WorldWideScience

Sample records for solid-state laser technology

  1. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  2. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  3. Advances in solid state laser technology for space and medical applications

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  4. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    Science.gov (United States)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  5. Solid State Laser Technology Development for Atmospheric Sensing Applications

    Science.gov (United States)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  6. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  7. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  8. Emerging solid-state laser technology by lidar/DIAL remote sensing

    Science.gov (United States)

    Killinger, Dennis

    1992-01-01

    Significant progress has been made in recent years in the development of new, solid-state laser sources. This talk will present an overview of some of the new developments in solid-state lasers, and their application toward lidar/DIAL measurements of the atmosphere. Newly emerging lasers such as Ho:YAG, Tm:YAG, OPO, and Ti:Sapphire will be covered, along with the spectroscopic parameters required for differential operational modes of atmospheric remote sensing including Doppler-Windshear lidar, Tunable laser detection of water/CO2, and broad linewidth OPO's for open path detection of pollutant hydrocarbon gases. Additional considerations of emerging laser technology for lidar/DIAL will also be covered.

  9. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  10. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  11. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  12. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  13. Extending solid state laser performance

    Science.gov (United States)

    Miesak, Ed

    2017-02-01

    Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.

  14. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  15. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  16. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  17. Solar-pumped solid state Nd lasers

    Science.gov (United States)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  18. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  19. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  20. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  1. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  2. Depletion mode pumping of solid state lasers

    International Nuclear Information System (INIS)

    Mundinger, D.; Solarz, R.; Beach, R.; Albrecht, G.; Krupke, W.

    1990-01-01

    Depletion mode pumping of solid state lasers is a new concept which offers features that are of interest for many practical applications. In this paper the authors discuss the physical properties and mechanisms that set the design requirements, present model calculations for a practical laser design, and discuss the results of recent experiments

  3. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    International Nuclear Information System (INIS)

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation

  4. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  5. Advanced Solid-state Lasers - to Ignition and Beyond

    International Nuclear Information System (INIS)

    Marshall, C.; Bibeau, C.; Orth, C; Meier, W.R.; Payne, S.; Sutton, S.

    1998-01-01

    This brochure concentrates on the diode-pumped solid-state laser. Surrounding it on the cover are some of the primary technological developments that make it a candidate for the means by which inertial confinement fusion will create inertial fusion energy as an inexhaustible source of electric power

  6. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  7. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  8. Laser Diode Pumped Solid State Lasers

    Science.gov (United States)

    1987-01-01

    Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to

  9. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  10. Solid-state lighting technology perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  11. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  12. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  13. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  14. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  15. Overview of solid state lasers with applications as LIDAR transmitters and optical image amplifiers

    International Nuclear Information System (INIS)

    Powell, R.C.; Basiev, T.T.; Zverev, P.G.

    2000-01-01

    Full text: This talk will review the current status of solid state lasers. Then a specific class of solid state lasers, Raman lasers, will be discussed as a specific example of new technology development. The spectroscopic properties of the materials are used in these lasers is presented and the use of these materials in shared-, coupled-, and external-resonator laser systems is described. System design parameters affecting efficiency, beam quality, and temporal pulse width are discussed. Examples will be presented of the use of these lasers for transmitters in atmospheric and marine imaging light detection and ranging (LIDAR) systems and in optical amplifiers

  16. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  17. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  18. Solid state laser applications in photovoltaics manufacturing

    Science.gov (United States)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  19. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  20. Solid state frequency conversion technology for remote sensing

    International Nuclear Information System (INIS)

    Velsko, S.P.; Webb, M.S.; Cook, W.M.; Neuman, W.A.

    1994-07-01

    Long range remote sensing from airborne or other highly mobile platforms will require high average power tunable radiation from very compact and efficient laser systems. The solid state laser pumped optical parametric oscillator (OPO) has emerged as a leading candidate for such high average power, widely tunable sources. In contrast to laboratory systems, efficiency and simplicity can be the decisive issues which determine the practicality of a particular airborne remote sensing application. The recent advent of diode laser pumped solid state lasers has produced high average power OPO pump sources which are themselves both compact and efficient. However, parametric oscillator technology which can efficiently convert the average powers provided by these pump sources remains to be demonstrated. In addition to the average power requirement, many airborne long range sensing tasks will require a high degree of frequency multiplexing to disentangle data from multiple chemical species. A key advantage in system simplicity can be obtained, for example, if a single OPO can produce easily controlled multispectral output. In this paper the authors address several topics pertaining to the conversion efficiency, power handling, and multispectral capabilities of OPOs which they are currently investigating. In Section 2, single pulse conversion efficiency issues are addressed, while average power effects are treated in Section 3. Section 4 is concerned with multispectral performance of a single OPO. The last section contains a short summary and some concluding remarks

  1. Diode-pumped solid state laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness

  2. The search for solid state fusion lasers

    International Nuclear Information System (INIS)

    Weber, M.J.

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs

  3. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  4. Progress in solid state dye laser development

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, R.E.

    1990-01-01

    A triaxial flashlamp (15 cm) was used to optically pump laser rods prepared from an acrylate based copolymer (0.95 cm O.D. {times} 10.0 cm L.). The performance of 13 laser dyes incorporated into this polymeric solid host is reported. The best lasing performance was obtained with sulforhodamine-B, with a calculated slope efficiency of 0.52% and a maximum single pulse output energy of 580 mJ. A commercially available fluorescent polymeric material was also evaluated. 12 refs., 2 figs.

  5. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    applications. Within the coming years, it is expected that the efficiency of blue laser diodes will approach the efficiency of infrared diode lasers. This will enable high efficiency white light generation with very high lumen per watt values. SSL today is mainly based on phosphor converted blue light emitting......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...... significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...

  6. Cladding for transverse-pumped solid-state laser

    Science.gov (United States)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  7. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  8. New infrared solid state laser materials for CALIOPE

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1994-01-01

    Tunable infrared laser light may serve as a useful means by which to detect the presence of the targeted effluents. Since optical parametric oscillators (OPOs) have proven to be a versatile method of generating coherent light from the ultraviolet to the mid-infrared, this technology is a promising choice by which to service the CALIOPE applications. In addition, since some uncertainty remains regarding the precise wavelengths and molecules that will be targeted, the deployment of OPOs retains the greatest amount of wavelength flexibility. Another approach that the authors are considering is that of generating tunable infrared radiation directly with a diode-pumped solid state laser (DPSSL). One important advantage of a DPSSL is that it offers flexible pulse format modes that can be tailored to meet the needs of a particular application and target molecule. On the other hand, direct generation by a tunable DPSSL will generally be able to cover a more limited wavelength range than is possible with OPO technology. In support of the CALIOPE objectives the authors are exploring the potential for laser action among a class of materials comprised of transition metal-doped zinc chalcogenide crystals (i.e., ZnS, ZnSe and ZnTe). The Cr 2+ , Co 2+ and Ni 2+ dopants were selected as the most favorable candidates, on the basis of their documented spectral properties in the scientific literature. Thus far, the authors have characterized the absorption and emission properties of these ions in the ZnS and ZnSe crystals. The absorption spectra are used to determine the preferred wavelength at which the crystal should be pumped, while the emission spectra reveal the extent of the tuning range potentially offered by the material. In addition, measurements of the emission lifetime as a function of temperature turn out to be quite useful, since this data is suggestive of the room temperature emission yield

  9. Solar Pumped High Power Solid State Laser for Space Applications

    Science.gov (United States)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  10. The future of diode pumped solid state lasers and their applicability to the automotive industry

    Science.gov (United States)

    Solarz, R.; Beach, R.; Hackel, L.

    1994-03-01

    The largest commercial application of high power lasers is for cutting and welding. Their ability to increase productivity by introducing processing flexibility and integrated automation into the fabrication process is well demonstrated. This paper addresses the potential importance of recent developments in laser technology to further impact their use within the automotive industry. The laser technology we will concentrate upon is diode laser technology and diode-pumped solid-state laser technology. We will review present device performance and cost and make projections for the future in these areas. Semiconductor laser arrays have matured dramatically over the last several years. They are lasers of unparalleled efficiency (greater than 50%), reliability (greater than 10,000 hours of continuous operation), and offer the potential of dramatic cost reductions (less than a dollar per watt). They can be used directly in many applications or can be used to pump solid-state lasers. When used as solid-state laser pump arrays, they simultaneously improve overall laser efficiency, reduce size, and improve reliability.

  11. Solid state lasers: a major direction in quantum electronics

    International Nuclear Information System (INIS)

    Shcherbakov, I.A.

    2004-01-01

    The aim of the report is to analyze development of solid-state lasers (SSL) as one of the most important avenues of the quantum electronics. The obtained intensity of a laser radiation at the focus equal to 5x10 1 0 W/cm 2 (the field intensity equal to about 5x10 1 0 V/cm 2 ) is noted to enable to observe nonlinear quantum- electrodynamic effects. Besides, one managed to increase the SSL efficiency conventionally equal to maximum 3% up to 48-50%. Paper describes new types of SSLs, namely, the crystalline fiber lasers with the lateral gradient of the index of refraction [ru

  12. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  13. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  14. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  15. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  16. High brightness diode-pumped organic solid-state laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  17. Aberrations and focusability in large solid-state-laser systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1981-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  18. Development of a solid state laser of Nd:YLF

    International Nuclear Information System (INIS)

    Amaral Neto, R. do.

    1984-01-01

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories, thus having a high degree of nationalization. It initiates a broader project on lasers development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc.... Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations σ (1,053 μm) and π (1,047 μm) an active medium was prepared which was a cristalline plate with a convenient crystalographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mW, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials. (Author) [pt

  19. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  20. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%

  1. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    International Nuclear Information System (INIS)

    Meier, W; Bibeau, C

    2005-01-01

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of ∼2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies

  2. Laser Based Phosphor Converted Solid State White Light Emitters

    Science.gov (United States)

    Cantore, Michael

    Artificial lighting and as a consequence the ability to be productive when the sun does not shine may be a profound achievement in society that is largely taken for granted. As concerns arise due to our dependence on energy sources with finite lifespan or environmentally negative effects, efforts to reduce energy consumption and create clean renewable alternatives has become highly valued. In the scope of artificial lighting, the use of incandescent lamps has shifted to more efficient light sources. Fluorescent lighting made the first big gains in efficiency over incandescent lamps with peak efficiency for mature designs reaching luminous efficacy of approximately 90 lm/W; more than three times as efficient as an incandescent lamp. Lamps based on light emitting diodes (LEDs) which can produce light at even greater efficiency, color quality and without the potential for hazardous chemical release from lamp failure. There is a significant challenge with LED based light sources. Their peak efficiency occurs at low current densities and then droops as the current density increases. Laser diodes (LDs) do not suffer from decreasing efficiency due to increased current. An alternative solid state light source using LDs has potential to make further gains in efficiency as well as allow novel illuminant designs which may be impractical or even impossible even with LED or other conventional sources. While similar to LEDS, the use of LDs does present new challenges largely due to the increased optical power density which must be accommodated in optics and phosphor materials. Single crystal YAG:Ce has been shown to be capable of enduring this more extreme operating environment while retaining the optical and fluorescing qualities desired for use as a wavelength converter in phosphor converted LD based white emitting systems. The incorporation of this single crystal phosphor in a system with a commercial laser diode with peak wall plug efficiency of 31% resulted in emission of

  3. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  4. Quantum technologies for solid state physics using cold trapped ions

    International Nuclear Information System (INIS)

    Ferdinand Schmidt-Kaler

    2014-01-01

    The quantum states of ions are perfectly controlled, and may be used for fundamental research in quantum physics, as highlighted by the Nobel Prize given to Dave Wineland in 2012. Two directions of quantum technologies, followed by the Mainz group, have high impact on solid state physics: I) The delivery of single cold ions on demand for the deterministic doping of solid state materials with nm spatial precision to generate design-structures optimized for quantum processors. II) The simulation of solid state relevant Hamiltonians with AMO systems of one or two dimensional arrays of trapped ions. I will talk about the recent progress in both fields. http://www.quantenbit.de/#Number Sign#/publications/(author)

  5. Solid-state lighting-a benevolent technology

    International Nuclear Information System (INIS)

    Schubert, E Fred; Kim, Jong Kyu; Luo Hong; Xi, J-Q

    2006-01-01

    Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting

  6. Solid state laser driver for an ICF reactor

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1988-01-01

    A conceptual design is presented of the main power amplifier of a multi-beamline, multi-megawatt solid state ICF reactor driver. Simultaneous achievement of useful beam quality and high average power is achieved by a proper choice of amplifier geometry. An amplifier beamline consists of a sequence of face-pumped rectangular slab gain elements, oriented at the Brewster angle relative to the beamline axis, and cooled on their large faces by helium gas that is flowing subsonically. The infrared amplifier output radiation is shifted to an appropriately short wavelength ( 10% (including all flow cooling input power) when the amplifiers are pumped by efficient high-power AlGaAs semiconductor laser diode arrays. 11 refs., 3 figs., 7 tabs

  7. Solid state lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 24, 25, 1991

    International Nuclear Information System (INIS)

    Dube, G.

    1991-01-01

    Topics presented include an upgrade of the LLNL Nova laser for inertial confinement fusion, the design and energy characteristics of a multisegment glass-disk amplifier, a wavemeter for tuning solid state lasers, and the fabrication of laser materials by laser-heated pedestal growth. Also presented are the suppression of relaxation oscillations in flash-pumped 2-micron lasers, diode pumping of tunable Cr-doped lasers, 2D periodic structures in a solid state laser resonator, and single-frequency solid state lasers and amplifiers

  8. Large aperture components for solid state laser fusion systems

    International Nuclear Information System (INIS)

    Simmons, W.W.

    1978-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality, resistance to damage, and overall performance of the several major components--amplifiers, Faraday isolators, spatial filters--in each amplifier train. Component development centers about achieving (1) highest functional material figure of merit, (2) best optical quality, and (3) maximum resistance to optical damage. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore Laboratory. Shiva comprises twenty amplifiers, each of 20 cm output clear aperture. Terawatt beams from these amplifiers are focused through two opposed, nested clusters of f/6 lenses onto such targets. Design requirements upon the larger aperture Nova laser components, up to 35 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry

  9. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  10. Diode-pumped two micron solid-state lasers

    International Nuclear Information System (INIS)

    Elder, I.F.

    1997-01-01

    This thesis presents an investigation of diode-pumped two micron solid-state lasers, concentrating on a comparison of the cw room temperature operation of Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Dopant concentrations in YAP were 4.2% thulium and 0.28% holmium; in YLF they were 6% thulium and 0.4% holmium. Thermal modelling was carried out in order to provide an insight into the thermal lensing and population distributions in these materials. Laser operation was achieved utilising an end-pumping geometry with a simple two mirror standing wave resonator. The pump source for these experiments was a 3 W laser diode. Maximum output power was achieved with Tm:YAP, generating 730 mW of laser output, representing 42% conversion efficiency in terms of absorbed pump power. Upper bounds on the conversion efficiency of Tm,Ho:YAP and Tm,Ho:YLF laser crystal of 14% and 30% were obtained, with corresponding output powers of 270 and 660 mW. In all three cases, the output beam was TEM 00 in nature. Visible upconversion fluorescence bands in the green and red were identified in Tm,Ho:YAP and Tm,Ho:YLF, with additional blue emission from the latter, all assigned to transitions on holmium. The principal upconversion mechanisms in these materials all involved the holmium first excited state. Upconversion in Tm:YAP was negligible. The spectral output of Tm:YAP consisted of a comb of lines in the range 1.965 to 2.020 μm. For both the double-doped crystals, the laser output was multilongitudinal mode on a single transition, wavelength 2.120 μm in YAP, 2.065 μm in YLF. In the time domain the output of Tm:YAP was dominated by large amplitude spiking, unlike both of the double-doped laser crystals. The long lifetime of the thulium upper laser level (4.4 ms) provided very weak damping of the spiking. Excitation sharing between thulium and holmium, with a measured characteristic lifetime in YAP of 11.9 μs and YLF of 14.8 μs, provided strong damping of any spiking behaviour. (author)

  11. Design of high power solid-state pulsed laser resonators

    International Nuclear Information System (INIS)

    Narro, R.; Ponce, L.; Arronte, M.

    2009-01-01

    Methods and configurations for the design of high power solid-state pulsed laser resonators, operating in free running, are presented. For fundamental mode high power resonators, a method is proposed for the design of a resonator with joined stability zones. In the case of multimode resonators, two configurations are introduced for maximizing the laser overall efficiency due to the compensation of the astigmatism induced by the excitation. The first configuration consists in a triangular ring resonator. The results for this configuration are discussed theoretically, showing that it is possible to compensate the astigmatism of the thermal lens virtually in a 100%; however this is only possible for a specific pumping power. The second configuration proposes a dual-active medium resonator, rotated 90 degree one from the other around the optical axis, where each active medium acts as an astigmatic lens of the same dioptric power. The reliability of this configuration is corroborated experimentally using a Nd:YAG dual-active medium resonator. It is found that in the pumping power range where the astigmatism compensation is possible, the overall efficiency is constant, even when increasing the excitation power with the consequent increase of the thermal lens dioptric power. (Author)

  12. Toward high brightness, multi-kilowatt solid state lasers

    International Nuclear Information System (INIS)

    Zapata, L.E.; Manes, K.R.

    1990-11-01

    High average power (HAP) solid state laser output with improved beam quality has introduced new capabilities in materials processing. At the 500 W level and with a beam quality of a ''few'' times the diffraction limit, the General Electric NY slab is able to drill 5 cm of stainless steel in a few seconds. We expect that 2--3 kW of near infrared laser output in a low order spatial mode would enable metal working now unknown to industry. The HAP output of slab lasers is limited by the size of the available laser crystals and the pump power. Core free, six cm diameter NY boules have been grown on an experimental basis. High optical quality NG can be obtained up to 10 cm in diameter. We present the results of our modeling based on these crystals pumped by advanced arc-lamps or laser diode arrays. We project HAP laser outputs of 1.6 kW from an existing Vortek pumped NG oscillator and about 2 kW from diode pumped NY device. Several kW of laser output can be expected from two such slabs in a MOPA configuration before optical damage limits are reached. The three dimensional stress-optic code which we used to optimize our designs, was normalized to available experimental data obtained with the above NG slab at the 500 W level and a 40 W diode pumped NY test bed. Our calculations indicate the essential parameters for attainment of high beam quality. Cooling uniformity across the pumped faces of the slab is critical and the location of the transition between pumped and un-pumped regions towards the slab tips is very important. A flat pumping profile was found to be desirable and predicted one wave of distortion which should be correctable over about 75% of the aperture however, an even better wavefront was predicted over 90% of the aperture when the regions near the edges of the slab were slightly over-pumped relative to the central regions and the regions near to the ends were tapered to compensate for transition effects

  13. Mode-locked solid state lasers using diode laser excitation

    Science.gov (United States)

    Holtom, Gary R [Boston, MA

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  14. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    Science.gov (United States)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  15. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  16. Single longitudinal mode operation of a solid-state dye laser oscillator

    CERN Document Server

    Lim, G; Kim, H S; Cha, B H; Lee, J M

    2000-01-01

    We have operated a single longitudinal mode of a solid-state dye laser oscillator in a Littman configuration. The host material of the solid-state gain medium was rhodamine dye-doped poly (methyl methacrylate). The pumping source was the second harmonic of a Nd:YAG laser with a repetition rate of 10 Hz. The measured linewidth of the laser output was about 1.5 GHz.

  17. Diode-pumped solid-state-laser drivers and the competitiveness of inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.

    1993-12-01

    Based on five technical advances at LLNL and a new systems-analysis code that we have written, we present conceptual designs for diode-pumped solid-state laser (DPSSL) drivers for Inertial Fusion Energy (IFE) power plants. Such designs are based on detailed physics calculations for the drive, and on generic scaling relationships for the reactor and balance of plant (BOP). We describe the performance and economics of such power plants, show how sensitive these results are to changes in the major parameters, and indicate how technological improvements can make DPSSL-driven IFE plants more competitive

  18. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    Science.gov (United States)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  19. Laser properties of Fe2+:ZnSe fabricated by solid-state diffusion bonding

    Science.gov (United States)

    Balabanov, S. S.; Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2018-04-01

    The characteristics of an Fe2+:ZnSe laser at room temperature and its active elements with undoped faces were studied. Polycrystalline elements with one or two diffusion-doped internal layers were obtained by the solid-state diffusion bonding technique applied to chemical vapor deposition grown ZnSe plates preliminary doped with Fe2+ ions in the process of hot isostatic pressing. A non-chain electric-discharge HF laser was used to pump the crystals. It was demonstrated that increasing the number of doped layers allows increasing the maximum diameter of the pump radiation spot and the pump energy without the appearance of transversal parasitic oscillation. For the two-layer-doped active element with a diameter of 20 mm an output energy of 480 mJ was achieved with 37% total efficiency with respect to the absorbed energy. The obtained results demonstrate the potential of the developed technology for fabrication of active elements by the solid-state diffusion bonding technique combined with the hot isostatic pressing treatment for efficient IR lasers based on chalcogenides doped with transition metal ions.

  20. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.

    Science.gov (United States)

    Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji

    2012-02-13

    A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

  1. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  2. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems

    Science.gov (United States)

    1991-03-15

    Received 30 November 1987; revised manuscript received 29 January 1988) Single crystals of lanthanum lutetium gallium garnet (LaLuGaG) were grown by...group may be realized it gar- dleternte itf other materials can be found with spectral nets formed with lanthanum occupying tile dodecaliedrial ,1nl...array-pumped Nd: YAG and Nd: Lu: YAG lasers," Opt. inates and gallates with the malilite structure," in Tunable Lett. 14, 116-118 (1989). Solid State

  3. LASERS: Stimulated emission in a solid-state ring laser with a stimulated Brillouin scattering mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'dyugin, Igor'M.; Zolotarev, M. V.; Krymskiĭ, M. I.; Oshkin, S. P.; Umnov, A. F.; Kharchenko, M. A.

    1990-06-01

    The results are presented of an experimental investigation of a solid-state ring laser with a stimulated Brillouin scattering mirror and lasing initiated by a series of ~ 200-300 ns pulses of 1.06 μm wavelength. It is shown that this laser may be useful for the development of a source with radiation parameters controlled by an external signal (energy, transverse and time structure) and also of a low-threshold mirror for phase self-conjugation of radiation.

  4. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-01-01

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0x10 -20 cm 2 . Up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm 3 Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse from a 3x3x30 mm 3 rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 μs pulses

  5. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    Science.gov (United States)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  6. System study of a diode-pumped solid-state-laser driver for inertial fusion energy

    International Nuclear Information System (INIS)

    Orth, C.D.; Payne, S.A.

    1995-01-01

    The present a conceptual design of a diode-pumped solid-state-laser (DPSSL) driver for an inertial fusion energy (IFE) power plant based on the maximized cost of electricity (COE) as determined in a comprehensive systems study. This study contained extensive detail for all significant DPSSL physics and costs, plus published scaling relationships for the costs of the target chamber and the balance of plant (BOP). Our DPSSL design offers low development cost because it is modular, can be fully tested functionally at reduced scale, and is based on mature solid-state-laser technology. Most of the parameter values that we used are being verified by experiments now in progress. Future experiments will address the few issues that remain. As a consequence, the economic and technical risk of our DPSSL driver concept is becoming rather low. Baseline performance at 1 GW e using a new gain medium [Yb 3+ -doped Sr 5 (PO 4 ) 3 F or Yb:S-FAP] includes a product of laser efficiency and target gain of ηG = 7, and a COE of 8.6 cents/kW·h, although values of ηG ≥ 11 and COEs ≤6.6 cents/kW·h are possible at double the assumed target gain of 76 at 3.7 MJ. We present a summary of our results, discuss why other more-common types of laser media do not perform as well as Yb:S-FAP, and present a simple model that shows where DPSSL development should proceed to reduce projected COEs

  7. Development of high power solid-state laser for inertial fusion energy driver

    International Nuclear Information System (INIS)

    Yoshida, K.; Yamanaka, M.; Nakatsuka, M.; Sasaki, T.; Nakai, S.

    1997-01-01

    The design study of the laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories, and industries in Japan and also with international collaborations. In the design of KOYO, the gain scaling of direct drive implosion with 0.35 μ m wavelength laser light is used. A driver of diode pumped solid state laser (DPSSL) generates 4 MJ/pulse with 12 Hz and the output pulses are switched to deliver the laser energy successively to four chambers, which operate with 3 Hz. The chamber wall is protected with thick liquid metal which flows down in a SiC woven tube. Following to the conceptual design study, the critical key issues which may affect the technical and economical feasibility of the commercial power plant KOYO have been examined. Research and development of some key technologies have been performed. As the results of the studies on KOYO, it is concluded that the technical and economical feasibility of laser fusion reactor is well in our scope to reach

  8. Diode pumped solid state laser by two diodes

    International Nuclear Information System (INIS)

    Li Mingzhong; Zhang Xiaomin; Liang Yue; Man Yongzai; Zhou Pizhang

    1995-01-01

    A Nd: YLF laser is pumped by home-made quantum well diode lasers. Datum of laser output energy 60 μJ and peak power 120 mw are observed at wavelength 1.047 μm. On the same pumping condition, the output power synchronously pumped by two diodes is higher than the total output power pumped by two diodes separately. The fluctuation is <3%. The results agree with theoretical analysis

  9. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...

  10. Generation of Laguerre-Gaussian Beams Using a Diode Pumped Solid-State Digital Laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2015-10-01

    Full Text Available The solid state digital laser was used in generation of Laguerre-Gaussian modes, LGpl, of different orders. This work demonstrates that we can generate high-order Laguerre-Gaussian modes with high purity using a digital laser....

  11. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  12. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    . Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance

  13. Measurement of product of solid state laser materials by an ...

    Indian Academy of Sciences (India)

    In this method a microchip laser is formed by keeping a small piece of the sample in plane–plane resonator and a diode laser (808 nm) is used for pumping. The pump power induced thermal lensing effect is used to make the cavity stable. The cavity mode area is estimated by measuring the thermal lens focal length at the ...

  14. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    Science.gov (United States)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  15. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  16. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available , Development of High Average Power Picosecond Laser Systems, Opto- Electronic Devices, (2002). INTRODUCTION A Nd:YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses... theoretical PQSML,th of 2.08W. Short-Pulse Generation in a Diode-End-Pumped Solid-State Laser S. Ngcobo1,2, C. Bollig1 and H. Von Bergmann2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2Laser Research Center, University...

  17. Design of all solid state tunable single-mode Ti: sapphire laser for nuclear industry

    International Nuclear Information System (INIS)

    Lee, J.H.; Nam, S.M.; Lee, Y.J.; Lee, J.M.; Horn, Roland E.; Wendt, Klaus

    1999-01-01

    We designed a Ti:Sapphire laser pumped by a diode laser pumped solid state laser (DPSSL). The DPSSL was intra-cavity frequency doubled and it had 20 W output power. The Ti:Sapphire laser was designed for single longitudinal mode lasing. For single mode lasing, the laser used several solid etalons. We simulated temporal evolution of the laser pulse and single pass amplification rate of the photons in each modes from rate equations. From the result, we found that single mode lasing is viable in this cavity

  18. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  19. Acquisition of an All-Solid State Femtosecond Laser System

    National Research Council Canada - National Science Library

    Apkarian, V

    2003-01-01

    ... of 160 fs, 800mW, at 1KHz. The output of the pump laser is split successively with 50% beam splitters, to use 200 mW beams to pump two home-built Non-collinear Optical Parametric Amplifiers (NOPA...

  20. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  1. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  2. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  3. High energy bursts from a solid state laser operated in the heat capacity limited regime

    Science.gov (United States)

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  4. High speed real-time wavefront processing system for a solid-state laser system

    Science.gov (United States)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  5. Laser solid sampling for a solid-state-detector ICP emission spectrometer

    International Nuclear Information System (INIS)

    Noelte, J.; Moenke-Blankenburg, L.; Schumann, T.

    1994-01-01

    Solid sampling with laser vaporization has been coupled to an ICP emission spectrometer with an Echelle optical system and a solid-state-detector for the analysis of steel and soil samples. Pulsation of the vaporized material flow was compensated by real-time background correction and internal standardization, resulting in good accuracy and precision. (orig.)

  6. The effect of transverse multi-mode oscillation in passively modelocked solid-state lasers

    Science.gov (United States)

    Agnesi, A.; Reali, G. C.; Gabetta, G.

    1992-03-01

    We demonstrate that the pulses from a passively mode-locked flashlamp pumped solid-state laser can be considerably shorter using an antiresonant-ring mirror than using a linear cavity with a standard contacted dye-cell mirror, and we suggest that transverse-mode-filtering effects in the antiresonant ring play an important role in explaining this difference.

  7. Enhanced 2D-image upconversion using solid-state lasers

    DEFF Research Database (Denmark)

    Pedersen, Christian; Karamehmedovic, Emir; Dam, Jeppe Seidelin

    2009-01-01

    the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high...

  8. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  9. Solid state pump lasers with high power and high repetition rate

    International Nuclear Information System (INIS)

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  10. Dynamics of injection locking in a solid-state laser with intracavity second-harmonic generation

    International Nuclear Information System (INIS)

    Zolotoverkh, I I; Lariontsev, E G

    2000-01-01

    The dynamics of oscillation in a solid-state laser with intracavity second-harmonic generation under the influence of an external signal at the second-harmonic frequency injected into its cavity in the presence of feedback at the double frequency is theoretically studied. Boundaries of the regions of injection locking for three stationary laser states differing in the nonlinear phase incursion caused by radiation conversion into the second harmonic are found. Relaxation oscillations in the stationary state of injection locking are studied. It is shown that the second relaxation frequency, which is related to phase perturbations of the second harmonic and perturbations of the phase difference of waves in a nonlinear crystal, is excited in a single-mode solid-state laser in addition to the fundamental frequency of relaxation oscillations. Conditions are found under which relaxation oscillations at the second relaxation frequency are excited. (lasers)

  11. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    International Nuclear Information System (INIS)

    Mori, Yoshitaka; Sekine, Takashi; Komeda, Osamu

    2014-01-01

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  12. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  13. Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries

    Science.gov (United States)

    Hördemann, C.; Anand, H.; Gillner, A.

    2017-08-01

    Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.

  14. New solid state opening switches for repetitive pulsed power technology

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, S K; Mesyats, G A; Rukin, S N; Slovikovskii, B G; Turov, A M [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics

    1997-12-31

    In 1991 the authors discovered a semiconductor opening switch (SOS) effect that occurs in p{sup +}-p-n-n{sup +} silicon structures at a current density of up to 60 kA/cm{sup 2}. This effect was used to develop high-power semiconductor opening switches in intermediate inductive storage circuits. The breaking power of the opening switches was as high as 5 GW, the interrupted current being up to 45 kA, reverse voltage up to 1 MV and the current interruption time between 10 and 60 ns. The opening switches were assembled from quantity-produced Russian-made rectifying diodes type SDL with hard recovery characteristic. On the basis of experimental and theoretical investigations of the SOS effect, new SOS diodes were designed and manufactured by the Electrophysical Institute. The paper gives basic parameters of the SOS diodes. The new diodes offer higher values of interrupted current and shorter times of current interruption together with a considerable increase in the energy switching efficiency. The new SOS diodes were used to develop repetitive all-solid-state pulsed generators with an output voltage of up to 250 kV, pulse repetition rate up to 5 kHz, and pulse duration between 10 and 30 ns. (author). 2 tabs., 3 figs., 4 refs.

  15. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  16. Bistability of self-modulation oscillations in an autonomous solid-state ring laser

    International Nuclear Information System (INIS)

    Dudetskii, V Yu

    2013-01-01

    Bistable self-modulation regimes of generation for a ring YAG : Nd chip laser with the counterpropagating waves asymmetrically coupled via backward scattering are simulated numerically. Two branches of bistable self-modulation regimes of generation are found in the domain of the parametric resonance between the selfmodulation and relaxation oscillations. The self-modulation regimes observed in earlier experiments pertain to only one of the branches. Possible reasons for such a discrepancy are considered, related to the influence of technical and natural noise on the dynamics of solid-state ring lasers. (control of laser radiation parameters)

  17. Stimulated emission in a solid-state ring laser with an SBS mirror

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, M.S.; Bel' diugin, I.M.; Zolotarev, M.V.; Krymskii, M.I.; Oshkin, S.P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror. 5 refs.

  18. Stimulated emission in a solid-state ring laser with an SBS mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'Diugin, I. M.; Zolotarev, M. V.; Krymskii, M. I.; Oshkin, S. P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror.

  19. A STUDY OF SOLID STATE LASER PASSIVE OPTICAL Q-SWITCHING OPERATION REGIME (Part 1

    Directory of Open Access Journals (Sweden)

    Ion LĂNCRĂNJAN

    2009-09-01

    Full Text Available This paper is the first of a four series treating, theoretically with experimental comparison, the issue of solid state laser passive optical Q-switching regime. In this first paper the technique of solid state lasers passive optical Q-switching is numerically investigated considering the case of longitudinally and transversally uniform photon, population inversion and absorption centres densities. The coupled differential equations defining photon, population inversion and absorption centres densities are numerically solved being the basis of passively optical Q-switched laser functional simulation. The numerical simulations are performed using the several software packages, mostly SCILAB programs. The developed SCILAB programs can be used for a large range of saturable absorption centre and active media parameters, mainly the initial (low signal optical transmittance of the passive optical Q-switch. The developed FORTRAN and SCILAB programs can be applied for passively Q-switched solid state lasers of several types emitting at several NIR wavelengths, in domain 1 ÷ 2 μm. For validating the numerical simulation results are compared with The results of the numerical simulation are compared with experimentally obtained ones, in the case of a LiF:F2- passively Q-switched Nd:YAG. A good agreement between the two kinds of results is observed.

  20. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  1. A Simple Approach for Enhancing the Output Performance of Solar-Pumped Solid-State Lasers

    Directory of Open Access Journals (Sweden)

    Dawei Liang

    2009-01-01

    Full Text Available A simple truncated fused silica elliptical cavity is proposed to enhance the output performance of solar-pumped solid-state lasers. The imaging property of the truncated elliptical cavity ensures an enhanced absorption distribution within an Nd:YAG rod. Optimum pumping parameters are found through ZEMAX nonsequential ray-tracing and LASCAD laser cavity analyses. Compared with the output laser performance of a 3D-compound parabolic concentrator-2D-compound parabolic concentrator (3D-CPC-2D-CPC cavity, the truncated cavity provides 11% more multimode and 72.7% more TEM00 laser powers. A laser beam of high beam quality can be produced efficiently. The standard tracking error for multimode laser power is also reduced to only 4.0% by the truncated cavity.

  2. Development of high repetition rate ultra-short pulse solid state lasers pumped by laser diodes

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi; Lu, Jianren; Takaichi, Kazunori; Yagi, Hideki; Yanagitani, Takakimi; Kaminskii, Alexander; Kawanaka, Junji

    2004-01-01

    A novel technique for ceramic lasers has been developed recently. Self-energy-driven sintering of nano-and micro particles created the fully transparent Nd:YAG ceramics. The ceramic YAG demonstrated high efficiency operation (optical-to-optical conversion of 60% in end pumping) and solid-phase crystals growth and the possible scaling were investigated principally. Typical performance of ceramic YAG laser has been reviewed. The present status and future prospect of the ceramic lasers technologies were discussed. (author)

  3. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  4. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. (Texas Univ., Houston, TX (United States). Cancer Center); Welch, A.J. (Texas Univ., Austin, TX (United States)); Motamedi, M. (Texas Univ., Galveston, TX (United States). Medical Branch); Rastegar, S. (Texas A and M Univ., College Station, TX (United States)); Tittel, F. (Rice Univ., Houston, TX (United States)); Esterowitz, L. (Naval Research Lab., Washington, DC (United States))

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  5. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  6. Diode laser pumped solid state laser. Part IV. ; Noise analysis. Handotai laser reiki kotai laser. 4. ; Noise kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-06-10

    Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.

  7. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    Science.gov (United States)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  8. Novel solid state lasers for Lidar applications at 2 μm

    Science.gov (United States)

    Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2005-09-01

    A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.

  9. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  10. Amplitude and frequency stabilized solid-state lasers in the near infrared

    International Nuclear Information System (INIS)

    Laporta, P.; Taccheo, S.; Marano, M.; Svelto, O.; Bava, E.; Galzerano, G.; Svelto, C.

    2001-01-01

    In this article we present a comprehensive review of the work done by our group on the amplitude and frequency stabilization of diode-pumped near-infrared solid-state lasers. In particular, we describe experiments based on single-mode Nd:YAG (1064 nm), Er-Yb:glass (1530-1560 nm), and Tm-Ho:YAG (2097 nm) lasers, end-pumped by semiconductor laser diodes. Amplitude stabilization is achieved by means of optoelectronic control loops sensing the laser intensity fluctuations and feeding back the error signal to the current of the pump diodes. Frequency stabilization is pursued using rovibrational molecular lines as absolute frequency references by means of various frequency locking techniques. The most interesting stability results are described in some detail whereas the wide literature cited through the paper provides for a useful reference list of related topics and experiments. (author)

  11. High efficiency single frequency 355 nm all-solid-state UV laser

    International Nuclear Information System (INIS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-01-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions. (paper)

  12. Damage resistant optics for a mega-joule solid-state laser

    International Nuclear Information System (INIS)

    Campbell, J.H.; Rainer, F.; Kozlowski, M.; Wolfe, C.R.; Thomas, I.; Milanovich, F.

    1990-01-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd +3 -phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd +3 -doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5--2 MJ Nd 3+ -glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 20 refs., 9 figs., 2 tabs

  13. Modeling and Implementing Nonlinear Equations in Solid-State Lasers for Studying their Performance

    Directory of Open Access Journals (Sweden)

    Ali Roudehghat Shotorbani

    2018-05-01

    Full Text Available In this paper, the effect of radius variation of beam light on output efficacy of SFD Yttrium aluminium borate laser doped with Neodymium ion, which is simultaneously a non-linear and active laser crystal, is investigated in a double-pass cavity. This is done with a concave lens that concentrates (Reduction of optical radius within nonlinear material as much optical laser as possible, resulting in increasing the laser efficiency, second harmonic and the population inversion difference. In this study, we first developed five discrete differential equations describing the interactions of 807 nm pump beam, 1060nm laser beam and 530nm second harmonic beam. Output efficiencies of laser and second harmonic beams at pumping power of Pp =20W and beam radius of 5μm have been presented. Meanwhile, in this paper, the first experiment for creating second harmonic in solid state lasers was fully described with a figure and its procedure was investigated and then the equations (second harmonic and laser and population inversion were studied. Radius variation of beam light aims at increasing laser output efficacy and improving second harmonic and population inversion. The analytic methods which have been solved the discrete differential equations via Matlab.

  14. Fabrication of a saturable absorber WS2 and its mode locking in solid-state laser

    Science.gov (United States)

    Zhang, Chun-Yu; Zhang, Ling; Tang, Xiao-Ying; Yang, Ying-Ying

    2018-04-01

    We report on a passively mode-locked Nd : LuVO4 laser using a type saturable absorber of tungsten disulfide (WS2) fabricated by chemical vapor deposition method. At the pump power of 3.3 W, 1.18-W average output power of continuous-wave mode-locked laser with optical conversion efficiency of 36% was achieved. To the best of our knowledge, this is the highest output power of passively mode-locked solid-state laser based on WS2. The repetition rate of passively mode-locked pulse was 80 MHz with the pulse energy of 14.8 nJ. Our experimental results show that WS2 is an excellent type of saturable absorber.

  15. Amplitude characteristics of a solid-state ring laser with active mode locking

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, E.M.; Klochan, E.L.; Lariontsev, E.G.

    1986-09-01

    A system of equations is obtained for the parameters of ultrashort light pulses (USLP) in a solid-state ring laser (SSRL) with periodic loss modulation. Allowance is made for the coupling between counterpropagating USLP due to backscattering in the modulator. The regime of counter-propagating wave frequency capture (CPWFC) is studied. It is shown that the coupling of counterpropagating waves due to backscattering at the modulator ends leads to the suppression of one of the counterpropagating waves during an increase in the detuning of the modulation frequency relative to its optimal value. The influence of rotation on the amplitude characteristics of an SSRL in the CPWFC regime is studied. 9 references.

  16. High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis

    Science.gov (United States)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.

  17. Solid State nuclear track detector - [Part] III : applications in science and technology

    International Nuclear Information System (INIS)

    Lal, Nand

    1992-01-01

    The present article describes the applications of solid state nuclear track detection techniques in different branches of science (e.g. life sciences, nuclear physics, cosmic ray and solar physics, earth sciences, teaching laboratories) and technology with selected examples from voluminous literature available on the subject. (author). 28 refs., 6 figs., 3 tabs

  18. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    International Nuclear Information System (INIS)

    1993-08-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC's), coplanar waveguide, and material characterization. Individual papers are abstracted separately on the data base

  19. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  20. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  1. Theoretical and experimental studies of optical feedback on solid-state lasers

    International Nuclear Information System (INIS)

    Kervevan, L.

    2006-12-01

    The main objective of this Phd thesis was to implement solid-state lasers based on codoped Yb 3+ :Er 3+ phosphate glasses pumped by laser diode and to study their behavior when submitted to an optical feedback. This kind of lasers presents as main advantages a very high sensibility to the optical feedback due to the optical properties of the Er 3+ ion enhancing the relaxation oscillations. Moreover, the emission wavelength around 1,535 μm belongs to the eye safe spectral domain. First, we have established the rate equations of the population inversion and the electric field for a three-level laser (Yb:Er) submitted to an optical feedback. We have done a comparative study of the influence of the amplifying medium (three-level system Yb:Er or four-level system LNA:Nd) and cavity parameters on the sensitivity due to the optical feedback. The home-made lasers were implemented in optical feedback experiments allowing original measurement of speed, absolute distance or vibration for optical detection of sound restitution. The fourth part of this thesis deals with the behavior a dual frequency laser submitted to a optical feedback. Such a laser oscillates simultaneously on two polarization eigenstates whose optical frequencies are slightly different. The beating mode between these two eigenstates allows self-heterodyne detection. (author)

  2. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  3. Direct growth of graphene on quartz substrate as saturable absorber for femtosecond solid-state laser

    International Nuclear Information System (INIS)

    Xu, S C; Man, B Y; Jiang, S Z; Chen, C S; Liu, M; Yang, C; Gao, S B; Zhang, C; Feng, D J; Huang, Q J; Hu, G D; Chen, X F

    2014-01-01

    We present a novel method for the direct metal-free growth of graphene on quartz substrate. The direct-grown graphene yields excellent nonlinear saturable absorption properties and is demonstrated to be suitable as a saturable absorber (SA) for an ultrafast solid-state laser. Nearly Fourier-limited 367 fs was obtained at a central wavelength of 1048 nm with a repetition rate of 105.7 MHz. At a pump power of 7.95 W, the average output power was 1.93 W and the highest pulse energy reached 18.3 nJ, with a peak power of 49.8 kW. Our work opens an easy route for making a reliable graphene SA with a mode-locking technique and also displays an exciting prospect in making low-cost and ultrafast lasers. (letter)

  4. Solid-state laser source of narrowband ultraviolet B light for skin disease care

    Science.gov (United States)

    Tarasov, Aleksandr A.; Chu, Hong

    2013-03-01

    We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.

  5. Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping

    Science.gov (United States)

    Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar

    1996-01-01

    Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.

  6. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; hide

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  7. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  8. Narrowband solid state vuv coherent source for laser cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Michan, J. Mario [TRIUMF (Canada); Polovy, Gene; Madison, Kirk W. [The University of British Columbia, Department of Physics and Astronomy (Canada); Fujiwara, Makoto C. [TRIUMF (Canada); Momose, Takamasa, E-mail: momose@chem.ubc.ca [The University of British Columbia, Department of Chemistry, Department of Physics and Astronomy (Canada)

    2015-11-15

    We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman-α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

  9. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    Science.gov (United States)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  10. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  11. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    Science.gov (United States)

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  12. Solid-state laser pumping with a planar compound parabolic concentrator.

    Science.gov (United States)

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.

  13. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-12-25

    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  14. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  15. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  16. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  17. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz

    2012-03-01

    TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.

  18. Novel laterally pumped by prism laser configuration for compact solid-state lasers

    International Nuclear Information System (INIS)

    Dascalu, T; Salamu, G; Sandu, O; Voicu, F; Pavel, N

    2013-01-01

    We propose a new laser configuration in which the pump radiation is coupled into the laser crystal through a prism. The laser medium is square shaped and the prism is attached on one of its lateral sides, near one of the crystal extremities. The diode-laser fiber end is placed close to the prism hypotenuse, the pump radiation is coupled into the laser crystal through the opposite surface of the prism and propagates into the crystal through total internal reflections. This laser geometry is simple to align and permits the realization of compact diode-pumped laser systems, as well as power scaling. A diode-pumped Nd:YAG laser yielding pulses of 2.1 mJ energy under a pump with pulses of 9.9 mJ is demonstrated. The laser slope efficiency is 0.22. Furthermore, this geometry enables one to obtain passively Q-switched lasers with the saturable absorber crystal placed between the resonator high-reflectivity mirror and the laser crystal. A Nd:YAG laser, passively Q-switched by a Cr 4+ :YAG crystal with initial transmission T 0 = 0.90, delivering laser output with a pulsed energy of 93 μJ, a duration of 26 ns and a pump threshold of 1.9 mJ, is realized in order to prove the concept. (letter)

  19. Harmonic mode-locking and sub-round-trip time nonlinear dynamics of electro-optically controlled solid state laser

    Science.gov (United States)

    Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.

    2018-03-01

    Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.

  20. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davis, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  1. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  2. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  3. Update on diode-pumped solid-state laser experiments for inertial fusion energy

    International Nuclear Information System (INIS)

    Marshall, C.; Smith, L.; Payne, S.

    1994-01-01

    The authors have completed the initial phase of the diode-pumped solid-state laser (DPSSL) experimental program to validate the expected pumping dynamics and extraction cross-sections of Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) crystals. Yb:S-FAP crystals up to 25 x 25 x 175 mm in size have been grown for this purpose which have acceptable loss characteristics ( 2 ). The saturation fluence for pumping has been measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain under saturated pumping conditions was measured. These measurements imply an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from purely spectroscopic techniques. The effects of radiation trapping on the emission lifetime have been quantified. The long lifetime of Yb:S-FAP has beneficial effects for diode-pumped amplifier designs, relative to materials with equivalent cross sections but shorter lifetimes, in that less peak pump intensity is required (thus lower diode costs) and that lower spontaneous emission rates lead to a reduction in amplified spontaneous emission. Consequently, up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm Yb:S-FAP amplifier rod; this stored energy density is large relative to typical flashlamp-pumped Nd:glass values of 0.3 to 0.5 J/cm 3 . A 2.4 kW peak power InGaAs diode array has been fabricated by Beach, Emanuel, and co-workers which meets the central wavelength, bandwidth, and energy specifications for the author's immediate experiments. These results further increase their optimism of being able to produce a ∼ 10% efficient diode-pumped solid state laser for inertial fusion energy

  4. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    Science.gov (United States)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many

  5. High-Efficiency, Ka-band Solid-State Power Amplifier Utilizing GaN Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop an efficient, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  6. High-Efficiency, Ka-Band Solid-State Power Amplifier Utilizing GaN Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop a high-efficiency, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  7. Lasers technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners

  8. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  9. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  10. Characterization of diode-laser stacks for high-energy-class solid state lasers

    Science.gov (United States)

    Pilar, Jan; Sikocinski, Pawel; Pranowicz, Alina; Divoky, Martin; Crump, P.; Staske, R.; Lucianetti, Antonio; Mocek, Tomas

    2014-03-01

    In this work, we present a comparative study of high power diode stacks produced by world's leading manufacturers such as DILAS, Jenoptik, and Quantel. The diode-laser stacks are characterized by central wavelength around 939 nm, duty cycle of 1 %, and maximum repetition rate of 10 Hz. The characterization includes peak power, electrical-to-optical efficiency, central wavelength and full width at half maximum (FWHM) as a function of diode current and cooling temperature. A cross-check of measurements performed at HiLASE-IoP and Ferdinand-Braun-Institut (FBH) shows very good agreement between the results. Our study reveals also the presence of discontinuities in the spectra of two diode stacks. We consider the results presented here a valuable tool to optimize pump sources for ultra-high average power lasers, including laser fusion facilities.

  11. Selective excitation of higher-radial-order Laguerre-Gaussian beams using a solid-state digital laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2017-01-01

    Full Text Available Filter (LF) was introduced to only transmit 1064 nm and block the 808 nm pump. The laser beam was transmitted out of the cavity through an output coupler mirror (M3 on Figure 1) and was 1:1 relay imaged using two 125 mm lenses (L3 and L4) to a Photon...; Published December 30, 2016 Citation: Bell T, Ngcobo S (2016) Selective Excitation of Higher-radial-order Laguerre-Gaussian Beams Using a Solid-state Digital Laser. J Laser Opt Photonics 3: 144. doi: 10.4172/2469-410X.1000144 Copyright: © 2016 Bell T, et...

  12. Solar pumping of solid state lasers for space mission: a novel approach

    Science.gov (United States)

    Boetti, N. G.; Lousteau, J.; Negro, D.; Mura, E.; Scarpignato, G. C.; Perrone, G.; Milanese, D.; Abrate, S.

    2017-11-01

    Solar pumped laser (SPL) can find wide applications in space missions, especially for long lasting ones. In this paper a new technological approach for the realization of a SPL based on fiber laser technology is proposed. We present a preliminary study, focused on the active material performance evaluation, towards the realization of a Nd3+ -doped fiber laser made of phosphate glass materials, emitting at 1.06 μm. For this research several Nd3+ -doped phosphate glass samples were fabricated, with concentration of Nd3+ up to 10 mol%. Physical and thermal properties of the glasses were measured and their spectroscopic properties are described. The effect of Nd3+ doping concentration on emission spectra and lifetimes was investigated in order to study the concentration quenching effect on luminescence performance.

  13. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Directory of Open Access Journals (Sweden)

    Roberto De Santis

    2018-03-01

    Full Text Available Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design/CAM (computer-aided manufacturing assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  14. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro

    2018-01-01

    Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683

  15. Solid-state laser source of narrowband ultraviolet B light for skin disease care with advanced performance

    Science.gov (United States)

    Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian

    2015-02-01

    Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.

  16. Self-oscillations in cw solid-state ultrashort-pulse-generating lasers with mode locking by self-focusing

    International Nuclear Information System (INIS)

    Kalashnikov, V L; Krimer, D O; Mejid, F; Poloiko, I G; Mikhailov, V P

    1999-01-01

    Steady-state and transient regimes of ultrashort pulse generation are studied for cw solid-state lasers with mode locking by self-focusing. It is shown that the control parameter, which governs the nature of lasing, is the relationship between self-phase-modulation and the saturation intensity of an efficient shutter, induced by the Kerr self-focusing. Numerical modelling based on mapping the parameters of a quasi-soliton ultrashort pulse, considered in the aberration-free approximation, yields results in good agreement with experiments. (control of laser radiation parameters)

  17. All-solid-state ultraviolet 330 nm laser from frequency-doubling of Nd:YLF red laser in CsB3O5

    International Nuclear Information System (INIS)

    Chen, Ming; Wang, Zhi-chao; Wang, Bao-shan; Yang, Feng; Zhang, Guo-chun; Zhang, Shen-jin; Zhang, Feng-feng; Zhang, Xiao-wen; Zong, Nan; Wang, Zhi-min; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Wu, Yi-cheng; Xu, Zu-yan

    2016-01-01

    We demonstrate an ultraviolet (UV) 330 nm laser from second-harmonic generation (SHG) of an all-solid-state Nd:YLF red laser in a CsB 3 O 5 (CBO) crystal for the first time, to our best knowledge. Under an input power of 4.8 W at 660 nm, a maximum average output power of 330 nm laser was obtained to be 1.28 W, corresponding to a frequency conversion efficiency of about 26.7%.

  18. Phase synchronization in a two-mode solid state laser: Periodic modulations with the second relaxation oscillation frequency of the laser output

    International Nuclear Information System (INIS)

    Hsu, Tzu-Fang; Jao, Kuan-Hsuan; Hung, Yao-Chen

    2014-01-01

    Phase synchronization (PS) in a periodically pump-modulated two-mode solid state laser is investigated. Although PS in the laser system has been demonstrated in response to a periodic modulation with the main relaxation oscillation (RO) frequency of the free-running laser, little is known about the case of modulation with minor RO frequencies. In this Letter, the empirical mode decomposition (EMD) method is utilized to decompose the laser time series into a set of orthogonal modes and to examine the intrinsic PS near the frequency of the second RO. The degree of PS is quantified by means of a histogram of phase differences and the analysis of Shannon entropy. - Highlights: • We study the intrinsic phase synchronization in a periodically pump-modulated two-mode solid state laser. • The empirical mode decomposition method is utilized to define the intrinsic phase synchronization. • The degree of phase synchronization is quantified by a proposed synchronization coefficient

  19. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, Marcin, E-mail: kubiak@imipkm.pcz.pl; Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew [Institute of Mechanics and Machine Design Foundations, Częstochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa (Poland); Stano, Sebastian [Welding Technologies Department, Welding Institute, Błogosławionego Czesława 16-18, 44-100 Gliwice (Poland)

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  20. Recent advances in the science and technology for solid state lighting

    Science.gov (United States)

    Munkholm, Anneli

    2003-03-01

    Recent development of high power light emitting diodes (LEDs) has enabled fabrication of solid state devices with efficiencies that surpass that of incandescent light, as well as providing a total light output significantly exceeding that of conventional indicator LEDs. This breakthrough in high flux is opening up new applications for use of high power LEDs, such as liquid crystal display backlighting and automotive headlights. Some of the key elements to this technological breakthrough are the flip-chip device design, power packaging and phosphor coating technology, which will be discussed. In addition to device design improvements, our fundamental knowledge of the III-nitride material system is improving and has resulted in higher internal quantum efficiencies. Strain plays a significant role in complex AlInGaN heterostructures used in current devices. Using a multi-beam optical strain sensor (MOSS) system to measure the wafer curvature in situ, we have characterized the strain during metal-organic chemical vapor deposition of III-nitrides. Strain measurements of InGaN, AlGaN and Si-doped GaN films on GaN will be presented.

  1. Skin effects, ion acoustic turbulence and anomalous transport in a non-isothermal solid-state plasma, produced by a power femtosecond laser

    International Nuclear Information System (INIS)

    Volkov, N.B.

    2001-01-01

    Results of the experiments, wherein the absorption of the laser intensive radiation with duration of 400 fs in aluminium target was studied, are explained. It is shown that electro-conductivity of the nonisothermal solid-state aluminium plasma was determined in these experiments by the ion-acoustic oscillations (ion-acoustic turbulence). Possible ways of theoretical description of the ion-acoustic turbulence and interaction of the nonisothermal solid-state plasma with powerful ultrashort laser radiation are discussed [ru

  2. Development of low temperature solid state joining technology of dissimilar for nuclear heat exchanger tube components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-08-15

    By conventional fusion welding process (TIG), a realization of reliable and sound joints for the nuclear heat exchanger components is very difficult, especially for the parts comprising of the dissimilar metal couples (Ti-STS, Ti-Cu alloy etc.). This is mainly attributed to the formation of brittle intermetallics (Ti{sub x}Cu{sub y}, Ti{sub x}Fe{sub y}, Ti{sub x}Ni{sub y} etc.) and wide difference in physical properties. Moreover, it usually employs very high thermal input, so making it difficult to obtain sound joints due to generations of high residual stresses and degradation of the adjacent base metals, even for similar metal combinations. In this project, the low temperature solid-state joining technology was established by developing new alloy fillers, e.g. the multi-component eutectic based alloys or amorphous alloys, and thereby lowering the joining temperature down to {approx}800 .deg. C without affecting the structural properties of base metals. Based on a low temperature joining, the interlayer engineering technology was then developed to be able to eliminate the brittleness of the joints for strong Ti-STS dissimilar joints, and the diffusion brazing technology of Ti-Ti with a superior joining strength and corrosion-resistance comparable to those of base metal were developed. By using those developed technologies, the joining procedures feasible for the heat exchanger components were finally established for the dissimilar metal joints including Ti tube sheet to super STS tube, Ti tube sheet to super STS tube sheet, and the joints of the Ti tube to Ti tube sheet

  3. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  4. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  5. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  6. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  7. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  8. Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist

    DEFF Research Database (Denmark)

    Balslev, Søren; Rasmussen, Torben; Shi, Peixiong

    2005-01-01

    We demonstrate grey scale electron beam lithography on functionalized SU-8 resist for fabrication of single mode solid state dye laser devices. The resist is doped with Rhodamine 6G perchlorate and the lasers are based on a first order Bragg grating distributed feedback resonator. The lasers...

  9. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  10. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    Science.gov (United States)

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  11. Comparison of eye-safe solid state laser DIAL with passive gas filter correlation measurements from aircraft and spacecraft

    Science.gov (United States)

    Hess, Robert V.; Staton, Leo D.; Wallio, H. Andrew; Wang, Liang-Guo

    1992-01-01

    Differential Absorption Lidar (DIAL) using solid state Ti:sapphire lasers finds current application in the NASA/LASE Project for H2O vapor measurements in the approximately = 0.820 micron region for the lower and mid-troposphere and in potential future applications in planned measurements of the approximately = 0.940 micron region where both strong and weak absorption lines enables measurements throughout the troposphere and lower stratosphere. The challenge exists to perform measurements in the eye-safe greater than 1.5 micron region. A comparison between DIAL and passive Gas Filter Correlation Radiometer (GFCR) measurements is made. The essence of the differences in signal to noise ratio for DIAL and passive GFCR measurements is examined. The state of the art of lasers and optical parametric oscillators (OPO's) is discussed.

  12. Investigation of the Effect of Small Hardening Spots Created on the Sample Surface by Laser Complex with Solid-State Laser

    Science.gov (United States)

    Nozdrina, O.; Zykov, I.; Melnikov, A.; Tsipilev, V.; Turanov, S.

    2018-03-01

    This paper describes the results of an investigation of the effect of small hardening spots (about 1 mm) created on the surface of a sample by laser complex with solid-state laser. The melted area of the steel sample is not exceed 5%. Steel microhardness change in the region subjected to laser treatment is studied. Also there is a graph of the deformation of samples dependence on the tension. As a result, the yield plateau and plastic properties changes were detected. The flow line was tracked in the series of speckle photographs. As a result we can see how mm surface inhomogeneity can influence on the deformation and strength properties of steel.

  13. Comprehensive study of electro-optic and passive Q-switching in solid state lasers for altimeter applications

    Science.gov (United States)

    Bhardwaj, Atul; Agrawal, Lalita; Pal, Suranjan; Kumar, Anil

    2006-12-01

    Laser Science and Technology Center (LASTEC), Delhi, is developing a space qualified diode pumped Nd: YAG laser transmitter capable of generating 10 ns pulses of 30 mJ energy @ 10 pps. This paper presents the results of experiments for comparative studies between electro-optic and passively Q-switched Nd: YAG laser in a crossed porro prism based laser resonator. Experimental studies have been performed by developing an economical bench model of flash lamp pumped Nd: YAG laser (rod dimension, \

  14. Improved solid-state laser sources. Final technical report, 2 June 1981-1 June 1982

    International Nuclear Information System (INIS)

    Byer, R.L.

    1982-08-01

    During the first program year we have demonstrated diffraction limited output of 600 mJ from an unstable resonator Nd:Glass slab geometry oscillator. We have investigated, in detail, slab geometry lasers and have verified by careful experiments all important predictions of the slab theory. To date we have generated 10 J of output energy at 2.5 Hz from a single multimode, non-Q-switched, slab oscillator at 3.5% storage efficiency, 2% slope efficiency and 1.6% extraction efficiency. We have doubled and Raman shifted the Q-switched 600 mJ slab glass oscillator. We have extended the slab concept to Nd:YAG. Preliminary measurements show that the slab geometry eliminates thermal focusing and stress induced birefringence in Nd:YAG. We have demonstrated the advantages of the miniature pedestal growth technology by growing Eu:Y 2 O 3 single crystal fibers in addition to Nd:YAG and sapphire single crystal fibers

  15. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  16. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  17. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  18. Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL)

    International Nuclear Information System (INIS)

    Lim, Daniel J; Ki, Hyungson; Mazumder, Jyoti

    2006-01-01

    A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 10 8 -10 9 W cm -2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases

  19. Self-seeded single-frequency solid-state ring laser and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  20. Determination of trace amounts of plutonium in environmental samples by RIMS using a high repetition rate solid state laser system

    International Nuclear Information System (INIS)

    Gruening, C.; Kratz, J.V.; Trautmann, N.; Waldek, A.; Huber, G.; Passler, G.; Wendt, K.

    2001-01-01

    A reliable and easy to handle high repetition rate solid state laser system has been set up for routine applications of Resonance Ionization Mass Spectrometry (RIMS). It consists of three Titanium-Sapphire (Ti:Sa) lasers pumped by one Nd:YAG laser, providing up to 3 W of tunable laser light each in a wavelength range from 725 nm to 895 nm. The isotope shifts for 238 Pu to 244 Pu have been measured in an efficient ionization scheme with λ 1 =420.76 nm, λ 2 =847.28 nm and λ 3 =767.53 nm. An overall detection efficiency of the RIMS apparatus of ε=1x10 -5 is routinely reached, resulting in a detection limit of 2x10 6 atoms (0.8 fg) of plutonium. The isotopic compositions of synthetic samples and the NIST standard reference material SRM996 were measured. The content of 238 Pu to 242 Pu has been determined in dust samples from the surroundings of a nuclear power plant and 244 Pu was determined in urine samples for the National Radiation Protection Board (NRPB), U.K. Routine operation of plutonium ultratrace detection could thus be established

  1. Studies of diode-pumped solid-state lasers based on Nd:KGW and Nd:YAG

    International Nuclear Information System (INIS)

    Ibrahim, Akram Yousif

    1996-01-01

    The experimental part of the thesis was dedicated to the studies of diode-pumped solid- state lasers. it includes experiments with end-pumped continuous wave (CW) Nd-doped crystals. In particular, we have concentrated to Nd:KGW, a relatively new and not studied in the literature about the laser materials. We have performed some basics measurements of this material. A fibre bundle coupled laser diode array was used as a pump source. We have investigated two main optical arrangements for the pump, allowing operation in two regimes: 1- Low pump power operation using selected output power from a single of the fibre bundle. 2- high pump power operation using the total output power from the bundle. The main parameters of the cavities we use (e.g. the cavity mode and the pumping spot size), were determined using the matrix approach and the equations for the propagation of the Gaussian beams. The highest output power obtained in this work for Nd:KGW with a transverse electromagnetic (TEM 0 0) single-mode, continuous (CW) operation, was 400 mW for 1700 mW pumping power from the diode laser. We present also data about the performance of a diode pumped Nd:YAG crystal. Our experiment shows that Nd:KGW is a promising material of low and medium pumping power levels. (Author)

  2. Recent progress in diode-pumped mid-infrared vibronic solid-state lasers

    International Nuclear Information System (INIS)

    Sorokina, I.T.; Sorokin, E.; Mirov, S.; Schaffers, K.

    2002-01-01

    Full text: The last few years were marked by the increased interest of researchers towards the new class of transition-metal doped zinc chalcogenides. In particular Cr:ZnSe attracts a lot of attention as broadly tunable continuous-wave (cw), mode-locked and diode-pumped lasers operating around 2.5 mm. This interest is explained by the absence of other comparable tunable room-temperature laser sources in this spectral region. However, another member of the II-VI compounds family Cr:ZnS, has yet remained barely studied as a laser medium. Recently we demonstrated the first continuous-wave room-temperature tunable over more than 280 nm around 2.3 μm Cr 2+ :ZnS laser, pumped with a Co:MgF2 laser and yielding over 100 mW of output power. The most recent result is the development of a compact tunable over 700 nm continuous-wave room-temperature Cr 2+ :ZnS laser, pumped by the diode-pumped Er-fiber laser at 1.6 μm and generating 0.7 W of the linearly polarized radiation. We also demonstrated direct diode-pumping at 1.6 μm of the Cr 2+ :ZnS. Although the Cr:ZnS exhibited lower (relatively to the Cr:ZnSe) efficiency and output power due to the higher passive losses of the available Cr:ZnS samples, the analysis of the spectroscopic and laser data indicates the high potential of Cr:ZnS for compact broadly tunable mid-infrared systems, as well as for high power applications. The physics of the novel diode-pumped laser systems is highly interesting. It comprises the features of the ion-doped dielectric crystalline lasers and semiconductors. For example, we observe in these media, for the first time to our knowledge, a new nonlinear phenomenon, which is analogous to the opto-optical switching process, where the laser output of the diode-pumped continuous-wave Cr:ZnSe and Cr:ZnS lasers around 2.5 μm is modulated by only a few milliwatt of the visible (470-500 nm) and near-infrared radiation (740-770 nm). We present a physical explanation of the observed effect. Refs. 4 (author)

  3. Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS

    Science.gov (United States)

    Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve

    2018-02-01

    Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.

  4. Laser materials development by means of a solid-state bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira

    2011-01-01

    This paper reviews laser materials development via a bonding method without adhesives. Instead of conventional chemical etching, a dry etching technique using an argon beam has been newly developed for the bonding method. This method meets the requirement for the use of optical materials. We succeeded in the fabrication of a composite laser crystal with good heat conductivity by bonding two kinds of crystals; one is neodymium-doped YVO 4 crystal (Nd:YVO 4 ) and the other is its host crystal YVO 4 . In the comparison of the laser performance between the normal and composite crystal, the composite one shows the good lasing capability of increasing laser output without fracture of the crystal due to thermal stress which appeared in the normal one. (author)

  5. Modeling of solid-state and excimer laser processes for 3D micromachining

    Science.gov (United States)

    Holmes, Andrew S.; Onischenko, Alexander I.; George, David S.; Pedder, James E.

    2005-04-01

    An efficient simulation method has recently been developed for multi-pulse ablation processes. This is based on pulse-by-pulse propagation of the machined surface according to one of several phenomenological models for the laser-material interaction. The technique allows quantitative predictions to be made about the surface shapes of complex machined parts, given only a minimal set of input data for parameter calibration. In the case of direct-write machining of polymers or glasses with ns-duration pulses, this data set can typically be limited to the surface profiles of a small number of standard test patterns. The use of phenomenological models for the laser-material interaction, calibrated by experimental feedback, allows fast simulation, and can achieve a high degree of accuracy for certain combinations of material, laser and geometry. In this paper, the capabilities and limitations of the approach are discussed, and recent results are presented for structures machined in SU8 photoresist.

  6. Development of diode-pumped solid-state laser HALNA for fusion reactor driver

    International Nuclear Information System (INIS)

    Kawashima, Toshiyuki; Kanabe, Tadashi; Matsumoto, Osamu

    2005-01-01

    The diode-pumped slab laser for inertial fusion energy driver has been demonstrated, which produces the 1053-nm output energy of 10 J at 10 Hz. The glass slab laser amplifier has been pumped by quasi-CW 290 kW AlGaAs laser-diode arrays at 803 nm. The optical system can compensate for thermal effects by use of zig-zag optical propagation, image-relayed telescope, and 45deg Faraday rotator. The output energy of 10.6 J at 1 Hz with the optical to optical conversion efficiency of 19.9% has been successfully obtained. Also the 10 Hz operation has been performed with a 5.1 J output energy. (author)

  7. Solar pumped laser technology options for space power transmission

    Science.gov (United States)

    Conway, E. J.

    1986-01-01

    An overview of long-range options for in-space laser power transmission is presented. The focus is on the new technology and research status of solar-pumped lasers and their solar concentration needs. The laser options include gas photodissociation lasers, optically-pumped solid-state lasers, and blackbody-pumped transfer lasers. The paper concludes with a summary of current research thrusts.

  8. Iodine photodissociation laser SOFIA with MOPO-HF as a solid-state oscillator

    Czech Academy of Sciences Publication Activity Database

    Dostál, Jan; Turčičová, Hana; Králiková, Božena; Král, Lukáš; Huynh, J.

    2009-01-01

    Roč. 97, č. 3 (2009), 687-694 ISSN 0946-2171 R&D Projects: GA ČR GA202/06/0814; GA MŠk(CZ) LC528; GA MŠk LN00A100 Grant - others:EC - 6FP LASERLAB-EUROPE(XE) RII3-CT-2003-506350 Program:FP6 Institutional research plan: CEZ:AV0Z10100523 Keywords : Iodine photodissociation laser * optical parametric amplification * chirped pulse * optical synchronization * stabilization of wavelength and pointing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.992, year: 2009

  9. Optimization of an intracavity Q-switched solid-state second order Raman laser

    Science.gov (United States)

    Chen, Zhiqiong; Fu, Xihong; Peng, Hangyu; Zhang, Jun; Qin, Li; Ning, Yongqiang

    2017-01-01

    In this paper, the model of an intracavity Q-switched second order Raman laser is established, the characteristics of the output 2nd Stokes are simulated. The dynamic balance mechanism among intracavity conversion rates of stimulated emission, first order Raman and second order Raman is obtained. Finally, optimization solutions for increasing output 2nd Stokes pulse energy are proposed.

  10. Micro-fabricated solid state dye lasers based on a photo-definable polymer

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Balslev, Søren; Gregersen, Misha Marie

    2005-01-01

    the commercially available laser dye Rhodamine 6G, which is incorporated into the SU-8 polymer matrix. The single-mode slab waveguide is formed by three-step spin-coating deposition: a buffer layer of undoped SU-8, a core layer of SU-8 doped with Rhodamine, and a cladding layer of undoped SU-8. (c) 2005 Optical...

  11. Solid-State Lighting 2017 Suggested Research Topics Supplement: Technology and Market Context

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-09-29

    A 2017 update to the Solid-State Lighting R&D Plan that is divided into two documents. The first document describes a list of suggested SSL priority research topics and the second document provides context and background, including information drawn from technical, market, and economic studies. Widely referenced by industry and government both here and abroad, these documents reflect SSL stakeholder inputs on key R&D topics that will improve efficacy, reduce cost, remove barriers to adoption, and add value for LED and OLED lighting solutions over the next three to five years, and discuss those applications that drive and prioritize the specific R&D.

  12. 100 J-level nanosecond pulsed diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Banerjee, S.; Mason, P.D.; Ertel, K.; Phillips, P.J.; De Vido, M.; Chekhlov, O.; Divoký, Martin; Pilař, Jan; Smith, J.; Butcher, T.; Lintern, A.; Tomlinson, S.; Shaikh, W.; Hooker, Ch.; Lucianetti, Antonio; Hernandez-Gomez, C.; Mocek, Tomáš; Edwards, Ch.; Collier, J.L.

    2016-01-01

    Roč. 41, č. 9 (2016), s. 2089-2092 ISSN 0146-9592 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027 Institutional support: RVO:68378271 Keywords : high average power * efficiency * amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.416, year: 2016

  13. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  14. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Ihlefeld, J. [Electronic, Optical, and Nanomaterials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  15. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    International Nuclear Information System (INIS)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V.; Ihlefeld, J.

    2014-01-01

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO 2 /(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  16. Increasing the mode-locking efficiency of a cw solid-state laser with an auxiliary cavity

    International Nuclear Information System (INIS)

    Kalashnikov, V.L.; Kalosha, V.P.; Mikhailov, V.P.; Demchuk, M.I.

    1992-01-01

    It is predicted theoretically that the efficiency of self-mode locking can be raised by means of a bleachable shutter in the main cavity or an auxiliary cavity. The laser emits a stable train of ultrashort pulses under these conditions. The theory is based on a fluctuation model of the operation of a cw solid-state laser with a linear auxiliary cavity. The increase in efficiency involves a broadening of the region of parameter values of the system in which self-mode locking occurs, a significant decrease in the threshold pump intensity, and a reduced sensitivity of the operation to the phase mismatch of the lengths of the cavities. It is shown, for the first time, that a stable train of double ultrashort pulses can be generated by a system with a shutter in the auxiliary cavity. It is also shown that a self-mode locking is possible in the case in which there is a phase mismatch of the cavity lengths and there is no phase self-modulation in the main cavity. 15 refs., 8 figs

  17. Power and Energy Storage Requirements for Ship Integration of Solid-State Lasers on Naval Platforms

    Science.gov (United States)

    2016-06-01

    flash lamp and is used to excite the bound electrons in the gain medium. This results in a 5 population inversion, which in turn creates laser...m3 [6]. Key attributes are that lead acid batteries tend to take on the order of hours to recharge and should not be discharged lower than 50 percent...higher energy density (~1000 MJ/m3) and a better discharge tolerance (~80 to 90 percent). Li-ion batteries work under the same simple premise of

  18. High energy, high average power solid state green or UV laser

    Science.gov (United States)

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  19. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  20. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  1. Laser Science and Technology Program Update 2001

    International Nuclear Information System (INIS)

    Chen, H L; Hackel, L A

    2002-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced solid-state lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the Nation and the Laboratory. A top, near-term priority is to provide technical support to the National Ignition Facility (NIF) to ensure activation success. LSandT provides the NIF Programs with core competencies and supports its economic viability. The primary objectives of LSandT activities in fiscal year (FY) 2001 have been threefold: (1) to support deployment of hardware and to enhance lasers and optics performance for NIF, (2) to develop advanced solid-state laser systems and optical components for the Department of Energy (DOE) and the Department of Defense (DoD), and (3) to invent, develop, and deliver improved concepts and hardware for other government agencies and U.S. industry. Special efforts have also been devoted to building and maintaining our capabilities in three technology areas: high-power solid-state lasers, high-power optical materials, and applications of advanced lasers

  2. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2016-11-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and cathodic vacuum arc plasma (CVAP technology has been developed for smart electrochromic (EC glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  3. Possibility of obtaining coherent short wave radiation from a solid state free electron laser

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Ketterson, J.B.

    1986-03-01

    The idea of using a crystal lattice or a superlattice as an undulator for a free electron laser is explored. A purely classical treatment of relativistic positrons channeling through the proposed structure involving a self consistent solution of the wave equation for the radiating electromagnetic field and the kinetic equation for the positron distribution function leads to a positive gain coefficient for a forward radiating field. Matching the Kumakhov resonance to the undulator frequency further enhances the gain. This result, combined with a feedback mechanism arising from Bragg diffraction within the basic crystal lattice, leads to an instability of the radiation inside the crystal. Finally a numerical estimate of the Kumakhov-enhanced gain coefficient is made for the (110) planar channeling in a strain modulated Si superlattice. 8 refs., 4 figs

  4. Solid state synthesis of chitosan and its unsaturated derivatives for laser microfabrication of 3D scaffolds

    Science.gov (United States)

    Akopova, T. A.; Demina, T. S.; Bagratashvili, V. N.; Bardakova, K. N.; Novikov, M. M.; Selezneva, I. I.; Istomin, A. V.; Svidchenko, E. A.; Cherkaev, G. V.; Surin, N. M.; Timashev, P. S.

    2015-07-01

    Chitosans with various degrees of deacetylation and molecular weights and their allyl substituted derivatives were obtained through a solvent-free reaction under shear deformation in an extruder. Structure and physical-chemical analysis of the samples were carried out using nuclear magnetic resonance (NMR), ultraviolet (UV) and infrared radiation (IR) spectroscopy. Photosensitive materials based on the synthesized polymers were successfully used for microfabrication of 3D well-defined architectonic structures by laser stereolithography. Study on the metabolic activity of NCTC L929 cultured in the presence of the cured chitosan extracts indicates that the engineered biomaterials could support adhesion, spreading and growth of adherent-dependent cells, and thus could be considered as biocompatible scaffolds.

  5. Solid state synthesis of chitosan and its unsaturated derivatives for laser microfabrication of 3D scaffolds

    International Nuclear Information System (INIS)

    Akopova, T A; Demina, T S; Istomin, A V; Svidchenko, E A; Cherkaev, G V; Surin, N M; Bagratashvili, V N; Bardakova, K N; Novikov, M M; Selezneva, I I; Timashev, P S

    2015-01-01

    Chitosans with various degrees of deacetylation and molecular weights and their allyl substituted derivatives were obtained through a solvent-free reaction under shear deformation in an extruder. Structure and physical-chemical analysis of the samples were carried out using nuclear magnetic resonance (NMR), ultraviolet (UV) and infrared radiation (IR) spectroscopy. Photosensitive materials based on the synthesized polymers were successfully used for microfabrication of 3D well-defined architectonic structures by laser stereolithography. Study on the metabolic activity of NCTC L929 cultured in the presence of the cured chitosan extracts indicates that the engineered biomaterials could support adhesion, spreading and growth of adherent-dependent cells, and thus could be considered as biocompatible scaffolds. (paper)

  6. CW-Laser-Induced Solid-State Reactions in Mixed Micron-Sized Particles of Silicon Monoxide and Titanium Monoxide: Nano-Structured Composite with Visible Light Absorption

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Tesař, J.; Kupčík, Jaroslav; Netrvalová, M.; Pola, M.; Jandová, Věra; Pokorná, Dana; Cuřínová, Petra; Bezdička, Petr; Pola, Josef

    2017-01-01

    Roč. 27, č. 6 (2017), s. 1640-1648 ISSN 1574-1443 Institutional support: RVO:61388980 ; RVO:67985858 Keywords : Cw CO2 laser heating * IR laser imaging * Silicon monoxide * Solid state redox reactions * Ti/Si/O composite * Titanium monoxide Subject RIV: CA - Inorganic Chemistry; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) OBOR OECD: Inorganic and nuclear chemistry; Chemical process engineering (UCHP-M) Impact factor: 1.577, year: 2016

  7. Laser-irradiated thermodynamic behaviors of spallation and recombination at solid-state interface

    International Nuclear Information System (INIS)

    Lai, H.-Y.; Huang, P.-H.

    2008-01-01

    A microscopic insight of interfacial spallation and recombination behaviors at multilayer thin-film interface induced by incident femtosecond pulsed laser is presented in this paper. Such two different aforementioned behaviors are investigated via the thermodynamic trajectories obtained by using standard Lennard-Jones (L-J) molecular dynamics (MD) simulation. Based on the simulation results, the interfacial damages of multilayer thin film are dominated by a critical threshold that induces an extraordinary expansive dynamics and phase transitions leading to the structural softened and tensile spallation at interface. The critical damage threshold is evaluated at around 8.5 J/m 2 which governs the possible occurrence of two different regimes, i.e. interfacial spallaiton and recombination. In interfacial damage region, quasi-isothermal thermodynamic trajectories can be observed after the interfacial spallation occurs. Moreover, the result of thermodynamic trajectories analyses indicates that, the relaxation of pressure wave may cause the over-heated interfacial zone to reduce volumetric density, thus leading to structural softness and even weaken interfacial structural strength. The crucial effect leading to the phenomenon of low tension spallation is identified

  8. Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs

    Science.gov (United States)

    Himamaheswara Rao, V.; Syam Prasad, P.; Mohan Babu, M.; Venkateswara Rao, P.; Satyanarayana, T.; Luís F., Santos; Veeraiah, N.

    2018-01-01

    Rare earth ion Dy3 +-doped tellurite glasses were synthesised in the system of (75-x)TeO2-15Sb2O3-10WO3-xDy2O3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy3 + ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484 nm along with less intense emissions around 662 and 751 nm. Various radiative properties of the 4F9/2 excited level of Dy3 + ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications.

  9. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  10. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    Science.gov (United States)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  11. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    Science.gov (United States)

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  12. Studies on reducing the thermal loads of solar-pumped solid state lasers; Taiyoko reiki laser no netsufuka teigen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K; Yugami, H; Naito, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    It was intended to reduce the thermal loads of solar-pumped solid state lasers (highly densified solar light is irradiated directly onto a laser medium to cause excitation. No electric power is required for the excitation.). For this purpose, experiments were performed by using a selective permeation film. Solar light includes wavelengths not effective for excitation, which causes heat generation and thermal loads such as lens heating effect and thermal stress compounded refraction, degrading the laser beam quality. The Nd:YAG was used as a laser medium, and a multi-layered film (composed of SiO2 and TiO2) which cuts wavelength below 500 nm as a selective permeation film to cut light having wavelengths not required for excitation. A laser transmitting experiment revealed that the slope efficiency is improved by 27% as compared to not using the film. Beam fluctuation was improved to 45%. Using the selective permeation film has realized more efficient conversion of the solar light into a beam with better quality. The results for calculation of heat lens effect by using temperature distribution simulation showed good agreement with experimental values. Using the selective permeation film can suppress the maximum temperature of a laser rod to 68%, as well as the thermal stress. 9 figs., 2 tabs.

  13. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  14. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    Science.gov (United States)

    Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia

    2017-12-01

    The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.

  15. Intensity noise cancellation in solid-state laser at 1.5  μm using SHG depletion as a buffer reservoir.

    Science.gov (United States)

    Audo, Kevin; Alouini, Mehdi

    2018-03-01

    An absorption mechanism based on second-harmonic generation (SHG) is successfully implemented as a buffer reservoir in a solid-state Er,Yb:Glass laser emitting at the telecom wavelength. We show that a slight absorption mechanism based on SHG rate conversion of 0.016% using a beta barium borate crystal enables the canceling out of the excess intensity noise at the relaxation oscillation frequency, i.e., 35 dB reduction, as well as canceling the amplified spontaneous emission beating at the free spectral range resonances of the laser lying in the gigahertz range. Laser robustness is discussed.

  16. A High-Energy Good-Beam-Quality Krypton-Lamp-Pumped Nd:YAG Solid-State Laser with One Pump Cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Sheng; WANG Zhi-Yong; YAN Xin; CAO Ying-Hua

    2008-01-01

    We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd:YAG solid-state laser with one pump cavity.The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad.The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms.The experimental results are consistent with the theoretical analysis and simulation.

  17. Outcome of solid-state 532 nm green laser in high-risk retinopathy of prematurity at a tertiary care centre in India.

    Science.gov (United States)

    Chhabra, Kanika; Kaur, Prempal; Singh, Karamjit; Aggarwal, Anand; Chalia, Dharamvir

    2018-02-01

    The purpose of this study was to analyse the outcome of solid-state green laser in high-risk retinopathy of prematurity (ROP) at a tertiary centre in India. Fifty-nine eyes of 30 infants with high-risk ROP were recruited in this prospective, interventional study. High-risk ROP included prethreshold type 1 ROP and APROP. Laser photocoagulation was performed with 532 nm solid-state green laser (Novus Spectra, Lumenis, GmbH, Germany). Of the 30 infants, 18 were males (60%) and 12 were females (40%). The mean birth weight was 1102.83 ± 196.27 g. The mean gestational age was 29.5 ± 1.47 weeks. Zone 1 disease was present in 10 eyes (16.95%) and zone 2 disease in 49 (83.05%) eyes. Out of 57 eyes with prethreshold type 1 ROP, 39 eyes (68.42%) had stage 2 and 18 eyes (31.58%) had stage 3. The postconceptional age at the time of treatment was 36.03 ± 2.32 weeks. The infants received mean 2710.24 ± 747.97 laser spots. Fifty (84.8%) eyes underwent laser in a single sitting and 9 eyes (15.2%) required 2 laser sittings. Mean time for regression of ROP was 5.8 ± 3.8 weeks (range 3-11 weeks). Total ROP regression was seen in 55 eyes (93.22%). Despite laser treatment, 4 (6.78%) eyes of three infants had unfavourable outcome. One infant developed intra-procedural bradycardia. Vitreous haemorrhage was seen in five eyes (8.4%). Solid-state 532 nm green laser is a safe and effective treatment for high-risk retinopathy of prematurity.

  18. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    International Nuclear Information System (INIS)

    Wang, Junfeng; Lu, Cong; Li, Shiqi

    2016-01-01

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  19. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Lu, Cong; Li, Shiqi, E-mail: sqli@hust.edu.cn

    2016-11-15

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  20. A Laser Technology Test Facility for Laser Inertial Fusion Energy (LIFE)

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Campbell, R.W.; Ebbers, C.A.; Freitas, B.L.; Latkowski, J.; Molander, W.A.; Sutton, S.B.; Telford, S.; Caird, J.A.

    2010-01-01

    A LIFE laser driver needs to be designed and operated which meets the rigorous requirements of the NIF laser system while operating at high average power, and operate for a lifetime of >30 years. Ignition on NIF will serve to demonstrate laser driver functionality, operation of the Mercury laser system at LLNL demonstrates the ability of a diode-pumped solid-state laser to run at high average power, but the operational lifetime >30 yrs remains to be proven. A Laser Technology test Facility (LTF) has been designed to specifically address this issue. The LTF is a 100-Hz diode-pumped solid-state laser system intended for accelerated testing of the diodes, gain media, optics, frequency converters and final optics, providing system statistics for billion shot class tests. These statistics will be utilized for material and technology development as well as economic and reliability models for LIFE laser drivers.

  1. All solid state mid-infrared dual-comb spectroscopy platform based on QCL technology

    Science.gov (United States)

    Hugi, Andreas; Geiser, Markus; Villares, Gustavo; Cappelli, Francesco; Blaser, Stephane; Faist, Jérôme

    2015-01-01

    We develop a spectroscopy platform for industrial applications based on semiconductor quantum cascade laser (QCL) frequency combs. The platform's key features will be an unmatched combination of bandwidth of 100 cm-1, resolution of 100 kHz, speed of ten to hundreds of μs as well as size and robustness, opening doors to beforehand unreachable markets. The sensor can be built extremely compact and robust since the laser source is an all-electrically pumped semiconductor optical frequency comb and no mechanical elements are required. However, the parallel acquisition of dual-comb spectrometers comes at the price of enormous data-rates. For system scalability, robustness and optical simplicity we use free-running QCL combs. Therefore no complicated optical locking mechanisms are required. To reach high signal-to-noise ratios, we develop an algorithm, which is based on combination of coherent and non-coherent averaging. This algorithm is specifically optimized for free-running and small footprint, therefore high-repetition rate, comb sources. As a consequence, our system generates data-rates of up to 3.2 GB/sec. These data-rates need to be reduced by several orders of magnitude in real-time in order to be useful for spectral fitting algorithms. We present the development of a data-treatment solution, which reaches a single-channel throughput of 22% using a standard laptop-computer. Using a state-of-the art desktop computer, the throughput is increased to 43%. This is combined with a data-acquisition board to a stand-alone data processing unit, allowing real-time industrial process observation and continuous averaging to achieve highest signal fidelity.

  2. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products

    Directory of Open Access Journals (Sweden)

    Musaalbakri Abdul Manan

    2017-12-01

    Full Text Available The promise of industrial biotechnology has been around since Chaim Weizmann developed acetone–butanol–ethanol fermentation at the University of Manchester in 1917 and the prospects nowadays look brighter than ever. Today’s biorefinery technologies would be almost unthinkable without biotechnology. This is a growing trend and biorefineries have also increased in importance in agriculture and the food industry. Novel biorefinery processes using solid state fermentation (SSF technology have been developed as alternative to conventional processing routes, leading to the production of added-value products from agriculture and food industry raw materials. SSF involves the growth of microorganisms on moist solid substrate in the absence of free-flowing water. Future biorefineries based on SSF aim to exploit the vast complexity of the technology to modify biomass produced by agriculture and the food industry for valuable by-products through microbial bioconversion. In this review, a summary has been made of the attempts at using modern microbial SSF technology for future biorefineries for the production of many added-value products ranging from feedstock for the fermentation process and biodegradable plastics to fuels and chemicals.

  3. Development of solid-state joining technology of dissimilar metals using amorphous metastable alloy powders

    International Nuclear Information System (INIS)

    Lee, Min Ku; Rhee, Chang Kyu; Uhm, Young Rang; Park, Jin Ju; Lee, Jeong Gu; Kim, Gwang Ho; Hong, Sung Mo; Lee, Jong Geuk; Kim, Kyoung Ho

    2007-04-01

    Many nuclear components such as nozzles, steam generator, pipes, condensers, and heat exchangers require a realization of the reliable and high-performance joining or welding between the dissimilar metals or alloys, despite the fact that their melting points, thermal expansion coefficients and physical properties are quite different from each other. The conventional arc welding processes (SMAW, TIG), however, which is currently used as a welding process for NPP components, have not met the requirements of obtaining a reliable and high-quality dissimilar joints, as demonstrated from a number of the previously reported accidents or material failures in the welded joints. This originates from the various weaknesses of the arc welding processes (more than 1700 .deg. C) such as high residual stresses which is sensitive to SCC, porous or deformed joint structures, a formation of grain-coarsened HAZ and an induced degradation of the base metals in the vicinity of the joint. Moreover, they are not applicable to a joining of the dissimilar metals when their melting point or mechanical/physical properties are quite different. In this research, the low-temperature joining (700 .deg. C - 800 .deg. C) and simultaneously strong diffusion bonding technologies between the dissimilar Ti and Cu metals have been developed for the applications to the dissimilar joints of various nuclear tube components

  4. Laser Science and Technology Program Update 2002

    International Nuclear Information System (INIS)

    Hackel, L A; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LSandT activities during 2002 focused on seven major areas: (1) NIF Project--LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3ω optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  5. Optimisation of the parameters of a pump chamber for solid-state lasers with diode pumping by the optical boiler method

    Energy Technology Data Exchange (ETDEWEB)

    Kiyko, V V; Kislov, V I; Ofitserov, E N; Suzdal' tsev, A G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    A pump chamber of the optical boiler type for solid-state lasers with transverse laser diode pumping is studied theoretically and experimentally. The pump chamber parameters are optimised using the geometrical optics approximation for the pump radiation. According to calculations, the integral absorption coefficient of the active element at a wavelength of 808 nm is 0.75 – 0.8 and the relative inhomogeneity of the pump radiation distribution over the active element volume is 17% – 19%. The developed pump chamber was used in a Nd:YAG laser. The maximum cw output power at a wavelength of 1064 nm was ∼480 W at the optical efficiency up to 19.6%, which agrees with theoretical estimates. (lasers)

  6. Development of all solid-state, high average power ultra-short pulse laser for X-ray generation. High average power CPA system and wavefront control of ultra short laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Harayama, Sayaka; Akaoka, Katsuaki; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Maruyama, Yoichiro; Matoba, Toru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We developed a prototype CPA laser system which is pumped by a all solid-state Nd:YAG laser. In a preliminary experiment, the output energy of 52mJ before compression was obtained when the pumping energy was 250mJ. To compensate the wavefront distortion, an adaptive optics has been developed. By using this wavefront control system, the laser beam with the distortion of 0.15{lambda} was obtained. (author)

  7. Power and Thermal Technologies for Air and Space. Delivery Order 0001: Single Ionic Conducting Solid-State Electrolyte

    National Research Council Canada - National Science Library

    Turner, Allen

    2005-01-01

    This report focuses on the development of a lithium-ion conducting channel as a solid-state electrolyte for rechargeable lithium batteries through the use of thin films of dilithium phthalocyanine (Li2Pc...

  8. Technological laser application

    International Nuclear Information System (INIS)

    Shia, D.O.; Kollen, R.; Rods, U.

    1980-01-01

    Problems of the technological applications of lasers are stated in the popular form. Main requirements to a technological laser as well as problems arising in designing any system using lasers have been considered. Areas of the laser applications are described generally: laser treatment of materials, thermal treatment, welding, broach and drilling of holes, scribing, microtreatment and adjustment of resistors, material cutting, investigations into controlled thermonuclear fussion

  9. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  10. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  11. Efficient near diffraction limited blue light source by sum-frequency mixing of a BAL and a solid-state laser

    DEFF Research Database (Denmark)

    Sørensen, Knud Palmelund; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2011-01-01

    and slow axis of the diode, respectively. The BAL output beam is single-passed through a periodically poled KTiOPO4 (PPKTP) crystal placed in an intra-cavity beam waist of a 1064 nm Nd:YVO4 laser, resulting in 100 mW of sum-frequency generated blue output power. This corresponds to a power conversion......Sum-frequency mixing of an 808 nm broad area laser (BAL) with a build-in grating structure for spectral control and a 1064 nm solid-state laser is experimentally investigated. The spectrally improved 20 mu m wide BAL can deliver up to 700 mW of output power with an M-2 of 1.4 and 5.3 in the fast...

  12. TiO{sub 2} nanocrystals synthesized by laser pyrolysis for the up-scaling of efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Melhem, Hussein; Boucharef, Mourad; Di Bin, Catherine; Ratier, Bernard; Boucle, Johann [XLIM UMR 6172 Universite de Limoges/CNRS, Limoges Cedex (France); Simon, Pardis; Leconte, Yann; Herlin-Boime, Nathalie [IRAMIS/SPAM/LFP, CEA-CNRS URA 2453, CEA Saclay, Gif sur Yvette (France); Beouch, Layla; Goubard, Fabrice [Laboratoire de Physico-Chimie des Polymeres et des Interfaces (LPPI), Federation Institut des Materiaux (FD 4122), Universite de Cergy-Pontoise (France)

    2011-10-15

    A crucial issue regarding emerging nanotechnologies remains the up-scaling of new functional nanostructured materials towards their implementation in high performance applications on a large scale. In this context, we demonstrate high efficiency solid-state dye-sensitized solar cells prepared from new porous TiO{sub 2} photoanodes based on laser pyrolysis nanocrystals. This strategy exploits a reduced number of processing steps as well as non-toxic chemical compounds to demonstrate highly porous TiO{sub 2} films. The possibility to easily tune the TiO{sub 2} nanocrystal physical properties allows us to demonstrate all solid-state dye-sensitized devices based on a commercial benchmark materials (organic indoline dye and molecular hole transporter) presenting state-of-the-art performance comparable with reference devices based on a commercial TiO{sub 2} paste. In particular, a drastic improvement in pore infiltration, which is found to balance a relatively lower surface area compared to the reference electrode, is evidenced using laser-synthesized nanocrystals resulting in an improved short-circuit current density under full sunlight. Transient photovoltage decay measurements suggest that charge recombination kinetics still limit device performance. However, the proposed strategy emphasizes the potentialities of the laser pyrolysis technique for up-scaling nanoporous TiO{sub 2} electrodes for various applications, especially for solar energy conversion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  14. Numerical study on the selective excitation of Helmholtz-Gauss beams in end-pumped solid-state digital lasers with the control of the laser gain transverse position provided by off-axis end pumping

    Science.gov (United States)

    Tsai, Ko-Fan; Chu, Shu-Chun

    2018-03-01

    This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.

  15. High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology.

    Science.gov (United States)

    Fan, Xiulin; Yue, Jie; Han, Fudong; Chen, Ji; Deng, Tao; Zhou, Xiuquan; Hou, Singyuk; Wang, Chunsheng

    2018-04-24

    Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na 2 S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na 2 S cathodes by fabricating Na 2 S-Na 3 PS 4 -CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na 3 PS 4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na 2 S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na 2 S-Na 3 PS 4 -CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.

  16. 1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser

    International Nuclear Information System (INIS)

    Mori, Y.; Komeda, O.; Nakayama, S.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Kawashima, T.; Kan, H.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Hioki, T.; Kakeno, M.; Motohiro, T.; Nishimura, Y.

    2013-01-01

    A Ti : sapphire laser HAMA pumped by a diode-pumped solid-state laser (DPSSL) is developed to enable a high-repetitive inertial confinement fusion (ICF) experiment to be conducted. To demonstrate a counter-irradiation fast-heating fusion scheme, a 3.8 J, 0.4 ns amplified chirped pulse is divided into four beams: two counter-irradiate a target with intensities of 6 × 10 13 W cm −2 , and the remaining two are pulse-compressed to 110 fs for heating the imploded target with intensities of 2 × 10 17 W cm −2 . HAMA contributed to the first demonstration by showing that a 10 J class DPSSL is adaptable to ICF experiments and succeeded in DD neutron generation in the repetition mode. Based on HAMA, we can design and develop an integrated repetitive ICF experiment machine by including target injection and tracking. (paper)

  17. Plasma satellites of X-ray spectral lines of ions in a plasma of solid-state targets, heated by a picosecond laser pulse

    International Nuclear Information System (INIS)

    Belyaev, V.S.; Vinogradov, V.I.; Kurilov, A.S.; Matafonov, A.P.; Lisitsa, V.S.; Gavrilenko, V.P.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I.; Pikuz, S.A.

    2003-01-01

    The results of measuring the ions X-ray spectral lines by the interaction of the picosecond laser pulses with the solid-state target are presented. The spectra of the X-ray radiation were observed on the fluorine ion line. The spectral lines satellites, testifying to the availability, are identified. The position of the satellites and the distance between them make it possible to connect them with the intensive electrostatic oscillations with the amplitude, exceeding 10 8 V/cm, and the frequency close to 7 x 10 14 s -1 , substantially lower than the laser wave frequency. The experimental results are compared with the calculated data on the multicharge ions spectra [ru

  18. Theoretical and experimental study of two-frequency solid-state lasers in the GHz to THz ranges. Opto-microwave applications waves

    International Nuclear Information System (INIS)

    Lai, N.D.

    2003-07-01

    We explored some new features of single- and dual-frequency solid-state lasers oscillating in continuous-wave or pulsed regimes. First, we have developed some techniques to optimise the characteristics of pulsed lasers. A weak modulation of the pump power made it possible to obtain a stable repetition rate with a relative stability of 10 -6 . The pulse duration was continuously controlled from ten nanoseconds to a few hundreds nanoseconds by three different methods: adjustment of the laser beam diameter in the absorber, adjustment of the pump beam diameter in the active medium, and, in particular, the use of forked eigenstates in a two-axis laser. Moreover, the forked eigenstates allows to increase the pulse energy by coherent addition of the pulses. A compact two-frequency Nd:YAG-Cr:YAG laser with a beat note frequency continuously adjustable up to 2,7 GHz was demonstrated. The two-frequency pulses are ideal sources to meet various needs of applications such as the Doppler lidar-radar. Moreover, we show that two-frequency pulses at 1,55 μm can be obtained by using a new c-cut Co:ASL saturable absorber in an Er-Yb:glass laser. These pulses are perfectly adapted to free-space detection systems requiring eye safety. The coherence time of the beat note in these lasers was also studied: it is limited by the pulse duration. A new technique of modulating the pump power of a solid-state laser at frequencies close to its relaxation oscillation frequency was studied and made it possible to generate a beat note coherence from pulse to pulse. Frequency conversion techniques using the nonlinear optical effects make it possible to obtain tunable two-frequency sources in the visible spectrum. Green and red two-frequency pulses were obtained by using different conversion techniques, intra-cavity or extra-cavity. A two-frequency THz source in the red spectrum was also obtained by doubling the frequencies of a two-frequency THz Er-Yb:glass laser using a mixed fan-out PPLN crystal

  19. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  20. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  1. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    Science.gov (United States)

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  2. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  3. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  4. Atmospheric measurements of OH, HO2 and NO by laser-induced fluorescence spectroscopy using a compact all solid-state laser system

    Science.gov (United States)

    Bloss, W. J.; Floquet, C.; Gravestock, T. J.; Heard, D. E.; Ingham, T.; Johnson, G. P.; Lee, J. D.

    2003-04-01

    Free-radicals are key intermediates that control the budgets of many trace gases, for example ozone, greenhouse gases and harmful pollutants. Measurement of radicals and comparison with model calculations constitutes an important test of our understanding of the underlying chemistry. There is a greater need for compact and lightweight instruments for the in situ measurement of free-radical species that are suitable for deployment from a number of field-platforms. A new field instrument has been developed that incorporates an all solid-state Nd:YAG pumped titanium sapphire laser that is capable of generating radiation at high pulse-repetition-frequency for the detection of OH, HO_2, NO and IO radicals in the atmosphere by laser induced fluorescence (LIF). The system offers advantages of wide wavelength tunability, compactness, low weight, greater long-term stability (fibre-optic delivery) and short warm-up time. The instrument was successfully deployed during 2002 in the NAMBLEX field campaign at Mace Head with detection limits for OH and HO_2 (measured simultaneously with laser operation at 308 nm) of 3.1 x 10^5 molecule cm-3 (0.012 ppt) and 2.6 x 10^6 molecule cm-3 (0.09 pptv) respectively. Diurnal profiles of OH have been recorded over a period of 5 weeks. NO controls the HO_2/OH ratio and is the critical parameter in the production of tropospheric ozone, yet measurements in the boundary layer are restricted to a single indirect technique based on chemiluminescent analysers. Measurements of NO in the atmosphere have been made by LIF using the new instrument operating at 226 nm, with absolute concentrations in good agreement with simultaneous measurements made using a commercial chemiluminescent analyser. Whilst operating at 445 nm, the instrument has detected the IO radical in the laboratory, with a projected detection limit that is well below previously measured atmospheric concentrations of IO. A second instrument to be deployed on an aircraft platform is

  5. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  6. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff; Hitz, C Breck; John Wiley & Sons

    2001-01-01

    Electrical Engineering Introduction to Laser Technology , Third Edition. Would you like to know how a laser works, and how it can be modified for your own specific tasks? This intuitive third edition-previously published as Understanding Laser Technology , First and Second Editions-introduces engineers, scientists, technicians, and novices alike to the world of modern lasers, without delving into the mathematical details of quantum electronics. It is the only introductory text on the market today that explains the underlying physics and engineering applicable to all lasers. A unique combinatio.

  7. Measurements of energetic ions produced by high-energy laser pulses by means of solid-state nuclear track detectors

    Czech Academy of Sciences Publication Activity Database

    Szydlowski, A.; Badziak, A.; Parys, P.; Wolowski, J.; Woryna, E.; Jungwirth, Karel; Králiková, Božena; Krása, Josef; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Boody, F. D.; Gammino, S.; Torrisi, L.

    2004-01-01

    Roč. 7, č. 3 (2004), s. 327-332 ISSN 1093-3611 Institutional research plan: CEZ:AV0Z1010921 Keywords : iodine laser * nuclear track detectors * ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.194, year: 2004

  8. Workshop Proceedings of the Conference on Solid State Tunable Lasers Held at Hampton, Virginia on 13-15 June 1984.

    Science.gov (United States)

    1985-07-01

    The first attempt replaced the rear mirror with a porro prism . This helped average the high and low gain areas, broke up the lowest order laser modes...with an argon or krypton ion laser. The typical experimental set-up is shown in Fig. 9. The tuning element is a Brewster-angle prism or a two-plate...MirrarM 2 Diode 6elcis N3.WI% fucm T r, a & m T9S% r2* m I #JM I G2 FFcat for t Fig. 9: Typical resonator for testing laser action in Cr-doped crystals

  9. Absorptive capacity in solid-state technology and international knowledge transfer : the case of Philips comparative technology transfer and society

    NARCIS (Netherlands)

    Davids, M.; Verbong, G.P.J.

    2007-01-01

    After World War II, the market for vacuum tubes was threatened by the development, first, of transistors and, later, integrated circuits. It was essential for European electronic companies, including the Dutch company Philips Electronics, to adopt American technology to gain a position in the

  10. Improving the Performance of Gold-Nanoparticle-Doped Solid-State Dye Laser Using Thermal Conversion Effect

    Science.gov (United States)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.

    2018-04-01

    Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.

  11. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  12. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  13. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  14. Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Shabalin, Yu V; Konyashkin, A V; Kostryukov, P V; Olenin, A N; Tunkin, V G; Morozov, V B; Rusov, V A; Telegin, L S; Yakovlev, D V

    2005-01-01

    The results of the development of repetitively pulsed, diode-pumped, electro-optically controlled picosecond Nd:YAG lasers of two designs are presented. The first design uses the active-passive mode locking with electro-optical lasing control and semiconductor saturable absorber mirrors (SESAM). This design allows the generation of 15-50-ps pulses with an energy up to 0.5 mJ and a maximum pulse repetition rate of 100 Hz. The laser of the second design generates 30-ps pulses due to combination of positive and negative electro-optical feedback and the control of the electro-optical modulator by the photocurrent of high-speed semiconductor structures. (active media. lasers)

  15. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qibing [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  16. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  17. Epi-detecting label-free multimodal imaging platform using a compact diode-pumped femtosecond solid-state laser

    DEFF Research Database (Denmark)

    Andreana, Marco; Le, Tuan; Hansen, Anders Kragh

    2017-01-01

    We have developed an epi-detected multimodal nonlinear optical microscopy platform based on a compact and cost-effective laser source featuring simultaneous acquisition of signals arising from hyperspectral coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence, and second harmonic...

  18. Application of V2O5 thin films deposited by laser ablation in micron batteries of solid state

    International Nuclear Information System (INIS)

    Escobar A, L.; Camps, E.; Haro P, E.; Camacho L, M.A.; Julien, C.

    2001-01-01

    The obtained results from synthesizing V 2 O 5 thin films by laser ablation are presented. Depending on the deposit conditions V 2 O 5 thin films have been grown as amorphous as a crystalline ones with preferential orientation. The results of the electrochemical characterization of one of the synthesized layers are presented when being manufactured joint with it a micron battery. (Author)

  19. Development of high-power and high-energy 2 µm bulk solid-state lasers and amplifiers

    CSIR Research Space (South Africa)

    Koen, W

    2016-04-01

    Full Text Available 250 300 350 Pulse Repetition Frequency [Hz] P u l s e E n e r g y [ m J ] 0 1 2 3 4 5 6 7 8 9 10 A v e r a g e P o w e r [ W ] Osc Energy Amp Energy Osc average P Amp average P Figure 8: Output energy of the ring laser and amplifier...

  20. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff

    2012-01-01

    The only introductory text on the market today that explains the underlying physics and engineering applicable to all lasersAlthough lasers are becoming increasingly important in our high-tech environment, many of the technicians and engineers who install, operate, and maintain them have had little, if any, formal training in the field of electro-optics. This can result in less efficient usage of these important tools. Introduction to Laser Technology, Fourth Edition provides readers with a good understanding of what a laser is and what it can and cannot do. The book explains what types of las.

  1. Two Micron Laser Technology Advancements at NASA Langley Research Center

    Science.gov (United States)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  2. All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

    Science.gov (United States)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei

    2017-12-01

    A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.

  3. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  4. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  5. All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation

    International Nuclear Information System (INIS)

    Kananovich, A; Grabtchikov, A; Orlovich, V; Demidovich, A; Danailov, M

    2010-01-01

    Quasi continuous-wave (qCW) yellow emission (pulse duration 5 ms, repetition rate 20 Hz) at 559 nm is demonstrated through intracavity sum frequency generation (SFG) of Stokes and fundamental fields in Nd:YVO 4 diode pumped self-Raman laser for the first time. Average in pulse output power at 559 nm was 0.47 W for 22 W of pump power, which corresponds to 2.1% of diode-to-yellow efficiency. The pulsed mode of operation was due to diode pump modulation and was used to reduce thermal stress of the crystal

  6. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms.

    Science.gov (United States)

    Woltmann, Eva; Meyer, Hans; Weigel, Diana; Pritzke, Heinz; Posch, Tjorben N; Kler, Pablo A; Schürmann, Klaus; Roscher, Jörg; Huhn, Carolin

    2014-10-01

    High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.

  7. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  8. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  9. Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics.

    Science.gov (United States)

    Koshel, R J; Walmsley, I A

    1993-03-20

    We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.

  10. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  11. Laser Program annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  12. Laser Program annual report 1987

    International Nuclear Information System (INIS)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies

  13. Laser technology and applications in gynaecology.

    Science.gov (United States)

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  14. Excimer laser technology

    International Nuclear Information System (INIS)

    Mace, P.N.

    1980-01-01

    Scaling presently available excimer laser systems to lasers designed to operate at high average power and high pulse repetition rates for long periods of time requires advances in many areas of engineering technology. For economical application to industrial processes, the efficiency must be increased. This leads to more stringent requirements on preionization techniques, energy delivery systems, and system chemistry. Long life operation (> 10 9 to 10 10 pulses) requires development of new pulse power components, optical elements and flow system components. A broad-based program underway at the Los Alamos Scientific Laboratory is addressing these key technology issues, with the help of advanced component and systems development programs in industry. A prototype XeCl laser meeting all requirements for efficiency, system performance and life is scheduled for completion in 1984

  15. Semiconductor laser technology for remote sensing experiments

    Science.gov (United States)

    Katz, Joseph

    1988-01-01

    Semiconductor injection lasers are required for implementing virtually all spaceborne remote sensing systems. Their main advantages are high reliability and efficiency, and their main roles are envisioned in pumping and injection locking of solid state lasers. In some shorter range applications they may even be utilized directly as the sources.

  16. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  17. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  18. Evaluation of the performance of small diode pumped UV solid state (DPSS) Nd:YAG lasers as new radiation sources for atmospheric pressure laser ionization mass spectrometry (APLI-MS).

    Science.gov (United States)

    Kersten, Hendrik; Lorenz, Matthias; Brockmann, Klaus J; Benter, Thorsten

    2011-06-01

    The performance of a KrF* bench top excimer laser and a compact diode pumped UV solid state (DPSS) Nd:YAG laser as photo-ionizing source in LC-APLI MS is compared. The commonly applied bench-top excimer laser, operating at 248 nm, provides power densities of the order of low MW/cm(2) on an illuminated area of 0.5 cm(2) (8 mJ/pulse, 5 ns pulse duration, beam waist area 0.5 cm(2), 3 MW/cm(2)). The DPSS laser, operating at 266 nm, provides higher power densities, however, on a two orders of magnitude smaller illuminated area (60 μJ/pulse, 1 ns pulse duration, beam waist area 2 × 10(-3) cm(2), 30 MW/cm(2)). In a common LC-APLI MS setup with direct infusion of a 10 nM pyrene solution, the DPSS laser yields a significantly smaller ion signal (0.9%) and signal to noise ratio (1.4%) compared with the excimer laser. With respect to the determined low detection limits (LODs) for PAHs of 0.1 fmol using an excimer laser, LODs in DPSS laser LC-APLI MS in the low pmol regime are expected. The advantages of the DPSS laser with respect to applicability (size, cost, simplicity) may render this light source the preferred one for APLI applications not focusing on ultimately high sensitivities. Furthermore, the impact of adjustable ion source parameters on the performance of both laser systems is discussed in terms of the spatial sensitivity distribution described by the distribution of ion acceptance (DIA) measurements. Perspectives concerning the impact on future APLI-MS applications are given.

  19. II International Conference on Plasma and Laser Research and Technologies

    International Nuclear Information System (INIS)

    Kurnaev, V A; Dodulad, E I

    2016-01-01

    II Conference on Plasma and Laser Research and Technologies took place on January 25 th until January 27 th , 2016 at National Research Nuclear University “MEPhI” (NRNU MEPhI). It was organized by the Institute of Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The Conference consisted of four sections: Plasma physics and controlled nuclear fusion, Laser physics, Modern aspects of solid state matter physics and Charged particle accelerators. The Conference provided participants an opportunity to present their research results for the consideration of a wide audience from the sidelines of science. The main topics of the Conference were: • Controlled nuclear fusion with magnetic and inertial confinement; • Low-temperature plasma and its application in modern technology; • Laser physics and technologies for industry, environmental control and precise measurements; • Optical information control, holography, spintronics and photonics; • Modern aspects of solid state matter physics and nanophysics; • Charged particle accelerators. More than 200 specialists on plasma, laser and solid state physics took part in the II Conference. They represented leading Russian scientific research centres and universities (such as Troitsk Institute of Innovative and Thermonuclear Research, Institute of Crystallography, National Research Centre 'Kurchatov Institute', Institute of Physical Chemistry and Electrochemistry and others) and universities from Belarus, Ukraine, Germany, USA, Canada, Belgium, and Sweden. All report presentations were broadcasted online on the NRNU MEPhI official site. The translation was watched by viewers from Moscow, Prague, St. Petersburgh and other cities, who could not attend the Conference. We would like to thank heartily all of the speakers, participants and organizing committee members for their contribution to the conference. (paper)

  20. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  1. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  2. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  3. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  4. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  5. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  6. Laser diode technology and applications

    International Nuclear Information System (INIS)

    Figueroa, L.

    1989-01-01

    This book covers a wide range of semiconductor laser technology, from new laser structures and laser design to applications in communications, remote sensing, and optoelectronics. The authors report on new laser diode physics and applications and present a survey of the state of the art as well as progress in new developments

  7. Lasers '90: Proceedings of the 13th International Conference on Lasers and Applications, San Diego, CA, Dec. 10-14, 1990

    International Nuclear Information System (INIS)

    Harris, D.G.; Herbelin, J.

    1991-01-01

    The general topics considered are: x-ray lasers; FELs; solid state lasers; techniques and phenomena of ultrafast lasers; optical filters and free space laser communications; discharge lasers; tunable lasers; applications of lasers in medicine and surgery; lasers in materials processing; high power lasers; dynamics gratings, wave mixing, and holography; up-conversion lasers; lidar and laser radar; laser resonators; excimer lasers; laser propagation; nonlinear and quantum optics; blue-green technology; imaging; laser spectroscopy; chemical lasers; dye lasers; and lasers in chemistry

  8. Development of natural cellulase inhibitor mediated intensified biological pretreatment technology using Pleurotus florida for maximum recovery of cellulose from paddy straw under solid state condition.

    Science.gov (United States)

    Naresh Kumar, Manickam; Ravikumar, Rajarathinam; Thenmozhi, Senniyappan; Kirupa Sankar, Muthuvelu

    2017-11-01

    Inhibitor mediated intensified bio-pretreatment (IMBP) technology using natural cellulase inhibitor (NCI) for maximum cellulose recovery from paddy straw was studied. Pretreatment was carried out under solid state condition. Supplementation of 8% NCI in pretreatment medium improves cellulose recovery and delignification by 1.2 and 1.5-fold respectively, compared to conventional bio-pretreatment due to inhibition of 61% of cellulase activity in IMBP. Further increase in NCI concentration showed negative effect on Pleurotus florida growth and suppress the laccase productivity by 1.1-fold. Laccase activity in IMBP was found to be 2.0U/mL on 19 th day, which is higher than (1.5U/mL) conventional bio-pretreatment. Physico-chemical modifications in paddy straw before and after pretreatment were analysed by SEM, ATR-FTIR, XRD and TGA. According to these findings, the IMBP technology can be a viable eco-friendly technology for sustainable production of bioethanol with maximum cellulose recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Compact, Solid-State UV (266 nm) Laser System Capable of Burst-Mode Operation for Laser Ablation Desorption Processing

    Science.gov (United States)

    Arevalo, Ricardo, Jr.; Coyle, Barry; Paulios, Demetrios; Stysley, Paul; Feng, Steve; Getty, Stephanie; Binkerhoff, William

    2015-01-01

    Compared to wet chemistry and pyrolysis techniques, in situ laser-based methods of chemical analysis provide an ideal way to characterize precious planetary materials without requiring extensive sample processing. In particular, laser desorption and ablation techniques allow for rapid, reproducible and robust data acquisition over a wide mass range, plus: Quantitative, spatially-resolved measurements of elemental and molecular (organic and inorganic) abundances; Low analytical blanks and limits-of-detection ( ng g-1); and, the destruction of minimal quantities of sample ( g) compared to traditional solution and/or pyrolysis analyses (mg).

  10. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  11. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  12. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  13. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  14. A Solid State Pyranometer

    Directory of Open Access Journals (Sweden)

    Dumitrescu Anca Laura

    2015-12-01

    Full Text Available The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black, is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03, indicates a good linearity.

  15. A Solid State Pyranometer

    Science.gov (United States)

    Dumitrescu, Anca Laura; Paulescu, Marius; Ercuta, Aurel

    2015-12-01

    The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black), is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03), indicates a good linearity.

  16. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D. [Raja Rammana Centre for Advanced Technology (RRCAT), Indore 452013 (India)

    2013-09-15

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  17. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  18. A Career in Laser Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    The increased expansion of laser technology will create many new jobs and will require workers with many different skills. At the same time, some kinds of occupations will be adversely affected, due to increasing use of laser technology in a broad range of industries. (CT)

  19. Solid state fermentation for foods and beverages

    NARCIS (Netherlands)

    Chen, J.; Zhu, Y.; Nout, M.J.R.; Sarkar, P.K.

    2013-01-01

    The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional

  20. Thermal management of solid state lighting module

    NARCIS (Netherlands)

    Ye, H.

    2014-01-01

    Solid-State Lighting (SSL), powered by Light-Emitting Diodes (LEDs), is an energy-efficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in

  1. Emerging terawatt picosecond CO2 laser technology

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-09-01

    The first terawatt picosecond (TWps) CO 2 laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO 2 lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for strong-field physics research. For laser wakefield accelerators (LWFA) the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential. The large average power of CO 2 lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams. The authors discuss applications of TWps-CO 2 lasers for LWFA modules of a tentative electron-positron collider, for γ-γ (or γ-lepton) colliders, for a possible table-top source of high-intensity x-rays and gamma rays, and the generation of polarized positron beams

  2. Application of Various Lasers to Laser Trimming Resistance System

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-feng

    2007-01-01

    Though the laser trimming resistance has been an old laser machining industry for over 30 years, the development of technology brings new alternative lasers which can be used for the traditional machining. The paper describes application of various lasers to laser trimming resistance system including early traditional krypton arc lamp pumped Nd:YAG to laser, modern popular diode pumped solid state laser and the present advanced harmonic diode pumped solid state laser. Using the new alternative lasers in the laser trimming resistance system can dramatically improve the yields and equipment performance.

  3. Solid State Research

    Science.gov (United States)

    1991-08-15

    G. E. Betts Analog Optical Links for High Dynamic L. M. Johnson Range C. H. Cox III Nonimaging Concentrators for Diode- P. Lacovara Pumped Slab Lasers...P. Gleckman* SPIEs 1991 International R. Holman* Symposium on Optical Science R. Winston * and Engineering, San Diego, California, Free-Space Board-to...xxv 1. ELECTROOPTICAL DEVICES 1 1.1 Optical Phase Difference Measurement and Correction Using AIGaAs Integrated Guided-Wave Components 1 1.2 Two

  4. Technology Assessment of Laser-Assisted Materials Processing in Space

    Science.gov (United States)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  5. Solid State Studies Section

    Energy Technology Data Exchange (ETDEWEB)

    None

    1974-12-31

    Research is summarized on fuel, fertile, and cladding materials. Results of studies in the field of solid state sciences are also reported. It was found during the studies on the thermal diffusion release of /sup 133/Xe from irradiated thoria--urania powders that during prolonged annealing at high temperatures, there were several sudden burst releases of /sup 133/Xe as a function of time. These sudden bursts appear to be related to the particle size of the powders. Studies on the phase composition of U/sub 3/O/sub 8//su established that the phase obtained at room temperature after heating at 850 deg K is always oxygen deficient. Results of studies on the different modifications of U/sub 3/O/sub 8/ indicated that the so-called delta-phase has a crystal structure almost identical with the beta-phase, yet there were differences in the heats of transition of each of these phases to the alpha-U/sub 3/O/sub 8/ phase at 130 deg C. Studies on fast neutron damage in stainless steel were initiated and results related to damage by void formation were obtained even when the fluencies were only moderately high. Studies on the phase transformations in solids brought out the unusual phase transition behavior of KNO/sub 3/. It was established that the phase transformation attributed to the orthorhombic (II) to the trigonal (I) transition at 129 deg C is essentially a 2-step transition. Results of differential scanning colorimeter (DSC) studies also revealed a peculiar feature which is as yet not understood, namely that on cooling, differential thermal analysis (DTA) showed a III to II phase transition; this is not seen in the DSC. The capabilities of the DSC technique to delineate temperatures of magnetic transitions were demonstrated by studying the transitions in a number of standard substances (metals, alloys, and compounds). In studies on KMnF/sub 3/, it was further demonstrated that the DSC technique is superior in measuring and detecting the heats of crystallographic and

  6. Laser Science and Technology Program Annual Report-2002 NIF Programs Directorate

    International Nuclear Information System (INIS)

    Hackel, L; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are consistent with the goals of the NIF Directorate and develop state-of-the-art capabilities. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and (d) to invent, develop, and deliver improved concepts and hardware for other government agencies and industry. LSandT activities during 2002 focused on seven major areas: (1) NIF Project-LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 30.1 optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)-LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy-LSandT continued development of kW- to MW-class, diode-pumped, solid-state laser (DPSSL). (4) Department of Defense (DoD)-LSandT continued development of a 100 kw-class solid-state heat-capacity laser

  7. Solid State Division progress report for period ending March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  8. CSIR eNews: Laser technology

    CSIR Research Space (South Africa)

    CSIR

    2008-12-01

    Full Text Available The CSIR provides a critical core of laser technology knowledge and expertise through the research, development and implementation of laser based technologies and applications in Africa. This knowledge, housed at the CSIR National Laser Centre...

  9. CSIR eNews: Laser technology

    CSIR Research Space (South Africa)

    CSIR

    2008-03-01

    Full Text Available The CSIR provides a critical core of laser technology knowledge and expertise through the research, development and implementation of laser based technologies and applications in Africa. This knowledge, housed at the CSIR National Laser Centre...

  10. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  11. Ultraviolet laser technology and applications

    CERN Document Server

    Elliott, David L

    1995-01-01

    Ultraviolet Laser Technology and Applications is a hands-on reference text that identifies the main areas of UV laser technology; describes how each is applied; offers clearly illustrated examples of UV opticalsystems applications; and includes technical data on optics, lasers, materials, and systems. This book is unique for its comprehensive, in-depth coverage. Each chapter deals with a different aspect of the subject, beginning with UV light itself; moving through the optics, sources, and systems; and concluding with detailed descriptions of applications in various fields.The text enables pr

  12. III International Conference on Laser and Plasma Researches and Technologies

    Science.gov (United States)

    2017-12-01

    A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of

  13. The possibility of clinical application of the solid state lasers: Nd:YAG, Ho:YAG, and Er:YAG in otolaryngology - head and neck surgery

    Science.gov (United States)

    Tomaszewska, M.; Kukwa, A.; Tulibacki, M.; Wójtowicz, P.; Olędzka, I.; Jeżewska, E.

    2007-02-01

    The purpose of this study was to summarize our experiences in clinical application of Nd:YAG, Ho:YAG and Er:YAG in otolaryngology- head and neck surgery. Choosing the laser type and parameters for the particular procedures was based on our previous research on tissue effects of those lasers. During the period of 1993-2006 we performed 3988 surgical procedures with the Nd:YAG laser. Over 87% of those were made for the nasal cavity pathologies as polyps, hyperplasia of inferior nasal turbinate, granulation tissue, postoperative adhesions, vascular malformations, under the local anesthesia conditions. In our experience Nd:YAG laser gives the possibility of good clinical control and low risk of side effects for disorders of high recurrence and frequent interventions necessity, as nasal polyps or respiratory papillomatosis. Nd:YAG assisted uvulopalatoplasty gives an interesting alternative for surgical procedures for snoring and slight/mild OSA-recognized patients. Due to its good hemostatic properties, it is a perfect tool for removal of the chemodectoma from meddle ear. During the period of 1995-2006 we performed 229 surgical procedures with the Ho:YAG laser, mostly for larynx pathologies (adhesion and scar tissue removal). In our experience Ho:YAG laser can serve as a precise laser knife for both soft and bony tissue. The ER:YAG laser still remain under clinical trial. Since 2001 year we performed 24 procedures of removing stone deposits from salivary glands. We believe it may become a promising method to cope with sialolithiasis which allows for glandule function preservation. All of the laser types mentioned above, can be easily coupled with endoscopes, what makes them available for all of the head and necklocalized disorders.

  14. Proceedings of the conference on lasers and electro-optics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book presents the papers discussed at a conference on the subject of electro-optics and lasers. Some of the topics discussed were: laser fusion and interactions; implosion experiments; tunable integrated Bragg lasers, CO 2 lasers; present status of integrated lasers; DFB lasers; transition metal lasers-solid state lasers, mirror laser resonators, multiquantumwell lasers; fusion laser technology; and dynamics and characteristics of diode lasers

  15. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    Science.gov (United States)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  16. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Murray, D.W.

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. The results of these tests as well as a description of the test equipment, test sites, and procedures are presented in this report

  17. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  18. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  19. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  20. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  1. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  2. Synchronisation of self-oscillations in a solid-state ring laser with pump modulation in the region of parametric resonance between self-modulation and relaxation oscillations

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The synchronisation of the self-modulation oscillation frequency in a Nd : YAG ring laser by an external periodic signal modulating the pump power in the region of parametric resonance between self-modulation and relaxation oscillations is studied theoretically and experimentally. The characteristic features of synchronisation processes in lasers operating in the self-modulation regime of the first kind and in the regime with a doubled self-modulation period are considered. Two bistable branches of synchronisation of self-modulation oscillations are found by numerical calculation. The experimental data agree well with the numerical simulation results for one of these branches, but the other branch of bistable self-modulation oscillations was not observed experimentally. (control of laser radiation parameters)

  3. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  4. School on Laser Physics & Technology

    CERN Document Server

    Khare, Rajeev

    2015-01-01

    The book, ‘Laser Physics and Technology’, addresses fundamentals of laser physics, representative laser systems and techniques, and some important applications of lasers. The present volume is a collection of articles based on some of the lectures delivered at the School on ‘Laser Physics and Technology’ organized at Raja Ramanna Centre for Advanced Technology during March, 12-30, 2012. The objective of the School was to provide an in-depth knowledge of the important aspects of laser physics and technology to doctoral students and young researchers and motivate them for further work in this area. In keeping with this objective, the fourteen chapters, written by leading Indian experts, based on the lectures delivered by them at the School, provide along with class room type coverage of the fundamentals of the field, a brief review of the current status of the field. The book will be useful for doctoral students and young scientists who are embarking on a research in this area as well as to professional...

  5. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  6. Red luminescence from Eu3+-doped TeO2-WO3-GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, Tallam; Gopal, Kotalo Rama; Suvarna, Reniguntla Padma; Jamalaiah, Bungala Chinna

    2018-05-01

    Eu3+-doped oxyfluoro tellurite (TWGEu) glasses were prepared by conventional melt quenching method. The optical band gap energy and covalence between Eu3+ and O2-/F- ions were determined from optical absorption spectra. Using the 5D0 → 7F1,2,4 emission transitions, the Ω2 and Ω4 intensity parameters were determined. These intensity parameters were used to evaluate the radiative parameters such as emission probability rate (AR), luminescence branching ratio (βR) and radiative life time (τR) of 5D0 → 7FJ transitions. The laser characteristic parameters such as stimulated emission cross-section, gain bandwidth and quantum efficiency were determined. The luminescence decay profiles of 5D0 emission level were well fitted to single exponential function for all the concentrations. The experimental results show that the 0.5 mol% of Eu3+-doped TWGEu glass could be the best choice to design red laser sources.

  7. Laser program. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Monsler, M.J.; Jarman, B.D. (eds.)

    1979-03-01

    This volume details the year's experiments, data, and analysis. The technology development programs required for the high performance needed in target diagnostic instrumentation and in solid state laser components are reviewed. (MOW)

  8. Laser program. Annual report, 1978

    International Nuclear Information System (INIS)

    Monsler, M.J.; Jarman, B.D.

    1979-03-01

    This volume details the year's experiments, data, and analysis. The technology development programs required for the high performance needed in target diagnostic instrumentation and in solid state laser components are reviewed

  9. Matrix-assisted laser desorption/ionization mass spectrometric analysis of poly(3,4-ethylenedioxythiophene) in solid-state dye-sensitized solar cells: comparison of in situ photoelectrochemical polymerization in aqueous micellar and organic media.

    Science.gov (United States)

    Zhang, Jinbao; Ellis, Hanna; Yang, Lei; Johansson, Erik M J; Boschloo, Gerrit; Vlachopoulos, Nick; Hagfeldt, Anders; Bergquist, Jonas; Shevchenko, Denys

    2015-04-07

    Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs.

  10. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  11. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  12. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  13. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  14. Introduction to solid state physics

    International Nuclear Information System (INIS)

    Hofmann, Philip

    2013-01-01

    A compact introduction to solid-state physics for students of physics, material,and engineering sciences - ideal for a one- to two-semestral course. In easily understable form the author introduces to phenomena and concepts. Thereby he avoids expensive mathematical derivations and refers to outgoing literature. The successful didactical preparation makes an easy access to the theme possible. Numerous illustrations clarify the connections and make the explained well understandable. With about 170 questions and exercise problems.

  15. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  16. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  17. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  18. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  19. Upgrade of repetitive fast-heating fusion driver HAMA to implode a shell target by using diode pumped solid state laser

    International Nuclear Information System (INIS)

    MORI, Yoshitaka; NISHIMURA, Yasuhiko; Nakayama, Suisei; HANAYAMA, Ryohei; ISHII, Katsuhiro; SEKINE, Takashi; SATO, Nakahiro; KURITA, Takashi; KAWASHIMA, Toshiyuki; KAN, Hirofumi; KOMEDA, Osamu; NAKAMURA, Naoki; KONDO, Takuya; FUJINE, Manabu; SUNAHARA, Atsushi; MIURA, Eisuke; AZUMA, Hirozumi; HIOKI, Tatsumi; KAKENO, Mitsutaka; KAJINO, Tsutomu

    2016-01-01

    The HAMA is 1-Hz fast heating fusion driver pumped by a 10 J second-harmonic of diode-pumped Nd:glass laser: KURE-1. We have upgraded HAMA to realize an implosion of spherical shell target by using a remaining fundamental beam from KURE-1. This beam of 6 J/1 Hz is transported to the current counter irradiation system. The resulting beam includes three pulses in sequence: 2.2 J/15 ns and 0.7 J/300 ps for implosion, and 0.5 J/ 190 fs for heating. We estimate the implosion dynamics from 1-D radiation hydrodynamic code (START- 1D). It indicates a possibility of tailored-pulse implosion by optimizing the beam spot sizes of imploding beams on the target surface. This upgrade leads to a demonstration of repetitive implosion and additional heating of a spherical shell target in accordance with a repetition of laser operation and that of a target injection system. (paper)

  20. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  1. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  2. Economic technology of laser cutting

    Science.gov (United States)

    Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.

    2000-02-01

    The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.

  3. White Blood Cell Differentiation Using a Solid State Flow Cytometer

    NARCIS (Netherlands)

    Doornbos, R.M.P.; Doornbos, R.M.P.; Hennink, E.J.; Putman, C.A.J.; Putman, C.A.J.; de Grooth, B.G.; Greve, Jan

    1993-01-01

    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche

  4. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  5. Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO_4 laser patterned rutile TiO_2 nanorods

    International Nuclear Information System (INIS)

    Fakharuddin, Azhar; Wali, Qamar; Rauf, Muhammad; Jose, Rajan; Palma, Alessandro L; Giacomo, Francesco Di; Casaluci, Simone; Matteocci, Fabio; Carlo, Aldo Di; Brown, Thomas M

    2015-01-01

    The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH_3NH_3PbX_3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO_2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO_2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs’ patterning over substrates is resolved by using precise Nd:YVO_4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH_3NH_3PbI_3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices. (paper)

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT LASER TOUCH AND TECHNOLOGIES, LLC LASER TOUCH MODEL LT-B512

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of Laser Touch model LT-B512 targeting device manufactured by Laser Touch and Technologies, LLC, for manual spray painting operations. The relative transfer efficiency (TE) improved an avera...

  7. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  8. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  9. The Oxford solid state basics

    CERN Document Server

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  10. Solid State Theory An Introduction

    CERN Document Server

    Rössler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields.

  11. CO2 laser technology for advanced particle accelerators

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  12. Status of 2 micron laser technology program

    Science.gov (United States)

    Storm, Mark

    1991-01-01

    The status of 2 micron lasers for windshear detection is described in viewgraph form Theoretical atmospheric and instrument system studies have demonstrated that the 2.1 micron Ho:YAG lasers can effectively measure wind speeds in both wet and dry conditions with accuracies of 1 m/sec. Two micron laser technology looks very promising in the near future, but several technical questions remain. The Ho:YAG laser would be small, compact, and efficient, requiring little or no maintenance. Since the Ho:YAG laser is laser diode pumped and has no moving part, the lifetime of this laser would be directly related to the diode laser lifetimes which can perform in excess of 10,000 hours. Efficiencies of 3 to 12 percent are expected, but laser demonstrations confirming the ability to Q-switch this laser are required. Coherent laser operation has been demonstrated for both the CW and Q-switched lasers.

  13. Space-time complexity in solid state models

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter

  14. ''Solid-state fusion'' effects

    International Nuclear Information System (INIS)

    Thompson, D.T.

    1990-01-01

    The ''Solid-State Fusion'' or ''Cold Fusion'' phenomenon, including excess heat generation and the production of nuclear particles, was first reported by Professors Martin Fleischmann and B. Stanley Pons in March 1989. The phenomenon described (the anomalous effects observed when deuterium oxide (heavy water) is electrolysed using a palladium cathode and a platinum anode in the presence of lithium deuteroxide) has many fascinating facets, not least of which is the fact that investigators are unable to produce the effects ''on demand''. Many of the experimental variables which seem to be significant were described and discussed at the ''First Annual Conference on Cold Fusion'' which was held in Salt Lake City, Utah, USA, from 29th to 31st March 1990. The information presented at the conference is summarised here. Some papers addressed the excess heat effects observed, some the nuclear particles, and others the theoretical aspects. These are reviewed. At the end of the conference Fleischmann summarised all the areas where apparent evidence for solid state fusion had been obtained during the past year, namely: excess enthalpy, bursts in enthalpy; tritium, bursts in tritium; neutrons, bursts in neutrons; X-rays, gamma rays and bursts in these. He recommended that emphasis should now be concentrated on confirming reaction products, such as He 4 . New theories were emerging, but one year was too short a time in which to evaluate them fully. (author)

  15. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  16. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  17. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. In general, all-solid-state cameras need to be improved in four areas before they can be used as wholesale replacements for tube cameras in exterior security applications: resolution, sensitivity, contrast, and smear. However, with careful design some of the higher performance cameras can be used for perimeter security systems, and all of the cameras have applications where they are uniquely qualified. Many of the cameras are well suited for interior assessment and surveillance uses, and several of the cameras are well designed as robotics and machine vision devices

  18. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    Science.gov (United States)

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  19. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  20. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Microelectronics: Atoms diffusion in solid state. Part 1

    International Nuclear Information System (INIS)

    Lopez Higuera, J.M.

    1988-01-01

    The fundamentals on which the technology for the diffusion of impurities in solid state is based, is presented. This technology is widely used to produce controlled and localized concentrations of atoms of the mentioned impurities in base solids in order to obtain those characteristics which may lead to the implementation of electronic, optoelectronic and electrooptic devices. (Author)

  2. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  3. Solid-state radar switchboard

    Science.gov (United States)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  4. Inside Solid State Drives (SSDs)

    CERN Document Server

    Micheloni, Rino; Eshghi, Kam

    2013-01-01

    Solid State Drives (SSDs) are gaining momentum in enterprise and client applications, replacing Hard Disk Drives (HDDs) by offering higher performance and lower power. In the enterprise, developers of data center server and storage systems have seen CPU performance growing exponentially for the past two decades, while HDD performance has improved linearly for the same period. Additionally, multi-core CPU designs and virtualization have increased randomness of storage I/Os. These trends have shifted performance bottlenecks to enterprise storage systems. Business critical applications such as online transaction processing, financial data processing and database mining are increasingly limited by storage performance. In client applications, small mobile platforms are leaving little room for batteries while demanding long life out of them. Therefore, reducing both idle and active power consumption has become critical. Additionally, client storage systems are in need of significant performance improvement as well ...

  5. Solid State Division: Progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

  6. Solid State Division: Progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies

  7. Development of underwater laser cutting technology

    International Nuclear Information System (INIS)

    Sato, Seiichi; Inaba, Takanori; Inose, Koutarou; Matsumoto, Naoyuki; Sakakibara, Yuji

    2015-01-01

    In is desirable to use remote underwater device for the decommissioning work of highly radioactive components such as the nuclear internals from a view point of reducing the ranitidine exposure to the worker. Underwater laser cutting technology has advantages. First advantage in underwater laser cutting technology is that low reaction force during cutting, namely, remote operability is superior. Second point is that underwater laser cutting generates a little amount of secondary waste, because cutting kerf size is very small. Third point is that underwater laser cutting has low risk of the process delay, because device trouble is hard to happen. While underwater laser cutting has many advantages, the careful consideration in the safe treatment of the offgas which underwater laser cutting generates is necessary. This paper describes outline of underwater laser cutting technology developed by IHI Corporation (IHI) and that this technology is effective in various dismantling works in water. (author)

  8. Solid state and materials research

    International Nuclear Information System (INIS)

    1988-01-01

    Surface and sub-surface regions of solids are modified by rapid melting and quenching, using a high-powered, pulsed (30 ns) ruby laser. The main emphasis of this work is on laser annealing, epitaxy and doping of silicon. Computer programs have been developed to calculate the heat-flow which takes place during pulsed laser irradiation. From such calculations, information can be obtained about temperature profiles, melt depths, recrystallization velocities and quench rates. 13 figs., 9 refs., 1 tab

  9. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  10. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  11. Color speckle in laser displays

    Science.gov (United States)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  12. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  13. Laser measurement technology fundamentals and applications

    CERN Document Server

    Donges, Axel

    2015-01-01

    Laser measurement technology has evolved in the last years in a versatile and reflationary way. Today, its methods are indispensable for research and development activities as well as for production technology. Every physicist and engineer should therefore gain a working knowledge of laser measurement technology. This book closes the gap of existing textbooks. It introduces in a comprehensible presentation laser measurement technology in all its aspects. Numerous figures, graphs and tables allow for a fast access into the matter. In the first part of the book the important physical and optical basics are described being necessary to understand laser measurement technology. In the second part technically significant measuring methods are explained and application examples are presented. Target groups of this textbook are students of natural and engineering sciences as well as working physicists and engineers, who are interested to make themselves familiar with laser measurement technology and its fascinating p...

  14. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  15. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  16. Solid state radiative heat pump

    Science.gov (United States)

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  17. One Micron Laser Technology Advancements at GSFC

    Science.gov (United States)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  18. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  19. What would Edison do with solid state lighting?

    Science.gov (United States)

    Ferguson, Ian T.; Melton, Andrew; Xu, Tianming; Jamil, Muhammad; Fenwick, Will

    2010-08-01

    Thomas Edison is widely regarded as the greatest inventor in history and the most prominent individual behind the invention of the electric light. His impressive characteristics as an individual that led to his amazing success as an innovator continue to be an inspiration for researchers today. This paper considers how Edison might proceed in developing solid state lighting into a technology capable of displacing incumbent light sources, including his own incandescent lamps, then reviews some of the "Edison-like" contributions made to solid state lighting by the Next Generation Lighting research program at Georgia Tech.

  20. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  1. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  2. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  3. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  4. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  5. New configurations for short-pulses high power solid-state lasers: conception and realization of highly doped waveguide amplifiers/lasers grown by liquid phase epitaxy and demonstration of Y2SiO5: Yb and Lu2SiO5: Yb femtosecond lasers

    International Nuclear Information System (INIS)

    Thibault, F.

    2006-04-01

    Yb-doped yttrium and lutetium ortho-silicates, Y 2 SiO 5 :Yb and Lu 2 SiO 5 :Yb respectively, exhibit spectroscopic properties favorable to an efficient laser operation in both high power cw and femtosecond regime. Their first diode-pumped femtosecond operation demonstration lead to exceptional performances in terms of output power and efficiency. In order to realize compact and efficient solid-state laser devices using those materials, we chose a configuration with an Yb-doped medium planar waveguide geometry, grown by liquid phase epitaxy, face-pumped by a single laser diode bar. The growth of highly doped Y 2 SiO 5 :Yb layers, within a large range of compositions and thicknesses, was demonstrated. The refractive index increase due to the substitution of the various dopants is analyzed. The layers spectroscopic properties are similar to the bulk ones, with an noticeably higher crystalline quality. The Yb ion lifetime evolution with respect to its doping shows up a particularly low decrease, proof of a low concentration of extrinsic quenching centers. The covered YSO:24%Yb waveguides exhibit lower than 0.3 dB/cm propagation losses, and provided up to 2.9 dB/cm net amplification at 1082 nm with a single mode output. The realization of the first diode-pumped monolithic cw waveguide lasers was also demonstrated. For a 4% output coupler, they provided up to 340 mW at 1082 nm with a 14% slope efficiency. (author)

  6. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  7. Laser Processing Technology using Metal Powders

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jeong-Hwan; Moon, Young-Hoon [Pusan National University, Busan (Korea, Republic of)

    2012-03-15

    The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

  8. Efficient all solid-state continuous-wave yellow-orange light source

    DEFF Research Database (Denmark)

    Janousek, Jiri; Johansson, Sandra; Tidemand-Lichtenberg, Peter

    2005-01-01

    We present highly efficient sum-frequency generation between two CW IR lasers using periodically poled KTP. The system is based on the 1064 and 1342 nm laser-lines of two Nd:YVO4 lasers. This is an all solid-state light source in the yellow-orange spectral range. The system is optimized in terms ...

  9. Laser technologies. KrF laser

    International Nuclear Information System (INIS)

    Owadano, Yoshiro; Okuda, Isao; Matsushima, Isao; Yashiro, Hidehiko; Matsumoto, Yuji

    1994-01-01

    Krypton-fluoride (KrF) laser is one of the promising driver for inertial confinement fusion because of its short wavelength, broad band width, high efficiency and capability of high repetition-rate operation. A high gain double-pass amplifier can yield a high, heavily saturated output intensity (5 to 6 times saturation intensity, > 10MW/cm 2 ) with nearly maximum efficiency (> 10%) and high stage gain (> 50) at the same time. The high gain can be achieved by cylindrical electron-beam pumping configuration without external magnetic field. Angular pulse multiplexing enables efficient pulse compression and amplification of beams with broad spectral width. The broad band width is required for irradiation smoothing methods, BRP (broad-band Random Phase Irradiation) or ISI (Induced Spatial Incoherence). Multi-kJ KrF laser, Super-ASHURA (Electrotechnical Laboratory, 8kJ), NIKE (at Naval Research Laboratory, 3kJ) and TITANIA (Rutherford Appleton Laboratory, 2kJ) are being developed and close to completion. (author)

  10. NASA developments in solid state power amplifiers

    Science.gov (United States)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  11. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  12. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  13. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  14. Current status of solid state target technologies

    International Nuclear Information System (INIS)

    Schlyer, David J.; Ferrieri, Richard A.

    2000-01-01

    In general radioisotopes fall into two basic groups: those that are neutron rich and those that are neutron deficient. Those that are neutron rich are usually made in a nuclear reactor while those that are neutron deficient are produced by bombarding a suitable target with protons, deuterons or helium particles. Particle accelerators and in particular cyclotrons, were very important in the preparation of radioisotopes during the years of 1935 to the end of World War Two. The amount of radioactive material which could be produced in an accelerator was many times greater than the amount which could be produced using the alpha particles from naturally occurring radioactive elements. After World War Two, reactors were used to produce radioactive elements and the use of accelerators for this purpose became less common. However, as the techniques for using radiotracers became more sophisticated, it became clear that reactor produced radionuclides could not satisfy the growing demands and therefore accelerators were needed to produce new radioisotopes which could be used in new ways. There are three major reasons the accelerator produced radioisotopes are used more widely that reactor produced radionuclides. These are: 1) The radioisotopes produced in a reactor may have unfavorable decay characteristics (particle emission, half-life, gamma rays, etc.) for a particular application. 2) The radioisotope cannot be produced in a reactor with high specific activity. 3) Access to a reactor is limited. The number of reactors available has become many fewer than the number of cyclotrons available to the scientific community, or the radioisotope has too short a half-life to be transported to the site where it is needed. There are a wide variety of nuclear reactions which are used in an accelerator to produce the artificial radioactivity. The bombarding particles are usually protons, deuterons, or helium particles. The energies which are used range from a few MeV to hundreds of MeV. There is a minimum energy required to overcome the Coulomb barrier. Particles with energies below this barrier have a very low probability of reacting

  15. Solid state insurrection how the science of substance made American physics matter

    CERN Document Server

    Martin, Joseph D

    2018-01-01

    Solid state physics—the study of the physical properties of solid matter—was far and away the most populous subfield of Cold War American physics. But despite prolific contributions to consumer and medical technology, such as the transistor and magnetic resonance imaging, it garnered much less professional prestige and public attention than nuclear and particle physics. Solid State Insurrection argues that solid state physics was nonetheless essential to securing the vast social, political, and financial capital Cold War physics enjoyed. Solid state’s technological bent, and its challenge to the “pure science” ideal many physicists cherished, helped physics as a whole respond more readily to Cold War social, political, and economic pressures. Solid state research kept physics economically and technologically relevant, sustaining its lofty cultural standing and policy influence long after the sheen of the Manhattan Project had faded. By placing solid state at the center of the story of twentieth cent...

  16. CO2 laser technology for advanced particle accelerators. Revision

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage distance, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  17. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  18. Advanced Solid State Lighting for Human Evaluation

    Data.gov (United States)

    National Aeronautics and Space Administration — Lighting intensity and color have a significant impact on human circadian rhythms.  Advanced solid state lighting was developed for the Advanced Exploration System...

  19. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  20. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Department of Mechanical Engineering,. † ... A solid-state metathesis approach initiated by microwave energy has been successfully applied for ... and chemical properties of synthesized powders are determined by powder X-ray diffraction, ...

  1. Laser technology inspires new accelerator concepts

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research network, LA³NET, is bringing together universities, research centres and industry partners worldwide to explore the use of laser technology in particle beam generation, acceleration and diagnostics. As one of the network partners, CERN will be hosting three early stage researchers in the BE and EN Departments.   One of the laser systems now in use in the ISOLDE experiment. If you take a closer look at recent experimental developments, you’ll notice a new topic trending: laser technology. It’s being used to study the characteristics of particles, as incorporated into the new ALPHA-2 set-up; to conduct diagnostics of particle beams, as used in a laser wire scanner at Petra III; to “breed” unusual ion beams, as carried out by ISOLDE’s Resonance Ionization Laser Ion Source (RILIS); and even to accelerate particles to high energies, as explored at Berkeley’s BELLA facility. These projects notwithstanding...

  2. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  3. Nd3+-doped heavy metal oxide based multicomponent borate glasses for 1.06 μm solid-state NIR laser and O-band optical amplification applications

    Science.gov (United States)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Meza-Rocha, A. N.; Falcony, C.; Caldiño, U.; Kityk, I. V.; Méndez-Blas, A.; Abas, A. F.; Alresheedi, M. T.; Mahdi, M. A.

    2018-04-01

    Nd3+-doped glasses in the composition (50-x) B2O3-10 PbO-10 BaO-10 Al2O3-10 ZnO-10 Na2O-(x) Nd2O3 (x = 0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 mol %) were fabricated using melt quenching method. Upon 592 nm visible and 808 nm LD excitations, the luminescence spectra show a strong 4F3/2 → 4I11/2 (1.06 μm) emission transition, and two less intense 4F3/2 → 4I9/2 (0.89 μm) and 4F3/2 → 4I13/2 (1.331 μm) emission transitions. The intensity of such emissions increases up to 0.5 mol % Nd3+, and above this doping level, quenching occurs. For 0.5 mol % Nd3+-doped glass, following Judd-Ofelt intensity parameters and emission spectrum, AR, τR, βR and βexp, including Δλeff,σem(λp), (σem × (Δλeff)) and (σem × (τrad)), are derived for Nd3+ ion 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 fluorescence transitions. The highest σem(λp) for the 1.06 and 1.331 μm fluorescence bands are found to be 6.216 × 10-20 and 2.295 × 10-20cm2, respectively. The 4F3/2 level lifetimes are found to decrease with an increase in Nd2O3 content and the decay curves of the glass up to 1.5 mol % Nd3+ exhibit single exponential nature. From 'τexp' of the Nd3+: 4F3/2 level, quantum efficiency (η), (σem × (τexp)), and saturation intensity (IS) are 48.87%, 51.09 × 10-25 cm2s and 3.67 × 108 W/m2, respectively, for the 0.5 mol % Nd3+-doped glass. Higher thermal stability, very low χ, high AR, large βexp., moderate τR, large gain bandwidth and high optical gain values indicate that 0.5 mol % Nd3+-doped glass could be a potential gain medium for solid-state NIR lasers at 1.06 μm. Moreover, for the 1.331 μm emission, large Δλeff and the theoretical gain coefficient value of 1.579 dB/cm, evaluated with an excited Nd3+ ion fractional factor of 0.6, indicate that this glass might be a promising candidate in developing O-band optical fiber amplifiers.

  4. Studies in solid state ionics

    International Nuclear Information System (INIS)

    Jakes, D.; Rosenkranz, J.

    1987-01-01

    Studies performed over 10 years by the high temperature chemistry group are reviewed. Attention was paid to different aspects of ionic solids from the point of view of practical as well as theoretical needs of nuclear technology. Thus ceramic fuel compound like uranates, urania-thoria system, solid electrolytes based on oxides and ionics transformations were studied under reactor irradiation. (author) 13 figs., 3 tabs., 46 refs

  5. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  6. Technology on the storage of laser power

    International Nuclear Information System (INIS)

    Urakawa, Junji

    2001-01-01

    I report the technology on the storage of laser power using Fabry-Perot Optical Cavity. This technology is applicable for the generation of high brightness X-ray with the combination of compact electron linac or small storage ring in which about 100 MeV electron beam with normalized emittance of 10 -5 m is controlled. The distance of two concave mirrors with high reflectivity is controlled within sub-nm is essential to keep the resonance condition for the storage of laser power. I also report the possibility on several kind of applications and the status of this technology. (author)

  7. Advanced Solid-State Lasers/Compact Blue-Green Lasers. 1993 Technical Digest Series. Volume 2. Organization of the 1993 Photonics Science Topical Meetings held in New Orleans, Louisiana on 1 - 4 February 1993

    Science.gov (United States)

    1993-02-04

    in the Q-switch arm Porro prism . The waveplate prism pair rotate the polarization 90" in a double pass creating a low Q resonator . 1/4 X voltage...of the head was enough to distort the mode. The beam quality was regained above 70 Hz when the birefringence was compensated with a porro prism (Figure...lA.); in this configuration, the laser could be run up to the 100 Hz limit of the diodes. In this porro prism cavity, output was 53 mJ and was

  8. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  9. Advanced Solid State Lighting for AES Deep Space Hab Project

    Science.gov (United States)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  10. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-08-27

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field ({approx}10 T) and at low temperature {approx}1 K .

  11. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-01-01

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field (∼10 T) and at low temperature ∼1 K

  12. Annual report 1983/1984. Division of Solid State Physics

    International Nuclear Information System (INIS)

    1984-10-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, as well as optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  13. Laser technology in biomimetics basics and applications

    CERN Document Server

    Belegratis, Maria

    2013-01-01

    Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach.  The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

  14. Development of broadband free electron laser technology

    International Nuclear Information System (INIS)

    Lee, B. C.; Jeong, Y. W.; Joe, S. O.; Park, S. H.; Ryu, J. K.; Kazakevich, G.; Cha, H. J.; Sohn, S. C.; Han, S. J.

    2003-02-01

    Layer cladding technology was developed to mitigate the fretting wear damages occurred at fuel spacers in Hanaro reactor. The detailed experimental procedures are as follows. 1) Analyses of fretting wear damages and fabrication process of fuel spacers 2) Development and analysis of spherical Al 6061 T-6 alloy powders for the laser cladding 3) Analysis of parameter effects on laser cladding process for clad bids, and optimization of laser cladding process 4) Analysis on the changes of cladding layers due to overlapping factor change 5) Microstructural observation and phase analysis 6) Characterization of materials properties (hardness wear tests) 7) Development of a vision system and revision of its related software 8) Manufacture of prototype fuel spacers. As a result, it was confirmed that the laser cladding technology could increased considerably the wear resistance of Al 6061 alloy which is the raw material of fuel spacers.

  15. Graphene devices based on laser scribing technology

    Science.gov (United States)

    Qiao, Yan-Cong; Wei, Yu-Hong; Pang, Yu; Li, Yu-Xing; Wang, Dan-Yang; Li, Yu-Tao; Deng, Ning-Qin; Wang, Xue-Feng; Zhang, Hai-Nan; Wang, Qian; Yang, Zhen; Tao, Lu-Qi; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-04-01

    Graphene with excellent electronic, thermal, optical, and mechanical properties has great potential applications. The current devices based on graphene grown by micromechanical exfoliation, chemical vapor deposition (CVD), and thermal decomposition of silicon carbide are still expensive and inefficient. Laser scribing technology, a low-cost and time-efficient method of fabricating graphene, is introduced in this review. The patterning of graphene can be directly performed on solid and flexible substrates. Therefore, many novel devices such as strain sensors, acoustic devices, memory devices based on laser scribing graphene are fabricated. The outlook and challenges of laser scribing technology have also been discussed. Laser scribing may be a potential way of fabricating wearable and integrated graphene systems in the future.

  16. Energy efficient solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Petersen, Poul Michael

    2012-11-15

    Even though vast improvements have been made on efficiency and light quality, SSL is still in its infancy. One of the barriers for a market introduction is the price, which still is around 5 times higher than traditional lighting technologies. In order to fulfil the potential of SSL, further research and development needs to increase the light extraction from semiconductor materials, provide better and cheaper production and packaging, and advanced optical systems for optimized light distribution and new thermal solutions for SSL lamps and luminaires. Nanotechnology and applied research at DTU Fotonik in close collaboration with industry are essential parts in the development of new enhanced LED optical systems and LEDs with higher light extraction efficiency. Photonic crystals can help to efficiently extract light from LEDs and to form a desired emission profile. Future directions are devoted to the next generation of LEDs, in which the spontaneous emission is photon enhanced. One realization of this idea is using LEDs with a layer of nanocrystals, which are coupled to the quantum well of the LED. Such R and D work is ongoing all over the world and DOE roadmaps foresee luminous efficiencies by 2020 that are close to 250 lm/W for both cold and warm white light from LEDs, and prices in the order of one dollar per kilolumen. Such figures will drastically reduce the energy consumption worldwide for lighting, and hence a marked reduction in carbon emissions. (Author)

  17. Lasers. Technology Learning Activity. Teacher Edition. Technology Education Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the materials required for presenting an 8-day competency-based technology learning activity (TLA) designed to introduce students in grades 6-10 to advances and career opportunities in the field of laser technology. The guide uses a series of hands-on exploratory experiences into which activities to help students develop…

  18. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  19. The story of laser brazing technology

    Science.gov (United States)

    Hoffmann, Peter; Dierken, Roland

    2012-03-01

    This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.

  20. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... In this article, a review of Yb-doped CW and pulsed fibre lasers along with our study on self-pulsing dynamics in CW fibre lasers to find its role in high-power fibre laser development and the physical ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  1. Oceanographic applications of laser technology

    Science.gov (United States)

    Hoge, F. E.

    1988-01-01

    Oceanographic activities with the Airborne Oceanographic Lidar (AOL) for the past several years have primarily been focussed on using active (laser induced pigment fluorescence) and concurrent passive ocean color spectra to improve existing ocean color algorithms for estimating primary production in the world's oceans. The most significant results were the development of a technique for selecting optimal passive wavelengths for recovering phytoplankton photopigment concentration and the application of this technique, termed active-passive correlation spectroscopy (APCS), to various forms of passive ocean color algorithms. Included in this activity is use of airborne laser and passive ocean color for development of advanced satellite ocean color sensors. Promising on-wavelength subsurface scattering layer measurements were recently obtained. A partial summary of these results are shown.

  2. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  3. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  4. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  5. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, B

    2006-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  6. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  7. An introduction to solid state diffusion

    CERN Document Server

    Borg, Richard J

    2012-01-01

    The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year under

  8. Modeling and Analysis of a Three-Phase Solid-State Var ...

    African Journals Online (AJOL)

    Modeling and Analysis of a Three-Phase Solid-State Var Compensator (SSVC) ... Nigerian Journal of Technology. Journal Home ... The problems associated with the flow of reactive power in transmission and distribution lines are well known.

  9. Wide Bandgap Semiconductor Based Solid State Smart Circuit Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced solid state power component technology is necessary for future hybrid aircraft systems with increased power demands. There is a need for adequate circuit...

  10. Proceedings of the solid state physics symposium. Vol. 34C

    International Nuclear Information System (INIS)

    1991-12-01

    This volume contains the proceedings of the Solid State Physics Symposium held at Varanasi during December 21 to 24, 1991. The topics discussed in the symposium were : (a) Phonon physics, (b) Electron states and electronic properties, (c) Magnetism and magnetic properties, (d) Semiconductor physics, (e) Physics of defects and disordered materials, (f) Transport properties, (g) Superconductivity and superfluidity, (h) Liquid crystals and plastic crystals, (i) Phase transitions and critical phenomena, (j) Surface and interface physics, (k) Non-linear dynamics, instabilities and chaos, (l) Resonance studies and relaxation phenomena, (m) Solid state devices, techniques and instrumentation. Three seminars on topics : (i) High T c superconductors, (ii) Soft matter, and (iii) Physics and technology of interfaces were also held during the symposium. (M.K.V.N.)

  11. A New All Solid State Approach to Gaseous Pollutant Detection

    Science.gov (United States)

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  12. 2006 Fundamental Research Underlying Solid-State Lighting: Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kini, Arvind [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kelley, Dick [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-02-01

    This volume highlights the scientific content of the 2006 Fundamental Research Underlying Solid-State Lighting Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) in the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). This meeting is the second in a series of research theme-based Contractors Meetings and will focus on BES/DMS&E-funded research that underpins solid-state lighting technology. The meeting will feature research that cuts across several DMS&E core research program areas. The major programmatic emphasis is on developing a fundamental scientific base, in terms of new concepts and new materials that could be used or mimicked in designing novel materials, processes or devices.

  13. Advances in solid-state NMR of cellulose.

    Science.gov (United States)

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  15. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes

    Science.gov (United States)

    Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu

    2018-03-01

    All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.

  16. Technological particularities of laser manufacturing

    Directory of Open Access Journals (Sweden)

    Besnea Daniel

    2017-01-01

    Full Text Available The paper presents some investigations about the influence of the Nd:YAG laser welding parameters on the penetration and metal evaporation of single and dual pass weld in the case of thin sections of stainless steel sample. The metal loss during welding process was measured in order to establish the optimal values of welding parameters. The geometric size of the welded zone was measured using an SEM microscope in order to establish the correlation between the penetration and with at different values of welding parameters.

  17. Pulsed UV laser technologies for ophthalmic surgery

    International Nuclear Information System (INIS)

    Razhev, A M; Bagayev, S N; Churkin, D S; Kargapol’tsev, E S; Chernykh, V V; Iskakov, I A; Ermakova, O V

    2017-01-01

    The paper provides an overview of the results of multiyear joint researches of team of collaborators of Institute of Laser Physics SB RAS together with NF IRTC “Eye Microsurgery” for the period from 1988 to the present, in which were first proposed and experimentally realized laser medical technologies for correction of refractive errors of known today as LASIK, the treatment of ophthalmic herpes and open-angle glaucoma. It is proposed to carry out operations for the correction of refractive errors the use of UV excimer KrCl laser with a wavelength of 222 nm. The same laser emission is the most suitable for the treatment of ophthalmic herpes, because it has a high clinical effect, combined with many years of absence of recrudescence. A minimally invasive technique of glaucoma operations using excimer XeCl laser (λ=308 nm) is developed. Its wavelength allows perform all stages of glaucoma operations, while the laser head itself has high stability and lifetime, will significantly reduce operating costs, compared with other types of lasers. (paper)

  18. Solid-state fermentation - A mini review

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M.; Rinzema, A.; Tramper, J.

    1998-01-01

    The increasing interests in biotechnology for the application of fungi on the one hand, and for cheap agricultural products on the other, can be combined in so-called solid-state fermentation (SSF). SSF resembles a close to natural habitat for filamentous microorganisms and can be applied to

  19. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  20. Entanglement in Solid-State Nanostructures

    NARCIS (Netherlands)

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  1. Renormalization methods in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Nozieres, P [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1976-01-01

    Renormalization methods in various solid state problems (e.g., the Kondo effect) are analyzed from a qualitative vantage point. Our goal is to show how the renormalization procedure works, and to uncover a few simple general ideas (universality, phenomenological descriptions, etc...).

  2. Pulse power technology application to lasers

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1975-01-01

    Recent developments of intense relativistic electron beam accelerators and the associated pulse power technology are reviewed. The design of specific accelerators for gas laser excitation sources is discussed. A 3 MV, 800 kA, 24 ns electron beam accelerator under development for the electron beam fusion program is described along with the low jitter multichannel oil-dielectric rail switches developed for this application. This technology leads to the design of a 20 kJ, short pulse accelerator optimized gas laser excitation with radially converging electron beams. Other gas laser research requirements have led to the development of an accelerator that will produce a 0.5 MV, 20 kJ, 1 μs electron beam pulse. (auth)

  3. Laser-boosted lightcraft technology demonstrator

    Science.gov (United States)

    Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.

    1990-01-01

    The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.

  4. 3D Laser Scanning in Technology Education.

    Science.gov (United States)

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  5. Modular compact solid-state modulators for particle accelerators

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  6. Laser cladding technology to small diameter pipes

    International Nuclear Information System (INIS)

    Fujimagari, H.; Hagiwara, M.; Kojima, T.

    2000-01-01

    A laser cladding method which produces a highly corrosion-resistant material coating layers (cladding) on the austenitic stainless steel (type 304 SS) pipe inner surface was developed to prevent SCC (stress corrosion cracking) occurrence. This technology is applicable to a narrow and long distance area from operators, because of the good accessibility of the YAG (yttrium-aluminum-garnet) laser beam that can be transmitted through an optical fiber. In this method a mixed paste metallic powder and heating-resistive organic solvent are firstly placed on the inner surface of a small pipe, and then a YAG laser beam transmitted through an optical fiber irradiates to the pasted area. A mixed paste will be melted and form a cladding layer subsequently. A cladding layer shows as excellent corrosion resistance property. This laser cladding (LC) method had already applied to several domestic nuclear power plants and had obtained a good reputation. This report introduces the outline of laser cladding technology, the developed equipment for practical application in the field, and the circumstance in actual plant application. (orig.)

  7. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  8. Solid State Division progress report, September 30, 1981

    International Nuclear Information System (INIS)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed

  9. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  10. Spectroscopic studies on technetium and silicon. A solid-state laser system for the resonance-ionization spectroscopy; Spektroskopische Untersuchungen an Technetium und Silizium. Ein Festkoerperlasersystem fuer die Resonanzionisationsspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Mattolat, Christoph

    2010-11-15

    This doctoral thesis describes advancement and refinement of the titanium:sapphire laser system of the working group LARISSA, Institut fuer Physik, Johannes Gutenberg- Universitaet Mainz and its application to resonance ionization spectroscopy. Activities on the laser systems comprised three major tasks: The output power of the conventional titanium:sapphire lasers could be increased by a factor of two in order to match the needs at resonance ionization laser ion source at ISOL facilities. Additionally, the laser system was complemented by a titanium:sapphire laser in Littrow geometry, which ensures a mode-hop free tuning range from 700 nm to 950 nm, and by an injection seeded titanium:sapphire laser with a spectral width of 20 MHz (in respect to a spectral width of 3 GHz for the conventional lasers). The performance of the new laser system was tested in spectroscopic investigations of highly excited atomic levels of gold and technetium. From the measured level positions the ionization potential of gold could be verified by using the Rydberg-Ritz formula, while the ionization potential of technetium could be determined precisely for the first time. Using the seeded titanium: sapphire laser Doppler-free two-photon spectroscopy inside a hot ionizer cavity was demonstrated. A width of the recorded resonances of 90 MHz was achieved and the hyperfine structure and isotope shift of stable silicon isotopes was well resolved with this method. (orig.)

  11. Integrated Applications with Laser Technology

    Directory of Open Access Journals (Sweden)

    Octavian DOSPINESCU

    2013-01-01

    Full Text Available The introduction of new materials as Power Point presentations are the most convenient way of teaching a course or to display a scientific paper. In order to support this function, most schools, universities, institutions, are equipped with projectors and computers. For controlling the presentation of the materials, the persons that are in charge with the presentation use, in most cases, both the keyboard of the computer as well as the mouse for the slides, thing that burdens, in a way, the direct communication (face to face with the audience. Of course, the invention of the wireless mouse allowed a sort of freedom in controlling from the distance the digital materials. Although there seems to appear a certain impediment: in order to be used, the mouse requires to be placed on a flat surface. This article aims at creating a new application prototype that will manipulate, only through the means of a light-beam instrument (laser fascicle, both the actions of the mouse as well as some of the elements offered by the keyboard on a certain application or presentation. The light fascicle will be „connected” to a calculus system only through the images that were captured by a simple webcam.

  12. Emerging terawatt picosecond CO{sub 2} laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I V [Accelerator Test Facility, Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    The first terawatt picosecond (TWps) CO{sub 2} laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO{sub 2} lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for strong-field physics research. For laser wakefield accelerators (LWFA) the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential. The large average power of CO{sub 2} lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams. We discuss applications of TWps-CO{sub 2} lasers for LWFA modules of a tentative electron-positron collider, for {gamma}-{gamma} (or {gamma}-lepton) colliders, for a possible `table-top` source of high-intensity x-rays and gamma rays, and the generation of polarized positron beams. (author)

  13. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  14. Research on IGBT solid state switch

    International Nuclear Information System (INIS)

    Gan Kongyin; Tang Baoyin; Wang Xiaofeng; Wang Langping; Wang Songyan; Wu Hongchen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 μs waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  15. Research on IGBT solid state switch

    CERN Document Server

    Gan Kong Yin; Wang Xiao Feng; Wang Lang Ping; Wang Song Yan; Chu, P K; Wu Hong Chen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 mu s waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  16. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  17. A High Power Linear Solid State Pulser

    International Nuclear Information System (INIS)

    Boris Yen; Brent Davis; Rex Booth

    1999-01-01

    Particle Accelerators require high voltage and often high power. Typically the high voltage/power generation utilizes a topology with an extra energy store and a switching means to extract that stored energy. The switches may be active or passive devices. Active switches are hard or soft vacuum tubes, or semiconductors. When required voltages exceed tens of kilovolts, numerous semiconductors are stacked to withstand that potential. Such topologies can use large numbers of critical parts that, when in series, compromise the system reliability and performance. This paper describes a modular, linear, solid state amplifier which uses a parallel array of semiconductors, coupled with transmission line transformers. Such a design can provide output signals with voltages exceeding 10kV (into 50-ohms), and with rise and fall times (10-90 % amplitude) that are less than 1--ns. This compact solid state amplifier is modular, and has both hot-swap and soft fail capabilities

  18. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  19. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  20. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  1. Rechargeable sodium all-solid-state battery

    International Nuclear Information System (INIS)

    Zhou, Weidong; Li, Yutao; Xin, Sen; Goodenough, John B.

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. Furthermore, all-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  2. Ultimate gradient in solid-state accelerators

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams

  3. SOLID STATE BATTERIES WITH CONDUCTING POLYMERS

    OpenAIRE

    Bénière , F.; Boils , D.; Cánepa , H.; Franco , J.; Le Corre , A.; Louboutin , J.

    1983-01-01

    The conducting polymers like (CH)x are very interesting materials for electrodes in electrochemical cells. We have combined such electrodes with solid electrolytes to build "all solid-state" batteries. The first prototypes using a silver anode and a silver conducting electrolyte have been working satisfactorily since two years. The performances have been tested with many batteries to study the electrical properties as well as the thermodynamical parameters. A number of cycles of charge-discha...

  4. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  5. Solid-State Thyratron Replacement. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Ian [Diversified Technologies, Inc., Bedford, MA

    2017-12-12

    Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was built in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.

  6. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  7. Laser power beaming applications and technology

    Science.gov (United States)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  8. Hybrid laser technology and doped biomaterials

    Science.gov (United States)

    Jelínek, Miroslav; Zemek, Josef; Remsa, Jan; Mikšovský, Jan; Kocourek, Tomáš; Písařík, Petr; Trávníčková, Martina; Filová, Elena; Bačáková, Lucie

    2017-09-01

    Hybrid laser-based technologies for deposition of new types of doped thin films are presented. The focus is on arrangements combining pulsed laser deposition (PLD) with magnetron sputtering (MS), and on the setup with two simultaneously running PLD systems (dual PLD). Advantages and disadvantages of both arrangements are discussed. Layers of different dopants concentration were prepared. Experience with deposition of chromium and titanium doped diamond-like carbon (DLC) films for potential coating of bone implants is presented. Properties of the layers prepared by both technologies are compared and discussed. The suitability of the layers for colonization with human bone marrow mesenchymal stem cells and human osteoblast-like cells, were also evaluated under in vitro conditions.

  9. Ultrashort pulsed laser technology development program

    Science.gov (United States)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  10. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    Science.gov (United States)

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  11. Solid State Division progress report for period ending March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. (eds.)

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

  12. Solid State Division progress report for period ending March 31, 1992

    International Nuclear Information System (INIS)

    Green, P.H.; Hinton, L.W.

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation

  13. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  14. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  15. A Systematic Approach to Address the Reliability of Solid State Lighting Drivers

    NARCIS (Netherlands)

    Tarashioon, S.

    2014-01-01

    Solid State Lighting (SSL) technology is a new technology based on light emitting diodes as light sources. This technology due to its several outstanding characteristics such as lower energy consumption, longer lifetime, and higher design flexibility with respect to the conventional lighting

  16. BOOK REVIEW: Solid State Physics: An Introduction

    Science.gov (United States)

    Jakoby, Bernhard

    2009-07-01

    There's a wealth of excellent textbooks on solid state physics. The author of the present book is well aware of this fact and does not attempt to write just another one. Rather, he has provided a very compact introduction to solid state physics for third-year students. As we are faced with the continuous appearance interdisciplinary fields and associated study curricula in natural and engineering sciences (biophysics, mechatronics, etc), a compact text in solid state physics would be appreciated by students of these disciplines as well. The book features 11 chapters where each is provided with supplementary discussion questions and problems. The first chapters deal with a review of chemical bonding mechanisms, crystal structures and mechanical properties of solids, which are brief but by no means superficial. The following, somewhat more detailed chapter on thermal properties of lattices includes a nice introduction to phonons. The foundations of solid state electronics are treated in the next three chapters. Here the author first discusses the classical treatment of electronic behaviour in metals (Drude model) and continues with a quantum-theoretical approach starting with the free-electron model and leading to the band structures in conductive solids. The next chapter is devoted to semiconductors and ends with a brief but, with respect to the topical scope, adequate discussion of semiconductor devices. The classical topics of magnetic and dielectric behaviour are treated in the sequel. The book closes with a chapter on superconductivity and a brief chapter covering the modern topics of quantum confinement and aspects of nanoscale physics. In my opinion, the author has succeeded in creating a very concise yet not superficial textbook. The account presented often probes subjects deep enough to lay the basis for a thorough understanding, preparing the reader for more specialized textbooks. For instance, I think that this book may serve as an excellent first

  17. Ion beam sputter coatings for laser technology

    Science.gov (United States)

    Ristau, Detlev; Gross, Tobias

    2005-09-01

    The initial motivation for the development of Ion Beam Sputtering (IBS) processes was the need for optical coatings with extremely low optical scatter losses for laser gyros. Especially, backscattering of the gyro-mirrors couples the directional modes in the ring resonator leading to the lock in effect which limits the sensitivity of the gyro. Accordingly, the first patent on IBS was approved for an aircraft company (Litton) in 1978. In the course of the rapid development of the IBS-concept during the last two decades, an extremely high optical quality could be achieved for laser coatings in the VIS- and NIR-spectral region. For example, high reflecting coatings with total optical losses below 1 ppm were demonstrated for specific precision measurement applications with the Nd:YAG-laser operating at 1.064 μm. Even though the high quality level of IBS-coatings had been confirmed in many applications, the process has not found its way into the production environment of most optical companies. Major restrictions are the relatively low rate of the deposition process and the poor lateral homogeneity of the coatings, which are related to the output characteristics of the currently available ion sources. In the present contribution, the basic principles of IBS will be discussed in the context of the demands of modern laser technology. Besides selected examples for special applications of IBS, aspects will be presented for approaches towards rapid manufacturing of coatings and the production of rugate filters on the basis of IBS-techniques.

  18. Proceedings of the IEEE laser and electro-optics society annual meeting

    International Nuclear Information System (INIS)

    Hudson, M.J.B.; Raney, H.; Raney, D.; Spalaris, C.N.

    1990-01-01

    This book is covered under the following headings: Electro-optic systems; Emerging laser technology; Optical sensors and measurements; Optoelectronics; Semiconductor diode lasers; Solid state lasers; UV and short wavelength; Applied optical diagnostics of semiconductor materials and devices symposium and optical sensors and measurements; and Applied optical diagnostics of semiconductor materials and devices symposium

  19. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  20. Passivation-free solid state battery

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.