WorldWideScience

Sample records for solid-state optical communication

  1. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  2. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  3. NASA satellite communications application research. Phase 2: Efficient high power, solid state amplifier for EFH communications

    Science.gov (United States)

    Benet, James

    1993-01-01

    The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).

  4. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  5. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  6. Quantum communication network utilizing quadripartite entangled states of optical field

    International Nuclear Information System (INIS)

    Shen Heng; Su Xiaolong; Jia Xiaojun; Xie Changde

    2009-01-01

    We propose two types of quantum dense coding communication networks with optical continuous variables, in which a quadripartite entangled state of the optical field with totally three-party correlations of quadrature amplitudes is utilized. In the networks, the exchange of information between any two participants can be manipulated by one or two of the remaining participants. The channel capacities for a variety of communication protocols are numerically calculated. Due to the fact that the quadripartite entangled states applied in the communication systems have been successfully prepared already in the laboratory, the proposed schemes are experimentally accessible at present.

  7. All-optical quantum computing with a hybrid solid-state processing unit

    International Nuclear Information System (INIS)

    Pei Pei; Zhang Fengyang; Li Chong; Song Heshan

    2011-01-01

    We develop an architecture of a hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have a prominent advantage of the insensitivity to dissipation process benefiting from the virtual excitation of subsystems. Moreover, the quantum nondemolition measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid-state systems can merge and be integrated into one quantum processor afterward.

  8. Optical readout method for solid-state dosemeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Eichner, F.N.; Stahl, K.A.; Miller, S.D.

    1986-07-01

    The readout of solid-state dosemeters is usually accomplished by heating to produce thermoluminescence. This technique has several disadvantages including stressing the dosemeter crystals, melting Teflon enclosures, and destroying the thin dosemeters designed for beta particle measurements. An optical readout method is being developed to avoid these difficulties. Standard dosemeters were irradiated to a dose of approximately 0.02 Sv with 137 Cs gamma rays. The dosemeters were then irradiated with light produced by a high-intensity xenon lamp. Various wavelength bands, from the ultraviolet through the visible and to the near-infrared, were used. The degree of trap emptying was found to be proportional to the total optical power incident. With the intensities used in the preliminary experiments, over 90% trap emptying was achieved. This new technique will prove useful for dosemeters that are encased in plastic for automatic processing. The details of this optical readout method, along with some possible applications in neutron and beta dosimetry are described. 7 refs., 3 figs

  9. Essentials of modern optical fiber communication

    CERN Document Server

    Noé, Reinhold

    2016-01-01

    This is a concise introduction into optical fiber communication. It covers important aspects from the physics of optical wave propagation and amplification to the essentials of modulation formats and receivers. The combination of a solid coverage of necessary fundamental theory with an in-depth discussion of recent relevant research results enables the reader to design modern optical fiber communication systems. The book serves both graduate students and professionals. It includes many worked examples with solutions for lecturers. For the second edition, Reinhold Noé made many changes and additions throughout the text so that this concise book presents the essentials of optical fiber communication in an easy readable and understandable way.

  10. A STUDY OF SOLID STATE LASER PASSIVE OPTICAL Q-SWITCHING OPERATION REGIME (Part 1

    Directory of Open Access Journals (Sweden)

    Ion LĂNCRĂNJAN

    2009-09-01

    Full Text Available This paper is the first of a four series treating, theoretically with experimental comparison, the issue of solid state laser passive optical Q-switching regime. In this first paper the technique of solid state lasers passive optical Q-switching is numerically investigated considering the case of longitudinally and transversally uniform photon, population inversion and absorption centres densities. The coupled differential equations defining photon, population inversion and absorption centres densities are numerically solved being the basis of passively optical Q-switched laser functional simulation. The numerical simulations are performed using the several software packages, mostly SCILAB programs. The developed SCILAB programs can be used for a large range of saturable absorption centre and active media parameters, mainly the initial (low signal optical transmittance of the passive optical Q-switch. The developed FORTRAN and SCILAB programs can be applied for passively Q-switched solid state lasers of several types emitting at several NIR wavelengths, in domain 1 ÷ 2 μm. For validating the numerical simulation results are compared with The results of the numerical simulation are compared with experimentally obtained ones, in the case of a LiF:F2- passively Q-switched Nd:YAG. A good agreement between the two kinds of results is observed.

  11. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  12. Damage resistant optics for a mega-joule solid-state laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Rainer, F.; Kozlowski, M.; Wolfe, C.R.; Thomas, I.; Milanovich, F.

    1990-01-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd +3 -phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd +3 -doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5--2 MJ Nd 3+ -glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 20 refs., 9 figs., 2 tabs

  13. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  14. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  15. Polarization tracking system for free-space optical communication, including quantum communication

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Newell, Raymond Thorson; Peterson, Charles Glen; Hughes, Richard John

    2018-01-09

    Quantum communication transmitters include beacon lasers that transmit a beacon optical signal in a predetermined state of polarization such as one of the states of polarization of a quantum communication basis. Changes in the beacon polarization are detected at a receiver, and a retarder is adjusted so that the states of polarization in a received quantum communication optical signal are matched to basis polarizations. The beacon and QC signals can be at different wavelengths so that the beacon does not interfere with detection and decoding of the QC optical signal.

  16. Full-duplex optical communication system

    Science.gov (United States)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  17. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    Science.gov (United States)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  18. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  19. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  20. Transceiver optics for interplanetary communications

    Science.gov (United States)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  1. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Leonard, John T.; Nakamura, Shuji; Speck, James S.; Denbaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL

  2. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications

    KAUST Repository

    Shen, Chao

    2016-05-25

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3 dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications. © 2016 Optical Society of America.

  3. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Leonard, John T.; Pourhashemi, Arash; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.; Alyamani, Ahmed Y.; El-desouki, Munir M.; Ooi, Boon S.

    2016-01-01

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3 dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications. © 2016 Optical Society of America.

  4. Overview of solid state lasers with applications as LIDAR transmitters and optical image amplifiers

    International Nuclear Information System (INIS)

    Powell, R.C.; Basiev, T.T.; Zverev, P.G.

    2000-01-01

    Full text: This talk will review the current status of solid state lasers. Then a specific class of solid state lasers, Raman lasers, will be discussed as a specific example of new technology development. The spectroscopic properties of the materials are used in these lasers is presented and the use of these materials in shared-, coupled-, and external-resonator laser systems is described. System design parameters affecting efficiency, beam quality, and temporal pulse width are discussed. Examples will be presented of the use of these lasers for transmitters in atmospheric and marine imaging light detection and ranging (LIDAR) systems and in optical amplifiers

  5. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    Kervevan, L.

    2006-12-01

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb 3+ :Er 3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er 3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  6. Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications

    KAUST Repository

    Shen, Chao

    2017-02-16

    III-nitride light emitters, such as light-emitting diodes (LEDs) and laser diodes (LDs), have been demonstrated and studied for solid-state lighting (SSL) and visible-light communication (VLC) applications. However, for III-nitride LEDbased SSL-VLC system, its efficiency is limited by the

  7. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  8. Fibre optic communication key devices

    CERN Document Server

    Grote, Norbert

    2017-01-01

    The book gives an in-depth description of key devices of current and next generation fibre optic communication networks. Devices treated include semiconductor lasers, optical amplifiers, modulators, wavelength filters and other passives, detectors, all-optical switches, but relevant properties of optical fibres and network aspects are included as well. The presentations include the physical principles underlying the various devices, technologies used for their realization, typical performance characteristics and limitations, but development trends towards more advanced components are also illustrated. This new edition of a successful book was expanded and updated extensively. The new edition covers among others lasers for optical communication, optical switches, hybrid integration, monolithic integration and silicon photonics. The main focus is on Indium phosphide-based structures but silicon photonics is included as well. The book covers relevant principles, state-of-the-art implementations, status of curren...

  9. Quantum Optics with Nanomechanical and Solid State Systems

    International Nuclear Information System (INIS)

    Jaehne, K.

    2009-01-01

    This thesis presents theoretical studies in an interfacing field of quantum optics, nanomechanics and mesoscopic solid state physics and proposes new methods for the generation of particular quantum states and quantum state transfer for selected hybrid systems. The first part of this thesis focuses on the quantum limit of a macroscopic object, a nanomechanical resonator. This is studied for two different physical systems. The first one is a nanomechanical beam incorporated in a superconducting circuit, in particular a loop-shaped Cooper pair box (CPB) - circuit. We present a scheme for ground state cooling of the flexural mode of the nanomechanical beam. Via the Lorentz force coupling of the beam motion to circulating CPB-circuit currents, energy is transferred to the CPB qubit which acts as a dissipative two-level system. The cooling process is driven by a detuned gate-voltage drive acting on the CPB. We analyze the cooling force spectrum and present analytical expressions for the cooling rate and final occupation number for a wide parameter regime. In particular, we find that cooling is optimized in a strong drive regime, and we present the necessary conditions for ground-state cooling. In a second system, we investigate the creation of squeezed states of a mechanical oscillator (a vibrating membrane or a movable mirror) in an optomechanical setup. An optical cavity is driven by squeezed light and couples via radiation pressure to the mechanical oscillator, effectively providing a squeezed heat-bath for the mechanical oscillator. Under the conditions of laser cooling to the ground state, we find an efficient transfer of squeezing with roughly 60% of light squeezing conveyed to the mechanical oscillator (on a dB scale). We determine the requirements on the carrier frequency and the bandwidth of squeezed light. Beyond the conditions for ground state cooling, we predict mechanical squashing to be observable in current systems. The second part of the thesis is

  10. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  11. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  12. BODIPY star-shaped molecules as solid state colour converters for visible light communications

    Energy Technology Data Exchange (ETDEWEB)

    Vithanage, D. A.; Manousiadis, P. P.; Sajjad, M. T.; Samuel, I. D. W., E-mail: idws@st-andrews.ac.uk, E-mail: gat@st-andrews.ac.uk; Turnbull, G. A., E-mail: idws@st-andrews.ac.uk, E-mail: gat@st-andrews.ac.uk [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS (United Kingdom); Rajbhandari, S. [School of Computing, Electronics and Mathematics, Coventry University, Coventry, West Midlands CV1 2JH (United Kingdom); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom); Chun, H.; Faulkner, G.; O' Brien, D. C. [Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom); Orofino, C.; Cortizo-Lacalle, D.; Findlay, N. J.; Skabara, P. J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Kanibolotsky, A. L. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Institute of Physical-Organic Chemistry and Coal Chemistry, 02160 Kyiv (Ukraine)

    2016-07-04

    In this paper, we study a family of solid-state, organic semiconductors for visible light communications. The star-shaped molecules have a boron-dipyrromethene (BODIPY) core with a range of side arm lengths which control the photophysical properties. The molecules emit red light with photoluminescence quantum yields ranging from 22% to 56%. Thin films of the most promising BODIPY molecules were used as a red colour converter for visible light communications. The film enabled colour conversion with a modulation bandwidth of 73 MHz, which is 16 times higher than that of a typical phosphor used in LED lighting systems. A data rate of 370 Mbit/s was demonstrated using On-Off keying modulation in a free space link with a distance of ∼15 cm.

  13. Optical techniques for probing the excited state dynamics of quantum dot solids

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, P.; Kholmicheva, N.; Razgoniaeva, N. [Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43402 (United States); Department of Physics, Bowling Green State University, Bowling Green, OH 43402 (United States); Burchfield, D. [Department of Chemistry, Bowling Green State University, Bowling Green, OH 43402 (United States); Sharma, N.; Acharya, A. [Department of Physics, Bowling Green State University, Bowling Green, OH 43402 (United States); Zamkov, M., E-mail: zamkovm@bgsu.edu [Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43402 (United States); Department of Physics, Bowling Green State University, Bowling Green, OH 43402 (United States)

    2016-06-01

    Highlights: • Optical techniques represent a powerful tool for probing exciton diffusion in QD solids. • Exciton dissociation in QD solids is caused by charge tunneling to traps and other dots. • Exciton and free-carrier lifetimes are given by fast and slow components of PL decay. • Surface PL offers valuable information on the type and density of traps in QD solids. - Abstract: Quantum dot (QD) solids represent an important class of functional materials that holds strong promise for future applications in technology. Their optoelectronic properties are determined by energy diffusion processes, which character can often be inferred from the temporal and spectral analysis of the film’s photoluminescence (PL). Here, optical techniques based on PL lifetime, bulk quenching, and temperature-dependent PL will be discussed. These techniques complement the electrical conductivity measurements by mapping the flow of optically induced excitons through undepleted, contact-free films with an unprecedented temporal and spatial resolution. By correlating the QD solid morphology with the ensuing photoluminescence (PL) dynamics, these methods allow estimating important transport characteristics, including exciton and charge carrier diffusion lengths, the rate of interparticle energy transfer, carrier mobility, and the exciton diffusivity. The review will cover most popular PL-based strategies and summarize the key experimental findings resulting from these works.

  14. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  15. Laser solid sampling for a solid-state-detector ICP emission spectrometer

    International Nuclear Information System (INIS)

    Noelte, J.; Moenke-Blankenburg, L.; Schumann, T.

    1994-01-01

    Solid sampling with laser vaporization has been coupled to an ICP emission spectrometer with an Echelle optical system and a solid-state-detector for the analysis of steel and soil samples. Pulsation of the vaporized material flow was compensated by real-time background correction and internal standardization, resulting in good accuracy and precision. (orig.)

  16. The handbook of optical communication networks

    CERN Document Server

    Ilyas, Mohammad

    2003-01-01

    The Handbook of Optical Communication Networks presents comprehensive, up-to-date technical information on integrated, state-of-the-art optical networks. Beginning with an in-depth intoduction to the field, top international authorities explore every major aspect of optical networks, from basic concepts to research grade material. Their discussions cover all of the essential topics, including protocols, resource management, routing and wavelength assignment in WDM networks, connection management, survivability, enabling technologies, and future trends.

  17. Optical efficiency for fission fragment track counting in Muscovite solid state track recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Ruddy, F.H.; Gold, R.

    1984-01-01

    In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid State Track Recorders, it is necessary to know the efficiency with which fission fragment tracks are recorded. In this paper, a redetermination of the 'optical efficiency', i.e. the fraction of fission events recorded and observed in the Muscovite is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. (author)

  18. A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor

    Science.gov (United States)

    Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Kalam, Abul

    2018-05-01

    We report a novel coumarin based optical chemosensor (Probe 1) for the selective and sensitive detection of Cu2+ ions in aqueous medium. The addition of Cu2+ ions to Probe 1 shows distinct color change from light yellow to pinkish red color under visible light with the sensing limit of 1.54 μM. Moreover, practical utility of Probe 1 as solid state optical sensor (test paper, TLC plates) for sensing Cu2+ has been demonstrated by instantaneous "naked eye" response.

  19. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  20. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  1. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  2. Optical efficiency for fission-fragment track counting in Muscovite Solid-State Track Recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Ruddy, F.H.; Gold, R.

    1983-07-01

    In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid-State Track Recorders, it is necessary to know the efficiency with which fission-fragment tracks are recorded. In this paper, a redetermination of the optical efficiency, i.e., the fraction of fission events recorded and observed in the Muscovite, is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. 5 references, 1 figure, 3 tables

  3. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  4. Spherical transceivers for ultrafast optical wireless communications

    Science.gov (United States)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  5. Per-Pixel, Dual-Counter Scheme for Optical Communications

    Science.gov (United States)

    Farr, William H.; Bimbaum, Kevin M.; Quirk, Kevin J.; Sburlan, Suzana; Sahasrabudhe, Adit

    2013-01-01

    Free space optical communications links from deep space are projected to fulfill future NASA communication requirements for 2020 and beyond. Accurate laser-beam pointing is required to achieve high data rates at low power levels.This innovation is a per-pixel processing scheme using a pair of three-state digital counters to implement acquisition and tracking of a dim laser beacon transmitted from Earth for pointing control of an interplanetary optical communications system using a focal plane array of single sensitive detectors. It shows how to implement dim beacon acquisition and tracking for an interplanetary optical transceiver with a method that is suitable for both achieving theoretical performance, as well as supporting additional functions of high data rate forward links and precision spacecraft ranging.

  6. State of the art of solid state dosimetry

    International Nuclear Information System (INIS)

    Souza, Susana O.; Yamamoto, Takayoshi; D'Errico, Francesco

    2014-01-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed

  7. Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites

    International Nuclear Information System (INIS)

    Liu, Jinsong; Zhu, Kongjun; Sheng, Beibei; Li, Ziquan; Tai, Guoan; Qiu, Jinhao; Wang, Jing; Chen, Jiankang; You, Yuncheng; Gu, Qilin; Liu, Pengcheng

    2015-01-01

    Highlights: • Using a low-temperature solid-state method, ZnO/CdS nanocomposites were obtained • Grain growth kinetics of cubic CdS and hexagonal ZnO phase was described. • Sufficient grinding and heating treatment was a key for formation of composites. • Optical properties could be easily manipulated by reaction temperature and time. - Abstract: A simple low-temperature solid-state reaction in the presence of the surfactant PEG400 was developed to obtain ZnO/CdS nanocomposites. The effects of synthesis temperature and reaction time on crystal structure and optical properties of the nanocomposites were investigated by several technologies. X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) characterizations showed that the products consisted of the nanoparticles, and the grain growth kinetics of the cubic CdS and the hexagonal ZnO phase in the nanocomposites was described. The mechanism analysis suggested that sufficient grinding and heating treatment was a key to form the ZnO/CdS nanocomposites, and the surfactant PEG400 was proved not to involve the reaction and prevent the nanoparticles from aggregating to larger in whole grinding and heat-treatment process. Ultraviolet–visible (UV–vis) spectra revealed that the band gaps of the nanocomposites could be tuned by the reaction temperature and reaction time. Photoluminescence (PL) spectra showed that the changing position and the intensity of the emission peaks resulted from the rate of electron transfer and recombination probability under the different conditions

  8. Fibre Optic Communication Key Devices

    CERN Document Server

    Grote, Norbert

    2012-01-01

    The book gives an in-depth description of the key devices of current and next generation fibre optic communication networks. In particular, the book covers devices such as semiconductor lasers, optical amplifiers, modulators, wavelength filters, and detectors but the relevant properties of optical fibres as well. The presentations include the physical principles underlying the various devices, the technologies used for the realization of the different devices, typical performance characteristics and limitations, and development trends towards more advanced components are also illustrated. Thus the scope of the book spans relevant principles, state-of-the-art implementations, the status of current research and expected future components.

  9. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  10. Solid-state reaction in Ti/Ni multilayered films studied by using magneto-optical spectroscopy

    CERN Document Server

    Lee, Y P; Kim, K W; Kim, C G; Kudryavtsev, Y V; Nemoshkalenko, V V; Szymanski, B

    2000-01-01

    A comparative study of the solid-state reaction (SSR) in a series of Ti/Ni multilayered films (MLDs) with bilayer periods of 0.65-22.2 nm and a constant Ti to Ni sublayer thickness ratio was performed by using experimental and computer-simulated magneto-optical (MO) spectroscopy based on different models of MLFs, as well as x-ray diffraction (XRD). The spectral and sublayer thickness dependences of the MO properties of the Ti/Ni MLFs were explained on the basis of the electromagnetic theory. The existence of a threshold nominal Ni-sublayer thickness of about 3 nm for the as-deposited Ti/Ni MLF to observe of the equatorial Kerr effect was explained by a solid-state reaction which formed nonmagnetic alloyed regions between pure components during the MLF deposition. The SSR in the Ti/Ni MLFs, which was caused by the low temperature annealing, led to the formation of an amorphous Ti-Ni alloy and took place mainly in the Ti/Ni MLFs with ''thick'' sublayers. For the caes of Ti/Ni MLFs, the MO approach turned out to...

  11. Effect of bulky substituents on thiopyrylium polymethine aggregation in the solid state: A theoretical evaluation of the implications for all-optical switching applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-11-25

    Polymethine dyes in dilute solutions display many of the optical properties required for all-optical switching applications. However, in thin films, aggregation and polymethine-counterion interactions can substantially modify their properties and limit their utility. Here, we examine the impact of a series of bulky substituents on the solid-state molecular packing of thiopyrylium polymethines by using a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations. Importantly, it is found that the positions of the substituents near the center and/or ends of the dye determine the extent to which aggregation is reduced; in particular, substituents near the polymethine center primarily modify the type of aggregation that is observed, while substituents near the polymethine ends reduce aggregation and aid in maintaining solution-like properties in the solid state. Our theoretical study elucidates relationships between molecular structure and bulk optical properties and provides design guidelines for all-optical switching materials.

  12. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  13. Advanced digital optical communications

    CERN Document Server

    Binh, Le Nguyen

    2015-01-01

    This book provides a fundamental understanding of digital communication applications in optical communication technologies. Emphasizing operation principles versus mathematical analysis, the Second Edition includes new coverage of superchannel optical transmission systems, metropolitan and long-haul optical systems and networks, and Nyquist pulse shaping and high spectral efficiency of optical transmission systems, as well as new homework problems and examples. Featuring theoretical foundations as well as practical case studies, the text focuses on enhancements to digital technologies that are

  14. All-optical signal processing data communication and storage applications

    CERN Document Server

    Eggleton, Benjamin

    2015-01-01

    This book provides a comprehensive review of the state-of-the art of optical signal processing technologies and devices. It presents breakthrough solutions for enabling a pervasive use of optics in data communication and signal storage applications. It presents presents optical signal processing as solution to overcome the capacity crunch in communication networks. The book content ranges from the development of innovative materials and devices, such as graphene and slow light structures, to the use of nonlinear optics for secure quantum information processing and overcoming the classical Shannon limit on channel capacity and microwave signal processing. Although it holds the promise for a substantial speed improvement, today’s communication infrastructure optics remains largely confined to the signal transport layer, as it lags behind electronics as far as signal processing is concerned. This situation will change in the near future as the tremendous growth of data traffic requires energy efficient and ful...

  15. Radioactive isotopes in solid-state physics

    CERN Document Server

    Deicher, M

    2002-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as M\\"ossbauer spectroscopy, perturbed angular correlation, $\\beta$-NMR, and emission channelling have used nuclear properties (via hyperfine interactions or emitted particles) to gain microscopical information on the structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as a clean ion beam at ISOL facilities such as ISOLDE at CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Extremely sensitive spectroscopic techniques like deep-level transient spectroscopy (DLTS), photoluminescence (PL), and Hall effect have gained a new quality by using radioactive isotopes. Because of their decay the chemical origin of an observed electronic and optical b...

  16. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  17. Space-time complexity in solid state models

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter

  18. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    International Nuclear Information System (INIS)

    Staderini, E.M.; Castellano, A.

    1986-01-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2 . On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation. (orig.)

  19. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  20. Optical propagation in linear media atmospheric gases and particles, solid-state components, and water

    CERN Document Server

    Thomas, Michael E

    2006-01-01

    PART I: Background Theory and Measurement. 1. Optical Electromagnetics I. 2. Optical Electromagnetics II. 3. Spectroscopy of Matter. 4. Electrodynamics I: Macroscopic Interaction of Light and Matter. 5. Electrodynamics II: Microscopic Interaction of Light and Matter. 6. Experimental Techniques. PART II: Practical Models for Various Media. 7. Optical Propagation in Gases and the Atmosphere of the Earth. 8. Optical Propagation in Solids. 9. Optical Propagation in Liquids. 10. Particle Absorption and Scatter. 11. Propagation Background and Noise

  1. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  2. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  3. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  4. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    International Nuclear Information System (INIS)

    Sischka, Andy; Spiering, Andre; Anselmetti, Dario; Khaksar, Maryam; Laxa, Miriam; Koenig, Janine; Dietz, Karl-Josef

    2010-01-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  5. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  6. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  7. 78 FR 16296 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Science.gov (United States)

    2013-03-14

    ... Fiber Optic Communications, Components Thereof, and Products Containing Same; Commission Determination... United States after importation of certain optoelectronic devices for fiber optic communications... Fiber IP (Singapore) Pte. Ltd. of Singapore (``Avago Fiber IP''); Avago General IP and Avago...

  8. Solid-State Synthesis and Effect of Temperature on Optical Properties of CuO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C.C.Vidyasagar; Y.Arthoba Naik; T.G.Venkatesha; R.Viswanatha

    2012-01-01

    Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. The P-type semiconductor of copper oxide is an important functional material used for photovoltaic cells. Cu O is attractive as a selective solar absorber since it has high solar absorbance and a low thermal emittance. The present work describes the synthesis and characterization of semiconducting Cu O nanoparticles via one-step, solid-state reaction in the presence of Polyethylene glycol400 as size controlling agent for the preparation of Cu O nanoparticles at different temperatures. Solid-state mechanochemical processing, which is not only a physical size reduction process in conventional milling but also a chemical reaction, is mechanically activated at the nanoscale during grinding. The present method is a simple and efficient method of preparing nanoparticles with high yield at low cost. The structural and chemical composition of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive spectrometer, respectively. Optical properties and band gap of Cu O nanoparticles were studied by UV-Vis spectroscopy. These results showed that the band gap energy decreased with increase of annealing temperature, which can be attributed to the improvement in grain size of the samples.

  9. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  10. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  11. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2018-01-01

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  12. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir

    2018-02-28

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  13. International standards for optical wireless communications: state-of-the-art and future directions

    Science.gov (United States)

    Marciniak, Marian

    2017-10-01

    As the number of active OWC installations is growing fast, the standards for compatibility of co-existing neighbouring systems are being developed. The paper addresses the Laser Safety (IEC standards), ITU-T Study Group 15 standards (G.640 Co-location longitudinally compatible interfaces for free space optical systems), ITU-Radiocommunication Sector standards (P.1817-1 Propagation data required for the design of terrestrial free-space optical links), and the IEEE Work in Progress - standardization activity on Visible Light Communications. International standards of FSO communications have been reviewed and discussed. ITU, IEC, and IEEE International standards for Free-Space Optical links have been reviewed. The system reliability and availability as well as security issues will be addressed as well in the talk.

  14. Aberrations and focusability in large solid-state-laser systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1981-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  15. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  16. Radio Science from an Optical Communications Signal

    Science.gov (United States)

    Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal

    2013-01-01

    NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.

  17. OPTICAL COMMUNICATION: Simulation of autosoliton optical pulses in high-speed fibreoptic communication systems

    Science.gov (United States)

    Latkin, A. I.

    2005-03-01

    The propagation of a pulse in a fibreoptic communication link with periodically included regenerators — nonlinear optical loop mirrors, is studied. The autosoliton propagation regime of the optical pulse is revealed. It is shown that the inclusion of a ring mirror to the communication link leads to a substantial increase in the transmission distance of the pulse at a small negative average dispersion in the link.

  18. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  19. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  20. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  1. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  2. Communication with diode laser: short distance line of sight communication using fiber optics

    International Nuclear Information System (INIS)

    Mirza, A.H.

    1999-01-01

    The objective of this project is to carry audio signal from transmitting station to a short distance receiving station along line of sight and also communication through fiber optics is performed, using diode laser light as carrier. In this project optical communication system, modulation techniques, basics of laser and causes of using diode laser are discussed briefly. Transmitter circuit and receiver circuit are fully described. Communication was performed using pulse width modulation technique. Optical fiber communication have many advantages over other type of conventional communication techniques. This report contains the description of optical fiber communication and compared with other communication systems. (author)

  3. Energy-saving approaches to solid state street lighting

    Science.gov (United States)

    Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras

    2011-10-01

    We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.

  4. Interactive educational technologies as a method of communicative competency development of optical and fiber optic communication systems specialists

    Science.gov (United States)

    Matveeva, Tatiana U.; Osadchiy, Igor S.; Husnutdinova, Marina N.

    2017-04-01

    The article examines the process of formation of communicative competencies of optic and fiber optic communication systems specialists; the role of communicative competencies is examined in the structure of professionally important skills, together with the contents of professional activity. The stages of empirical research into formation of communicative competencies have been presented, and the values of statistical reliability of data have been provided. The model of formation of communicative competency using interactive technology has been developed based on the research done, and main stages of model implementation and motives of formation of communicative competency have been highlighted. A scheme of "Communicative competence as a base of future success" training session has been suggested as one of the basic interactive technologies. Main components of education that are used during the stages of the training cycle have been examined. The statistical data on the effectiveness of use of interactive educational technologies has been presented; it allowed development of communicative competency of specialists in the field of optical and fiber optic communication system.

  5. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method

    Energy Technology Data Exchange (ETDEWEB)

    Kiyko, V V; Kislov, V I; Ofitserov, E N; Suzdal' tsev, A G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    A pump chamber of the optical boiler type for solid-state lasers with transverse laser diode pumping is studied theoretically and experimentally. The pump chamber parameters are optimised using the geometrical optics approximation for the pump radiation. According to calculations, the integral absorption coefficient of the active element at a wavelength of 808 nm is 0.75 – 0.8 and the relative inhomogeneity of the pump radiation distribution over the active element volume is 17% – 19%. The developed pump chamber was used in a Nd:YAG laser. The maximum cw output power at a wavelength of 1064 nm was ∼480 W at the optical efficiency up to 19.6%, which agrees with theoretical estimates. (lasers)

  6. Solid state nuclear track detectors kit for the use in teaching

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.

    1988-11-01

    The kit intends to improve the possibilities in performing experiments of Nuclear Physics in Modern Physics laboratories of Physics Course introducing the solid state nuclear track detectors. In these materials the passage of heavily ionizing nuclear particles creates paths (tracks) that may be revealed and made visible in an optical microscope. By the help of the kit several experiments and/or demonstrations may be performed. The kit contains solid state nuclear track detectors unirradiated and irradiated, irradiated etched and unetched sheets: an alpha source of 241 Am and an instrution text with photomicrographs. To use the kit the laboratory must have an ordinary optical microscope. (author) [pt

  7. Beaconless Pointing for Deep-Space Optical Communication

    Science.gov (United States)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  8. Optical space communication: An overview

    International Nuclear Information System (INIS)

    Jain, V.K.

    1994-01-01

    In this paper, importance of the optical space communication has been highlighted. Its merits and demerits over the conventional microwave system has been presented. In contrast to coherent systems, use of an optical preamplifier in direct detection system has been emphasized. Status of some of the ongoing/future space communication projects has been given. (author). 9 refs, 5 figs

  9. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  10. Multi-wavelength time-coincident optical communications system and methods thereof

    Science.gov (United States)

    Lekki, John (Inventor); Nguyen, Quang-Viet (Inventor)

    2009-01-01

    An optical communications transmitter includes a oscillator source, producing a clock signal, a data source, producing a data signal, a modulating circuit for modulating the clock signal using the data signal to produce modulating signals, optical drivers, receiving the modulating signals and producing optical driving signals based on the modulating signals and optical emitters, producing small numbers of photons based on the optical driving signals. The small numbers of photons are time-correlated between at least two separate optical transmission wavelengths and quantum states and the small number of photons can be detected by a receiver to reform the data signal.

  11. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  12. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  13. Interim report on the state-of-the-art of solid-state motor controllers. Part 4. Failure-rate and failure-mode data

    International Nuclear Information System (INIS)

    Jaross, R.A.

    1983-09-01

    An assessment of the reliability of solid-state motor controllers for nuclear power plants is made. Available data on failure-rate and failure-mode data for solid-state motor controllers based on industrial operating experience is meager; the data are augmented by data on other solid-state power electronic devices that are shown to have components similar to those found in solid-state motor controllers. In addition to large nonnuclear solid-state adjustable-speed motor drives, the reliability of nuclear plant inverter systems and high-voltage solid-state dc transmission-line converters is assessed. Licensee Event Report analyses from several sources, the open literature, and personal communications are used to determine the realiability of solid-state devices typical of those expected to be used in nuclear power plants in terms of failures per hour

  14. NASA's current activities in free space optical communications

    Science.gov (United States)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  15. Data transmission techniques for short-range optical fiber and wireless communication links

    DEFF Research Database (Denmark)

    Pham, Tien Thang

    The research work described in this thesis is devoted to experimental investigation of techniques for cost-effective high-speed optical communications supporting both wired and wireless services. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high......-speed optical/wireless integration and advanced modulation formats for intensity modulation with direct detection (IM/DD) optical systems. Regarding optical/wireless integration, this thesis focuses on integration of broadband ultra-wide band (UWB) and 60-GHz band wireless systems into optical fiber access...... networks to distribute wireless services in personal area networks (PANs). Photonic technologies to generate and distribute gigabit UWB and 60-GHz-band signals are proposed and demonstrated. Two novel methods are proposed and demonstrated to optically generate Federal Communications Commission (FCC...

  16. Optical Communications Channel Combiner

    Science.gov (United States)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  17. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  18. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  19. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges.

    Science.gov (United States)

    Alayed, Mrwan; Deen, M Jamal

    2017-09-14

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

  20. Electronic structure and optical properties of solid C60

    International Nuclear Information System (INIS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.

    2009-01-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .

  1. Molecular and solid-state properties of tris-(8-hydroxyquinolate)-aluminum

    International Nuclear Information System (INIS)

    Martin, Richard L.; Kress, Joel D.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    We use a hybrid density-functional-theory approach to calculate ground-state electronic properties and a time-dependent density-functional-theory approach to investigate the excited state electronic properties of molecular tris-(8-hydroxyquinolate)-aluminum, Alq. The calculated molecular results are compared with measurements on dense solid-state films of Alq. We specifically consider: the optical absorption spectrum near the fundamental absorption threshold, the ionization potential, the single-particle energy gap, the static dielectric constant, and the electric-field dependence of the electron mobility. We find that the molecular calculations can describe the optical absorption spectrum near the fundamental absorption threshold without significant corrections for solid-state effects. The energies of the triplet excited states are computed and the lowest triplet is found to lie 0.64 eV below the lowest excited singlet state. In contrast, large dielectric corrections must be included for the molecular calculations to describe the ionization potential and single-particle energy gap. When these dielectric corrections are made, using the calculated molecular polarizability, which accurately gives the measured static dielectric constant, both the ionization potential and single-particle energy gap are well described. The calculated molecular dipole moment can be used to interpret the electric-field dependence of the electron mobility. The solid-state properties, determined from the molecular calculations, are then used in a device model to describe the measured current-voltage characteristics in Alq diodes. (c) 2000 The American Physical Society

  2. The Holy Grail of quantum optical communication

    International Nuclear Information System (INIS)

    García-Patrón, Raúl; Navarrete-Benlloch, Carlos; Lloyd, Seth; Shapiro, Jeffrey H.; Cerf, Nicolas J.

    2014-01-01

    Optical parametric amplifiers together with phase-shifters and beamsplitters have certainly been the most studied objects in the field of quantum optics. Despite such an intensive study, optical parametric amplifiers still keep secrets from us. We will show how they hold the answer to one of the oldest problems in quantum communication theory, namely the calculation of the optimal communication rate of optical channels

  3. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P

    2010-01-01

    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  4. Solid-State Synthesis and Effect of Temp erature on Optical Prop erties of CuO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C. C. Vidyasagar; Y. Arthoba Naik∗; T. G. Venkatesha; R. Viswanatha

    2012-01-01

    Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. The P-type semiconductor of copper oxide is an important functional material used for photovoltaic cells. CuO is attractive as a selective solar absorber since it has high solar absorbance and a low thermal emittance. The present work describes the synthesis and characterization of semiconducting CuO nanoparticles via one-step, solid-state reaction in the presence of Polyethylene glycol 400 as size controlling agent for the preparation of CuO nanoparticles at different temperatures. Solid-state mechanochemical processing, which is not only a physical size reduction process in conventional milling but also a chemical reaction, is mechanically activated at the nanoscale during grinding. The present method is a simple and efficient method of preparing nanoparticles with high yield at low cost. The structural and chemical composition of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive spectrometer, respectively. Optical properties and band gap of CuO nanoparticles were studied by UV-Vis spectroscopy. These results showed that the band gap energy decreased with increase of annealing temperature, which can be attributed to the improvement in grain size of the samples.

  5. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  6. Research on Retro-reflecting Modulation in Space Optical Communication System

    Science.gov (United States)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  7. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  8. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  9. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    Directory of Open Access Journals (Sweden)

    Jesús-Alejandro Peña-Jiménez

    2016-09-01

    Full Text Available The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  10. Abstracts of 12. Conference on Solid State Crystals Materials Science and Applications

    International Nuclear Information System (INIS)

    1996-01-01

    The solid state crystals are the modern materials being very interesting from the view point of actual and possible applications in microelectronics, optics, laser materials, detectors etc. 12. Conference on Solid State Crystals, Materials Science and Applications, Zakopane'99 created the review forum for broad range of investigations on topics related to; crystal growth and doping, new materials preparation, thin layer structure, physical properties and special methods for electrical, magnetic, optical and mechanical properties measurements of obtained materials. The insulating, semiconducting and superconducting monocrystals, polycrystals and also amorphous glasses have been investigated and their possible applications discussed. 52 oral lectures and 128 posters have been presented in the course of the conference

  11. Nonclassical lightstates in optical communication schemes

    International Nuclear Information System (INIS)

    Mattle, K. U.

    1997-11-01

    The present thesis is a result in theoretical and experimental work on quant information and quant communication. The first part describes a new high intense source for polarization entangled photon pairs. The high quality of the source is clearly demonstrated by violating a Bell-inequality in less than 5 minutes with 100 standard deviations. This new source is a genius tool for new experiments in the field of fundamental physics as well as applied physics. The next chapter shows an experimental implementation of an optical dense quantum coding scheme. The combination of Bell-state generation and analysis of this entangled states leads to a new nonclassical communication scheme, where the channel capacity is enhanced. A single two state photon can be used for coding and decoding 1.58 bit instead of 1 bit for classical two state systems. The following chapter discusses two photon interference effects for two independent light sources. In an experiment two independent fluorescence pulses show this kind of interference effects. The fifth chapter describes 3-photon interference effects. This nonclassical interference effect is the elementary process for the quantum teleportation scheme. In this scheme an unknown particle state is transmitted from A to B without sending the particle itself. (author)

  12. An introduction to system reliability for solid-state lighting

    NARCIS (Netherlands)

    Driel, W.D. van; Evertz, F.E.; Zaal, J.J.M.; Morales Nápoles, O.; Yuan, C.A.

    2013-01-01

    Solid-State Lighting (SSL) applications are slowly but gradually pervading into our daily life. An SSL system is composed of an light-emitting diode (LED) engine with a microelectronic driver(s) in a housing that also supplies the optic design. Knowledge of system-level reliability is crucial for

  13. Optimal optical communication terminal structure for maximizing the link budget

    Science.gov (United States)

    Huang, Jian; Jiang, Dagang; Deng, Ke; Zhang, Peng

    2015-02-01

    Ordinary inter-satellite optical includes at least three optical paths for acquisition, tracking and communication, the three optical paths work simultaneously and share the received power. An optimal structure of inter-satellite optical communication terminal with single working optical path at each of working stages of acquisition and communication is introduced. A space optical switch based on frustrated total internal reflection effect is applied to switch the received laser power between the acquisition sensor and the communication sensor between the stages of acquisition and communication, this is named as power fusion which means power is transferred for shutting down unused optical path. For the stages of tracking and communication, a multiple cells sensor is used to accomplish the operation of tracking while communication, this is named as function fusion which means accomplishing multiple functions by one device to reduce the redundant optical paths. For optical communication terminal with single working path structure, the total received laser power would be detected by one sensor for each different stages of acquisition, tracking and communication, the link budget would be maximized, and this design would help to enlarge the system tolerance and reduce the acquisition time.

  14. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  15. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  16. Compact solid state radio frequency amplifiers in kW regime for ...

    Indian Academy of Sciences (India)

    RF amplifier; solid state amplifier; power combiner and divider; .... was designed using planar and coaxial transmission line baluns with minimum lumped variable ..... Cripps S C 1999 RF power amplifiers for wireless communication. Norwood: ...

  17. Machine learning techniques for optical communication system optimization

    DEFF Research Database (Denmark)

    Zibar, Darko; Wass, Jesper; Thrane, Jakob

    In this paper, machine learning techniques relevant to optical communication are presented and discussed. The focus is on applying machine learning tools to optical performance monitoring and performance prediction.......In this paper, machine learning techniques relevant to optical communication are presented and discussed. The focus is on applying machine learning tools to optical performance monitoring and performance prediction....

  18. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. © 2011 Optical Society of America

  19. Free Space Optical Communication in the Military Environment

    Science.gov (United States)

    2014-09-01

    Charles River [6]. Even much earlier than Paul Revere’s ride, optical communication had developed into the semaphore or optical telegraph. The...forms of basic optical communication that are still commonplace today include semaphore flags and signal lamps utilized by navies around the world

  20. Fiber optic communications fundamentals and applications

    CERN Document Server

    Kumar, Shiva

    2014-01-01

    Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpre

  1. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  2. Optical wireless communication in data centers

    Science.gov (United States)

    Arnon, Shlomi

    2018-01-01

    In the last decade data centers have become a crucial element in modern human society. However, to keep pace with internet data rate growth, new technologies supporting data center should develop. Integration of optical wireless communication (OWC) in data centers is one of the proposed technologies as augmented technology to the fiber network. One implementation of the OWC technology is deployment of optical wireless transceiver on top of the existing cable/fiber network as extension to the top of rack (TOR) switch; in this way, a dynamic and flexible network is created. Optical wireless communication could reduce energy consumption, increase the data rate, reduce the communication latency, increase flexibility and scalability, and reduce maintenance time and cost, in comparison to extra fiber network deployment. In this paper we review up to date literature in the field, propose an implementation scheme of OWC network, discuss ways to reduce energy consumption by parallel link communication and report preliminary measurement result of university data center environment.

  3. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  4. All-Optical Regeneration System for Optical Wavelength Division Multiplexed Communication Systems

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multiplexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multiplexing OTDM, WDM-to-OTDM, converter, capable of converting....... The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit...... an input WDM data signal comprising multiple wavelength channels into an input OTDM data signal comprising multiple time multiplexed time channels. The system further comprises an all-optical regenerator unit being configured for regenerating the input OTDM data signal into an output OTDM data signal...

  5. Unconditional quantum cloning of coherent states with linear optics

    International Nuclear Information System (INIS)

    Leuchs, G.; Andersen, U.L.; Josse, V.

    2005-01-01

    Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)

  6. Continuous variable multipartite entanglement and optical implementations of quantum communication networks

    International Nuclear Information System (INIS)

    Lian Yimin; Xie Changde; Peng Kunchi

    2007-01-01

    A variety of optical quantum information networks based on the multipartite entanglement of amplitude and phase quadratures of an electromagnetic field have been proposed and experimentally realized in recent years. The multipartite entanglement of optical continuous variables provides flexible and reliable quantum resources for developing unconditional quantum information networks. In this paper, we review the generation schemes of the multipartite entangled states of optical continuous quantum variables and some applications in the quantum communication networks with emphasis on the experimental implementations

  7. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  8. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  9. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  10. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  11. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator's metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  12. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  13. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  14. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    Dautremont-Smith, W.C.; Beni, G.; Schiavone, L.M.; Shay, J.L.

    1979-01-01

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  15. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    of broadband services access. To realize the seamless convergence between the two network segments, the lower capacity of wireless systems need to be increased to match the continuously increasing bandwidth of fiber-optic systems. The research works included in this thesis are devoted to experimental...... investigations of photonic-wireless links with record high capacities to fulfill the requirements of next generation hybrid optical fiber-wireless access networks. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high speed millimeter-wave (mm-wave) communication links......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...

  16. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  17. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Science.gov (United States)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  18. Optical fiber communication systems with Matlab and Simulink models

    CERN Document Server

    Binh, Le Nguyen

    2014-01-01

    ""This book adds an aspect of programming and simulation not so well developed in other books. It is complete in this sense and enables directly linking the physics of optical components and systems to realistic results.""-Martin Rochette, Associate Professor, McGill University, Quebec, Canada""…this will be an excellent textbook since it has all new development and information on optical communication systems…I think this book can easily replace many other textbooks in this field.""-Massoud Moussavi, California State Polytechnic University-Pomona""The book is well written. It describes the fu

  19. Free Space Optical Communication for Tactical Operations

    Science.gov (United States)

    2016-09-01

    higher energy level to a lower energy level. The photons are focused to optical lenses before transmission into the air medium. The primary purpose...Security of a free space optical transmission . (n.d.). SONA Optical Wireless , [Online]. Available: http://htcbn.com/HTC_Profile_CD/fSONA/APPNOTE...almost always require on-the-move wireless communications. Radio frequency (RF) communication is used to fill the gap, but RF systems are hard pressed to

  20. Commercialization and Standardization Progress Towards an Optical Communications Earth Relay

    Science.gov (United States)

    Edwards, Bernard L.; Israel, David J.

    2015-01-01

    NASA is planning to launch the next generation of a space based Earth relay in 2025 to join the current Space Network, consisting of Tracking and Data Relay Satellites in space and the corresponding infrastructure on Earth. While the requirements and architecture for that relay satellite are unknown at this time, NASA is investing in communications technologies that could be deployed to provide new communications services. One of those new technologies is optical communications. The Laser Communications Relay Demonstration (LCRD) project, scheduled for launch in 2018 as a hosted payload on a commercial communications satellite, is a critical pathfinder towards NASA providing optical communications services on the next generation space based relay. This paper will describe NASA efforts in the on-going commercialization of optical communications and the development of inter-operability standards. Both are seen as critical to making optical communications a reality on future NASA science and exploration missions. Commercialization is important because NASA would like to eventually be able to simply purchase an entire optical communications terminal from a commercial provider. Inter-operability standards are needed to ensure that optical communications terminals developed by one vendor are compatible with the terminals of another. International standards in optical communications would also allow the space missions of one nation to use the infrastructure of another.

  1. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    International Nuclear Information System (INIS)

    Zhang, Xian-Fu; Zhang, Ya-Kui

    2015-01-01

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ f ). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ f ) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ f and τ f values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ f and τ f values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions

  2. Long-lived and largely red-shifted photoluminescence of solid-state rhodamine dyes: Molecular exciton coupling and structural effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xian-Fu, E-mail: zhangxianfu@tsinghua.org.cn [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China); MPC Technologies, Hamilton, ON, Canada L8S 3H4 (Canada); Zhang, Ya-Kui [Institute of Applied Photochemistry & Center of Analysis and Measurements, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei Province (China)

    2015-10-15

    The optical absorption and fluorescence properties of five rhodamine dyes in solid-state are measured and show large difference from that in their gas phase or liquid solvents. All solid-state rhodamine dyes strongly absorb all light in UV and visible region, but emit only red and NIR fluorescence (680–800 nm, >100 nm red-shifted from that in solution). Further more, the absorption maxima of a solid-state rhodamine show a large red-shifted band (~100 nm) and blue-shifted peak (~125 nm) compared to that in solutions, indicating a strong molecular exciton coupling between molecules. All solid-state rhodamines still show reasonably good fluorescence quantum yield (Φ{sub f}). In particular, solid-state Rhodamine B butyl ester and sulfonyl Rhodamine B showed a much longer emission lifetime (τ{sub f}) than that of the corresponding molecular rhodamine, i.e. 4.12 and 4.14 ns in solid state compared to 1.61 and 2.47 ns in solution. The chemical structure of a rhodamine molecule showed dramatic effect on Φ{sub f} and τ{sub f} values for solid state rhodamine. The larger substituent in the benzene moiety favors higher Φ{sub f} and τ{sub f} values of rhodamine solids. These effects can be elucidated by the relation between structure-molecular distance and molecular exciton couplings. - Highlights: • Optical properties of solid rhodamines show large difference from that in solutions. • Solid-state rhodamine dyes emit red and NIR fluorescence (680–800 nm). • Solid-state rhodamines still show reasonably good fluorescence quantum yield. • Solid-state rhodamines have much longer fluorescence lifetimes than that in solutions.

  3. Optical fiber communication — An overview

    Indian Academy of Sciences (India)

    This paper deals with the historical development of optical communication systems and their failures initially. Then the different generations in optical fiber communication along with their features are discussed. Some aspects of total internal reflection, different types of fibers along with their size and refractive index profile, ...

  4. Exotic Optical Beam Classes for Free-Space Communication

    Science.gov (United States)

    2016-03-24

    wandering of an optical vortex is one of the significant problems with the application of vortex beams to FSO applications. From a geometrical optics ...AFRL-AFOSR-VA-TR-2016-0131 Exotic optical beam classes for free-space communication Greg Gbur UNIVERSITY OF NOTH CAROLINA AT CHARLOTTE Final Report...12-2015 4. TITLE AND SUBTITLE Exotic optical beam classes for free-space communication 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0009 5c

  5. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  6. Effect of neutron irradiation on etching, optical and structural properties of microscopic glass slide used as a solid state nuclear track detector

    International Nuclear Information System (INIS)

    Singh, Surinder; Kaur Sandhu, Amanpreet; Prasher, Sangeeta; Prakash Pandey, Om

    2007-01-01

    Microscopic glass slides are soda-lime glasses which are readily available and are easy to manufacture with low production cost. The application of these glasses as nuclear track detector will help us to make use of these glasses as solid-state nuclear track detector. The present paper describes the variation in the etching, optical and structural properties of the soda-lime microscopic glass slides due to neutron irradiation of different fluences. The color transformation and an increase in the optical absorption with neutron irradiation are observed. Both the bulk and track etch rates are found to increase with neutron fluence, thus showing a similar dependence on neutron fluence, but the sensitivity remains almost constant

  7. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  8. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  9. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  10. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    Science.gov (United States)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  11. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  12. Annual report 1983/1984. Division of Solid State Physics

    International Nuclear Information System (INIS)

    1984-10-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, as well as optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  13. Optical and thermal energy discharge from tritiated solid hydrogen

    International Nuclear Information System (INIS)

    Magnotta, F.; Mapoles, E.R.; Collins, G.W.; Souers, P.C.

    1991-01-01

    The authors are investigating mechanisms of energy storage and release in tritiated solid hydrogens, by a variety of techniques including ESR, NMR and thermal and optical emission. The nuclear decay of a triton in solid hydrogen initiates the conversion of nuclear energy into stored chemical energy by producing unpaired hydrogen atoms which are trapped within the molecular lattice. The ability to store large quantities of atoms in this manner has been demonstrated and can serve as a basis for new forms of high energy density materials. This paper presents preliminary results of a study of the optical emission from solid hydrogen containing tritium over the visible and near infrared (NIR) spectral regions. Specifically, they have studied optical emission from DT and T 2 using CCD, silicon diode and germanium diode arrays. 8 refs., 6 figs

  14. Optical smart card using semipassive communication.

    Science.gov (United States)

    Glaser, I; Green, Shlomo; Dimkov, Ilan

    2006-03-15

    An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.

  15. Multiphoton quantum optics and quantum state engineering

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2006-01-01

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information

  16. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  17. Multilevel Modulation formats for Optical Communication

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee

    2008-01-01

    This thesis studies the use of multilevel modulation formats for optical communication systems. Multilevel modulation is an attractive method of increasing the spectral efficiency of optical communication systems. Various modulation formats employing phase modulation, amplitude modulation...... or a combination of the two have been studied. The use of polarization multiplexing (PolMux) to double the bit rate has also been investigated. The impact of transmission impairments such as chromatic dispersion, self phase modulation and cross phase modulation has been investigated. The feasibility of multilevel...... modulation for network oriented scenarios has been demonstrated....

  18. Fiber optical parametric amplifiers in optical communication systems

    Science.gov (United States)

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  19. Fiber Optic Communications Technology. A Status Report.

    Science.gov (United States)

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  20. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  1. State of the art of solid state dosimetry; Estado da arte em dosimetria do estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Susana O., E-mail: sosouza@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Yamamoto, Takayoshi [Radioisotope Research Center, Osaka University (Japan); D' Errico, Francesco, E-mail: francesco.derrico@yale.edu [Yale University, School of Medicine, CT (United States)

    2014-07-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed.

  2. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    Science.gov (United States)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  3. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  4. Optical wireless communications: Theory and applications

    Science.gov (United States)

    Aminikashani, Mohammadreza

    This dissertation focuses on optical communications having recently attracted sig- nificant attentions as a promising complementary technique for radio frequency (RF) in both short- and long-range communications. These systems offer signifi- cant technical and operational advantages such as higher capacity, virtually unlim- ited reuse, unregulated spectrum and robustness to electromagnetic interference. Optical wireless communication (OWC) can be used both indoors and outdoors. Part of the dissertation contains novel results on terrestrial free-space optical (FSO) communications. FSO communication is a line-of sight technique that uses lasers for high rate wireless communication over distances up to several kilometers. In comparison to RF counterparts, a FSO link has a very high optical bandwidth available, allowing aggregate data rates on the order of Tera bits per second (1 Tera bits per second is 1000 Giga bites per second). However, FSO suffers limitations. The major limitation of the terrestrial FSO communication systems is the atmo- spheric turbulence, which produces fluctuations in the irradiance of the transmitted optical beam, as a result of random variations in the refractive index through the link. The existence of atmospheric-induced turbulence degrades the performance of FSO links particularly with a transmission distance longer than 1 kilometer. The identification of a tractable probability density function (pdf) to describe at- mospheric turbulence under all irradiance fluctuation regimes is crucial in order to study the reliability of a terrestrial FSO system. This dissertation addresses this daunting problem and proposes a novel statistical model that accurately de- scribes turbulence-induced fading under all irradiance conditions and unifies most of the proposed statistical models derived until now in the literature. The proposed model is important for the research community working on FSO communications because it allows them to fully capitalize

  5. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  6. On the prospects of application and development of solid-state photomultipliers for the task of analog detecting of pulsed optical signals

    Science.gov (United States)

    Bogdanov, S. V.; Kolobov, N. A.; Levin, E. V.; Pozdnyakov, Y. I.; Shubin, V. E.; Shushakov, D. A.; Sitarsky, K. Yu.; Torgovnikov, R. A.

    2018-02-01

    In this paper, we analyze the influence of the crosstalk level and the dynamic range on the basic characteristics of a silicon solid-state photomultiplier and demonstrate their importance for detecting of optical signals with backlight illumination, in particular, for LIDAR application. Experimental results obtained in the study of threshold and fluctuation parameters of detectors with different levels of crosstalk and dynamic range are presented. It is shown that the detector design combining a high dynamic range with a small crosstalk gives a noticeable advantage in such applications.

  7. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  8. Templated Solid-State Dewetting of Thin Silicon Films.

    Science.gov (United States)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-11-01

    Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  10. Diffractive optical elements for space communication terminals

    OpenAIRE

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  11. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Karakirova, Y.

    2007-01-01

    A simple new approach for independent calibration of solid state/EPR (SS/EPR) dosimetry system is reported. It is based on the fact that: (i) gamma-irradiation of solid sucrose (sugar) induces stable EPR detectable free radicals accompanied by UV detectable brown colour stable in the solid state and in solution; (ii) both the EPR intensity of gamma-irradiated solid sucrose and its solution UV absorbance linearly depend on the absorbed dose high energy radiation and may be independently used for dosimetric purpose; (iii) UV spectrometers are calibrated. The correlation between EPR response and absorbed dose radiation of solid sucrose and UV absorption of its solutions is used in the present communication for calibration purpose. The procedure of sucrose extraction from sucrose-paraffin dosimeters is described. The calibration procedure may be applied to any other (alanine, self-calibrated, etc.) SS/EPR dosimeters, simultaneously irradiated with sucrose

  12. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  13. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  14. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  15. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  16. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  17. High-speed photodetectors in optical communication system

    Science.gov (United States)

    Zhao, Zeping; Liu, Jianguo; Liu, Yu; Zhu, Ninghua

    2017-12-01

    This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems. Project supported by the Preeminence Youth Fund of China (No. 61625504).

  18. Room temperature photoluminescence in the visible range from silicon nanowires grown by a solid-state reaction

    International Nuclear Information System (INIS)

    Anguita, J V; Sharma, P; Henley, S J; Silva, S R P

    2009-01-01

    The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.

  19. Room temperature photoluminescence in the visible range from silicon nanowires grown by a solid-state reaction

    Science.gov (United States)

    Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.

    2009-11-01

    The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.

  20. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja

    2018-04-04

    Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

  1. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  2. Performance of a 229Thorium solid-state nuclear clock

    International Nuclear Information System (INIS)

    Kazakov, G A; Schreitl, M; Winkler, G; Schumm, T; Litvinov, A N; Romanenko, V I; Yatsenko, L P; Romanenko, A V

    2012-01-01

    The 7.8 eV nuclear isomer transition in 229 thorium has been suggested as a clock transition in a new type of optical frequency standard. Here we discuss the construction of a ‘solid-state nuclear clock’ from thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of calcium fluoride. At liquid nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the thorium nuclei to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose clock stabilization based on a fluorescence spectroscopy method and present optimized operation parameters. Taking advantage of the large number of quantum oscillators under continuous interrogation, a fractional instability level of 10 −19 might be reached within the solid-state approach. (paper)

  3. Nonlinear Fourier transform for dual-polarization optical communication system

    OpenAIRE

    Gaiarin, Simone

    2018-01-01

    New services and applications are causing an exponential increase in the internet traffic. In a few years, the current fiber-optic communication system infrastructure will not be able to meet this demand because fiber nonlinearity dramatically limits the information transmission rate. Eigenvalue communication is considered an emerging paradigm in fiber-optic communications that could potentially overcome these limitations. It relies on a mathematical technique called “inverse scattering trans...

  4. Application of spinal code for performance improvement in free-space optical communications

    Science.gov (United States)

    Saiki, Naoya; Okamoto, Eiji; Takenaka, Hideki; Toyoshima, Morio

    2017-09-01

    In recent years, the demand for high-capacity communication has grown, and fiber-optic transmission is being used in wired communications to meet this demand. Similarly, free-space optics (FSO), which is an optical wireless communication technology that uses laser light, has attracted much attention and has been considered as a suitable alternative to satisfy this demand in wireless communications. Free-space optical communication uses a hundred THz frequency band and allows for high-speed and radio-regulation free transmission, which may provide a solution for the current shortage of radio frequency bands.

  5. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    Science.gov (United States)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  6. Indoor optical wireless communication system using beam-steering by cascaded diffractive optical elements

    NARCIS (Netherlands)

    Oh, C.W.; Tangdiongga, E.; Koonen, A.M.J.; García-Blanco, S.M.; Boller, Kl.J.; Sefunc, M.A.; Geuzebroek, D.

    2014-01-01

    While the radio spectrum continues to struggle with a soaring bandwidth demand, the optical spectrum promises virtually unlimited license-free bandwidth. We report the feasibility of high-capacity point-to-point links for indoor optical wireless communication with cascaded diffractive optical

  7. OPALS: A COTS-based Tech Demo of Optical Communications

    Science.gov (United States)

    Oaida, Bogdan

    2012-01-01

    I. Objective: Deliver video from ISS to optical ground terminal via an optical communications link. a) JPL Phaeton/Early Career Hire (ECH) training project. b) Implemented as Class-D payload. c) Downlink at approx.30Mb/s. II. Flight System a) Optical Head Beacon Acquisition Camera. Downlink Transmitter. 2-axis Gimbal. b) Sealed Container Laser Avionics Power distribution Digital I/O board III. Implementation: a) Ground Station - Optical Communications Telescope Laboratory at Table Mountain Facility b) Flight System mounted to ISS FRAM as standard I/F. Attached externally on Express Logistics Carrier.

  8. Research progress of free space coherent optical communication

    Science.gov (United States)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  9. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  10. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  11. Solid-State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  12. Optical wireless communications for micromachines

    Science.gov (United States)

    O'Brien, Dominic C.; Yuan, Wei Wen; Liu, Jing Jing; Faulkner, Grahame E.; Elston, Steve J.; Collins, Steve; Parry-Jones, Lesley A.

    2006-08-01

    A key challenge for wireless sensor networks is minimizing the energy required for network nodes to communicate with each other, and this becomes acute for self-powered devices such as 'smart dust'. Optical communications is a potentially attractive solution for such devices. The University of Oxford is currently involved in a project to build optical wireless links to smart dust. Retro-reflectors combined with liquid crystal modulators can be integrated with the micro-machine to create a low power transceiver. When illuminated from a base station a modulated beam is returned, transmitting data. Data from the base station can be transmitted using modulation of the illuminating beam and a receiver at the micro-machine. In this paper we outline the energy consumption and link budget considerations in the design of such micro-machines, and report preliminary experimental results.

  13. An Optical Receiver Post Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  14. An Optical Receiver Post-Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  15. Optically erasable and rewritable solid-state holograms.

    Science.gov (United States)

    Gaylord, T. K.; Rabson, T. A.; Tittel, F. K.

    1972-01-01

    Optical holographic storage in single-crystal LiNbO3 is described which can be optically erased at room temperature and then rewritten with no degradation in efficiency or writing rate. The diffraction efficiencies associated with the process are about 0.0001. Some variations from previously obtained results include a lack of threshold power density for writing, very-long-term persistence of the stored hologram, and a lack of a dependence of the diffracted intensity on the polarization of the readout beam.

  16. Simulation of autosoliton optical pulses in high-speed fibreoptic communication systems

    International Nuclear Information System (INIS)

    Latkin, A I

    2005-01-01

    The propagation of a pulse in a fibreoptic communication link with periodically included regenerators - nonlinear optical loop mirrors, is studied. The autosoliton propagation regime of the optical pulse is revealed. It is shown that the inclusion of a ring mirror to the communication link leads to a substantial increase in the transmission distance of the pulse at a small negative average dispersion in the link. (optical communication)

  17. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  18. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  19. An inexpensive optical sensor system for monitoring total suspended solids in water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    The objectives of this work are to design and develop an optical transsmissometer sensor for measuring total suspended solids TSS concentrations in water samples. The proposed optical sensor has the advantages of being relatively inexpensive, and easy to make and operate. An optical algorithm has been developed and used for the measurement of total suspended solids concentrations. The developed optical sensor components include light emitting diodes LEDs that are used for measuring transmitted light. The concentrations of total suspended solids TSS are determined from transmitted light through the water samples. The transmitted light is measured in terms of the output voltage of the photodetector of the sensor system. The readings are measured using a digital multimeter. The results indicate that the level of the photocurrent is linearly proportional to the total suspended solids concentration. The proposed algorithm produces a high correlation coefficient and low root mean square error. (Author)

  20. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  1. Optical trapping and Raman spectroscopy of solid particles.

    Science.gov (United States)

    Rkiouak, L; Tang, M J; Camp, J C J; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-06-21

    The heterogeneous interactions of gas molecules on solid particles are crucial in many areas of science, engineering and technology. Such interactions play a critical role in atmospheric chemistry and in heterogeneous catalysis, a key technology in the energy and chemical industries. Investigating heterogeneous interactions upon single levitated particles can provide significant insight into these important processes. Various methodologies exist for levitating micron sized particles including: optical, electrical and acoustic techniques. Prior to this study, the optical levitation of solid micron scale particles has proved difficult to achieve over timescales relevant to the above applications. In this work, a new vertically configured counter propagating dual beam optical trap was optimized to levitate a range of solid particles in air. Silica (SiO2), α-alumina (Al2O3), titania (TiO2) and polystyrene were stably trapped with a high trapping efficiency (Q = 0.42). The longest stable trapping experiment was conducted continuously for 24 hours, and there are no obvious constraints on trapping time beyond this period. Therefore, the methodology described in this paper should be of major benefit to various research communities. The strength of the new technique is demonstrated by the simultaneous levitation and spectroscopic interrogation of silica particles by Raman spectroscopy. In particular, the adsorption of water upon silica was investigated under controlled relative humidity environments. Furthermore, the collision and coagulation behaviour of silica particles with microdroplets of sulphuric acid was followed using both optical imaging and Raman spectroscopy.

  2. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.

    Science.gov (United States)

    Du, Jing; Wang, Jian

    2015-11-01

    Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.

  3. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  4. Free space optical communication

    CERN Document Server

    Kaushal, Hemani; Kar, Subrat

    2017-01-01

    This book provides an in-depth understanding of free space optical (FSO) communication with a particular emphasis on optical beam propagation through atmospheric turbulence. The book is structured in such a way that it provides a basic framework for the beginners and also gives a concise description from a designer’s perspective. The book provides an exposure to FSO technology, fundamental limitations, design methodologies, system trade-offs, acquisition, tracking and pointing (ATP) techniques and link-feasibility analysis. The contents of this book will be of interest to professionals and researchers alike. The book may also be used as a textbook for engineering coursework and professional training.

  5. Deep space optical communication via relay satellite

    Science.gov (United States)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  6. A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2017-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  7. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  8. Iterative Decoding for an Optical CDMA based Laser communication System

    International Nuclear Information System (INIS)

    Kim, Jin Young; Kim, Eun Cheol; Cha, Jae Sang

    2008-01-01

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications

  9. Iterative Decoding for an Optical CDMA based Laser communication System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Kim, Eun Cheol [Kwangwoon Univ., Seoul (Korea, Republic of); Cha, Jae Sang [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2008-11-15

    An optical CDMA(code division multiple access)based Laser communication system has attracted much attention since it requires minimal optical Laser signal processing and it is virtually delay free, while from the theoretical point of view, its performance depends on the auto and cross correlation properties of employed sequences. Various kinds of channel coding schemes for optical CDMA based Laser communication systems have been proposed and analyzed to compensate nonideal channel and receiver conditions in impaired photon channels. In this paper, we propose and analyze an iterative decoding of optical CDMA based Laser communication signals for both shot noise limited and thermal noise limited systems. It is assumed that optical channel is an intensity modulated (IM)channel and direct detection scheme is employed to detect the received optical signal. The performance is evaluated in terms of bit error probability and throughput. It is demonstrated that the BER and throughput performance is substantially improved with interleaver length for a fixed code rate and with alphabet size of PPM (pulse position modulation). Also, the BER and throughput performance is significantly enhanced with the number of iterations for decoding process. The results in this paper can be applied to the optical CDMA based Laser communication network with multiple access applications.

  10. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  11. Surface acoustic wave solid-state rotational micromotor

    Science.gov (United States)

    Shilton, Richie J.; Langelier, Sean M.; Friend, James R.; Yeo, Leslie Y.

    2012-01-01

    Surface acoustic waves (SAWs) are used to drive a 1 mm diameter rotor at speeds exceeding 9000 rpm and torque of nearly 5 nNm. Unlike recent high-speed SAW rotary motors, however, the present design does not require a fluid coupling layer but interestingly exploits adhesive stiction as an internal preload, a force usually undesirable at these scales; with additional preloads, smaller rotors can be propelled to 15 000 rpm. This solid-state motor has no moving parts except for the rotor and is sufficiently simple to allow integration into miniaturized drive systems for potential use in microfluidic diagnostics, optical switching and microrobotics.

  12. Scalable Optical-Fiber Communication Networks

    Science.gov (United States)

    Chow, Edward T.; Peterson, John C.

    1993-01-01

    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  13. European IST-programme roadmap for Optical Communications

    DEFF Research Database (Denmark)

    Ackaert, Ann; Demeester, Piet; Lagasse, Paul

    2003-01-01

    On the basis of European IST project results in the field of photonics, the OPTIMIST thematic network has produced a roadmap for optical communications. This work is described in the present article which provides scenarios for the evolution of the optical network in the coming 10 years. Predicta...

  14. Determination of basic state parameters and characterization of optical, dielectric and fluorescence properties of calcium boro lactate (CaBL)

    International Nuclear Information System (INIS)

    Vijayalakshmi, A.; Balraj, V.

    2016-01-01

    This paper describes the calculation of basic solid state parameters like penn gap, plasma energy, polarizability and fermi energy for calcium boro lactate single crystal. calcium boro lactate crystals were developed by solution growth method. Single crystal diffraction studies carried out and calculated basic solid state criterion for the CaBL compound. optical nature of these compound explained by using UV-Visible spectrum. Electro-optic behaviour of the crystal explained by dielectric studies. Light emitting properties explained by fluorescence studies. (author)

  15. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  16. Acemind new indoor full duplex optical wireless communication prototype

    Science.gov (United States)

    Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu

    2016-09-01

    For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.

  17. Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols

    Science.gov (United States)

    Schoolcraft, Joshua; Wilson, Keith

    2011-01-01

    Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of

  18. Mechanism to synthesize a ‘moving optical mark’ at solid-ambient interface for the estimation of thermal diffusivity of solid

    Directory of Open Access Journals (Sweden)

    Settu Balachandar

    2016-01-01

    Full Text Available A novel mechanism is proposed, involving a novel interaction between solid-sample supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a ‘moving optical-mark’ at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. ‘Product of velocity of optical-mark and distance’ versus ‘non-dimensional velocity’ is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature.

  19. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    Science.gov (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  20. Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations.

    Science.gov (United States)

    Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J

    2017-11-07

    Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.

  1. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  2. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  3. Discovery deep space optical communications (DSOC) transceiver

    Science.gov (United States)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  4. Improving Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication with Optical Amplifiers*

    Science.gov (United States)

    Guo, Ying; Zhao, Wei; Li, Fei; Huang, Duan; Liao, Qin; Xie, Cai-Lang

    2017-08-01

    The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing scalable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.

  5. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  6. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  7. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  8. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  9. Digital optical processing of optical communications: towards an Optical Turing Machine

    Science.gov (United States)

    Touch, Joe; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Willner, Alan E.

    2017-01-01

    Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK), semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  10. Digital optical processing of optical communications: towards an Optical Turing Machine

    Directory of Open Access Journals (Sweden)

    Touch Joe

    2017-01-01

    Full Text Available Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK, semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  11. Gigahertz Optical Data Transmitters for Laser Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless optical communication systems have gone through considerable development in the past few years, as optical components have experiences important technologic...

  12. A COTS RF Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  13. InP on SOI devices for optical communication and optical network on chip

    Science.gov (United States)

    Fedeli, J.-M.; Ben Bakir, B.; Olivier, N.; Grosse, Ph.; Grenouillet, L.; Augendre, E.; Phillippe, P.; Gilbert, K.; Bordel, D.; Harduin, J.

    2011-01-01

    For about ten years, we have been developing InP on Si devices under different projects focusing first on μlasers then on semicompact lasers. For aiming the integration on a CMOS circuit and for thermal issue, we relied on SiO2 direct bonding of InP unpatterned materials. After the chemical removal of the InP substrate, the heterostructures lie on top of silicon waveguides of an SOI wafer with a separation of about 100nm. Different lasers or photodetectors have been achieved for off-chip optical communication and for intra-chip optical communication within an optical network. For high performance computing with high speed communication between cores, we developed InP microdisk lasers that are coupled to silicon waveguide and produced 100μW of optical power and that can be directly modulated up to 5G at different wavelengths. The optical network is based on wavelength selective circuits with ring resonators. InGaAs photodetectors are evanescently coupled to the silicon waveguide with an efficiency of 0.8A/W. The fabrication has been demonstrated at 200mm wafer scale in a microelectronics clean room for CMOS compatibility. For off-chip communication, silicon on InP evanescent laser have been realized with an innovative design where the cavity is defined in silicon and the gain localized in the QW of bonded InP hererostructure. The investigated devices operate at continuous wave regime with room temperature threshold current below 100 mA, the side mode suppression ratio is as high as 20dB, and the fibercoupled output power is {7mW. Direct modulation can be achieved with already 6G operation.

  14. Accurate beacon positioning method for satellite-to-ground optical communication.

    Science.gov (United States)

    Wang, Qiang; Tong, Ling; Yu, Siyuan; Tan, Liying; Ma, Jing

    2017-12-11

    In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.

  15. LEO-to-ground optical communications using SOTA (Small Optical TrAnsponder) - Payload verification results and experiments on space quantum communications

    Science.gov (United States)

    Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio

    2017-10-01

    Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.

  16. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  17. On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: emananga@gradcenter.cuny.edu [Harvard Medical School and Massachusetts General Hospital, Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging Physics, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Charpentier, Thibault, E-mail: thibault.charpentier@cea.fr [Commissariat à l’Energie Atomique, IRAMIS, Service interdisciplinaire sur les systèmes moléculaires et matériaux, CEA/CNRS UMR 3299, 91191, Gif-sur-Yvette (France)

    2016-01-22

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Floquet–Magnus expansion that is helpful to describe the time evolution of the spin system at all times in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics, based on promising and useful theory of Floquet–Magnus expansion. This theory provides procedures to control and describe the spin dynamics in solid-state NMR. Major applications of the Floquet–Magnus expansion are illustrated by simple solid-state NMR and physical applications such as in nuclear, atomic, molecular physics, and quantum mechanics, NMR, quantum field theory and high energy physics, electromagnetism, optics, general relativity, search of periodic orbits, and geometric control of mechanical systems. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics. This review article also discusses future potential theoretical directions in solid-state NMR.

  18. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  19. Reliability assessment of fiber optic communication lines depending on external factors and diagnostic errors

    Science.gov (United States)

    Bogachkov, I. V.; Lutchenko, S. S.

    2018-05-01

    The article deals with the method for the assessment of the fiber optic communication lines (FOCL) reliability taking into account the effect of the optical fiber tension, the temperature influence and the built-in diagnostic equipment errors of the first kind. The reliability is assessed in terms of the availability factor using the theory of Markov chains and probabilistic mathematical modeling. To obtain a mathematical model, the following steps are performed: the FOCL state is defined and validated; the state graph and system transitions are described; the system transition of states that occur at a certain point is specified; the real and the observed time of system presence in the considered states are identified. According to the permissible value of the availability factor, it is possible to determine the limiting frequency of FOCL maintenance.

  20. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  1. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  2. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  3. 77 FR 65713 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Science.gov (United States)

    2012-10-30

    ... Fiber Optic Communications, Components Thereof, and Products Containing the Same; Notice of Institution... certain optoelectronic devices for fiber optic communications, components thereof, and products containing... optoelectronic devices for fiber optic communications, components thereof, and products containing the same that...

  4. Applications of expectation maximization algorithm for coherent optical communication

    DEFF Research Database (Denmark)

    Carvalho, L.; Oliveira, J.; Zibar, Darko

    2014-01-01

    In this invited paper, we present powerful statistical signal processing methods, used by machine learning community, and link them to current problems in optical communication. In particular, we will look into iterative maximum likelihood parameter estimation based on expectation maximization...... algorithm and its application in coherent optical communication systems for linear and nonlinear impairment mitigation. Furthermore, the estimated parameters are used to build the probabilistic model of the system for the synthetic impairment generation....

  5. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    Science.gov (United States)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  6. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  7. Creating Feedback Channels With Optical Communications For Information Operations (IO)

    Science.gov (United States)

    2016-06-01

    amphibious operations. Optical communications technologies, direct marketing principles , and current IO shortfalls are explored to determine whether...technology. First, these concepts are applied to show covert amphibious operations. Optical communications technologies, direct marketing principles , and...power, as per Appendix A. A major portion of the marketing campaign comes in the form of advertising. The correlating principles of advertising in

  8. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  9. Optical characterization of thin solid films

    CERN Document Server

    Ohlídal, Miloslav

    2018-01-01

    This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.

  10. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  11. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  12. Hybrid electronic/optical synchronized chaos communication system.

    Science.gov (United States)

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  13. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  14. NASA developments in solid state power amplifiers

    Science.gov (United States)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  15. Research on optic antenna of space laser communication networking

    Science.gov (United States)

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  16. Field test of a practical secure communication network with decoy-state quantum cryptography.

    Science.gov (United States)

    Chen, Teng-Yun; Liang, Hao; Liu, Yang; Cai, Wen-Qi; Ju, Lei; Liu, Wei-Yue; Wang, Jian; Yin, Hao; Chen, Kai; Chen, Zeng-Bing; Peng, Cheng-Zhi; Pan, Jian-Wei

    2009-04-13

    We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.

  17. Block-free optical quantum Banyan network based on quantum state fusion and fission

    International Nuclear Information System (INIS)

    Zhu Chang-Hua; Meng Yan-Hong; Quan Dong-Xiao; Zhao Nan; Pei Chang-Xing

    2014-01-01

    Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper. (general)

  18. Solid state properties from bulk to nano

    CERN Document Server

    Dresselhaus, Mildred; Cronin, Stephen; Gomes Souza Filho, Antonio

    2018-01-01

    This book fills a gap between many of the basic solid state physics and materials science books that are currently available. It is written for a mixed audience of electrical engineering and applied physics students who have some knowledge of elementary undergraduate quantum mechanics and statistical mechanics. This book, based on a successful course taught at MIT, is divided pedagogically into three parts: (I) Electronic Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is explained in the context of bulk materials and then extended to low-dimensional materials where applicable. Problem sets review the content of each chapter to help students to understand the material described in each of the chapters more deeply and to prepare them to master the next chapters.

  19. Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications

    Science.gov (United States)

    Guan, Xun

    Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light

  20. Experimental multiplexing of quantum key distribution with classical optical communication

    International Nuclear Information System (INIS)

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun; Pan, Jian-Wei

    2015-01-01

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users

  1. LDPC-PPM Coding Scheme for Optical Communication

    Science.gov (United States)

    Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael

    2009-01-01

    In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.

  2. Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method

    International Nuclear Information System (INIS)

    Bouaine, Abdelhamid; Schmerber, G.; Ihiawakrim, D.; Derory, A.

    2012-01-01

    Highlights: ► Influence of Co doping on the TiO 2 tetragonal structure. ► Decrease of the energy band gap after doping with Co atoms. ► Appearance of ferromagnetism in Co-doped TiO 2 diluted magnetic semiconductors. - Abstract: We have used a solid-state method to synthesize polycrystalline Co-doped TiO 2 diluted magnetic semiconductors (DMSs) with Co concentrations of 0, and 0.5 at.%. X-ray diffraction patterns reveal that Co doped TiO 2 crystallizes in the rutile tetragonal structure with no additional peaks. Transmission electron microscopy (TEM) did not indicate the presence of magnetic parasitic phases and confirmed that Co ions are uniformly distributed inside the samples. Optical absorbance measurements showed an energy band gap which decreases after doping with the Co atoms into the TiO 2 matrix. Magnetization measurements revealed a paramagnetic behavior for the as-prepared Co-doped TiO 2 and a ferromagnetic behavior for the same samples after annealed under a mixture of H 2 /N 2 atmosphere.

  3. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    Science.gov (United States)

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  4. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  5. Solid-state lighting-a benevolent technology

    International Nuclear Information System (INIS)

    Schubert, E Fred; Kim, Jong Kyu; Luo Hong; Xi, J-Q

    2006-01-01

    Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting

  6. Application condition of optical communication technique in the nuclear power plants

    International Nuclear Information System (INIS)

    Sakurai, Jun

    1999-01-01

    As the optical communication technique can process rapidly a lot of information and exclude perfectly error action due to noise, it is adopted gradually to commercial and company communications (containing operational managements in large scale facilities) in worldwide scale in stead of conventional communication technique (containing operational controls and measurements). In application to the nuclear power plants, as forming not only change in properties but also deterioration due to radiation damage in many cases of exposure to various types of radiations such as neutron, gamma-ray, and so forth in difference with conventional using environment, its using range is limited at present. In future, development of optical fibers or elements with excellent high temperature and radiation resistances usable stably at reactor core for a long time is essential. The regular application of the optical communication technique at the nuclear power plants begins just now, which is an expected field for future large development. And, for the old nuclear power plant in present operation, substitution to the optical communication technique in accompany with replace of appliances at periodical inspections will also be conducted. Its response is already required rapidly in the Tokyo Electric Power Co., Ltd.. (G.K.)

  7. Quantum Limits of Space-to-Ground Optical Communications

    Science.gov (United States)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  8. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  9. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  10. Study of the optical properties and the carbonaceous clusters in thermally-annealed CR-39 and Makrofol-E polymer-based solid-state nuclear track detectors

    International Nuclear Information System (INIS)

    El Ghazaly, M.

    2012-01-01

    The induced modifications in the optical properties of CR-39 and Makrofol-E polymer-based solid state nuclear track detectors were investigated after thermal annealing at a temperature of 200 .deg. C for different durations. The optical properties were studied using an UV-visible spectrophotometer. From the UV-visible spectra, the direct and the indirect optical band gaps, Urbach's energies, and the number of carbon atoms in a cluster were determined. The absorbance of CR-39 plastic detector was found to decrease with increasing annealing time while the absorbance of Makrofol-E decreased with increasing annealing time. The width of the tail of localized states in the band gap ΔE was evaluated with the Urbach method. The optical energy band gaps were obtained from the direct and the indirect allowed transitions in K-space. Both of the direct and the indirect band gaps of the annealed CR-39 detector decrease with increasing annealing time while in Makrofol-E, they decreased after an annealing time of 15 minute and then showed no remarkable changes for a prolonged annealing times. Urbach's energy decreased significantly for both CR-39 and Makrofol-E with increasing annealing time. The number of carbon atoms in a cluster increased in the CR-39 detector with increasing annealing time while it decreased with increasing annealing time for Makrofol-E. We may conclude that the CR-39 detector undergoes greater modifications than the Makrofol-E detector upon thermal annealing at 200 .deg. C. In conclusion, the induced modifications in the optical properties of CR-39 and Makrofol-E are correlated with the temperature and the duration of annealing.

  11. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    Directory of Open Access Journals (Sweden)

    Ken Smart

    2016-04-01

    Full Text Available A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode.

  12. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  13. Spectrally selective molecular doped solids: spectroscopy, photophysics and their application to ultrafast optical pulse processing

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre

    2005-01-01

    The persistent spectral hole-burning (PSHB) phenomenon observed in molecular doped polymers cooled down to liquid helium temperatures allows the engraving of spectral structures in the inhomogeneous absorption profile of the material. This phenomenon known since 1974 has became a fruitful field for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectroscopy, photophysics, photochemistry and dynamics of molecular doped amorphous media, organic as well as inorganic. A PSHB molecular doped solid can be programmed in spectral domain and therefore, it can be converted in an optical processor capable to achieve user-defined optical functions. Some aspects of this field are illustrated in the present paper. An application is presented where a naphthalocyanine doped polymer film is used in a demonstrative experiment to prove that temporal aberration free re-compression of ultra-short light pulses is feasible. Perspectives for the coherent control of light fields or photochemical processes are also evoked

  14. Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication

    Science.gov (United States)

    Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn

    2014-11-01

    Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.

  15. Optical performance monitoring in high-speed optical fiber communication systems

    Science.gov (United States)

    Yu, Changyuan; Yang, Jing; Hu, Junhao; Zhang, Banghong

    2011-11-01

    Optical performance monitoring (OPM) becomes an attractive topic as the rapid growth of data rate in optical communication networks. It provides improved operation of the high capacity optical transmission systems. Among the various impairments, chromatic dispersion (CD) is one of major factors limiting the transmission distance in high-speed communication systems. Polarization-mode dispersion (PMD) also becomes a degrading effect in the system with data rate larger than 40 Gbit/s. In this paper, we summarize several CD and PMD monitoring methods based on RF spectrum analysis and delay-tap sampling. By using a narrow band fiber Bragg grating (FBG) notch filter, centered at 10 GHz away from the optical carrier, 10-GHz RF power can be used as a CD-insensitive PMD monitoring signal. By taking the 10-GHz RF power ratio of non-filtered and filtered signal, PMD-insensitive CD monitoring can be achieved. If the FBG notch filter is placed at optical carrier, the RF clock power ratio between non-filtered and filtered signal is also a PMDinsensitive CD monitoring parameter, which has larger RF power dynamic range and better measurement resolution. Both simulation and experiment results show that the proposed methods are efficient on measuring CD and PMD values in 57-Gbit/s D8PSK systems. Delay-tap sampling is another efficient method of measuring residual CD. Amplitude ratio of asynchronous delay-tap sampling plot decreases with CD monotonously, and the amplitude ratio can be obtained by using low bandwidth balanced receiver. The simulated results show that our method is efficient on residual CD measurement in 50-Gbit/s 50% RZ DQPSK systems with a 12-GHz balanced receiver. Since no modification on the transmitter or receiver is required, the proposed scheme is simple and cost effective.

  16. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  17. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  18. Optical wireless communications an emerging technology

    CERN Document Server

    Capsoni, Carlo; Ghassemlooy, Zabih; Boucouvalas, Anthony; Udvary, Eszter

    2016-01-01

    This book focuses on optical wireless communications (OWC), an emerging technology with huge potential for the provision of pervasive and reliable next-generation communications networks. It shows how the development of novel and efficient wireless technologies can contribute to a range of transmission links essential for the heterogeneous networks of the future to support various communications services and traffic patterns with ever-increasing demands for higher data-transfer rates. The book starts with a chapter reviewing the OWC field, which explains different sub-technologies (visible-light, ultraviolet (UV) and infrared (IR) communications) and introduces the spectrum of application areas (indoor, vehicular, terrestrial, underwater, intersatellite, deep space, etc.). This provides readers with the necessary background information to understand the specialist material in the main body of the book, which is in four parts. The first of these deals with propagation modelling and channel characterization of ...

  19. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  20. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Beye, M., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ochmann, M.; Huse, N. [Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Ross, M.; Khalil, M. [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States); Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Föhlisch, A. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  1. Research of the self-healing technologies in the optical communication network of distribution automation

    Science.gov (United States)

    Wang, Hao; Zhong, Guoxin

    2018-03-01

    Optical communication network is the mainstream technique of the communication networks for distribution automation, and self-healing technologies can improve the in reliability of the optical communication networks significantly. This paper discussed the technical characteristics and application scenarios of several network self-healing technologies in the access layer, the backbone layer and the core layer of the optical communication networks for distribution automation. On the base of the contrastive analysis, this paper gives an application suggestion of these self-healing technologies.

  2. System concepts and design examples for optical communication with planetary spacecraft

    Science.gov (United States)

    Lesh, James R.

    Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.

  3. Numerical modelling of multimode fibre-optic communication lines

    Energy Technology Data Exchange (ETDEWEB)

    Sidelnikov, O S; Fedoruk, M P [Novosibirsk State University, Novosibirsk (Russian Federation); Sygletos, S; Ferreira, F [Aston University, England, Birmingham, B4 7ET (United Kingdom)

    2016-01-31

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)

  4. Preface to the special issue on ;Optical Communications Exploiting the Space Domain;

    Science.gov (United States)

    Wang, Jian; Yu, Siyuan; Li, Guifang

    2018-02-01

    The demand for high capacity optical communications will continue to be driven by the exponential growth of global internet traffic. Optical communications are about the exploitation of different physical dimensions of light waves, including complex amplitude, frequency (or wavelength), time, polarization, etc. Conventional techniques such as wavelength-division multiplexing (WDM), time-division multiplexing (TDM) and polarization-division multiplexing (PDM) have almost reached their scalability limits. Space domain is the only known physical dimension left and space-division multiplexing (SDM) seems the only option to further scale the transmission capacity and spectral efficiency of optical communications. In recent years, few-mode fiber (FMF), multi-mode fiber (MMF), multi-core fiber (MCF) and few-mode multi-core fiber (FM-MCF) have been widely explored as promising candidates for fiber-based SDM. The challenges for SDM include efficient (de)multiplexer, amplifiers, and multiple-input multiple-output (MIMO) digital signal processing (DSP) techniques. Photonic integration will also be a key technology to SDM. Meanwhile, free-space and underwater optical communications have also exploited the space domain to increase the transmission capacity and spectral efficiency. The challenges include long-distance transmission limited by propagation loss, divergence, scattering and turbulence. Very recently, helically phased light beams carrying orbital angular momentum (OAM) have also seen potential applications both in free-space, underwater and fiber-based optical communications. Actually, different mode bases such as linearly polarized (LP) modes and OAM modes can be employed for SDM. Additionally, SDM could be used in chip-scale photonic interconnects and data center optical interconnects. Quantum processing exploiting the space domain is of great interest. The information capacity limit and physical layer security in SDM optical communications systems are important

  5. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  6. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  7. Feasibility of infrared Earth tracking for deep-space optical communications.

    Science.gov (United States)

    Chen, Yijiang; Hemmati, Hamid; Ortiz, Gerry G

    2012-01-01

    Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth's nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications. © 2012 Optical Society of America

  8. Influence of the aggregate state on band structure and optical properties of C60 computed with different methods

    Science.gov (United States)

    Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei

    2018-05-01

    C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.

  9. Nonlinear Fourier transform for dual-polarization optical communication system

    DEFF Research Database (Denmark)

    Gaiarin, Simone

    communication is considered an emerging paradigm in fiber-optic communications that could potentially overcome these limitations. It relies on a mathematical technique called “inverse scattering transform” or “nonlinear Fourier transform (NFT)” to exploit the “hidden” linearity of the nonlinear Schrödinger...

  10. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  11. Photoemission from solids: the transition from solid-state to atomic physics

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1980-08-01

    As the photon energy is increased, photoemission from solids undergoes a slow transition from solid-state to atomic behavior. However, throughout the energy range hν = 10 to 1000 eV or higher both types of phenomena are present. Thus angle-resolved photoemission can only be understood quantitatively if each experimenter recognizes the presence of band-structure, photoelectron diffraction, and photoelectron asymmetry effects. The quest for this understanding will build some interesting bridges between solid-state and atomic physics and should also yield important new insights about the phenomena associated with photoemission

  12. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  13. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  14. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  15. Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom

    Directory of Open Access Journals (Sweden)

    Tian Hong Loh

    2014-08-01

    Full Text Available This paper presents a study into radiation pattern measurements of an electrically small dielectric resonator antenna (DRA operating between 2.4 and 2.5 GHz in the industrial, scientific and medical (ISM radio band for body-centric wireless communication applications. To eliminate the distortion of the radiation pattern associated with the unwanted radiation from a metallic coaxial cable feeding the antenna we have replaced it with a fibre optic feed and an electro-optical (EO transducer. The optical signal is then converted back to RF using an Opto-Electric Field Sensor (OEFS system. To ensure traceable measurements of the radiation pattern performance of the wearable antenna a generic head and torso solid anthropomorphic phantom model has been employed. Furthermore, to illustrate the benefits of the method, numerical simulations of the co-polar and cross-polar H-plane radiation patterns at 2.4, 2.45, and 2.5 GHz are compared with the measured results obtained using: (i an optical fibre; and (ii a metallic coaxial cable.

  16. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  17. Deterministic Generation of Quantum State Transfer Between Spatially Separated Single Molecule Magnets

    International Nuclear Information System (INIS)

    Song Peijun; Lue Xinyou; Huang Pei; Hao Xiangying; Yang Xiaoxue

    2010-01-01

    We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum electrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network. (general)

  18. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  19. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  20. Detection and Symbol Synchronization for Multiple-bit Per Photon Optical Communications

    Science.gov (United States)

    Marshall, W. K.

    1985-01-01

    Methods of detection and synchronization in a highly efficient direct detection optical communication system are reported. Results of measurements on this moderate-rate demonstration system capable of transmitting 2.5 bits/detected photon in low-background situations indicate that symbol slot synchronization is not a problem, and that a simple symbol detection scheme is adequate for this situation. This system is a candidate for interplanetary optical communications.

  1. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  2. High-Speed Optical Wide-Area Data-Communication Network

    Science.gov (United States)

    Monacos, Steve P.

    1994-01-01

    Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.

  3. Power Budget Analysis of Fiber Optics Communication Links Along ...

    African Journals Online (AJOL)

    With the development of optical fiber communication system most telecommunication companies now prefer to use optical fiber transmission medium for higher information bandwidth. The design of such a system involves many aspects such as the type of source to be used, the kind of fiber to be employed and detector.

  4. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  5. Energy reduction using multi-channels optical wireless communication based OFDM

    Science.gov (United States)

    Darwesh, Laialy; Arnon, Shlomi

    2017-10-01

    In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.

  6. Visible Light Communications towards 5G

    Directory of Open Access Journals (Sweden)

    S. Zvanovec

    2015-04-01

    Full Text Available 5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC is an emerging technology for future high capacity communication links (it has been accepted to 5GPP in the visible range of the electromagnetic spectrum (~370–780 nm utilizing light-emitting diodes (LEDs simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM or carrier-less amplitude and phase modulation (CAP in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology dealing VLC and OLEDs towards 5G networks.

  7. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  8. Analysis of large optical ground stations for deep-space optical communications

    Science.gov (United States)

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the

  9. Photonic design for efficient solid state energy conversion

    Science.gov (United States)

    Agrawal, Mukul

    The efficiency of conversion between electrical and photonic energy in optoelectronic devices such as light-emitting diodes, photodetectors and solar cells is strongly affected by the photonic modes supported by the device structure. In this thesis, we show how tuning of the local photon density of states in subwavelength structures can be used to optimize device performance. The first part of the thesis is focused on organic light emitting diodes (OLEDs), a candidate technology for next-generation displays and solid-state lighting. An important unsolved problem in OLEDs is to ensure that a significant fraction of photons emitted by the organic emissive layer couple out of the device structure instead of remaining trapped in the device. It is shown using modeling and experiments that optimized non-periodic dielectric multilayer stacks can significantly increase the photon outcoupling while maintaining display quality brightness uniformity over the viewing cone. In the second part, we discuss the theoretical limits to broadband light harvesting in photovoltaic cells. First, it is shown that the extent to which one-dimensional optical cavities can be used to enhance light absorption over a broad spectral range is limited by the requirement that the cavity mirrors have a causal response. This result is used as a guide to design practical dielectric structures that enhance light harvesting in planar thin-film organic solar cells. Finally, we consider the enhancement of optical absorption in two- and three-dimensional structures in which incident light is scattered into quasi-trapped modes for more effective utilization of solar radiation. It is shown that there is an upper bound to the degree to which optical absorption can be enhanced that is identical to the limit found in the geometric optics regime. Rigorous optical simulations are used to show that an optical structure consisting of a two-dimensional array of inverted pyramids comes close to this limit. Before

  10. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  11. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  12. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    Science.gov (United States)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  13. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  14. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    Science.gov (United States)

    Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia

    2017-12-01

    The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.

  15. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    Science.gov (United States)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.

  16. An Introduction to Free-space Optical Communications

    Directory of Open Access Journals (Sweden)

    H. Henniger

    2010-06-01

    Full Text Available Over the last two decades free-space optical communication (FSO has become more and more interesting as an adjunct or alternative to radio frequency communication. This article gives an overview of the challenges a system designer has to consider while implementing an FSO system. Typical gains and losses along the path from the transmitter through the medium to the receiver are introduced in this article. Detailed discussions of these topics can be found in this special issue of the Radioengineering Journal.

  17. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  18. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range.

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-13

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  19. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  20. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  1. FIBER OPTICS: Fibre optics: Forty years later

    Science.gov (United States)

    Dianov, Evgenii M.

    2010-01-01

    This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed.

  2. Satellite-based quantum communication terminal employing state-of-the-art technology

    Science.gov (United States)

    Pfennigbauer, Martin; Aspelmeyer, Markus; Leeb, Walter R.; Baister, Guy; Dreischer, Thomas; Jennewein, Thomas; Neckamm, Gregor; Perdigues, Josep M.; Weinfurter, Harald; Zeilinger, Anton

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

  3. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  4. Spectral space-time coding for optical communications through a multimode fiber

    NARCIS (Netherlands)

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  5. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    Directory of Open Access Journals (Sweden)

    Omed Gh. Abdullah

    Full Text Available Solid polymer electrolyte films of polyvinyl alcohol (PVA doped with a different weight percent of potassium permanganate (KMnO4 were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content. Keywords: Solid polymer electrolyte, XRD analysis, FTIR study, Optical band gap, Dielectric constant, Refractive index

  6. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  7. Application of solid state track detector to neutron dosimetry

    International Nuclear Information System (INIS)

    Tsuruta, Takao

    1979-01-01

    Though solid state track detectors (SSTD) are radiation measuring instrument for heavy charged particles by itself, it can be used as radiation measuring instrument for neutrons, if nuclear reactions such as (n, f) or (n, α) reaction are utilized. Since the means was found, which permits to observe the tracks of heavy charged particles in a solid with an optical microscope by chemically etching the tracks to enlarge them to etch pits, various types of detectors have been developed for the purpose of measuring neutron dose. The paper is described on the materials and construction of the SSTDs for neutron dosimetry, and the sensitivity is explained with mathematical equations. The features of neutron dosimetry with SSTDs are as follows: They are compact, and scarcely disturb neutron field, thus delicate dose distribution can be known; integration measurement is possible regardless of dose rate values because of integrating type detectors; it is not influenced by β-ray or γ-ray except the case when there is high energy radiation such as causing photonuclear reactions or high dose such as degrading solids, it has pretty high sensitivity; track fading is negligible during the normal measuring time around room temperature; and the etching images of tracks are relatively clear, and various automatic counting systems can be employed. (Wakatsuki, Y.)

  8. Laser guide stars for optical free-space communications

    Science.gov (United States)

    Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor

    2017-02-01

    The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.

  9. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    Science.gov (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  10. Performance of Cat's Eye Modulating Retro-Reflectors for Free-Space Optical Communications

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Goetz, P. G; Mahon, R; Swingen, L; Murphy, J; Gilbreath, G. C; Binari, S; Waluschka, E

    2004-01-01

    Modulating retro-reflectors (MRR) couple passive optical retro-reflectors with electro-optic modulators to allow free-space optical communication with a laser and pointing/acquisition/tracking system required on only one end of the link...

  11. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  12. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  13. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  14. Structural, optical and magnetic study of (1-x)ZnO-xMgO composites prepared through solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Adhlakha, Nidhi [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Yadav, K.L., E-mail: klyadav35@yahoo.com [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Kumar, Amit; Patel, Piyush Kumar; Rani, Jyoti; Rawat, Meera [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-09-01

    We report the study of structural, optical and magnetic properties of (1-x)ZnO-xMgO (x=0.35, 0.40, 0.45 and 0.50) composites prepared by solid state reaction method. X-ray diffraction pattern confirms the presence of both the phases associated with ZnO (hexagonal) and MgO (cubic), which is revealed through the existence of (1 1 1) and (2 0 0) peaks in addition to ZnO peaks. The lattice parameter c as calculated using X-ray analysis undergoes shrinkage with increasing content of MgO. Microstructural analysis suggests that there is no variation in spherical elongated shape of grains with increasing concentration of MgO, where the average grain size is found to be {approx}600 nm. The band gap as calculated from optical absorption spectra obtained by diffuse reflectance method recorded at room temperature is tuned from 3.16 to 3.55 eV. Photoluminescence spectra consist of near band edge UV emission (389 nm) and defect level emission (503 nm). The increase of MgO concentration leads to blue shift of UV emission peaks. The magnetic measurements conducted using SQUID at 5 K temperature reveals ferromagnetism along with paramagnetic and superparamagnetic components. Saturation magnetisation (M{sub s}) is observed to be enhanced with MgO doping.

  15. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  16. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  17. Solid-state harmonics beyond the atomic limit.

    Science.gov (United States)

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  18. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory

    Energy Technology Data Exchange (ETDEWEB)

    Bussieres, Felix [Group of Applied Physics, University of Geneva (Switzerland)

    2014-07-01

    Quantum teleportation is a cornerstone of quantum information science due to its essential role in several important tasks such as the long-distance transmission of quantum information using quantum repeaters. In this context, a challenge of paramount importance is the distribution of entanglement between remote nodes, and to use this entanglement as a resource for long-distance light-to-matter quantum teleportation. In this talk I will report on the demonstration of quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying qubit carrying the polarization state to be teleported, which heralds the teleportation. The fidelity of the polarization state of the photon retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. This light-to-matter teleportation channel paves the way towards long-distance implementations of quantum networks with solid-state quantum memories.

  19. Solid state frequency conversion technology for remote sensing

    International Nuclear Information System (INIS)

    Velsko, S.P.; Webb, M.S.; Cook, W.M.; Neuman, W.A.

    1994-07-01

    Long range remote sensing from airborne or other highly mobile platforms will require high average power tunable radiation from very compact and efficient laser systems. The solid state laser pumped optical parametric oscillator (OPO) has emerged as a leading candidate for such high average power, widely tunable sources. In contrast to laboratory systems, efficiency and simplicity can be the decisive issues which determine the practicality of a particular airborne remote sensing application. The recent advent of diode laser pumped solid state lasers has produced high average power OPO pump sources which are themselves both compact and efficient. However, parametric oscillator technology which can efficiently convert the average powers provided by these pump sources remains to be demonstrated. In addition to the average power requirement, many airborne long range sensing tasks will require a high degree of frequency multiplexing to disentangle data from multiple chemical species. A key advantage in system simplicity can be obtained, for example, if a single OPO can produce easily controlled multispectral output. In this paper the authors address several topics pertaining to the conversion efficiency, power handling, and multispectral capabilities of OPOs which they are currently investigating. In Section 2, single pulse conversion efficiency issues are addressed, while average power effects are treated in Section 3. Section 4 is concerned with multispectral performance of a single OPO. The last section contains a short summary and some concluding remarks

  20. SOLID-STATE STORAGE DEVICE FLASH TRANSLATION LAYER

    DEFF Research Database (Denmark)

    2017-01-01

    Embodiments of the present invention include a method for storing a data page d on a solid-state storage device, wherein the solid-state storage device is configured to maintain a mapping table in a Log-Structure Merge (LSM) tree having a C0 component which is a random access memory (RAM) device...

  1. Handbook of fiber optic data communication a practical guide to optical networking

    CERN Document Server

    DeCusatis, Casimer

    2008-01-01

    The third edition of this Handbook provides a comprehensive, easy to use guide to the field of optical fiber data communications. Written by experts in the industry from major companies such as IBM, Cisco and Nortel, the Handbook is a key reference for optical fiber technology, networking, protocols, applications, manufacturing, and future directions. It includes chapters on all the major industry standards, written by the same experts who developed them.This edition contains new material on transceiver form factors (QSFP, SFP +, XFP, X2), manufacturing standards, including JEDEC and R

  2. optimisation of solid optimisation of solid state fermentation

    African Journals Online (AJOL)

    eobe

    from banana peels via solid state fermentation using Aspergillus niger. ermentation ... [7,8], apple pomace [9], banana peels [4], date palm. [10], carob ... powder, jams, juice, bar, biscuits, wine etc results in ... Yeast extract was taken as nitrogen.

  3. Study on structural and optical properties of α-(AlxCr1-x)2O3 (0 ≤ x ≤ 1) solid solutions

    Science.gov (United States)

    Jangir, Ravindra; Kumar, Dharmendra; Srihari, Velaga; Ganguli, Tapas

    2018-04-01

    We report on structural and optical properties for ternary α-(AlxCr1-x)2O3 (0 ≤ x ≤ 1) solid solutions synthesized by using solid sate reaction method. Single R-3c phase was obtained for the Aluminum composition of 0 ≤ x ≤ 1. Due to difference in the ionic radia of Al3+ and Cr3+, in plane lattice parameter showed deviation from the vegard's law. Optical absorption spectra for the solid solutions showed a blue shift of ˜ 0.5 eV in the optical gap. It has also been observed that Cr 3d level shifted towards the O 2p level in the valance band which indicates the enhancement of hybridization in the d and p levels, which is related to the delocalization of hole states, responsible for p-type conduction in wide band gap semiconductors. The results suggests that ternary α-(AlxCr1-x)2O3 (0 ≤ x ≤ 1) can be useful in the field of UV transparent electronics and UV photodetectors.

  4. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    Science.gov (United States)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  5. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    Science.gov (United States)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  6. Structural, optical, and magnetic properties of polycrystalline Co-doped TiO{sub 2} synthesized by solid-state method

    Energy Technology Data Exchange (ETDEWEB)

    Bouaine, Abdelhamid, E-mail: abdelhamidfethi@yahoo.fr [Laboratoire d' Etude des Materiaux (LEM), Departement de Physique, Faculte des Sciences Exactes et des Sciences de la Nature et de la vie, Universite de Jijel, cite Oued-Aissa, B.P 98, Jijel 18000 (Algeria); Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS - UdS, 23 rue du Loess, B.P. 43, 67034 Strasbourg Cedex 2 (France); Schmerber, G.; Ihiawakrim, D.; Derory, A. [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS - UdS, 23 rue du Loess, B.P. 43, 67034 Strasbourg Cedex 2 (France)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer Influence of Co doping on the TiO{sub 2} tetragonal structure. Black-Right-Pointing-Pointer Decrease of the energy band gap after doping with Co atoms. Black-Right-Pointing-Pointer Appearance of ferromagnetism in Co-doped TiO{sub 2} diluted magnetic semiconductors. - Abstract: We have used a solid-state method to synthesize polycrystalline Co-doped TiO{sub 2} diluted magnetic semiconductors (DMSs) with Co concentrations of 0, and 0.5 at.%. X-ray diffraction patterns reveal that Co doped TiO{sub 2} crystallizes in the rutile tetragonal structure with no additional peaks. Transmission electron microscopy (TEM) did not indicate the presence of magnetic parasitic phases and confirmed that Co ions are uniformly distributed inside the samples. Optical absorbance measurements showed an energy band gap which decreases after doping with the Co atoms into the TiO{sub 2} matrix. Magnetization measurements revealed a paramagnetic behavior for the as-prepared Co-doped TiO{sub 2} and a ferromagnetic behavior for the same samples after annealed under a mixture of H{sub 2}/N{sub 2} atmosphere.

  7. Ring resonator systems to perform optical communication enhancement using soliton

    CERN Document Server

    Amiri, Iraj Sadegh

    2014-01-01

    The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi

  8. Solid state electrolytes for all-solid-state 3D lithium-ion batteries

    NARCIS (Netherlands)

    Kokal, I.

    2012-01-01

    The focus of this Ph.D. thesis is to understand the lithium ion motion and to enhance the Li-ionic conductivities in commonly known solid state lithium ion conductors by changing the structural properties and preparation methods. In addition, the feasibility for practical utilization of several

  9. New generation of devices for all-optical communications

    International Nuclear Information System (INIS)

    Glesk, I.; Runser, R.J.; Prucnal, P.R.

    2001-01-01

    To increase the transmission capacity of future communication networks is becoming very critical. This task can only be accomplished by taking advantage of optical networks where multiplexing techniques such as Dense Wavelength Division Multiplexing (DWDM) and Optical Time Division Multiplexing (OTDM) are employed. To avoid electronic bottlenecks a whole new generation of ultrafast devices is needed. To fulfill these needs a new class of all optical devices has been proposed and developed. By taking advantage of the nonlinear dynamics in semiconductor optical amplifiers in combination with the fiber interferometers a new generation of ultrafast all-optical de multiplexers and wavelength converters has been demonstrated. Other switching technologies are also promising for the future. The latest technologies in the area of micro machining have created very attractive low cost MEMS. Recently announced use of bubble technology for all-optical switching might also lead to the development of next generation large scale switching fabrics. This paper is an overview of the recent development in these areas. (authors)

  10. Soliton coding for secured optical communication link

    CERN Document Server

    Amiri, Iraj Sadegh; Idrus, Sevia Mahdaliza

    2015-01-01

    Nonlinear behavior of light such as chaos can be observed during propagation of a laser beam inside the microring resonator (MRR) systems. This Brief highlights the design of a system of MRRs to generate a series of logic codes. An optical soliton is used to generate an entangled photon. The ultra-short soliton pulses provide the required communication signals to generate a pair of polarization entangled photons required for quantum keys. In the frequency domain, MRRs can be used to generate optical millimetre-wave solitons with a broadband frequency of 0?100 GHz. The soliton signals are multi

  11. Advanced MEMS systems for optical communication and imaging

    International Nuclear Information System (INIS)

    Horenstein, M N; Sumner, R; Freedman, D S; Datta, M; Kani, N; Miller, P; Stewart, J B; Cornelissen, S

    2011-01-01

    Optical communication and adaptive optics have emerged as two important uses of micro-electromechanical (MEMS) devices based on electrostatic actuation. Each application uses a mirror whose surface is altered by applying voltages of up to 300 V. Previous generations of adaptive-optic mirrors were large (∼1 m) and required the use of piezoelectric transducers. Beginning in the mid-1990s, a new class of small MEMS mirrors (∼1 cm) were developed. These mirrors are now a commercially available, mature technology. This paper describes three advanced applications of MEMS mirrors. The first is a mirror used for corona-graphic imaging, whereby an interferometric telescope blocks the direct light from a distant star so that nearby objects such as planets can be seen. We have developed a key component of the system: a 144-channel, fully-scalable, high-voltage multiplexer that reduces power consumption to only a few hundred milliwatts. In a second application, a MEMS mirror comprises part of a two-way optical communication system in which only one node emits a laser beam. The other node is passive, incorporating a retro-reflective, electrostatic MEMS mirror that digitally encodes the reflected beam. In a third application, the short (∼100-ns) pulses of a commercially-available laser rangefinder are returned by the MEMS mirror as a digital data stream. Suitable low-power drive systems comprise part of the system design.

  12. Optical Techniques for Millimeter-Wave Phased Array Communications Antennas

    National Research Council Canada - National Science Library

    Edge, Colin

    1998-01-01

    The scope of this program was to study the application of optical techniques to signal distribution and beamforming networks in phased array antennas for Army mobile tactical communications systems...

  13. Low-temperature solid-state synthesis and optical properties of CdS-ZnS and ZnS-CdS alloy nanoparticles

    International Nuclear Information System (INIS)

    Liu Jinsong; Zhao Chuanbao; Li Ziquan; Chen Jiankang; Zhou Hengzhi; Gu Shanqun; Zeng Youhong; Li Yongchan; Huang Yongbing

    2011-01-01

    Highlights: → Using a simple low-temperature solid-state synthetic method, ZnS-CdS and CdS-ZnS alloy nanoparticles were obtained, respectively. → The size of the nanoparticles increased with increasing reaction temperature, and reaction sequence had no effect on the size of the nanoparticles under the same temperature. → The particle diameters of the CdS-ZnS products decreased gradually with increasing Cd 2+ /Zn 2+ molar ratio, whereas those of the ZnS-CdS products increased gradually with increasing Zn 2+ /Cd 2+ molar ratio. → The study shows that sufficient grinding and crystalline water may be a key in forming the alloy nanoparticles. → Optical properties of the products depend on reaction temperature, reactant addition sequence, and reactant molar ratio. - Abstract: A simple low-temperature solid-state synthetic method was employed to obtain ZnS-CdS and CdS-ZnS alloy nanoparticles. The effects of reaction sequence, reactant molar ratios, and synthesis temperature on the products were investigated. The crystal structure and morphology of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared (FT-IR) spectroscopy. The results show that the products are alloy nanoparticles with a cubic phase structure. The formation mechanism of the alloy nanoparticles is briefly discussed. Sufficient grinding and crystalline water may be essential to form alloy nanoparticles. Ultraviolet-visible (UV-vis) spectra show that the edge absorptions of the CdS-ZnS and ZnS-CdS nanoparticles were located between those of ZnS and CdS bulks, and the absorbance at the peak maximum was practically dependent on reaction temperature, reaction sequence, and molar ratio. Extrinsic deep-level emission resulted in strong peaks in the photoluminescence (PL) spectra. The position and intensity of the emission peaks varied with the conditions during synthesis.

  14. A cost-performance model for ground-based optical communications receiving telescopes

    Science.gov (United States)

    Lesh, J. R.; Robinson, D. L.

    1986-01-01

    An analytical cost-performance model for a ground-based optical communications receiving telescope is presented. The model considers costs of existing telescopes as a function of diameter and field of view. This, coupled with communication performance as a function of receiver diameter and field of view, yields the appropriate telescope cost versus communication performance curve.

  15. Passivation-free solid state battery

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  16. The Oxford solid state basics

    CERN Document Server

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  17. In situ Spectroscopy of Solid-State Chemical Reaction in PbBr2-Deposited CsBr Crystals

    Science.gov (United States)

    Kondo, Shin-ichi; Matsunaga, Toshihiro; Saito, Tadaaki; Asada, Hiroshi

    2003-09-01

    It is possible to measure the fundamental optical absorption spectra of CsPbBr3 and Cs4PbBr6, whose stability is predicted by the study of phase diagram in the binary system CsBr-PbBr2, by means of in situ optical absorption and reflection spectroscopy of thermally induced solid-state chemical reaction in PbBr2-deposited CsBr crystals. On heavy annealing of the crystals, the Pb2+ ions are uniformly dispersed in the crystal matrix. The present experiment provides a novel method for measuring intrinsic optical absorption of ternary metal halides and also for in situ monitoring of doping metal halide crystal with impurities (metal ions or halogen ions).

  18. Invited Article: Visualisation of extreme value events in optical communications

    Science.gov (United States)

    Derevyanko, Stanislav; Redyuk, Alexey; Vergeles, Sergey; Turitsyn, Sergei

    2018-06-01

    Fluctuations of a temporal signal propagating along long-haul transoceanic scale fiber links can be visualised in the spatio-temporal domain drawing visual analogy with ocean waves. Substantial overlapping of information symbols or use of multi-frequency signals leads to strong statistical deviations of local peak power from an average signal power level. We consider long-haul optical communication systems from this unusual angle, treating them as physical systems with a huge number of random statistical events, including extreme value fluctuations that potentially might affect the quality of data transmission. We apply the well-established concepts of adaptive wavefront shaping used in imaging through turbid medium to detect the detrimental phase modulated sequences in optical communications that can cause extreme power outages (rare optical waves of ultra-high amplitude) during propagation down the ultra-long fiber line. We illustrate the concept by a theoretical analysis of rare events of high-intensity fluctuations—optical freak waves, taking as an example an increasingly popular optical frequency division multiplexing data format where the problem of high peak to average power ratio is the most acute. We also show how such short living extreme value spikes in the optical data streams are affected by nonlinearity and demonstrate the negative impact of such events on the system performance.

  19. Radiation resistance characteristics of optical communication system for single mode

    International Nuclear Information System (INIS)

    Ohe, Masamoto; Chigusa, Yoshiki; Kyodo, Tomohisa; Tanaka, Gohtaro; Watanabe, Hajime; Okamoto, Shin-ichi; Yamamoto, Takao.

    1988-01-01

    Optical communication has been utilized also for nuclear power stations and fuel reporocessing plants. As the sufficient safety countermeasures are required there, the amount of information becomes enormous, therefore, optical communication, by which the required space is expected to be reduced, becomes more important. Also in the application to submarine cables, attention must be paid to the radiation resistance as there are the effects of potassium contained in large amount in seawater and uranium deposits in sea bottom. Therefore, the reliability of the components of optical communication systems against radiation becomes a problem. In this study, single mode optical fibers and transmission and receipt modules were selected, and high dose rate irradiation supposing the case of using in a cell and low dose rate, long time irradiation supposing the case of submarine cables were carried out to evaluate the radiation resistance characteristics. The fibers tested were SiO 2 core/F-SiO 2 clad type and GeO 2 -SiO 2 core/SiO 2 clad type. The characteristics of increasing loss in irradiation and restoration after irradiation of the former type were superior to those of the latter type. The output of a receipt module was normal during irradiation, and the output power of a transmission module decreases, but other problems did not arise. (K.I.)

  20. Solid state spectroscopy by using of far-infrared synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nanba, Takao [Kobe Univ. (Japan). Faculty of Science

    1996-07-01

    If the spectroscopic system corresponding to the wavelength region required for experiment is installed, the light source with continuous wavelength is to be obtainable by synchrotron radiation. This report is that of the research on solid state spectroscopy using the ordinary incoherent synchrotron radiation which is obtained from the deflection electromagnet parts of electron storage ring. At present in the world, the facilities which can be utilized in far-infrared spectroscopy region are five, including the UVSOR of Molecular Science Research Institute in Japan. The optical arrangement of the measuring system of the UVSOR is shown. The spectrum distribution of the light passing through the pinholes with different diameter in the place of setting samples was compared in case of the UVSOR and a high pressure mercury lamp, and it was shown that synchrotron radiation has high luminance. The researches on solid state spectroscopy carried out in the above mentioned five facilities are enumerated. In this paper, the high pressure spectroscopic experiment which has been carried out at the UVSOR is reported. The observation of the phase transition of fine particles and the surface phonons of fine particles are described. As fine particle size became smaller, the critical pressure at which phase transition occurred was high. (K.I.)

  1. Statistics of errors in fibre communication lines with a phase-modulation format and optical phase conjugation

    International Nuclear Information System (INIS)

    Shapiro, Elena G; Fedoruk, Mikhail P

    2011-01-01

    Analytical formulas are derived to approximate the probability density functions of 'zero' and 'one' bits in a linear communication channel with a binary format of optical signal phase modulation. Direct numerical simulation of the propagation of optical pulses in a communication line with optical phase conjugation is performed. The results of the numerical simulation are in good agreement with the analytical approximation. (fibreoptic communication lines)

  2. Concurrent System Engineering and Risk Reduction for Dual-Band (RF/optical) Spacecraft Communications

    Science.gov (United States)

    Fielhauer, Karl, B.; Boone, Bradley, G.; Raible, Daniel, E.

    2012-01-01

    This paper describes a system engineering approach to examining the potential for combining elements of a deep-space RF and optical communications payload, for the purpose of reducing the size, weight and power burden on the spacecraft and the mission. Figures of merit and analytical methodologies are discussed to conduct trade studies, and several potential technology integration strategies are presented. Finally, the NASA Integrated Radio and Optical Communications (iROC) project is described, which directly addresses the combined RF and optical approach.

  3. Digital Signal Processing for Optical Coherent Communication Systems

    DEFF Research Database (Denmark)

    Zhang, Xu

    spectrum narrowing tolerance 112-Gb/s DP-QPSK optical coherent systems using digital adaptive equalizer. The demonstrated results show that off-line DSP algorithms are able to reduce the bit error rate (BER) penalty induced by signal spectrum narrowing. Third, we also investigate bi...... wavelength division multiplex (U-DWDM) optical coherent systems based on 10-Gbaud QPSK. We report U-DWDM 1.2-Tb/s QPSK coherent system achieving spectral efficiency of 4.0-bit/s/Hz. In the experimental demonstration, digital decision feed back equalizer (DFE) algorithms and a finite impulse response (FIR......In this thesis, digital signal processing (DSP) algorithms are studied to compensate for physical layer impairments in optical fiber coherent communication systems. The physical layer impairments investigated in this thesis include optical fiber chromatic dispersion, polarization demultiplexing...

  4. Solid State Self-Healing System: Effects of Using Immiscible Healing Agents

    International Nuclear Information System (INIS)

    Noor Nabilah Muhamad; Mohd Suzeren Mohd Jamil

    2015-01-01

    The solid state self-healing system was obtained by employs a thermosetting epoxy resin, into which a thermoplastic is dissolved. The aim of this study is to identify the effect of using immiscible healing agents, which are polyvinyl chloride and polyvinyl alcohol, on solid state self-healing system. Healing was achieved by heating the fractured resins to a specific temperature; above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) in order for thermal expansion to occur. The thermal properties and bonding formed in the epoxy resins were characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). Izod impact test was performed in preliminary work. Further work then has been done using compact tension test to demonstrate details self-healing capability of the different specimens. Under compact tension test, it was found that healable resin with PVC has highest healing efficiency followed PVA with 7.4 % and 3 % of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/ network and thermoplastic polymer which led to the phase separation. Morphological studies using microscope optic prove the fracture-healing process and morphological properties of the resins. (author)

  5. Solid-state laser source of narrowband ultraviolet B light for skin disease care

    Science.gov (United States)

    Tarasov, Aleksandr A.; Chu, Hong

    2013-03-01

    We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.

  6. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  7. Micro-optical-mechanical system photoacoustic spectrometer

    Science.gov (United States)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  8. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-01

    in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing

  9. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  10. Acousto-optic pointing and tracking systems for free-space laser communications

    Science.gov (United States)

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  11. Detecting binary non-return-to-zero data in free-space optical communication systems using FPGAs

    Science.gov (United States)

    Bui, Vy; Tran, Lan; El-Araby, Esam; Namazi, Nader M.

    2014-06-01

    High bandwidth, fast deployment with relatively low cost implementation are some of the important advantages of free space optical (FSO) communications. However, the atmospheric turbulence has a substantial impact on the quality of a laser beam propagating through the atmosphere. A new method was presented in [1] and [2] to perform bit synchronization and detection of binary Non-Return-to-Zero (NRZ) data from a free-space optical (FSO) communication link. It was shown that, when the data is binary NRZ with no modulation, the Haar wavelet transformation can effectively reduce the scintillation noise. In this paper, we leverage and modify the work presented in [1] in order to provide a real-time streaming hardware prototype. The applicability of these concepts will be demonstrated through providing the hardware prototype using one of the state-of-the-art reconfigurable hardware, namely Field Programmable Gate Arrays, and highly productive high-level design tools such as System Generator for DSP from Xilinx.

  12. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  13. An introduction to solid state diffusion

    CERN Document Server

    Borg, Richard J

    2012-01-01

    The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year under

  14. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  15. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical signal processing techniques and applications of optical phase modulation in high-speed communication systems

    Science.gov (United States)

    Deng, Ning

    In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching

  17. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  18. Experimental teaching reforms of optical fiber communication based on general education

    Science.gov (United States)

    Lan, L.; Liu, S.; Zhou, J. H.; Peng, Z. M.

    2017-08-01

    It's necessary that higher education experimental teaching reforms on the basis of general education. This paper put forward the experimental teaching reform mode of optical fiber communication in the context of general education. With some reform measures such as improving the experimental content, enriching the experimental style, modifying the experimental teaching method, and adjusting the evaluation method of experimental teaching, the concept of general education is put throughout the experimental teaching of optical fiber communication. In this way, it facilitates the development of students and improvement of experimental teaching quality.

  19. Optimization of Wireless Optical Communication System Based on Augmented Lagrange Algorithm

    International Nuclear Information System (INIS)

    He Suxiang; Meng Hongchao; Wang Hui; Zhao Yanli

    2011-01-01

    The optimal model for wireless optical communication system with Gaussian pointing loss factor is studied, in which the value of bit error probability (BEP) is prespecified and the optimal system parameters is to be found. For the superiority of augmented Lagrange method, the model considered is solved by using a classical quadratic augmented Lagrange algorithm. The detailed numerical results are reported. Accordingly, the optimal system parameters such as transmitter power, transmitter wavelength, transmitter telescope gain and receiver telescope gain can be established, which provide a scheme for efficient operation of the wireless optical communication system.

  20. Solid State Theory An Introduction

    CERN Document Server

    Rössler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields.

  1. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.; Zedini, Emna; Elafandy, Rami T.; Kammoun, Abla; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels

  2. Self-healing liquid/solid state battery

    Science.gov (United States)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.; Ning, Xiaohui; Sadoway, Donald R.

    2018-02-27

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrode includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.

  3. Optical Phase Recovery and Locking in a PPM Laser Communication Link

    Science.gov (United States)

    Aveline, David C.; Yu, Nan; Farr, William H.

    2012-01-01

    Free-space optical communication holds great promise for future space missions requiring high data rates. For data communication in deep space, the current architecture employs pulse position modulation (PPM). In this scheme, the light is transmitted and detected as pulses within an array of time slots. While the PPM method is efficient for data transmission, the phase of the laser light is not utilized. The phase coherence of a PPM optical signal has been investigated with the goal of developing a new laser communication and ranging scheme that utilizes optical coherence within the established PPM architecture and photon-counting detection (PCD). Experimental measurements of a PPM modulated optical signal were conducted, and modeling code was developed to generate random PPM signals and simulate spectra via FFT (Fast Fourier Transform) analysis. The experimental results show very good agreement with the simulations and confirm that coherence is preserved despite modulation with high extinction ratios and very low duty cycles. A real-time technique has been developed to recover the phase information through the mixing of a PPM signal with a frequency-shifted local oscillator (LO). This mixed signal is amplified, filtered, and integrated to generate a voltage proportional to the phase of the modulated signal. By choosing an appropriate time constant for integration, one can maintain a phase lock despite long dark times between consecutive pulses with low duty cycle. A proof-of-principle demonstration was first achieved with an RF-based PPM signal and test setup. With the same principle method, an optical carrier within a PPM modulated laser beam could also be tracked and recovered. A reference laser was phase-locked to an independent pulsed laser signal with low-duty-cycle pseudo-random PPM codes. In this way, the drifting carrier frequency in the primary laser source is tracked via its phase change in the mixed beat note, while the corresponding voltage feedback

  4. Harwell's atomic, molecular and solid state computer programs

    International Nuclear Information System (INIS)

    Harker, A.H.

    1976-02-01

    This document is intended to introduce the computational facilities available in the fields of atomic, molecular the solid state theory on the IBM370/165 at Harwell. The programs have all been implemented and thoroughly tested by the Theory of Solid State Materials Group. (author)

  5. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  6. All-optical two-way relaying free-space optical communications for HAP-based broadband backhaul networks

    Science.gov (United States)

    Vu, Minh Q.; Nguyen, Nga T. T.; Pham, Hien T. T.; Dang, Ngoc T.

    2018-03-01

    High-altitude platforms (HAPs) are flexible, non-pollutant and cost-effective infrastructures compared to satellite or old terrestrial systems. They are being researched and developed widely in Europe, USA, Japan, Korea, and so on. However, the current limited data rates and the overload of radio frequency (RF) spectrum are problems which the developers for HAPs are confronting because most of them use RF links to communicate with the ground stations (GSs) or each other. In this paper, we propose an all-optical two-way half-duplex relaying free-space optical (FSO) communication for HAP-based backhaul networks, which connect the base transceiver station (BTS) to the core network (CN) via a single HAP. Our proposed backhaul solution can be deployed quickly and flexibly for disaster relief and for serving users in both urban environments and remote areas. The key subsystem of HAP is an optical regenerate-and-forward (ORF) equipped with an optical hard-limiter (OHL) and an optical XOR gate to perform all-optical processing and help mitigate the background noise. In addition, two-way half-duplex relaying can be provided thanks to the use of network coding scheme. The closed-form expression for the bit error rate (BER) of our proposed system under the effect of path loss, atmospheric turbulence, and noise induced by the background light is formulated. The numerical results are demonstrated to prove the feasibility of our proposed system with the verification by using Monte-Carlo (M-C) simulations.

  7. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  8. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  9. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    Science.gov (United States)

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  10. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  11. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers

    International Nuclear Information System (INIS)

    Liu Rong; Ma Xinpeng; Zhao Fengli; Wang Xiangjian; Wang Guangwei; Huang Yongqing; Zhang Donghui

    2009-01-01

    To study the phase characteristics of solid-state amplifiers(20 kW/142.8 MHz,10 kW/571.2 MHz) in sub-harmonic bunchers(SHBs) of the BEPC II linear accelerator, phase shift in pulse and phase stability are measured using a digital measurement method based on field programmable gate array(FPGA). The hardware of the measurement system includes the frequency synthesizer, digital signal processing board(FPGA) and PC, and the software includes an internal algorithm on FPGA, communication procedures and PC client interface procedures. The measurement results of phase characteristics are consistent with the actual situation, which is the basis for the further implement of phase compensation in SHBs. (authors)

  12. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental c...

  13. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental...

  14. The 2004 Latsis Symposium: Quantum optics for Communication and Computing

    CERN Multimedia

    2004-01-01

    1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental ...

  15. Solid state nuclear magnetic resonance of fossil fuels

    International Nuclear Information System (INIS)

    Axelson, D.E.

    1985-01-01

    This book contains the following chapters: Principles of solid state NMR; Relaxation processes: Introduction to pulse sequences; Quantitative analysis; Removal of artifacts from CPMAS FT experiments; Line broadening mechanisms; Resolution enhancement of solid state NMR spectra; and /sup 13/C CPMAS NMR of fossil fuels--general applications

  16. Video semaphore decoding for free-space optical communication

    Science.gov (United States)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  17. Cross-correlation interference effects in multiaccess optical communications

    Science.gov (United States)

    Peterson, G. D.; Gardner, C. S.

    1981-03-01

    An analysis is presented of the cross correlation between user codes in an optical code-division multiple-access communication system. The system model is a multiaccess satellite repeater, where the uplink and downlink channels are direct-detection optical-polarization modulation links. The error probability is obtained in terms of the cross correlation between the intended and interfering user codes. It is demonstrated that the system error rate can be minimized by the use of code sequences in which the normalized second moment of the cross correlation between codes is small.

  18. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  19. Method and apparatus for optical communication by frequency modulation

    Science.gov (United States)

    Priatko, Gordon J.

    1988-01-01

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  20. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  1. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  2. A software framework for analysing solid-state MAS NMR data

    International Nuclear Information System (INIS)

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne; Higman, Victoria A.; Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut; Laue, Ernest D.

    2011-01-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  3. Review on solid electrolytes for all-solid-state lithium-ion batteries

    Science.gov (United States)

    Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li

    2018-06-01

    All-solid-state (ASS) lithium-ion battery has attracted great attention due to its high safety and increased energy density. One of key components in the ASS battery (ASSB) is solid electrolyte that determines performance of the ASSB. Many types of solid electrolytes have been investigated in great detail in the past years, including NASICON-type, garnet-type, perovskite-type, LISICON-type, LiPON-type, Li3N-type, sulfide-type, argyrodite-type, anti-perovskite-type and many more. This paper aims to provide comprehensive reviews on some typical types of key solid electrolytes and some ASSBs, and on gaps that should be resolved.

  4. Free-space communication with over 100 spatial modes

    CSIR Research Space (South Africa)

    Rosales-Guzmán, C

    2016-10-01

    Full Text Available Congress 2016: Advanced Solid State Lasers (ASSL); Applications of Lasers for Sensing and Free Space Communications (LS&C), 30 October - 3 November 2016, Boston, Massachusetts, United States Free-space communication with over 100 spatial modes...

  5. Fast-steering solutions for cubesat-scale optical communications

    Science.gov (United States)

    Kingsbury, R. W.; Nguyen, T.; Riesing, K.; Cahoy, K.

    2017-11-01

    We describe the design of a compact free-space optical communications module for use on a nanosatellite and present results from a detailed trade study to select an optical fine steering mechanism compatible with our stringent size, weight and power (SWaP) constraints. This mechanism is an integral component of the compact free-space optical communications system that is under development at the MIT Space Systems Laboratory [1]. The overall goal of this project is to develop a laser communications (lasercom) payload that fits within the SWaP constraints of a typical ``3U'' CubeSat. The SWaP constraints for the entire lasercom payload are 5 cm × 10 cm × 10 cm, 600 g and 10W. Although other efforts are underway to qualify MEMS deformable mirrors for use in CubeSats [2], there has been very little work towards qualifying tip-tilt MEMS mirrors [3]. Sec. II provides additional information on how the fast steering mechanism is used in our lasercom system. Performance requirements and desirable traits of the mechanism are given. In Sec. III we describe the various types of compact tip-tilt mirrors that are commercially available as well as the justification for selecting a MEMS-based device for our application. Sec. IV presents an analysis of the device's transfer function characteristics and ways of predicting this behavior that are suitable for use in the control processor. This analysis is based upon manufacturer-provided test data which was collected at standard room conditions. In the final section, we describe on-going work to build a testbed that will be used to measure device performance in a thermal chamber.

  6. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  7. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  8. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  9. High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems

    DEFF Research Database (Denmark)

    Zhang, Xu; Pang, Xiaodan; Deng, Lei

    2012-01-01

    In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with approx......In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs...

  10. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  11. Solid-state resistor for pulsed power machines

    Science.gov (United States)

    Stoltzfus, Brian; Savage, Mark E.; Hutsel, Brian Thomas; Fowler, William E.; MacRunnels, Keven Alan; Justus, David; Stygar, William A.

    2016-12-06

    A flexible solid-state resistor comprises a string of ceramic resistors that can be used to charge the capacitors of a linear transformer driver (LTD) used in a pulsed power machine. The solid-state resistor is able to absorb the energy of a switch prefire, thereby limiting LTD cavity damage, yet has a sufficiently low RC charge time to allow the capacitor to be recharged without disrupting the operation of the pulsed power machine.

  12. An Array of Optical Receivers for Deep-Space Communications

    Science.gov (United States)

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  13. Unravelling radiative energy transfer in solid-state lighting

    Science.gov (United States)

    Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat

    2018-01-01

    Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.

  14. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  15. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han

    2007-03-31

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  16. High-dimensional free-space optical communications based on orbital angular momentum coding

    Science.gov (United States)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  17. Vibration Isolation Platform for Long Range Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical communication links provide higher data transfer rates with lower mass, power, and volume than conventional radio-frequency links. For deep space...

  18. Solid-state dependent dissolution and oral bioavailability of piroxicam in rats.

    Science.gov (United States)

    Lust, Andres; Laidmäe, Ivo; Palo, Mirja; Meos, Andres; Aaltonen, Jaakko; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-01-23

    The aim of this study was to gain understanding about the effects of different solid-state forms of a poorly water-soluble piroxicam on drug dissolution and oral bioavailability in rats. Three different solid-state forms of piroxicam were studied: anhydrate I (AH), monohydrate (MH), and amorphous form in solid dispersion (SD). In addition, the effect of a new polymeric excipient Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) on oral bioavailability of piroxicam was investigated. Significant differences in the dissolution and oral bioavailability were found between the solid-state forms of piroxicam. Amorphous piroxicam in SD showed the fastest dissolution in vitro and a solid-state transformation to MH in the dissolution medium. Despite the presence of solid-state transformation, SD exhibited the highest rate and extent of oral absorption in rats. Oral bioavailability of other two solid-state forms decreased in the order AH and MH. The use of Soluplus® was found to enhance the dissolution and oral bioavailability of piroxicam in rats. The present study shows the importance of solid-state form selection for oral bioavailability of a poorly water-soluble drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Non-classical neutron beams for fundamental and solid state research

    International Nuclear Information System (INIS)

    Rauch, H.

    2008-01-01

    The curious dual nature of the neutron, sometimes a particle, sometimes a wave, is wonderfully manifested in the various non-local interference and quantum contextuality effects observed in neutron interferometry. Non-classical states may become useful for novel fundamental and solid state research. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single particle system demonstrate quantum contextuality. In all cases of interactions, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state would, in principle, be impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. Recently, it has been shown that an entanglement between external and internal degrees of freedom exists even in single particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. The path towards advanced neutron quantum optics will be discussed. (author)

  20. Some Protocols For Optical-Fiber Digital Communications

    Science.gov (United States)

    Yeh, Cavour; Gerla, Mario

    1989-01-01

    One works best in heavy traffic, another, in light traffic. Three protocols proposed for digital communications among stations connected by passive taps to pair of uni-directional optical-fiber buses. Mediate round-robin, bounded-delay access to buses by all stations and particularly suited to fast transmission. Partly because transmission medium passive (no relay stations) and partly because protocols distribute control of network among all stations with provision for addition and deletion of stations (no control stations), communication network able to resist and recover from failures. Implicit token propagates in one direction on one bus and in opposite direction on other bus, minimizing interval of silence between end of one round and beginning of next.

  1. Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos.

    Science.gov (United States)

    Ai, Jianzhou; Wang, Lulu; Wang, Jian

    2017-09-15

    Chaos-based secure communication can provide a high level of privacy in data transmission. Here, we experimentally demonstrate secure signal transmission over two kinds of multimode fiber (MMF) based on electro-optic intensity chaos. High-quality synchronization is achieved in an electro-optic feedback configuration. Both 5  Gbit/s carrier-less amplitude/phase (CAP-4) modulation and 10  Gbit/s on-off key (OOK) signals are recovered efficiently in electro-optic chaos-based communication systems. Degradations of chaos synchronization and communication system due to mismatch of various hardware keys are also discussed.

  2. Optical Amplication for Terabit-per-Second Ultra-High Speed Communication Systems

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh

    The present thesis is concerned with fiber optical parametric amplification and regeneration for high-speed optical communication systems. Fiber optical parametric amplifiers (FOPAs) have multi-functional applications depending on their implementation in optical systems. Based on a few femtosecond...... and saturation effect in order to assess the degradation of the amplified signal. In a very good agreement with the performed experiments, it is shown that the noise transferred to the signal can be effectively suppressed by operating in the saturation regime. The amplification of short few picosecond...

  3. Implementing a Near-Optimal Optical Receiver for Inter-Planetary Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Objective: Interplanetary communications signals are inherently weak at the receiver. In fact, for a desired data rate the received optical pulses may...

  4. Characterization of the Marine Atmosphere for Free-Space Optical Communication

    National Research Council Canada - National Science Library

    Thomas, Linda M. Wasiczko; Moore, Christopher I; Burris, Harris R; Suite, Michele; Stell, Mena; Murphy, James; Gilbreath, G. C; Rabinovich, William; Scharpf, William

    2006-01-01

    The Chesapeake Bay Detachment of the Naval Research Laboratory (NRL-CBD) provides an ideal environment for characterizing the effects of the marine atmosphere on free space optical communication links...

  5. Development of a Handheld Line Information Reader and Generator for Efficient Management of Optical Communication Lines.

    Science.gov (United States)

    Lee, Jaeyul; Kwon, Hyungwoo; Song, Jaewon; Jeon, Mansik; Kim, Jeehyun

    2017-08-24

    A handheld line information reader and a line information generator were developed for the efficient management of optical communication lines. The line information reader consists of a photo diode, trans-impedance amplifier, voltage amplifier, microcontroller unit, display panel, and communication modules. The line information generator consists of a laser diode, laser driving circuits, microcontroller unit, and communication modules. The line information reader can detect the optical radiation field of the test line by bending the optical fiber. To enhance the sensitivity of the line information reader, an additional lens was used with a focal length of 4.51 mm. Moreover, the simulation results obtained through BeamPROP ® software from Synopsys, Inc. demonstrated a stronger optical radiation field of the fiber due to a longer transmission wavelength and larger bending angle of the fiber. Therefore, the developed devices can be considered as useful tools for the efficient management of optical communication lines.

  6. Low Temperature Solid-State Synthesis and Characterization of LaBO3

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun KIPÇAK

    2016-11-01

    Full Text Available Rare earth (lanthanide series borates, possess high vacuum ultraviolet (VUV transparency, large electronic band gaps, chemical and environmental stability and exceptionally large optical damage thresholds and used in the development of plasma display panels (PDPs. In this study the synthesis of lanthanum borates via solid-state method is studied. For this purpose, lanthanum oxide (La2O3 and boric acid (H3BO3 are used for as lanthanum and boron sources, respectively. Different elemental molar ratios of La to B (between 3:1 to 1:6 as La2O3:H3BO3 were reacted by solid-state method at the reaction temperatures between 500°C - 700°C with the constant reaction time of 4 h. Following the synthesis, characterizations of the synthesized products are conducted by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy and scanning electron microscope (SEM. From the results of the experiments, three types of lanthanum borates of; La3BO6, LaBO3 and La(BO23 were observed at different reaction parameters. Among these three types of lanthanum borates LaBO3 phase were obtained as a major phase.

  7. Free Space Optics Communication for Mobile Military Platforms

    Science.gov (United States)

    2003-12-01

    Federal Communications Commission FDA Food and Drug Administration FOV Field-of-View FSO Free Space Optics FWHM Full Width at Half Maximum Gbps...Physique et de Métrologie des Oscillateurs (LPMO) du CNRS UPR3203, associé à l’Université de Franche -Comté, 15 March 2002 [Schenk 2000] H. Schenk

  8. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  9. Optical intersatellite links - Application to commercial satellite communications

    Science.gov (United States)

    Paul, D.; Faris, F.; Garlow, R.; Inukai, T.; Pontano, B.; Razdan, R.; Ganz, Aura; Caudill, L.

    1992-01-01

    Application of optical intersatellite links for commercial satellite communications services is addressed in this paper. The feasibility of commercialization centers around basic issues such as the need and derived benefits, implementation complexity and overall cost. In this paper, commercialization of optical ISLs is assessed in terms of the services provided, systems requirements and feasibility of appropriate technology. Both long- and short-range ISLs for GEO-GEO, GEO-LEO and LEO applications are considered. Impact of systems requirements on the payload design and use of advanced technology in reducing its mass, power, and volume requirements are discussed.

  10. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  11. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Murray, D.W.

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. The results of these tests as well as a description of the test equipment, test sites, and procedures are presented in this report

  12. Photonic band gap materials: towards an all-optical transistor

    Science.gov (United States)

    Florescu, Marian

    2002-05-01

    The transmission of information as optical signals encoded on light waves traveling through optical fibers and optical networks is increasingly moving to shorter and shorter distance scales. In the near future, optical networking is poised to supersede conventional transmission over electric wires and electronic networks for computer-to-computer communications, chip-to-chip communications, and even on-chip communications. The ever-increasing demand for faster and more reliable devices to process the optical signals offers new opportunities in developing all-optical signal processing systems (systems in which one optical signal controls another, thereby adding "intelligence" to the optical networks). All-optical switches, two-state and many-state all-optical memories, all-optical limiters, all-optical discriminators and all-optical transistors are only a few of the many devices proposed during the last two decades. The "all-optical" label is commonly used to distinguish the devices that do not involve dissipative electronic transport and require essentially no electrical communication of information. The all-optical transistor action was first observed in the context of optical bistability [1] and consists in a strong differential gain regime, in which, for small variations in the input intensity, the output intensity has a very strong variation. This analog operation is for all-optical input what transistor action is for electrical inputs.

  13. Student laboratory experiments exploring optical fibre communication systems, eye diagrams, and bit error rates

    Science.gov (United States)

    Walsh, Douglas; Moodie, David; Mauchline, Iain; Conner, Steve; Johnstone, Walter; Culshaw, Brian

    2005-06-01

    Optical fibre communications has proved to be one of the key application areas, which created, and ultimately propelled the global growth of the photonics industry over the last twenty years. Consequently the teaching of the principles of optical fibre communications has become integral to many university courses covering photonics technology. However to reinforce the fundamental principles and key technical issues students examine in their lecture courses and to develop their experimental skills, it is critical that the students also obtain hands-on practical experience of photonics components, instruments and systems in an associated teaching laboratory. In recognition of this need OptoSci, in collaboration with university academics, commercially developed a fibre optic communications based educational package (ED-COM). This educator kit enables students to; investigate the characteristics of the individual communications system components (sources, transmitters, fibre, receiver), examine and interpret the overall system performance limitations imposed by attenuation and dispersion, conduct system design and performance analysis. To further enhance the experimental programme examined in the fibre optic communications kit, an extension module to ED-COM has recently been introduced examining one of the most significant performance parameters of digital communications systems, the bit error rate (BER). This add-on module, BER(COM), enables students to generate, evaluate and investigate signal quality trends by examining eye patterns, and explore the bit-rate limitations imposed on communication systems by noise, attenuation and dispersion. This paper will examine the educational objectives, background theory, and typical results for these educator kits, with particular emphasis on BER(COM).

  14. Research on IGBT solid state switch

    CERN Document Server

    Gan Kong Yin; Wang Xiao Feng; Wang Lang Ping; Wang Song Yan; Chu, P K; Wu Hong Chen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 mu s waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  15. Research on IGBT solid state switch

    International Nuclear Information System (INIS)

    Gan Kongyin; Tang Baoyin; Wang Xiaofeng; Wang Langping; Wang Songyan; Wu Hongchen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 μs waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  16. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, B

    2006-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  17. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  18. 12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module.

    Science.gov (United States)

    Tan, Jun; Zhao, Zeping; Wang, Yuehui; Zhang, Zhike; Liu, Jianguo; Zhu, Ninghua

    2018-01-22

    A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.

  19. Studies on the irradiated solids

    International Nuclear Information System (INIS)

    Lesueur, D.

    1988-01-01

    The 1988 progress report of the Irradiated Solids laboratory (Polytechnic School, France), is presented. The Laboratory activities concern the investigations on disordered solids (chemical or structural disorder). The disorder itself, its effects on the material physical properties and the particle-matter interactions, are investigated. The research works are performed in the following fields: solid state physics, irradiation and stoechiometric defects, and nuclear materials. The scientific reviews, the congress communications and the thesis are listed [fr

  20. Uses of solid state analogies in elementary particle theory

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1976-01-01

    The solid state background of some of the modern ideas of field theory is reviewed, and additional examples of model situations in solid state or many-body theory which may have relevance to fundamental theories of elementary particles are adduced

  1. Transire, a Program for Generating Solid-State Interface Structures

    Science.gov (United States)

    2017-09-14

    ARL-TR-8134 ● SEP 2017 US Army Research Laboratory Transire, a Program for Generating Solid-State Interface Structures by...Program for Generating Solid-State Interface Structures by Caleb M Carlin and Berend C Rinderspacher Weapons and Materials Research Directorate, ARL...

  2. Design of an Electro-Optic Modulator for High Speed Communications

    Science.gov (United States)

    Espinoza, David

    The telecommunications and computer technology industries have been requiring higher communications speeds at all levels for devices, components and interconnected systems. Optical devices and optical interconnections are a viable alternative over other traditional technologies such as copper-based interconnections. Latency reductions can be achieved through the use of optical interconnections. Currently, a particular architecture for optical interconnections is being studied at the University of Colorado at Boulder in the EMT/NANO project, called Broadcast Optical Interconnects for Global Communication in Many-Core Chip Multiprocessor. As with most types of networks, including optical networks, one of the most important components are modulators. Therefore adequate design and fabrication techniques for modulators contribute to higher modulation rates which lead to improve the efficiency and reductions in the latency of the optical network. Electro-optical modulators are presented in this study as an alternative to achieve this end. In recent years, nonlinear optical (NLO) materials have been used for the fabrication of high-speed electro-optical modulators. Polymers doped with chromophores are an alternative among NLO materials because they can develop large electro-optic coefficients and low dielectric constants. These two factors are critical for achieving high-speed modulation rates. These polymer-based electro-optical modulators can be fabricated using standard laboratory techniques, such as polymer spin-coating onto substrates, UV bleaching to achieve a refractive index variation and poling techniques to align the chromophores in cured polymers. The design of the electro-optic modulators require the use of the optical parameters of the materials to be used. Therefore the characterization of these materials is a required previous step. This characterization is performed by the fabrication of chromophores-doped polymer samples and conducting transmission and

  3. Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor.

    Science.gov (United States)

    Hong, Seongjin; Jung, Woohyun; Nazari, Tavakol; Song, Sanggwon; Kim, Taeoh; Quan, Chai; Oh, Kyunghwan

    2017-05-15

    We report unique thermo-optical characteristics of DNA-Cetyl tri-methyl ammonium (DNA-CTMA) thin solid film with a large negative thermo-optical coefficient of -3.4×10-4/°C in the temperature range from 20°C to 70°C without any observable thermal hysteresis. By combining this thermo-optic DNA film and fiber optic multimode interference (MMI) device, we experimentally demonstrated a highly sensitive compact temperature sensor with a large spectral shift of 0.15 nm/°C. The fiber optic MMI device was a concatenated structure with single-mode fiber (SMF)-coreless silica fiber (CSF)-single mode fiber (SMF) and the DNA-CTMA film was deposited on the CSF. The spectral shifts of the device in experiments were compared with the beam propagation method, which showed a good agreement.

  4. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  5. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  6. Solid-state quantum chemistry and materials science: Solid compounds of the d and f elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1989-01-01

    Methods have been developed for calculating electron structures for solid compounds of d and f elements and for simulating physicochemical properties of materials based on them. Cluster and band calculations are considered for refractory compounds of d metals formed with light elements. There are bond and property regularities in doping by meals and metalloids, and defects and impurities have certain effects, where studies have been made on the electron structures for disordered phases and solid solutions in relation to sublattice compositions. Quantum-chemical simulation methods have been developed for optically active and fluorescent materials based on d and f metal oxides, fluorides, and chalcogenides, and compositions have been proposed for new optically active composites and protective coatings. New approaches have been defined to the magnetic parameters of metals, alloys, and compounds; these can be applied in simulating new magnetic materials. Calculations are given on energy spectra for high-temperature oxide superconductors. There is interesting scope for quantum-chemical methods in application to many topics in materials science

  7. Solid state physics and actinide spectroscopy with ThBr4 and ThCl4

    International Nuclear Information System (INIS)

    Genet, M.

    1984-01-01

    From the solid state physics to the optical spectroscopy of 5 f elements, we have described in details how ThBr 4 and ThCl 4 are acting an important role in the applied and basic research field. The possible applications are based on the scintillation properties of these crystals while the fundamental aspect is related to their special incommensurate structure which modulates the host properties of these matrices at low temperature. This very small perturbation of bromine atom positions have optical consequences on the absorption and emission of the actinide studied ions which are interpreted in function of the modulated structure parameters determined by inelastic and elastic neutron scattering and by Raman spectroscopy. The structural model proposed shows, for the first time, how the optical properties of the investigated ion are influenced by the sinusoidal displacements of the bromine atoms, leading to an energy continuum in the absorption and reducing the site symmetry from Dsub(2d) to a multisite of D 2 symmetry

  8. Devices and Control Strategies for AD HOC Optical Communications Networks

    National Research Council Canada - National Science Library

    Baillieul, John; Bifano, Thomas G

    2006-01-01

    ... (both hardware and operational concepts) that we plan to develop in initiating an ambitious program of research to develop a radical new technology for high-bandwidth, stealthy communication over free-space optical links...

  9. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  10. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    Science.gov (United States)

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  11. High-speed optical feeder-link system using adaptive optics

    Science.gov (United States)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  12. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed

    2016-03-01

    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  13. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  14. Optical communication beyond orbital angular momentum

    CSIR Research Space (South Africa)

    Trichili, A

    2016-06-01

    Full Text Available :27674 | DOI: 10.1038/srep27674 www.nature.com/scientificreports Optical communication beyond orbital angular momentum Abderrahmen Trichili1, Carmelo Rosales-Guzmán2, Angela Dudley2,3, Bienvenu Ndagano2, Amine Ben Salem1, Mourad Zghal1,4 & Andrew Forbes2 Mode....rosalesguzman@wits.ac.za) received: 29 March 2016 Accepted: 24 May 2016 Published: 10 June 2016 OPEN www.nature.com/scientificreports/ 2Scientific RepoRts | 6:27674 | DOI: 10.1038/srep27674 Results Consider a LG mode in cylindrical coordinates, at its waist plane (z = 0), described...

  15. BER Performance of Stratified ACO-OFDM for Optical Wireless Communications over Multipath Channel

    OpenAIRE

    Gebeyehu, Zelalem Hailu; Langat, Philip Kibet; Maina, Ciira Wa

    2018-01-01

    In intensity modulation/direct detection- (IM/DD-) based optical OFDM systems, the requirement of the input signal to be real and positive unipolar imposes a reduction of system performances. Among previously proposed unipolar optical OFDM schemes for optical wireless communications (OWC), asymmetrically clipped optical OFDM (ACO-OFDM) and direct current biased optical OFDM (DCO-OFDM) are the most accepted ones. But those proposed schemes experience either spectral efficiency loss or energy e...

  16. Data acquisition remote node powered over the communications optical fiber

    International Nuclear Information System (INIS)

    Batista, Antonio J.N.; Sousa, Jorge; Gonçalves, Bruno

    2015-01-01

    Large nuclear fusion reactors, like ITER, will have harsh electromagnetic environments nearby the machine. Foreseeing the necessity for special data acquisition remote nodes, on difficult access locations and as close as possible to the experimental devices, motivated the system design. The architecture is based on the power-over-fiber technology recent advancements and respective implementation aim is to attain a proof of concept for the fusion technology field and others, e.g., high energy physics, industry, etc. The design intends the replacement of traditional copper cables and power supplies, vulnerable to electromagnetic interference, by the communications optical fiber of the data acquisition remote node. Optical fibers provide galvanic isolation, immunity to noisy electromagnetic environments and simultaneously can supply power to the remote node electronics. System architecture uses a laser power converter (array of photovoltaic cells) to convert the laser light, from the optical fiber, into electricity. The generated electrical power is enough for powering the remote node electronics and optoelectronics, such as an ADC, a low power FPGA and an optical transmitter. The laser power converter is also used as the communications receiver and from which the acquisition clock is recovered, providing synchronism between remote data acquisition nodes. Descriptions of the system architecture, tested implementations and future improvements are presented.

  17. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.

    2017-12-13

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.

  18. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-01-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition

  19. Solid state division progress report, period ending February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  20. Solid state division progress report, period ending February 29, 1980

    International Nuclear Information System (INIS)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials

  1. Solid-State Thyratron Replacement. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Ian [Diversified Technologies, Inc., Bedford, MA

    2017-12-12

    Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was built in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.

  2. Current status of investigations in the field of solid state science in central Kazakstan region

    International Nuclear Information System (INIS)

    Kuketaev, T.A.

    1999-01-01

    Investigations in the field of solid state science were initiated together with foundation of University in Karaganda. Historically general investigations in this field were conducted for scientific directions related to optical, luminescent and radiation properties of wide gap insulator. This activity was carried out according to appropriate plans of coordination counsels en-gaged in the physics of insulators, luminescent and radiation physics at the Academy of Science USSR and in the Committee on sciences and engineering of the Counsel of Ministers of the USSR. A number of works were coordinated by the Academy of Sciences of Kazakhstan Republic. Investigations in the field of solid state science, con-ducted in the Central Kazakstan and coordinated by the Institute of Physics and Engineering of Kazakhstan National Academy of Sciences, can be currently distinguished according to scientific directions. Currently, the following scientific directions in the field of solid state science exist in the Central Kazakstan: influence of polymorph phase transitions on electron excitation in wide-gap crystals, radiation malformation and recombination, dielectric spectroscopy of crystals with hydrogen link, spectral and luminescent properties and energy migration processes in disordered and partly ordered systems of organic molecules. It is necessary to note that all investigated objects, described in this report, were recovered by investigators. That is, the relevant hardware is available

  3. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  4. Generating continuous variable optical quantum states and entanglement

    International Nuclear Information System (INIS)

    Lam, P.K.; Bowen, W.P.; Schnabel, R.; Treps, N.; Buchler, B.C.; Bachor, H.-A.; Ralph, T.C.

    2002-01-01

    Full text: Quantum information research has recently been shown to have many applications in the field of communication and information processing. Quantum states and entanglement play a central role to almost all quantum information protocols, and form the basic building blocks for larger quantum information networks. We present an overview of the research activities at the quantum optics group at the ANU relating to this area. In particular, we demonstrate technology to suppress the noise on a coherent laser beam to below that of even vacuum. This quantum state of light is called 'squeezed light'. We show experimentally that by mixing two squeezed beams on a beam splitter, a pair of Einstein-Podolsky-Rosen (EPR) entangled beams can be created. This kind of entanglement exhibits below shot noise correlations between both the phase and amplitude quandratures of two beams. Our experimental results show conclusively that our entangled beams demonstrate the famous EPR paradox

  5. SOLID STATE BATTERIES WITH CONDUCTING POLYMERS

    OpenAIRE

    Bénière , F.; Boils , D.; Cánepa , H.; Franco , J.; Le Corre , A.; Louboutin , J.

    1983-01-01

    The conducting polymers like (CH)x are very interesting materials for electrodes in electrochemical cells. We have combined such electrodes with solid electrolytes to build "all solid-state" batteries. The first prototypes using a silver anode and a silver conducting electrolyte have been working satisfactorily since two years. The performances have been tested with many batteries to study the electrical properties as well as the thermodynamical parameters. A number of cycles of charge-discha...

  6. Subcarrier MPSK/MDPSK modulated optical wireless communications in lognormal turbulence

    KAUST Repository

    Song, Xuegui; Yang, Fan; Cheng, Julian; Alouini, Mohamed-Slim

    2015-01-01

    Bit-error rate (BER) performance of subcarrier Mary phase-shift keying (MPSK) and M-ary differential phase-shift keying (MDPSK) is analyzed for optical wireless communications over the lognormal turbulence channels. Both exact BER and approximate

  7. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients.

    Science.gov (United States)

    Zhao, Li; Pinon, Arthur C; Emsley, Lyndon; Rossini, Aaron J

    2017-11-28

    Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C- 13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Development of a solid state laser of Nd:YLF

    International Nuclear Information System (INIS)

    Amaral Neto, R. do.

    1984-01-01

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories, thus having a high degree of nationalization. It initiates a broader project on lasers development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc.... Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations σ (1,053 μm) and π (1,047 μm) an active medium was prepared which was a cristalline plate with a convenient crystalographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mW, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials. (Author) [pt

  9. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orgren, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan for the customer.

  10. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  11. Guanidinium nonaflate as a solid-state proton conductor

    DEFF Research Database (Denmark)

    Chen, Xiaoli; Tang, Haolin; Putzeys, Tristan

    2016-01-01

    Protic organic ionic plastic crystals (POIPCs) are a type of novel solid-state proton conductors. In this work, guanidinium nonaflate ([Gdm-H][NfO]) is reported to be a model POIPC. Its structure-property relationship has been investigated comprehensively. Infrared analysis of [Gdm-H][NfO] and its....... In addition, POIPC-based solid-state proton conductors are also expected to find applications in sensors and other electrochemical devices....

  12. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  13. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. In general, all-solid-state cameras need to be improved in four areas before they can be used as wholesale replacements for tube cameras in exterior security applications: resolution, sensitivity, contrast, and smear. However, with careful design some of the higher performance cameras can be used for perimeter security systems, and all of the cameras have applications where they are uniquely qualified. Many of the cameras are well suited for interior assessment and surveillance uses, and several of the cameras are well designed as robotics and machine vision devices

  14. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A [INSTM RU at the Department of Chemistry of the University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Mattei, G; Mazzoldi, P [Department of Physics, CNISM and University of Padova, via Marzolo 8, 35131 Padova (Italy); Paz, E; Palomares, F J [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Cavigli, L, E-mail: cesar.dejulian@unifi.it [Department of Physics-LENS, University of Florence, via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO{sub 2} matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  15. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    International Nuclear Information System (INIS)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A; Mattei, G; Mazzoldi, P; Paz, E; Palomares, F J; Cavigli, L

    2010-01-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO 2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  16. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Science.gov (United States)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  17. Dual-polarization nonlinear Fourier transform-based optical communication system

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Perego, A. M.; da Silva, Edson Porto

    2018-01-01

    communication could potentially overcome these limitations. It relies on a mathematical technique called “nonlinear Fourier transform (NFT)” to exploit the “hidden” linearity of the nonlinear Schrödinger equation as the master model for signal propagation in an optical fiber. We present here the theoretical...

  18. Applications of photonic crystal fibers in optical communications - What is in the future?

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Lin, Chinlon

    2005-01-01

    Superior control of guiding properties in photonic-crystal fibers led to several interesting applications in optical communications ranging from nonlinear optical signal processing to high-power fiber amplifiers. This paper will review recent developments and discuss the future possibilities....

  19. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  20. Facilitated ion transport in all-solid-state flexible supercapacitors.

    Science.gov (United States)

    Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok

    2011-09-27

    The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society

  1. Acquisition and tracking for underwater optical communications

    Science.gov (United States)

    Williams, Andrew J.; Laycock, Leslie L.; Griffith, Michael S.; McCarthy, Andrew G.; Rowe, Duncan P.

    2017-10-01

    There is a growing requirement to transfer large volumes of data between underwater platforms. As seawater is transmissive in the visible band, underwater optical communications is an active area of interest since it offers the potential for power efficient, covert and high bandwidth datalinks at short to medium ranges. Short range systems have been successfully demonstrated using sources with low directionality. To realise higher data rates and/or longer ranges, the use of more efficient directional beams is required; by necessity, these must be sufficiently aligned to achieve the required link margin. For mobile platforms, the acquisition and tracking of each node is therefore critical in order to establish and maintain an optical datalink. This paper describes work undertaken to demonstrate acquisition and tracking in a 3D underwater environment. A range of optical sources, beam steering technologies, and tracking sensors have been assessed for suitability. A novel scanning strategy exploiting variable beam divergence was developed to provide robust acquisition whilst minimising acquisition time. A prototype system was assembled and demonstrated in a large water tank. This utilised custom quadrant detectors based on Silicon PhotoMultiplier (SiPM) arrays for fine tracking, and a Wide Field of View (WFoV) sCMOS camera for link acquisition. Fluidic lenses provided dynamic control of beam divergence, and AC modulation/filtering enabled background rejection. The system successfully demonstrated robust optical acquisition and tracking between two nodes with only nanowatt received optical powers. The acquisition time was shown to be dependent on the initial conditions and the transmitted optical power.

  2. Development of analog solid-state photo-detectors for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Bisogni, Maria Giuseppina; Morrocchi, Matteo

    2016-01-01

    Solid-state photo-detectors are one of the main innovations of past century in the field of sensors. First produced in the early forties with the invention of the p–n junction in silicon and the study of its optical properties, photo-detectors received a major boost in the sixties when the p-i-n (PIN) photodiode was developed and successfully used in several applications. The development of devices with internal gain, avalanche photodiodes (APD) first and then Geiger-mode avalanche photodiodes, named single photon avalanche diode (SPAD), leads to a substantial improvement in sensitivity and allowed single photon detection. Later on, thousands of SPADs have been assembled in arrays of few millimeters squared (named SiPM, silicon photo-multiplier) with single photon resolution. The high internal gain of SiPMs, together with other features peculiar of the silicon technology like compactness, speed and compatibility with magnetic fields, promoted SiPMs as the principal photo-detector competitor of photomultipliers in many applications from radiation detection to medical imaging. This paper provides a review of the properties of analog solid-state photo-detectors. Particular emphasis is given to latest advances on Positron Emission Tomography instrumentation boosted by the adoption of the silicon photo-detectors as an alternative to photomultiplier tubes (PMTs). Special attention is dedicated to the SiPMs, which are playing a key role in the development of innovative scanners.

  3. Development of analog solid-state photo-detectors for Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, Maria Giuseppina, E-mail: giuseppina.bisogni@pi.infn.it; Morrocchi, Matteo

    2016-02-11

    Solid-state photo-detectors are one of the main innovations of past century in the field of sensors. First produced in the early forties with the invention of the p–n junction in silicon and the study of its optical properties, photo-detectors received a major boost in the sixties when the p-i-n (PIN) photodiode was developed and successfully used in several applications. The development of devices with internal gain, avalanche photodiodes (APD) first and then Geiger-mode avalanche photodiodes, named single photon avalanche diode (SPAD), leads to a substantial improvement in sensitivity and allowed single photon detection. Later on, thousands of SPADs have been assembled in arrays of few millimeters squared (named SiPM, silicon photo-multiplier) with single photon resolution. The high internal gain of SiPMs, together with other features peculiar of the silicon technology like compactness, speed and compatibility with magnetic fields, promoted SiPMs as the principal photo-detector competitor of photomultipliers in many applications from radiation detection to medical imaging. This paper provides a review of the properties of analog solid-state photo-detectors. Particular emphasis is given to latest advances on Positron Emission Tomography instrumentation boosted by the adoption of the silicon photo-detectors as an alternative to photomultiplier tubes (PMTs). Special attention is dedicated to the SiPMs, which are playing a key role in the development of innovative scanners.

  4. Electro-Optical Design for Efficient Visual Communication

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.; Jobson, Daniel J.; Rahman, Zia-Ur

    1995-01-01

    Visual communication, in the form of telephotography and television, for example, can be regarded as efficient only if the amount of information that it conveys about the scene to the observer approaches the maximum possible and the associated cost approaches the minimum possible. Elsewhere we have addressed the problem of assessing the end to end performance of visual communication systems in terms of their efficiency in this sense by integrating the critical limiting factors that constrain image gathering into classical communications theory. We use this approach to assess the electro-optical design of image gathering devices as a function of the f number and apodization of the objective lens and the aperture size and sampling geometry of the phot-detection mechanism. Results show that an image gathering device that is designed to optimize information capacity performs similarly to the human eye. For both, the performance approaches the maximum possible, in terms of the efficiency with which the acquired information can be transmitted as decorrelated data, and the fidelity, sharpness, and clearity with which fine detail can be restored.

  5. Electro-optical design for efficient visual communication

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.; Jobson, Daniel J.; Rahman, Zia-ur

    1995-03-01

    Visual communication, in the form of telephotography and television, for example, can be regarded as efficient only if the amount of information that it conveys about the scene to the observer approaches the maximum possible and the associated cost approaches the minimum possible. Elsewhere we have addressed the problem of assessing the end-to-end performance of visual communication systems in terms of their efficiency in this sense by integrating the critical limiting factors that constrain image gathering into classical communication theory. We use this approach to assess the electro-optical design of image-gathering devices as a function of the f number and apodization of the objective lens and the aperture size and sampling geometry of the photodetection mechanism. Results show that an image-gathering device that is designed to optimize information capacity performs similarly to the human eye. For both, the performance approaches the maximum possible, in terms of the efficiency with which the acquired information can be transmitted as decorrelated data, and the fidelity, sharpness, and clarity with which fine detail can be restored.

  6. Entanglement in Solid-State Nanostructures

    NARCIS (Netherlands)

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  7. Structural and dynamic properties of solid state ionics

    International Nuclear Information System (INIS)

    Sakuma, T.

    1995-01-01

    The structural and dynamic properties of solid state ionics are reviewed. The low temperature phase transition of the copper halide-chalcogen compounds by specific heat measurements, electrical conductivity measurements and x-ray diffraction measurements are explained. The structures of solid state ionics investigated by the usual x-ray diffraction method and the anomalous x-ray scattering (AXS) measurement are discussed. The expression of the diffuse scattering intensity including the correlations among the thermal displacements of atoms has been given and applied to α-AgI type solid state ionics and lithium sulphate. The presence of low-energy excitations in crystalline copper ion conductors and the superionic conducting glass is investigated by neutron inelastic scattering measurements. The relation between the excitation energy and the mass of the cations is discussed. (author). 141 refs., 21 figs., 7 tabs

  8. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  9. Theory of the l-state population of Rydberg states formed in ion-solid collisions

    International Nuclear Information System (INIS)

    Kemmler, J.; Burgdoerfer, J.; Reinhold, C.O.

    1991-01-01

    The experimentally observed high-l-state population of ions excited in ion-solid interactions differs sharply from l-state populations produced in ion-atom collisions. We have studied the population dynamics of electronic excitation and transport within the framework of a classical transport theory for O 2+ (2-MeV/u) ions traversing C foils. The resulting delayed-photon-emission intensities are found to be in very good agreement with experiment. Initial phase-space conditions have been obtained from both classical-trajectory Monte Carlo calculations and random initial distributions. We find evidence that the very-high-l-state populations produced in ion-solid collisions are the result of a diffusion to high-l states under the influence of multiple scattering in the bulk of the solid

  10. Obstacle evasion in free-space optical communications utilizing Airy beams

    Science.gov (United States)

    Zhu, Guoxuan; Wen, Yuanhui; Wu, Xiong; Chen, Yujie; Liu, Jie; Yu, Siyuan

    2018-03-01

    A high speed free-space optical communication system capable of self-bending signal transmission around line-of-sight obstacles is proposed and demonstrated. Airy beams are generated and controlled to achieve different propagating trajectories, and the signal transmission characteristics of these beams around the obstacle are investigated. Our results confirm that, by optimising their ballistic trajectories, Airy beams are able to bypass obstacles with more signal energy and thus improve the communication performance compared with normal Gaussian beams.

  11. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  12. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  13. 20-meter underwater wireless optical communication link with 15 Gbps data rate

    KAUST Repository

    Shen, Chao

    2016-10-24

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (∼10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion. © 2016 Optical Society of America.

  14. 20-meter underwater wireless optical communication link with 15 Gbps data rate

    KAUST Repository

    Shen, Chao; Guo, Yong; Oubei, Hassan M.; Ng, Tien Khee; Liu, Guangyu; Park, Kihong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S.

    2016-01-01

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (∼10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion. © 2016 Optical Society of America.

  15. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  16. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  17. Rejuvenating direct modulation and direct detection for modern optical communications

    Science.gov (United States)

    Che, Di; Li, An; Chen, Xi; Hu, Qian; Shieh, William

    2018-02-01

    High-speed transoceanic optical fiber transmission using direct modulation (DM) and direct detection (DD) was one of the most stirring breakthroughs for telecommunication in 1990s, which drove the internet as a global phenomenon. However, the later evolution of optical coherent communications in 2000s gradually took over the long-haul applications, due to its superior optical spectral efficiency. Nowadays, DM-DD systems are dominant mainly in cost- and power-sensitive short-reach applications, because of its natural characteristics-the simplicity. This paper reviews the recent advances of DM-DD transceivers from both hardware and signal processing perspectives. It introduces a variety of modified DM and/or DD systems for 3 application scenarios: very-short-reach interconnect with little fiber channel impact; single or a few spans of fiber transmission up to several hundred km; and distance beyond the 2nd scenario. Besides the DM-DD and multi-dimension DM-DD with polarization diversity, this paper focuses on how to rejuvenate traditional DM and DD technologies in order to bridge the transmission application gap between DM-DD and coherent transceivers, using technologies such as dispersion compensation, signal field recovery from the intensity-only DD receiver, and complex direct modulation with coherent detection. More than 30 years since the birth, DM and DD still hold indispensable roles in modern optical communications.

  18. Digital semaphore: technical feasibility of QR code optical signaling for fleet communications

    OpenAIRE

    Lucas, Andrew R.

    2013-01-01

    Approved for public release; distribution is unlimited In recent decades, optical LOS communications such as flag semaphore or flashing light have atrophied to the point where, if they are required, U.S. Naval forces are at a distinct disadvantage. RF communications have become critical to nearly all operations, but this capability comes at the cost of disclosing the location of operations. Depending on the platform, these RF communications can become a critical vulnerability. EMCON attemp...

  19. Reduced complexity digital back-propagation methods for optical communication systems

    NARCIS (Netherlands)

    Napoli, A.; Maalej, Z.; Sleiffer, V.A.J.M.; Kuschnerov, M.; Rafique, D.; Timmers, E.; Spinnler, B.; Rahman, T.; Coelho, L.D.; Hanik, N.

    2014-01-01

    Next-generation optical communication systems will continue to push the ( bandwidth $cdot$ distance) product towards its physical limit. To address this enormous demand, the usage of digital signal processing together with advanced modulation formats and coherent detection has been proposed to

  20. Solid state insurrection how the science of substance made American physics matter

    CERN Document Server

    Martin, Joseph D

    2018-01-01

    Solid state physics—the study of the physical properties of solid matter—was far and away the most populous subfield of Cold War American physics. But despite prolific contributions to consumer and medical technology, such as the transistor and magnetic resonance imaging, it garnered much less professional prestige and public attention than nuclear and particle physics. Solid State Insurrection argues that solid state physics was nonetheless essential to securing the vast social, political, and financial capital Cold War physics enjoyed. Solid state’s technological bent, and its challenge to the “pure science” ideal many physicists cherished, helped physics as a whole respond more readily to Cold War social, political, and economic pressures. Solid state research kept physics economically and technologically relevant, sustaining its lofty cultural standing and policy influence long after the sheen of the Manhattan Project had faded. By placing solid state at the center of the story of twentieth cent...