvath, Raphael; Davies, Andrew J; Wriglesworth, Alisdair; Sun, Xue-Zhong; George, Michael W
2015-05-01
The photochemistry and photophysics of metal carbonyl compounds (W(CO)6, Cp*Rh(CO)2 (Cp* = η(5)-C5Me5), and fac-[Re(CO)3(4,4'-bpy)2Br] [bpy = bipyridine]) have been examined on the nanosecond timescale using a time-resolved infrared spectrometer with an external cavity quantum cascade laser (QCL) as the infrared source. We show the photochemistry of W(CO)6 in alkane solution is easily monitored, and very sensitive measurements are possible with this approach, meaning it can monitor small transients with absorbance changes less than 10(-6) ΔOD. The C-H activation of Cp*Rh(CO)(C6H12) to form Cp*Rh(CO)(C6H11)H occurs within the first few tens of nanoseconds following photolysis, and we demonstrate that kinetics obtained following deconvolution are in excellent agreement with those measured using an ultrafast laser-based spectrometer. We also show that the high flux and tunability of QCLs makes them suited for solid-state and time-resolved measurements.
Grosso, Giuseppe
2013-01-01
Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de
Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka
2007-08-23
Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.
Spin flips and quantum information for anti-parallel spins
Gisin, Nicolas
1999-01-01
We consider two different ways to encode quantum information, by parallel or anti-parallel pairs of spins. We find that there is more information in the anti-parallel ones. This purely quantum mechanical effect is due to entanglement, not of the states but occuring in the course of the measuring process. We also introduce a range of quantum information processing machines, such as spin-flip and anti-cloning.
Venus Singh Mithu
Full Text Available Two-dimensional (13C-(13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13C-(13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.
Mantovani, Gerson L., E-mail: gerson.mantovani@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas; Bonk, Fabio A. [Universidade Estadual de Campinas (IQ/UNICAMP) SP (Brazil). Inst. de Quimica; Caldarelli, Stefano Caldarelli [Aix-Marseille Universite ISm2, Site de Saint Jerome, Marseille (France); Phan, Trang; Bertin, Denis [Universite de Provence, Site de Saint Jerome, Marseille (France); Azevedo, Eduardo R. de; Bonagamba, Tito J. [Universidade de Sao Paulo (IF/USP), Sao Carlos, SP (Brazil). Inst. de Fisica
2009-07-01
The phase structure and crystalline morphology of a series of polystyrene-b-polyethylene oxide-b-polystyrene (PS-b- PEO-b-PS) triblock copolymers, with different compositions and molecular weights, has been studied by solid-state NMR. WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene oxide (PEO) blocks at room temperature as a function of the copolymer composition. {sup 1}H NMR spin diffusion analyses provided an estimation of the size of the dispersed phases of the nano structured copolymers. (author)
Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K.
2013-01-01
Two-dimensional 13C-13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of 13C-13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on 1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail. PMID:23326308
Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K
2013-01-01
Two-dimensional (13)C-(13)C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13)C-(13)C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1)H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.
Magnetic monopoles in quantum spin ice
Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji
Typical spin ice materials can be modeled using classical Ising spins. The geometric frustration of the pyrochlore lattice causes the spins to satisfy ice rules, whereas a violation of the ice constraint constitutes an excitation. Flipping adjacent spins fractionalizes the excitation into two monopoles. Long range dipolar spin couplings result in Coulombic interactions between charges, while the leading effect of quantum fluctuations is to provide the monopoles with kinetic energy. We study the effect of adding quantum dynamics to spin ice, a well-known classical spin liquid, with a particular view of how to best detect its presence in experiment. For the weakly diluted quantum spin ice, we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances.
Quantum Spin Transport in Mesoscopic Interferometer
Zein W. A.
2007-10-01
Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.
Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy
2017-06-22
Solid-state (1)H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation
Optical control of the spin of a magnetic atom in a semiconductor quantum dot
Besombes L.
2015-04-01
Full Text Available The control of single spins in solids is a key but challenging step for any spin-based solid-state quantumcomputing device. Thanks to their expected long coherence time, localized spins on magnetic atoms in a semiconductor host could be an interesting media to store quantum information in the solid state. Optical probing and control of the spin of individual or pairs of Manganese (Mn atoms (S = 5/2 have been obtained in II-VI and IIIV semiconductor quantum dots during the last years. In this paper, we review recently developed optical control experiments of the spin of an individual Mn atoms in II-VI semiconductor self-assembled or strain-free quantum dots (QDs.We first show that the fine structure of the Mn atom and especially a strained induced magnetic anisotropy is the main parameter controlling the spin memory of the magnetic atom at zero magnetic field. We then demonstrate that the energy of any spin state of a Mn atom or pairs of Mn atom can be independently tuned by using the optical Stark effect induced by a resonant laser field. The strong coupling with the resonant laser field modifies the Mn fine structure and consequently its dynamics.We then describe the spin dynamics of a Mn atom under this strong resonant optical excitation. In addition to standard optical pumping expected for a resonant excitation, we show that the Mn spin population can be trapped in the state which is resonantly excited. This effect is modeled considering the coherent spin dynamics of the coupled electronic and nuclear spin of the Mn atom optically dressed by a resonant laser field. Finally, we discuss the spin dynamics of a Mn atom in strain-free QDs and show that these structures should permit a fast optical coherent control of an individual Mn spin.
Optical holonomic single quantum gates with a geometric spin under a zero field
Sekiguchi, Yuhei; Niikura, Naeko; Kuroiwa, Ryota; Kano, Hiroki; Kosaka, Hideo
2017-04-01
The realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin-orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy centre in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin-orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters.
Electron Spins in Semiconductor Quantum Dots
Hanson, R.
2005-01-01
This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic
Quantum Computing with Electron Spins in Quantum Dots
Vandersypen, L M K; Van Beveren, L H W; Elzerman, J M; Greidanus, J S; De Franceschi, S; Kouwenhoven, Leo P
2002-01-01
We present a set of concrete and realistic ideas for the implementation of a small-scale quantum computer using electron spins in lateral GaAs/AlGaAs quantum dots. Initialization is based on leads in the quantum Hall regime with tunable spin-polarization. Read-out hinges on spin-to-charge conversion via spin-selective tunneling to or from the leads, followed by measurement of the number of electron charges on the dot via a charge detector. Single-qubit manipulation relies on a microfabricated wire located close to the quantum dot, and two-qubit interactions are controlled via the tunnel barrier connecting the respective quantum dots. Based on these ideas, we have begun a series of experiments in order to demonstrate unitary control and to measure the coherence time of individual electron spins in quantum dots.
Entanglement Entropy in Random Quantum Spin-S Chains
Saguia, A; Continentino, M A; Sarandy, M S
2007-01-01
We discuss the scaling of entanglement entropy in the random singlet phase (RSP) of disordered quantum magnetic chains of general spin-S. Through an analysis of the general structure of the RSP, we show that the entanglement entropy scales logarithmically with the size of a block and we provide a closed expression for this scaling. This result is applicable for arbitrary quantum spin chains in the RSP, being dependent only on the magnitude S of the spin. Remarkably, the logarithmic scaling holds for the disordered chain even if the pure chain with no disorder does not exhibit conformal invariance, as is the case for Heisenberg integer spin chains. Our conclusions are supported by explicit evaluations of the entanglement entropy for random spin-1 and spin-3/2 chains using an asymptotically exact real-space renormalization group approach.
Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts
Hauptmann, J. R.; Paaske, J.; Lindelof, P. E.
2008-05-01
Manipulation of the spin states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin filters, spin transistors and single spin memories as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the quantum dot becomes spin polarized by the local exchange field. Here, we report on the experimental realization of this tunnelling-induced spin splitting in a carbon-nanotube quantum dot coupled to ferromagnetic nickel electrodes with a strong tunnel coupling ensuring a sizeable exchange field. As charge transport in this regime is dominated by the Kondo effect, we can use this sharp many-body resonance to read off the local spin polarization from the measured bias spectroscopy. We demonstrate that the exchange field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo resonance, and we demonstrate that the exchange field itself, and hence the local spin polarization, can be tuned and reversed merely by tuning the gate voltage.
Grandinetti, P.J. [Ohio State Univ., Columbus, OH (United States); Baltisberger, J.H. [Berea College, KY (United States); Farnan, I.; Stebbins, J.F. [Stanford Univ., CA (United States); Werner, U.; Pines, A. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)
1995-08-10
Five distinctly resolved {sup 17}O solid-state NMR resonances in room temperature coesite, an SiO{sub 2} polymorph, have been observed and assigned using dynamic angle spinning (DAS) at 11.7 T along with magic angle spinning (MAS) spectra at 9.4 and 11.7 T. The {sup 17}O quadrupolar parameters for each of the five oxygen environments in coesite are correlated with the Si-O-Si bridging bond angles determined by diffraction experiments. The sign of e{sup 2}-qQ/h along with the orientation of the electric field gradient for oxygen in the Si-O-Si linkage were determined from a Townes-Dailey analysis of the data. 41 refs., 7 figs., 5 tabs.
Superadiabatic quantum state transfer in spin chains
Agundez, R. R.; Hill, C. D.; Hollenberg, L. C. L.; Rogge, S.; Blaauboer, M.
2017-01-01
In this paper we propose a superadiabatic protocol where quantum state transfer can be achieved with arbitrarily high accuracy and minimal control across long spin chains with an odd number of spins. The quantum state transfer protocol only requires the control of the couplings between the qubits on the edge and the spin chain. We predict fidelities above 0.99 for an evolution of nanoseconds using typical spin-exchange coupling values of μ eV . Furthermore, by building a superadiabatic formalism on top of this protocol, we propose an effective superadiabatic protocol that retains the minimal control over the spin chain and further improves the fidelity.
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
Stretchable Persistent Spin Helices in GaAs Quantum Wells
Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.
2017-07-01
the extracted spin-diffusion lengths and decay times show a significant enhancement near α =β . Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ˜8 - 25 μ m between solid-state spin qubits, where the spin diffusion length for α ≠β is an order of magnitude smaller.
Stretchable Persistent Spin Helices in GaAs Quantum Wells
Florian Dettwiler
2017-07-01
sufficiently weak so that the extracted spin-diffusion lengths and decay times show a significant enhancement near α=β. Since within the continuous-locking regime quantum transport is diffusive (2D for charge while ballistic (1D for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ∼8–25 μm between solid-state spin qubits, where the spin diffusion length for α≠β is an order of magnitude smaller.
Takahashi, Kazuhiro; Hasegawa, Yuta; Sakamoto, Ryota; Nishikawa, Michihiro; Kume, Shoko; Nishibori, Eiji; Nishihara, Hiroshi
2012-05-07
We previously reported that an Fe(II) complex ligated by two (Z)-2,6-di(1H-pyrazol-1-yl)-4-styrylpyridine ligands (Z-H) presented a solid state ligand-driven light-induced spin change (LD-LISC) upon one-way Z-to-E photoisomerization, although modulation of the magnetism was trivial at ambient temperatures (Chem. Commun.2011, 47, 6846). Here, we report the synthesis of new derivatives of Z-H, Z-CN and Z-NO(2), in which electron-withdrawing cyano and nitro substituents are introduced at the 4-position of the styryl group to attain a more profound photomagnetism at ambient temperatures. Z-CN and Z-NO(2) undergo quantitative one-way Z-to-E photochromism upon excitation of the charge transfer band both in acetonitrile and in the solid state, similar to the behavior observed for Z-H. In solution, these substituents stabilized the low-spin (LS) states of Z-CN and Z-NO(2), and the behavior was quantitatively analyzed according to the Evans equation. The photomagnetic properties in the solid state, on the other hand, cannot be explained in terms of the substituent effect alone. Z-CN displayed photomagnetic properties almost identical to those of Z-H. Z-CN preferred the high-spin (HS) state at all temperatures tested, whereas photoirradiated Z-CN yielded a lower χ(M)T at ambient temperatures. The behavior of Z-NO(2) was counterintuitive, and the material displayed surprising photomagnetic properties in the solid state. Z-NO(2) occupied the LS state at low temperatures and underwent thermal spin crossover (SCO) with a T(1/2) of about 270 K. The photoirradiated Z-NO(2) displayed a higher value of χ(M)T and the modulation of χ(M)T exceeded that of Z-H or Z-CN. Z-NO(2)·acetone, in which acetone molecules were incorporated into the crystal lattice, further stabilized the LS state (T(1/2) > 300 K), thereby promoting large modulations of the χ(M)T values (87% at 273 K and 64% at 300 K) upon Z-to-E photoisomerization. Single crystal X-ray structure analysis revealed that
Anisotropic Spin Splitting in Step Quantum Wells
HAO Ya-Fei; CHEN Yong-Hai; HAO Guo-Dong; WANG Zhan-Guo
2009-01-01
By the method of finite difference,the anisotropic spin splitting of the Alx Ga1-x As/GaAs/Aly Ga1-y As/Alx Ga1-x As step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field.We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field.The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin.The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.
Feynman propagator for spin foam quantum gravity.
Oriti, Daniele
2005-03-25
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".
Siffalovic, Peter; Badanova, Dominika; Vojtko, Andrej; Jergel, Matej; Hodas, Martin; Pelletta, Marco; Sabol, Dusan; Macha, Marek; Majkova, Eva
2015-08-10
We report on the possibility to enhance color rendering of commercially available remote phosphor light-emitting diode modules by using low-cadmium content ZnCdSeS alloyed quantum dots. The employed numerical simulations showed that the color-rendering index of 90+ at the color-correlated temperature of 3200 K can be achieved by application of a single layer of quantum dots onto a neutral-white remote phosphor substrate. The experimental results fully support the numerical calculations, thus revealing the only limiting factor in achieving a higher photometric performance: the self-absorption effect in quantum dots. The presented low-cadmium content quantum dots allow a price-effective upgrade of already existing remote phosphor solid-state lighting technology toward a higher color-rendering capability.
Wiegand, Thomas; Eckert, Hellmut; Ren, Jinjun; Brunklaus, Gunther; Fröhlich, Roland; Daniliuc, Constantin G; Lübbe, Gerrit; Bussmann, Kathrin; Kehr, Gerald; Erker, Gerhard; Grimme, Stefan
2014-03-27
No-bond (31)P-(31)P indirect dipolar couplings, which arise from the transmission of nuclear spin polarization through interaction of proximal nonbonded electron pairs have been investigated in the solid state for a series of closely related substituted P,P-[3]ferrocenophanes and model systems. Through variation and combination of ligands (phenyl, cyclohexyl, isopropyl) at the two phosphorus sites, the P···P distances in these compounds can be varied from 3.49 to 4.06 Å. Thus, the distance dependence of the indirect no-bond coupling constant J(nb) can be studied in a series of closely related compounds. One- and two-dimensional solid-state NMR experiments serve to establish the character of these couplings and to measure the isotropic coupling constants J(iso), which were found to range between 12 and 250 Hz. To develop an understanding of the magnitude of J(nb) in terms of molecular structure, their dependences on intramolecular internuclear distances and relative orbital orientations is discussed by DFT-calculations on suitable models. In agreement with the literature the dependence of J(nb) on the P···P distance is found to be exponential; however, the steepness of this curve is highly dependent on the internuclear equilibrium distance. For a quantitative description, the off-diagonal elements of the expectation value of the Kohn-Sham-Fock operator in the LMO basis for the LMOs of the two phosphorus lone-pairs is proposed. This parameter correlates linearly with the calculated J(nb) values and possesses the same distance-dependence. In addition, the simulations indicate a distinct dependence of J(nb) on the dihedral angle defined by the two C-P bonds providing ligation to the molecular backbone. For disordered materials or those featuring multiple sites, conformers, and/or polymorphism, a new double-quantum NMR method termed DQ-DRENAR can be used to conveniently measure internuclear (31)P-(31)P distances. If conducted on compounds with known P
Masuda, Kenji; Adachi, Masayuki; Hirai, Asako; Yamamoto, Hiroyuki; Kaji, Hironori; Horii, Fumitaka
2003-06-01
To obtain further information about the cause for the rather large splitting of the C4 resonance line into the downfield (C4D) and upfield (C4U) lines in CP/MAS 13C NMR spectra for native cellulose, 13C and 1H spin diffusion measurements have been conducted by using different types of bacterial cellulose samples. In 13C spin diffusion measurements, the C4D resonance line is selectively inverted by the Dante pi pulse sequence and the 13C spin diffusion is allowed to proceed from the C4D carbons to other carbons including the C4U carbons with use of the 13C4-enriched bacterial cellulose sample. The analysis based on the simple spin diffusion theory for the process experimentally observed reveals that the C4U carbons may be located at distances less than about 1 nm from the C4D carbons. In 1H spin diffusion measurements, poly(vinyl alcohol) (PVA) films in which ribbon assemblies of bacterial cellulose are dispersed are employed and the 1H spin diffusion process is examined from the water-swollen PVA continuous phase to the dispersed ribbon assemblies by the 13C detection through the 1H-13C CP technique. As a result, it is found that the C4D and C4U carbons are almost equally subjected to the 1H spin diffusion from the PVA phase, indicating that the C4U carbons are not localized in some limited area, e.g. in the surfacial region, but are distributed in the whole area in the microfibrils. These experimental results suggest that the C4U carbons may exist as structural defects probably due to conformational irregularity associated with disordered hydrogen bonding of the CH(2)OH groups in the microfibrils.
Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal
Laplane, Cyril; Jobez, Pierre; Etesse, Jean; Gisin, Nicolas; Afzelius, Mikael
2017-05-01
The realization of quantum networks and quantum repeaters remains an outstanding challenge in quantum communication. These rely on the entanglement of remote matter systems, which in turn requires the creation of quantum correlations between a single photon and a matter system. A practical way to establish such correlations is via spontaneous Raman scattering in atomic ensembles, known as the Duan-Lukin-Cirac-Zoller (DLCZ) scheme. However, time multiplexing is inherently difficult using this method, which leads to low communication rates even in theory. Moreover, it is desirable to find solid-state ensembles where such matter-photon correlations could be generated. Here we demonstrate quantum correlations between a single photon and a spin excitation in up to 12 temporal modes, in a 151Eu3+ -doped Y2 SiO5 crystal, using a novel DLCZ approach that is inherently multimode. After a storage time of 1 ms, the spin excitation is converted into a second photon. The quantum correlation of the generated photon pair is verified by violating a Cauchy-Schwarz inequality. Our results show that solid-state rare-earth-ion-doped crystals could be used to generate remote multimode entanglement, an important resource for future quantum networks.
Spin dynamics and spin freezing at ferromagnetic quantum phase transitions
Schmakat, P.; Wagner, M.; Ritz, R.; Bauer, A.; Brando, M.; Deppe, M.; Duncan, W.; Duvinage, C.; Franz, C.; Geibel, C.; Grosche, F. M.; Hirschberger, M.; Hradil, K.; Meven, M.; Neubauer, A.; Schulz, M.; Senyshyn, A.; Süllow, S.; Pedersen, B.; Böni, P.; Pfleiderer, C.
2015-07-01
We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1- y Fe2+ y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1- x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.
Spin analogs of superconductivity and integer quantum Hall effect in an array of spin chains
Hill, Daniel; Kim, Se Kwon; Tserkovnyak, Yaroslav
2017-05-01
Motivated by the successful idea of using weakly coupled quantum electronic wires to realize the quantum Hall effects and the quantum spin Hall effects, we theoretically study two systems composed of weakly coupled quantum spin chains within the mean-field approximations, which can exhibit spin analogs of superconductivity and the integer quantum Hall effect. First, a certain bilayer of two arrays of interacting spin chains is mapped, via the Jordan-Wigner transformation, to an attractive Hubbard model that exhibits fermionic superconductivity, which corresponds to spin superconductivity in the original spin Hamiltonian. Secondly, an array of spin-orbit-coupled spin chains in the presence of a suitable external magnetic field is transformed to an array of quantum wires that exhibits the integer quantum Hall effect, which translates into its spin analog in the spin Hamiltonian. The resultant spin superconductivity and spin integer quantum Hall effect can be characterized by their ability to transport spin without any resistance.
Large Deviations in Quantum Spin Chain
Ogata, Yoshiko
2008-01-01
We show the full large deviation principle for KMS-states and $C^*$-finitely correlated states on a quantum spin chain. We cover general local observables. Our main tool is Ruelle's transfer operator method.
Mote, Kaustubh R; Madhu, Perunthiruthy K
2015-12-01
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping.
Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples.
Nishiyama, Yusuke
2016-09-01
In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.
Quantum limited heterodyne detection of spin noise
Cronenberger, S.; Scalbert, D.
2016-09-01
Spin noise spectroscopy is a powerful technique for studying spin relaxation in semiconductors. In this article, we propose an extension of this technique based on optical heterodyne detection of spin noise, which provides several key advantages compared to conventional spin noise spectroscopy: detection of high frequency spin noise not limited by detector bandwidth or sampling rates of digitizers, quantum limited sensitivity even in case of very weak probe power, and possible amplification of the spin noise signal. Heterodyne detection of spin noise is demonstrated on insulating n-doped GaAs. From measurements of spin noise spectra up to 0.4 Tesla, we determined the distribution of g-factors, Δg/g = 0.49%.
Solid State NMR Study of Polystyrene Nanolatex Particles(I) 13C Spin-Lattice Relaxation Time
无
2001-01-01
13C spin-lattice relaxtion times for polystyrene nanolatex particles have been investigated. It was found that the dramatic increase at 80℃ annealing temperature is well below the Tg temperature of bulk polystyrene, the increase of relaxation time of aromatic carbons is larger than that of for aliphatic carbons at transition annealing temperature.
Magnetizing and heating quantum spin ladders
Andrey Zheludev
2008-11-01
Quasi-one-dimensional quantum spin liquids, such as weakly coupled even-legged S=1/2 spin ladders or spin tubes, have a singlet non-magnetic ground state and gap in the excitation spectrum. Their low-temperature properties can be described in terms of triplet massive quasiparticles. These magnons possess some unique features due to the peculiar topology of one dimension. For example, two-particle interactions totally destroy single-particle states for certain energy and momentum transfers, resulting in the so-called termination of the magnon spectrum. At high field a Bose–Einstein condensation of these magnons produces a `quantum spin solid' phase, where `conventional` antiferromagnetic order coexists with excitations that are totally outside conventional spin wave theory. At finite temperatures strong repulsion between quasiparticles leads to a universal renormalization of their masses and lifetimes. These diverse phenomena are best probed by neutron scattering experiments that directly measure the spin correlation functions and excitation spectra.
On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics
Mananga, Eugene Stephane, E-mail: emananga@gradcenter.cuny.edu [Harvard Medical School and Massachusetts General Hospital, Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging Physics, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Charpentier, Thibault, E-mail: thibault.charpentier@cea.fr [Commissariat à l’Energie Atomique, IRAMIS, Service interdisciplinaire sur les systèmes moléculaires et matériaux, CEA/CNRS UMR 3299, 91191, Gif-sur-Yvette (France)
2016-01-22
Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Floquet–Magnus expansion that is helpful to describe the time evolution of the spin system at all times in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics, based on promising and useful theory of Floquet–Magnus expansion. This theory provides procedures to control and describe the spin dynamics in solid-state NMR. Major applications of the Floquet–Magnus expansion are illustrated by simple solid-state NMR and physical applications such as in nuclear, atomic, molecular physics, and quantum mechanics, NMR, quantum field theory and high energy physics, electromagnetism, optics, general relativity, search of periodic orbits, and geometric control of mechanical systems. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics. This review article also discusses future potential theoretical directions in solid-state NMR.
Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.
2006-01-01
A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum
Quantum Computing with an Electron Spin Ensemble
Wesenberg, Janus; Ardavan, A.; Briggs, G.A.D.
2009-01-01
We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized...
Quantum decoration transformation for spin models
Braz, F. F.; Rodrigues, F. C.; de Souza, S. M.; Rojas, Onofre
2016-09-01
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the "classical" limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising-Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
Polarization-transfer methods in solid-state magic-angle-spinning NMR: adiabatic CN pulse sequences.
Verel, René; Meier, Beat H
2004-06-21
An adiabatic double-quantum polarization-transfer experiment is described. It can be characterized as an adiabatic variant of the POST-C7 experiment. A continuous variation of the phase increment between pulses leads to the introduction of a fictitious Zeeman field that allows for an adiabatic passage through the recoupling condition. This results in a chemical-shift-offset-compensated adiabatic experiment, which leads to an efficient and broadbanded polarization transfer or to a double-quantum excitation. Similar variations of other C- or R-type experiments can be envisioned.
Blank, Aharon; Shklyar, Roman; Twig, Ygal
2013-01-01
Spin-based quantum computation (QC) in the solid state is considered to be one of the most promising approaches to scalable quantum computers. However, it faces problems such as initializing the spins, selectively addressing and manipulating single spins, and reading out the state of the individual spins. We have recently sketched a scheme that potentially solves all of these problems5. This is achieved by making use of a unique phosphorus-doped 28Si sample (28Si:P), and applying powerful new electron spin resonance (ESR) techniques for parallel excitation, detection, and imaging in order to implement QCs and efficiently obtain their results. The beauty of our proposed scheme is that, contrary to other approaches, single-spin detection sensitivity is not required and a capability to measure signals of ~100-1000 spins is sufficient to implement it. Here we take the first experimental step towards the actual implementation of such scheme. We show that, by making use of the smallest ESR resonator constructed to ...
Quantum computation with nuclear spins in quantum dots
Christ, H.
2008-01-24
The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin
Long-distance entanglement of spin qubits via quantum Hall edge states
Yang, Guang; Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel
2016-02-01
The implementation of a functional quantum computer involves entangling and coherent manipulation of a large number of qubits. For qubits based on electron spins confined in quantum dots, which are among the most investigated solid-state qubits at present, architectural challenges are often encountered in the design of quantum circuits attempting to assemble the qubits within the very limited space available. Here, we provide a solution to such challenges based on an approach to realizing entanglement of spin qubits over long distances. We show that long-range Ruderman-Kittel-Kasuya-Yosida interaction of confined electron spins can be established by quantum Hall edge states, leading to an exchange coupling of spin qubits. The coupling is anisotropic and can be either Ising type or XY type, depending on the spin polarization of the edge state. Such a property, combined with the dependence of the electron spin susceptibility on the chirality of the edge state, can be utilized to gain valuable insights into the topological nature of various quantum Hall states.
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Dynamical spin-spin coupling of quantum dots
Grigoryan, Vahram; Xiao, Jiang; A spintronics Group Team
2014-03-01
We carried out a nested Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the spin-spin coupling between two dynamical quantum dots under the influence of rotating transverse magnetic field. As a result of the rotating field, we predict a novel Ising type spin-spin coupling mechanism between quantum dots, whose strength is tunable via the magnitude of the rotating field. Due to its dynamical origin, this new coupling mechanism is qualitatively different from the all existing static couplings such as RKKY, while the strength could be comparable to the strength of the RKKY coupling. The dynamical coupling with the intristic RKKY coupling enables to construct a four level system of maximally entangled Bell states in a controllable manner. This work was supported by the special funds for the Major State Basic Research Project of China (No. 2011CB925601) and the National Natural Science Foundation of China (Grants No. 11004036 and No. 91121002).
Sharma, Kshama; Madhu, Perunthiruthy K; Mote, Kaustubh R
2016-08-01
One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text] can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.
Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias
2016-09-01
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.
Exact diagonalization of quantum-spin models
Lin, H. Q.
1990-10-01
We have developed a technique to replace hashing in implementing the Lanczös method for exact diagonalization of quantum-spin models that enables us to carry out numerical studies on substantially larger lattices than previously studied. We describe the algorithm in detail and present results for the ground-state energy, the first-excited-state energy, and the spin-spin correlations on various finite lattices for spins S=1/2, 1, 3/2, and 2. Results for an infinite system are obtained by extrapolation. We also discuss the generalization of our method to other models.
Blockspin Cluster Algorithms for Quantum Spin Systems
Wiese, U J
1992-01-01
Cluster algorithms are developed for simulating quantum spin systems like the one- and two-dimensional Heisenberg ferro- and anti-ferromagnets. The corresponding two- and three-dimensional classical spin models with four-spin couplings are maped to blockspin models with two-blockspin interactions. Clusters of blockspins are updated collectively. The efficiency of the method is investigated in detail for one-dimensional spin chains. Then in most cases the new algorithms solve the problems of slowing down from which standard algorithms are suffering.
Spin storage in quantum dot ensembles and single quantum dots
Heiss, Dominik
2009-10-15
This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h
Unconventional spin texture in a noncentrosymmetric quantum spin Hall insulator
Mera Acosta, C.; Babilonia, O.; Abdalla, L.; Fazzio, A.
2016-07-01
We propose that the simultaneous presence of both Rashba and band inversion can lead to a Rashba-like spin splitting formed by two bands with the same in-plane helical spin texture. Because of this unconventional spin texture, the backscattering is forbidden in edge and bulk conductivity channels. We propose a noncentrosymmetric honeycomb-lattice quantum spin Hall (QSH) insulator family formed by the IV, V, and VII elements with this property. The system formed by Bi, Pb, and I atoms is mechanically stable and has both a large Rashba spin splitting of 60 meV and a large nontrivial band gap of 0.14 eV. Since the edge and the bulk states are protected by the time-reversal (TR) symmetry, contrary to what happens in most doped QSH insulators, the bulk states do not contribute to the backscattering in the electronic transport, allowing the construction of a spintronic device with less energy loss.
Introduction to solid state electronics
Wang, FFY
1989-01-01
This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble
固态等离子体S-PIN二极管仿真设计%Simulation of Solid State Plasma S-PIN Diode
李威; 曾繁辉; 张彤
2014-01-01
Simulation S-PIN diodes is set up based on semiconductor theory, in order to get the carrier concentration,mobility ratio and optimized structure of diode,in which carrier concentration induced by forward bias on the surface of diodes reaches 1018 cm-3 . This high carrier concentration phenomenon so called solid state plasma phenomena,results in metal-like features of S-PIN diodes. Then the S-PIN diodes array is simulated,in order to confirm metal-like area,which can be used in RF antenna instead of metal.%介绍固态等离子体器件S-PIN二极管的仿真。在半导体理论的基础上建立S-PIN二极管的物理模型,利用软件对S-PIN二极管结构进行仿真计算,研究固态等离子体载流子浓度、载流子迁移率等参数性质,计算出二极管导通状态下的电导率。对二极管结构进行优化设计,使二极管导通情况下载流子浓度能够达到1018 cm-3,导电性能类似金属。这种高密度载流子聚集的现象被称为固态等离子体现象。仿真设计并排级联的S-PIN二极管阵列,得到类似金属导电性的连续固态等离子体区域,能够取代金属材料制备射频微波天线。
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Optical nuclear spin polarization in quantum dots
Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei
2016-10-01
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time. Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805).
Consequences of Kondo exchange on quantum spins
Delgado Acosta, Fernando; Hirjibehedin, Cyrus F.; Fernández Rossier, Joaquín
2014-01-01
When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other pheno...
Investigating albendazole desmotropes by solid-state NMR spectroscopy.
Chattah, Ana K; Zhang, Rongchun; Mroue, Kamal H; Pfund, Laura Y; Longhi, Marcela R; Ramamoorthy, Ayyalusamy; Garnero, Claudia
2015-03-02
Characterization of the molecular structure and physicochemical solid-state properties of the solid forms of pharmaceutical compounds is a key requirement for successful commercialization as potential active ingredients in drug products. These properties can ultimately have a critical effect on the solubility and bioavailability of the final drug product. Here, the desmotropy of Albendazole forms I and II was investigated at the atomic level. Ultrafast magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, together with powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy, were performed on polycrystalline samples of the two solids in order to fully characterize and distinguish the two forms. High-resolution one-dimensional (1)H, (13)C, and (15)N together with two-dimensional (1)H/(1)H single quantum-single quantum, (1)H/(1)H single quantum-double quantum, and (1)H/(13)C chemical shift correlation solid-state NMR experiments under MAS conditions were extensively used to decipher the intramolecular and intermolecular hydrogen bonding interactions present in both solid forms. These experiments enabled the unequivocal identification of the tautomers of each desmotrope. Our results also revealed that both solid forms may be described as dimeric structures, with different intermolecular hydrogen bonds connecting the tautomers in each dimer.
Equbal, Asif; Leskes, Michal; Nielsen, Niels Chr; Madhu, P K; Vega, Shimon
2016-02-01
We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent.
Roberts, J E; Bonar, L C; Griffin, R G; Glimcher, M J
1992-01-01
The properties of bone mineral change with age and maturation. Several investigators have suggested the presence of an initial or "precursor" calcium phosphate phase to help explain these differences. We have used solid state 31P magic angle sample spinning (MASS) nuclear magnetic resonance (NMR) and X-ray radial distribution function (RDF) analyses to characterize 11- and 17-day-old embryonic chick bone and fractions obtained from them by density fractionation. Density fractionation provides samples of bone containing Ca-P solid-phase deposits even younger and more homogeneous with respect to the age of mineral than the calcium phosphate (Ca-P) deposits in the whole bone samples. The analytical techniques yield no evidence for any distinct phase other than the poorly crystalline hydroxyapatite phase characteristic of mature bone mineral. In particular, there is no detectable crystalline brushite [DCPD, CaHPO4 2H2O less than 1%] or amorphous calcium phosphate (less than 8-10%) in the most recently formed bone mineral. A sizeable portion of the phosphate groups exist as HPO4(2-) in a brushite (DCPD)-like configuration. These acid phosphate moieties are apparently incorporated into the apatitic lattice. The most likely site for the brushite-like configuration is probably on the surface of the crystals.
Oulton, R; Greilich, A; Verbin, S Yu; Cherbunin, R V; Auer, T; Yakovlev, D R; Bayer, M; Merkulov, I A; Stavarache, V; Reuter, D; Wieck, A D
2007-03-09
A key to ultralong electron spin memory in quantum dots (QDs) at zero magnetic field is the polarization of the nuclei, such that the electron spin is stabilized along the average nuclear magnetic field. We demonstrate that spin-polarized electrons in n-doped (In,Ga)As/GaAs QDs align the nuclear field via the hyperfine interaction. A feedback onto the electrons occurs, leading to stabilization of their polarization due to formation of a nuclear spin polaron [I. A. Merkulov, Phys. Solid State 40, 930 (1998)]. Spin depolarization of both systems is consequently greatly reduced, and spin memory of the coupled electron-nuclear spin system is retained over 0.3 sec at temperature of 2 K.
Bending strain engineering in quantum spin hall system for controlling spin currents
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; Zhai, Feng; Mei, Jiawei; Liu, Feng
2017-06-01
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. Here the concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. We show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Furthermore, the curved quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.
Nonequilibrium Spin Magnetization Quantum Transport Equations
Buot, F A; Otadoy, R E S; Villarin, D L
2011-01-01
The classical Bloch equations of spin magnetization transport is extended to fully time-dependent and highly-nonlinear nonequilibrium quantum distribution function (QDF) transport equations. The leading terms consist of the Boltzmann kinetic equation with spin-orbit coupling in a magnetic field together with spin-dependent scattering terms which do not have any classical analogue, but should incorporate the spatio-temporal-dependent phase-space dynamics of Elliot-Yafet and D'yakonov-Perel scatterings. The resulting magnetization QDF transport equation serves as a foundation for computational spintronic and nanomagnetic device applications, in performing simulation of ultrafast-switching-speed/low-power performance and reliability analyses.
Applying classical geometry intuition to quantum spin
Durfee, Dallin S.; Archibald, James L.
2016-09-01
Using concepts of geometric orthogonality and linear independence, we logically deduce the form of the Pauli spin matrices and the relationships between the three spatially orthogonal basis sets of the spin-1/2 system. Rather than a mathematically rigorous derivation, the relationships are found by forcing expectation values of the different basis states to have the properties we expect of a classical, geometric coordinate system. The process highlights the correspondence of quantum angular momentum with classical notions of geometric orthogonality, even for the inherently non-classical spin-1/2 system. In the process, differences in and connections between geometrical space and Hilbert space are illustrated.
Quantum computing with an electron spin ensemble.
Wesenberg, J H; Ardavan, A; Briggs, G A D; Morton, J J L; Schoelkopf, R J; Schuster, D I; Mølmer, K
2009-08-14
We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper pair box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations.
Topological Effects on Quantum Phase Slips in Superfluid Spin Transport
Kim, Se Kwon; Tserkovnyak, Yaroslav
2016-03-01
We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal magnetoresistance.
Phase dependent spin manipulation in a single quantum dot
Santana, Ted S.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica
2012-07-01
Full text: Spin qubits in semiconductor quantum dots (QD) have attracted a lot of attention since the seminal work of Loss and DiVincenzo [1]. Controlling a single electron spin in a QD is a key ingredient for implementing a quantum information device in a solid-state system. Using ultra fast optical control is very attractive due to the possibility to achieve a spin rotation in a picosecond timescale, much shorter than the spin coherence time in such system [2]. In this work we use a density matrix formalism to model the dynamics of a system composed of a single electron loaded in a QD with a magnetic field applied in the Voigt geometry [3] and we show that it is possible to coherent manipulate its spin degree of freedom by applying two lasers pulses with different frequency, polarization and relative phase. For lasers with large detuning we can adiabatically eliminate the trion states (two electrons and one hole in the QD), obtaining an effective Hamiltonian which only couples the two electron spin. The effective coupling is strongly dependent on the relative phase between the pulses, making it possible to complete switch it on and off when desired. For phase {phi} = 0 we see the typical Rabi oscillation, as experimentally observed in Ref. [3], while for phase {phi} = {pi}/2 the interaction is completely switched off. We further investigated the common approximation used in this system which consist of reducing the four-level to a three-level system based on the large laser detuning [3]. Numerical and analytical results show that this approximation can only be used for very large Zeeman split, which cannot be achieved in InAs self-assembled QD with reasonable magnetic fields. The fourth level cannot be neglected here because the two laser pulses create an interference effect (not present in a three level system) between the different transitions and a large laser detuning does not eliminate its influence. [1] Loss D and DiVincenzo D P 1998, Phys. Rev. A 57, 120
Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets.
Gingras, M J P; McClarty, P A
2014-05-01
The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Spin ices provide one of very few experimentally realized examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterized by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.
Huo, Zhipeng; Tao, Li; Wang, Shimao; Wei, Junfeng; Zhu, Jun; Dong, Weiwei; Liu, Feng; Chen, Shuanghong; Zhang, Bing; Dai, Songyuan
2015-06-01
A quasi-solid-state quantum dot-sensitized solar cell (QDSSC) is fabricated by using 12-hydroxystearic acid as a low molecular mass organogelator to gelate the polysulfide electrolyte. Noticeably, the gel to liquid transition temperature of this polysulfide hydrogel electrolyte is 96 °C, which contributes to the long-term stability of the quasi-solid-state QDSSC (QS-QDSSC). The influences of gelation on the charge transport, electron recombination and photovoltaic performance of the QS-QDSSC are investigated by electrochemical impedance spectroscopy. Moreover, the network of the hydrogel is investigated by the Field emission scanning electron microscopy and polarized optical light microscopy. It is found that the charge transport is influenced by the network in the hydrogel electrolyte, and the accelerated electron recombination at the photoanode/electrolyte interface leads to the decreased open-circuit voltage. The QS-QDSSC exhibits an energy conversion efficiency of 2.40% at AM 1.5 (100 mW cm-2) which is slightly lower than that of liquid electrolyte based cell (2.88%). However, the QS-QDSSC exhibits significantly improved stability during the accelerated thermal test. Especially, during the accelerated aging test, the short-circuit current density (Jsc) of the liquid electrolyte based QDSSC sharply decreased to nearly 35% of its initial value, while there is relatively less change in the Jsc for the QS-QDSSC.
Gutmann, Torsten; Walaszek, Bernadeta; Yeping, Xu; Wächtler, Maria; del Rosal, Iker; Grünberg, Anna; Poteau, Romuald; Axet, Rosa; Lavigne, Guy; Chaudret, Bruno; Limbach, Hans-Heinrich; Buntkowsky, Gerd
2010-08-25
The (2)H quadrupolar interaction is a sensitive tool for the characterization of deuterium-metal binding states. In the present study, experimental solid-state (2)H MAS NMR techniques are used in the investigations of two ruthenium clusters, D(4)Ru(4)(CO)(12) (1) and D(2)Ru(6)(CO)(18) (2), which serve as model compounds for typical two-fold, three-fold, and octahedral coordination sites on metal surfaces. By line-shape analysis of the (2)H MAS NMR measurements of sample 1, a quadrupolar coupling constant of 67 +/- 1 kHz, an asymmetry parameter of 0.67 +/- 0.1, and an isotropic chemical shift of -17.4 ppm are obtained. In addition to the neutral complex, sample 2 includes two ionic clusters, identified as anionic [DRu(6)(CO)(18)](-) (2(-)) and cationic [D(3)Ru(6)(CO)(18)](+) (2(+)). By virtue of the very weak quadrupolar interaction (Quantum chemical DFT calculations at different model structures for these ruthenium clusters were arranged in order to help in the interpretation of the experimental results. It is shown that the (2)H nuclear quadrupolar interaction is a sensitive tool for distinguishing the binding state of the deuterons to the transition metal. Combining the data from the polynuclear complexes with the data from mononuclear complexes, a molecular ruler for quadrupolar interactions is created. This ruler now permits the solid-state NMR spectroscopic characterization of deuterium adsorbed on the surfaces of catalytically active metal nanoparticles.
Effects of Spin Quantum Force in Magnetized Quantum Plasma
杨秀峰; 姜虹; 祁学宏; 段文山
2011-01-01
Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries （KdV） equation of the system of quantum magneto- hydrodynamics （QMHD）. The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.
Topological Excitations in Quantum Spin Systems
Ranjan Chaudhury
2013-01-01
Full Text Available The origin and significance of topological excitations in quantum spin models in low dimensions are presented in detail. Besides a general review, our own work in this area is described in great depth. Apart from theoretical analysis of the existence and properties of spin vortices and antivortices, the possible experimental consequences and signatures are also highlighted. In particular, the distinguishing features between the even and odd charged topological excitations are brought out through a detailed analysis of the topological term in the quantum action. Moreover, an interesting symmetry property is predicted between the excitations from a ferromagnetic model and an antiferromagnetic model. Through a novel approach of ours, a bridge is established between field theoretical formalism and the well-known statistical mechanical treatment of Berezinskii-Kosterlitz-Thouless (BKT transition involving these topological excitations. Furthermore, a detailed phenomenological analysis of the experimentally observed static and dynamic magnetic properties of the layered magnetic materials, possessing XY anisotropy in the in-plane spin-spin couplings, is undertaken to test the theoretical predictions regarding the behaviour of these excitations. The importance and the crucial role of quantum spin fluctuations in these studies are also brought out very clearly by our analysis.
Spin & Statistics in Nonrelativistic Quantum Mechanics, II
Kuckert, B; Kuckert, Bernd; Mund, Jens
2004-01-01
Recently a sufficient and necessary condition for Pauli's spin- statistics connection in nonrelativistic quantum mechanics has been established [quant-ph/0208151]. The two-dimensional part of this result is extended to n-particle systems and reformulated and further simplified in a more geometric language.
Cristol, Y
2013-01-01
Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.
Coherent spin dynamics in semiconductor quantum dots
Amand, T.; Senes, M.; Marie, X.; Renucci, P. [Laboratoire de Nanophysique, Magnetisme et Optoelectronique-LPMC, INSA, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Urbaszek, B. [Laboratoire de Nanophysique, Magnetisme et Optoelectronique-LPMC, INSA, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Krebs, O.; Laurent, S.; Voisin, P. [Laboratoire de Photonique et Nanostructures, route de Nozay, 91460 Marcoussis (France); Warburton, R.J. [Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2005-05-01
The anisotropic exchange interaction (AEI) between electrons and holes is shown to play a central role in quantum dots (QDs) spin dynamics. In neutral QDs, AEI is at the origin of spin quantum beats observed under resonant excitation between the lowest energy doublet of linearly dipole-active eigenstates. In negatively charged QDs, AEI is at the origin of QD emission with opposite helicity to the optic al excitation, under non-resonant excitation conditions. Finally, the possibility of leaving a spin information in the system after recombination of the photo-injected electron-hole pair is discussed with respect to the type and the level of the doping. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Latypov, I. Z.; Shkalikov, A. V.; Akat'ev, D. O.; Kalachev, A. A.
2017-06-01
We report on the realization of a tunable source of correlated photon pairs compatible with telecommunication networks and quantum memories involving dielectric crystals doped by Nd3+ ions. The source is based on spontaneous parametric down-conversion in a 25 mm periodically poled lithium niobate crystal pumped by 532 nm cw laser. Spectral and correlation characteristics of the corresponding heralded single-photon source compatible with quantum memories are presented.
Quantum computing with acceptor spins in silicon.
Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie
2016-06-17
The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.
CdSe Quantum Dots Sensitized Mesoporous TiO2 Solar Cells with CuSCN as Solid-State Electrolyte
Guanbi Chen
2011-01-01
Full Text Available Mesoporous TiO2 is functionalized by 3-mercaptopropyl trimethyoxysilane (MPTMS to anchor CdSe quantum dots (QDs. The resulting TiO2/CdSe is combined with solid-state electrolyte (CuSCN to form solar cells. It is found that the efficiency of electron injection from QDs to TiO2 can be improved owing to the substitution of the long chains of organic capping agents at the surface of QDs with MPTMS. The hydrolyzate of MPTMS forms an insulating barrier layer to reduce the recombination at the TiO2/CdSe interface, leading to the increase of open-circuit voltage (Voc.
Burns, Gerald
2013-01-01
Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme
Physics of Nanostructured Solid State Devices
Bandyopadhyay, Supriyo
2012-01-01
Physics of Nanostructured Solid State Devices introduces readers to theories and concepts such as semi-classical and quantum mechanical descriptions of electron transport, methods for calculations of band structures in solids with applications in calculation of optical constants, and other advanced concepts. The information presented here will equip readers with the necessary tools to carry out cutting edge research in modern solid state nanodevices. This book also: Covers sophisticated models of charge transport including the drift-diffusion model, Boltzmann transport model and various quantum transport models Discusses the essential elements of quantum mechanics necessary for an understanding of nanostructured solid state devices Presents band structure calculation methods based on time-independent perturbation theory Discusses theory of optical transitions and optical devices employing quantum-confined structures such as quantum wells,wires and dots Elucidates quantum mechanics of electrons in a magneti...
STIC: Development of a System of Nonlocally Interconnected Spin Qubits for Quantum Computation
2012-09-23
Taylor, W. Dür, P. Zoller, A. Yacoby, C. Marcus, M. Lukin. Solid-State Circuit for Spin Entanglement Generation and Purification, Physical Review Letters , (06...Triplet Qubit, Physical Review Letters , (10 2009): 160503. doi: 10.1103/PhysRevLett.103.160503 2012/09/04 08:13:52 16 D. J. Reilly, J. M. Taylor, J...Double Quantum Dot, Physical Review Letters , (07 2006): 0. doi: 10.1103/PhysRevLett.97.056801 2012/09/04 02:25:07 7 J. Taylor, J. Petta, A. Johnson, A
Barceló, Irene; Campiña, José M; Lana-Villarreal, Teresa; Gómez, Roberto
2012-04-28
A hybrid quantum dot sensitized solar cell (QDSC) composed of CdSe quantum dots (QDs) as light harvesters and TiO(2) and 3,3'''-didodecyl-quaterthiophene (QT12) as electron and hole conductors, respectively, has been fully processed in air. The sensitizer has been introduced into the TiO(2) nanoporous layer either by the successive ionic layer adsorption and reaction method or by attaching colloidal QDs either directly or through molecular cables (linkers). As previously observed for QDSCs based on liquid electrolytes, the efficiency depends on the way of QD attachment, the direct adsorption of QDs being the procedure yielding the best results. Thermal annealing was applied in order to enhance the device response under illumination. Remarkable open circuit potentials are attained (close to 1 V), leading to an efficiency of 0.34% (AM 1.5G) in initial tests. Although low, it ranks as one of the highest values reported for solid state QDSCs based on titanium dioxide and colloidal quantum dots. This journal is © the Owner Societies 2012
Quantum Monte Carlo with variable spins.
Melton, Cody A; Bennett, M Chandler; Mitas, Lubos
2016-06-28
We investigate the inclusion of variable spins in electronic structure quantum Monte Carlo, with a focus on diffusion Monte Carlo with Hamiltonians that include spin-orbit interactions. Following our previous introduction of fixed-phase spin-orbit diffusion Monte Carlo, we thoroughly discuss the details of the method and elaborate upon its technicalities. We present a proof for an upper-bound property for complex nonlocal operators, which allows for the implementation of T-moves to ensure the variational property. We discuss the time step biases associated with our particular choice of spin representation. Applications of the method are also presented for atomic and molecular systems. We calculate the binding energies and geometry of the PbH and Sn2 molecules, as well as the electron affinities of the 6p row elements in close agreement with experiments.
Quantum Monte Carlo with Variable Spins
Melton, Cody A; Mitas, Lubos
2016-01-01
We investigate the inclusion of variable spins in electronic structure quantum Monte Carlo, with a focus on diffusion Monte Carlo with Hamiltonians that include spin-orbit interactions. Following our previous introduction of fixed-phase spin-orbit diffusion Monte Carlo (FPSODMC), we thoroughly discuss the details of the method and elaborate upon its technicalities. We present a proof for an upper-bound property for complex nonlocal operators, which allows for the implementation of T-moves to ensure the variational property. We discuss the time step biases associated with our particular choice of spin representation. Applications of the method are also presented for atomic and molecular systems. We calculate the binding energies and geometry of the PbH and Sn$_2$ molecules, as well as the electron affinities of the 6$p$ row elements in close agreement with experiments.
Photonic analogue of quantum spin Hall effect
He, Cheng; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yulin; Feng, Liang; Chen, Yan-Feng
2014-01-01
Symmetry-protected photonic topological insulator exhibiting robust pseudo-spin-dependent transportation, analogous to quantum spin Hall (QSH) phases and topological insulators, are of great importance in fundamental physics. Such transportation robustness is protected by time-reversal symmetry. Since electrons (fermion) and photons (boson) obey different statistics rules and associate with different time-reversal operators (i.e., Tf and Tb, respectively), whether photonic counterpart of Kramers degeneracy is topologically protected by bosonic Tb remains unidentified. Here, we construct the degenerate gapless edge states of two photonic pseudo-spins (left/right circular polarizations) in the band gap of a two-dimensional photonic crystal with strong magneto-electric coupling. We further demonstrated that the topological edge states are in fact protected by Tf rather than commonly believed Tb and their pseudo-spin dependent transportation is robust against Tf invariant impurities, discovering for the first tim...
Quantum Entanglement of Quantum Dot Spin Using Flying Qubits
2015-05-01
SPDC photon is teleported to a single quantum dot spin by a projective measurement using a Hong Ou Mandel (HOM) interferometer. The SPDC source...photo diode B: Blue CW: Continuous wave DBR: Distributed Bragg reflector EOM: Electro-optics modulator H: Horizontal HOM: Hong-Ou- Mandel InAs
A quantum spin-probe molecular microscope
Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L.C.L.
2016-01-01
Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy. PMID:27725630
A quantum spin-probe molecular microscope
Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.
2016-10-01
Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.
Spinning Particles in Quantum Mechanics and Quantum Field Theory
Corradini, Olindo
2015-01-01
The first part of the lectures, given by O. Corradini, covers introductory material on quantum-mechanical Feynman path integrals, which are here derived and applied to several particle models. We start considering the nonrelativistic bosonic particle, for which we compute the exact path integrals for the case of the free particle and for the harmonic oscillator, and then describe perturbation theory for an arbitrary potential. We then move to relativistic particles, both bosonic and fermionic (spinning) particles. We first investigate them from the classical view-point, studying the symmetries of their actions, then consider their canonical quantization and path integrals, and underline the role these models have in the study of space-time quantum field theories (QFT), by introducing the "worldline" path integral representation of propagators and effective actions. We also describe a special class of spinning particles that constitute a first-quantized approach to higher-spin fields. Since the fifties the qua...
Green, P.H.; Watson, D.M. (eds.)
1989-08-01
This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)
Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka
2016-02-01
This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40-80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055-15058, 2015) combines the reverse (13)C, (15)N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of "highlighted" labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching (13)CO or (15)N signals for a pair of consecutively labeled residues by recoupling (13)CO-(15)N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ~15% loss of signals for the highlighted residues while quenching as much as ~90% of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D (15)N/(13)Cα correlation and 2D (13)Cα/(13)CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and (1)H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using (13)C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (~300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable means of signal assignments especially for larger proteins through reducing the
Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)
2016-02-15
This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable
Generating quantum states through spin chain dynamics
Kay, Alastair
2017-04-01
The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.
Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4-x(OD)6Cl2.
Lee, S-H; Kikuchi, H; Qiu, Y; Lake, B; Huang, Q; Habicht, K; Kiefer, K
2007-11-01
A three-dimensional system of interacting spins typically develops static long-range order when it is cooled. If the spins are quantum (S=1/2), however, novel quantum paramagnetic states may appear. The most highly sought state among them is the resonating-valence-bond state, in which every pair of neighbouring quantum spins forms an entangled spin singlet (valence bonds) and these singlets are quantum mechanically resonating among themselves. Here we provide an experimental indication for such quantum paramagnetic states existing in frustrated antiferromagnets, Zn(x)Cu(4-x)(OD)(6)Cl(2), where the S=1/2 magnetic Cu2+ moments form layers of a two-dimensional kagome lattice. We find that in Cu(4)(OD)(6)Cl(2), where distorted kagome planes are weakly coupled, a dispersionless excitation mode appears in the magnetic excitation spectrum below approximately 20 K, whose characteristics resemble those of quantum spin singlets in a solid state, known as a valence-bond solid, that breaks translational symmetry. Doping with non-magnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens the interplane coupling but also dilutes the magnetic occupancy of the kagome lattice. The valence-bond-solid state is suppressed, and for ZnCu(3)(OD)(6)Cl(2), where the kagome planes are undistorted and 90% occupied by the Cu2+ ions, the low-energy spin fluctuations become featureless.
Thoma, A.; Schnauber, P.; Gschrey, M.; Seifried, M.; Wolters, J.; Schulze, J.-H.; Strittmatter, A.; Rodt, S.; Carmele, A.; Knorr, A.; Heindel, T.; Reitzenstein, S.
2016-01-01
We probe the indistinguishability of photons emitted by a semiconductor quantum dot (QD) via time- and temperature-dependent two-photon interference (TPI) experiments. An increase in temporal separation between consecutive photon emission events reveals a decrease in TPI visibility on a nanosecond time scale, theoretically described by a non-Markovian noise process in agreement with fluctuating charge traps in the QD's vicinity. Phonon-induced pure dephasing results in a decrease in TPI visibility from (96 ±4 )% at 10 K to a vanishing visibility at 40 K. In contrast to Michelson-type measurements, our experiments provide direct access to the time-dependent coherence of a quantum emitter on a nanosecond time scale.
Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa
2015-11-01
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.
Renes, Joseph M; Brennen, Gavin K; Bartlett, Stephen D
2011-01-01
While solid-state devices offer naturally reliable hardware for modern classical computers, thus far quantum information processors resemble vacuum tube computers in being neither reliable nor scalable. Strongly correlated many body states stabilized in topologically ordered matter offer the possibility of naturally fault tolerant computing, but are both challenging to engineer and coherently control and cannot be easily adapted to different physical platforms. We propose an architecture which achieves some of the robustness properties of topological models but with a drastically simpler construction. Quantum information is stored in the degenerate ground states of spin-1 chains exhibiting symmetry-protected topological order (SPTO), while quantum gates are performed by adiabatic non-Abelian holonomies using only single-site fields and nearest-neighbor couplings. Gate operations respect the SPTO symmetry, inheriting some protection from noise and disorder from the SPTO robustness to local perturbation. A pote...
Advances in Solid State Physics
Haug, Rolf
2008-01-01
The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...
Love triangles, quantum fluctuations and spin jam
Lee, Seung-Hun
When magnetic moments are interacting with each other in a situation resembling that of complex love triangles, called frustration, a large set of states that are energetically equivalent emerge. This leads to exotic spin states such as spin liquid and spin ice. Recently, we presented evidence for the existence of a topological glassy state, that we call spin jam, induced by quantum fluctuations. The case in point is SrCr9pGa12-9pO19 (SCGO(p)), a highly frustrated magnet, in which the magnetic Cr ions form a quasi-two-dimensional triangular system of bi-pyramids. This system has been an archetype in search for exotic spin states. Understanding the nature of the state has been a great intellectual challenge. Our new experimental data and theoretical spin jam model provide for the first time a coherent understanding of the phenomenon. Furthermore, the findings strongly support the possible existence of purely topological glassy states. Reference:
Single-electron Spin Resonance in a Quadruple Quantum Dot
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2016-08-01
Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.
Advances in Solid State Physics
Haug, Rolf
2007-01-01
The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.
Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei
De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)
1997-08-01
The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.
Understanding solid state physics
Holgate, Sharon Ann
2009-01-01
Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th
Orton, J W; Walling, J C; Ter Haar, D
1970-01-01
The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica
Theoretical solid state physics
Haug, Albert
2013-01-01
Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i
Dissipative Quantum Metrology with Spin Cat States
Huang, Jiahao; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2014-01-01
We present a robust high-precision phase estimation scheme via spin cat states in the presence of particle losses. The input Greenberger-Horne-Zeilinger (GHZ) state, which may achieve the Heisenberg-limited measurement in the absence of particle losses, becomes fragile against particle losses and its achieved precision becomes even worse than the standard quantum limit (SQL). However, the input spin cat states, a kind of non-Gaussian entangled states in superposition of two spin coherent states, are of excellent robustness against particle losses and the achieved precision may still beat the SQL. For realistic measurements based upon our scheme, comparing with the population measurement, the parity measurement is more suitable for yielding higher precisions. In phase measurement with realistic dissipative systems of bosonic particles, our scheme provides a robust and realizable way to achieve high-precision measurements beyond the SQL.
A new correlator in quantum spin chains
Keating, J P; Mezzadri, F; Novaes, M [School of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom)
2006-06-16
We propose a new correlator in one-dimensional quantum spin chains, the s-emptiness formation probability (s-EFP). This is a generalization of the emptiness formation probability (EFP), which is the probability that the first n spins of the chain are all aligned downwards. In the s-EFP we let the spins in question be separated by s sites. The usual EFP corresponds to the special case when s = 1. Taking s > 1 allows us to quantify non-local correlations. We express the s-EFP for the anisotropic XY model in a transverse magnetic field, a system with both critical and non-critical regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find that the magnetic field induces an interesting length scale. (letter to the editor)
Path integrals for dimerized quantum spin systems
Foussats, Adriana, E-mail: afoussats@gmail.co [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Greco, Andres [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Muramatsu, Alejandro [Institut fuer Theoretische Physik III, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)
2011-01-11
Dimerized quantum spin systems may appear under several circumstances, e.g. by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Neel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin S=1/2 dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both an SO(4) formulation and bond-operators.
Classical spin and quantum-mechanical descriptions of geometric spin frustration.
Dai, Dadi; Whangbo, Myung-Hwan
2004-07-08
Geometric spin frustration (GSF) in isolated plaquettes with local spin s, i.e., an equilateral-triangle spin trimer and a regular-tetrahedron spin tetramer, was examined on the basis of classical spin and quantum-mechanical descriptions to clarify their differences and similarities. An analytical proof was given for how the state degeneracy and the total spin S of their ground states depend on the local spin s. The quantum-mechanical conditions for the occurrence of GSF in isolated plaquettes were clarified, and their implications were explored. Corner sharing between plaquettes and how it affects GSF in the resulting spin systems was examined.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Lo, H -Y; Kienzler, D; Keitch, B C; de Clercq, L E; Negnevitsky, V; Home, J P
2013-01-01
We describe laser systems for photoionization, Doppler cooling and quantum state manipulation of beryllium ions. For photoionization of neutral beryllium, we have developed a continuous-wave 235 nm source obtained by two stages of frequency doubling from a diode laser at 940 nm. The system delivers up to 400 mW at 470 nm and 28 mW at 235 nm. For control of the beryllium ion, three laser wavelengths at 313 nm are produced by sum-frequency generation and second-harmonic generation from four infrared fiber lasers. Up to 7.2 W at 626 nm and 1.9 W at 313 nm are obtained using two pump beams at 1051 and 1551 nm. Intensity fluctuations below 0.5 % per hour (during 8 hours of operation) have been measured at a 313 nm power of 1 W. These systems are used to load beryllium ions into a segmented ion trap.
Entanglement in Nonunitary Quantum Critical Spin Chains
Couvreur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert
2017-07-01
Entanglement entropy has proven invaluable to our understanding of quantum criticality. It is natural to try to extend the concept to "nonunitary quantum mechanics," which has seen growing interest from areas as diverse as open quantum systems, noninteracting electronic disordered systems, or nonunitary conformal field theory (CFT). We propose and investigate such an extension here, by focusing on the case of one-dimensional quantum group symmetric or supergroup symmetric spin chains. We show that the consideration of left and right eigenstates combined with appropriate definitions of the trace leads to a natural definition of Rényi entropies in a large variety of models. We interpret this definition geometrically in terms of related loop models and calculate the corresponding scaling in the conformal case. This allows us to distinguish the role of the central charge and effective central charge in rational minimal models of CFT, and to define an effective central charge in other, less well-understood cases. The example of the s l (2 |1 ) alternating spin chain for percolation is discussed in detail.
Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins
Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou
2016-07-01
We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.
Roelofs, Katherine E.
2013-03-21
Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO 2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current-voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al 2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer. © 2013 American Chemical Society.
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Quantum criticality of hot random spin chains.
Vasseur, R; Potter, A C; Parameswaran, S A
2015-05-29
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit nonergodic behavior at strong disorder. The analysis is conveniently implemented in terms of SU(2)_{k} anyon chains that include the Ising and Potts chains as notable examples. Highly excited eigenstates of these systems exhibit properties usually associated with quantum critical ground states, leading us to dub them "quantum critical glasses." We argue that random-bond Heisenberg chains self-thermalize and that the excited-state entanglement crosses over from volume-law to logarithmic scaling at a length scale that diverges in the Heisenberg limit k→∞. The excited state fixed points are generically distinct from their ground state counterparts, and represent novel nonequilibrium critical phases of matter.
Pan, Xin-Yu; Yang, Li-Li; Fan, Heng
2010-01-01
Here we report an experimental realization of optimal phase-covariant quantum cloning machine with a single electron spin in solid state system at room temperature. The involved three states of two logic qubits are encoded physically in three levels of a single electron spin with two Zeeman sub-levels at a nitrogen-vacancy defect center in diamond. The preparation of input state and the phase-covariant quantum cloning transformation are controlled by two independent microwave fields. The center can be optically spin-polarized and the output state can be measured by combining confocal microscopy technique with spin-selective rates of fluorescence. The measured intensities of fluorescence of the output state are fitted in data of Rabi oscillations to find the exact form of the output. We provide the first solid-state proof-of-concept demonstration of the optimal phase-covariant quantum cloning. The combination of two microwave fields provides a technique to precisely control and measure a three-level superposed...
The collision frequency model of the solid state plasma for Si/Si1-xGex/Si SPiN device
Kang, H. Y.; Hu, H. Y.; Wang, B.; Zhang, H. M.; Su, H.; Hao, M. R.
2017-01-01
A two dimensional(2D) collision frequency model is developed based on the 2D solid state plasma concentration distribution model and mobility model for a heterogeneous Si/Si1-xGex/Si structure SPiN(Surface PiN) devices, which are the basic radiating elements in the reconfigurable solid state plasma antenna. The lower collision frequency can be achieved when the Ge mole fraction x and applied voltage increase at the temperature T=300 K, and that the basically uniform distribution of collision frequency can be obtained for Ge mole fraction x=0.3. Moreover, radiation efficiency and the maximum gain of the antenna for the different collision frequency have also been studied. The proposed model can be a handful for the designing of the solid state plasma antenna.
Quantum typicality in spin network states of quantum geometry
Anzà, Fabio
2016-01-01
In this letter we extend the so-called typicality approach, originally formulated in statistical mechanics contexts, to SU(2) invariant spin network states. Our results do not depend on the physical interpretation of the spin-network, however they are mainly motivated by the fact that spin-network states can describe states of quantum geometry, providing a gauge-invariant basis for the kinematical Hilbert space of several background independent approaches to quantum gravity. The first result is, by itself, the existence of a regime in which we show the emergence of a typical state. We interpret this as the prove that, in that regime there are certain (local) properties of quantum geometry which are "universal". Such set of properties is heralded by the typical state, of which we give the explicit form. This is our second result. In the end, we study some interesting properties of the typical state, proving that the area-law for the entropy of a surface must be satisfied at the local level, up to logarithmic c...
The spin Hall effect in a quantum gas.
Beeler, M C; Williams, R A; Jiménez-García, K; LeBlanc, L J; Perry, A R; Spielman, I B
2013-06-13
Electronic properties such as current flow are generally independent of the electron's spin angular momentum, an internal degree of freedom possessed by quantum particles. The spin Hall effect, first proposed 40 years ago, is an unusual class of phenomena in which flowing particles experience orthogonally directed, spin-dependent forces--analogous to the conventional Lorentz force that gives the Hall effect, but opposite in sign for two spin states. Spin Hall effects have been observed for electrons flowing in spin-orbit-coupled materials such as GaAs and InGaAs (refs 2, 3) and for laser light traversing dielectric junctions. Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spatially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce and measure the requisite spin-dependent Lorentz forces, finding them to be in excellent agreement with our calculations. This 'atomtronic' transistor behaves as a type of velocity-insensitive adiabatic spin selector, with potential application in devices such as magnetic or inertial sensors. In addition, such techniques for creating and measuring the spin Hall effect are clear prerequisites for engineering topological insulators and detecting their associated quantized spin Hall effects in quantum gases. As implemented, our system realizes a laser-actuated analogue to the archetypal semiconductor spintronic device, the Datta-Das spin transistor.
Room temperature manipulation of long lifetime spins in metallic-like carbon nanospheres
Náfrádi, Bálint; Choucair, Mohammad; Dinse, Klaus-Peter; Forró, László
2016-07-01
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magnetic contributions of neighbouring atoms on spin-lattice and spin-spin relaxation times at room temperature remain substantial challenges to practical spintronics. Here we report conduction electron spin-lattice and spin-spin relaxation times of 175 ns at 300 K in 37+/-7 nm carbon spheres, which is remarkably long for any conducting solid-state material of comparable size. Following the observation of spin polarization by electron spin resonance, we control the quantum state of the electron spin by applying short bursts of an oscillating magnetic field and observe coherent oscillations of the spin state. These results demonstrate the feasibility of operating electron spins in conducting carbon nanospheres as quantum bits at room temperature.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
Quantum Optimization of Fully Connected Spin Glasses
Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim
2015-07-01
Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.
Quantum Optimization of Fully Connected Spin Glasses
Davide Venturelli
2015-09-01
Full Text Available Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer’s hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave Two^{TM} annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors optimized simulated annealing algorithms.
Simon, Steven H
2013-01-01
The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude
Condensed-matter physics: Quantum mechanics in a spin
Balents, Leon
2016-12-01
Quantum spin liquids are exotic states of matter first predicted more than 40 years ago. An inorganic material has properties consistent with these predictions, revealing details about the nature of quantum matter. See Letter p.559
Spin-dependent quantum transport through an Aharonov-Bohm structure spin splitter
Li Yu-Xian
2008-01-01
Using the tight-binding model approximation, this paper investigates theoretically spin-dependent quantum trans-port through an Aharonov-Bohm (AB) interferometer. An external magnetic field is applied to produce the spin-polarization and spin current. The AB interferometer, acting as a spin splitter, separates the opposite spin polarization current. By adjusting the energy and the direction of the magnetic field, large spin-polarized current can be obtained.
Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics
Lloyd-Hughes, J.
2015-08-01
Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.
A fault-tolerant addressable spin qubit in a natural silicon quantum dot.
Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo
2016-08-01
Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities.
A fault-tolerant addressable spin qubit in a natural silicon quantum dot
Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo
2016-01-01
Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725
Spin and polarized current from Coulomb blockaded quantum dots.
Potok, R M; Folk, J A; Marcus, C M; Umansky, V; Hanson, M; Gossard, A C
2003-07-04
We report measurements of spin transitions for GaAs quantum dots in the Coulomb blockade regime and compare ground and excited state transport spectroscopy to direct measurements of the spin polarization of emitted current. Transport spectroscopy reveals both spin-increasing and spin-decreasing transitions, as well as higher-spin ground states, and allows g factors to be measured down to a single electron. The spin of emitted current in the Coulomb blockade regime, measured using spin-sensitive electron focusing, is found to be polarized along the direction of the applied magnetic field regardless of the ground state spin transition.
Chang, Yi-Cheng; Suriyawong, Nipapon; Aragaw, Belete Asefa; Shi, Jen-Bin; Chen, Peter; Lee, Ming-Way
2016-04-01
Lead antimony sulfides are rare in nature and relatively unexplored ternary semiconductors. This work investigates the photovoltaic performance of Pb-Sb-S quantum dot-sensitized solar cells (QDSCs). Pb5Sb8S17 nanoparticles are grown on mesoporous TiO2 electrodes using the successive ionic layer adsorption reaction process. The synthesized Pb5Sb8S17 nanoparticles exhibit two attractive features for a good solar absorber material: a high optical absorption coefficient and a near optimal energy gap. Solid-state QDSCs are fabricated from the synthesized Pb5Sb8S17 nanoparticles using Spiro-OMeTAD as the hole-transporting material. The best cell yields a short-circuit current density Jsc of 11.92 mA cm-2, an open-circuit voltage Voc of 0.48 V, a fill factor FF of 30.7% and a power conversion efficiency (PCE) of 1.76% under 1sun. The external quantum efficiency (EQE) spectrum covers a spectral range of 350-800 nm with a maximal EQE = 65% at λ = 450 nm. At the reduced light intensity of 10% sun, the PCE increases to 4.14% with Jsc = 2.0 mA cm-2 (which could be normalized to 20 mA cm-2 under 1 sun). This PCE is 65% higher than the best previous result. The respectable PCE and Jsc indicate that Pb5Sb8S17 could be a potential candidate for a solar absorber material.
Spin dynamics in a two-dimensional quantum gas
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Quantum gravitational corrections for spinning particles
Fröb, Markus B
2016-01-01
We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well-known, and the same corrections due to massless minimally coupled scalars [S. Park and R. P. Woodard, Class. Quant. Grav. 27 (2010) 245008], massless non-conformal scalars [A. Marunovic and T. Prokopec, Phys. Rev. D 87 (2013) 104027] and massive scalars, fermions and vector bosons [D. Burns and A. Pilaftsis, Phys. Rev. D 91 (2015) 064047] have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppres...
Quantum discord in spin-cluster materials
Yurischev, M A
2011-01-01
The total quantum correlation (discord) in Heisenberg dimers is expressed via the spin-spin correlation function, internal energy, specific heat or magnetic susceptibility. This allows one to indirectly measure the discord through neutron scattering, as well as calorimetric or magnetometric experiments. Using the available experimental data, we found the discord for a number of binuclear Heisenberg substances with both antiferro- and ferromagnetic interactions. For the dimerized antiferromagnet copper nitrate Cu(NO_3)_2*2.5H_2O, the three independent experimental methods named above lead to a discord of approximately 0.2-0.3 bit/dimer at a temperature of 4 K. We also determined the temperature behavior of discord for hydrated and anhydrous copper acetates, as well as for the ferromagnetic binuclear copper acetate complex [Cu_2L(OAc)]*6H_2O, where L is a ligand.
Quantum Spin Gyroscope using NV centers in Diamond
Jaskula, Jean-Christophe; Saha, Kasturi; Ajoy, Ashok; Cappellaro, Paola
2015-05-01
Gyroscopes find wide applications in everyday life from navigation and inertial sensing to rotation sensors in hand-held devices and automobiles. Current devices, based on either atomic or solid-state systems, impose a choice between long-time stability and high sensitivity in a miniaturized system. We are building a solid-state spin gyroscope associated with the Nitrogen-Vacancy (NV) centers in diamond to overcome these constraints. More specifically, we will take advantage of the 14N nuclear spin coherence properties of NV centers and side-collection techniques to achieve high sensitivity of about 1 (mdeg s-1) /√{ (} Hz mm3) . Moreover, by exploiting the four classes of the NV axes, we will be able to determine axis of rotation as well as its rate.
Pandey, Manoj Kumar; Amoureux, Jean-Paul; Asakura, Tetsuo; Nishiyama, Yusuke
2016-08-10
(14)N/(14)N correlations are vital for structural studies of solid samples, especially those in which (15)N isotopic enrichment is challenging, time-consuming and expensive. Although (14)N nuclei have high isotopic abundance (99.6%), there are inherent difficulties in observing (14)N/(14)N correlations due to limited resolution and sensitivity related to: (i) low (14)N gyromagnetic ratio (γ), (ii) large (14)N quadrupolar couplings, (iii) integer (14)N spin quantum number (I = 1), and (iv) very weak (14)N-(14)N dipolar couplings. Previously, we demonstrated a proton-detected 3D (14)N/(14)N/(1)H correlation experiment at fast magic angle spinning (MAS) on l-histidine·HCl·H2O utilizing a through-bond (J) and residual dipolar-splitting (RDS) based heteronuclear multiple quantum correlation (J-HMQC) sequence mediated through (1)H/(1)H radio-frequency driven recoupling (RFDR). As an extension of our previous work, in this study we show the utility of dipolar-based HMQC (D-HMQC) in combination with (1)H/(1)H RFDR mixing to obtain sensitivity enhanced (14)N/(14)N correlations in more complex biological solids such as a glycyl-l-alanine (Gly-l-Ala) dipeptide, and parallel (P) and antiparallel (AP) β-strand alanine tripeptides (P-(Ala)3 and AP-(Ala)3, respectively). These systems highlight the mandatory necessity of 3D (14)N/(14)N/(1)H measurements to get (14)N/(14)N correlations when the amide proton resonances are overlapped. Moreover, the application of long selective (14)N pulses, instead of short hard ones, is shown to improve the sensitivity. Globally, we demonstrate that replacing J-scalar with dipolar interaction and hard- with selective-(14)N pulses allows gaining a factor of ca. 360 in experimental time. On the basis of intermolecular NH/NH distances and (14)N quadrupolar tensor orientations, (14)N/(14)N correlations are effectively utilized to make a clear distinction between the parallel and antiparallel arrangements of the β-strands in (Ala)3 through the
The Spin Foam Approach to Quantum Gravity
Perez, Alejandro
2012-01-01
This article reviews the present status of the spin foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently introduced new models for four dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self-contained treatment of the 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.
Current correlations in quantum spin Hall insulators.
Schmidt, Thomas L
2011-08-26
We consider a four-terminal setup of a two-dimensional topological insulator (quantum spin Hall insulator) with local tunneling between the upper and lower edges. The edge modes are modeled as helical Luttinger liquids and the electron-electron interactions are taken into account exactly. Using perturbation theory in the tunneling, we derive the cumulant generating function for the interedge current. We show that different possible transport channels give rise to different signatures in the current noise and current cross correlations, which could be exploited in experiments to elucidate the interplay between electron-electron interactions and the helical nature of the edge states.
Hypercuboidal renormalization in spin foam quantum gravity
Bahr, Benjamin; Steinhaus, Sebastian
2017-06-01
In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.
Effect of quantum tunneling on spin Hall magnetoresistance
Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk
2017-02-01
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
Pridham, G J
2013-01-01
Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided
Spin Wigner molecules in quantum dots
Zutic, Igor; Oszwaldowski, Rafal; Stano, Peter; Petukhov, A. G.
2013-03-01
The interplay of confinement and Coulomb interactions in quantum dots can lead to strongly correlated phases differing qualitatively from the Fermi liquid behavior. While in three dimensions the correlation-induced Wigner crystal is elusive and expected only in the limit of an extremely low carrier density, its nanoscale analog, the Wigner molecule, has been observed in quantum dots at much higher densities [1]. We explore how the presence of magnetic impurities in quantum dots can provide additional opportunities to study correlation effects and the resulting ordering in carrier and impurity spins[2]. By employing exact diagonalization we reveal that seemingly simple two-carrier quantum dots lead to a rich phase diagram [2,3]. We propose experiments to verify our predictions; in particular, we discuss interband optical transitions as a function of temperature and magnetic field. DOE-BES, meta-QUTE 259 ITMS NFP Grant No. 26240120022, CE SAS QUTE, EU 260 Project Q-essence, Grant No. APVV-0646-10, and SCIEX.
Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory
2014-08-28
The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.
Persistent spin current in a quantum wire with weak Dresselhaus spin-orbit coupling
Sheng Wei; Wang Yi; Zhou Guang-Hui
2007-01-01
The spin current in a parabolically confined semiconductor heterojunction quantum wire with Dresselhaus spinorbit coupling is theoretically studied by using the perturbation method. The formulae of the elements for linear and angular spin current densities are derived by using the recent definition for spin current based on spin continuity equation. It is found that the spin current in this Dresselhaus spin-orbit coupling quantum wire is antisymmetrical,which is different from that in R ashba model due to the difference in symmetry between these two models. Some numerical examples for the result are also demonstrated and discussed.
Quantum Zeno effect in atomic spin-exchange collisions
Kominis, I.K. [Department of Physics, University of Crete, Heraklion 71103 (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion 71110 (Greece)], E-mail: ikominis@iesl.forth.gr
2008-07-07
The suppression of spin-exchange relaxation in dense alkali-metal vapors discovered in 1973 and governing modern atomic magnetometers is here reformulated in terms of quantum measurement theory and the quantum Zeno effect. This provides a new perspective of understanding decoherence in spin-polarized atomic vapors.
Quantum Zeno effect in atomic spin-exchange collisions
Kominis, I. K.
2008-01-01
The suppression of spin-exchange relaxation in dense alkali-metal vapors discovered in 1973 and governing modern atomic magnetometers is here reformulated in terms of quantum measurement theory and the quantum Zeno effect. This provides a new perspective of understanding decoherence in spin-polarized atomic vapors.
Brewster, Hilary D
2009-01-01
Solid state physics is an exhaustive introductory text for the students of physics. Keeping in mind, this book has been prepared to present the subject-matter in an easily understandable way without sacrificing the essential details and principles an yet avoiding redundant matter and unnecessary complications. This book is expected to meet adequately the need of the students for whom it is meant.
Sutliff, Ronald D.; And Others
This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…
Hu, C Y
2017-03-28
The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks.
Hu, C. Y.
2017-01-01
The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks. PMID:28349960
Shen, Ze-Song; Hong, Fang-Yu
2016-11-01
We present a new scheme for quantum interfaces (QIs) to accomplish the interconversion of photonic qubits and spin qubits based on optomechanical resonators and the spin-orbit-induced interactions in suspended carbon nanotube quantum dots (CNTQDs). This interface implements quantum spin transducers and further enables electrical manipulation of local electron spin qubits, which lays the foundation for all-electrical control of state transfer protocols between two distant quantum nodes in a quantum network. We numerically evaluate the state transfer processes and proceed to estimate the effect of each coupling strength on the operation fidelities. The simulation suggests that high operation fidelities are obtainable under realistic experimental conditions.
Initialization and Readout of Spin Chains for Quantum Information Transport
Kaur, Gurneet
2011-01-01
Linear chains of spins acting as quantum wires are a promising approach to achieve scalable quantum information processors. Nuclear spins in apatite crystals provide an ideal test-bed for the experimental study of quantum information transport, as they closely emulate a one-dimensional spin chain. Nuclear Magnetic Resonance techniques can be used to drive the spin chain dynamics and probe the accompanying transport mechanisms. Here we demonstrate initialization and readout capabilities in these spin chains, even in the absence of single-spin addressability. These control schemes enable preparing desired states for quantum information transport and probing their evolution under the transport Hamiltonian. We further optimize the control schemes by a detailed analysis of $^{19}$F NMR lineshape.
The classical and quantum dynamics of molecular spins on graphene
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2015-01-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019
Effects of spin-orbit coupling on quantum transport
Bardarson, Jens Hjorleifur
2008-01-01
The effect of spin-orbit coupling on various quantum transport phenomena is considered. The main topics discussed are: * How spin-orbit coupling can induce shot noise through trajectory splitting. * How spin-orbit coupling can degrade electron-hole entanglement (created by a tunnel barrier) by mo
Yu.A. Kruglyak
2015-12-01
Full Text Available Spin transport with the NEGF method in the spinor representation, in particular, spin valve, rotating magnetic contacts, spin precession and rotating spins, Zeeman and Rashba spin Hamiltonians, quantum spin Hall effect, calculation the spin potential, and four-component description of transport are discussed in the frame of the «bottom – up» approach of modern nanoelectronics.
How quantum are classical spin ices?
Gingras, Michel J. P.; Rau, Jeffrey G.
The pyrochlore spin ice compounds Dy2TiO7 and Ho2Ti2O7 are well described by classical Ising models down to low temperatures. Given the empirical success of this description, the question of the importance of quantum effects in these materials has been mostly ignored. We argue that the common wisdom that the strictly Ising moments of non-interacting Dy3+ and Ho3+ ions imply Ising interactions is too naive and that a more complex argument is needed to explain the close agreement between the classical Ising model theory and experiments. By considering a microscopic picture of the interactions in rare-earth oxides, we show that the high-rank multipolar interactions needed to induce quantum effects in these two materials are generated only very weakly by superexchange. Using this framework, we formulate an estimate of the scale of quantum effects in Dy2Ti2O7 and Ho2Ti2O7, finding it to be well below experimentally relevant temperatures. Published as: PHYSICAL REVIEW B 92, 144417 (2015).
Schmidt-Rohr, K.; Fritzsching, K. J.; Liao, S. Y.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry and Ames Laboratory (United States)
2012-12-15
Several techniques for spectral editing of 2D {sup 13}C-{sup 13}C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N-CO peaks through {sup 13}C-{sup 15}N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH{sub 2}) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other {pi}-pulse is shifted from the center of a rotor period t{sub r} by about 0.15 t{sub r}. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled {sup 13}C-{sup 1}H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via {sup 13}C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.
Exact analytical solution for quantum spins mixing in spin-1 Bose-Einstein condensates
Chen Ai-Xi; Qiu Wan-Ying; Wang Zhi-Ping
2008-01-01
This paper solves exactly a set of fully quantized coupled equations describing the quantum dynamics of quantum spins mixing in spin-1 Bose-Einstein condensates by deriving the exact explicit analytical expressions for the evolution of creation and annihilation operators.
Dynamical picture of spin Hall effect based on quantum spin vorticity theory
Masahiro Fukuda
2016-02-01
Full Text Available It is proposed that the dynamical picture of the spin Hall effect can be explained as the generation of the spin vorticity by the applied electric field on the basis of the “quantum spin vorticity theory”, which describes the equation of motion of local spin and the vorticity of spin in the framework of quantum field theory. Similarly, it is proposed that the dynamical picture of the inverse spin Hall effect can be explained as the acceleration of the electron by the rotation of the spin torque density as driving force accompanying the generation of the spin vorticity. These explanations may help us to understand spin phenomena in condensed matter and molecular systems from a unified viewpoint.
Linear and cubic dynamic susceptibilities in quantum spin glass
Busiello, G; Sushkova, V G
2001-01-01
The low temperature behaviour of the dynamic nonlinear (cubic) susceptibility chi sub 3 sup ' (omega, T) in quantum d-dimensional Ising spin glass with short-range interactions between spins is investigated in terms of the quantum droplet model and the quantum-mechanical nonlinear response theory is employed. We have revealed a glassy like behaviour of droplet dynamics. The frequency dependence of chi sub 3 sup ' (omega, T) is very remarkable, the temperature dependence is found at very low temperatures (quantum regime). The nonlinear response depends on the tunneling rate for a droplet which regulates the strength of quantum fluctuations. This response has a strong dependence on the distribution of droplet free energies and on the droplet length scale average. Implications for experiments in quantum spin glasses like disordered dipolar quantum Ising magnet LiHo sub x Y sub 1 sub - sub x F sub 4 and pseudospin are noted.
Implementing causality in the spin foam quantum geometry
Livine, E R; Livine, Etera R.; Oriti, Daniele
2003-01-01
We analyse the classical and quantum geometry of the Barrett-Crane spin foam model for four dimensional quantum gravity, explaining why it has to be considering as a covariant realization of the projector operator onto physical quantum gravity states. We discuss how causality requirements can be consistently implemented in this framework, and construct causal transiton amplitudes between quantum gravity states, i.e. realising in the spin foam context the Feynman propagator between states. The resulting causal spin foam model can be seen as a path integral quantization of Lorentzian first order Regge calculus, and represents a link between several approaches to quantum gravity as canonical loop quantum gravity, sum-over-histories formulations, dynamical triangulations and causal sets. In particular, we show how the resulting model can be rephrased within the framework of quantum causal sets (or histories).
Persistent Spin Current in a Quantum Wire with Weak Rashba Spin-Orbit Coupling
WANG Yi; SHENG Wei; ZHOU Guang-Hui
2006-01-01
@@ We theoretically investigate the spin current for a parabolically confined semiconductor heterojunction quantum wire with weak Rashba spin-orbit coupling by means of the perturbation method. By analytical calculation, it is found that only two components off spin current density is non-zero in the equilibrium case. Numerical examples have demonstrated that the spin current of electron transverse motion is 10-3 times that off electron longitudinal motion. However, the former one is much more sensitive to the strength of Rashba spin-orbit coupling. These results may suggest an approach to the spin storage device and to the measurement of spin current through its induced electric field.
1990-01-01
The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.
Scalar operators in solid-state NMR
Sun, Boqin
1991-11-01
Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.
Martinez, J; Di Ventra, M.; Pershin, Yu. V.
2009-01-01
We suggest a possible realization of a solid-state memory capacitive (memcapacitive) system. Our approach relies on the slow polarization rate of a medium between plates of a regular capacitor. To achieve this goal, we consider a multi-layer structure embedded in a capacitor. The multi-layer structure is formed by metallic layers separated by an insulator so that non-linear electronic transport (tunneling) between the layers can occur. The suggested memcapacitor shows hysteretic charge-voltag...
Loop Quantum Cosmology and Spin Foams
Ashtekar, Abhay; Henderson, Adam
2009-01-01
Loop quantum cosmology (LQC) is used to provide concrete evidence in support of the general paradigm underlying spin foam models (SFMs). Specifically, it is shown that: i) the physical inner product in the timeless framework equals the transition amplitude in the deparameterized theory; ii) this quantity admits a %convergent vertex expansion a la SFMs in which the $M$-th term refers just to $M$ volume transitions, without any reference to the time at which the transition takes place; iii) the exact physical inner product is obtained by summing over just the discrete geometries; no `continuum limit' is involved; and, iv) the vertex expansion can be interpreted as a perturbative expansion in the spirit of group field theory. This sum over histories reformulation of LQC also addresses certain other issues which are briefly summarized.
Fractional quantization of charge and spin in topological quantum pumps
Marra, Pasquale; Citro, Roberta
2017-07-01
Topological quantum pumps are topologically equivalent to the quantum Hall state: In these systems, the charge pumped during each pumping cycle is quantized and coincides with the Chern invariant. However, differently from quantum Hall insulators, quantum pumps can exhibit novel phenomena such as the fractional quantization of the charge transport, as a consequence of their distinctive symmetries in parameter space. Here, we report the analogous fractional quantization of the spin transport in a topological spin pump realized in a one-dimensional lattice via a periodically modulated Zeeman field. In the proposed model, which is a spinfull generalization of the Harper-Hofstadter model, the amount of spin current pumped during well-defined fractions of the pumping cycle is quantized as fractions of the spin Chern number. This fractional quantization of spin is topological, and is a direct consequence of the additional symmetries ensuing from the commensuration of the periodic field with the underlying lattice.
Direct measurement of the Concurrence of spin-entangled states in a cavity–quantum dot system
Dong, Ping, E-mail: dongping9979@163.com [School of Electronic and Information Engineering, Hefei Normal University, Hefei 230061 (China); Liu, Jun, E-mail: junl@hftc.edu.cn [School of Electronic and Information Engineering, Hefei Normal University, Hefei 230061 (China); Zhang, Li-Hua [School of Physics and Electrical Engineering, Anqing Normal University, Anqing 246011 (China); Cao, Zhuo-Liang [School of Electronic and Information Engineering, Hefei Normal University, Hefei 230061 (China)
2016-08-15
A scheme for implementing the direct measurement of Concurrence is given in a cavity–quantum dot system. The scenario not only can directly measure the Concurrence of two-spin pure entangled state, but also suitable for the case of mixed state. More importantly, all of the operations are of geometric nature, which depend on the cavity-state-free evolution and can be robust against random operation errors. Our scheme provided an alternative method for directly measuring the degree of entanglement in solid-state system.
Coherent spin-exchange via a quantum mediator
Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad
2017-01-01
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Quantum gravitational corrections for spinning particles
Fröb, Markus B.
2016-10-01
We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well known, and the same corrections due to massless minimally coupled scalars [23], massless non-conformal scalars [25] and massive scalars, fermions and vector bosons [98] have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppressed in comparison to the corrections from massless fields, as one would expect. However, a surprising result of our analysis is that close to the particle itself, on distances comparable to the Compton wavelength of the massive fields running in the loops, these corrections can be enhanced with respect to the massless case.
Control and measurement of electron spins in semiconductor quantum dots
Kouwenhoven, L.P.; Elzerman, J.M.; Hanson, R.; Willems van Beveren, L.H.; Vandersypen, L.M.K. [ERATO Mesoscopic Correlation Project, Delft University of Technology, Delft (Netherlands); Kavli Institute of Nanoscience Delft (Netherlands)
2006-11-15
We present an overview of experimental steps taken towards using the spin of a single electron trapped in a semiconductor quantum dot as a spin qubit [Loss and DiVincenzo, Phys. Rev. A 57, 120 (1998)]. Fabrication and characterization of a double quantum dot containing two coupled spins has been achieved, as well as initialization and single-shot read-out of the spin state. The relaxation time T {sub 1} of single-spin and two-spin states was found to be on the order of a millisecond, dominated by spin-orbit interactions. The time-averaged dephasing time T{sub 2}{sup *}, due to fluctuations in the ensemble of nuclear spins in the host semiconductor, was determined to be on the order of several tens of nanoseconds. Coherent manipulation of single-spin states can be performed using a microfabricated wire located close to the quantum dot, while two-spin interactions rely on controlling the tunnel barrier connecting the respective quantum dots [Petta et al., Science 309, 2180 (2005)]. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
The "Proton Spin Crisis" — a Quantum Query
Hansson J.
2010-07-01
Full Text Available The “proton spin crisis” was introduced in the late 1980s, when the EMC-experiment revealed that little or nothing of a proton’s spin seemed to be carried by its quarks. The main objective of this paper is to point out that it is wrong to assume that the proton spin, as measured by completely different experimental setups, should be the same in all circumstances, an assumption explicitly made in all present theoretical treatments of the “crisis”. As spin is a genuine quantum property, without any objective existence outside its measuring apparatus context, proper account of quantum mechanical measurement theory must be taken.
Thermal effects on quantum communication through spin chains
Bayat, A; Bayat, Abolfazl; Karimipour, Vahid
2004-01-01
We study the effect of thermal fluctuations in a recently proposed protocol for transmission of unknown quantum states through quantum spin chains. We develop a low temperature expansion for general spin chains. We then apply this formalism to study exactly thermal effects on short spin chains of four spins. We show that optimal times for extraction of output states are almost independent of the temperature which lowers only the fidelity of the channel. Moreover we show that thermal effects are smaller in the anti-ferromagnetic chains than the ferromagnetic ones.
Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es
2013-07-25
Graphical abstract: -- Highlights: •Solid-state chemiluminescence based on CdSe QDs was developed. •QDs immobilization in a vial was achieved in a simple and fast way. •Antimony detection was achieved by inhibition of the CdSe QDs/H{sub 2}O{sub 2} CL reaction. •LLLME allowed improving the selectivity and sensitivity of the CL assay. •The capping ligand played a critical role in the selectivity of the CL system. -- Abstract: On-vial immobilized CdSe quantum dots (QDs) are applied for the first time as chemiluminescent probes for the detection of trace metal ions. Among 17 metal ions tested, inhibition of the chemiluminescence when CdSe QDs are oxidized by H{sub 2}O{sub 2} was observed for Sb, Se and Cu. Liquid–liquid–liquid microextraction was implemented in order to improve the selectivity and sensitivity of the chemiluminescent assay. Factors influencing both the CdSe QDs/H{sub 2}O{sub 2} chemiluminescent system and microextraction process were optimized for ultrasensitive detection of Sb(III) and total Sb. In order to investigate the mechanism by which Sb ions inhibit the chemiluminescence of the CdSe QDs/H{sub 2}O{sub 2} system, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–vis absorption and fluorescence measurements were performed. The selection of the appropriate CdSe QDs capping ligand was found to be a critical issue. Immobilization of QDs caused the chemiluminescence signal to be enhanced by a factor of 100 as compared to experiments carried out with QDs dispersed in the bulk aqueous phase. Under optimized conditions, the detection limit was 6 ng L{sup −1} Sb and the repeatability expressed as relative standard deviation (N = 7) was about 1.3%. An enrichment factor of 95 was achieved within only 3 min of microextraction. Several water samples including drinking, spring, and river waters were analyzed. The proposed method was validated against CRM NWTM-27.2 fortified lake water, and a recovery study was
Topologically protected quantum state transfer in a chiral spin liquid.
Yao, N Y; Laumann, C R; Gorshkov, A V; Weimer, H; Jiang, L; Cirac, J I; Zoller, P; Lukin, M D
2013-01-01
Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the current-carrying edge states associated with the quantum Hall and the quantum spin Hall effects to topologically protected quantum memory and quantum logic operations. Here we propose and analyse a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.
Solid-state dynamics of uranyl polyoxometalates.
Alam, Todd M; Liao, Zuolei; Zakharov, Lev N; Nyman, May
2014-07-01
Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid-state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self-assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule-like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li(+) and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f-block element materials and vesicle-like POMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction
Yokoyama Tomohiro
2011-01-01
Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d
Sahling, S.; Remenyi, G.; Paulsen, C.; Monceau, P.; Saligrama, V.; Marin, C.; Revcolevschi, A.; Regnault, L. P.; Raymond, S.; Lorenzo, J. E.
2015-03-01
Entanglement is a concept that has defied common sense since the discovery of quantum mechanics. Two particles are said to be entangled when the quantum state of each particle cannot be described independently, no matter how far apart in space and time the two particles are. We demonstrate experimentally that unpaired spins separated by several hundred ångström entangle through a collection of spin singlets made up of antiferromagnetic spin-1/2 chains in a bulk material. Low-temperature magnetization and specific heat studies as a function of magnetic field reveal the occurrence of very dilute spin dimers and at least two quantum phase transitions related to the breaking of excited local triplets. The mechanism at the origin of the unpaired spins inside the quantum chains is the inter-modulation potential between two sublattices, and may be replicated using well-designed synthetic multilayers.
Lawrance, R
1972-01-01
Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista
Burns, Gerald
2013-01-01
The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar
1991-01-01
The Solid State Device research program is directed toward developing innovative devices for space remote and in-situ sensing, and for data processing. Innovative devices can result from the standard structures in innovative materials such as low and high temperature superconductors, strained layer superlattices, or diamond films. Innovative devices can also result from innovative structures achieved using electron tunneling or nanolithography in standard materials. A final step is to use both innovative structures and innovative materials. A new area of emphasis is the miniaturization of sensors and instruments molded by using the techniques of electronic device fabrication to micromachine silicon into micromechanical and electromechanical sensors and actuators.
2014-09-26
Diadiuk, M.C. Plonko. and D.L. Hovey (to be published in AppI . Phys. Lett., January 1985). 3. CA-f. Cox. III (unpublished). 4. D. Yap and L.M. Johnson... AppI . Opt. 23. 2991 (1984). 5. L.M. Johnson and D. Yap. AppI . Opt. 23. 2988 (1984). 6. Solid State Research Report. Lincoln Laboratory, M.I.T. (1983...drift current. 21. A. Carenco, L. Menegaux, and N.T. Lenh, Appi . Phys. Lett. 40, 653 (1982). 22. F.J. Leonberger, J.P. Donnelly, and C.O. Bozler
Anisotropic intrinsic spin Hall effect in quantum wires.
Cummings, A W; Akis, R; Ferry, D K
2011-11-23
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.
Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions
LIU Yu; CHENG Fang
2011-01-01
@@ We theoretically investigate the influence of both Rashba spin-orbit interaction (RSOI) and Dresselhaus spin- orbit interaction (DSOI) on electron spin states, electron distribution and the optical absorption of a quantum dot.Our theoretical results show that the interplay between RSOI and DSOI results in an effective periodic potential, which consequently breaks the rotational symmetry and makes the quantum dot behave like two laterally coupled quantum dots.In the presence of RSOI and/or DSOI the spin is no longer a conserved quantity and its magnitude can be tuned by changing the strength of RSOI and/or DSOI.By reversing the direction of the perpendicular electric field, we can rotate the spatial distribution.This property provides us with a new way to control quantum states in a quantum dot by electrical means.
Chekhovich, E A; Krysa, A B; Skolnick, M S; Tartakovskii, A I
2011-01-14
We measure the hyperfine interaction of the valence band hole with nuclear spins in single InP/GaInP semiconductor quantum dots. Detection of photoluminescence (PL) of both "bright" and "dark" excitons enables direct measurement of the Overhauser shift of states with the same electron but opposite hole spin projections. We find that the hole hyperfine constant is ≈11% of that of the electron and has the opposite sign. By measuring the degree of circular polarization of the PL, an upper limit to the contribution of the heavy-light hole mixing to the measured value of the hole hyperfine constant is deduced. Our results imply that environment-independent hole spins are not realizable in III-V semiconductor, a result important for solid-state quantum information processing using hole spin qubits.
Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)
2017-01-30
We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.
Resonance fluorescence and electron spin in semiconductor quantum dots
Zhao, Yong
2009-11-18
The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)
Solid State Physics Principles and Modern Applications
Quinn, John J
2009-01-01
Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...
Electron nuclear spin transfer in quantum-dot networks
Prada, M.; Toonen, R. C.; Blick, R. H.; Harrison, P.
2005-05-01
We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of different geometries of a two-dimensional network of quantum dots and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalized to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in the presence of nuclear spin relaxation. We find that the gradual depolarization of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.
The new spin foam models and quantum gravity
Perez, Alejandro
2012-01-01
In this article we give a systematic definition of the recently introduced spin foam models for four dimensional quantum gravity reviewing the main results on their semiclassical limit on fixed discretizations.
Crangle, John
1991-01-01
Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis covered, often with previously unobserved and puzzling magnetic prop erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...
Spin-polarized spin-orbit-split quantum-well states in a metal film
Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)
2008-07-01
Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.
Quantum spin Hall effect and topological insulators for light
Bliokh, Konstantin Y
2015-01-01
We show that free-space light has intrinsic quantum spin-Hall effect (QSHE) properties. These are characterized by a non-zero topological spin Chern number, and manifest themselves as evanescent modes of Maxwell equations. The recently discovered transverse spin of evanescent modes demonstrates spin-momentum locking stemming from the intrinsic spin-orbit coupling in Maxwell equations. As a result, any interface between free space and a medium supporting surface modes exhibits QSHE of light with opposite transverse spins propagating in opposite directions. In particular, we find that usual isotropic metals with surface plasmon-polariton modes represent natural 3D topological insulators for light. Several recent experiments have demonstrated transverse spin-momentum locking and spin-controlled unidirectional propagation of light at various interfaces with evanescent waves. Our results show that all these experiments can be interpreted as observations of the QSHE of light.
Multiple quantum spin counting techniques with quadrupolar nuclei.
Dodd, Andrew J; van Eck, Ernst R H
2004-01-01
Phase incremented and continuous irradiation multiple spin correlation methods are applied to spin [Formula: see text] nuclei with small quadrupole couplings such as (7)Li in LiCl and are shown to successfully produce a coherently coupled dipolar spin network. Application to the analogous Na salt shows successful spin correlation evolving at a slower rate due to the weaker homonuclear dipolar coupling strength between Na nuclei. The results are analysed using a statistical approach. Spin counting is non-trivial as not only multiple quantum coherences between spins are generated but also within the quadrupolar spin levels. Na(2)C(2)O(4) is investigated as a material with non-negligible quadrupole coupling and it is in this limit that the spin correlation techniques are found to break down.
Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.
1996-08-01
The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)
Generation of heralded entanglement between distant quantum dot hole spins
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of
Spin and Uncertainty in the Interpretation of Quantum Mechanics.
Hestenes, David
1979-01-01
Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)
Exchange cotunneling through quantum dots with spin-orbit coupling
Paaske, Jens; Andersen, Andreas; Flensberg, Karsten
2010-01-01
We investigate the effects of spin-orbit interaction (SOI) on the exchange cotunneling through a spinful Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, we...
Exchange cotunneling through quantum dots with spin-orbit coupling
Paaske, Jens; Andersen, Andreas; Flensberg, Karsten
2010-01-01
We investigate the effects of spin-orbit interaction (SOI) on the exchange cotunneling through a spinful Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, ...
Controlling electron quantum dot qubits by spin-orbit interactions
Stano, P.
2007-01-15
Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)
Dynamics of open quantum spin systems : An assessment of the quantum master equation approach
Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.
2016-01-01
Data of the numerical solution of the time-dependent Schrodinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtainin
Solid State Lighting Program (Falcon)
Meeks, Steven
2012-06-30
Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated
Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun
2015-11-15
An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters.
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
Schwager, Heike
2012-07-04
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Spin-orbit-enhanced Wigner localization in quantum dots
Cavalli, Andrea; Malet, F.; Cremon, J. C.
2011-01-01
We investigate quantum dots with Rashba spin-orbit coupling in the strongly-correlated regime. We show that the presence of the Rashba interaction enhances the Wigner localization in these systems, making it achievable for higher densities than those at which it is observed in Rashba-free quantum...
Electron spin and charge in semiconductor quantum dots
Elzerman, J.M.
2004-01-01
In this thesis, the spin and charge degree of freedom of electrons in semiconductor lateral and vertical quantum dots are experimentally investigated. The lateral quantum dot devices are defined in a two-dimensional electron gas (2DEG) below the surface of a GaAs/AlGaAs heterostructure, by metallic
Spin-orbit interaction induced current dip in a single quantum dot coupled to a spin
Giavaras, G.
2017-03-01
Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet-triplet anticrossing point which appears due to the spin-orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin-orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.
A Quantum Spin System with Random Interactions I
Stephen Dias Barreto
2000-11-01
We study a quantum spin glass as a quantum spin system with random interactions and establish the existence of a family of evolution groups $\\{\\mathcal{T}_t()\\}_{\\in}$ of the spin system. The notion of ergodicity of a measure preserving group of automorphisms of the probability space , is used to prove the almost sure independence of the Arveson spectrum $\\mathrm{Sp}(\\mathcal{T}())$ of $\\mathcal{T}_t()$. As a consequence, for any family of $(\\mathcal{T}(), )$-KMS states {ρ()}, the spectrum of the generator of the group of unitaries which implement $\\mathcal{T}()$ in the GNS representation is also almost surely independent of .
Infinite-Range Quantum Dzyaloshinskii-Moriya Spin Glass Model
商育民; 姚凯伦
2003-01-01
Based on the replica method and the imaginary time functional-integral technique,we investigate the infiniterange quantum Dzyaloshinskii-Moriya spin glass model.It is found that the quantum Dzyaloshinskii-Moriya spin glass model behaves in a Heisenberg-like manner.The specific heat has the crossover behaviour.The broad Maximum in specific heat is shifted to higher temperature with increasing applied field.These features are in good agreement with the observation of Brodale et al.[J.Magn.Magn.Matter.31-34(1983)1331] The susceptibility of the system has the typical spin glass feature.
Symmetric Telecloning and Entanglement Distribution of Spin Quantum States
WANG Qiong; LI Ji-Xin; ZANG Hao-Sheng
2008-01-01
@@ We propose a physical realization of symmetric telecloning machine for spin quantum states. The concept of area average fidelity is introduced to describe the telecloning quality. It is indicated that for certain input states this quantity may come to an enough high level to satisfy the need of quantum information processing. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the decay ratio of entanglement for the output states is only determined by the parameters of spin chain and waiting time, independent of the initial input states.
Spin-orbit hybrid entanglement of photons and quantum contextuality
Karimi, Ebrahim; Slussarenko, Sergei; Piccirillo, Bruno; Marrucci, Lorenzo; Chen, Lixiang; She, Weilong; Franke-Arnold, Sonja; Padgett, Miles J; Santamato, Enrico; 10.1103/PhysRevA.82.022115
2011-01-01
We demonstrate electromagnetic quantum states of single photons and of correlated photon pairs exhibiting "hybrid" entanglement between spin and orbital angular momentum. These states are obtained from entangled photon pairs emitted by spontaneous parametric down conversion, by employing a $q$-plate for coupling the spin and orbital degrees of freedom of a photon. Entanglement and contextual quantum behavior (that is also non-local, in the case of photon pairs) is demonstrated by the reported violation of the Clauser-Horne-Shimony-Holt inequality. In addition a classical analog of the hybrid spin-orbit photonic entanglement is reported and discussed.
Classical and Quantum features of the spin-curvature coupling
Cianfrani, Francesco; Montani, Giovanni
2007-04-01
We analyze the behavior of a spinning particle in gravity, both from a quantum and a classical perspective point of view. We infer that, since the interaction between the space-time curvature and a spinning test particle is expected, then the main features of such an interaction can get light on which degrees of freedom have physical meaning in a quantum gravity theory with fermions. Finally, the dimensional reduction of Papapetrou equations is performed in a 5-dimensional Kaluza-Klein background and Dixon-Souriau results for the motion of a charged spinning body are obtained.
Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta
2004-01-01
Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.
Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot.
Chekhovich, E A; Makhonin, M N; Kavokin, K V; Krysa, A B; Skolnick, M S; Tartakovskii, A I
2010-02-12
We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the dot into a polarized nuclear spin, and also has potential for initialization of hole spin in QDs. We find that by employing this spin-forbidden process, nuclear polarization of 65% can be achieved, markedly higher than from pumping the allowed transition, which saturates due to the low probability of electron-nuclear spin flip-flop.
Effect of Quantum Point Contact Measurement on Electron Spin State in Quantum Dots
ZHU Fei-Yun; TU Tao; HAO Xiao-Jie; GUO Guang-Can; GUO Guo-Ping
2009-01-01
We study the time evolution of two electron spin states in a double quantum-dot system, which includes a nearby quantum point contact (QPC) as a measurement device. We find that the QPC measurement induced decoherence is in the microsecond timescale. We also find that the enhanced QPC measurement will trap the system in its initial spin states, which is consistent with the quantum Zeno effect.
Bright Solid State Source of Photon Triplets
Khoshnegar, Milad; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed
2015-01-01
Producing advanced quantum states of light is a priority in quantum information technologies. While remarkable progress has been made on single photons and photon pairs, multipartite correlated photon states are usually produced in purely optical systems by post-selection or cascading, with extremely low efficiency and exponentially poor scaling. Multipartite states enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It would be favorable to directly generate these states using solid state systems, for better scaling, simpler handling, and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The wavefunctions of photogenerated excitons localized in these ground states are correlated via molecular hybridization and Coulomb interactions. The formation of a triexciton leads...
Computer studies of multiple-quantum spin dynamics
Murdoch, J.B.
1982-11-01
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Ambient nanoscale sensing with single spins using quantum decoherence
McGuinness, L. P.; Hall, L. T.; Stacey, A.; Simpson, D. A.; Hill, C. D.; Cole, J. H.; Ganesan, K.; Gibson, B. C.; Prawer, S.; Mulvaney, P.; Jelezko, F.; Wrachtrup, J.; Scholten, R. E.; Hollenberg, L. C. L.
2013-07-01
Magnetic resonance detection is one of the most important tools used in life-sciences today. However, as the technique detects the magnetization of large ensembles of spins it is fundamentally limited in spatial resolution to mesoscopic scales. Here we detect the natural fluctuations of nanoscale spin ensembles at ambient temperatures by measuring the decoherence rate of a single quantum spin in response to introduced extrinsic target spins. In our experiments 45 nm nanodiamonds with single nitrogen-vacancy (NV) spins were immersed in solution containing spin 5/2 Mn2+ ions and the NV decoherence rate measured though optically detected magnetic resonance. The presence of both freely moving and accreted Mn spins in solution were detected via significant changes in measured NV decoherence rates. Analysis of the data using a quantum cluster expansion treatment of the NV-target system found the measurements to be consistent with the detection of 2500 motionally diffusing Mn spins over an effective volume of (16 nm)3 in 4.2 s, representing a reduction in target ensemble size and acquisition time of several orders of magnitude over conventional, magnetic induction approaches to electron spin resonance detection. These measurements provide the basis for the detection of nanovolume spins in solution, such as in the internal compartments of living cells, and are directly applicable to scanning probe architectures.
The Fock Space of Loopy Spin Networks for Quantum Gravity
Charles, Christoph
2016-01-01
In the context of the coarse-graining of loop quantum gravity, we introduce loopy and tagged spin networks, which generalize the standard spin network states to account explicitly for non-trivial curvature and torsion. Both structures relax the closure constraints imposed at the spin network vertices. While tagged spin networks merely carry an extra spin at every vertex encoding the overall closure defect, loopy spin networks allow for an arbitrary number of loops attached to each vertex. These little loops can be interpreted as local excitations of the quantum gravitational field and we discuss the statistics to endow them with. The resulting Fock space of loopy spin networks realizes new truncation of loop quantum gravity, allowing to formulate its graph-changing dynamics on a fixed background graph plus local degrees of freedom attached to the graph nodes. This provides a framework for re-introducing a non-trivial background quantum geometry around which we would study the effective dynamics of perturbatio...
Clément, Raphaële J; Pell, Andrew J; Middlemiss, Derek S; Strobridge, Fiona C; Miller, Joel K; Whittingham, M Stanley; Emsley, Lyndon; Grey, Clare P; Pintacuda, Guido
2012-10-17
Substituted lithium transition-metal (TM) phosphate LiFe(x)Mn(1-x)PO(4) materials with olivine-type structures are among the most promising next generation lithium ion battery cathodes. However, a complete atomic-level description of the structure of such phases is not yet available. Here, a combined experimental and theoretical approach to the detailed assignment of the (31)P NMR spectra of the LiFe(x)Mn(1-x)PO(4) (x = 0, 0.25, 0.5, 0.75, 1) pure and mixed TM phosphates is developed and applied. Key to the present work is the development of a new NMR experiment enabling the characterization of complex paramagnetic materials via the complete separation of the individual isotropic chemical shifts, along with solid-state hybrid DFT calculations providing the separate hyperfine contributions of all distinct Mn-O-P and Fe-O-P bond pathways. The NMR experiment, referred to as aMAT, makes use of short high-powered adiabatic pulses (SHAPs), which can achieve 100% inversion over a range of isotropic shifts on the order of 1 MHz and with anisotropies greater than 100 kHz. In addition to complete spectral assignments of the mixed phases, the present study provides a detailed insight into the differences in electronic structure driving the variations in hyperfine parameters across the range of materials. A simple model delimiting the effects of distortions due to Mn/Fe substitution is also proposed and applied. The combined approach has clear future applications to TM-bearing battery cathode phases in particular and for the understanding of complex paramagnetic phases in general.
A measure of monopole inertia in the quantum spin ice Yb2Ti2O7
Pan, Lidong; Laurita, N. J.; Ross, Kate A.; Gaulin, Bruce D.; Armitage, N. P.
2016-04-01
An important and continuing theme of modern solid state physics is the realization of exotic excitations in materials, known as quasiparticles, that have no analogy in the actual physical vacuum of free space. Although they are not fundamental, such quasiparticles do constitute the most basic description of the excited states of the `vacuum' in which they reside. In this regard the magnetic textures of the excited states of spin ices, magnetic pyrochlore oxides with dominant Ising interactions, have been proposed to behave as effective magnetic charge monopoles. Inelastic neutron scattering experiments have established the pyrochlore material Yb2Ti2O7 (YbTO) as a quantum spin ice, where, in addition to the Ising interactions, there are substantial transverse terms that may induce quantum dynamics and--in principle--coherent monopole motion. Here we report a combined time-domain terahertz spectroscopy (TDTS) and microwave cavity study of YbTO to probe its complex dynamic magnetic susceptibility. We find that the form of the susceptibility is consistent with that of a monopole gas, and a magnetic monopole conductivity can be defined and measured. Using the phase sensitive capabilities of these techniques, we observe a sign change in the reactive part of the magnetic response. In generic models of magnetic excitations this is possible only by introducing inertial effects, such as a mass-dependent term, to the equations of motion. Analogous to conventional electric charge systems, measurement of the conductivity's spectral weight allows us to derive a value for the magnetic monopole mass. Our results support the idea of magnetic monopoles of quantum spin ice as the true coherently propagating quasiparticles of this system.
Spin Quantum Beats in InP Quantum Dots in a Magnetic Field
2001-06-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013252 TITLE: Spin Quantum Beats in InP Quantum Dots in a Magnetic Field...Technology" SRPN.05 St Petersburg, Russia, June 18-22, 2001 (0 2001 loffe Institute Spin quantum beats in InP quantum dots in a magnetic field L A... quantum dots . A detailed description of the structure is given in [ ]. The luminescence was excited by 3 ps pulses of a Ti:sapphire laser, 40 meV above
Quantum evolution from spin-gap to AF state in a low-dimensional spin system
Gnezdilov, Vladimir [ILTP, Kharkov (Ukraine); Lemmens, Peter; Wulferding, Dirk [IPKM, TU-BS, Braunschweig (Germany); Kremer, Reinhard [MPI-FKF, Stuttgart (Germany); Broholm, Collin [DPA, Johns Hopkins Univ., Baltimore (United States); Berger, Helmuth [EPFL Lausanne (Switzerland)
2010-07-01
The low-dimensional spin systems {alpha}- and {beta}-TeVO{sub 4} share the same monoclinic crystal symmetry while having a different connectivity of VO{sub 4} octahedra and long range order vs. a quantum disordered ground state, respectively. We report a rich magnetic Raman spectrum and phonon anomalies that evidence strong spin-lattice coupling in both systems.
Bonora, Marco; Becker, James; Saxena, Sunil
2004-10-01
We show the use of the observer blind spots effect for the elimination of electron spin-echo envelope modulation (ESEEM) peaks in double quantum coherence (DQC) electron spin resonance (ESR). The suppression of ESEEM facilitates the routine and unambiguous extraction of distances from DQC-ESR spectra. This is also the first demonstration of this challenging methodology on commercial instrumentation.
Quantum spin systems on infinite lattices a concise introduction
Naaijkens, Pieter
2017-01-01
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemen...
Simulating electron spin entanglement in a double quantum dot
Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia
2011-03-01
One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.
Quantum metrology with spin cat states under dissipation.
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-12-09
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.
Signatures of Majorana zero-modes in nanowires, quantum spin Hall edges, and quantum dots
Mi, Shuo
2015-01-01
This thesis focuses on the investigation of Majorana zero-modes and their quantum transport properties of topological insulators and topological superconductors in several low-dimensional systems, i.e. 1D nanowire system (Chapter 2), 2D quantum spin Hall system (Chapter 3, 4) and 0D quantum dot syst
Electron-Nuclear Spin Transfer in Triple Quantum Dot Networks
Prada, Marta; Toonen, Ryan; Harrison, Paul
2005-03-01
We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of delta- and y-junction networks and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalised to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in presence of nuclear spin relaxation. We find that the gradual depolarisation of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.
Spin-dependent thermoelectric transport through double quantum dots
Wang Qiang; Xie Hai-Qing; Jiao Hu-Jun; Li Zhi-Jian; Nie Yi-Hang
2012-01-01
We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green's function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.
Quantum dot spin coherence governed by a strained nuclear environment
Stockill, R.; Le Gall, C.; Matthiesen, C.; Huthmacher, L.; Clarke, E.; Hugues, M.; Atatüre, M.
2016-01-01
The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin–photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity. PMID:27615704
Quantum computing by optical control of electron spins
Liu, Ren-Bao; Sham, L J
2010-01-01
We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III-V or II-VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centers in solids such as P-donors in silicon and nitrogen-vacancy centers in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing betwe...
Novotny, M.A.; Guerra, M.; Raedt, H. De; Michielsen, K.; Jin, F.
2012-01-01
An efficient algorithm for the computation of the real-time dependence of a single quantum spin-1/2 coupled to a specific set of quantum spin-1/2 baths is presented. The specific spin baths have couplings only with the spin operators Sx between bath spins and the central spin. We calculate spin expe
Bierring, M.; Nielsen, J.S.; Siu, Ana
2008-01-01
observed in photovoltaic devices employing polythiophene substituted with carboxylic-acid moieties under oxygen free conditions. H-1 and C-13 solid-state NMR, IR, and ESR spectroscopy of unmodified and isotopically labeled polythiophenes were studied. Distances between the isotopically labeled carboxylic...... acid carbon atoms were measured by C-13 solid-state magic-angle-spinning (MAS) NMR using symmetry-based double-quantum (2Q) dipolar recoupling. This revealed the presence of C-13-C-13 distances of 3.85 angstrom, which correspond to the C-C distance in hydrogen-bonded carboxylic acid dimers. In spite...... of the presence of carboxylic groups in the polymer as demonstrated by C-13 CP/MAS NMR and IR spectroscopy, the absence of carboxylic protons in solid state H-1 NMR spectra indicate that they are mobile. We link the extraordinary stability of this system to the rigid nature, cross-linking through a hydrogen...
Luminescence and the solid state
Ropp, Richard C
2013-01-01
Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de
Solid state chemistry an introduction
Smart, Lesley E
2012-01-01
""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate
Nanoscale solid-state cooling: a review
Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali
2016-09-01
The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.
Nanoscale solid-state cooling: a review.
Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali
2016-09-01
The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.
LI Yu-Xian
2008-01-01
Spin-dependent Andreev reflection and spin polarization through a diluted magnetic semiconductor quantum wire coupled to normal metallic and superconductor electrodes are investigated using scattering theory. When the spin-orbit coupling is considered, more Andreev conductance steps appear at the same Fermi energy. Magnetic semiconductor quantum wire separates the spin-up and spin-down electrons. The Fermi energy, at which different-spin-state electrons begin to separate, becomes lower due to the effect of the spin-orbit interaction. The spin filter effect can be measured more easily by investigating the Andreev conductance than by investigating the normal conductance.
McWhorter, Alan L.
1989-03-01
The Solid State division of Lexington Lincoln Lab reports on its progress for this quarter. The areas of study are: Time Dye Laser Using Integrated Optics; GaP Microlenses by Mass Transport; A New OMVPE Reactor for Growth of InP and Related Alloys; Microchannel Heat Sinks for Two-Dimensional High Power-Density Diode Laser Arrays; Novel Scalloped-Mirror Diffraction-Coupled Laser Arrays; Three-Mirror Ti:Al2O3 Ring Laser Cavity; Femtosecond TiAl2O3 Injection-Seeded Laser; End-Pumped Nd:LaF3 and Nd:LaMgA11O19 Lasers; Single Frequency Mixing of Frequency Modulated Laser Radiation; Vertical Rotating Disk OMVPE Reactor; New Electron Beam Lithography System; Dry Etching Induced Damage on Vertical Sidewalls of GaAs Channels; Homoepitaxial Semiconducting Diamond; 420 X 420 CCD Frame Transfer Imager; Technique for Monolithically Integrating GaAs/AlGaAs Lasers of Different Wavelengths; Superconducting Thin Films of BiSrCaCuO; and Nb Thin Film Capacitors for Superconductive Circuits.
Dumitrescu Anca Laura
2015-12-01
Full Text Available The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black, is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03, indicates a good linearity.
Rolin, Terry D.
2015-01-01
NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts used in space vehicles. One area that NASA wishes to advance is energy storage and delivery. Currently, space vehicles use rechargeable batteries that utilize silver zinc or lithium ion electrochemical processes. These current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. A solid state ultracapacitor is an EEE part that offers significant advantages over current electrochemical and electrolytic devices. The objective of this research is to develop an internal barrier layer ultracapacitor (IBLC) using novel dielectric materials as a battery replacement with a focus on these advantages: longer life, lower mass-toweight ratio, rapid charging, on-demand pulse power, improved on-pad standby time without maintenance, and environmental friendliness. The approach is unique in two areas. A deposition technique is used that has been shown to produce a more uniformly coated nanoparticle than sol-gel, which has resulted in colossal permittivities. These particles are then distributed in an ink formulation developed at NASA Marshall Space Flight Center (MSFC) and deposited utilizing a 3D aerosol jet technique. This additive manufacturing technique controls layer thickness, resulting in extremely large capacitance and energy density.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called
Wang, Xianlong, E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 4 North Jianshe Rd., 2nd Section, Chengdu 610054 (China); Mallory, Frank B. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Mallory, Clelia W. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Odhner, Hosanna R.; Beckmann, Peter A., E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Department of Physics, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States)
2014-05-21
We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.
Quantum Control nd Measurement of Spins in Cold Atomic Gases
Deutsch, Ivan
2014-03-01
Spins are natural carriers of quantum information given their long coherence time and our ability to precisely control and measure them with magneto-optical fields. Spins in cold atomic gases provide a pristine environment for such quantum control and measurement, and thus this system can act as a test-bed for the development of quantum simulators. I will discuss the progress my group has made in collaboration with Prof. Jessen, University of Arizona, to develop the toolbox for this test-bed. Through its interactions with rf and microwave magnetic fields, whose waveforms are designed through optimal control techniques, we can implement arbitrary unitary control on the internal hyperfine spins of cesium atoms, a 16 dimensional Hilbert space (isomorphic to 4 qubits). Control of the collective spin of the ensemble of many atoms is performed via the mutual coupling of the atomic ensemble to a mode of the electromagnetic field that acts as a quantum data bus for entangling atoms with one another. Internal spin control can be used to enhance the entangling power of the atom-photon interface. Finally, both projective and weak-continuous measurements can be performed to tomograhically reconstruct quantum states and processes.
Quantum dust magnetosonic waves with spin and exchange correlation effects
Maroof, R.; Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics, Shahdra Valley Road, Islamabad 44000 (Pakistan)
2016-01-15
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)
Zhang, Xiaoliang; Liu, Jianhua; Zhang, Jindan; Vlachopoulos, Nick; Johansson, Erik M J
2015-05-21
A solid-state environmentally friendly Ag2S quantum dot-sensitized solar cell (QDSSC) is demonstrated. The photovoltaic device is fabricated by applying ZnO@Ag2S core-shell nanowire arrays (NWAs) as light absorbers and electron conductors, and poly-3-hexylthiophene (P3HT) as a solid-state hole conductor. Ag2S quantum dots (QDs) were directly grown on the ZnO nanowires by the successive ionic layer adsorption and reaction (SILAR) method to obtain the core-shell nanostructure. The number of SILAR cycles for QD formation and the length of the core-shell NWs significantly affect the photocurrent. The device with a core-shell NWAs photoanode shows a power conversion efficiency increase by 32% compared with the device based on a typical nanoparticle-based photoanode with Ag2S QDs. The enhanced performance is attributed to enhanced collection of the photogenerated electrons utilizing the ZnO nanowire as an efficient pathway for transporting the photogenerated electrons from the QD to the contact.
Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou
2013-05-20
We propose an efficient protocol for optimizing the physical implementation of three-qubit quantum error correction with spatially separated quantum dot spins via virtual-photon-induced process. In the protocol, each quantum dot is trapped in an individual cavity and each two cavities are connected by an optical fiber. We propose the optimal quantum circuits and describe the physical implementation for correcting both the bit flip and phase flip errors by applying a series of one-bit unitary rotation gates and two-bit quantum iSWAP gates that are produced by the long-range interaction between two distributed quantum dot spins mediated by the vacuum fields of the fiber and cavity. The protocol opens promising perspectives for long distance quantum communication and distributed quantum computation networks.
Roy, Soumya Singha
2012-01-01
Nuclear Magnetic Resonance (NMR) forms a natural test-bed to perform quantum information processing (QIP) and has so far proven to be one of the most successful quantum information processors. The nuclear spins in a molecule treated as quantum bits or qubits which are the basic building blocks of a quantum computer. The development of NMR over half a century puts it in a platform where we can utilize its excellent control techniques over an ensemble of spin systems and perform quantum computation in a highly controlled way. Apart from a successful quantum information processor, NMR is also a highly powerful quantum platform where many of the potentially challenging quantum mechanical experiments can be performed.
Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells
Yang, Wen; Chang, Kai; /Beijing, Inst. Semiconductors; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.
Spin effects in perturbative quantum chromodynamics
Brodsky, S.J.; Lepage, G.P.
1980-12-01
The spin dependence of large momentum transfer exclusive and inclusive reactions can be used to test the gluon spin and other basic elements of QCD. In particular, exclusive processes including hadronic decays of heavy quark resonances have the potential of isolating QCD hard scattering subprocesses in situations where the helicities of all the interacting constituents are controlled. The predictions can be summarized in terms of QCD spin selection rules. The calculation of magnetic moment and other hadronic properties in QCD are mentioned.
Spin-free quantum computational simulations and symmetry adapted states
Whitfield, James Daniel
2013-01-01
The ideas of digital simulation of quantum systems using a quantum computer parallel the original ideas of numerical simulation using a classical computer. In order for quantum computational simulations to advance to a competitive point, many techniques from classical simulations must be imported into the quantum domain. In this article, we consider the applications of symmetry in the context of quantum simulation. Building upon well established machinery, we propose a form of first quantized simulation that only requires the spatial part of the wave function, thereby allowing spin-free quantum computational simulations. We go further and discuss the preparation of N-body states with specified symmetries based on projection techniques. We consider two simple examples, molecular hydrogen and cyclopropenyl cation, to illustrate the ideas. While the methods here represent adaptations of known quantum algorithms, they are the first to explicitly deal with preparing N-body symmetry-adapted states.
Chaos And Quantum-classical Correspondence For Two- Coupled Spins
Emerson, J V
2001-01-01
Two approaches to quantum-classical correspondence are distinguished according to the classical dynamical theory with which quantum theory is compared. The first of these, Ehrenfest correspondence, defines a dynamical regime in which the quantum expectation values follow approximately a classical trajectory. The second of these, Liouville correspondence, applies when the quantum probability distributions remain well approximated by a density in the classical phase space. The former applies only for narrow states, whereas the latter may remain valid even for quantum states that have spread to the system size. A spin model is adopted for this correspondence study because the quantum state is discrete and finite- dimensional, and thus no artificial truncation of the Hilbert space is required. The quantum time-evolution is given by a discrete unitary mapping. The corresponding classical model is volume-preserving (non-dissipative) and the time-evolution is given by a symplectic map. In classically chaotic regimes...
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-01
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
Radio Frequency Solid State Amplifiers
Jacob, J
2015-01-01
Solid state amplifiers are being increasingly used instead of electronic vacuum tubes to feed accelerating cavities with radio frequency power in the 100 kW range. Power is obtained from the combination of hundreds of transistor amplifier modules. This paper summarizes a one hour lecture on solid state amplifiers for accelerator applications.
Bailey, R. F.
1982-01-01
Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.
Farberovich, Oleg V.; Bazhanov, Dmitry I.
2017-10-01
A general study of [Tb2] molecular magnet is presented using the general spin Hamiltonian formalism. A spin-spin correlators determined for a spin wave functions in [Tb2] are analyzed numerically and compared in details with the results obtained by means of conventional quantum mechanics. It is shown that the various expectation values of the spin operators and a study of their corresponding probability distributions allow to have a novel understanding in spin dynamics of entangled qubits in quantum [Tb2] system. The obtained results reveal that the properties of spin-spin correlators are responsible for the entanglement of the spin qubit under a pulse magnetic field. It allows us to present some quantum circuits determined for quantum computing within SSNQ based on [Tb2] molecule, including the CNOT and SWAP gates.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W.; Glazman, Leonid I.; von Oppen, Felix
2016-12-01
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2 π . This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8 π -periodic (or Z4) fractional Josephson effect in the context of recent experiments.
Pure dephasing of single Mn spin in semiconductor quantum dots
Liu, Dingyang; Lai, Wenxi; Yang, Wen
2017-08-01
We present comprehensive analytical and numerical studies on the pure dephasing of a single Mn spin in a semiconductor quantum dot due to (i) its sp-d exchange interaction with an electronic environment, and (ii) its hyperfine interaction with the nuclear spin environment. For (i), by modeling the electronic environment by an open two-level system, we provide exact analytical expressions and present detailed analysis for the Mn spin pure dephasing in both the Markovian and non-Markovian regimes. This provides a clear physical picture and a general theoretical framework based on which we estimate the Mn spin pure dephasing due to various fluctuations (such as thermal excitation, optical pumping, tunneling, or electron/hole spin relaxation) of the electronic environment and reveals a series of interesting behaviors, such as thermal, optical, and electrical control of the crossover between the Markov and non-Markov regimes. In particular, we find rapid Mn spin pure dephasing on a nanosecond time scale by the thermal fluctuation and optical pumping, but these mechanisms can be strongly suppressed by shifting the electron envelope function relative to the Mn atom with an external electric field through the quantum-confined Stark effect. The thermal fluctuation mechanism is also exponentially suppressed at low temperature. For (ii), we find that the Mn spin dephasing time is limited by the thermal fluctuation of the nuclear spins to a few microseconds even at low temperature and its value varies from sample to sample, depending on the distribution of spinful isotopes on the nearest-neighbor sites surrounding the substitutional Mn atom. Our findings may be useful to understand and suppress the Mn spin pure dephasing for its applications in quantum information processing.
1988-05-15
Haache, 1.5. Brinen, and H. Burkhard, J. Electrochem. Soc. 135, 715 (1988). 25. P1. Greenley , Proc. American Industrial Hygiene Conference, Montreal...Canada, 1987. 26. P.L. Greenley , S.C. Palmateer, and S.H. Groves, to be published. 15 2. QUANTUM ELECTRONICS 2.1 MODELING OF Q-SWITCHED, FOUR-LEVEL
Casting Loop Quantum Cosmology in the Spin Foam Paradigm
Ashtekar, Abhay; Henderson, Adam
2010-01-01
The goal of spin foam models is to provide a viable path integral formulation of quantum gravity. Because of background independence, their underlying framework has certain novel features that are not shared by path integral formulations of familiar field theories in Minkowski space. As a simple viability test, these features were recently examined through the lens of loop quantum cosmology (LQC). Results of that analysis, reported in a brief communication [1], turned out to provide concrete arguments in support of the spin foam paradigm. We now present detailed proofs of those results. Since the quantum theory of LQC models is well understood, this analysis also serves to shed new light on some long standing issues in the spin foam and group field theory literature. In particular, it suggests an intriguing possibility for addressing the question of why the cosmological constant is positive and small.
Tunable Few-Electron Quantum Dots as Spin Qubits
Elzerman, Jeroen; Hanson, Ronald; Greidanus, Jacob; Willems van Beveren, Laurens; de Franceschi, Silvano; Vandersypen, Lieven; Tarucha, Seigo; Kouwenhoven, Leo
2003-03-01
Recently it was proposed to make a quantum bit using the spin of an electron in a quantum dot. We present the first experimental steps towards realizing a system of two coupled qubits. The Zeeman splitting between the two spin states defining the qubit is measured for a one-electron dot in a parallel magnetic field. For a two-electron dot, we control the spin singlet-triplet energy difference with a perpendicular magnetic field, and we induce a transition from singlet to triplet ground state. We find relaxation from triplet to singlet to be extremely slow (> 1 mus), which is promising for quantum computing. We couple two few-electron dots, creating the first fully tunable few-electron double dot. Its charge configuration can be read out with a nearby QPC acting as an integrated charge detector.
Long-range interactions in antiferromagnetic quantum spin chains
Bravo, B.; Cabra, D. C.; Gómez Albarracín, F. A.; Rossini, G. L.
2017-08-01
We study the role of long-range dipolar interactions on antiferromagnetic spin chains, from the classical S →∞ limit to the deep quantum case S =1 /2 , including a transverse magnetic field. To this end, we combine different techniques such as classical energy minima, classical Monte Carlo, linear spin waves, bosonization, and density matrix renormalization group (DMRG). We find a phase transition from the already reported dipolar ferromagnetic region to an antiferromagnetic region for high enough antiferromagnetic exchange. Thermal and quantum fluctuations destabilize the classical order before reaching magnetic saturation in both phases, and also close to zero field in the antiferromagnetic phase. In the extreme quantum limit S =1 /2 , extensive DMRG computations show that the main phases remain present with transition lines to saturation significatively shifted to lower fields, in agreement with the bosonization analysis. The overall picture maintains a close analogy with the phase diagram of the anisotropic XXZ spin chain in a transverse field.
Linear spin-wave study of a quantum kagome ice
Owerre, S. A.; Burkov, A. A.; Melko, Roger G.
2016-04-01
We present a large-S study of a quantum spin ice Hamiltonian, introduced by Huang et al. [Phys. Rev. Lett. 112, 167203 (2014), 10.1103/PhysRevLett.112.167203], on the kagome lattice. This model involves a competition between the frustrating Ising term of classical kagome ice, a Zeeman magnetic field h , and a nearest-neighbor transverse spin-flip term SixSjx-SiySjy . Recent quantum Monte Carlo (QMC) simulations by Carrasquilla et al. [Nat. Commun. 6, 7421 (2015), 10.1038/ncomms8421], uncovered lobes of a disordered phase for large Ising interaction and h ≠0 —a putative quantum spin liquid phase. Here, we examine the nature of this model using large-S expansion. We show that the ground state properties generally have the same trends with those observed in QMC simulations. In particular, the large-S ground state phase diagram captures the existence of the disordered lobes.
Quantum correlations and coherence in spin-1 Heisenberg chains
Malvezzi, A. L.; Karpat, G.; ćakmak, B.; Fanchini, F. F.; Debarba, T.; Vianna, R. O.
2016-05-01
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information, and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that, as none of the studied measures can detect the infinite-order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite-order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.
Pascualini, Matias E; Stoian, Sebastian A; Ozarowski, Andrew; Abboud, Khalil A; Veige, Adam S
2016-06-06
Square-planar high-spin Fe(II) molecular compounds are rare, and until recently, the only four examples of non-macrocyclic or sterically driven molecular compounds of this kind shared a common FeO4 core. The trianionic pincer-type ligand [CF3-ONO]H3 (1) supports the high-spin square-planar Fe(II) complex {[CF3-ONO]FeCl}{Li(Sv)2}2 (2). In the solid state, 2 forms the dimer complex {[CF3-ONO]Fe}2{(μ-Cl)2(μ-LiTHF)4} (3) in 96% yield by simply applying a vacuum or stirring it with pentane for 2 h. A detailed high-frequency electron paramagnetic resonance and field-dependent (57)Fe Mössbauer investigation of 3 revealed a weak antiferromagnetic exchange interaction between the local iron spins which exhibit a zero-field splitting tensor characterized by negative D parameter. In solution, 2 is in equilibrium with the solvento complex {[CF3-ONO]FeCl(THF)}{Li2(Sv)4} (2·Sv) and the dimer 3. A combination of frozen solution (57)Fe Mössbauer spectroscopy and single crystal X-ray crystallography helped elucidate the solvent dependent equilibrium between these three species. The oxidation chemistry of 2·Sv was investigated. Complex 2 reacts readily with the one-electron oxidizing agent CuCl2 to give the Fe(III) complex {[CF3-ONO]FeCl2}{Li(THF)2}2 (4). Also, 2·Sv reacts with 2 equiv of TlPF6 to form the Fe(III) complex [CF3-ONO]Fe(THF)3 (5).
Spin structure of electron subbands in (110)-grown quantum wells
Nestoklon, M. O.; Tarasenko, S. A. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Jancu, J.-M. [FOTON-INSA Laboratory, UMR 6082 au CNRS, INSA de Rennes, 35043 Rennes Cedex (France); Voisin, P. [CNRS-Laboratoire de Photonique et de Nanostructures, 91460 Marcoussis (France)
2013-12-04
We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp{sup 3}d{sup 5}s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.
Spin and Rotations in Galois Field Quantum Mechanics
Chang, Lay Nam; Minic, Djordje; Takeuchi, Tatsu
2012-01-01
We discuss the properties of Galois Field Quantum Mechanics constructed on a vector space over the finite Galois field GF(q). In particular, we look at 2-level systems analogous to spin, and discuss how SO(3) rotations could be embodied in such a system. We also consider two-particle `spin' correlations and show that the Clauser-Horne-Shimony-Holt (CHSH) inequality is nonetheless not violated in this model.
Comparison of quantum and classical relaxation in spin dynamics.
Wieser, R
2013-04-01
The classical Landau-Lifshitz equation with a damping term has been derived from the time evolution of a quantum mechanical wave function under the assumption of a non-Hermitian Hamilton operator. Further, the trajectory of a classical spin (S) has been compared with the expectation value of the spin operator (Ŝ). A good agreement between classical and quantum mechanical trajectories can be found for Hamiltonians linear in Ŝ or S, respectively. Quadratic or higher order terms in the Hamiltonian result in a disagreement.
Quantum spins and quasiperiodicity: a real space renormalization group approach.
Jagannathan, A
2004-01-30
We study the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic structure, the octagonal tiling, the aperiodic equivalent of the square lattice for periodic systems. An approximate block spin renormalization scheme is described for this problem. The ground state energy and local staggered magnetizations for this system are calculated and compared with the results of a recent quantum Monte Carlo calculation for the tiling. It is conjectured that the ground state energy is exactly equal to that of the quantum antiferromagnet on the square lattice.
Mixed-state quantum transport in correlated spin networks
Ajoy, Ashok; 10.1103/PhysRevA.85.042305
2012-01-01
Quantum spin networks can be used to transport information between separated registers in a quantum information processor. To find a practical implementation, the strict requirements of ideal models for perfect state transfer need to be relaxed, allowing for complex coupling topologies and general initial states. Here we analyze transport in complex quantum spin networks in the maximally mixed state and derive explicit conditions that should be satisfied by propagators for perfect state transport. Using a description of the transport process as a quantum walk over the network, we show that it is necessary to phase correlate the transport processes occurring along all the possible paths in the network. We provide a Hamiltonian that achieves this correlation, and use it in a constructive method to derive engineered couplings for perfect transport in complicated network topologies.
2007-11-02
total differential quantum efficency , I/77, vs L is shown in Figure 1-2. By assuming the loss is independent of current density J (which is probably...sensitized Ho3+ lasers have lower saturation fluence but low extraction efficiency under Q- switched operation because of upconversion and stored energy ...systems because they have the lower saturation fluence of Ho3+ and no stored energy partitioning. Reduced upconversion is expected, and the heat
Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots
XUE Peng
2011-01-01
We propose a new structure for quantum computing via spin qubits with high fidelity.Each spin qubit corresponds to two electrons in a nanowire double quantum dot,with the singlet and one of the triplets as the logical qubit states.The entangling gate is effected by virtual charge dipole transitions.We include noise to show the feasibility of this scheme under current experimental conditions.
Hybrid quantum systems with ultracold spins and optomechanics
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund
2016-05-01
Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser
2016-05-01
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Low-Energy Effective Theories of Quantum Link and Quantum Spin Models
Schlittgen, B
2001-01-01
Quantum spin and quantum link models provide an unconventional regularization of field theory in which classical fields arise via dimensional reduction of discrete variables. This D-theory regularization leads to the same continuum theories as the conventional approach. We show this by deriving the low-energy effective Lagrangians of D-theory models using coherent state path integral techniques. We illustrate our method for the $(2+1)$-d Heisenberg quantum spin model which is the D-theory regularization of the 2-d O(3) model. Similarly, we prove that in the continuum limit a $(2+1)$-d quantum spin model with $SU(N)_L\\times SU(N)_R\\times U(1)_{L=R}$ symmetry is equivalent to the 2-d principal chiral model. Finally, we show that $(4+1)$-d SU(N) quantum link models reduce to ordinary 4-d Yang-Mills theory.
Guterding, Daniel; Jeschke, Harald O; Valentí, Roser
2016-05-17
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser
2016-01-01
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665
Drużbicki, Kacper; Mikuli, Edward; Kocot, Antoni; Ossowska-Chruściel, Mirosława Danuta; Chruściel, Janusz; Zalewski, Sławomir
2012-08-02
The experimental and theoretical vibrational spectroscopic study of one of a novel antiferroelectric liquid crystals (AFLC), known under the MHPSBO10 acronym, have been undertaken. The interpretation of both FT-IR and FT-Raman spectra was focused mainly on the solid-state data. To analyze the experimental results along with the molecular properties, density functional theory (DFT) computations were performed using several modern theoretical approaches. The presented calculations were performed within the isolated molecule model, probing the performance of modern exchange-correlations functionals, as well as going beyond, i.e., within hybrid (ONIOM) and periodic boundary conditions (PBC) methodologies. A detailed band assignment was supported by the normal-mode analysis with SQM ab initio force field scaling. The results are supplemented by the noncovalent interactions analysis (NCI). The relatively noticeable spectral differences observed upon Crystal to AFLC phase transition have also been reported. For the most prominent vibrational modes, the geometries of the transition dipole moments along with the main components of vibrational polarizability were analyzed in terms of the molecular frame. One of the goals of the paper was to optimize the procedure of solid-state calculations to obtain the results comparable with the all electron calculations, performed routinely for isolated molecules, and to test their performance. The presented study delivers a complex insight into the vibrational spectrum with a noticeable improvement of the theoretical results obtained for significantly attracting mesogens using modern molecular modeling approaches. The presented modeling conditions are very promising for further description of similar large molecular crystals.
Performance of an irreversible quantum Carnot engine with spin 12.
Wu, Feng; Chen, Lingen; Wu, Shuang; Sun, Fengrui; Wu, Chih
2006-06-01
The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible Carnot cycle with spin 12. The optimal relationship between the dimensionless power output P* versus the efficiency eta for the irreversible quantum Carnot engine with heat leakage and other irreversible losses is derived. Especially, the performances of the engine at low temperature limit and at high temperature limit are discussed.