WorldWideScience

Sample records for solid water phantoms

  1. Solid water phantom

    International Nuclear Information System (INIS)

    Arguiropulo, M.Y.; Ghilardi Neto, T.; Pela, C.A.; Ghilardi, A.J.P.

    1992-01-01

    A phantom were developed for simulating water, based in plastics. The material was evaluated for different energies, and the measures of relative transmission showed that the transmission and the water were inside of 0,6% for gamma rays. The results of this new material were presented, showing that it could be used in photon beam calibration with energies on radiotherapy range. (C.G.C.)

  2. Dosimetric characteristics of water equivalent for two solid water phantoms

    International Nuclear Information System (INIS)

    Wang Jianhua; Wang Xun; Ren Jiangping

    2011-01-01

    Objective: To investigate the water equivalent of two solid water phantoms. Methods: The X-ray and electron beam depth-ion curves were measured in water and two solid water phantoms, RW3 and Virtual Water. The water-equivalency correction factors for the two solid water phantoms were compared. We measured and calculated the range sealing factors and the fluence correction factors for the two solid water phantoms in the case of electron beams. Results: The average difference between the measured ionization in solid water phantoms and water was 0.42% and 0.16% on 6 MV X-ray (t=-6.15, P=0.001 and t=-1.65, P=0.419) and 0.21% and 0.31% on 10 MV X-ray (t=1.728, P=0.135 and t=-2.296, P=0.061), with 17.4% and 14.5% on 6 MeV electron beams (t=-1.37, P=0.208 and t=-1.47, P=0.179) and 7.0% and 6.0% on 15 MeV electron beams (t=-0.58, P=0.581 and t=-0.90, P=0.395). The water-equivalency correction factors for the two solid water phantoms varied slightly largely, F=58.54, P=0.000 on 6 MV X-ray, F=0.211, P=0.662 on 10 MV X-ray, F=0.97, P=0.353 on 6 MeV electron beams, F=0.14, P=0.717 on 15 MeV electron beams. However, they were almost equal to 1 near the reference depths. The two solid water phantoms showed a similar tread of C pl increasing (F=26.40, P=0.014) and h pl decreasing (F=7.45, P=0.072) with increasing energy. Conclusion: The solid water phantom should undergo a quality control test before being clinical use. (authors)

  3. Monte Carlo-based investigation of water-equivalence of solid phantoms at 137Cs energy

    International Nuclear Information System (INIS)

    Vishwakarma, Ramkrushna S.; Palani Selvam, T.; Sahoo, Sridhar; Mishra, Subhalaxmi; Chourasiya, Ghanshyam

    2013-01-01

    Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at 137 Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 x 10 9 to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at 137 Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively. (author)

  4. A study on properties of water substitute solid phantom using EGS code

    International Nuclear Information System (INIS)

    Saitoh, H.; Myojoyama, A.; Tomaru, T.; Fukuda, K.; Fujisaki, T.; Abe, S.

    2003-01-01

    To reduce the uncertainty in the calibration of radiation beams, absorbed dose to water for high energy electrons is recommended as the standards and reference absorbed dose by AAPM Report no.51, IAEA Technical Reports no.398 and JSMP Standard dosimetry for radiotherapy 2001. In these recommendations, water is defined as the reference medium, however, the water substitute solid phantoms are discouraged. Nevertheless, when accurate chamber positioning in water is not possible, or when no waterproof chamber is available, their use is permitted at beam qualities R 50 2 (E 0 pl and fluence-scaling factors h pl of several commercially available water substitute solid phantoms were determined using EGS Monte Carlo simulation. Furthermore, the electron dosimetry using these scaling method was evaluated. As a result, it is obviously that dose-distribution in solid phantom can be converted to appropriate dose-distribution in water by means of IAEA depth-scaling. (author)

  5. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Kim, Jung In; Park, Jong Min; Park, Yang Kyun; Ye, Sung Joon [Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cho, Kun Woo; Cho, Woon Kap [Radiation Research, Korean Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lim, Chun Il [Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2010-11-15

    We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party's American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Most of the beams (74%) were within {+-}2% of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance ({+-}3%), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be {+-}1.5%. The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

  6. Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Hill, R.F.; Brown, S.; Baldock, C.

    2008-01-01

    Gamma ray transmission measurements have been used to evaluate the water equivalence of solid phantoms. Technetium-99m was used in narrow beam geometry and the transmission of photons measured, using a gamma camera, through varying thickness of the solid phantom material and water. Measured transmission values were compared with Monte Carlo calculated transmission data using the EGSnrc Monte Carlo code to score fluence in a geometry similar to that of the measurements. The results indicate that the RMI457 Solid Water, CMNC Plastic Water and PTW RW3 solid phantoms had similar transmission values as compared to water to within ±1.5%. However, Perspex had a greater deviation in the transmission values up to ±4%. The agreement between the measured and EGSnrc calculated transmission values agreed to within ±1% over the range of phantom thickness studied. The linear attenuation coefficients at the gamma ray energy of 140.5 keV were determined from the measured and EGSnrc calculated transmission data and compared with predicted values derived from data provided by the National Institute of Standards and Technology (NIST) using the XCOM program. The coefficients derived from the measured data were up to 6% lower than those predicted by the XCOM program, while the coefficients determined from the Monte Carlo calculations were between measured and XCOM values. The results indicate that a similar process can be followed to determine the water equivalency of other solid phantoms and at other photon energies

  7. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  8. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

    Science.gov (United States)

    Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-12-01

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.

  9. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  10. Dosimetric properties of a Solid Water High Equivalency (SW557) phantom for megavoltage photon beams.

    Science.gov (United States)

    Araki, Fujio

    2017-07-01

    The dosimetric properties of the recently developed SW557 phantom have been investigated by comparison with those of the existing SW457 phantom in megavoltage photon beams. The electron fluence ratio φ pl w , and chamber ionization ratio k pl , of water to SW457 and water to SW557 for 4-15MV photons were calculated as a function of depth using Monte Carlo simulations, and compared with measured values. Values of φ pl w for SW457 were in the range of 1.004-1.014 for 4MV, and 1.014-1.018 for 15MV photons. The φ pl w for SW557 ranged from 1.005 to 1.008 for 4MV and from 1.010 to 1.015 for 15MV photons and the variation of φ pl w with depth for each beam energy was within ±0.5%. Values of k pl were obtained with a PTW 30013 Farmer-type ionization chamber. The k pl for SW457 ranged from 0.997 to 1.011 for 4-15MV photons. Values of k pl for SW557 were almost unity for 4 and 6MV photons, while in the case of 10 and 15MV photons they were less than 1.006, excepting the build-up region. The measured and calculated k pl values of water to SW557 were in the range of 0.997-1.002 and 1.000-1.006, respectively, for 4-15MV photons, at a depth of 10cm with a source-to-axis distance of 100cm. The measured and calculated k pl values were in agreement within their uncertainty ranges. As a water-equivalent phantom, SW557 can be used with a dosimetric difference within±0.6%, for 4-15MV photons, and is more water-equivalent than SW457 in megavoltage photon beams. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. SU-E-T-336: Dosimetric Properties of a New Solid Water High Equivalency Phantom for High-Energy Photon Beams

    International Nuclear Information System (INIS)

    Araki, F; Ohno, T; Onitsuka, R; Shimohigashi, Y

    2015-01-01

    Purpose: To investigate dosimetric properties in high-energy photon beams for a Solid Water High Equivalency (SWHE, SW557) phantom (Gammex) which was newly developed as water mimicking material. Methods: The mass density of SWHE and SWHE/water electron density ratio are 1.032 g/cm 3 and 1.005 according to the manufacturer information, respectively. SWHE is more water equivalent material in physical characteristics and uniformity than conventional SW457. This study calculated the relative ionization ratio of water and SWHE as a function of depth from the cavity dose in PTW30013 and Exradin A19 Farmer-type ionization chambers using Monte Caro simulations. The simulation was performed with a 10 x 10 cm 2 field at SAD of 100 cm for 4, 6, 10, 15, and 18 MV photons. The ionization ratio was also measured with the PTW30013 chamber for 6 and 15 MV photons. In addition, the overall perturbation factor of both chambers was calculated for both phantoms. Results: The relative ionization ratio curves for water and SWHE was in good agreement for all photon energies. The ionization ratio of water/SWHE for both chambers was 0.999–1.002, 0.999–1.002, 1.001–1.004, 1.004–1.007, and 1.006–1.010 at depths of over the buildup region for 4, 6, 10, 15, and 18 MV photons, respectively. The ionization ratio of water/SWHE increased up to 1% with increasing the photon energy. The measured ionization ratio of water/SWHE for 6 and 15 MV photons agreed well with calculated values. The overall perturbation factor for both chambers was 0.983–0.988 and 0.978–0.983 for water and SWHE, respectively, in a range from 4 MV to 18 MV. Conclusion: The depth scaling factor of water/SWHE was equal to unity for all photon energies. The ionization ratio of water/SWHE at a reference depth was equal to unity for 4 and 6 MV and larger up to 0.7% than unity for 18 MV

  12. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics

    Science.gov (United States)

    Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.

    2017-07-01

    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.

  13. A solid tissue phantom for photon migration studies

    International Nuclear Information System (INIS)

    Cubeddu, Rinaldo; Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Valentini, Gianluca

    1997-01-01

    A solid tissue phantom made of agar, Intralipid and black ink is described and characterized. The preparation procedure is fast and easily implemented with standard laboratory equipment. An instrumentation for time-resolved transmittance measurements was used to determine the optical properties of the phantom. The absorption and the reduced scattering coefficients are linear with the ink and Intralipid concentrations, respectively. A systematic decrease of the reduced scattering coefficient dependent on the agar content is observed, but can easily be managed. The phantom is highly homogeneous and shows good repeatability among different preparations. Moreover, agar inclusions can be easily embedded in either solid or liquid matrixes, and no artefacts are caused by the solid - solid or solid - liquid interfaces. This allows one to produce reliable and realistic inhomogeneous phantoms with known optical properties, particularly interesting for studies on optical imaging through turbid media. (author)

  14. Analysis of dosimetry of a Gamma Knife Perfexion using polystyrene and solid water phantoms for small volume ionization chambers; Analise da dosimetria de um Gamma Knife Perfexion utilizando phantoms de poliestireno e de agua solida para camaras de ionizacao de volume pequeno

    Energy Technology Data Exchange (ETDEWEB)

    Costa, N.A.; Potiens, M.P.A., E-mail: nathaliaac@ymail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Saraiva, C.W.C. [Hospital do Coracao (HCor), Sao Paulo, SP (Brazil); Benmakhlouf, H. [Stockholm University, Karolinska Hospital (Sweden)

    2016-07-01

    The Gamma Knife Perfexion (GKP) is a radiosurgery equipment that has been developed by Elekta. Its dose-rate calibration is performed using phantoms developed by Elekta and a small volume ionization chamber. The purpose of this study was to evaluate the collected charge values obtained in its dosimetry using two different phantoms, polystyrene and solid water and the ion chambers PTW Semiflex, volume 0,125 cm{sup 3}, model 31010 and PTW Pinpoint, volume 0,016 cm{sup 3}, model 31016. (author)

  15. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2015-07-01

    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  16. Study of LiF:Mg,Ti and CaSO4:Dy dosimeters TL response to electron beams of 6 MeV applied to radiotherapy using PMMA and solid water phantoms

    International Nuclear Information System (INIS)

    Bravim, A.; Sakuraba, R.K.; Cruz, J.C.; Campos, L.L.

    2011-01-01

    The performance of CaSO 4 :Dy and LiF:Mg,Ti dosimeters to electron beams applied to radiotherapy was investigated. The TL response of these dosimeters was studied for 6 MeV electron beams using PMMA and Solid Water (SW) phantoms. The dosimeters were previously separated in groups according to their TL individual sensitivities to 60 Co gamma-radiation in air under electronic equilibrium conditions. After that, they were irradiated with 6 MeV electron doses of 0.1, 0.5, 1, 5 and 10 Gy using a linear accelerator Clinac 2100C Varian of Hospital Israelita Albert Einstein – HIAE. The electron beam irradiations were performed using a 10 × 10 cm 2 field size, 100 cm source-phantom surface distance and the dosimeters were positioned at the depth of maximum dose (1.2 cm). The TL readings were carried out between 24 and 32 h after irradiation using a Harshaw 3500 TL reader. The TL dose–response of both type of dosimeters and phantoms presented linear behavior on the electron dose range from 0.1 to 5 Gy CaSO 4 :Dy dosimeter is 21 times more sensitive than LiF:Mg,Ti, dosimeter commonly used in clinical dosimetry. The obtained results indicate that the performance of CaSO 4 :Dy dosimeters is similar to LiF:Mg,Ti dosimeters and this material can be an alternative dosimetric material to be used to clinical electron beams dosimetry.

  17. Water phantom explorer regulated by computer

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G [Centre Henri Becquerel, 76 - Rouen (France); Sarrau, J M; Bouet, M [ERA CNRS, UER Sciences et Techniques de Rouen, 76 - Mont-Saint-Aignan (France)

    1983-01-01

    A water phantom device is meant to work directly with a Hewlett-Packard 9825 T small computer. The purpose of this work is to read the distribution of absorbed dose released into a perspex container of water with the help of a semiconductor detector which can move in the three dimensions of space. Above the container a second detector situated on the edge of the beam is used as a monitor. The execution of the programmes written in HPL (Hewlett-Packard Language) offers the possibility either to carry out a preprogrammed cycle of displacements and measures or to work in interacting mode. The collected measures (space, co-ordinates and dose measures) are visualized by a plotter and recorded on a cassette tape. The signals delivered by the detectors are amplified separately then a dividing circuit delivers a tension in proportion with the ratio of these two signals. This tension is independent of the dose rate fluctuations of the irradiation beam and can be read by the computer. The examples of study of photon and electron beams that are described hereafter are meant to show the interest of a command that can be programmed.

  18. Water equivalence of some plastic-water phantom materials for clinical proton beam dosimetry

    International Nuclear Information System (INIS)

    Al-Sulaiti, L.; Shipley, D.; Thomas, R.; Owen, P.; Kacperek, A.; Regan, P.H.; Palmans, H.

    2012-01-01

    Plastic-water phantom materials are not exactly water equivalent since they have a different elemental composition and different interaction cross sections for protons than water. Several studies of the water equivalence of plastic-water phantom materials have been reported for photon and electron beams, but none for clinical proton beams. In proton beams, the difference between non-elastic nuclear interactions in plastic-water phantom materials compared to those in water should be considered. In this work, the water equivalence of Plastic Water ® (PW) 1 , Plastic Water ® Diagnostic Therapy (PWDT) 1 and solid water (WT1) 2 phantoms was studied for clinical proton energies of 60 MeV and 200 MeV. This was done by evaluating the fluence correction factor at equivalent depths; first with respect to water and then with respect to graphite by experiment and Monte Carlo (MC) simulations using FLUKA. MC simulations showed that the fluence correction with respect to water was less than 0.5% up to the entire penetration depth of the protons at 60 MeV and less than 1% at 200 MeV up to 20 cm depth for PWDT, PW and WT1. With respect to graphite the fluence correction was about 0.5% for 60 MeV and about 4% for 200 MeV. The experimental results for modulated and un-modulated 60 MeV proton beams showed good agreement with the MC simulated fluence correction factors with respect to graphite deviating less than 1% from unity for the three plastic-water phantoms. - Highlights: ► We study plastic-water in clinical proton beams by experiment and Monte Carlo. ► We obtain fluence correction factors for water and graphite. ► The correction factor for water was close to 1 at 60 MeV and <0.990 at 200 MeV. ► The correction factor for graphite was ∼0.5% at 60 MeV and up to 4% at 200 MeV.

  19. Study of the optical properties of solid tissue phantoms using single and double integrating sphere systems

    CSIR Research Space (South Africa)

    Monem, S

    2015-12-01

    Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...

  20. Temperature dependence of HU values for various water equivalent phantom materials

    International Nuclear Information System (INIS)

    Homolka, P.; Nowotny, R.; Gahleitner, A.

    2002-01-01

    The temperature dependence of water equivalent phantom materials used in radiotherapy and diagnostic imaging has been investigated. Samples of phantom materials based on epoxy resin, polyethylene, a polystyrene-polypropylene mixture and commercially available phantom materials (Solid Water TM , Gammex RMI and Plastic Water TM , Nuclear Associates) were scanned at temperatures from 15 to 40 deg. C and HU values determined. At a reference temperature of 20 deg. C materials optimized for CT applications give HU values close to zero while the commercial materials show an offset of 119.77 HU (Plastic Water) and 27.69 HU (Solid Water). Temperature dependence was lowest for epoxy-based materials (EPX-W: -0.23 HU deg. C -1 ; Solid Water: -0.25 HU deg. C -1 ) and highest for a polyethylene-based material (X0: -0.72 HU deg. C -1 ). A material based on a mixture of polystyrene and polypropylene (PSPP1: -0.27 HU deg. C -1 ) is comparable to epoxy-based materials and water (-0.29 HU deg. C -1 ). (author)

  1. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams

    International Nuclear Information System (INIS)

    Liu Lizhong; Prasad, Satish C.; Bassano, Daniel A.

    2003-01-01

    Two commercially available water-equivalent solid phantom materials were evaluated for output calibration in both photon (6-15 MV) and electron (6-20 MeV) beams. The solid water 457 and virtual water materials have the same chemical composition but differ in manufacturing process and density. A Farmer-type ionization chamber was used for measuring the output of the photon beams at 5- and 10-cm depth and electron beams at maximum buildup depth in the solid phantoms and in natural water. The water-equivalency correction factor for the solid materials is defined as the ratio of the chamber reading in natural water to that in the solid at the same linear depth. For photon beams, the correction factor was found to be independent of depth and was 0.987 and 0.993 for 6- and 15-MV beams, respectively, for solid water. For virtual water, the corresponding correction factors were 0.993 and 0.998 for 6- and 15-MV beams, respectively. For electron beams, the correction factors ranged from 1.013 to 1.007 for energies of 6 to 20 MeV for both solid materials. This indicated that the water-equivalency of these materials is within ± 1.3%, making them suitable substitutes for natural water in both photon and electron beam output measurements over a wide energy range. These correction factors are slightly larger than the manufacturers' advertised values (± 1.0% for solid water and ± 0.5% for virtual water). We suggest that these corrections are large enough in most cases and should be applied in the calculation of beam outputs

  2. Evaluation of some water - equivalent plastics as phantom materials for electron dosimetry

    International Nuclear Information System (INIS)

    Mihailescu, D.; Borcia, C.

    2005-01-01

    In the International Code of Practice for Dosimetry TRS-398 published by the International Atomic Energy Agency (IAEA), water is recommended as the reference medium for the determination of absorbed dose for high-energy electron beams. Plastic phantoms may be used under certain circumstances (electron energy below 10 MeV, R 50 2 ) for electron beam dosimetry. In this case, a depth-scaling factor is required for the conversion of depth in solid phantoms to depth in water. A fluence-scaling factor is also necessary for converting ionization chamber readings in plastic phantom to readings in water. The aim of this paper is to calculate, using Monte Carlo simulations, the depth-scaling factors c pl and fluence-scaling factors h pl of some commercially available water substitute solid phantoms in order to evaluate their water equivalency. Two sets of calculations were performed: one for electron pencil beams and another for 10 x 10 cm 2 parallel beams, both of which are normally incident on water and solid phantoms. We used only mono-energetic beams of 6, 9, 12, 15, and 18 MeV. The results were compared with TRS-398 recommended values. In the case of pencil beams, we found that by applying the TRS-398 protocol, unacceptable uncertainties (up to 10%) were introduced in the dose distribution calculations. By contrast, TRS-398 can safely be used for 10 x 10 cm 2 beams (reference beams). In this case, uncertainties lower than 1% were obtained, what was in agreement with other published data. (authors)

  3. Simulated study of solid materials used as phantoms

    International Nuclear Information System (INIS)

    Belmonte, Eduardo P.; Pinheiro, Christiano J.G.; Pinto, Nivia G.Villela; Braz, Delson; Pereira Junior, Sielso B.; Lima, Gilberto S.

    2005-01-01

    The aim of this study is to analyze the behavior of electrons in water and compares them with the behavior in the materials you want to analyze. It were simulated, using Monte Carlo code EGS4 (MC), 24 irradiation with electrons of 6 and 20 MeV in different materials (polyethylene C 2 H 4 ) n , polystyrene (C 8 H 8 ) n , lucite (C 5 H 8 O 2 ), nylon (C 6 H 11 NO), water (H 2 O) and solid water (55% polyethylene, polystyrene and 5% 40% calcium oxide). The data show that for the two energies most of radiation does not interact with the first 20 mm materials. However, when analyzed plates of 1 cm, most of the energy is deposited in the first 4 plates in case 6 MeV and in the first ten to 20 MeV electrons, for all materials. In case of similarity in behavior of radiation in water and other materials, it is observed that is in polyethylene and polystyrene that the behaviour of electrons more resembles the behavior in water

  4. A catalogue of photon spectra inside water or lung phantoms

    International Nuclear Information System (INIS)

    Petoussi, N.; Zankl, M.; Panzer, W.; Drexler, G.

    1991-01-01

    This catalogue contains a large amount of photon spectra inside a cubic (30 cm side) and a cuboid (40x20x40 cm 3 ) water or lung phantom, calculated using the Monte Carlo program KASTENSPEC. The beams considered here are mainly those relevant to X-ray diagnosis, nuclear medicine and some other applications. The spectra are shown in tabular form for 10, 20 or 50 keV steps for different depths between the entrance surface and the exit surface and for one or two off-axis distances. The alteration of the spectrum with depth, field size and phantom size is discussed. (orig.)

  5. Calibration of clinical dosemeters in the IAEA water phantom

    International Nuclear Information System (INIS)

    Caldas, L.V.E.; Albuquerque, M.P.P.

    1994-01-01

    The procedures recommended by the IAEA Code of Practice were applied at the Calibration Laboratory of Sao Paulo in order to provide in the future the clinical dosemeters users with absorbed dose to water calibration factors for Cobalt 60 radiation beams. In this work the clinical dosemeters were calibrated free in air and in water, and the results were compared, using conversion factors. The several tested clinical dosemeters of different manufacturers and models belong to the laboratory and to hospitals. For the measurements in water the IAEA cubic water phantom was used. The dosemeters were all calibrated free in air in terms of air kerma, and the calibration factors in terms of absorbed dose to water were obtained through conversion factors. the same dosemeters were also calibrated into the water phantom. Good agreement was found between the two methods, the differences were always less than 0.5%. The data obtained during this work show that when the dosemeters are used only in Cobalt 60 radiation and the users apply in the hospital routine work the IAEA Code of Practice, the calibration can be performed directly in the water phantom. This procedure provides the useful calibration factors in terms of absorbed dose to water

  6. The energy spectrum of 662 keV photons in a water equivalent phantom

    International Nuclear Information System (INIS)

    Akar Tarim, U.; Gurler, O.; Ozmutlu, E.N.; Yalcin, S.; Gundogdu, O.; Sharaf, J.M.; Bradley, D.A.

    2012-01-01

    Investigation is made on the energy spectrum of photons originating from interactions of 662 keV primary gamma-ray photons emitted by a point source positioned at the centre of a water equivalent solid phantom of dimensions 19 cm×19 cm×24 cm. Peaks resulting from total energy loss (photopeak) and multiple and back scattering have been observed using a 51 mm×51 mm NaI(Tl) detector; good agreement being found between the measured and simulated response functions. The energy spectrum of the gamma photons obtained through the Monte Carlo simulation reveals local maxima at about 100 keV and 210 keV, being also observed in the experimental response function. Such spectra can be used as a method of testing the water equivalence of solid phantom media before their use for dosimetry measurements. - Highlights: ► Peaks resulting from total energy loss (photopeak) and multiple and back scattering were observed. ► Energy distribution of γ-ray photons from a point source at the centre of a water equivalent solid phantom. ► The method can be applied to various detector geometries.

  7. 3D printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (Conference Presentation)

    Science.gov (United States)

    Lv, Xiang; Xue, Yue; Wang, Haili; Shen, Shu Wei; Zhou, Ximing; Liu, Guangli; Dong, Erbao; Xu, Ronald X.

    2017-03-01

    Tissue-simulating phantoms with interior vascular network may facilitate traceable calibration and quantitative validation of many medical optical devices. However, a solid phantom that reliably simulates tissue oxygenation and blood perfusion is still not available. This paper presents a new method to fabricate hollow microtubes for blood vessel simulation in solid phantoms. The fabrication process combines ultraviolet (UV) rapid prototyping technique with fluid mechanics of a coaxial jet flow. Polydimethylsiloxane (PDMS) and a UV-curable polymer are mixed at the designated ratio and extruded through a coaxial needle device to produce a coaxial jet flow. The extruded jet flow is quickly photo-polymerized by ultraviolet (UV) light to form vessel-simulating solid structures at different sizes ranging from 700 μm to 1000 μm. Microtube structures with adequate mechanical properties can be fabricated by adjusting material compositions and illumination intensity. Curved, straight and stretched microtubes can be formed by adjusting the extrusion speed of the materials and the speed of the 3D printing platform. To simulate vascular structures in biologic tissue, we embed vessel-simulating microtubes in a gel wax phantom of 10 cm x10 cm x 5 cm at the depth from 1 to 2 mm. Bloods at different oxygenation and hemoglobin concentration levels are circulated through the microtubes at different flow rates in order to simulate different oxygenation and perfusion conditions. The simulated physiologic parameters are detected by a tissue oximeter and a laser speckle blood flow meter respectively and compared with the actual values. Our experiments demonstrate that the proposed 3D printing process is able to produce solid phantoms with simulated vascular networks for potential applications in medical device calibration and drug delivery studies.

  8. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    Science.gov (United States)

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Characterization of the phantom material virtual water in high-energy photon and electron beams.

    Science.gov (United States)

    McEwen, M R; Niven, D

    2006-04-01

    The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.

  10. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans.

    Science.gov (United States)

    Bai, Chuanyong; Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-06-01

    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 +/- .003/cm in the uniform region of the ACR phantom, .151 +/- .003/cm and .151 +/- .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 +/- 6.5 before and 87.9 +/- 3.3 after AC (average +/- standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC.

  11. Amorphous Solid Water:

    DEFF Research Database (Denmark)

    Wenzel, Jack; Linderstrøm-Lang, C. U.; Rice, Stuart A.

    1975-01-01

    -like structure factor. The Fourier-transformed structure e factor yields a real space pair distribution function consistent with local tetrahedral coordination and hydrogen bonding, as in other condensed phases of water. The intramolecular OD separation is 1.00 angstrom; the lack of data for very large wave...

  12. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  13. Transport calculations for a 14.8 MeV neutron beam in a water phantom

    International Nuclear Information System (INIS)

    Goetsch, S.J.

    1981-01-01

    A coupled neutron/photon Monte Carlo radiation transport code (MORSE-CG) has been used to calculate neutron and photon doses in a water phantom irradiated by 14.8 MeV neutrons from the Gas Target Neutron Source. The source-collimator-phantom geometry was carefully simulated. Results of calculations utilizing two different statistical estimators (next-collision and track-length) are presented

  14. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa

    2013-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  15. Quantitative analysis of multiple biokinetic models using a dynamic water phantom: A feasibility study

    Science.gov (United States)

    Chiang, Fu-Tsai; Li, Pei-Jung; Chung, Shih-Ping; Pan, Lung-Fa; Pan, Lung-Kwang

    2016-01-01

    ABSTRACT This study analyzed multiple biokinetic models using a dynamic water phantom. The phantom was custom-made with acrylic materials to model metabolic mechanisms in the human body. It had 4 spherical chambers of different sizes, connected by 8 ditches to form a complex and adjustable water loop. One infusion and drain pole connected the chambers to an auxiliary silicon-based hose, respectively. The radio-active compound solution (TC-99m-MDP labeled) formed a sealed and static water loop inside the phantom. As clean feed water was infused to replace the original solution, the system mimicked metabolic mechanisms for data acquisition. Five cases with different water loop settings were tested and analyzed, with case settings changed by controlling valve poles located in the ditches. The phantom could also be changed from model A to model B by transferring its vertical configuration. The phantom was surveyed with a clinical gamma camera to determine the time-dependent intensity of every chamber. The recorded counts per pixel in each chamber were analyzed and normalized to compare with theoretical estimations from the MATLAB program. Every preset case was represented by uniquely defined, time-dependent, simultaneous differential equations, and a corresponding MATLAB program optimized the solutions by comparing theoretical calculations and practical measurements. A dimensionless agreement (AT) index was recommended to evaluate the comparison in each case. ATs varied from 5.6 to 48.7 over the 5 cases, indicating that this work presented an acceptable feasibility study. PMID:27286096

  16. Evaluation of thermoluminescent dosimeters using water equivalent phantoms for application in clinical electrons beams dosimetry

    International Nuclear Information System (INIS)

    Bravim, Amanda

    2010-01-01

    The dosimetry in Radiotherapy provides the calibration of the radiation beam as well as the quality control of the dose in the clinical routine. Its main objective is to determine with greater accuracy the dose absorbed by the tumor. This study aimed to evaluate the behavior of three thermoluminescent dosimeters for the clinical electron beam dosimetry. The performance of the calcium sulfate detector doped with dysprosium (CaSO 4 : Dy) produced by IPEN was compared with two dosimeters commercially available by Harshaw. Both are named TLD-100, however they differ in their dimensions. The dosimeters were evaluated using water, solid water (RMI-457) and PMMA phantoms in different exposure fields for 4, 6, 9, 12 and 16 MeV electron beam energies. It was also performed measurements in photon beams of 6 and 15 MV (2 and 5 MeV) only for comparison. The dose-response curves were obtained for the 60 Co gamma radiation in air and under conditions of electronic equilibrium, both for clinical beam of photons and electrons in maximum dose depths. The sensitivity, reproducibility, intrinsic efficiency and energy dependence response of dosimeters were studied. The CaSO 4 : Dy showed the same behavior of TLD-100, demonstrating only an advantage in the sensitivity to the beams and radiation doses studied. Thus, the dosimeter produced by IPEN can be considered a new alternative for dosimetry in Radiotherapy departments. (author)

  17. Development of a solid phantom prototype of Mo-99, Tc-99, and Co-57 in epoxy resins for evaluating of the uniformity in SPECT systems images

    International Nuclear Information System (INIS)

    Garcia D, O.C.; Cortes P, A.; Becerril V, A.; Garcia R, J.C.

    2002-01-01

    A manufacture method of solid phantoms prototype of resin with different radioisotopes is described. The phantom manufactured of molybdenum 99 has an uniformity of 96% determined with a Na(Tl) detector mono channel analyzer with a lead collimator of 1 cm diameter. (Author)

  18. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    Science.gov (United States)

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  19. Characterization of the phantom material Virtual WaterTM in high-energy photon and electron beams

    International Nuclear Information System (INIS)

    McEwen, M.R.; Niven, D.

    2006-01-01

    The material Virtual Water TM has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water TM were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence--the water/Virtual Water TM dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement ( TM at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Wate TM . However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values

  20. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    International Nuclear Information System (INIS)

    Hohlfeld, K.

    1996-01-01

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  1. A quantitative evaluation of multiple biokinetic models using an assembled water phantom: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Da-Ming Yeh

    Full Text Available This study examined the feasibility of quantitatively evaluating multiple biokinetic models and established the validity of the different compartment models using an assembled water phantom. Most commercialized phantoms are made to survey the imaging system since this is essential to increase the diagnostic accuracy for quality assurance. In contrast, few customized phantoms are specifically made to represent multi-compartment biokinetic models. This is because the complicated calculations as defined to solve the biokinetic models and the time-consuming verifications of the obtained solutions are impeded greatly the progress over the past decade. Nevertheless, in this work, five biokinetic models were separately defined by five groups of simultaneous differential equations to obtain the time-dependent radioactive concentration changes inside the water phantom. The water phantom was assembled by seven acrylic boxes in four different sizes, and the boxes were linked to varying combinations of hoses to signify the multiple biokinetic models from the biomedical perspective. The boxes that were connected by hoses were then regarded as a closed water loop with only one infusion and drain. 129.1±24.2 MBq of Tc-99m labeled methylene diphosphonate (MDP solution was thoroughly infused into the water boxes before gamma scanning; then the water was replaced with de-ionized water to simulate the biological removal rate among the boxes. The water was driven by an automatic infusion pump at 6.7 c.c./min, while the biological half-life of the four different-sized boxes (64, 144, 252, and 612 c.c. was 4.8, 10.7, 18.8, and 45.5 min, respectively. The five models of derived time-dependent concentrations for the boxes were estimated either by a self-developed program run in MATLAB or by scanning via a gamma camera facility. Either agreement or disagreement between the practical scanning and the theoretical prediction in five models was thoroughly discussed. The

  2. Evaluating the output stability of LINAC with a reference detector using 3D water phantom

    International Nuclear Information System (INIS)

    Shimozato, Tomohiro; Kojima, Tomo; Sakamoto, Masataka; Hata, Yuji; Sasaki, Koji; Araki, Noriyuki

    2013-01-01

    We report the discovery of abnormal fluctuations in the output obtained when measuring a water phantom and adjustments that reduce these outliers. Using a newly developed three-dimensional scanning water phantom system, we obtained the depth dose and off-axis dose ratio required for the beam data of a medical linear accelerator (LINAC). The field and reference detectors were set such that the measured values could be viewed in real time. We confirmed the scanning data using the field detector and the change in the output using the reference detector while measuring by using the water phantom. Prior to output adjustment of the LINAC, we observed output abnormalities as high as 18.4%. With optimization of accelerator conditions, the average of the output fluctuation width was reduced to less than ±0.5%. Through real-time graphing of reference detector measurements during measurement of field detector, we were able to rapidly identify abnormal fluctuations. Although beam data collected during radiation treatment planning are corrected for output fluctuations, it is possible that sudden abnormal fluctuations actually occur in the output. Therefore, the equipment should be tested for output fluctuations at least once a year. Even after minimization of fluctuations, we recommend determining the potential dose administered to the human body taking into account the width of the output fluctuation. (author)

  3. Utility of noise addition image made by using water phantom and image addition and subtraction software

    International Nuclear Information System (INIS)

    Watanabe, Ryo; Aoki, Takahiro; Hayano, Mizuho; Ogawa, Masato; Mituzono, Hiroki; Watanabe, Yuka

    2010-01-01

    In optimizing exposures, it is very important to evaluate the impact of image noise on image quality. To realize this, there is a need to evaluate how much image noise will make the subject disease invisible. But generally it is very difficult to shoot images of different quality in a clinical examination. Thus, a method to create a noise addition image by adding the image noise to raw data has been reported. However, this approach requires a special system, so it is difficult to implement in many facilities. We have invented a method to easily create a noise addition image by using the water phantom and image add-subtract software that accompanies the device. To create a noise addition image, first we made a noise image by subtracting the water phantom with different standard deviation (SD). A noise addition image was then created by adding the noise image to the original image. By using this method, a simulation image with intergraded SD can be created from the original. Moreover, the noise frequency component of the created noise addition image is as same as the real image. Thus, the relationship of image quality to SD in the clinical image can be evaluated. Although this method is an easy method of LDSI creation on image data, a noise addition image can be easily created by using image addition and subtraction software and water phantom, and this can be implemented in many facilities. (author)

  4. SU-E-T-118: Analysis of Variability and Stability Between Two Water Tank Phantoms Utilizing Water Tank Commissioning Procedures

    International Nuclear Information System (INIS)

    Roring, J; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S

    2015-01-01

    Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC. Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware

  5. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom

    International Nuclear Information System (INIS)

    Garcia-Garduno, Olivia A.; Larraga-Gutierrez, Jose M.; Rodriguez-Villafuerte, Mercedes; Martinez-Davalos, Arnulfo; Celis, Miguel A.

    2010-01-01

    This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis (registered) , BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.

  6. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  7. The effect of blood sample positions in a water phantom at the time of irradiation on the dicentric yield

    International Nuclear Information System (INIS)

    Inoue, Yoshinori

    1995-01-01

    Blood samples of man and rabbit, placed at various distances from the surface of a water phantom with a dosimeter were exposed to 250mGy of 60 Co γ-rays. Increases in the dicentric yields in the lymphocytes were observed with increased distances from the surface of the water phantom. As a variation of the dicentric yield with increasing distance in water was found, in the experiment to obtain calibration curves for biological dosimetry, it is recommended that blood samples should be positioned at a constant distance from the surface of a water phantom at the time of irradiation. ICRU REPORT 23 recommends that the calibration measurement be carried out with an ionization chamber positioned at 5cm depth below the surface of a water phantom for 150 kV-10 MV X rays, and 137 Cs and 60 Co γ-rays. As the same reasons which determine a 5cm depth in the recommendation, should be applied to this case, it is desirable that the experiment be carried out with blood samples positioned at 5cm distance from the surface of a water phantom. (author)

  8. Dosimetric comparison of water phantoms, ion chambers, and data acquisition modes for LINAC characterization

    International Nuclear Information System (INIS)

    Cruz, Wilbert; Narayanasamy, Ganesh; Papanikolaou, Niko; Stathakis, Sotirios

    2015-01-01

    Purpose: In this study a dosimetric comparison utilizing continuous data acquisition and discrete data acquisition is examined using IBA Blue Phantom (IBA Dosimetry, Schwarzenbruck, Germany) and PTW (PTW, Freiberg, Germany) MP3-M water tanks. The tanks were compared according to several factors including set up time, ease of use, and data acquisition times. A tertiary objective is to study the response of several ionization chambers in the two tanks examined. Methods: Measurements made using a Varian 23EX LINAC (Varian Medical Systems, Palo Alto, CA) include PDDs and beam profiles for various field sizes with IBA CC13, PTW Semiflex 31010, PTW Pinpoint N31016, and PTW 31013 ion chambers for photons (6, 18 MV) and electrons (6, 9, 12, 15, and 18 MeV). Radial and transverse profile scans were done at depths of maximum dose, 5 cm, 10 cm, and 20 cm using the same set of tanks and detectors for the photon beams. Radial and transverse profile scans were done at depth of maximum dose for the electron beams on the same tanks and chambers. Data processing and analysis was performed using PTW's MEPHYSTO Navigator software and IBA's OmniPro Accept version 6.6 for the respective water tank systems. Results: PDD values agree to within 1% and dmax to within 1 mm for the PTW MP3-M tank using PTW 31010 and Blue Phantom using IBA CC13 chamber, respectively and larger discrepancy with the PTW PinPoint N31016 chamber at 6 MV. With respect to setup time the PTW MP3-M and IBA Blue phantom tank took about 20 and 40 min, respectively. Scan times were longer by 5–15 min per field size in the PTW MP3-M tank for the square field sizes from 1 cm to 40 cm as compared to the IBA Blue phantom. However, data processing times were higher by 7 min per field size with the IBA system. Conclusions: Tank measurements showed little deviation with the higher energy photons as compared to the lower energy photons with regards to the PDD measurements. Chamber construction as well as tank

  9. Computer-assisted solid lung nodule 3D volumetry on CT : influence of scan mode and iterative reconstruction: a CT phantom study

    NARCIS (Netherlands)

    Coenen, Adriaan; Honda, Osamu; van der Jagt, Eric J.; Tomiyama, Noriyuki

    2013-01-01

    To evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution

  10. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources.

    Science.gov (United States)

    Hunt, J G; da Silva, F C A; Mauricio, C L P; dos Santos, D S

    2004-01-01

    The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature.

  11. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources

    International Nuclear Information System (INIS)

    Hunt, J. G.; Da Silva, F. C. A.; Mauricio, C. L. P.; Dos Santos, D. S.

    2004-01-01

    The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137 Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature. (authors)

  12. Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom

    Directory of Open Access Journals (Sweden)

    Tian Hong Loh

    2014-08-01

    Full Text Available This paper presents a study into radiation pattern measurements of an electrically small dielectric resonator antenna (DRA operating between 2.4 and 2.5 GHz in the industrial, scientific and medical (ISM radio band for body-centric wireless communication applications. To eliminate the distortion of the radiation pattern associated with the unwanted radiation from a metallic coaxial cable feeding the antenna we have replaced it with a fibre optic feed and an electro-optical (EO transducer. The optical signal is then converted back to RF using an Opto-Electric Field Sensor (OEFS system. To ensure traceable measurements of the radiation pattern performance of the wearable antenna a generic head and torso solid anthropomorphic phantom model has been employed. Furthermore, to illustrate the benefits of the method, numerical simulations of the co-polar and cross-polar H-plane radiation patterns at 2.4, 2.45, and 2.5 GHz are compared with the measured results obtained using: (i an optical fibre; and (ii a metallic coaxial cable.

  13. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise

    Czech Academy of Sciences Publication Activity Database

    Stolarczyk, L.; Trinkl, S.; Romero-Exposito, M.; Mojzeszek, N.; Ambrožová, Iva; Domingo, C.; Davídková, Marie; Farah, J.; Klodowska, M.; Kneževic, Z.; Liszka, M.; Majer, M.; Miljanic, S.; Ploc, Ondřej; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-01-01

    Roč. 63, č. 8 (2018), č. článku 085017. ISSN 0031-9155 Institutional support: RVO:61389005 Keywords : passive detectors * neutron dosimetry * gamma radiation dosimetry * water phantom measurements * secondary radiation measurements * pencil beam scanning proton radiotherapy Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.742, year: 2016

  14. The water equivalence of solid materials used for dosimetry with small proton beams

    International Nuclear Information System (INIS)

    Schneider, Uwe; Pemler, Peter; Besserer, Juergen; Dellert, Matthias; Moosburger, Martin; Boer, Jorrit de; Pedroni, Eros; Boehringer, Terence

    2002-01-01

    Various solid materials are used instead of water for absolute dosimetry with small proton beams. This may result in a dose measurement different to that in water, even when the range of protons in the phantom material is considered correctly. This dose difference is caused by the diverse cross sections for inelastic nuclear scattering in water and in the phantom materials respectively. To estimate the magnitude of this effect, flux and dose measurements with a 177 MeV proton pencil beam having a width of 0.6 cm (FWHM) were performed. The proton flux and the deposited dose in the beam path were determined behind water, lucite, polyethylene, teflon, and aluminum of diverse thicknesses. The number of out-scattered protons due to inelastic nuclear scattering was determined for water and the different materials. The ratios of the number of scattered protons in the materials relative to that in water were found to be 1.20 for lucite, 1.16 for polyethylene, 1.22 for teflon, and 1.03 for aluminum. The difference between the deposited dose in water and in the phantom materials taken in the center of the proton pencil beam, was estimated from the flux measurements, always taking the different ranges of protons in the materials into account. The estimated dose difference relative to water in 15 cm water equivalent thickness was -2.3% for lucite, -1.7% for polyethylene, -2.5% for teflon, and -0.4% for aluminum. The dose deviation was verified by a measurement using an ionization chamber. It should be noted that the dose error is larger when the effective point of measurement in the material is deeper or when the energy is higher

  15. Symbol phantoms

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Hongo, Syozo; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures for computation of organ doses exposed to internal and/or external radiation sources. One method is to make mathematical phantoms on the basis of ORNL mathematical phantoms. Parameters to specify organs of Japanese mathematical phantom are determined by interpolations of the ORNL data, which define the organs of Caucasian males and females of various ages, i.e. new born, 1, 5, 10, 15 years and adult, with survey data for Japanese physiques. Another procedure is to build 'symbol phantoms' for the Japanese public. The concept and its method of the symbol phantom enables us to make a phantom for an individual when we have all of his transversal section images obtained by a medical imaging device like MRI, and thus we may achieve more realistic phantoms for Japanese public than the mathematical phantoms. Both studies are in progress in NIRS. (author)

  16. Dosimetric Comparison of Simulated Human Eye And Water Phantom in Investigation of Iodine Source Effects on Tumour And Healthy Tissues

    International Nuclear Information System (INIS)

    Sadi, A.S.; Masoudi, F.S. K.N.Toosi University of Technology

    2011-01-01

    For better clinical analysis in ophthalmic brachytherapy dosimetry, there is a need for the dose determination in different parts of the eye, so simulating the eye and defining the material of any parts of that, is helpful for better investigating dosimetry in human eye. However in brachytherapy dosimetry, it is common to consider the water phantom as human eye globe. In this work, a full human eye is simulated with MCNP-4C code by considering all parts of the eye like; lens, cornea, retina, choroid, sclera, anterior chamber, optic nerve, bulk of the eye comprising vitreous body and tumour. The average dose in different parts of this full model of human eye is determined and the results are compared with the dose calculated in water phantom. The central axes depth dose and the dose in whole of the tumour for these two simulated eye model are calculated too, and the results are compared. At long last, as the aim of this work is comparing the result of investigating dosimetry between two water phantom as human eye and simulated eye globe, the ratios of the absorbed dose by the healthy tissues to the absorbed dose by the tumour are calculated in these simulations and the comparison between results is done eventually.

  17. Consequences of air around an ionization chamber : Are existing solid phantoms suitable for reference dosimetry on an MR-linac?

    NARCIS (Netherlands)

    Hackett, S. L.; Van Asselen, B.; Wolthaus, J. W H; Kok, J. G M; Woodings, S. J.; Lagendijk, J. J W; Raaymakers, B. W.

    2016-01-01

    Purpose: A protocol for reference dosimetry for the MR-linac is under development. The 1.5 T magnetic field changes the mean path length of electrons in an air-filled ionization chamber but has little effect on the electron trajectories in a surrounding phantom. It is therefore necessary to correct

  18. Estimation of the Contribution of Primary and Secondary Radiation to a Pinhole Volume from a Water Phantom

    International Nuclear Information System (INIS)

    Gamage, Kelum-A.-A.; Joyce, Malcolm-J.; Taylor, Graeme-C.

    2013-06-01

    The imaging of mixed radiation fields with organic liquid scintillation detectors became feasible as a result of recent advances in digital pulse-shape discrimination methods. The use of a liquid scintillator has significant benefits over other techniques for imaging radiation environments as the acquired data can be analysed to provide separate information about the gamma and neutron emissions from a source (or sources) in a single scan in near real-time. This method has significant potential for the location of radioactive sources in radiation environments in the nuclear industry, nuclear decommissioning and homeland security applications. A further application of the mixed-field imaging system would be to detect, locate and study the secondary radiation produced during proton therapy. Proton therapy uses a particle accelerator to target a tumour within the body with a beam of protons. The presence of materials in the beam path as well as the patient, leads to the production of secondary particles such as neutrons and gamma rays. In this paper the contribution of scattered and secondary radiation from a water phantom to a pinhole volume, as a result of three neutron sources and two gamma sources, is separately estimated using the PTRAC particle tracking option available in MCNP. A spherical tally volume, 2 cm in diameter, was placed equidistantly from a radioactive source and 30*30*15 cm 3 water phantom. Monte Carlo simulations have been carried out to investigate the level of primary and secondary radiation contributing to the pinhole volume from interactions in the phantom. This can be used as a simple method to visualise the results expected from the mixed-field imaging system. The results have shown that the percentage of neutrons reflected from the phantom with energies above 1 MeV goes up with mean energy of the source. (authors)

  19. SU-F-T-08: Brachytherapy Film Dosimetry in a Water Phantom for a Ring and Tandem HDR Applicator

    International Nuclear Information System (INIS)

    Lee, B; Grelewicz, Z; Kang, Z; Cutright, D; Gopalakrishnan, M; Sathiaseelan, V; Zhang, H

    2016-01-01

    Purpose: The feasibility of dose measurement using new generation EBT3 film was explored in a water phantom for a ring and tandem HDR applicator for measurements tracking mucosal dose during cervical brachytherapy. Methods: An experimental fixture was assembled to position the applicator in a water phantom. Prior to measurement, calibration curves for EBT3 film in water and in solidwater were verified. EBT3 film was placed at different known locations around the applicator in the water tank. A CT scan of the phantom with applicator was performed using clinical protocol. A typical cervical cancer treatment plan was then generated by Oncentra brachytherapy planning system. A dose of 500 cGy was prescribed to point A (2 cm, 2 cm). Locations measured by film included the outer surface of the ring, measurement point A-m (2.2 cm, 2.2 cm), and profiles extending from point A-m parallel to the tandem. Three independent measurements were conducted. The doses recorded by film were carefully analyzed and compared with values calculated by the treatment planning system. Results: Assessment of the EBT3 films indicate that the dose at point A matches the values predicted by the planning system. Dose to the point A-m was 411.5 cGy, and the outer circumferential surface dose of the ring was between 500 and 1150 cGy. It was found that from the point A-m, the dose drops 60% within 4.5 cm on the line parallel to the tandem. The measurement doses agree with the treatment planning system. Conclusion: Use of EBT3 film is feasible for in-water measurements for brachytherapy. A carefully machined apparatus will likely improve measurement accuracy. In a typical plan, our study found that the ring surface dose can be 2.5 times larger than the point A prescription dose. EBT3 film can be used to monitor mucosal dose in brachytherapy treatments.

  20. SU-F-T-08: Brachytherapy Film Dosimetry in a Water Phantom for a Ring and Tandem HDR Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B; Grelewicz, Z; Kang, Z; Cutright, D; Gopalakrishnan, M; Sathiaseelan, V; Zhang, H [Northwestern Memorial Hospital, Chicago, IL (United States)

    2016-06-15

    Purpose: The feasibility of dose measurement using new generation EBT3 film was explored in a water phantom for a ring and tandem HDR applicator for measurements tracking mucosal dose during cervical brachytherapy. Methods: An experimental fixture was assembled to position the applicator in a water phantom. Prior to measurement, calibration curves for EBT3 film in water and in solidwater were verified. EBT3 film was placed at different known locations around the applicator in the water tank. A CT scan of the phantom with applicator was performed using clinical protocol. A typical cervical cancer treatment plan was then generated by Oncentra brachytherapy planning system. A dose of 500 cGy was prescribed to point A (2 cm, 2 cm). Locations measured by film included the outer surface of the ring, measurement point A-m (2.2 cm, 2.2 cm), and profiles extending from point A-m parallel to the tandem. Three independent measurements were conducted. The doses recorded by film were carefully analyzed and compared with values calculated by the treatment planning system. Results: Assessment of the EBT3 films indicate that the dose at point A matches the values predicted by the planning system. Dose to the point A-m was 411.5 cGy, and the outer circumferential surface dose of the ring was between 500 and 1150 cGy. It was found that from the point A-m, the dose drops 60% within 4.5 cm on the line parallel to the tandem. The measurement doses agree with the treatment planning system. Conclusion: Use of EBT3 film is feasible for in-water measurements for brachytherapy. A carefully machined apparatus will likely improve measurement accuracy. In a typical plan, our study found that the ring surface dose can be 2.5 times larger than the point A prescription dose. EBT3 film can be used to monitor mucosal dose in brachytherapy treatments.

  1. Monte Carlo electron-photon transport using GPUs as an accelerator: Results for a water-aluminum-water phantom

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.; Du, X.; Liu, T.; Xu, X. G. [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2013-07-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - is being developed at Rensselaer Polytechnic Institute as a software test bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. In this paper, the preliminary results of code development and testing are presented. The electron transport in media was modeled using the class-II condensed history method. The electron energy considered ranges from a few hundred keV to 30 MeV. Moller scattering and bremsstrahlung processes above a preset energy were explicitly modeled. Energy loss below that threshold was accounted for using the Continuously Slowing Down Approximation (CSDA). Photon transport was dealt with using the delta tracking method. Photoelectric effect, Compton scattering and pair production were modeled. Voxelised geometry was supported. A serial ARHCHER-CPU was first written in C++. The code was then ported to the GPU platform using CUDA C. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. ARHCHER was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and lateral dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x10{sup 6} histories of electrons were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively, on a CPU with a single core used. (authors)

  2. Visibility of solid and liquid fiducial markers used for image-guided radiation therapy on optical coherence tomography: an esophageal phantom study (Conference Presentation)

    Science.gov (United States)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Weda, Jelmer J. A.; de Bruin, Daniel M.; Faber, Dirk J.; Hulshof, Maarten C. C. M.; van Leeuwen, Ton G.; van Herk, Marcel B.; de Boer, Johannes F.

    2017-03-01

    Radiation therapy (RT) is used in operable and inoperable esophageal cancer patients. Endoscopic ultrasound-guided fiducial marker placement allows improved translation of the disease extent on endoscopy to computed tomography (CT) images used for RT planning and enables image-guided RT. However, microscopic tumor extent at the time of RT planning is unknown. Endoscopic optical coherence tomography (OCT) is a high-resolution (10-30µm) imaging modality with the potential for accurately determining the longitudinal disease extent. Visibility of fiducial markers on OCT is crucial for integrating OCT findings with the RT planning CT. We investigated the visibility on OCT (NinePoint Medical, Inc.) of 13 commercially available solid (Visicoil, Gold Anchor, Flexicoil, Polymark, and QLRAD) and liquid (BioXmark, Lipiodol, and Hydrogel) fiducial markers of different diameter. We designed and manufactured a set of dedicated Silicone-based esophageal phantoms to perform imaging in a controlled environment. The esophageal phantoms consist of several layers with different TiO2 concentrations to simulate the scattering properties of a typical healthy human esophagus. Markers were placed at various depths (0.5, 1.1, 2.0, and 3.0mm). OCT imaging allowed detection of all fiducial markers and phantom layers. The signal to background ratio was 6-fold higher for the solid fiducial markers than the liquid fiducial markers, yet OCT was capable of visualizing all 13 fiducial markers at all investigated depths. We conclude that RT fiducial markers can be visualized with OCT. This allows integration of OCT findings with CT for image-guided RT.

  3. Measurement of two-dimensional thermal neutron flux in a water phantom and evaluation of dose distribution characteristics

    International Nuclear Information System (INIS)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Horiguchi, Yoji

    2001-03-01

    To evaluate nitrogen dose, boron dose and gamma-ray dose occurred by neutron capture reaction of the hydrogen at the medical irradiation, two-dimensional distribution of the thermal neutron flux is very important because these doses are proportional to the thermal neutron distribution. This report describes the measurement of the two-dimensional thermal neutron distribution in a head water phantom by neutron beams of the JRR-4 and evaluation of the dose distribution characteristic. Thermal neutron flux in the phantom was measured by gold wire placed in the spokewise of every 30 degrees in order to avoid the interaction. Distribution of the thermal neutron flux was also calculated using two-dimensional Lagrange's interpolation program (radius, angle direction) developed this time. As a result of the analysis, it was confirmed to become distorted distribution which has annular peak at outside of the void, though improved dose profile of the deep direction was confirmed in the case which the radiation field in the phantom contains void. (author)

  4. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  5. A Novel Simple Phantom for Verifying the Dose of Radiation Therapy

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2015-01-01

    Full Text Available A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions.

  6. Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium

    Directory of Open Access Journals (Sweden)

    Dmitrienko Margarita A.

    2015-01-01

    Full Text Available This paper investigates the evaporation of a water droplet with a comparably sized solid nontransparent inclusion in a high-temperature (500–800 K gas medium. Water evaporates from the free surface of the inclusion. During this process, intensive vapor formation occurs on the inner interface “water droplet – solid inclusion” with the subsequent explosive decay of the droplet. Experiments have been conducted using high-speed (up to 105 fps video cameras “Phantom” and software “Phantom Camera Control”. The conditions of the explosive vapor formation of the heterogeneous water droplet were found. The typical phase change mechanisms of the heterogeneous water droplet under the conditions of intensive heat exchange were determined.

  7. Development of solid water-equivalent radioactive certified reference materials

    International Nuclear Information System (INIS)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R.; Geske, G.

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides 90 Sr/ 90 Y, 137 Cs, 147 Pm and 204 Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author)

  8. Determination of appropriate exposure angles for the reverse water's view using a head phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Su; Lee, Keun Ohk [Dept. of Radiology, Soonchunhyang University Hospital, Bucheon (Korea, Republic of); Choi, Jae Ho [Dept. of Radiological Technology, Ansan University, Ansan (Korea, Republic of); Jung, Jae Hong [Dept. of Biomedical Engineering, College of Medicine, The Catholic University, Seoul (Korea, Republic of)

    2017-06-15

    Early diagnosis for upper facial trauma is difficult by using the standard Water's view (S-Water's) in general radiograph due to overlapping of anatomical structures, the uncertainty of patient positioning, and specific patients with obese, pediatric, old, or high-risk. The purpose of this study was to analyze appropriate exposure angles through a comparison of two different protocols (S-Water's vs. reverse Water's view (R-Water's)) by using a head phantom. A head phantom and general radiograph with 75 kVp, 400 mA, 45 ms 18 mAs, and SID 100 cm. Images of R-Water's were obtained by different angles in the range of 0 degree to 50 degrees, which adjusted an angle at 1 degree interval in supine position. Survey elements were developed and three observers were evaluated with four elements including the maxillary sinus, zygomatic arch, petrous ridge, and image distortion. Statistical significant analysis were used the Krippendorff's alpha and Fleiss' kappa. The intra-class correlation (ICC) coefficient for three observers were high with maxillary, 0.957 (0.903, 0.995); zygomatic arch, 0.939 (0.866, 0.987); petrous ridge, 0.972 (0.897, 1.000); and image distortion, 0.949 (0.830, 1.000). The high-quality image (HI) and perfect agreement (PA) for acquired exposure angles were high in range of the maxillary sinus (36 degrees – 44 degrees), zygomatic arch (33 degrees – 40 degrees), petrous ridge (32 degrees – 50 degrees), and image distortion (44 degrees– 50 degrees). Consequently, an appropriate exposure angles for the R-Water's view in the supine position for patients with facial trauma are in the from 36 degrees to 40 degrees in this phantom study. The results of this study will be helpful for the rapid diagnosis of facial fractures by simple radiography.

  9. Determination of appropriate exposure angles for the reverse water's view using a head phantom

    International Nuclear Information System (INIS)

    Lee, Min Su; Lee, Keun Ohk; Choi, Jae Ho; Jung, Jae Hong

    2017-01-01

    Early diagnosis for upper facial trauma is difficult by using the standard Water's view (S-Water's) in general radiograph due to overlapping of anatomical structures, the uncertainty of patient positioning, and specific patients with obese, pediatric, old, or high-risk. The purpose of this study was to analyze appropriate exposure angles through a comparison of two different protocols (S-Water's vs. reverse Water's view (R-Water's)) by using a head phantom. A head phantom and general radiograph with 75 kVp, 400 mA, 45 ms 18 mAs, and SID 100 cm. Images of R-Water's were obtained by different angles in the range of 0 degree to 50 degrees, which adjusted an angle at 1 degree interval in supine position. Survey elements were developed and three observers were evaluated with four elements including the maxillary sinus, zygomatic arch, petrous ridge, and image distortion. Statistical significant analysis were used the Krippendorff's alpha and Fleiss' kappa. The intra-class correlation (ICC) coefficient for three observers were high with maxillary, 0.957 (0.903, 0.995); zygomatic arch, 0.939 (0.866, 0.987); petrous ridge, 0.972 (0.897, 1.000); and image distortion, 0.949 (0.830, 1.000). The high-quality image (HI) and perfect agreement (PA) for acquired exposure angles were high in range of the maxillary sinus (36 degrees – 44 degrees), zygomatic arch (33 degrees – 40 degrees), petrous ridge (32 degrees – 50 degrees), and image distortion (44 degrees– 50 degrees). Consequently, an appropriate exposure angles for the R-Water's view in the supine position for patients with facial trauma are in the from 36 degrees to 40 degrees in this phantom study. The results of this study will be helpful for the rapid diagnosis of facial fractures by simple radiography

  10. Dose distribution and dosimetry parameters calculation of MED3633 Palladium-103 source in water phantom using MCNP

    International Nuclear Information System (INIS)

    Mowlavi, A. A.; Binesh, A.; Moslehitabar, H.

    2006-01-01

    Palladium-103 ( 103 Pd) is a brachytherapy source for cancer treatment. The Monte Carlo codes are usually applied for dose distribution and effect of shieldings. Monte Carlo calculation of dose distribution in water phantom due to a MED3633 103 Pd source is presented in this work. Materials and Methods: The dose distribution around the 10 3Pd Model MED3633 located in the center of 30*30*30 m 3 water phantom cube was calculated using MCNP code by the Monte Carlo method. The percentage depth dose variation along the different axis parallel and perpendicular to the source was also calculated. Then, the isodose curves for 100%, 75%, 50% and 25% percentage depth dose and dosimetry parameters of TG-43 protocol were determined. Results: The results show that the Monte Carlo Method could calculate dose deposition in high gradient region, near the source, accurately. The isodose curves and dosimetric characteristics obtained for MED3633 103 Pd source are in good agreement with published results. Conclusion: The isodose curves of the MED3633 103 Pd source have been derived form dose calculation by MCNP code. The calculated dosimetry parameters for the source agree quite well with their Monte Carlo calculated and experimental measurement values

  11. Calculating Error Percentage in Using Water Phantom Instead of Soft Tissue Concerning 103Pd Brachytherapy Source Distribution via Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    OL Ahmadi

    2015-12-01

    Full Text Available Introduction: 103Pd is a low energy source, which is used in brachytherapy. According to the standards of American Association of Physicists in Medicine, dosimetric parameters determination of brachytherapy sources before the clinical application was considered significantly important. Therfore, the present study aimed to compare the dosimetric parameters of the target source using the water phantom and soft tissue. Methods: According to the TG-43U1 protocol, the dosimetric parameters were compared around the 103Pd source in regard with water phantom with the density of 0.998 gr/cm3 and the soft tissue with the density of 1.04 gr/cm3 on the longitudinal and transverse axes using the MCNP4C code and the relative differences were compared between the both conditions. Results: The simulation results indicated that the dosimetric parameters depended on the radial dose function and the anisotropy function in the application of the water phantom instead of soft tissue up to a distance of 1.5 cm,  between which a good consistency was observed. With increasing the distance, the difference increased, so as within 6 cm from the source, this difference increased to 4%. Conclusions: The results of  the soft tissue phantom compared with those of the water phantom indicated 4% relative difference at a distance of 6 cm from the source. Therefore, the results of the water phantom with a maximum error of 4% can be used in practical applications instead of soft tissue. Moreover, the amount of differences obtained in each distance regarding using the soft tissue phantom could be corrected.

  12. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    International Nuclear Information System (INIS)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn; Kang, Eun Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  13. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Kang, Eun Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Ki Yeol [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-06-15

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  14. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: a phantom study.

    Science.gov (United States)

    Hwang, Sung Ho; Oh, Yu-Whan; Ham, Soo-Youn; Kang, Eun-Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 ± 0.9%, and 1.7 ± 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 ± 7.4%) was significantly greater (p volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  15. Dose distribution of secondary radiation in a water phantom for a proton pencil beam—EURADOS WG9 intercomparison exercise

    Science.gov (United States)

    Stolarczyk, L.; Trinkl, S.; Romero-Expósito, M.; Mojżeszek, N.; Ambrozova, I.; Domingo, C.; Davídková, M.; Farah, J.; Kłodowska, M.; Knežević, Ž.; Liszka, M.; Majer, M.; Miljanić, S.; Ploc, O.; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-04-01

    Systematic 3D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam in a 300  ×  300  ×  600 mm3 water phantom was performed using a set of thermoluminescence detectors (TLDs): MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MTS-N (natLiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti), radiophotoluminescent (RPL) detectors GD-352M and GD-302M, and polyallyldiglycol carbonate (PADC)-based (C12H18O7) track-etched detectors. Neutron and gamma-ray doses, as well as linear energy transfer distributions, were experimentally determined at 200 points within the phantom. In parallel, the Geant4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume of 100  ×  100  ×  100 mm3 (spread out Bragg peak with a modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicular to the primary beam were approximately 0.5 mGy Gy‑1 at a distance of 100 mm and 0.02 mGy Gy‑1 at 300 mm from the center of the target. For the neutrons, the corresponding values of dose equivalent were found to be ~0.7 and ~0.06 mSv Gy‑1, respectively. The measured neutron doses were comparable with the out-of-field neutron doses from a similar experiment with 20 MV x-rays, whereas photon doses for the scanning proton beam were up to three orders of magnitude lower.

  16. ATTACK ON WATER BY CARBON OF SOLID FUEL

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2008-01-01

    Full Text Available The paper considers a continuous method for attack of high temperature water steam by carbon of solid fuel (coke. Design of water-coal gas generator and experimental stand, methodology for  measurements of parameters of water-coal gasification are described in the paper.

  17. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  18. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, M. F. Mohd, E-mail: mfahmi@usm.my [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia); Abdullah, R. [School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia); Tajuddin, A. A. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang (Malaysia); Hashim, R. [School of Industrial Technologies, Universiti Sains Malaysia, 11800 Penang (Malaysia); Bauk, S. [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2016-01-22

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.

  19. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  20. Development of solid water-equivalent radioactive certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R. (Office for Standardization, Metrology and Quality Control (ASMW), Berlin (Germany, F.R.)); Geske, G. (Jena Univ. (Germany, F.R.))

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides {sup 90}Sr/{sup 90}Y, {sup 137}Cs, {sup 147}Pm and {sup 204}Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author).

  1. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T, E-mail: thorsten.schneider@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany)

    2011-06-07

    The application of more and more low-energy photon radiation in brachytherapy-either in the form of low-dose-rate radioactive seeds such as Pd-103 or I-125 or in the form of miniature x-ray tubes-has induced greater interest in determining the absorbed dose to water in water in this energy range. As it seems to be hardly feasible to measure the absorbed dose with calorimetric methods in this low energy range, ionometric methods are the preferred choice. However, the determination of the absorbed dose to water in water by ionometric methods is difficult in this energy range. With decreasing energy, the relative uncertainty of the photon cross sections increases and as the mass energy transfer coefficients show a steep gradient, the spectra of the radiation field must be known precisely. In this work two ionometric methods to determine the absorbed dose to water are evaluated with respect to their sensitivity to the uncertainties of the spectra and of the atomic database. The first is the measurement of the air kerma free in air and the application of an MC-based conversion factor to the absorbed dose to water. The second is the determination of the absorbed dose to water by means of an extrapolation chamber as an integral part of a phantom. In the complementing MC-calculations, two assortments of spectra each of which is based on a separate unfolding procedure were used as well as two kinds of databases: the standard PEGS and the recently implemented NIST database of EGSnrc. Experimental results were obtained by using a parallel-plate graphite extrapolation chamber and a free-air chamber. In the case when the water kerma in a phantom is determined from the measurements of air kerma free in air, differences in the order of 10% were found, according to which the database or the kind of spectrum is used. In contrast to this, for the second method, the differences found were about 0.5%.

  2. Monte-Carlo simulation of the SL-ELEKTA-20 medical linear accelerator. Dosimetric study of a water phantom

    International Nuclear Information System (INIS)

    Thiam, Ch. O.

    2003-06-01

    In radiotherapy, it is essential to have a precise knowledge of the dose delivered in the target volume and the neighbouring critical organs. To be usable clinically, the models of calculation must take into account the exact characteristics of the beams used and the densities of fabrics. Today we can use sophisticated irradiation techniques and get a more precise assessment of the dose and with a better knowledge of its distribution. Thus in this report, will be detailed a simulation of the head of irradiation of accelerator SL-ELEKTA-20 in electrons mode and a dosimetric study of a water phantom. This study is carried out with the code of simulation Monte Carlo GATE adapted for applications of medical physics; the results are compared with the data obtained by the anticancer center 'Jean Perrin' on a similar accelerator. (author)

  3. Water jacket for solid particle solar receiver

    Science.gov (United States)

    Wasyluk, David T.

    2018-03-20

    A solar receiver includes: water jacket panels each having a light-receiving side and a back side with a watertight sealed plenum defined in-between; light apertures passing through the watertight sealed plenums to receive light from the light-receiving sides of the water jacket panels; a heat transfer medium gap defined between the back sides of the water jacket panels and a cylindrical back plate; and light channeling tubes optically coupled with the light apertures and extending into the heat transfer medium gap. In some embodiments ends of the light apertures at the light receiving side of the water jacket panel are welded together to define at least a portion of the light-receiving side. A cylindrical solar receiver may be constructed using a plurality of such water jacket panels arranged with their light-receiving sides facing outward.

  4. Distributions of neutron yields and doses around a water phantom bombarded with 290-MeV/nucleon and 430-MeV/nucleon carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, D., E-mail: satoh.daiki@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kajimoto, T. [Hiroshima University, Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8527 (Japan); Shigyo, N.; Itashiki, Y.; Imabayashi, Y. [Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Koba, Y.; Matsufuji, N. [National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Sanami, T. [High Energy Accelerator Research Organization, Oho-cho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Nakao, N. [Shimizu Corporation, Etchujima, Koto-ku, Tokyo 135-8530 (Japan); Uozumi, Y. [Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2016-11-15

    Double-differential neutron yields from a water phantom bombarded with 290-MeV/nucleon and 430-MeV/nucleon carbon ions were measured at emission angles of 15°, 30°, 45°, 60°, 75°, and 90°, and angular distributions of neutron yields and doses around the phantom were obtained. The experimental data were compared with results of the Monte-Carlo simulation code PHITS. The PHITS results showed good agreement with the measured data. On the basis of the PHITS simulation, we estimated the angular distributions of neutron yields and doses from 0° to 180° including thermal neutrons.

  5. Hydration of ammonia, methylamine, and methanol in amorphous solid water

    Science.gov (United States)

    Souda, Ryutaro

    2016-02-01

    Interactions of polar protic molecules with amorphous solid water (ASW) have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. The ammonia and methylamine are incorporated into the interior of porous ASW films. They are caged by water molecules and are released during water crystallization. In contrast, the methanol-water interaction is not influenced by pores of ASW. The methanol additives tend to survive water crystallization and are released during ASW film evaporation. The hydration of n-hexane in ASW is influenced significantly by methanol additives because n-hexane is accommodated in a methanol-induced hydration shell.

  6. IMRT delivery verification using a spiral phantom

    International Nuclear Information System (INIS)

    Richardson, Susan L.; Tome, Wolfgang A.; Orton, Nigel P.; McNutt, Todd R.; Paliwal, Bhudatt R.

    2003-01-01

    In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan

  7. Thermodynamics of water intrusion in nanoporous hydrophobic solids.

    Science.gov (United States)

    Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H

    2008-08-28

    We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.

  8. Phantom Pain

    Science.gov (United States)

    ... Because this is yet another version of tangled sensory wires, the result can be pain. A number of other factors are believed to contribute to phantom pain, including damaged nerve endings, scar tissue at the site of the amputation and the physical memory of pre-amputation pain in the affected area. ...

  9. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Andreo, P.; Tabata, T.

    1996-01-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth - dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies. (author)

  10. Computer-assisted solid lung nodule 3D volumetry on CT. Influence of scan mode and iterative reconstruction. A CT phantom study

    International Nuclear Information System (INIS)

    Coenen, Adriaan; Honda, Osamu; Tomiyama, Noriyuki; Jagt, Eric J. van der

    2013-01-01

    The objective of this study was to evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution mode) and iterative reconstructions [0, 50 and 100% blending of adaptive statistical iterative reconstruction (ASiR) and filtered back projection]. The nodule volumes were calculated using semiautomatic software and compared with the assumed volume from the nodules. The mean absolute and relative percentage error improved when using iterative reconstruction especially when using the conventional scan mode; however, this effect was not significant. Significant reduction in volume overestimation was observed when using high-resolution scan mode (P=0.011). The high-resolution mode significantly reduces the volume overestimation of 3D volumetry. Iterative reconstruction shows a reduction in volume overestimation and error margin especially with the conventional scan mode; however, this effect was not significant. (author)

  11. DECREASE OF SOLIDS IN GRAY WATER BY AERATION PROCESS

    Directory of Open Access Journals (Sweden)

    Gerardo Alonso Torres-Avalos

    2017-07-01

    Full Text Available The activated sludge process is a biological treatment consisting basically of agitation and aeration of a waste water mixture and a selected microorganisms sludge. The oxidation of organic matter was determined with several tests such as BOD5 (Biochemical Oxygen Demand, TSS (Total Sedimented Solids, SS (Sediment Solids, TDS (Total Dissolved Solids, FVS (fixed and volatile solids and finally a measurement of treated water turbidity. The results obtained for the reduction of the organic load during the first two days of treatment (samples 1, 2 and 3 are visible in each of the organic loading tests; during the last two days according to the samples 4 and 5 the solids showed an increase in organic load. The related organoleptic properties such as color showed a notable decrease. As for the tests performed at pH show a change, samples 1, 2 and 3 approaching a range where they are neutral and the last two samples (4 and 5 the pH has an elevation until it becomes alkaline. The efficiency of the method used for the treatment of residual water during the first days reduced the organic load with a variation of TS and TSS of 760, 569 ppm respectively. This is a viable alternative since this is a low cost method with short term results because organoleptic properties such as odor and color were lost during the first day of treatment.

  12. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Ohno, H.; Yoshida, H.; Katsuta, H.; Naruse, Y.

    1986-01-01

    The decomposition of tritiated water vapor by means of solid oxide electrolysis cells has been proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in an argon carrier was performed using a tube-type stabilized zirconia cell with porous platinum electrodes over the temperature range 500-950 0 C. High conversion ratios from water to hydrogen, of up to 99.9%, were achieved. The characteristics of the cell were deduced from the Nernst equation and the conversion ratios expressed as a function of the IR-free voltage. Experimental results agreed with the equation. The isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. The obtained separation factor was slightly higher than the theoretical value. (author)

  13. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Katsuta, H.; Naruse, Y.; Ohno, H.; Yoshida, H.

    1984-01-01

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 500 0 C to 950 0 C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  14. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ying, C K; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W A

    2017-01-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak. (paper)

  15. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  16. Feasibility of RACT for 3D dose measurement and range verification in a water phantom.

    Science.gov (United States)

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M

    2015-02-01

    The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.

  17. Feasibility of RACT for 3D dose measurement and range verification in a water phantom

    Energy Technology Data Exchange (ETDEWEB)

    Alsanea, Fahed [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 (United States); Moskvin, Vadim [Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive, RT 041, Indianapolis, Indiana 46202-5289 (United States); Stantz, Keith M., E-mail: kstantz@purdue.edu [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 and Radiology and Imaging Sciences, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, Indiana 46202-5289 (United States)

    2015-02-15

    Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly

  18. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  19. The design and fabrication of two portal vein flow phantoms by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S. [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States); Dodd, Gerald D., E-mail: gerald.dodd@ucdenver.edu; Chang, Samuel; Scherzinger, Ann L. [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States); Chen, S. James, E-mail: james.chen@ucdenver.edu [Department of Medicine, University of Colorado Denver, Colorado 80045 and Department of Medicine/Cardiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop B132, Aurora, Colorado 80045 (United States); Feng, Yusheng, E-mail: yusheng.feng@utsa.edu [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  20. Solid deuterated water in space: detection constraints from laboratory experiments

    Science.gov (United States)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  1. Preparation of water-equivalent radioactive solid sources

    International Nuclear Information System (INIS)

    Yamazaki, Ione M.; Koskinas, Marina F.; Dias, Mauro S.

    2011-01-01

    The development of water-equivalent solid sources in two geometries, cylindrical and flat without the need of irradiation in a strong gamma radiation source to obtain polymerization is described. These sources should have density similar to water and good uniformity. Therefore, the density and uniformity of the distribution of radioactive material in the resins were measured. The variation of these parameters in the cylindrical geometry was better than 2.0% for the density and 2.3% for the uniformity and for the flat geometry the values obtained were better than 2.0 % and better than 1.3%, respectively. These values are in good agreement with the literature. (author)

  2. Water slip and friction at a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Brigo, L; Pierno, M; Mammano, F; Sada, C; Fois, G; Pozzato, A; Zilio, S dal; Mistura, G [Dipartimento di Fisica G Galilei, Universita degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy); Natali, M [Istituto di Chimica Inorganica e delle Superfici (ICIS), CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Tormen, M [TASC-INFM, CNR, S S 14 km 163.5 Area Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: mistura@padova.infm.it

    2008-09-03

    A versatile micro-particle imaging velocimetry ({mu}-PIV) recording system is described, which allows us to make fluid velocity measurements in a wide range of flow conditions both inside microchannels and at liquid-solid interfaces by using epifluorescence and total internal reflection fluorescence excitation. This set-up has been applied to study the slippage of water over flat surfaces characterized by different degrees of hydrophobicity and the effects that a grooved surface has on the fluid flow inside a microchannel. Preliminary measurements of the slip length of water past various flat surfaces show no significant dependence on the contact angle.

  3. SU-F-T-292: Imaging and Radiation Oncology Core (IROC) Houston QA Center’s Anthropomorphic Phantom Program

    International Nuclear Information System (INIS)

    Mehrens, H; Lewis, B; Lujano, C; Nguyen, T; Hernandez, N; Alvarez, P; Molineu, A; Followill, D

    2016-01-01

    Purpose: To describe the results of IROC Houston’s international and domestic end-to-end QA phantom irradiations. Methods: IROC Houston has anthropomorphic lung, liver, head and neck, prostate, SRS and spine phantoms that are used for credentialing and quality assurance purposes. The phantoms include structures that closely mimic targets and organs at risk and are made from tissue equivalent materials: high impact polystyrene, solid water, cork and acrylic. Motion tables are used to mimic breathing motion for some lung and liver phantoms. Dose is measured with TLD and radiochromic film in various planes within the target of the phantoms. Results: The most common phantom requested is the head and neck followed by the lung phantom. The head and neck phantom was sent to 800 domestic and 148 international sites between 2011 and 2015, with average pass rates of 89% and 92%, respectively. During the past five years, a general upward trend exists regarding demand for the lung phantom for both international and domestic sites with international sites more than tripling from 5 (2011) to 16 (2015) and domestic sites doubling from 66 (2011) to 152 (2015). The pass rate for lung phantoms has been consistent from year to year despite this large increase in the number of phantoms irradiated with an average pass rate of 85% (domestic) and 95% (international) sites. The percentage of lung phantoms used in combination with motions tables increased from 38% to 79% over the 5 year time span. Conclusion: The number of domestic and international sites irradiating the head and neck and lung phantoms continues to increase and the pass rates remained constant. These end-to-end QA tests continue to be a crucial part of clinical trial credentialing and institution quality assurance. This investigation was supported by IROC grant CA180803 awarded by the NCI.

  4. SU-F-T-292: Imaging and Radiation Oncology Core (IROC) Houston QA Center’s Anthropomorphic Phantom Program

    Energy Technology Data Exchange (ETDEWEB)

    Mehrens, H; Lewis, B; Lujano, C; Nguyen, T; Hernandez, N; Alvarez, P; Molineu, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To describe the results of IROC Houston’s international and domestic end-to-end QA phantom irradiations. Methods: IROC Houston has anthropomorphic lung, liver, head and neck, prostate, SRS and spine phantoms that are used for credentialing and quality assurance purposes. The phantoms include structures that closely mimic targets and organs at risk and are made from tissue equivalent materials: high impact polystyrene, solid water, cork and acrylic. Motion tables are used to mimic breathing motion for some lung and liver phantoms. Dose is measured with TLD and radiochromic film in various planes within the target of the phantoms. Results: The most common phantom requested is the head and neck followed by the lung phantom. The head and neck phantom was sent to 800 domestic and 148 international sites between 2011 and 2015, with average pass rates of 89% and 92%, respectively. During the past five years, a general upward trend exists regarding demand for the lung phantom for both international and domestic sites with international sites more than tripling from 5 (2011) to 16 (2015) and domestic sites doubling from 66 (2011) to 152 (2015). The pass rate for lung phantoms has been consistent from year to year despite this large increase in the number of phantoms irradiated with an average pass rate of 85% (domestic) and 95% (international) sites. The percentage of lung phantoms used in combination with motions tables increased from 38% to 79% over the 5 year time span. Conclusion: The number of domestic and international sites irradiating the head and neck and lung phantoms continues to increase and the pass rates remained constant. These end-to-end QA tests continue to be a crucial part of clinical trial credentialing and institution quality assurance. This investigation was supported by IROC grant CA180803 awarded by the NCI.

  5. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    International Nuclear Information System (INIS)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D

    2015-01-01

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647

  6. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    Energy Technology Data Exchange (ETDEWEB)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647.

  7. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  8. Platform for monitoring water and solid fluxes in mountainous rivers

    Science.gov (United States)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  9. Application of the high-temperature ratio method for evaluation of the depth distribution of dose equivalent in a water-filled phantom on board space station Mir

    International Nuclear Information System (INIS)

    Berger, T.; Hajek, M.; Schoener, W.; Fugger, M.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.; Kartashov, D.

    2002-01-01

    A water-filled tissue equivalent phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems, Moscow, Russia. It contains four channels perpendicular to each other, where dosemeters can be exposed at different depths. Between May 1997 and February 1999 the phantom was installed at three different locations on board the Mir space station. Thermoluminescence dosemeters (TLDs) were exposed at various depths inside the phantom either parallel or perpendicular to the hull of the spacecraft. The high-temperature ratio (HTR) method was used for the evaluation of the TLDs. The method was developed at the Atominstitute of the Austrian Universities, Vienna, Austria, and has already been used for measurements in mixed radiation fields on earth and in space with great success. It uses the changes of peak height ratios in LiF:Mg,Ti glow curves in dependence on the linear energy transfer (LET), and therefore allows determination of an 'averaged' LET as well as measurement of the absorbed dose. A mean quality factor and, subsequently, the dose equivalent can be calculated according to the Q(LET ( ) relationship proposed by the ICRP. The small size of the LiF dosemeters means that the HTR method can be used to determine the gradient of absorbed dose and dose equivalent inside the tissue equivalent body. (author)

  10. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  11. Enceladus' 101 Geysers: Phantoms? Hardly

    Science.gov (United States)

    Porco, C.; Nimmo, F.; DiNino, D.

    2015-12-01

    The discovery by the Cassini mission of present-day geysering activity capping the southern hemisphere of Saturn's moon Enceladus (eg, Porco, C. C. et al. Science 311, 1393, 2006) and sourced within a subsurface body of liquid water (eg, Postberg, F. et al. Nature 459, 1098, 2009; Porco, C.C. et al. AJ 148, 45, 2014, hereafter PEA], laced with organic compounds (eg, Waite, J.H. et al. Science 311, 1419, 2006), has been a significant one, with far-reaching astrobiological implications. In an extensive Cassini imaging survey of the moon's south polar terrain (SPT), PEA identified 101 distinct, narrow jets of small icy particles erupting, with varying strengths, from the four major fractures crossing the SPT. A sufficient spread in stereo angles of the 107 images used in that work allowed (in some cases, many) pair-wise triangulations to be computed; precise surface locations were derived for 98 jets. Recently, it has been claimed (Spitale, J.N. et al. Nature 521, 57, 2015) that the majority of the geysers are not true discrete jets, but are "phantoms" that appear in shallow-angle views of a dense continuous curtain of material with acute bends in it. These authors also concluded that the majority of the eruptive material is not in the form of jets but in the form of fissure-style 'curtain' eruptions. We argue below the contrary, that because almost all the moon's geysers were identified by PEA using multiple images with favorable viewing geometries, the vast majority of them, and likely all, are discrete jets. Specifically, out of 98 jets, no fewer than 90 to 95 were identified with viewing geometries that preclude the appearance of phantoms. How the erupting solids (i.e., icy particles) that are seen in Cassini images are partitioned between jets and inter-jet curtains is still an open question.

  12. Measurement of the dose distribution at the gammatron in homogeneous water phantoms with films and ionization chambers

    International Nuclear Information System (INIS)

    Mark, B.

    1978-01-01

    The check of the analytic function for the depth-dose-curve by means of computer calculations of films shows, that only with the knowledge of the phantom depth factor the film is able to deliver quick and relatively simple gives information on the degree of the decrease of the dose with increasing phantom depth. Outside of the effective beam the deviation between the values, determines photometrically and ionometrically is up to 100 per cent. The analytic function could be veryfied well ionometrically. The transversal distributions were also checked, that are the basis for the dose calculation in a pendulum irradiation. A good agreement was found between the ionometrical and film-dosimetrical values. (orig.) [de

  13. Output calibration in solid water for high energy photon beams

    International Nuclear Information System (INIS)

    Reft, C.S.

    1989-01-01

    The AAPM Protocol recommends the use of water, polystyrene or acrylic media for measuring the output of high energy photon beams. It provides the appropriate restricted mass stopping powers and mass energy absorption coefficients for converting the dose to these media to dose to water. A water-equivalent solid has been developed for dosimetric applications. [C. Constantinou, F. Attix, and B. Paliwal, Med. Phys. 9, 436 (1982)]. Calculated values for the restricted mass stopping powers and mass energy absorption coefficients have been published for this material. [A. Ho and B. Paliwal, Med. Phys. 13, 403 (1986)]. The accuracy of these calculations was investigated by making output measurements, following the Protocol, with a Farmer type chamber in four materials for Co-60, 4, 6, 10, 18, and 24 MV photon beams. The results show that the scaled dose to water for the different media agree to better than 1%, and the analysis supports the methodology of the Protocol for obtaining the dose to water from the different media

  14. Solubilization of poorly water-soluble drugs using solid dispersions.

    Science.gov (United States)

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  15. Subcritical-Water Extraction of Organics from Solid Matrices

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  16. Phantom position dependence

    International Nuclear Information System (INIS)

    Thorson, M.R.; Endres, G.W.R.

    1981-01-01

    Sensitivity of the Hanford dosimeter response to its position relative to the phantom and the neutron source has always been recognized. A thorough investigation was performed to quantify dosimeter response according to: (a) dosimeter position on phantom, (b) dosimeter distance from phantom, and (c) angular relationship of dosimeter relative to neutron source and phantom. Results were obtained for neutron irradiation at several different energies

  17. Scatter and leakage contributions to the out-of-field absorbed dose distribution in water phantom around the medical LINAC radiation beams

    International Nuclear Information System (INIS)

    Bordy, J.M.; Bessiere, I.; Ostrowsky, A.; Poumarede, B.; Sorel, S.; Vermesse, D.

    2013-01-01

    This work is carried out within the framework of EURADOS Working Group 9 (WG9) whose general objective is 'to assess non-target organ doses in radiotherapy and the related risks of second cancers, with the emphasis on dosimetry'. The objective of the present work is to provide reference values (i) to evaluate the current methods of deriving three-dimensional dose distributions in and around the target volume using passive dosimeters, (ii) to derive the leakage dose from the head of the medical linear accelerator (LINAC) and the doses due to scattered radiation from the collimator edges and the body (phantom) itself. Radiation qualities of 6, 12 and 20 MV are used with standard calibration conditions described in IAEA TRS 398 and nonstandard conditions at a reference facility at the Laboratoire National Henri Becquerel (CEA LIST/LNE LNHB). An ionisation chamber is used to measure profile and depth dose in especially design water phantom built to enable investigation of doses up to 60 cm from the beam axis. A first set of experiments is carried out with the beam passing through the tank. From this first experiment, penumbra and out-of-field dose profiles including water and collimator scatter and leakage are found over three orders of magnitude. Two further sets of experiments using the same experimental arrangement with the beam outside the tank, to avoid water scatter, are designed to measure collimator scatter and leakage by closing the jaws of the collimator. It is shown that the ratios between water scatter, collimator scatter and leakage depend on the photon energy. Depending on the energy, typical leakage and collimator scatter represents 10-40% and 30-50% of the total out-of-field doses respectively. Water scatter decreases with energy while leakage increases with energy, and collimator scatter varies only slowly with energy. (authors)

  18. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  19. Dosimetric characterization of model Cs-1 Rev2 cesium-131 brachytherapy source in water phantoms and human tissues with MCNP5 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Wang Jianhua; Zhang Hualin

    2008-01-01

    A recently developed alternative brachytherapy seed, Cs-1 Rev2 cesium-131, has begun to be used in clinical practice. The dosimetric characteristics of this source in various media, particularly in human tissues, have not been fully evaluated. The aim of this study was to calculate the dosimetric parameters for the Cs-1 Rev2 cesium-131 seed following the recommendations of the AAPM TG-43U1 report [Rivard et al., Med. Phys. 31, 633-674 (2004)] for new sources in brachytherapy applications. Dose rate constants, radial dose functions, and anisotropy functions of the source in water, Virtual Water, and relevant human soft tissues were calculated using MCNP5 Monte Carlo simulations following the TG-43U1 formalism. The results yielded dose rate constants of 1.048, 1.024, 1.041, and 1.044 cGy h -1 U -1 in water, Virtual Water, muscle, and prostate tissue, respectively. The conversion factor for this new source between water and Virtual Water was 1.02, between muscle and water was 1.006, and between prostate and water was 1.004. The authors' calculation of anisotropy functions in a Virtual Water phantom agreed closely with Murphy's measurements [Murphy et al., Med. Phys. 31, 1529-1538 (2004)]. Our calculations of the radial dose function in water and Virtual Water have good agreement with those in previous experimental and Monte Carlo studies. The TG-43U1 parameters for clinical applications in water, muscle, and prostate tissue are presented in this work

  20. Effect of reconstruction algorithm on image quality and identification of ground-glass opacities and partly solid nodules on low-dose thin-section CT: Experimental study using chest phantom

    International Nuclear Information System (INIS)

    Koyama, Hisanobu; Ohno, Yoshiharu; Kono, Atsushi A.; Kusaka, Akiko; Konishi, Minoru; Yoshii, Masaru; Sugimura, Kazuro

    2010-01-01

    Purpose: The purpose of this study was to assess the influence of reconstruction algorithm on identification and image quality of ground-glass opacities (GGOs) and partly solid nodules on low-dose thin-section CT. Materials and methods: A chest CT phantom including simulated GGOs and partly solid nodules was scanned with five different tube currents and reconstructed by using standard (A) and newly developed (B) high-resolution reconstruction algorithms, followed by visually assessment of identification and image quality of GGOs and partly solid nodules by two chest radiologists. Inter-observer agreement, ROC analysis and ANOVA were performed to compare identification and image quality of each data set with those of the standard reference. The standard reference used 120 mA s in conjunction with reconstruction algorithm A. Results: Kappa values (κ) of overall identification and image qualities were substantial or almost perfect (0.60 < κ). Assessment of identification showed that area under the curve of 25 mA reconstructed with reconstruction algorithm A was significantly lower than that of standard reference (p < 0.05), while assessment of image quality indicated that 50 mA s reconstructed with reconstruction algorithm A and 25 mA s reconstructed with both reconstruction algorithms were significantly lower than standard reference (p < 0.05). Conclusion: Reconstruction algorithm may be an important factor for identification and image quality of ground-glass opacities and partly solid nodules on low-dose CT examination.

  1. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.; Dias, Humberto G.

    2013-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  2. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.

    2015-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  3. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Perks, J; Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States); Lucero, S [UC Davis, Davis, CA (United States)

    2015-06-15

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specifically mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.

  4. Computer tomographic phantom

    International Nuclear Information System (INIS)

    Lonn, A.H.R.; Jacobsen, D.R.; Zech, D.J.

    1988-01-01

    A reference phantom for computer tomography employs a flexible member with means for urging the flexible member into contact along the curved surface of the lumbar region of a human patient. In one embodiment, the reference phantom is pre-curved in an arc greater than required. Pressure from the weight of a patient laying upon the reference phantom is effective for straightening out the curvature sufficiently to achieve substantial contact along the lumbar region. The curvature of the reference phantom may be additionally distorted by a resilient pad between the resilient phantom and a table for urging it into contact with the lumbar region. In a second embodiment of the invention, a flexible reference phantom is disposed in a slot in the top of a resilient cushion. The resilient cushion and reference phantom may be enclosed in a flexible container. A partially curved reference phantom in a slot in a resilient cushion is also contemplated. (author)

  5. Evolution of dosimetric phantoms

    International Nuclear Information System (INIS)

    Reddy, A.R.

    2010-01-01

    In this oration evolution of the dosimetric phantoms for radiation protection and for medical use is briefly reviewed. Some details of the development of Indian Reference Phantom for internal dose estimation are also presented

  6. A phantom for quality control in mammography

    International Nuclear Information System (INIS)

    Gambaccini, M.; Rimondi, O.; Marziani, M.; Toti, A.

    1989-01-01

    A phantom for evaluating image quality in mammography has been designed and will be used in the Italian national programme ''Dose and Quality in Mammography''. The characteristics of the phantom are (a) about the same X-ray transmission as a 5 cm 50% fat and 50% water breast for energies between 15 and 50 keV and (b) optimum energies for imaging of the test objects (included in the phantom) in very close agreement with the optimum energies for imaging of calcifications and tumours in a 5 cm 50% fat and 50% water breast. An experimental comparison between the prototype and some commercial phantoms was carried out. Measurements are in progress to test the phantom's ability to evaluate the performances of mammographic systems quantitatively. (author)

  7. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  8. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    BACKGROUND: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. RESULTS: Water migration in cellular solid foods

  9. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    Background: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Results: Water migration in cellular solid foods

  10. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  11. Development and validation of two phantoms for quality control in cone-beam CT

    International Nuclear Information System (INIS)

    Gomes B, W. O.

    2016-10-01

    The cone beam computed tomography (CBCT) was introduced into the market in the late 90 s and being a relatively new technology, also no well-established quality control protocols. There are currently projects to standardize the use of CBCT. The SEDENTEXCT project was created with the goal of developing guidelines for CBCT, including the development of a phantom for quality control it is proposed. This study aimed at the development and validation of the models of phantom: CQ_IFBA_01 e CQ_IFBA_02, the first filled with water and the second fully with solid structure in PMMA. Both models allow, otherwise the European phantom - SEDENTEXCT, its use in various models of CBCT, independent of the size of the field of view. The two phantoms used to evaluate seven parameters of quality control are: intensity or average value of pixels of five different plastics, signal to noise ratio, resolution, low contrast, spatial resolution, the accuracy of distances on the z axis, the geometric distortion and image uniformity. The spatial resolution is a critical parameter that differs significantly from the other types of scan, and in these two phantom can be evaluated by two different methods: MTF obtained by Fourier transformation of the function LSF (line spread function) and/or by analysis visual image to a pattern of bars up to 16 pl/cm. Validation was performed in three models CBCT: Kodak 9000, i-CAT Classical and Orthophos XG 3-dimensional. All imaging protocols were characterized dosimetric ally with solid state sensors to correlate with the perfect operation. These models were selected by different manufacturers have different characteristics as FOV, maximum voltage, slice thickness and patient positioning mode. The two of phantom models were viable and also showed compliance with the specifications and data available in the literature. We conclude the feasibility of the two phantom models, and model option will be linked to the practicality positioning equipment. (Author)

  12. Comparison of two dosimetric protocols in water and solid phantoms for electron beams in an extension cone

    International Nuclear Information System (INIS)

    Genis S, R.; Garcia C, C.; Martinez A, M.

    1998-01-01

    The objective of this work is to realize the dosimetry for an extension cone for electron beams and proposing a simple and reliable procedure for this purpose. Clinically it was sufficient to employ an energy not greater than 9 MeV, by the clinical conditions of the leisure. It was had nominally 6 or 9 MeV and it was decided to employ the second energy. This cone was elaborated for special cases that by the anatomical position of the leisure, it is not allowed the easy access with the usual cones. (Author)

  13. Assignment of phantom bands in the solid-state infrared and Raman spectra of coronene: the importance of a minute out-of-plane distortion

    NARCIS (Netherlands)

    Todorov, P.D.; Jenneskens, L.W.; van Lenthe, J.H.

    2010-01-01

    The molecular geometry and the normal modes properties of coronene are investigated by means of DFT B3LYP and restricted/Hartree–Fock calculations utilizing basis sets of triple zeta +polarization quality. The interpretation of the infrared and Raman spectra of coronene, especially in solid state,

  14. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio

    2015-01-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm 2 each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed

  15. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Batista Nogueira, Luciana [Anatomy and Imaging Department, Federal University of Minas Gerais, Belo Horizonte (Brazil); Lemos Silva, Hugo Leonardo [Santa Casa Hospital, Belo Horizonte (Brazil); Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio [Nuclear Engineering Department, Federal University of Minas Gerais, Belo Horizonte (Brazil)

    2015-07-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the

  16. Creating 3D gelatin phantoms for experimental evaluation in biomedicine

    Directory of Open Access Journals (Sweden)

    Stein Nils

    2015-09-01

    Full Text Available We describe and evaluate a setup to create gelatin phantoms by robotic 3D printing. Key aspects are the large workspace, reproducibility and resolution of the created phantoms. Given its soft tissue nature, the gelatin is kept fluid during inside the system and we present parameters for additive printing of homogeneous, solid objects. The results indicate that 3D printing of gelatin can be an alternative for quickly creating larger soft tissue phantoms without the need for casting a mold.

  17. Relationships of clinical protocols and reconstruction kernels with image quality and radiation dose in a 128-slice CT scanner: Study with an anthropomorphic and water phantom

    International Nuclear Information System (INIS)

    Paul, Jijo; Krauss, B.; Banckwitz, R.; Maentele, W.; Bauer, R.W.; Vogl, T.J.

    2012-01-01

    Research highlights: ► Clinical protocol, reconstruction kernel, reconstructed slice thickness, phantom diameter or the density of material it contains directly affects the image quality of DSCT. ► Dual energy protocol shows the lowest DLP compared to all other protocols examined. ► Dual-energy fused images show excellent image quality and the noise is same as that of single- or high-pitch mode protocol images. ► Advanced CT technology improves image quality and considerably reduce radiation dose. ► An important finding is the comparatively higher DLP of the dual-source high-pitch protocol compared to other single- or dual-energy protocols. - Abstract: Purpose: The aim of this study was to explore the relationship of scanning parameters (clinical protocols), reconstruction kernels and slice thickness with image quality and radiation dose in a DSCT. Materials and methods: The chest of an anthropomorphic phantom was scanned on a DSCT scanner (Siemens Somatom Definition flash) using different clinical protocols, including single- and dual-energy modes. Four scan protocols were investigated: 1) single-source 120 kV, 110 mA s, 2) single-source 100 kV, 180 mA s, 3) high-pitch 120 kV, 130 mA s and 4) dual-energy with 100/Sn140 kV, eff.mA s 89, 76. The automatic exposure control was switched off for all the scans and the CTDIvol selected was in between 7.12 and 7.37 mGy. The raw data were reconstructed using the reconstruction kernels B31f, B80f and B70f, and slice thicknesses were 1.0 mm and 5.0 mm. Finally, the same parameters and procedures were used for the scanning of water phantom. Friedman test and Wilcoxon-Matched-Pair test were used for statistical analysis. Results: The DLP based on the given CTDIvol values showed significantly lower exposure for protocol 4, when compared to protocol 1 (percent difference 5.18%), protocol 2 (percent diff. 4.51%), and protocol 3 (percent diff. 8.81%). The highest change in Hounsfield Units was observed with dual

  18. MOLECULARLY IMPRINTED SOLID PHASE EXTRACTION FOR TRACE ANALYSIS OF DIAZINON IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    M. Rahiminejad ، S. J. Shahtaheri ، M. R. Ganjali ، A. Rahimi Forushani ، F. Golbabaei

    2009-04-01

    Full Text Available Amongst organophosphate pesticides, the one most widely used and common environmental contaminant is diazinon; thus methods for its trace analysis in environmental samples must be developed. Use of diazinon imprinted polymers such as sorbents in solid phase extraction, is a prominent and novel application area of molecular imprinted polymers. For diazinon extraction, high performance liquid chromatography analysis was demonstrated in this study. During optimization of the molecular imprinted solid phase extraction procedure for efficient solid phase extraction of diazinon, Plackett-Burman design was conducted. Eight experimental factors with critical influence on molecular imprinted solid phase extraction performance were selected, and 12 different experimental runs based on Plackett-Burman design were carried out. The applicability of diazinon imprinted polymers as the sorbent in solid phase extraction, presented obtained good recoveries of diazinon from LC-grade water. An increase in pH caused an increase in the recovery on molecular imprinted solid phase extraction. From these results, the optimal molecular imprinted solid phase extraction procedure was as follows: solid phase extraction packing with 100 mg diazinon imprinted polymers; conditioning with 5 mL of methanol and 6 mL of LC-grade water; sample loading containing diazinon (pH=10; washing with 1 mL of LC-grade water, 1 mL LC- grade water containing 30% acetonitrile and 0.5 mL of acetonitrile, respectively; eluting with 1 mL of methanol containing 2% acetic acid. The percentage recoveries obtained by the optimized molecular imprinted solid phase extraction were more than 90% with drinking water spiked at different trace levels of diazinon. Generally speaking, the molecular imprinted solid phase extraction procedure and subsequent high performance liquid chromatography analysis can be a relatively fast and proper approach for qualitative and quantitative analysis of diazinon in

  19. Water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Appendices

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    Water and sewage treatment systems are presented with concentration on the filtration of water. Equipment is described for organic removal, solids removal, nutrient removal, inorganic removal, and disinfection of the water. Such things as aseline hardware, additional piping connections, waste disposal, and costs involved are also reported.

  20. Neutron Scattering Analysis of Water's Glass Transition and Micropore Collapse in Amorphous Solid Water.

    Science.gov (United States)

    Hill, Catherine R; Mitterdorfer, Christian; Youngs, Tristan G A; Bowron, Daniel T; Fraser, Helen J; Loerting, Thomas

    2016-05-27

    The question of the nature of water's glass transition has continued to be disputed over many years. Here we use slow heating scans (0.4  K min^{-1}) of compact amorphous solid water deposited at 77 K and an analysis of the accompanying changes in the small-angle neutron scattering signal, to study mesoscale changes in the ice network topology. From the data we infer the onset of rotational diffusion at 115 K, a sudden switchover from nondiffusive motion and enthalpy relaxation of the network at 121  K, in excellent agreement with the glass transition onset deduced from heat capacity and dielectric measurements. This indicates that water's glass transition is linked with long-range transport of water molecules on the time scale of minutes and, thus, clarifies its nature. Furthermore, the slow heating rates combined with the high crystallization resistance of the amorphous sample allow us to identify the glass transition end point at 136 K, which is well separated from the crystallization onset at 144 K-in contrast to all earlier experiments in the field.

  1. A study of energy transfer during water entry of solids using ...

    Indian Academy of Sciences (India)

    Prapanch Nair

    Abstract. Cavity formation during water entry of a solid corresponds to the deceleration experienced by the solid. Several experimental studies in the past have facilitated qualitative understanding of the relation between flow and impact properties and the type of cavity formed. The types of cavities formed are classified ...

  2. Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation

    NARCIS (Netherlands)

    Ruijter, G.J.G.; Visser, J.; Rinzema, A.

    2004-01-01

    Polyol accumulation and metabolism were examined in Aspergillus oryzae cultured on whole wheat grains or on wheat dough as a model for solid-state culture. In solid-state fermentation (SSF), water activity (a(w)) is typically low resulting in osmotic stress. In addition to a high level of mannitol,

  3. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration

    International Nuclear Information System (INIS)

    Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L.

    1991-01-01

    In this paper results of studies of two onshore and two offshore pilot plants that use ceramic crossflow microfiltration (CCFM) to separate oil, grease, and suspended solids from produced water are discussed. The method is capable of producing permeate quality with < =5 mg/L (detection limit) of dispersed oil and grease and <1 mg/L of suspended solids

  4. SU-E-J-49: Design and Fabrication of Custom 3D Printed Phantoms for Radiation Therapy Research and Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C; Xing, L [Stanford University, Stanford, CA (United States)

    2015-06-15

    Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.

  5. SU-E-J-49: Design and Fabrication of Custom 3D Printed Phantoms for Radiation Therapy Research and Quality Assurance

    International Nuclear Information System (INIS)

    Jenkins, C; Xing, L

    2015-01-01

    Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research

  6. Phantom cosmologies and fermions

    International Nuclear Information System (INIS)

    Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M

    2008-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid

  7. 21. Phantom pain.

    NARCIS (Netherlands)

    Wolff, A.P.; Vanduynhoven, E.; Kleef, M. van; Huygen, F.; Pope, J.E.; Mekhail, N.

    2011-01-01

    Phantom pain is pain caused by elimination or interruption of sensory nerve impulses by destroying or injuring the sensory nerve fibers after amputation or deafferentation. The reported incidence of phantom limb pain after trauma, injury or peripheral vascular diseases is 60% to 80%. Over half the

  8. Stopping-power and mass energy-absorption coefficient ratios for Solid Water

    International Nuclear Information System (INIS)

    Ho, A.K.; Paliwal, B.R.

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration

  9. Suspended solids moderate the degradation and sorption of waste water-derived pharmaceuticals in estuarine waters.

    Science.gov (United States)

    Aminot, Yann; Fuster, Laura; Pardon, Patrick; Le Menach, Karyn; Budzinski, Hélène

    2018-01-15

    This study focuses on the fate of pharmaceuticals discharged into an estuarine environment, particularly into the Turbidity Maximum Zone (TMZ). Batch experiments were set up to investigate the factors regulating the degradation of 53 selected pharmaceuticals. Treated effluents from Bordeaux city (France) were mixed with water from the estuarine Garonne River during 4weeks under 6 characterized conditions in order to assess the influence of suspended particulates, sterilization, untreated wastewater input and dilution on the degradation kinetics. Of the 53 pharmaceuticals monitored, 43 were quantified at the initial time. Only 7 exhibited a persistent behavior (e.g. carbamazepine, meprobamate) while biotic degradation was shown to be the main attenuation process for 38 molecules (e.g. abacavir, ibuprofen highly degradable). Degradation was significantly enhanced by increasing concentrations of suspended solids. A persistence index based on the half-lives of the compounds has been calculated for each of the 43 pharmaceuticals to provide a practical estimate of their relative stability. The stability of pharmaceuticals in estuarine environments is likely to be highly variable and attenuated primarily by changes in suspended solid concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  11. SU-E-T-454: Impact of Air Gap On PDDs of 6 MV Photon Beam for Various Field Sizes in Inhomogeneous Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Oyewale, S [Cancer Centers of Southwest Oklahoma, Lawton, OK (United States); Pokharel [21st Century Oncology, Estero, FL (United States); Singh, H [Procure Proton Therapy Center, Oklahoma City, OK (United States); Islam, M [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Rana, S [ProCure Proton Therapy Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To investigate how the shape of air gap and its size will impact the percent depth doses (PDDs) of a 6MV photon beam for various field sizes. Methods: Two in-house phantoms were manufactured containing rectangular (phantom A) and circular (phantom B) air gaps. Both phantoms A and B were composed of same top layer (solid-water; 30×30cm{sup 2},5cm thickness) and bottom layer (solid-water; 30×30cm {sup 2},8cm thickness), but middle layer was varied to observe air gap effects and scatter contribution to the measurement point. In phantom A, a rectangular shaped air gap (30×30cm{sup 2},7cm thickness) was created by placing Styrofoam blocks between top and bottom layers of the phantom. In phantom B, middle layer was replaced by “inhomogenous block”, composed of acrylic plate (30×30cm{sup 2}, 4cm thickness) followed by PVC(30×30cm{sup 2},3cm thickness). Additionally, circular air gap was created by drilling a hole (diameter=2.8cm, length=7cm) at the center of “inhomogenous block”. In both phantoms, measurement readings were obtained at 13cm depth (i.e., 1cm after air gap) and depth of maximum dose(6MV energy; 100 MUs; field sizes ranged from 3×3cm{sup 2} to 10×10cm{sup 2}). The PDDs at 13cm depth were compared in both phantoms. Results: The measurements in both phantoms A and B showed an almost linear increase in PDDs with increasing field size, especially for smaller field sizes (from 3×3 to 7×7cm{sup 2}). For each field size, the PDD in phantom A was smaller compared to the one in phantom B. The difference in PDDs between two phantoms decreased with an increase in field size as the PDD difference decreased from 9.0% to 6.4%. Conclusion: The shape and size of air gap affect the PDD measurements in secondary build-up region as 6 MV primary beam traverses through the center of air gap. The scatter contribution due to increase in field size was more noticeable for field sizes ≤7×7cm{sup 2}.

  12. SU-E-T-89: Comprehensive Quality Assurance Phantom for the Small Animal Radiation Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Ngwa, W [University of Massachusetts Lowell, MA (United States); Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Korideck, H; Zygmanski, P; Berbeco, R; Makrigiorgos, G; Cormack, R [Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2014-06-01

    Purpose: Use of Small Animal Radiation Research Platform (SARRP) systems for conducting state-of-the-art image guided radiotherapy (IGRT) research on small animals has become more common over the past years. The purpose of this work is to develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the SARRP. Methods: A QA phantom was developed for carrying out daily, monthly and annual QA tasks including imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of nine (60×60×5 mm3) KV-energy tissue equivalent solid water slabs that can be employed for annual dosimetry QA with film. Three of the top slabs are replaceable with ones incorporating Mosfets or OSLDs arranged in a quincunx pattern, or a slab drilled to accommodate an ion chamber insert. These top slabs are designed to facilitate routine daily and monthly QA tasks such as output constancy, isocenter congruency test, treatment planning system (TPS) QA, etc. One slab is designed with inserts for image QA. A prototype of the phantom was applied to test the performance of the imaging, planning and treatment delivery systems. Results: Output constancy test results showed daily variations within 3%. For isocenter congruency test, the phantom could be used to detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Using the Mosfet in phantom as target, the difference between TPS calculations and measurements was within 5%. Image-quality parameters could also be assessed in terms of geometric accuracy, CT number accuracy, linearity, noise and image uniformity, etc. Conclusion: The developed phantom can be employed as a simple tool for comprehensive performance evaluation of the SARRP. The study provides a reference for development of a comprehensive quality assurance program for the SARRP, with proposed tolerances and frequency of required tests.

  13. SU-E-T-89: Comprehensive Quality Assurance Phantom for the Small Animal Radiation Research Platform

    International Nuclear Information System (INIS)

    Jermoumi, M; Ngwa, W; Korideck, H; Zygmanski, P; Berbeco, R; Makrigiorgos, G; Cormack, R

    2014-01-01

    Purpose: Use of Small Animal Radiation Research Platform (SARRP) systems for conducting state-of-the-art image guided radiotherapy (IGRT) research on small animals has become more common over the past years. The purpose of this work is to develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the SARRP. Methods: A QA phantom was developed for carrying out daily, monthly and annual QA tasks including imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of nine (60×60×5 mm3) KV-energy tissue equivalent solid water slabs that can be employed for annual dosimetry QA with film. Three of the top slabs are replaceable with ones incorporating Mosfets or OSLDs arranged in a quincunx pattern, or a slab drilled to accommodate an ion chamber insert. These top slabs are designed to facilitate routine daily and monthly QA tasks such as output constancy, isocenter congruency test, treatment planning system (TPS) QA, etc. One slab is designed with inserts for image QA. A prototype of the phantom was applied to test the performance of the imaging, planning and treatment delivery systems. Results: Output constancy test results showed daily variations within 3%. For isocenter congruency test, the phantom could be used to detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Using the Mosfet in phantom as target, the difference between TPS calculations and measurements was within 5%. Image-quality parameters could also be assessed in terms of geometric accuracy, CT number accuracy, linearity, noise and image uniformity, etc. Conclusion: The developed phantom can be employed as a simple tool for comprehensive performance evaluation of the SARRP. The study provides a reference for development of a comprehensive quality assurance program for the SARRP, with proposed tolerances and frequency of required tests

  14. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Science.gov (United States)

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Characterization of dissolved solids in water resources of agricultural lands near Manila, Utah, 2004-05

    Science.gov (United States)

    Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.

    2006-01-01

    Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos

  16. Interaction enthalpies of solid human serum albumin with water-dioxane mixtures: comparison with water and organic solvent vapor sorption

    International Nuclear Information System (INIS)

    Sirotkin, Vladimir A.; Faizullin, Djihanguir A.

    2004-01-01

    Enthalpy changes (ΔH tot ) on the immersion of dehydrated human serum albumin (HSA) into water-dioxane mixtures have been measured using a Setaram BT-2.15 calorimeter at 298 K. Thermodynamic activity of water was varied from 0 to 1. Calorimetric results are discussed together with the FTIR-spectroscopic data on water and organic solvent vapor adsorption/desorption isotherms on solid HSA. Dioxane sorption exhibits a pronounced hysteresis. Calorimetric and dioxane desorption dependencies consist of two parts. No dioxane sorption was observed in low water activity region (a w tot values are close to zero. At water activity about 0.5 the sharp exothermic drop of the interaction enthalpy values was observed. This exothermic drop is accompanied by the sharp increase in the amount of sorbed dioxane and additional water sorption (compared with that for pure water). Dioxane adsorption branch resembles a smooth curve. In this case, solid HSA binds more than 300 mol dioxane/mol HSA at low water activities. By using a water activity-based comparison we distinguished between dioxane-assisted and dioxane-competitive effect on water sorption. The obtained results demonstrate that the hydration 'history' of solid protein is an important factor that controls as the state of protein macromolecule as well as the sorption of low-molecular organic molecules

  17. Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.

    Science.gov (United States)

    Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang

    2017-07-13

    In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.

  18. Preparation of solid water-equivalent radioactive standards

    CSIR Research Space (South Africa)

    Morris, WM

    2004-02-01

    Full Text Available polyelectrolite and belongs to the class of superabsorbent polymers. The crosslinking renders this polymer insoluble in water, while the ionic nature draws water into the polymer network to dilute the ionic strength. This allows the polymer to absorb up to 3000... times its weight in pure water (Garner et al., 1997). When an acid- or salt-containing solution is added to polyacrylate, the polymer network preferen- tially absorbs the charged particles and less water is required to dilute the ionic strength. Since...

  19. SU-F-T-16: Experimental Determination of Ionization Chamber Correction Factors for In-Phantom Measurements of Reference Air Kerma Rate and Absorbed Water Dose Rate of Brachytherapy 192Ir Source

    International Nuclear Information System (INIS)

    Chan, M; Lee, V; Wong, M; Leung, R; Law, G; Lee, K; Cheung, S; Tung, S

    2016-01-01

    Purpose: Following the method of in-phantom measurements of reference air kerma rate (Ka) at 100cm and absorbed water dose rate (Dw1) at 1cm of high-dose-rate 192Ir brachytherapy source using 60Co absorbed-dose-to-water calibrated (ND,w,60Co) ionization chamber (IC), we experimentally determined the in-phantom correction factors (kglob) of the PTW30013 (PTW, Freiburg, Germany) IC by comparing the Monte Carlo (MC)-calculated kglob of the other PTW30016 IC. Methods: The Dw1 formalism of in-phantom measurement is: M*ND,w,60Co*(kglob)Dw1, where M is the collected charges, and (kglob)Dw1 the in-phantom Dw1 correction factor. Similarly, Ka is determined by M*ND,w,60Co*(kglob)ka, where (kglob)ka the in-phantom Ka correction factor. Two thimble ICs PTW30013 and another PTW30016 having a ND,w,60Co from the German primary standard laboratory (PTB) were simultaneously exposed to the microselectron 192Ir v2 source at 8cm in a PMMA phantom. A reference well chamber (PTW33004) with a PTB transfer Ka calibration Nka was used for comparing the in-phantom measurements to derive the experimental (kglob)ka factors. We determined the experimental (kglob)Dw1 of the PTW30013 by comparing the PTW30016 measurements with MC-calculated (kglob)Dw1. Results: Ka results of the PTW30016 based on ND,w,60Co and MC-calculated (kglob)ka differ from the well chamber results based on Nka by 1.6% and from the manufacturer by 1.0%. Experimental (kglob)ka factors for the PTW30016 and two other PTW30013 are 0.00683, 0.00681 and 0.00679, and vary <0.5% with 1mm source positioning uncertainty. Experimental (kglob)Dw1 of the PTW30013 ICs are 75.3 and 75.6, and differ by 1.6% from the conversion by dose rate constant from the AAPM report 229. Conclusion: The 1.7% difference between MC and experimental (kglob)ka for the PTW30016 IC is within the PTB 2.5% expanded uncertainty in Ka calibration standard. Using a single IC with ND,w,60Co to calibrate the brachytherapy source and dose output in external

  20. Integrated Water, Sanitation and Solid Waste Management in Small ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Inadequate water and sanitation services are having an negative effect on human health and polluting Lake Victoria in East Africa. At the request of the governments of Kenya, Tanzania and Uganda, UN-Habitat has undertaken an initiative to provide water and sanitation services in the region and protect the Lake basin.

  1. ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT

    Science.gov (United States)

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...

  2. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    ... What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and discharges information and cooling water intake... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges...

  3. Encapsulation of solid dispersion in solid lipid particles for dissolution enhancement of poorly water-soluble drug.

    Science.gov (United States)

    Tran, Khanh Thi My; Vo, Toi Van; Tran, Phuong Ha-Lien; Lee, Beom-Jin; Duan, Wei; Tran, Thao Truong-Dinh

    2017-06-05

    The aim of this research was to engineer solid dispersion lipid particles (SD-SLs) in which a solid dispersion (SD) was encapsulated to form the core of solid lipid particles (SLs), thereby achieving an efficient enhancement in the dissolution of a poorly water-soluble drug. Ultrasonication was introduced into the process to obtain micro/nanoscale SLs. The mechanism of dissolution enhancement was investigated by analysing the crystalline structure, molecular interactions, and particle size of the formulations. The drug release from the SD-SLs was significantly greater than that from the SD or SLs alone. This enhancement in drug release was dependent on the preparation method and the drug-to-polymer ratio of the SD. With an appropriate amount of polymer in the SD, the solidification method had the potential to alter the drug crystallinity to an amorphous state, resulting in particle uniformity and molecular interactions in the SD-SLs. The proposed system provides a new strategy for enhancing the dissolution rate of poorly water-soluble drugs and further improving their bioavailability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Radiological response and dosimetry in physical phantom of head and neck for 3D conformational radiotherapy

    International Nuclear Information System (INIS)

    Thompson, Larissa

    2013-01-01

    Phantoms are tools for simulation of organs and tissues of the human body in radiology and radiotherapy. This thesis describes the development, validation and, most importantly, the use of a physical head and neck phantom in radiology and radiotherapy, with the purpose of evaluating dose distribution using Gafchromic EBT2 film in 15 MV 3D conformal radiotherapy. The work was divided in two stages, (1) development of new equivalent tissues and improvement of the physical phantom, and (2) use of the physical phantom in experimental dosimetry studies. In phase (1) parameters such as mass density, chemical composition of tissues, anatomical and biometric measurements were considered, as well as aspects of imaging by computed tomography (CT) and radiological response representation in Hounsfield Units (HU), which were compared with human data. Radiological experiments of in-phantom simulated brain pathologies were also conducted. All those results matched human-sourced data, therefore the physical phantom is a suitable simulator that may be used to enhance radiological protocols and education in medical imaging. The main objective in phase (2) was to evaluate the spatial dose distribution in a brain tumor simulator inserted inside the head and neck phantom developed by the Ionizing Radiation Research Group (NRI), exposed to 15 MV 3D conformal radiotherapy, for internal dose assessment. Radiation planning was based on CT images of the physical phantom with a brain tumor simulator made with equivalent material. The treatment planning system (TPS), CAT3D software, used CT images and prescribed a dose of 200 cGy, distributed in three fields of radiation, in a T-shaped pattern. The TPS covered the planning treatment volume (PTV) with 97% of the prescribed dose. A solid water phantom and radiochromic Gafchromic EBT2 film were used for calibration procedures, generating a dose response curve as a function of optical density (OD). After calibration and irradiation, the film

  5. Preliminary study on 2-dimensional distributions of 10B reaction rate in a water phantom with boron-doped CR-39 for 7Li(p, n)7Be neutrons by 1.95 MeV protons

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Tanaka, K.; Tsuruta, T.

    2000-01-01

    In an Accelerator-based neutron irradiation field using 7 Li(p, n) 7 Be neutrons by 1.95 MeV protons, the distributions of 10 B reaction rates and thermal neutron fluence in a water phantom were measured using Boron-doped CR-39 and Au activation analysis, respectively. Comparing the results of the measurements, we discussed the validity of the evaluation method of 10 B reaction rate using thermal neutron fluence. (author)

  6. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  7. The development and application of solid polymer electrolysis enrichment device of tritium in water

    International Nuclear Information System (INIS)

    Wen Xuelian; Yang Hailan Wu Bin; Yang Huaiyuan

    2003-01-01

    This paper briefly describes the working principle of solid polymer electrolysis enrichment device of tritium in water, presents experiments and works in development of SPE tritium automatic electrolysis enrichment device by CIRP, with which the water samples had been processed for TRIC2000, and the measurement results are satisfied

  8. Solid-state vs water-perfused catheters to measure colonic high-amplitude propagating contractions

    NARCIS (Netherlands)

    Liem, O.; Burgers, R. E.; Connor, F. L.; Benninga, M. A.; Reddy, S. N.; Mousa, H. M.; Di Lorenzo, C.

    2012-01-01

    Background Solid-state (SS) manometry catheters with portable data loggers offer many potential advantages over traditional water-perfused (WP) systems, such as prolonged recordings in a more physiologic ambulatory setting and the lack of risk for water overload. The use of SS catheters has not been

  9. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  10. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  11. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  12. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  13. Interaction of acetonitrile with thin films of solid water

    International Nuclear Information System (INIS)

    Bahr, S.; Kempter, V.

    2009-01-01

    Thin films of water were prepared on Ag at 124 K. Their properties were studied with metastable impact electron spectroscopy, reflection absorption infrared spectroscopy, and temperature programmed desorption. The interaction of acetonitrile (ACN) with these films was studied with the abovementioned techniques. From the absence of any infrared activity in the initial adsorption stage, it is concluded that ACN adsorbs linearly and that the C≡N axis is aligned parallel to the water surface (as also found on neat Ag). Initially, the interaction with water surface species involves their dangling OD groups. During the completion of the first adlayer the ACN-ACN lateral interaction becomes of importance as well, and the ACN molecules become tilted with respect to the water surface. ACN shows propensity to stay at the surface after surface adsorption even during annealing up to the onset of desorption. The present results for the ACN-water interaction are compared with available classical molecular dynamics calculations providing the orientation profile for ACN on water as well as the ACN bonding properties.

  14. Composition of MRI phantom equivalent to human tissues

    International Nuclear Information System (INIS)

    Kato, Hirokazu; Kuroda, Masahiro; Yoshimura, Koichi; Yoshida, Atsushi; Hanamoto, Katsumi; Kawasaki, Shoji; Shibuya, Koichi; Kanazawa, Susumu

    2005-01-01

    We previously developed two new MRI phantoms (called the CAG phantom and the CAGN phantom), with T1 and T2 relaxation times equivalent to those of any human tissue at 1.5 T. The conductivity of the CAGN phantom is equivalent to that of most types of human tissue in the frequency range of 1 to 130 MHz. In this paper, the relaxation times of human tissues are summarized, and the composition of the corresponding phantoms are provided in table form. The ingredients of these phantoms are carrageenan as the gelling agent, GdCl 3 as a T1 modifier, agarose as a T2 modifier, NaCl (CAGN phantom only) as a conductivity modifier, NaN 3 as an antiseptic, and distilled water. The phantoms have T1 values of 202-1904 ms and T2 values of 38-423 ms when the concentrations of GdCl 3 and agarose are varied from 0-140 μmol/kg, and 0%-1.6%, respectively, and the CAGN phantom has a conductivity of 0.27-1.26 S/m when the NaCl concentration is varied from 0%-0.7%. These phantoms have sufficient strength to replicate a torso without the use of reinforcing agents, and can be cut by a knife into any shape. We anticipate the CAGN phantom to be highly useful and practical for MRI and hyperthermia-related research

  15. The design and evaluation of a phantom for the audit of the treatment chain for prostate radiotherapy

    International Nuclear Information System (INIS)

    Perrin, Bruce A.; Jordan, Thomas J.; Hounsell, Alan R.

    2001-01-01

    Background and Purpose: A phantom has been designed and built for a multi-institutional technique audit of the planning and delivery for radiotherapy to the prostate. The phantom was designed to test both the geometric and dosimetric accuracy of each aspect of the process. Materials and Methods: The phantom consists of two curved water filled perspex tanks either side of a central block of solid water equivalent material. There are two options for the central section; a target defining block and a dose measurement block. The target defining block uses air holes to define a 3-D target volume for imaging via a CT scanner or a simulator. These holes can subsequently be filled with steel pins to allow megavoltage imaging. The dose measurement block allows thimble chamber measurements to be made at pre-selected points in a 5x5mm array. Five dose measurement points, typical for a prostate planning target volume (PTV) were selected. Initial evaluation of the phantom was performed by auditing the prostate radiotherapy planning and treatment chain at one institution. Results: Agreement between the phantom and planned geometry confirmed that the stages of image acquisition, transfer and manipulation were accurately performed. Agreement within 0.5% was found between phantom and water tank measurements for dose calibration at a reference point. The measured dose delivered was within 2% of the dose calculated by the planning computer for all of the selected measurement points. The target volume marked by the steel pins was visible using electronic portal imaging. Conclusions: The phantom is a useful tool for the technique audit of prostate radiotherapy

  16. Special features of high-speed interaction of supercavitating solids in water

    Energy Technology Data Exchange (ETDEWEB)

    Ishchenko, Aleksandr, E-mail: ichan@niipmm.tsu.ru; Afanas’eva, Svetlana, E-mail: s.a.afanasyeva@mail.ru; Burkin, Viktor, E-mail: v.v.burkin@mail.ru; Diachkovskii, Aleksei, E-mail: lex-okha@mail.ru; Korolkov, Leonid, E-mail: dmm1@sibmail.com; Moiseev, Dmitrii; Khabibullin, Marat, E-mail: lenmar07@rambler.ru [National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Akinshin, Ruslan, E-mail: rakinshin@yandex.ru; Borisenkov, Igor, E-mail: rakinshin@yandex.ru [Subdivision of applied problems under the RAS presidium 3, Gubkin St, Moscow, 117971 (Russian Federation)

    2016-01-15

    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initial flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.

  17. Special features of high-speed interaction of supercavitating solids in water

    International Nuclear Information System (INIS)

    Ishchenko, Aleksandr; Afanas’eva, Svetlana; Burkin, Viktor; Diachkovskii, Aleksei; Korolkov, Leonid; Moiseev, Dmitrii; Khabibullin, Marat; Akinshin, Ruslan; Borisenkov, Igor

    2016-01-01

    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initial flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded

  18. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuya; Matsumura, Akira; Nose, Tadao; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Hori, Naohiko; Torii, Yoshiya; Horiguchi, Yoji

    2002-05-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without 10 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of 10 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99±0.24, 3.04±0.19 and 1.43±0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50±0.32, 2.34±0.30 and 2.17±0.28 for ENB, TNB-1 and TNB-2, respectively. The biological effectiveness factor values of the neutron and photon components were 1.22±0.16, 1.23±0.16 and 1.21±0.16, respectively. The depth function of biological effectiveness factor in water phantom and the difference in biological effectiveness factor among boron compounds were also determined. The experimental determination of biological effectiveness factor outlined in this paper is applicable to the dose calculation for each dose component of the neutron beams and contribute to an accurate biological effectiveness factor as comparison with a neutron beam at a different facility employed in ongoing and planned BNCT clinical trials. (author)

  19. Mathematical human phantoms and their application to radiation protection

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1998-01-01

    This review described the characteristics of mathematical phantoms, their history over 30 years and their application. Mathematical phantoms are classified into two models of formula and voxel types. In the former, human body and organs are described by 2- and/or 3-D mathematical formula and can be seen as a combination of solid bodies like spheres, cubes and ovals. The phantom is composed from three tissue components (bone, lung and soft tissue) and made on data on Reference Man in ICRP Publ. 23. The latter voxel (volume pixel) phantom consists from a number of small cubes based on CT and MRI images of a certain man. For instance, the phantom CHILD, 1.54 x 1.54 x 8.00 mm 3 in size, is based on a 7-year old child, which consisting from about one million voxels. The mathematical phantom was first made in Oak Ridge National Laboratory in the middle of the nineteen-sixties, which have undergone various improvements to reach MIRD-5 phantom. Thereafter, many similitude phantoms have been made as a variation of MIRD-5, depending on age and sex (e.g., ADAM and EVA). Voxel phantom was made in the middle of nineteen-eighties and have undergone improvements which are continued even currently in Japan, U.S. etc. The mathematical phantoms are used for calculation of radiation transport program by Monte Carlo method in the field of radiation protection. Also in the field of medicine, the phantom is used for calculation of internal and external exposure doses, of correction constants of externally measuring instruments, of doses for neutron capture therapy and of A-bomb exposure doses in Hiroshima and Nagasaki for reevaluation. Recently, the development of phantom is in the current from formula phantom to voxel one due to the purpose of precision and standardization. (K.H.)

  20. An inexpensive optical sensor system for monitoring total suspended solids in water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    The objectives of this work are to design and develop an optical transsmissometer sensor for measuring total suspended solids TSS concentrations in water samples. The proposed optical sensor has the advantages of being relatively inexpensive, and easy to make and operate. An optical algorithm has been developed and used for the measurement of total suspended solids concentrations. The developed optical sensor components include light emitting diodes LEDs that are used for measuring transmitted light. The concentrations of total suspended solids TSS are determined from transmitted light through the water samples. The transmitted light is measured in terms of the output voltage of the photodetector of the sensor system. The readings are measured using a digital multimeter. The results indicate that the level of the photocurrent is linearly proportional to the total suspended solids concentration. The proposed algorithm produces a high correlation coefficient and low root mean square error. (Author)

  1. Determination of photon conversion factors relating exposure and dose for several extremity phantom designs

    International Nuclear Information System (INIS)

    Roberson, P.L.; Eichner, F.N.; Reece, W.D.

    1986-09-01

    This report presents the results of measurements of dosimetric properties of simple extremity phantoms suitable for use in extremity dosimeter performance testing. Two sizes of phantoms were used in this study. One size represented the forearm or lower leg and the other size represented the finger or toe. For both phantom sizes, measurements were performed on solid plastic phantoms and on phantoms containing simulated bone material to determine the effect of backscattered radiations from the bone on the surface dose. Exposure-to-dose conversion factors (C/sub x/ factors) were determined for photon energies ranging from 16 to 1250 keV (average for 60 Co). The effect of the presence of a phantom was also measured for a 90 Sr/ 90 Y source. Significant differences in the measured C/sub x/ factors were found among the phantoms investigated. The factors for the finger-sized phantoms were uniformly less than for the arm-sized phantoms

  2. Space shuttle solid rocket booster water entry cavity collapse loads

    Science.gov (United States)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  3. Natural polymers: Best carriers for improving bioavailability of poorly water soluble drugs in solid dispersions

    OpenAIRE

    Sandip Sapkal; Mahesh Narkhede; Mukesh Babhulkar; Gautam Mehetre; Ashish Rathi

    2013-01-01

    ABSTRACTNatural polymers and its modified forms can be used as best alternative for improving bioavailabilityof poorly water soluble drugs in solid dispersion. Most of the natural polymersare hydrophilic and having high swelling capacity. Recent trend towards the use of naturalpolymer demands the replacement of synthetic additives with natural ones. Many plant derivednatural polymers are studied for use in solid dispersion systems, out of which naturalgums, cyclodextrin and carbohydrate are m...

  4. SU-E-T-282: Dose Measurements with An End-To-End Audit Phantom for Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R; Artschan, R [Calvary Mater Newcastle, Newcastle, NSW (Australia); Thwaites, D [University of Sydney, Sydney, NSW (Australia); Lehmann, J [Calvary Mater Newcastle, Newcastle, NSW (Australia); University of Sydney, Sydney, NSW (Australia)

    2015-06-15

    Purpose: Report on dose measurements as part of an end-to-end test for stereotactic radiotherapy, using a new audit tool, which allows audits to be performed efficiently either by an onsite team or as a postal audit. Methods: Film measurements have been performed with a new Stereotactic Cube Phantom. The phantom has been designed to perform Winston Lutz type position verification measurements and dose measurements in one setup. It comprises a plastic cube with a high density ball in its centre (used for MV imaging with film or EPID) and low density markers in the periphery (used for Cone Beam Computed Tomography, CBCT imaging). It also features strategically placed gold markers near the posterior and right surfaces, which can be used to calculate phantom rotations on MV images. Slit-like openings allow insertion of film or other detectors.The phantom was scanned and small field treatment plans were created. The fields do not traverse any inhomogeneities of the phantom on their paths to the measurement location. The phantom was setup at the delivery system using CBCT imaging. The calculated treatment fields were delivered, each with a piece of radiochromic film (EBT3) placed in the anterior film holder of the phantom. MU had been selected in planning to achieve similar exposures on all films. Calibration films were exposed in solid water for dose levels around the expected doses. Films were scanned and analysed following established procedures. Results: Setup of the cube showed excellent suitability for CBCT 3D alignment. MV imaging with EPID allowed for clear identification of all markers. Film based dose measurements showed good agreement for MLC created fields down to 0.5 mm × 0.5 mm. Conclusion: An end-to-end audit phantom for stereotactic radiotherapy has been developed and tested.

  5. Water-equivalent solid sources prepared by means of two distinct methods

    International Nuclear Information System (INIS)

    Koskinas, Marina F.; Yamazaki, Ione M.; Potiens Junior, Ademar

    2014-01-01

    The Nuclear Metrology Laboratory at IPEN is involved in developing radioactive water-equivalent solid sources prepared from an aqueous solution of acrylamide using two distinct methods for polymerization. One of them is the polymerization by high dose of 60 Co irradiation; in the other method the solid matrix-polyacrylamide is obtained from an aqueous solution composed by acrylamide, catalyzers and an aliquot of a radionuclide. The sources have been prepared in cylindrical geometry. In this paper, the study of the distribution of radioactive material in the solid sources prepared by both methods is presented. (author)

  6. Focus Cities: Improving water, sanitation, and solid waste ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In Kelurahan Penjaringan, Jakarta's largest slum, thousands live without running water or waste disposal. With support from IDRC's Focus Cities Research Initiative, the American charity Mercy Corps worked with residents, local government, researchers, NGOs, and the private sector to tackle these problems.

  7. Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols.

    Science.gov (United States)

    Abdullah, Kamarul A; McEntee, Mark F; Reed, Warren; Kench, Peter L

    2018-04-30

    An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom. Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan ® 500 phantom. The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan ® 500 phantom. A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical

  8. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  9. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  10. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    Science.gov (United States)

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  11. Water-quality reconnaissance of the north Dade County solid-waste facility, Florida

    Science.gov (United States)

    McKenzie, D.J.

    1982-01-01

    A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)

  12. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    Science.gov (United States)

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  13. Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rasten, Egil

    2001-10-01

    Development and optimization of the electrodes in a water electrolysis system using a polymer membrane as electrolyte have been carried out in this work. A cell voltage of 1.59 V (energy consumption of about 3.8 kWh/Nm{sub 3} H{sub 2}) has been obtained at practical operation conditions of the electrolysis cell (10 kA . m2, 90{sup o}C) using a total noble metal loading of less than 2.4 mg.cm{sub 2} and a Nafion -115 membrane. It is further shown that a cell voltage of less than 1.5 V is possible at the same conditions by combination of the best electrodes obtained in this work. The most important limitation of the electrolysis system using polymer membrane as electrolyte has proven to be the electrical conductivity of the catalysts due to the porous backing/current collector system, which increases the length of the current path and decreases the cross section compared to the apparent one. A careful compromise must therefore be obtained between electrical conductivity and active surface area, which can be tailored by preparation and annealing conditions of the metal oxide catalysts. Anode catalysts of different properties have been developed. The mixed oxide of Ir-Ta (85 mole% Ir) was found to exhibit highest voltage efficiency at a current density of 10 kA.m{sub 2} or below, whereas the mixed oxide of Ir and Ru (60-80 mole% Ir) was found to give the highest voltage efficiency for current densities of above 10 kA.m{sub 2}. Pt on carbon particles, was found to be less suitable as cathode catalyst in water electrolysis. The large carbon particles introduced an unnecessary porosity into the catalytic layer, which resulted in a high ohmic drop. Much better voltage efficiency was obtained by using Pt-black as cathode catalyst, which showed a far better electrical conductivity. Ru-oxide as cathode catalyst in water electrolysis systems using a polymer electrolyte was not found to be of particular interest due to insufficient electrochemical activity and too low

  14. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    Science.gov (United States)

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  15. Determination of radiocaesium in agriculture-related water samples containing suspended solids using gelling method

    International Nuclear Information System (INIS)

    Matsunami, Hisaya; Shin, Moono; Takahashi, Yoshihiko; Shinano, Takuro; Kitajima, Shiori; Tsuchiya, Takashi

    2015-01-01

    After the TEPCO Fukushima Dai-ichi Nuclear Power Plant accident in 2011, the radiocaesium, which flowed into the paddy fields via irrigation water, have been widely investigated. When the concentration of radiocaesium in the water samples containing suspended solids were directly measured using a high purity germanium detector with a 2 L marinelli beaker, the radiocaesium concentration might be overestimated due to the sedimentation of the suspended solids during the measurement time. In fact, the values obtained by the direct method were higher than those obtained by the filtering method and/or the gelling method in most of the agriculture-related water samples. We concluded that the gelling method using sodium polyacrylate can be widely adapted for the analysis of the total radiocaesium in the agriculture-related water samples because of its many advantage such as simple preparation procedure, accurate analysis values, excellent long-term stability of geometry and low operating cost. (author)

  16. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    Science.gov (United States)

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. Copyright © 2016

  17. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    Science.gov (United States)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  18. Solid Waste and Water Quality Management Models for Sagarmatha National Park and Buffer Zone, Nepal.

    NARCIS (Netherlands)

    Manfredi, Emanuela Chiara; Flury, Bastian; Viviano, Gaetano; Thakuri, Sudeep; Khanal, Sanjay Nath; Jha, Pramod Kumar; Maskey, Ramesh Kumar; Kayastha, Rijan Bhakta; Kafle, Kumud Raj; Bhochhibhoya, Silu; Ghimire, Narayan Prasad; Shrestha, Bharat Babu; Chaudhary, Gyanendra; Giannino, Francesco; Carteni, Fabrizio; Mazzoleni, Stefano; Salerno, Franco

    2010-01-01

    The problem of supporting decision- and policy-makers in managing issues related to solid waste and water quality was addressed within the context of a participatory modeling framework in the Sagarmatha National Park and Buffer Zone in Nepal. We present the main findings of management-oriented

  19. Interaction of water unextractable solids with gluten protein: Effect on dough properties and gluten quality

    NARCIS (Netherlands)

    Wang, M.; Oudgenoeg, G.; Vliet, T. van; Hamer, R.J.

    2003-01-01

    In a previous study, we have shown that water unextractable solids (WUS) interfere with gluten formation and affect the quality of the resulting gluten. In this study we aim to explain how WUS can affect the process of gluten formation. To this end, WUS were modified with NaOH, xylanase, horseradish

  20. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water.

    Science.gov (United States)

    Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey

    We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, "ready for use" MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.

  1. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water

    OpenAIRE

    Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey

    2014-01-01

    We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, “ready for use” MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.

  2. Interaction of water unextractable solids with gluten protein: effect on dough properties and gluten quality

    NARCIS (Netherlands)

    Wang, M.; Oudgenoeg, G.; Vliet, van T.; Hamer, R.J.

    2003-01-01

    Abstract In a previous study, we have shown that water unextractable solids (WUS) interfere with gluten formation and affect the quality of the resulting gluten. In this study we aim to explain how WUS can affect the process of gluten formation. To this end, WUS were modified with NaOH, xylanase,

  3. Effect of water unextractable solids on gluten formation and properties: Mechanistic considerations

    NARCIS (Netherlands)

    Wang, M.; Hamer, R.J.; Vliet, T. van; Gruppen, H.; Marseille, H.; Weegels, P.L.

    2003-01-01

    A miniaturised set-up for gluten-starch separation was used to systematically study the effect of water unextractable solids (WUS) on the formation and properties of gluten. The results showed that WUS not only have a negative effect on gluten yield, but also affect gluten and glutenin macropolymer

  4. Trace metal contamination of water at a solid waste disposal site at ...

    African Journals Online (AJOL)

    , and close to, a solid waste disposal site at Kariba, Zimbabwe, and in water flowing from the area during 1996 and 1997. Soil samples were collected from the surface inside the disposal site and at distances of 3m, 25m and 50m (from the ...

  5. Method and apparatus for suppressing water-solid overpressurization of coolant in nuclear reactor power apparatus

    International Nuclear Information System (INIS)

    Aanstad, O.J.; Sklencar, A.M.

    1983-01-01

    A reactor-coolant relief valve is opened for increase in mass influx if the rate of change of coolant pressure exceeds a setpoint during a predetermined interval, if, during this interval, the coolant temperature is less than a setpoint and if the level of the fluid in the pressurizer is above a predetermined setpoint (water-solid state). (author)

  6. Experimental phantom verification studies for simulations of light interactions with skin: liquid phantoms

    CSIR Research Space (South Africa)

    Karsten, A

    2010-09-01

    Full Text Available stream_source_info Karsten_2010_P.pdf.txt stream_content_type text/plain stream_size 5080 Content-Encoding UTF-8 stream_name Karsten_2010_P.pdf.txt Content-Type text/plain; charset=UTF-8 Experimental phantom verification... studies for simulations of light interactions with skin: Solid Phantoms Aletta E Karsten, A Singh Presented by: J E Smit National Laser Center CSIR South Africa akarsten@csir.co.za Slide 2 © CSIR 2009 www.csir.co.za Where...

  7. The Phantom Menace

    DEFF Research Database (Denmark)

    Vium, Christian

    2013-01-01

    as a phantom menace, which asserts itself through a form of omnipresent fear, nurtured by an inherent opaqueness. As this fundamental fear progressively permeates the nomadic landscape, it engenders a recasting of mobile strategies among the nomadic pastoralist groups who inhabit the interstitial desert spaces....

  8. Phantom crash confirms models

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To test computer models of how a nuclear reactor's containment building would fare if an airplane crashed into it, the Muto Institute in Tokyo sponsored a 3.2 million dollar project at Sandia National Laboratory to slam an F-4 Phantom jet into a 500 ton concrete wall. The results showed that the computer calculations were accurate

  9. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  10. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes.

    Science.gov (United States)

    Seesuriyachan, Phisit; Techapun, Charin; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Extracellular polysaccharide (EPS) production by Lactobacillus confusus in liquid and solid state fermentation was carried out using coconut water and sugarcane juice as renewable wastes. High concentrations of EPS of 62 (sugarcane juice) and 18 g/l of coconut water were produced in solid state fermentation when nitrogen sources were reduced 5-fold from the original medium.

  11. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    ... following solid and liquid wastes and discharges information and cooling water intake information must... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 250.248 Section 250.248...

  12. Preventing gastric sieving by blending a solid/water meal enhances satiation in healthy humans.

    Science.gov (United States)

    Marciani, Luca; Hall, Nicholas; Pritchard, Susan E; Cox, Eleanor F; Totman, John J; Lad, Mita; Hoad, Caroline L; Foster, Tim J; Gowland, Penny A; Spiller, Robin C

    2012-07-01

    Separation of solids and liquids within the stomach allows faster gastric emptying of liquids compared with solids, a phenomenon known as sieving. We tested the hypothesis that blending a solid and water meal would abolish sieving, preventing the early rapid decrease in gastric volume and thereby enhancing satiety. We carried out 2 separate studies. Study 1 was a 2-way, crossover, satiety study of 22 healthy volunteers who consumed roasted chicken and vegetables with a glass of water (1008 kJ) or the same blended to a soup. They completed satiety visual analogue scales at intervals for 3 h. Study 2 was a 2-way, crossover, mechanistic study of 18 volunteers who consumed the same meals and underwent an MRI to assess gastric emptying, gallbladder contraction, and small bowel water content (SBWC) at intervals for 3 h. In Study 1, the soup meal was associated with reduced hunger (P = 0.02). In Study 2, the volume of the gastric contents after the soup meal decreased more slowly than after the solid/liquid meal (P = 0.0003). The soup meal caused greater gallbladder contraction (P < 0.04). SBWC showed a biphasic response with an initial "gastric" phase during which SBWC was greater when the solid/liquid meal was consumed (P < 0.001) and a later "small bowel" phase when SBWC was greater when the soup meal was consumed (P < 0.01). Blending the solid/liquid meal to a soup delayed gastric emptying and increased the hormonal response to feeding, which may contribute to enhanced postprandial satiety.

  13. Optoelectronic system to measure the concentration and turbidity of suspended solids in the water

    International Nuclear Information System (INIS)

    Valente, E.S.

    1984-01-01

    The selection of the site where a nuclear power plant is to be built requires intensive study of the environmental conditions. This work presents the results reached on the development of a measurement system of suspended solids based on turbidity characteristics of the water. The system consists of an optical transducer composed of an emitter and a detector of infrared light, both solid state type, whose electrical signal is electronically treated. The equipment was calibrated and certified against turbidity and concentration standards in laboratory use. The obtained results indicate the reliability of the experimental method. The utilization of the equipment at the shore reinforces its flexibility and commodity of use. (author)

  14. SU-F-T-136: Breath Hold Lung Phantom Study in Using CT Density Versus Relative Stopping Power Ratio for Proton Pencil Beam Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Wu, H; Rosen, L [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2016-06-15

    Purpose: To evaluate mass density effects of CT conversion table and its variation in current treatment planning system of spot scanning proton beam using an IROC proton lung phantom for this study. Methods: A proton lung phantom study was acquired to Imaging and Radiation Oncology Core Houston (IROC) Quality Assurance Center. Inside the lung phantom, GAF Chromic films and couples of thermal luminescent dosimeter (TLD) capsules embedded in specified PTV and adjacent structures to monitor delivered dosage and 3D dose distribution profiles. Various material such as cork (Lung), blue water (heart), Techron HPV (ribs) and organic material of balsa wood and cork as dosimetry inserts within phantom of solid water (soft tissue). Relative stopping power (RLSP) values were provided. Our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water. However lung phantom was irradiated by planning with density override and the results were compared with IROC measurements. The second attempt was conducted without density override and compared with IROC’s. Results: The higher passing rate of imaging and measurement results of the lung phantom irradiation met the criteria by IROC without density override. The film at coronal plane was found to be shift due to inclined cylinder insertion. The converted CT density worked as expected to correlate relative stopping power. Conclusion: The proton lung phantom provided by IROC is a useful tool to qualify our commissioned proton pencil beam delivery with TPS within reliable confidence. The relative mass stopping power ratios of materials were converted from the relative physical density relative to water and the results were satisfied.

  15. Development and validation of two phantoms for quality control in cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Gomes B, W. O., E-mail: wilsonottobatista@gmail.com [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador de Bahia (Brazil)

    2016-10-15

    The cone beam computed tomography (CBCT) was introduced into the market in the late 90 s and being a relatively new technology, also no well-established quality control protocols. There are currently projects to standardize the use of CBCT. The SEDENTEXCT project was created with the goal of developing guidelines for CBCT, including the development of a phantom for quality control it is proposed. This study aimed at the development and validation of the models of phantom: CQ{sub I}FBA{sub 0}1 e CQ{sub I}FBA{sub 0}2, the first filled with water and the second fully with solid structure in PMMA. Both models allow, otherwise the European phantom - SEDENTEXCT, its use in various models of CBCT, independent of the size of the field of view. The two phantoms used to evaluate seven parameters of quality control are: intensity or average value of pixels of five different plastics, signal to noise ratio, resolution, low contrast, spatial resolution, the accuracy of distances on the z axis, the geometric distortion and image uniformity. The spatial resolution is a critical parameter that differs significantly from the other types of scan, and in these two phantom can be evaluated by two different methods: MTF obtained by Fourier transformation of the function LSF (line spread function) and/or by analysis visual image to a pattern of bars up to 16 pl/cm. Validation was performed in three models CBCT: Kodak 9000, i-CAT Classical and Orthophos XG 3-dimensional. All imaging protocols were characterized dosimetric ally with solid state sensors to correlate with the perfect operation. These models were selected by different manufacturers have different characteristics as FOV, maximum voltage, slice thickness and patient positioning mode. The two of phantom models were viable and also showed compliance with the specifications and data available in the literature. We conclude the feasibility of the two phantom models, and model option will be linked to the practicality positioning

  16. Evaluation of six-point modified dixon and magnetic resonance spectroscopy for fat quantification: a fat-water-iron phantom study.

    Science.gov (United States)

    Fukuzawa, Kei; Hayashi, Tatsuya; Takahashi, Junji; Yoshihara, Chiharu; Tano, Masakatsu; Kotoku, Jun'ichi; Saitoh, Satoshi

    2017-09-01

    This study aimed to evaluate (1) the agreement between the true fat fraction (FF) and proton density FF (PDFF) measured using a six-echo modified Dixon (6mDixon) and magnetic resonance spectroscopy (MRS) and (2) the influence of fat on T2* values. The study was performed using phantoms of varying fat and iron content. Point-resolved spectroscopy (PRESS) and stimulated echo acquisition mode (STEAM) with single-echo (S) and multiecho (M) (PRESS-S, PRESS-M, STEAM-S, and STEAM-M) were used for MRS. In phantoms without iron, the agreement between the true FF and measured PDFF was tested using Bland-Altman analysis. The influence of iron on PDFF was evaluated in phantoms with iron. The relationship between the true FF and T2* value was assessed in phantoms without iron, wherein the mean differences (limits of agreement) for each method were as follows: 6mDixon 2.9% (-2.4 to 8.1%); STEAM-S 3.2% (-9.5 to 16.0%); STEAM-M -0.7% (-6.9 to 5.5%); PRESS-S 8.9% (-14.5 to 32.4%); and PRESS-M -5.8% (-18.3 to 6.7%). In the 20% fat phantoms with iron, as iron increased, PDFFs with STEAM-S, PRESS-S, and PRESS-M were considerably overestimated, while, PDFF with STEAM-M was stable at 0.04-0.2 mM iron concentrations (17.2 and 21.4%, respectively), and PDFF with 6mDixon was reliable at even 0.4 mM iron concentration (24.8%). The T2* value showed a negative correlation with the true FF (r = -0.942, P = 0.005). STEAM-M and 6mDixon were reliable methods of fat quantification in the absence of iron, and the T2* value was shortened by fat.

  17. Heterogeneity phantoms for visualization of 3D dose distributions by MRI-based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Watanabe, Yoichi; Mooij, Rob; Mark Perera, G.; Maryanski, Marek J.

    2004-01-01

    Heterogeneity corrections in dose calculations are necessary for radiation therapy treatment plans. Dosimetric measurements of the heterogeneity effects are hampered if the detectors are large and their radiological characteristics are not equivalent to water. Gel dosimetry can solve these problems. Furthermore, it provides three-dimensional (3D) dose distributions. We used a cylindrical phantom filled with BANG-3 registered polymer gel to measure 3D dose distributions in heterogeneous media. The phantom has a cavity, in which water-equivalent or bone-like solid blocks can be inserted. The irradiated phantom was scanned with an magnetic resonance imaging (MRI) scanner. Dose distributions were obtained by calibrating the polymer gel for a relationship between the absorbed dose and the spin-spin relaxation rate of the magnetic resistance (MR) signal. To study dose distributions we had to analyze MR imaging artifacts. This was done in three ways: comparison of a measured dose distribution in a simulated homogeneous phantom with a reference dose distribution, comparison of a sagittally scanned image with a sagittal image reconstructed from axially scanned data, and coregistration of MR and computed-tomography images. We found that the MRI artifacts cause a geometrical distortion of less than 2 mm and less than 10% change in the dose around solid inserts. With these limitations in mind we could make some qualitative measurements. Particularly we observed clear differences between the measured dose distributions around an air-gap and around bone-like material for a 6 MV photon beam. In conclusion, the gel dosimetry has the potential to qualitatively characterize the dose distributions near heterogeneities in 3D

  18. Radiological response and dosimetry in physical phantom of head and neck for 3D conformational radiotherapy; Resposta radiologica e dosimetria em phantom fisico de cabeca e pescoco para radioterapia conformacional 3D

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa

    2013-07-01

    Phantoms are tools for simulation of organs and tissues of the human body in radiology and radiotherapy. This thesis describes the development, validation and, most importantly, the use of a physical head and neck phantom in radiology and radiotherapy, with the purpose of evaluating dose distribution using Gafchromic EBT2 film in 15 MV 3D conformal radiotherapy. The work was divided in two stages, (1) development of new equivalent tissues and improvement of the physical phantom, and (2) use of the physical phantom in experimental dosimetry studies. In phase (1) parameters such as mass density, chemical composition of tissues, anatomical and biometric measurements were considered, as well as aspects of imaging by computed tomography (CT) and radiological response representation in Hounsfield Units (HU), which were compared with human data. Radiological experiments of in-phantom simulated brain pathologies were also conducted. All those results matched human-sourced data, therefore the physical phantom is a suitable simulator that may be used to enhance radiological protocols and education in medical imaging. The main objective in phase (2) was to evaluate the spatial dose distribution in a brain tumor simulator inserted inside the head and neck phantom developed by the Ionizing Radiation Research Group (NRI), exposed to 15 MV 3D conformal radiotherapy, for internal dose assessment. Radiation planning was based on CT images of the physical phantom with a brain tumor simulator made with equivalent material. The treatment planning system (TPS), CAT3D software, used CT images and prescribed a dose of 200 cGy, distributed in three fields of radiation, in a T-shaped pattern. The TPS covered the planning treatment volume (PTV) with 97% of the prescribed dose. A solid water phantom and radiochromic Gafchromic EBT2 film were used for calibration procedures, generating a dose response curve as a function of optical density (OD). After calibration and irradiation, the film

  19. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    Science.gov (United States)

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  20. Electron stimulated reactions of methyl iodide coadsorbed with amorphous solid water

    International Nuclear Information System (INIS)

    Perry, C. C.; Faradzhev, N. S.; Madey, T. E.; Fairbrother, D. H.

    2007-01-01

    The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons

  1. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    Science.gov (United States)

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Chemical composition shape form and size of suspended solids in the atmosphere carried by rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2001-01-01

    The interest of this work is to know about shape form, size and chemical composition of the suspended solids in the atmosphere of Toluca city and which are carried by the rains. The harvest of the samples was carried out during january to november 1999. The separation of the particulate matter from the rain water was realized through centrifugation. The solids were analysed by Scanning Electron Microscopy to know the shape form and size and the chemical composition was determined by X-ray dispersive energy in general form and of some particles individually analysed. The p H was measured to the solutions and the quantification of some dissolved ions by the Icp technique was realized. The results of the solids showed C, O, Na, Mg, Al, Si, S, P, K, Ca, Ti and Fe. Moreover they present sizes which varying from a ten of nanometers until some tens of microns. (Author)

  3. Anthropomorphic phantom materials

    International Nuclear Information System (INIS)

    White, D.R.; Constantinou, C.

    1982-01-01

    The need, terminology and history of tissue substitutes are outlined. Radiation properties of real tissues are described and simulation procedures are outlined. Recent tissue substitutes are described and charted, as are calculated radiation classifications. Manufacturing procedures and quality control are presented. Recent phantom studies are reviewed and a discussion recorded. Elemental compositions of the recommended tissue substitutes are charted with elemental composition given for each tissue substitute

  4. A study on the contact angles of a water droplet on smooth and rough solid surfaces

    International Nuclear Information System (INIS)

    Park, Ju Young; Ha, Man Yeong; Choi, Ho Jin; Hong, Seung Do; Yoon, Hyun Sik

    2011-01-01

    We investigated the wetting characteristics such as contact angle, wetting radius and topography of water droplets on smooth and random solid surfaces. Molecular dynamic simulation is employed to analyze the wetting behavior of water droplets on smooth and rough surfaces by considering different potential energy models of bond, angle, Lennard-Jones and Coulomb to calculate the interacting forces between water molecules. The Lennard-Jones potential energy model is adopted as an interaction model between water molecules and solid surface atoms. The randomly rough surface is generated by changing the standard deviation of roughness height from 1 A to 3 A with the fixed autocorrelation length. The size of water droplet considered is in the range from 2,000 to 5,000 molecules. The contact angles increase generally with increasing number of water molecules. For a hydrophobic surface whose characteristic energy is 0.1 kcal/mol, the contact angles depend rarely on the standard deviation of the roughness height. However, when the surface energy is 0.5 and 1.0 kcal/mol, the contact angles depend on both the roughness height of surfaces and droplet size

  5. Parallel gastric emptying of nonhydrolyzable fat and water after a solid-liquid meal in humans

    International Nuclear Information System (INIS)

    Cortot, A.; Phillips, S.F.; Malagelada, J.R.

    1982-01-01

    Our aim was to examine the control of gastric emptying of the oil phase of a mixed solid and liquid meal. Previous studies had shown that liquid dietary fats normally leave the stomach at a slower rate than does water. We wished to determine whether the slower emptying of fats was due to the physical characteristics of food (lower density and greater viscosity than water), to retardation by duodenal feedback mechanisms, or whether both factors contributed. Thus, we quantified the emptying rates of water and sucrose polyester (a nonabsorbable analog of dietary fat) ingested by healthy volunteers as a mixed solid and liquid meal. Gastric emptying was quantified by an intubation-perfusion method incorporating an occlusive jejunal balloon to facilitate recovery. Four phase-specific, nonabsorbable markers were used. [14C[Sucrose octaoleate and polyethylene glycol were incorporated in the meal and traced the lipid and water phases, respectively; [3H]glycerol triether and phenolsulfonphthalein were used as duodenal recovery markers. Sucrose polyester (substituting for dietary fat) was emptied very rapidly, and at about the same rate as was water, in contrast to natural fat, which empties very slowly. Emptying of water was rapid and comparable to that observed after mixed meals containing natural fat. These results imply that gastric emptying of the oil phase is controlled by receptors sensitive to the hydrolytic products of fat digestion and that the slow emptying of dietary fat is not simply due to its lower density

  6. Phantom pain after eye amputation

    DEFF Research Database (Denmark)

    Rasmussen, Marie L R; Prause, Jan U; Toft, Peter B

    2011-01-01

    Purpose: To characterize the quality of phantom pain, its intensity and frequency following eye amputation. Possible triggers and relievers of phantom pain are investigated. Methods: The hospital database was searched using surgery codes for patients who received ocular evisceration, enucleation...... was conducted by a trained interviewer. Results: Of the 173 patients in the study, 39 experienced phantom pain. The median age of patients who had experienced phantom pain was 45 years (range: 19–88). Follow-up time from eye amputation to participation in the investigation was 4 years (range: 2–46). Phantom...... scale, ranging from 0 to 100, was 36 (range: 1–89). One-third of the patients experienced phantom pain every day. Chilliness, windy weather and psychological stress/fatigue were the most commonly reported triggers for pain. Conclusions: Phantom pain after eye amputation is relatively common. The pain...

  7. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    Science.gov (United States)

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  8. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  9. Management of quarry water and solid wastes from the San Rafael Mining and Manufacturing Complex

    International Nuclear Information System (INIS)

    Asenjo, Armando R.; Perrino, Juan F.

    2006-01-01

    San Rafael Mining and Milling Complex is located in Mendoza province, in San Rafael Department, 38 km West from San Rafael city and 240 km South from Mendoza city, capital of the province. Activities related with yellow cake production were performed from 1979 to 1999. Nowadays the mine and the plant are in stand by. At the moment technical, economic and environmental studies are being done in order to restart the activities. Different kind of residues are accumulated in the site: a) Tailing; b) Sludges; c) Low grade ores; e) Waste rock; f) Mine water; g) Solid residues (RS). In this paper methodology to treat mine water and solid residues (RS) will be informed. a) Mine water: 800.000 m 3 of mine water are accumulated in different open pit. Uranium, radium and arsenic are the main ions to take into account to treat the water. Several laboratory and pilot test have been performed in order to define the treatment of the water, according with the regulatory requirement. A methodology using anion exchange resin to fix uranium and precipitation using barium chloride and iron sulfate to separate radium and arsenic has been developed. b) Solid residues (RS): these residues (precipitates) have been produced by neutralization of effluents in a nuclear purification process (TBP process). They are accumulated in drums. These residues come from Cordoba plant, a factory which produces UO 2 powder. The total content of uranium in the precipitate is 14.249 kg with an average uranium concentration of 1,33%. A methodology using sulfuric acid dissolution of the precipitates and anion exchange resin to recovery the uranium has been developed. (author) [es

  10. Treatment of mine water and solid residues (RS) in San Rafael mining and milling complex

    International Nuclear Information System (INIS)

    Asenjo, Armando R.; Perrino, Juan F.

    2006-01-01

    San Rafael Mining and Milling Complex is located in Mendoza Province, in San Rafael Department, 38 km West from San Rafael city and 240 km south from Mendoza city, capital of the province. Activities related with yellow cake production were performed from 1979 to 1999. Nowadays the mine and the plant are in stand by. At the moment technical, economic and environmental studies are being done in order to restart the activities. Different kind of residues are accumulated in the site: a) Tailing; b) Sludges; c) Low grade ores; e) Waste rock; f) Mine water; g) Solid residues (RS). In this paper methodology to treat mine water and solid residues (RS) will be informed. a) Mine water: 800.000 m 3 of mine water are accumulated in different open pit. Uranium, radium and arsenic are the main ions to take into account to treat the water. Several laboratory and pilot test have been performed in order to define the treatment of the water, according with the regulatory requirement. A methodology using anion exchange resin to fix uranium and precipitation using barium chloride and iron sulfate to separate radium and arsenic has been developed. b) Solid residues (RS): these residues (precipitates) have been produced by neutralization of effluents in a nuclear purification process (TBP process). They are accumulated in drums. These residues come from Cordoba plant, a factory which produces UO 2 powder. The total content of uranium in the precipitate is 14.249 kg with an average uranium concentration of 1,33%. A methodology using sulfuric acid dissolution of the precipitates and anion exchange resin to recovery the uranium has been developed. (author) [es

  11. The interaction of CsCl with films of solid water

    CERN Document Server

    Borodin, A; Krischok, S; Kempter, V

    2003-01-01

    The interaction of CsCl molecules with films of solid water (three layers thick, typically), deposited on a tungsten crystal at 130 K, was studied. Metastable impact electron spectroscopy (MIES) and UPS(HeI) were applied to study the emission from Cl3p and Cs5p and the highest occupied states 1b sub 1 , 3a sub 1 and 1b sub 2 of molecular water. Below a critical stoichiometry of about CsCl centre dot nH sub 2 O with n=6 the UPS spectra are quite similar to those from chlorides solvated in liquid water in as much as the relative positions and intensities of the water and salt features are concerned; very little emission from the ionization of Cl3p and Cs5p is observed with MIES. We conclude that the CsCl molecules become solvated in the water film. As long as n>6, the water spectrum remains characteristic for condensed water; at n6, water molecules not involved directly into the hydration of the salt molecules desorb around 140 K. Around 160 K all water has disappeared from the surface. Above this temperature o...

  12. Tritium separation from heavy water by electrolysis with solid polymer electrolyte

    International Nuclear Information System (INIS)

    Ogata, Y.; Ohtani, N.; Kotaka, M.

    2003-01-01

    A tritium separation from heavy water by electrolysis using a solid polymer electrode layer was specified. The cathode was made of stainless steel or nickel. The electrolysis was performed for 1 hour at 5, 10, 20, and 30 deg C. Using a palladium catalyst, generated hydrogen and oxygen gases were recombined, which was collected with a cold trap. The activities of the samples were measured by a liquid scintillation counter. The apparent tritium separation factors of the heavy and light water at 20 deg C were ∼2 and ∼12, respectively. (author)

  13. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  14. Photo-stimulated desorption from water and methane clusters on the surface of solid neon

    International Nuclear Information System (INIS)

    Arakawa Ichiri; Matsumoto Dairo; Takekuma Shinichi; Tamura Reimi; Miura Takashi

    2012-01-01

    Photo-stimulated desorption of ions from methane and water heterocluster on the surface of solid neon was studied. The desorption yields of the variety of photo-desorbed species showed strong dependence on the composition and the size of the mother cluster. It was found that the presence of a water molecule in the cluster significantly enhanced, or was almost essential for, the desorption of any species observed. Systematic investigation of the correlation between the cluster size and the desorption yield of each ion has revealed the mother cluster which yields the each desorbed ion.

  15. Automated solid-phase extraction of herbicides from water for gas chromatographic-mass spectrometric analysis

    Science.gov (United States)

    Meyer, M.T.; Mills, M.S.; Thurman, E.M.

    1993-01-01

    An automated solid-phase extraction (SPE) method was developed for the pre-concentration of chloroacetanilide and triazine herbicides, and two triazine metabolites from 100-ml water samples. Breakthrough experiments for the C18 SPE cartridge show that the two triazine metabolites are not fully retained and that increasing flow-rate decreases their retention. Standard curve r2 values of 0.998-1.000 for each compound were consistently obtained and a quantitation level of 0.05 ??g/l was achieved for each compound tested. More than 10,000 surface and ground water samples have been analyzed by this method.

  16. Experimental dosimetric evaluation in pelvis phantom, subjected to prostate radiation therapy protocol at 15 MV Linac

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea Silva Dias de; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Humberto Galvao [Centro de Radioterapia Hospital Luxemburgo, Belo Horizonte, MG (Brazil)

    2011-07-01

    Among the existing malignant neoplasia, the prostate cancer is most common among male population. Due to its high incidence and morbidity, there is a need for investment in advanced technology for better treatment associated with research and social mobilization to prevent the disease. As an efficient method of treatment for such tumor, radiation teletherapy brings favorable results for the patient, particularly when the cancer is diagnosed early. There are, however, the needs to assess the absorbed doses that reach the prostate in the radiation protocols in order to certify the treatment efficacy. The present research goal is to obtain the profile of absorbed dose distributed in a synthetic prostate on male pelvis phantom following a standard radiation therapy protocol. The methodology makes use of a NRI made phantom and a 15MV Linac accelerator. This phantom has anthropomorphic and anthropometric features containing the major internal organs, including bone, prostate, intestine, and bladder. The exposition was made in a 15 MV linear accelerator taken the isocenter in four fields as a 'BOX' of opposing beams. The dosimetry was prepared using GafChromic EBT type 2 radiochromic film and calibration in a solid water phantom. The radiochromic films were digitized on the Microtek Scan Maker 6900XL model scanner operating in the transmission mode and optical density readings based on RGB mode in the computer program Imagedig. The absorbance readings were performed in the spectrophotometer SP-220 mark BIOSPECTRO obtaining calibration curves generated by the collected data. The results reproduce the dose distribution generated in two orthogonal radiochromic films positioned onto the synthetic prostate. Discussions regarding the characteristics of the phantom and methods of irradiation in relation to the achieved dose profile will be addressed. (author)

  17. Experimental dosimetric evaluation in pelvis phantom, subjected to prostate radiation therapy protocol at 15 MV Linac

    International Nuclear Information System (INIS)

    Matos, Andrea Silva Dias de; Campos, Tarcisio P.R.

    2011-01-01

    Among the existing malignant neoplasia, the prostate cancer is most common among male population. Due to its high incidence and morbidity, there is a need for investment in advanced technology for better treatment associated with research and social mobilization to prevent the disease. As an efficient method of treatment for such tumor, radiation teletherapy brings favorable results for the patient, particularly when the cancer is diagnosed early. There are, however, the needs to assess the absorbed doses that reach the prostate in the radiation protocols in order to certify the treatment efficacy. The present research goal is to obtain the profile of absorbed dose distributed in a synthetic prostate on male pelvis phantom following a standard radiation therapy protocol. The methodology makes use of a NRI made phantom and a 15MV Linac accelerator. This phantom has anthropomorphic and anthropometric features containing the major internal organs, including bone, prostate, intestine, and bladder. The exposition was made in a 15 MV linear accelerator taken the isocenter in four fields as a 'BOX' of opposing beams. The dosimetry was prepared using GafChromic EBT type 2 radiochromic film and calibration in a solid water phantom. The radiochromic films were digitized on the Microtek Scan Maker 6900XL model scanner operating in the transmission mode and optical density readings based on RGB mode in the computer program Imagedig. The absorbance readings were performed in the spectrophotometer SP-220 mark BIOSPECTRO obtaining calibration curves generated by the collected data. The results reproduce the dose distribution generated in two orthogonal radiochromic films positioned onto the synthetic prostate. Discussions regarding the characteristics of the phantom and methods of irradiation in relation to the achieved dose profile will be addressed. (author)

  18. Decontamination of water polluted with oil through the use of tanned solid wastes

    International Nuclear Information System (INIS)

    Gammoun, A.; Azzi, M.

    2007-01-01

    The ability of chrome shavings (CS) and buffing dusts of crust leather (BDCL) to remove oily wastes from demineralized water and natural seawater was investigated. The aim of the study was to discover environmentally friendly alternatives for the disposal of solid tannery wastes. The specific surface area of the CS and the BDCL were examined to determine ash content; chromium oxide; fat; and the pH of soluble matter. Scanning electron microscopy (SEM) was then used to examine the structure and morphology of the samples. Three types of oil were used in the experiment: diesel motor oil; premium motor oil; and used motor oil. Sorbent materials were added to a beaker containing 1000 ml of water and 5.5 g of oil. The amount of residual oil in the water was then extracted with petroleum ether. The amount of oil sorbed on the wastes was calculated by subtracting the amount of residual oil in water from the initial mass of oil added to the beakers. Results suggested that the tanned solid wastes efficiently removed the oil from the water. It was concluded that the waste materials were able to absorb many times their weight in oil. 21 refs., 4 tabs., 2 figs

  19. Design and Implementation of Remotely Monitoring System for Total Dissolved Solid in Baghdad Drinking Water Networks

    Directory of Open Access Journals (Sweden)

    Hussein Abdul-Ridha Mohammed

    2018-01-01

    Full Text Available he pollution of drinking water is a dangerous problem for the whole world, it can threaten the health of people and as people in developed society attaches more importance to environmental protection, it is of great research significance to intelligently and remotely monitoring the environment. Therefore in this paper, a remote water monitoring system for Baghdad drinking water system is suggested. The proposed system consists of data sensing and monitoring nodes at different locations in Baghdad to sensing and analyzes the data. These nodes are periodically measured Total Dissolved Solids (TDS. In case of measured value above TDS threshold which is 500 ppm, then an automated warning message will be sent to authorize persons in the maintenance center via Global Position System to take the correct action. This suggested structure has several advantages over traditional monitoring systems in terms of price, portability, reliability, applicability and takes a sample from a water tap in easy and real-time approach.

  20. Studies with solid chlorine chemical for chlorination of sea water systems

    International Nuclear Information System (INIS)

    Sankar, N.; Kumaraswamy, P.; Santhanam, V.S.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chlorination is one of the conventional methods to control biofouling of condenser cooling water systems using either river water, reservoir water or sea water. However, there are many safety concerns associated with handling, storage and application of gaseous chlorine. Studies were carried out with suitable alternative chlorine chemical compounds which do not involve majority of these concerns but meet the functional requirement of gas chlorine. Trichloroisocyanuric Acid (TCCA) is one of the suitable alternatives to Gas chlorine. TCCA is a chlorine stabilized compound, stabilized with Cyanuric acid, thus similar to Gas Chlorine in its functions except that it is available in solid form. Release of chlorine is a gradual process in TCCA unlike Gaseous chlorine. Field studies with TCCA indicated gradual and near uniform release rate of chlorine, for longer duration with the requisite free residual chlorine levels (FRC). Thus, use of TCCA could be considered as a suitable alternative for gas chlorine for regular chlorination requirements. (author)

  1. Solid phase extraction of polychlorinated biphenyls from water containing humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Bonifazi, P.; Pierini, E.; Bruner, F. [Centro di Studio per la Chimica dell`Ambiente e le Tecnologie Strumentali Avanzate dell` Universita degli Studi di Urbino, Ist. di Scienze Chimiche (Italy)

    1997-06-01

    A study was carried out of the recovery by solid phase extraction of the eleven most toxic polychlorinated biphenyls from water containing humic acids. Experiments were performed using water polluted with a humic acid (sodium salt) concentration of 9-18 mg L{sup -1}. The effect of humic acids on the recoveries was noticeable, especially where the more chlorinated congeners were concerned. The effect was also evident with river water containing naturally dissolved humic acids. A method for destroying humic acids prior to extraction was applied. The recoveries after the destruction of humic acids were in the range of 90%, even in the case of river water, demonstrating the applicability of the method to real samples. (orig.)

  2. Demonstration test on decontamination of contaminated pool water using liquid-solid settling technology with flocculants

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Adachi, Toshihiro; Watanabe, Noriyuki; Tagawa, Akihiro; Hosobuchi, Shigeki; Takanashi, Junko

    2013-01-01

    For the purpose of supplying agricultural water, a stationary purification system for contaminated water had been developed on the basis of the liquid-solid settling technology using flocculants. Two kinds of flocculants had been developed on the basis of preliminary tests: one that compounds iron ferrocyanide and the other that does not. With the use of this system and flocculants, a demonstration test was conducted to apply the decontamination technology on contaminated water in two swimming pools in an elementary school located at Motomiya City, Fukushima Prefecture, Japan. It is proved from the results that both the developed purification system and the flocculants can be established as a practicable decontamination technology for contaminated water: the treatment rate was 10 m 3 /hour and the elimination factor of radioactive materials was higher than 99%. (author)

  3. Simplified spinal cord phantom for evaluation of SQUID magnetospinography

    International Nuclear Information System (INIS)

    Adachi, Y; Oyama, D; Uehara, G; Somchai, N; Kawabata, S

    2014-01-01

    Spinal cord functional imaging by magnetospinography (MSG) is a noninvasive diagnostic method for spinal cord diseases. However, the accuracy and spatial resolution of lesion localization by MSG have barely been evaluated in detail so far. We developed a simplified spinal cord phantom for MSG evaluation. The spinal cord phantom is composed of a cylindrical vessel filled with saline water, which acts as a model of a neck. A set of modeled vertebrae is arranged in the cylindrical vessel, which has a neural current model made from catheter electrodes. The neural current model emulates the current distribution around the activated site along the axon of the spinal cord nerve. Our MSG system was used to observe the magnetic field from the phantom; a quadrupole-like pattern of the magnetic field distribution, which is a typical distribution pattern for spinal cord magnetic fields, was successfully reproduced by the phantom. Hence, the developed spinal cord phantom can be used to evaluate MSG source analysis methods.

  4. Removal of turbidity and suspended solids backwash water from rapid sand filter by using electrocoagulation

    Directory of Open Access Journals (Sweden)

    AR Yari

    2016-07-01

    Full Text Available Introduction: By appropriate method can be recycled more than 95 percent effluent backwashing the filter. This study aimed to examine the efficiency of the electrocoagulation process on turbidity and suspended solids removal from backwash effluent of rapid sand filter of water treatment plants No 1 in Karaj. Methods: This bench-scale experimental study was carried out on the samples of backwash effluent in a batch system. The Plexiglas tank with a volume of 4 liters, containing of 4 plate electrodes made of aluminum and iron was connected to a direct current power supply. Samples every 15 minutes to measure turbidity and suspended solids collected in the middle of the reactor and examined. Effect of several parameters such as current density, reaction time and voltage were studied. The total number of samples tested were 48. Turbidity and total suspended solids was measured by nephlometry and gravimetric method, respectively. Results: The highest removal efficiency of turbidity and suspended solids in reaction time of 60 minutes, current density of 2 mA and a voltage of 45 mV was observed. The highest removal efficiency of turbidity in aluminum and iron electrodes were 96.83 and 83.77 %, respectively. Also The highest removal efficiency of suspended solids were 96.73 and 86.22 %, respectively. Conclusion: The results showed that electro- coagulation process can be a good choice to remove turbidity and suspended from backwash of rapid sand filter. Aluminum electrode efficiency in the removal of turbidity and suspended solids was greater than the iron electrode.

  5. Phantom breast syndrome

    Directory of Open Access Journals (Sweden)

    Ramesh

    2009-01-01

    Full Text Available Phantom breast syndrome is a type of condition in which patients have a sensation of residual breast tissue and can include both non-painful sensations as well as phantom breast pain. The incidence varies in different studies, ranging from approximately 30% to as high as 80% of patients after mastectomy. It seriously affects quality of life through the combined impact of physical disability and emotional distress. The breast cancer incidence rate in India as well as Western countries has risen in recent years while survival rates have improved; this has effectively increased the number of women for whom post-treatment quality of life is important. In this context, chronic pain following treatment for breast cancer surgery is a significantly under-recognized and under-treated problem. Various types of chronic neuropathic pain may arise following breast cancer surgery due to surgical trauma. The cause of these syndromes is damage to various nerves during surgery. There are a number of assumed factors causing or perpetuating persistent neuropathic pain after breast cancer surgery. Most well-established risk factors for developing phantom breast pain and other related neuropathic pain syndromes are severe acute postoperative pain and greater postoperative use of analgesics. Based upon current evidence, the goals of prophylactic strategies could first target optimal peri-operative pain control and minimizing damage to nerves during surgery. There is some evidence that chronic pain and sensory abnormalities do decrease over time. The main group of oral medications studied includes anti-depressants, anticonvulsants, opioids, N-methyl-D-asparate receptor antagonists, mexilitine, topical lidocaine, cannabinoids, topical capsaicin and glysine antagonists. Neuromodulation techniques such as motor cortex stimulation, spinal cord stimulation, and intrathecal drug therapies have been used to treat various neuropathic pain syndromes.

  6. The preparation of solid acid and acid water reducing agent for slag is prepared by adsorption method

    Science.gov (United States)

    Zhao, Su; Wang, Jinpeng; Zhu, Xitong

    2018-03-01

    Solid polycarboxylate superplasticizer can not only solve the problems caused by water reducing agent in storage and transportation, but also meet the needs of some special projects. We can choose to use the mineral slag, which is larger than surface area and has stronger adsorption, as adsorbent to absorb liquid polycarboxylate superplasticizer and absorb its moisture, and then makes solid polycarboxylate superplasticizer after drying. It determines the solid-liquid ratio to prepare the solid polycarboxylate superplasticizer to be 3:1. The temperature change within 100°C will not cause changes in the functional group and structure of the water reducing agent molecule. The application of the solid polycarboxylate superplasticizer was basically unchanged compared with its liquid water reducing agent.

  7. [Phantoms for the collection of genital secretions in stallions].

    Science.gov (United States)

    Klug, E; Brinkhoff, D; Flüge, A; Scherbarth, R; Essich, G; Kienzler, M

    1977-10-05

    Practical experiences of the phantom method for collection of genital secretions from stallions are reported. Taking a phantom used in the Richard-Götze-Haus Tierärztliche Hochschule Hannover as a prototype two further models slightly modified have been constructed, baring a flat hollow in the right side of the caudal phantom body for manual inserting of the Artificial Vagina. These three models fulfill four important conditions for routine use: (1) sufficient sexual attractivity for the stallions; 80-85% successful collections of presecretions out of a total of 1050 using the dummy and 70% successful semen collections from more than 240 in total; (2) solid and resistant construction; (3) easy cleaning and desinfection of the surface of the phantom to get representative samples; (4) firm installation on a hygienic floor.

  8. A low-cost phantom for simple routine testing of single photon emission computed tomography (SPECT) cameras

    International Nuclear Information System (INIS)

    Ng, A.H.; Ng, K.H.; Dharmendra, H.; Perkins, A.C.

    2009-01-01

    A simple sphere test phantom has been developed for routine performance testing of SPECT systems in situations where expensive commercial phantoms may not be available. The phantom was based on a design with six universal syringe hubs set in the frame to support a circular array of six glass blown spheres of different sizes. The frame was then placed into a water-filled CT abdomen phantom and scanned with a triple head camera system (Philips IRIX TM , USA). Comparison was made with a commercially available phantom (Deluxe Jaszczak phantom). Whereas the commercial phantom demonstrates cold spot resolution, an important advantage of the sphere test phantom was that hot spot resolution could be easily measured using almost half (370 MBq) of the activity recommended for use in the commercial phantom. Results showed that the contrast increased non-linearly with sphere volume and radionuclide concentration. The phantom was found to be suitable as an inexpensive option for daily performance tests.

  9. Innovative in-line separators: removal of water or sand in oil/water and gas/liquid/solid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, Paul; Cheolho Kang; Gopal, Madan [CC Technologies, Dublin, OH (United States)

    2003-07-01

    In oil and gas production, multiphase mixtures are often separated before downstream processing. The separators are large, often 20 - 40 feet long and large diameter and use sophisticated internals. The costs are in the millions of dollars. Further, the sand and water in the flow can cause severe internal erosion and corrosion respectively before the flow reaches the separators. The CC Technologies/MIST In line Separation System is a cost-effective, efficient device for use in multiphase environments. The device is applicable for gas/solid, gas/liquid/solid and oil/water systems and offers exceptional separation between phases for a fraction of the cost of expensive gravity separators and hydro cyclones. The System contains no moving parts and is designed to be of the same diameter as the pipe, and experiences low shear forces. It can be fabricated with standard pipes. The efficiency of the separator has been determined in an industrial scale, pilot plant test facility at CC Technologies in 4-inch diameter pipes and has been found to be in excess of 98-99% for the removal of sand. Two phase oil/water separation effectiveness is in excess of 90% in 1-stage and 95% in 2 - stage. (author)

  10. The mechanisms of drug release from solid dispersions in water-soluble polymers.

    Science.gov (United States)

    Craig, Duncan Q M

    2002-01-14

    Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.

  11. Characterization of solids in the Three Mile Island Unit 2 reactor defueling water

    International Nuclear Information System (INIS)

    Campbell, D.O.

    1987-12-01

    Because of the impact of poor water clarity on defueling operations at the Three Mile Island Unit 2 Nuclear Power Station, a study was undertaken to characterize suspended particulates in the reactor defueling water. The examination included cascade filtration through Nuclepore filters of progressively smaller pore sizes, using three water samples obtained at different times and after varying degrees of clarification. The solids collected on the filters were examined with a scanning electron microscope and analyzed with energy-dispersive x-ray fluorescence. A wide variety of solids was observed, and 26 elements were detected. These included all the materials expected from the reactor system (uranium, zirconium, silver, cadmium, indium, iron, chromium, and nickel), chemicals and zeolites used to decontaminate the water (aluminum, silicon, sodium), common impurities (potassium, chlorine, sulfur, magnesium, calcium, and others), as well as some unexpected metals (molybdenum, manganese, bromine, and lead). There was also evidence for the presence of organic material. A diverse assortment of particles with widely varying surface properties was found to be present

  12. Influence of different types of phantoms on the calibration of dosemeters for eye lens dosimetry

    International Nuclear Information System (INIS)

    Yoshitomi, H.; Kowatari, M.

    2016-01-01

    Both a cylinder and a slab phantom have been recommended to be used as calibration phantoms for eye lens dosimetry in the International Atomic Energy Agency TECDOC. This study describes investigations on the influence of the type of phantom on the calibration of dosemeters. In order to fulfil the purpose, backscatter radiation from practically used water-filled phantoms was evaluated by calculations and experiments. For photons, the calculations showed that the cylinder phantom had 10 % lower backscattered effect at maximum than a slab phantom, and simulated well the backscattered effect of the human head or neck to within ±10 %. The irradiation results of non-filtered optically stimulated luminescence and radio-photoluminescence glass dosemeters indicated that the differences of the calibration factors between the two types of phantoms were up to 20 and 10 %, respectively, reflecting the response to backscattered photons. For electrons, no difference was found between the two types of phantoms. (authors)

  13. Characterization and morphology of solids suspended in rain water; Caracterizacion y morfologia de solidos suspendidos en agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy.

  14. Solid Cattle Manure Less Prone to Phosphorus Loss in Tile Drainage Water.

    Science.gov (United States)

    Wang, Y T; Zhang, T Q; Tan, C S; Qi, Z M; Welacky, T

    2018-03-01

    Forms (e.g., liquid and solid) of manure influence the risk of P loss after land application. The objective of this study was to investigate the effects of P-based application of various forms of cattle manure (liquid, LCM; or solid, SCM) or inorganic P as triple superphosphate (IP) on soil P losses in tile drainage water. A 4-yr field experiment was conducted in a clay loam soil with a corn ( L.)-soybean [ (L.) Merr.] rotation in the Lake Erie basin. Over the 4 yr, the dissolved reactive P (DRP) flow-weighted mean concentration (FWMC) in tile drainage water was greater under SCM fertilization than under either IP or LCM fertilization. Despite its lower value on an annual basis, DRP FWMC rose dramatically immediately after LCM application. However, the differences in DRP FWMC did not result in detectable differences in DRP loads. Regarding particulate P and total P losses during the 4 yr, they were 68 and 47%, respectively, lower in the soils amended with SCM than in those with IP, whereas both values were similar between IP and LCM treatments. Overall, the P contained in solid cattle manure was less prone to P loss after land application. Accordingly, the present results can provide a basis for manure storage and application of best management practices designed to reduce P losses and improve crop growth. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. [Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].

    Science.gov (United States)

    Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying

    2013-05-01

    A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.

  16. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  17. Water weakening of chalk explaied from a fluid-solid friction factor

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    to where it is dominated by inertial forces, i.e. when the pore fluid motion lags behind the applied frequency. It is therefore a measure of the internal surface friction between solid and fluid which can be interpreted as a friction factor on the pore scale and we propose it can be extrapolated...... using the Biot critical frequency as a single reference. Other viscoplastic parameters were investigated in the same manner to verify the range of the functioning of the friction factor. The findings show that the Biot critical frequency can be used as a common friction factor and is useful in combining...... laboratory results. It is also inferred that the observed water weakening phenomenon may be attributed to the friction between solid and fluid....

  18. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  19. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  20. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  1. External audits of therapeutic photon beams in non-reference conditions. Mailed dosimetry checks with the EC multipurpose phantom

    International Nuclear Information System (INIS)

    Gomola, I.; Huyskens, D.; Dutreix, A.

    2001-01-01

    In this paper various methods for dosimetric calculation using the multipurpose solid phantom are presented. The present study indicates that the mailed multipurpose solid phantom is a useful tool to check the dose calculation of treatment planning systems, because a large number of dosimetric parameters per beam can be checked. (authors)

  2. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  3. Effect of ionizing radiation on solid and water solution Penicillin G

    International Nuclear Information System (INIS)

    Ben Salem, I.; Amine, Kh.M.; Mabrouk, Y.; Saidi, M.; Mezni, M; Boulila, N; Hafez, E

    2015-01-01

    Penicillin G is a conventional antibiotic used for treatment of different kinds of infectious diseases. Due to its huge quantity production and resistance to biodegradability, this molecule has been a serious concern for clinicians and environmentalists. In this study, the effect of ionizing radiation on the penicillin G powder and in water solution was investigated. The Nuclear Magnetic Resonance (NMR) and fourier transform infrared spectroscopy (FTIR) analysis showed that the ionizing radiation at 50 kGy has no effect on the integrity of solid Penicillin G. The anti-microbial assays revealed that the activity of irradiated solid Penicillin G did not reduce and was stable after storage for one month. Ionizing radiation at 50 kGy led to degradation of water solution Penicillin G. The complete disappear of peaks observed in the control sample confirmed the broken of β-lactam ring, the decarboxylation and cleavage of the thiazolidine ring. The product issued from the irradiation of Penicillin G, was completely removed by the bacterium Cupriavidus.metallidurans. Thus, the ionizing irradiation followed by a biological treatment was very effective method for removing of Penicillin G antibiotics residuals from water solution.

  4. Nuclear and thermal analyses of supercritical-water-cooled solid breeder blanket for fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Yoshihiko; Sato, Satoshi; Enoeda, Mikio; Hatano, Toshihisa; Kikuchi, Shigeto; Kuroda, Toshimasa; Kosaku, Yasuo; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-11-01

    Within a design study of a fusion DEMO reactor aiming at demonstrating technologies of fusion power plant, supercritical water is applied as a coolant of solid breeder blanket to attain high thermal efficiency. The blanket has multi-layer composed of solid breeder pebbles (Li{sub 2}O) and neutron multiplier pebbles (Be) which are radially separated by cooling panels. The first wall and the breeding region are cooled by supercritical water below and above the pseudo-critical temperature, respectively. Temperature distribution and tritium breeding ratio (TBR) have been estimated by one-dimensional nuclear and thermal calculations. The local TBR as high as 1.47 has been obtained after optimization of temperature distribution in the breeder region under the following conditions: neutron wall loading of 5 MW/m{sup 2}, {sup 6}Li enrichment of 30% and coolant temperature at inlet of breeder region of 380degC. In the case of the higher coolant temperature 430degC of the breeder region the local TBR was reduced to be 1.40. This means that the net TBR higher than 1.0 could be expected with the supercritical-water-cooled blanket, whose temperature distribution in the breeder region would be optimized by following the coolant temperature, and where a coverage of the breeder region is assumed to be 70%. (author)

  5. Development of Low-Cost Solar Water Heater Using Recycled Solid Waste for Domestic Hot Water Supply

    Directory of Open Access Journals (Sweden)

    Talib Din Abdul

    2018-01-01

    Full Text Available This research is focused on the development of a low-cost solar water heater (SWH system by utilizing solid waste material as part of system elements. Available technologies of the solar water heater systems, heat collectors and its components were reviewed and the best system combinations for low cost design were chosen. The passive-thermosiphon system have been chosen due to its simplicity and independency on external power as well as conventional pump. For the heat collector, flat plate type was identified as the most suitable collector for low cost design and suits with Malaysia climate. Detail study on the flat plate collector components found that the heat absorber is the main component that can significantly reduce the solar collector price if it is replaced with recycled solid waste material. Review on common solid wastes concluded that crushed glass is a non-metal material that has potential to either enhance or become the main heat absorber in solar collector. A collector prototype were then designed and fabricated based on crashed glass heat collector media. Thermal performance test were conducted for three configurations where configuration A (black painted aluminum absorber used as benchmark, configuration B (crushed glass added partially that use glass for improvement, and lastly configuration C (black colored crushed glass that use colored glass as main absorber. Result for configuration B have shown a negative effect where the maximum collector efficiency is 26.8% lower than configuration A. Nevertheless, configuration C which use black crushed glass as main heat absorber shown a comparable maximum efficiency which is at 82.5% of the maximum efficiency for configuration A and furthermore have shown quite impressive increment of efficiency at the end of the experiment. Hence, black colored crushed glass is said to have quite a good potential as the heat absorber material and therefore turn out to be a new contender to other non

  6. Determination of colloidal and dissolved silver in water samples using colorimetric solid-phase extraction.

    Science.gov (United States)

    Hill, April A; Lipert, Robert J; Porter, Marc D

    2010-03-15

    The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Determination of plutonium isotopes in waters and environmental solids: A review

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Miró, Manuel

    2009-01-01

    A number of analytical methods have been developed in the past few years for environmental monitoring of plutonium (Pu) isotopes around nuclear facilities within protocols for emergency preparedness as well as for risk assessment of contaminated areas resulting from nuclear weapon tests, nuclear...... accidents, and the discharge of nuclear waste. This article summarizes and critically compares recently reported methods for determination of Pu isotopes in waters and environmental solid substrates, in which sample pre-treatment is imperative for separation of the target species from matrix ingredients and...

  8. Comparison of cone beam SPECT with conventional SPECT by means of cardiac-thorax phantom

    International Nuclear Information System (INIS)

    McGrath, M.A.; Manglos, S.H.

    1989-01-01

    Because of poor energy characteristics of Tl-201 used for myocardial perfusion imaging, the high sensitivity of cone-beam collimation is highly desirable. Using a cardiac-thorax phantom, the authors have compared single photon emission computed tomographic (SPECT) images obtained with a cone-beam collimator to those from a parallel hole collimator commonly used for thallium studies. A water-filled circular phantom with a cardiac insert was imaged. The myocardial shell was filled with Tl-201 (220 μCi). Two solid inserts within the myocardium simulated perfusion defects. The phantom ignores truncation effects in this preliminary experiment. For the authors' collimator, the resolution was designed to be similar to the authors' all-purpose, parallel-hole collimator at 10 cm. The focal length was 50 cm. The experimental protocol was chosen to be similar to their clinical protocol. A filtered back projection algorithm was used for cone-beam data. The same algorithm was used for the parallel-hole data, but with focal length set to infinity

  9. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics

    Directory of Open Access Journals (Sweden)

    Xuesong Xu

    2018-01-01

    Full Text Available Selective removal of arsenic from aqueous solutions with high salinity is required for safe disposal of the concentrate and protection of the environment. The use of drinking water treatment solids (DWTS to remove arsenic from reverse osmosis (RO concentrate was studied by batch sorption experiments. The impacts of solution chemistry, contact time, sorbent dosage, and arsenic concentration on sorption were investigated, and arsenic sorption kinetics and isotherms were modeled. The results indicated that DWTS were effective in removing arsenic from RO concentrate. The arsenic sorption process followed a pseudo-second-order kinetic model. Multilayer adsorption was simulated by Freundlich equation. The maximum sorption capacities were calculated to be 170 mg arsenic per gram of DWTS. Arsenic sorption was enhanced by surface precipitation onto the DWTS due to the high amount of calcium in the RO concentrate and the formation of ternary complexes between arsenic and natural organic matter (NOM bound by the polyvalent cations in DWTS. The interactions between arsenic and NOM in the solid phase and aqueous phase exhibited two-sided effects on arsenic sorption onto DWTS. NOM in aqueous solution hindered the arsenic sorption onto DWTS, while the high organic matter content in solid DWTS phase enhanced arsenic sorption.

  10. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  11. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    Science.gov (United States)

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  13. Build-up and surface dose measurements on phantoms using micro-MOSFET in 6 and 10 MV x-ray beams and comparisons with Monte Carlo calculations

    International Nuclear Information System (INIS)

    Xiang, Hong F.; Song, Jun S.; Chin, David W. H.; Cormack, Robert A.; Tishler, Roy B.; Makrigiorgos, G. Mike; Court, Laurence E.; Chin, Lee M.

    2007-01-01

    This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 deg. - 80 deg. onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC

  14. Impacts of Solid Waste Leachate on Groundwater and Surface Water Quality

    International Nuclear Information System (INIS)

    Karim, S.

    2010-01-01

    The present investigation was carried out to assess the impacts of solid waste leachate on groundwater and surface water quality at unlined dumping site. Six leachate samples collected from different locations have average values of COD and BOD 2563 mg/L and 442 mg/L, respectively. Surface water samples were collected in two different seasons (rainy and non- rainy). Samples collected during non-rainy season were found to be more contaminated than rainy season. Soil samples collected from the depth of 1.5 m are contaminated with heavy metals (Cd, Cr, Fe and Zn) and E.coli. Presence of E.coli shows that leachate has deteriorated groundwater quality. (author)

  15. Development of solid electrolytes for water electrolysis at intermediate temperatures. Task 3 report; Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Anderson, R.; Kopitzke, R.W.

    1995-12-01

    This project is an attempt to synthesize and fabricate proton exchange membranes for hydrogen production via water electrolysis that can take advantage of the better kinetic and thermodynamic conditions that exist at higher temperatures. Current PEM technology is limited to the 125--150 C range. Based on previous work evaluating thermohydrolytic stability, some 5 families of polymers were chosen as viable candidates: polyether ketones, polyether sulfones, fluorinated polyimides, polybenzimidazoles, and polyphenyl quinoxalines. Several of these have been converted into ionomers via sulfonation and fashioned into membranes for evaluation. In particular, the sulfonated polyetheretherketone, or SPEEK, was tested for water uptake, thermo-conductimetric analysis, and performance as the solid electrolyte material in an electrolysis cell. Results comparable to commercial perfluorocarbon sulfonates were obtained.

  16. Solid-state track recorder neutron dosimetry in light water reactor pressure vessel surveillance mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.

    1984-09-01

    Solid-State Track Recorder (SSTR) measurements of neutron-induced fission rates have been made in several pressure vessel mockup facilities as part of the US Nuclear Regulatory Commission's (NRC) Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program (LWR-PV-SDIP). The results of extensive physics-dosimetry measurements made at the Pool Critical Assembly (PCA) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN are summarized. Included are 235 U, 238 U, 237 Np and 232 Th fission rates in the PCA 12/13, 8/7, and 4/12 SSC configurations. Additional low power measurements have been made in an engineering mockup at the VENUS critical assembly at CEN-SCK, Mol, Belgium. 237 Np and 238 U fission rates were made at selected locations in the VENUS mockup, which models the in-core and near-core regions of a pressurized water reactor (PWR). Absolute core power measurements were made at VENUS by exposing solid-state track recorders (SSTRs) to polished fuel pellets within in-core fuel pins. 8 references, 4 figures, 10 tables

  17. Monitoring of chloropesticide methoxychlor preconcentration from waste water using hplc - solid phase extraction (abstract)

    International Nuclear Information System (INIS)

    Butt, S.B.; Saqlin, M.; Riaz, M.

    2011-01-01

    The method involves preconcentration of methoxychlor by solid phase extraction (SPE) with 1 mL silica based C-18 and 3 mL polymer based C-18 cartridge and then quantification by high performance liquid chromatography with UV detector (HPLC-UV). Optimization of HPLC parameters was done by determining max of methoxychlor on a double beam UV/Visible spectrophotometer, flow rate of mobile phase on reversed phase columns. Lowest detection limit for methoxychlor dissolved in water and methanol was 0.2ppm and 0.1ppm respectively. For solid phase extraction recovery studies and effect of different parameters such as initial concentration of analyte 0.01 to 0.05 ppm, loading rate 1 and 2mL/min, nature of desorbing solvent (methanol, ethyl acetate and acetonitrile) were investigated. Periodic self degradation of methoxychlor, and reusing potential of both SPE materials was also explored. Lower initial concentrations and slower loading rate of methoxychlor solutions gave improved recoveries. Recoveries were in the range of 80 to 90% for new SPE cartridge and reduced to 35 to 57% for once used silica based C-18 tubes. It was around 73 % for HLB C18 on their second use, and decreased on their repeated reuse. Lastly recoveries for stimulant and real waste water samples were determined to be 77 and 60% respectively. (author)

  18. Design study of blanket structure based on a water-cooled solid breeder for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Youji; Tobita, Kenji; Utoh, Hiroyasu; Tokunaga, Shinji; Hoshino, Kazuo; Asakura, Nobuyuki; Nakamura, Makoto; Sakamoto, Yoshiteru

    2015-10-15

    Highlights: • Neutronics design of a water-cooled solid mixed breeder blanket was presented. • The blanket concept achieves a self-sufficient supply of tritium by neutronics analysis. • The overall outlet coolant temperature was 321 °C, which is in the acceptable range. - Abstract: Blanket concept with a simplified interior for mass production has been developed using a mixed bed of Li{sub 2}TiO{sub 3} and Be{sub 12}Ti pebbles, coolant conditions of 15.5 MPa and 290–325 °C and cooling pipes without any partitions. Considering the continuity with the ITER test blanket module option of Japan and the engineering feasibility in its fabrication, our design study focused on a water-cooled solid breeding blanket using the mixed pebbles bed. Herein, we propose blanket segmentation corresponding to the shape and dimension of the blanket and routing of the coolant flow. Moreover, we estimate the overall tritium breeding ratio (TBR) with a torus configuration, based on the segmentation using three-dimensional (3D) Monte Carlo N-particle calculations. As a result, the overall TBR is 1.15. Our 3D neutronics analysis for TBR ensures that the blanket concept can achieve a self-sufficient supply of tritium.

  19. Regional heating patterns of RF hyperthermia applicators in phantoms

    International Nuclear Information System (INIS)

    Kantor, G.; Ruggera, P.S.; Samulski, T.V.

    1984-01-01

    An elliptical phantom (20 cm by 30 cm cross-section and 40 cm long) with a 1 cm fat layer filled with muscle material was used to compare the induced heating patterns of the NCDRH helical coil, a Henry Medical Magnetrode coil, both with a diameter of 35.6 cm, and the BSD Annular Phased Array System (APAS). Temperature profiles were taken in the midplane cross-sectional slice along the major and minor axes of the phantom. These profiles were measured with a Vitek thermistor probe and the associated specific absorption rates (SAR) were determined from this data. SAR curves for each applicator were obtained along the major and minor axes of the phantom. The depths of heating of the Magnetrode applicator are considerably smaller than those for the helical applicator. Heating patterns for the APAS can be highly variable and asymmetric depending on the frequency of operation and the location of the phantom within the APAS aperture. While the APAS requires a water bolus for good coupling, the NCDRH and Magnetrode coils need only to be air coupled for good phantom coupling. Both the helical applicator and APAS can provide significant heating in the central region of the phantom. However, the heating of the helical coil does not critically depend on the phantom loading

  20. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    Science.gov (United States)

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Uranium analysis in water flowing by the nuclear track detection method on solid dielectric materials

    International Nuclear Information System (INIS)

    Arambula, H.

    1981-01-01

    The objective of this experiment was threefold: to study the content of uranium in tap and spring water, to establish a technique for the quantitative analysis for the presence of uranium in liquids, and to test the qualities as detector fission fragments of three solid insulator materials using the nuclear tracks register method. The latter allows for the measurement of concentrations of fissile elements up to 10 -12 gr/gm employing (n, f.f.) reactions. The test samples were of tap water and of water from six fresh water springs located in San Luis Potosi and Guanajuato. Glass, lexan polycarbonate and muscovite mica were the detector materials used. The technique consisted in evaporating the water from the test samples, which had been previously placed upon the detector materials, and in doing the same for the standard control sample solutions having known concentrations of uranium. All the samples were then irradiated with thermal neutrons, and the 235 U, present in the samples, fissioned. The fission fragments produced permanent damage on the detectors, known as latent tracks. A specific corroding chemical was then applied to each detector which caused the latent tracks to dissolve into grooves. Known as etching tracks, these grooves were microscopically visible and could be measured for track density (tracks/mm 2 ). The concentrations of uranium present in the test samples were measured by comparing the track densities of the test samples with those of the standard control samples. The concentration of uranium found in the spring water samples ranged from 0.09 to 0.89 μqr.U/1, and those of tap water, from 0.18 to 0.19 μqr U/1. Lexan polycarbonate and muscovite mica proved to be better, as detectors, than glass. Glass for quantitative analysis, we found not recommendable as a detector material because of its alterable composition in the presence of uranium. (author)

  2. Analytical approach for determining beam profiles in water phantom of symmetric and asymmetric fields of wedged, blocked, and open photon beams.

    Science.gov (United States)

    Tahmasebi Birgani, Mohamad Javad; Chegeni, Nahid; Arvandi, Shole; Razmjoo Ghalaee, Sasan; Zabihzadeh, Mansoor; Khezerloo, Davood

    2013-11-04

    Nowadays, in most radiotherapy departments, the commercial treatment planning systems (TPS) used to calculate dose distributions needs to be verified; therefore, quick, easy-to-use, and low-cost dose distribution algorithms are desirable to test and verify the performance of the TPS. In this paper, we put forth an analytical method to calculate the phantom scatter contribution and depth dose on the central axis based on the equivalent square concept. Then, this method was generalized to calculate the profiles at any depth and for several field shapes - regular or irregular fields - under symmetry and asymmetry photon beam conditions. Varian 2100 C/D and Siemens Primus Plus linacs with 6 and 18 MV photon beam were used for irradiations. Percentage depth doses (PDDs) were measured for a large number of square fields for both energies and for 45° wedge, which were employed to obtain the profiles in any depth. To assess the accuracy of the calculated profiles, several profile measurements were carried out for some treatment fields. The calculated and measured profiles were compared by gamma-index calculation. All γ-index calculations were based on a 3% dose criterion and a 3 mm dose-to-agreement (DTA) acceptance criterion. The γ values were less than 1 at most points. However, the maximum γ observed was about 1.10 in the penumbra region in most fields and in the central area for the asymmetric fields. This analytical approach provides a generally quick and fairly accurate algorithm to calculate dose distribution for some treatment fields in conventional radiotherapy.

  3. A cooled water-irrigated intraesophageal balloon to prevent thermal injury during cardiac ablation: experimental study based on an agar phantom

    International Nuclear Information System (INIS)

    Lequerica, Juan L; Berjano, Enrique J; Herrero, Maria; Melecio, Lemuel; Hornero, Fernando

    2008-01-01

    A great deal of current research is directed to finding a way to minimize thermal injury in the esophagus during radiofrequency catheter ablation of the atrium. A recent clinical study employing a cooling intraesophageal balloon reported a reduction of the temperature in the esophageal lumen. However, it could not be determined whether the deeper muscular layer of the esophagus was cooled enough to prevent injury. We built a model based on an agar phantom in order to experimentally study the thermal behavior of this balloon by measuring the temperature not only on the balloon, but also at a hypothetical point between the esophageal lumen and myocardium (2 mm distant). Controlled temperature (55 0 C) ablations were conducted for 120 s. The results showed that (1) the cooling balloon provides a reduction in the final temperature reached, both on the balloon surface and at a distance of 2 mm; (2) coolant temperature has a significant effect on the temperature measured at 2 mm from the esophageal lumen (it has a less effect on the temperature measured on the balloon surface) and (3) the pre-cooling period has a significant effect on the temperature measured on the balloon surface (the effect on the temperature measured 2 mm away is small). The results were in good agreement with those obtained in a previous clinical study. The study suggests that the cooling balloon gives thermal protection to the esophagus when a minimum pre-cooling period of 2 min is programmed at a coolant temperature of 5 deg. C or less. (note)

  4. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    Science.gov (United States)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  5. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    Science.gov (United States)

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  6. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  7. Comparison of Solid-Water Partitions of Radiocesium in River Waters in Fukushima and Chernobyl Areas.

    Science.gov (United States)

    Takahashi, Yoshio; Fan, Qiaohui; Suga, Hiroki; Tanaka, Kazuya; Sakaguchi, Aya; Takeichi, Yasuo; Ono, Kanta; Mase, Kazuhiko; Kato, Kenji; Kanivets, Vladimir V

    2017-09-29

    Adsorption of radiocesium (RCs) on particulate matters in aquatic environment is important to understand its mobility and bioavailability. We here focused on factors controlling partition of RCs on particulate matters and sediments in Kuchibuto (Fukushima) and Pripyat (Chernobyl) Rivers, though RCs level in water was much smaller than WHO guideline. Moreover, Cs speciation and organic matter-clay mineral interaction were studied: (i) extended X-ray absorption fine structure showed that the contribution of outer-sphere complex of Cs on particulate matters is larger in Chernobyl than in Fukushima and (ii) scanning transmission X-ray microscope revealed larger association of humic substances and clay minerals in Chernobyl partly due to high [Ca 2+ ] in the Pripyat River. Consequently, RCs is more soluble in the Pripyat River due to weaker interaction of RCs with clay minerals caused by the inhibition effect of the adsorbed humic substances. In contrast, particulate matters and sediments in the Kuchibuto River display high adsorption affinity with lesser inhibition effect of adsorbed humic substances. This difference is possibly governed by the geology and soil type of provenances surrounding both catchments (Fukushima: weathered granite; Chernobyl: peat wetland and carbonate platform) which leads to high concentrations of organic matter and Ca 2+ in the Pripyat River.

  8. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  9. Atypical Odontalgia (Phantom Tooth Pain)

    Science.gov (United States)

    ... atypical facial pain, phantom tooth pain, or neuropathic orofacial pain, is characterized by chronic pain in a tooth ... such as a specialist in oral medicine or orofacial pain. The information contained in this monograph is for ...

  10. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D; Summers, P; Followill, D; Sahoo, N; Mahajan, A; Stingo, F; Kry, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis

  11. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    International Nuclear Information System (INIS)

    Lewis, D; Summers, P; Followill, D; Sahoo, N; Mahajan, A; Stingo, F; Kry, S

    2014-01-01

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis

  12. Membrane solid-phase extraction: Field application for isolation of polycyclic aromatic hydrocarbons from water samples

    International Nuclear Information System (INIS)

    Furlong, E.T.; Koleis, J.C.; Gates, P.M.

    1995-01-01

    Solid-phase extraction (SPE) membranes (M-SPE) were used to isolate microgram-per-liter to nanogram-per-liter quantities of polycyclic aromatic hydrocarbons (PAH) in 4- to 8-liter ground-water samples from a crude-oil-contaminated ground-water site near Bemidji, Minnesota. The M-SPE method was evaluated (1) under laboratory conditions using reagent water fortified with individual PAH at 1.23 micrograms per liter, and (2) at the Bemidji site. At the site, ground-water samples were processed and PAH isolated using a M-SPE system connected directly to the well pump. Following sample isolation, all M-SPE samples were extracted using dichloromethane and analyzed by gas chromatography-mass spectrometry with selected-ion monitoring. Operationally, the M-SPE method provided a simple means to isolate PAH on site at the wellhead, particularly for anoxic water samples. Acceptable recoveries, ranging from 56 to over 100 percent, were observed for lower molecular weight PAH (naphthalene to pyrene) using the M-SPE method. Recoveries using M-SPE were somewhat lower, but reproducible, for higher molecular weight PAH (chrysene to benzo[ghi]perylene), ranging from 18 to 56 percent. M-SPE provides the capability to collect and field isolate PAH from a sufficiently large number of samples to identify environmental chemical processes occurring at individual compound concentrations of 50 to 1,200 nanograms per liter. Using M-SPE, the potential for facilitated transport of PAH by in situ-derived dissolved organic carbon (DOC) was evaluated at the site. Plots comparing DOC and PAH concentrations indicate that PAH concentrations increase exponentially with linear increases in DOC concentrations

  13. Correlation between conductivity and total dissolved solid in various type of water: A review

    Science.gov (United States)

    Rusydi, Anna F.

    2018-02-01

    Conductivity (EC) and total dissolved solids (TDS) are water quality parameters, which are used to describe salinity level. These two parameters are correlated and usually expressed by a simple equation: TDS = k EC (in 25 °C). The process of obtaining TDS from water sample is more complex than that of EC. Meanwhile, TDS analysis is very important because it can illustrate groundwater quality, particularly in understanding the effect of seawater intrusion better than EC analysis. These conditions make research in revealing TDS/EC ratios interesting to do. By finding the ratio value, TDS concentration can be measured easily from EC value. However, the ratio cannot be defined easily. Previous research results have found that the correlation between TDS and EC are not always linear. The ratio is not only strongly influenced by salinity contents, but also by materials contents. Furthermore, the analysis of TDS concentration from EC value can be used to give an overview of water quality. For more precision, TDS concentrations need to be analyzed using the gravimetric method in the laboratory.

  14. Monitoring of bentonite pore water with a probe based on solid-state microsensors

    International Nuclear Information System (INIS)

    Orozco, Jahir; Baldi, Antoni; Martin, Pedro L.; Bratov, Andrei; Jimenez, Cecilia

    2006-01-01

    Repositories for the disposal of radioactive waste generally rely on a multi-barrier system to isolate the waste from the biosphere. This multi-barrier system typically comprises Natural geological barrier provided by the repository host rock and its surroundings and an engineered barrier system (EBS). Bentonite is being studied as an appropriated porous material for an EBS to prevent or delay the release and transport of radionuclides towards biosphere. The study of pore water chemistry within bentonite barriers will permit to understand the transport phenomena of radionuclides and obtain a database of the bentonite-water interaction processes. In this work, the measurement of some chemical parameters in bentonite pore water using solid-state microsensors is proposed. Those sensors are well suited for this application since in situ measurements are feasible and they are robust enough for the long periods of time that monitoring is needed in an EBS. A probe containing an ISFET (ion sensitive field effect transistor) for measuring pH, and platinum microelectrodes for measuring conductivity and redox potential was developed, together with the required instrumentation, to study the chemical changes in a test cell with compacted bentonite. Response features of the sensors' probe and instrumentation performance in synthetic samples with compositions similar to those present in bentonite barriers are reported. Measurements of sensors stability in a test cell are also presented

  15. Determination of Trichloroethylene in Water by Liquid–Liquid Microextraction Assisted Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Mengliang Zhang

    2015-02-01

    Full Text Available A method for the determination of trichloroethylene (TCE in water using portable gas chromatography/mass spectrometry (GC/MS was developed. A novel sample preparation method, liquid–liquid microextraction assisted solid phase microextraction (LLME–SPME, is introduced. In this method, 20 µL of hexane was added to 10 mL of TCE contaminated aqueous samples to assist headspace SPME. The extraction efficiency of SPME was significantly improved with the addition of minute amounts of organic solvents (i.e., 20 µL hexane. The absolute recoveries of TCE at different concentrations were increased from 11%–17% for the samples extracted by SPME to 29%–41% for the samples extracted by LLME–SPME. The method was demonstrated to be linear from 10 to 1000 ng mL−1 for TCE in water. The improvements on extraction efficiencies were also observed for toluene and 1, 2, 4-trichlorobenzene in water by using LLME–SPME method. The LLME–SPME method was optimized by using response surface modeling (RSM.

  16. Analysis of trace dicyandiamide in stream water using solid phase extraction and liquid chromatography UV spectrometry.

    Science.gov (United States)

    Qiu, Huidong; Sun, Dongdi; Gunatilake, Sameera R; She, Jinyan; Mlsna, Todd E

    2015-09-01

    An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction. The extraction procedure (including loading, washing, and eluting) used a flow rate of 1.0mL/min, and dicyandiamide was eluted with 20mL of a methanol/acetonitrile mixture (V/V=2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge (with activated carbon). Separation was achieved on a ZIC(®)-Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC) (50mm×2.1mm, 3.5μm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions (R(2)>0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations (RSDs, n=3) were below 6.1% with a detection limit of 5.0ng/mL for stream water samples. Copyright © 2015. Published by Elsevier B.V.

  17. Determination of Inorganic Arsenic in Natural Water by Solid Phase Extraction

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Amares Chatt, A.

    2011-01-01

    Arsenic (As) is generally known for its toxicity. The toxicity and mobility of As in the environment are dependent on the chemical forms or species in which it exists. Arsenic (III) and (V) are the most often determined species in environmental water, soil and sediment, while organic As species are common constituents of biological tissue and fluids. It is well known that inorganic As, such as arsenite (As(III)) and arsenate (As(V)) are more toxic than their organic counterparts. This study is conducted to investigate the separation of each As inorganic species using solid phase extraction (SPE) technique. The technique utilizes SPE column for selective retention of As species, followed by elution and measurement of eluted fractions by inductively coupled plasma mass spectrometry (ICP-MS) for total As. Several type of SPE columns namely strongly anion exchange (SAX), strongly cation exchange (SCX), weakly anion exchange (WAX) and weakly cation exchange (WCX) were tested using three different types of media including deionized water, succinic acid and acetic acid containing inorganic As species. The SPE technique is suitable for on-site separation and preservation of As species from water. (author)

  18. Coincident patterns of waste water suspended solids reduction, water transparency increase and chlorophyll decline in Narragansett Bay.

    Science.gov (United States)

    Borkman, David G; Smayda, Theodore J

    2016-06-15

    Dramatic changes occurred in Narragansett Bay during the 1980s: water clarity increased, while phytoplankton abundance and chlorophyll concentration decreased. We examine how changes in total suspended solids (TSS) loading from wastewater treatment plants may have influenced this decline in phytoplankton chlorophyll. TSS loading, light and phytoplankton observations were compiled and a light- and temperature-dependent Skeletonema-based phytoplankton growth model was applied to evaluate chlorophyll supported by TSS nitrogen during 1983-1995. TSS loading declined 75% from ~0.60×10(6)kgmonth(-1) to ~0.15×10(6)kgmonth(-1) during 1983-1995. Model results indicate that nitrogen reduction related to TSS reduction was minor and explained a small fraction (~15%) of the long-term chlorophyll decline. The decline in NBay TSS loading appears to have increased water clarity and in situ irradiance and contributed to the long-term chlorophyll decline by inducing a physiological response of a ~20% reduction in chlorophyll per cell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.

    Science.gov (United States)

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-24

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  20. Study on Solid Phase Extraction and Spectrophotometric Determination of Nickel in Waters and Biological Samples

    International Nuclear Information System (INIS)

    Hu, Qiufen; Yang, Guangyu; Huang, Zhangjie; Yin, Jiayuan

    2004-01-01

    A sensitive, selective and rapid method for the determination of nickel based on the rapid reaction of nickel(II) with QADMAA and the solid phase extraction of the Ni(II)-QADMAA chelate with C 18 membrane disks has been developed. In the presence of pH 6.0 buffer solution and sodium dodecyl sulfonate (SDS) medium, QADMAA reacts with nickel to form a violet complex of a molar ratio of 1 : 2 (nickel to QADMAA). This chelate was enriched by solid phase extraction with C 18 membrane disks. An enrichment factor of 50 was obtained by elution of the chelates form the disks with the minimal amount of isopentyl alcohol. The molar absorptivity of the chelate was 1.32 x 10 5 L mol -1 cm -1 at 590 nm in the measured solution. Beer's law was obeyed in the range of 0.01-0.6 μg/mL. This method was applied to the determination of nickel in water and biological samples with good results

  1. Solid radioactive waste processing system for light water cooled reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Design, construction and performance requirements are given for the operation of the solid radioactive waste processing system for light water-cooled reactor plants. All radioactive or contaminated materials, including spent air and liquid filter elements, spent bead resins, filter sludge, spent powdered resins, evaporator and reverse osmosis concentrates, and dry radioactive wastes are to be processed in appropriate portions of the system. Sections of the standard cover: overall system requirements; equipment requirement; controls and instrumentation; physical arrangement; system capacity and redundancy; operation and maintenance; and system construction and testing. Provisions contained in this standard are to take precedence over ANS-51.1-1973(N18.2-1973) and its revision, ANS-51.8-1975(N18.2a-1975), Sections 2.2 and 2.3. The product resulting from the solid radioactive waste processing system must meet criteria imposed by standards and regulations for transportation and burial (Title 10, Code of Federal Regulations, Part 71, Title 49, Code of Federal Regulations, Parts 100 to 199). As a special feature, all statements in this standard which are related to nuclear safety are set off in boxes

  2. Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California

    Science.gov (United States)

    Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.

    1989-01-01

    Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.

  3. Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy

    Directory of Open Access Journals (Sweden)

    Dana J Lewis

    2014-03-01

    Full Text Available Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC Houston QA Center (formerly RPC.Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS, and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP and Hounsfield unit (HU values. Each material was CT scanned at 120 kVp, and the RSP was obtained from depth ionization scans using the Zebra multi-layer ion chamber (MLIC at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU.Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc., solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%.Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma

  4. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  5. Chemical characterization of agroforestry solid residues aiming its utilization as adsorbents for metals in water

    Directory of Open Access Journals (Sweden)

    Francisco H. M. Luzardo

    2015-01-01

    Full Text Available In this work, a study of the correlation between the functional groups present in the chemical structure of the fibers of coconut shells, cocoa and eucalyptus, and their adsorption capacity of Cd+2 and Cu+2 ions from water was performed. The content of soluble solids and reactive phenols in aqueous extracts were determined. The chemical functional groups present in the fibers were examined using the IR spectra. The adsorption capacity of the peels was determined using atomic absorption spectrophotometer. For Cd+2, a significant correlation between the adsorption capacity and some specific chemical functional groups present in the fiber was verified. The potential use of these peels, as adsorbent of Cd+2 ions, is based on the presence of OH functional groups such as aryl-OH, aryl-O-CH2 of phenol carboxylic acids, as well as carbonyl groups derived from carboxylic acid salts, in these fibers.

  6. Quantifying atom addition reactions on amorphous solid water: a review of recent laboratory advances

    Science.gov (United States)

    He, Jiao; Vidali, Gianfranco

    2018-06-01

    Complex organic molecules found in space are mostly formed on and in the ice mantle covering interstellar dust grains. In clouds where ionizing irradiation is insignificant, chemical reactions on the ice mantle are dominated by thermal processes. Modeling of grain surface chemistry requires detailed information from the laboratory, including sticking coefficients, binding energies, diffusion energy barriers, mechanism of reaction, and chemical desorption rates. In this talk, recent laboratory advances in obtaining these information would be reviewed. Specifically, this talk will focus on the efforts in our group in: 1) Determining the mechanism of atomic hydrogen addition reactions on amorphous solid water (ASW); 2) Measuring the chemical desorption coefficient of H+O3-->O2+OH using the time-resolved scattering technique; and 3) Measuring the diffusion energy barrier of volatile molecules on ASW. Further laboratory studies will be suggested.This research was supported by NSF Astronomy & Astrophysics Research Grant #1615897.

  7. Preliminary evaluation of new polymer matrix for solid-phase extraction of nonylphenol from water samples.

    Science.gov (United States)

    Guerreiro, António; Soares, Ana; Piletska, Elena; Mattiasson, Bo; Piletsky, Sergey

    2008-03-31

    Molecularly imprinted (MIP) and blank polymers with affinity for nonylphenol were designed using computational modelling. Chromatographic tests demonstrated higher affinity of imprinted polymers towards the template nonylphenol as compared with blank polymers. The performance of both polymers in solid-phase extraction was however very similar. Both blank and imprinted polymers appeared to be suitable for the removal and pre-concentration of nonylphenol from contaminated water samples with 99% efficiency of the recovery. The commercial resins PH(EC) (Biotage) and C18 (Varian) tested in the same conditions used for comparative purposes had recovery rate <84%. The polymer capacity for nonylphenol was 231 mg g(-1) for blank and 228 mg g(-1) for MIP. The synthesised materials can have significance for sample pre-concentration and environmental analysis of this class of compounds.

  8. PID - 3D: a software to develop mathematical human phantoms for use in computational dosimetry

    International Nuclear Information System (INIS)

    Lima Filho, Jose de Melo; Vieira, Jose Wilson; Lima, Vanildo Junior de Melo; Lima, Fernando Roberto de Andrade

    2009-01-01

    The PID-3D software, written in Visual C++, contains tools developed for building and editing of three-dimensional geometric figures formed of voxels (volume pixels). These tools were projected to be used, together with those already developed by the Grupo de Dosimetria Numerica (GDN/CNPq), such as the FANTOMAS and DIP software, in computational dosimetry of ionizing radiation. The main objective of this paper is to develop various voxel-based geometric solids to build voxel phantoms (meaning models), anthropomorphic or not. The domain of this technique of development of geometric solids is important for the GDN/CNPq, because it allows the use of just one Monte Carlo code to simulate the transportation, interaction and deposition of radiation in tomographic and mathematical phantoms. Building a particular geometric solid the user needs to inform to the PID-3D software, the location and the size of the parallelepiped that involves it. Each built solid can be saved in a binary file of the type SGI (file containing the size and the numeric values that constitutes the 3D matrix that represents the solid, commonly used by GDN/CNPq). The final mathematical phantom is built starting from these SGI files and the SGI file resulting constitutes a voxel phantom. With this approach the software's user does not have to manipulate the equations and inequalities of the solids that represent the organs and tissues of the phantom. The 3D-PID software, associated with the FANTOMAS and DIP software are tools produced by GDN/CNPq, providing a new technique for building of 3D scenes in dosimetric evaluations using voxel phantoms. To validate the PID-3D software one built, step by step, a phantom similar to the MIRD-5 stylized phantom. (author)

  9. An improved Virtual Torso phantom

    International Nuclear Information System (INIS)

    Kramer, Gary H; Crowley, Paul

    2000-01-01

    The virtual phantom that was previously designed by the Human Monitoring Laboratory had some limitations. It contained no sternum and the ribs extended all the way round the torso, whereas in reality the central part of the chest is covered with a mixture of cartilage (ribs) and bone (sternum). The ribs were located below the chest wall which added to the thickness of the chest wall. The lungs did not touch the inner surface of the chest wall along their length due to the differences in curvature between the ellipsoidal lungs and the ellipsoidal cylinder that defined the torso. As a result there was extra intervening tissue between the lungs and the chest wall. This was shown to have a noticeable effect on the simulation of low energy photons. The virtual phantom has been redesigned and comparison of measured and calculated counting efficiencies shows that it is a good representation of both of LLNL or JAERI at all photon energies measured. The redesigned virtual phantom agrees to within 11% of the torsos' counting efficiency over the energy range 17 - 240 keV. Before modification, the virtual phantom's counting efficiency was a of factor three lower at 17 keV and a factor of two lower at 20 keV; now it is within 5% at 17 keV and within 10% at 20 keV. This phantom can now be reliably used to simulate lung counting. The virtual phantom still contains no sternum and the ribs extend all the way round the torso, whereas in reality the central part of the chest is covered with cartilage (ribs) and bone (sternum). However, the above results indicate that this is not a major flaw in the design of the virtual phantom, as agreement between the Monte Carlo results and experimental data is good. (author)

  10. Microporous Carbon Spheres Solid Phase Membrane Tip Extraction for the Analysis of Nitrosamines in Water Samples

    International Nuclear Information System (INIS)

    Mohammed Salisu Musa; Wan Aini Wan Ibrahim

    2015-01-01

    A simple solid phase membrane tip extraction (SPMTE) utilizing microporous carbon spheres (MCS) was developed for the analysis of nitrosamines in aqueous samples. The method termed MCS-SPMTE was optimized for various important extraction parameters namely conditioning organic solvent, extraction time, effects of salt addition and pH change, desorption time, desorption solvent and sample volume. Under the optimized conditions, the method indicated good linearity in the range of 10-100 μg/ L with coefficients of determination, r 2 ≥0.9984. The method also demonstrated good reproducibility with % RSDs values ranging from 2.2 - 8.9 (n = 3). Limit of detection (LOD) and limit of quantification (LOQ) for the method ranged from 3.2 - 4.8 μg/ L and 10.9 - 15.9 μg/L respectively. Recoveries for both tap-water and lake water samples spiked at 10 μg/L were in the range of 83.2 - 107.5 %. (author)

  11. Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles

    International Nuclear Information System (INIS)

    Kravitz, Keren; Kamyshny, Alexander; Gedanken, Aharon; Magdassi, Shlomo

    2010-01-01

    A solid state synthesis for obtaining nanocrystalline silicon was performed by high temperature reduction of commercial amorphous nanosilica with magnesium powder. The obtained silicon powder contains crystalline silicon phase with lattice spacings characteristic of diamond cubic structure (according to high resolution TEM), and an amorphous phase. In 29 Si CP MAS NMR a broad multicomponent peak corresponding to silicon is located at -61.28 to -69.45 ppm, i.e. between the peaks characteristic of amorphous and crystalline Si. The powder has displayed red luminescence while excited under UV illumination, due to quantum confinement within the nanocrystals. The silicon nanopowder was successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence with a band maximum at 710 nm, thus enabling future functional coating applications. - Graphical abstract: High temperature reduction of amorphous nanosilica with magnesium powder results in the formation of powder containing crystalline silicon phase The powder displays red luminescence while excited under UV illumination, due to quantum confinement within the Si nanocrystals, and can be successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence, thus enabling future functional coating applications.

  12. Determination of diphenylether herbicides in water samples by solid-phase microextraction coupled to liquid chromatography.

    Science.gov (United States)

    Sheu, Hong-Li; Sung, Yu-Hsiang; Melwanki, Mahaveer B; Huang, Shang-Da

    2006-11-01

    Solid-phase microextraction (SPME) coupled to LC for the analysis of five diphenylether herbicides (aclonifen, bifenox, fluoroglycofen-ethyl, oxyfluorfen, and lactofen) is described. Various parameters of extraction of analytes onto the fiber (such as type of fiber, extraction time and temperature, pH, impact of salt and organic solute) and desorption from the fiber in the desorption chamber prior to separation (such as type and composition of desorption solvent, desorption mode, soaking time, and flush-out time) were studied and optimized. Four commercially available SPME fibers were studied. PDMS/divinylbenzene (PDMS/DVB, 60 microm) and carbowax/ templated resin (CW/TPR, 50 microm) fibers were selected due to better extraction efficiencies. Repeatability (RSD, 0.994), and detection limit (0.33-1.74 and 0.22-1.94 ng/mL, respectively, for PDMS/DVB and CW/TPR) were investigated. Relative recovery (81-104% for PDMS/DVB and 83-100% for CW/TPR fiber) values have also been calculated. The developed method was successfully applied to the analysis of river water and water collected from a vegetable garden.

  13. Treatment of waste water containing solid particles (coal-ash-water suspensions) from 500 MW blocks of brown coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, H

    1981-01-01

    This paper presents a technological scheme and details on efficiency of the waste water cleaning installation in the 4 x 500 MW Boxberg III brown coal power plant. The power plant waste water contains between 0.1 and 100 kg of solids per m/sup 3/ of waste water; it requires cleaning to the environmental standard of up to 30 mg/l. The water cleaning installation consists of a coarse grain settling tank 30.7 m long, four one chamber thickeners with a 22 m diameter each, using aluminium sulfate as flocculent, and a water purification basin. The coarse grain settling tank is furnished with a continuously working chain scraper for removal of up to 100 m/sup 3//d of sludge from the bottom of the tank. Technological parameters of the settling tank are provided. Details of the tank's water cleaning performance are compared to the coarse grain settling tank at the Hagenwerder power plant. A list of the percentage of grain sizes removed from waste waters at both power plants is given. It is concluded that 85% of solids are removed from the Boxberg III waste water at the first water purification stage with a coarse grain settling tank and that use of continuously working chain scrapers is successful for removal of sludge with high water content and with a high content of fines in the grain size below 0.1 mm.

  14. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance

    International Nuclear Information System (INIS)

    Wang, Xunying; Zhang, Linsong; Li, Guangfu; Zhang, Geng; Shao, Zhi-Gang; Yi, Baolian

    2015-01-01

    Highlights: • The cathode possesses higher tolerance for the Fe 3+ contamination than the anode. • Fe 3+ are mostly reduced to Fe 2+ rather than occur underpotential deposition. • Increased electrolysis voltage was mainly attributed to ohmic overpotential. • Voltage lags behind current for minutes in the multi-current-step test. • Poisoned electrolyser is mostly recovered by 0.5 M H 2 SO 4 solution treatment for 13 h. - Abstract: Fe 3+ is a sort of common metal ion contaminant for the solid polymer electrolyte (SPE) water electrolyser. In this paper, the effect of Fe 3+ on the performance of SPE water electrolyser has been investigated by both in-situ and ex-situ characterizations. The electron probe microanalysis and ultraviolet test results showed that Fe 3+ could migrate from the anode to the cathode and mostly be reduced to Fe 2+ in the cathode rather than occurred underpotential deposition as described in the previous report. The in-situ dynamic contamination test showed that the anode voltage increased sharply as soon as the Fe 3+ was fed into the anode, while the cathode voltage kept constant until the contamination time was over 30 minutes, indicating the higher tolerance of the cathode than the anode for the Fe 3+ contamination. The calculation results based on the electrochemistry impedance spectroscopy test results revealed that the striking increase of the electrolysis voltage was mainly attributed to the ohmic overpotential, which was due to the replacement of H + by Fe 3+ in the Nafion resin. Interestingly, the voltage lagged behind the current for several minutes in the multi-current-step test for the contaminated electrolyser, which phenomenon may be used for judging whether the SPE water electrolyser performance degradation is due to the metal ions contamination. Furthermore, recovery strategy has been developed, and it was found that the contaminated electrolyser could be mostly recovered by 0.5 M H 2 SO 4 solution treatment for 13 h

  15. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    Science.gov (United States)

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  16. Monte Carlo simulations of dose distribution in water phantom for monoenergetic photon sources in the energy range of 20 keV and 2 MeV using a customized GEANT4 distribution

    International Nuclear Information System (INIS)

    Heredia, Eduardo; Rodrigues Jr, Orlando; Campos, Leticia Lucente

    2008-01-01

    Full text: Monte Carlo simulation methods are important tools in the areas of radiation transport and dosimetry, assisting in the radiation therapy treatment planning, study of energy deposition in complex systems and aid in the agreement the experimental results in the research of new materials. However, two aspects can affect the use of these tools: complexity in real world problems transposition to the simulation environment and difficulty in computational codes utilization. The objective of this work is to present a free software distribution based in the GEANT4 Monte Carlo code. The distribution was customized with the addition of tools for the development, visualization and data analysis in a software package with simplified installation and attended configuration. A wizard tool was developed and incorporated to the software package aiming to assist the user in the simulation skeleton creation and the election of the compilation and link flags for new models of simulation in the area of the radiation dosimetry. This software distribution is part of a wider project for the development of an infrastructure based in the GEANT4 for the radiation transport simulation under the perspective of a non centered computational architecture in dosimetry. The absorbed dose distribution in water phantom was simulated for monoenergetic photon sources with energies between 20 keV and 2 MeV. All results and analyses were generated with the tools incorporated in the software package. (author)

  17. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    Science.gov (United States)

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  18. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  19. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  20. (Liquid + liquid), (solid + liquid), and (solid + liquid + liquid) equilibria of systems containing cyclic ether (tetrahydrofuran or 1,3-dioxolane), water, and a biological buffer MOPS

    International Nuclear Information System (INIS)

    Altway, Saidah; Taha, Mohamed; Lee, Ming-Jer

    2015-01-01

    Graphical abstract: - Highlights: • MOPS buffer induced liquid phase splitting for mixtures of water with THF or 1,3-dioxolane. • Phase boundaries of LLE, SLE, and SLLE were determined experimentally. • Tie-lines at LLE and at SLLE were also measured. • Phase diagrams of MOPS + water + THF or 1,3-dioxolane are prepared. • LLE tie-line data are correlated satisfactorily with the NRTL model. - Abstract: Two liquid phases were formed as the addition of a certain amount of biological buffer 3-(N-morpholino)propane sulfonic acid (MOPS) in the aqueous solutions of tetrahydrofuran (THF) or 1,3-dioxolane. To evaluate the feasibility of recovering the cyclic ethers from their aqueous solutions with the aid of MOPS, we determined experimentally the phase diagrams of the ternary systems of {cyclic ether (THF or 1,3-dioxolane) + water + MOPS} at T = 298.15 K under atmospheric pressure. In this study, the solubility data of MOPS in water and in the mixed solvents of water/cyclic ethers were obtained from the results of a series of density measurements, while the (liquid + liquid) and the (solid + liquid + liquid) phase boundaries were determined by visually inspection. Additionally, the tie-line results for (liquid + liquid) equilibrium (LLE) and for (solid + liquid + liquid) equilibrium (SLLE) were measured using an analytical method. The reliability of the experimental LLE tie-line results data was validated by using the Othmer–Tobias correlation. These LLE tie-line values were correlated well with the NRTL model. The phase diagrams obtained from this study reveal that MOPS is a feasible green auxiliary agent to recover the cyclic ethers from their aqueous solutions, especially for 1,3-dioxolane

  1. SIMPLE METHOD FOR ESTIMATING POLYCHLORINATED BIPHENYL CONCENTRATIONS ON SOILS AND SEDIMENTS USING SUBCRITICAL WATER EXTRACTION COUPLED WITH SOLID-PHASE MICROEXTRACTION. (R825368)

    Science.gov (United States)

    A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...

  2. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    Science.gov (United States)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  3. Construction of Chinese reference female phantom

    International Nuclear Information System (INIS)

    Sheng Yinxiangzi; Liu Lixing; Xia Xiaobin

    2013-01-01

    In this study, a Voxel-based Chinese Reference female Phantom (VCRP-woman) is developed from an individual female phantom which was based on high resolution cross-sectional color photographs. An in-house C ++ program was developed to adjust the phantom. Finally, a reference female phantom with have the same height, weighte and similar organs masses with the Chinese reference adult female data. The adjusted phantom is then imported to MCNPX to calculate the organs absorbed dose and effective dose conversion coefficients. Results are compared between VCRP-woman and the ICRP adult reference female phantom. (authors)

  4. Experimental investigation of the effect of latex solid/water ratio on latex modified co-matrix mechanical properties

    Directory of Open Access Journals (Sweden)

    Ahmed M. Diab

    2013-03-01

    Full Text Available Numerous researches were performed on latex modified concretes and associated properties, however; some vital factors were not given attention in previous works. This study focus on new factor which significantly affects the properties of latex modified cement paste, mortar or concrete. This factor is termed as ‘latex solid/water ratio’ which is defined herein as the ratio of weight of solid latex to weight of total water content of cement composite including the water in latex itself. The effect of this factor on some properties of cement paste, mortar and concrete were experimentally evaluated. Properties of cement paste include the produced calcium hydroxide and ettringite content during hydration process, while those of cement mortar take account of absorption and effect of temperature on compressive strength. Furthermore, the effect of this factor on the compressive and flexural strengths, modulus of elasticity, water penetration depth and drying shrinkage of concrete were explored. Based on experimental evidences, and spite of using different cement contents, sources of latex, water–cement ratios and slump values, it can be generally concluded that the latex solid/water ratio is a dominant factor affecting different properties of latex modified mortars and concrete.

  5. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  6. Determination of nanomolar chromate in drinking water with solid phase extraction and a portable spectrophotometer.

    Science.gov (United States)

    Ma, Jian; Yang, Bo; Byrne, Robert H

    2012-06-15

    Determination of chromate at low concentration levels in drinking water is an important analytical objective for both human health and environmental science. Here we report the use of solid phase extraction (SPE) in combination with a custom-made portable light-emitting diode (LED) spectrophotometer to achieve detection of chromate in the field at nanomolar levels. The measurement chemistry is based on a highly selective reaction between 1,5-diphenylcarbazide (DPC) and chromate under acidic conditions. The Cr-DPC complex formed in the reaction can be extracted on a commercial C18 SPE cartridge. Concentrated Cr-DPC is subsequently eluted with methanol and detected by spectrophotometry. Optimization of analytical conditions involved investigation of reagent compositions and concentrations, eluent type, flow rate (sample loading), sample volume, and stability of the SPE cartridge. Under optimized conditions, detection limits are on the order of 3 nM. Only 50 mL of sample is required for an analysis, and total analysis time is around 10 min. The targeted analytical range of 0-500 nM can be easily extended by changing the sample volume. Compared to previous SPE-based spectrophotometric methods, this analytical procedure offers the benefits of improved sensitivity, reduced sample consumption, shorter analysis time, greater operational convenience, and lower cost. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Surface and bulk crystallization of amorphous solid water films: Confirmation of “top-down” crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.

  8. 2H Solid-State NMR Analysis of the Dynamics and Organization of Water in Hydrated Chitosan

    Directory of Open Access Journals (Sweden)

    Fenfen Wang

    2016-04-01

    Full Text Available Understanding water–biopolymer interactions, which strongly affect the function and properties of biopolymer-based tissue engineering and drug delivery materials, remains a challenge. Chitosan, which is an important biopolymer for the construction of artificial tissue grafts and for drug delivery, has attracted extensive attention in recent decades, where neutralization with an alkali solution can substantially enhance the final properties of chitosan films cast from an acidic solution. In this work, to elucidate the effect of water on the properties of chitosan films, we investigated the dynamics and different states of water in non-neutralized (CTS-A and neutralized (CTS-N hydrated chitosan by mobility selective variable-temperature (VT 2H solid-state NMR spectroscopy. Four distinct types of water exist in all of the samples with regards to dynamic behavior. First, non-freezable, rigid and strongly bound water was found in the crystalline domain at low temperatures. The second component consists of weakly bound water, which is highly mobile and exhibits isotropic motion, even below 260 K. Another type of water undergoes well-defined 180° flips around their bisector axis. Moreover, free water is also present in the films. For the CTS-A sample in particular, another special water species were bounded to acetic acid molecules via strong hydrogen bonding. In the case of CTS-N, the onset of motions of the weakly bound water molecules at 260 K was revealed by 2H-NMR spectroscopy. This water is not crystalline, even below 260 K, which is also the major contribution to the flexibility of chitosan chains and thus toughness of materials. By contrast, such motion was not observed in CTS-A. On the basis of the 2H solid-state NMR results, it is concluded that the unique toughness of CTS-N mainly originates from the weakly bound water as well as the interactions between water and the chitosan chains.

  9. An in-line clean system for the solid-phase extraction of emerging contaminants in natural waters

    OpenAIRE

    Sodré, Fernando F.; Locatelli, Marco Antonio F.; Jardim, Wilson F.

    2010-01-01

    A solid-phase in-line extraction system for water samples containing low levels of emerging contaminants is described. The system was specially developed for large volume samples (up to 4 L) using commercial solid-phase extraction (SPE) cartridges. Four sets containing PTFE-made connectors, brass adapters and ball valves were used to fit SPE cartridges and sample bottles to a 4-port manifold attached to a 20 L carboy. A lab-made vacuum device was connected to the manifold cap. The apparatus i...

  10. Kinetics of Ultrasound-Assisted Flavonoid Extraction from Agri-Food Solid Wastes Using Water/Glycerol Mixtures

    Directory of Open Access Journals (Sweden)

    Dimitris P. Makris

    2016-01-01

    Full Text Available Red grape pomace (RGP and onion solid wastes (OSW were used as raw material to produce flavonoid-enriched extracts, using ultrasound-assisted solid-liquid extraction. The extraction medium used was composed of water and glycerol and under the conditions used the extraction of flavonoids from both materials was shown to obey first-order kinetics. Maximum diffusivities (De values were 4.01 × 10−11 and 2.35 × 10−11 m2·s−1, for RGP and OSW extraction, respectively, while the corresponding activation energies (Ea were 14.00 and 15.23 kJ·mol−1.

  11. Contrast detail phantom for SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejas, M.L. de; Arashiro, J G; Giannone, C. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Camuyrano, M; Nohara, G [Universidad de Buenos Aires, Buenos Aires (Argentina). Facultad Ciencias Exactas

    1996-06-01

    A new low variable contrast phantom for single photon emission computed tomography (SPECT) was constructed, tested and compared with other existing phantoms. It contains simulated cylindrical lesions of four different diameters (D{sub i}), embedded in a cylindrical scattering medium and a uniform section to evaluate tomographic uniformity. The concentration of tracer in the simulated lesions and the scattering medium (background) can be varied to simulate hot and cold lesions. Different applications of the phantom were tested, including determination of the minimum object contrast (OCm) necessary to detect lesions as a function of lesion size, lesion type (hot or cold) and acquisition and processing protocols by visual inspection. This parameter allows categorization of instruments comparing an `image quality index` (IQI). Preliminary comparison with the Britten contrast processing method showed that the detectable OCm was of the same order of magnitude, but the presented device seems more suitable for training and intercomparison purposes. The constructed phantom, of simple design, has proved to be useful for acquisition and processing condition evaluation, OCm estimation and external quality control. (author). 11 refs, 4 figs.

  12. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States.

    Science.gov (United States)

    Anning, David W

    2011-10-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from Salton Sea accounting unit.

  13. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    Science.gov (United States)

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A phantom design for assessment of detectability in PET imaging

    International Nuclear Information System (INIS)

    Wollenweber, Scott D.; Alessio, Adam M.; Kinahan, Paul E.

    2016-01-01

    Purpose: The primary clinical role of positron emission tomography (PET) imaging is the detection of anomalous regions of 18 F-FDG uptake, which are often indicative of malignant lesions. The goal of this work was to create a task-configurable fillable phantom for realistic measurements of detectability in PET imaging. Design goals included simplicity, adjustable feature size, realistic size and contrast levels, and inclusion of a lumpy (i.e., heterogeneous) background. Methods: The detection targets were hollow 3D-printed dodecahedral nylon features. The exostructure sphere-like features created voids in a background of small, solid non-porous plastic (acrylic) spheres inside a fillable tank. The features filled at full concentration while the background concentration was reduced due to filling only between the solid spheres. Results: Multiple iterations of feature size and phantom construction were used to determine a configuration at the limit of detectability for a PET/CT system. A full-scale design used a 20 cm uniform cylinder (head-size) filled with a fixed pattern of features at a contrast of approximately 3:1. Known signal-present and signal-absent PET sub-images were extracted from multiple scans of the same phantom and with detectability in a challenging (i.e., useful) range. These images enabled calculation and comparison of the quantitative observer detectability metrics between scanner designs and image reconstruction methods. The phantom design has several advantages including filling simplicity, wall-less contrast features, the control of the detectability range via feature size, and a clinically realistic lumpy background. Conclusions: This phantom provides a practical method for testing and comparison of lesion detectability as a function of imaging system, acquisition parameters, and image reconstruction methods and parameters.

  15. Liquid chromatography tandem mass spectrometry method using solid-phase extraction and bead-beating-assisted matrix solid-phase dispersion to quantify the fungicide tebuconazole in controlled frog exposure study: analysis of water and animal tissue

    DEFF Research Database (Denmark)

    Hansen, Martin; Poulsen, Rikke; Luong, Xuan

    2014-01-01

    and on tissue from exposed and non-exposed adult X. laevis. Using solid-phase extraction (SPE), the analytical method allows for quantification of tebuconazole at concentrations as low as 3.89 pg mL(-1) in 10 mL water samples. Using bead-beating-assisted matrix solid-phase dispersion (MSPD), it was possible...

  16. Assessing the potential water quality hazards caused by disposal of radium-containing waste solids by soil blending

    International Nuclear Information System (INIS)

    Lee, G.F.; Jones, R.A.

    1987-01-01

    Soil blending has recently been proposed as a method for disposal of radium-containing waste solids. This approach is basically the dilution of the waste solids with ''soils'' in order to reduce the concentration of radium-226 to designated levels. While in principle this approach may be satisfactory, in practice appropriate environmental and public health protection will be difficult to achieve with this approach because of the potential for leaching of radium-226 which could contaminate surface and groundwaters, increasing the cancer risk of those using the waters. This paper reviews the factors that should be considered in developing a technically valid program for the disposal of radium-containing waste solids by soil blending that is protective of public health and the environment

  17. Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate "Water Layer" Test.

    Science.gov (United States)

    Guzinski, Marcin; Jarvis, Jennifer M; D'Orazio, Paul; Izadyar, Anahita; Pendley, Bradford D; Lindner, Ernő

    2017-08-15

    The aim of this study was to find a conducting polymer-based solid contact (SC) for ion-selective electrodes (ISEs) that could become the ultimate, generally applicable SC, which in combination with all kinds of ion-selective membranes (ISMs) would match the performance characteristics of conventional ISEs. We present data collected with electrodes utilizing PEDOT-C 14 , a highly hydrophobic derivative of poly(3,4-ethylenedioxythiophene), PEDOT, as SC and compare its performance characteristics with PEDOT-based SC ISEs. PEDOT-C 14 has not been used in SC ISEs previously. The PEDOT-C 14 -based solid contact (SC) ion-selective electrodes (ISEs) (H + , K + , and Na + ) have outstanding performance characteristics (theoretical response slope, short equilibration time, excellent potential stability, etc.). Most importantly, PEDOT-C 14 -based SC pH sensors have no CO 2 interference, an essential pH sensors property when aimed for whole-blood analysis. The superhydrophobic properties (water contact angle: 136 ± 5°) of the PEDOT-C 14 SC prevent the detachment of the ion-selective membrane (ISM) from its SC and the accumulation of an aqueous film between the ISM and the SC. The accumulation of an aqueous film between the ISM and its SC has a detrimental effect on the sensor performance. Although there is a test for the presence of an undesirable water layer, if the conditions for this test are not selected properly, it does not provide an unambiguous answer. On the other hand, recording the potential drifts of SC electrodes with pH-sensitive membranes in samples with different CO 2 levels can effectively prove the presence or absence of a water layer in a short time period.

  18. Water resources and effects of potential surface coal mining on dissolved solids in Hanging Woman Creek basin, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1989-01-01

    Groundwater resources of the Hanging Woman Creek basin, Montana include Holocene and Pleistocene alluvial aquifers and sandstone , coal, and clinker aquifers in the Paleocene Fort Union Formation. Surface water resources are composed of Hanging Woman Creek, its tributaries, and small stock ponds. Dissolved-solids concentrations in groundwater ranged from 200 to 11,00 mg/L. Generally, concentrations were largest in alluvial aquifers and smallest in clinker aquifers. Near its mouth, Hanging Woman Creek had a median concentration of about 1,800 mg/L. Mining of the 20-foot to 35-foot-thick Anderson coal bed and 3-foot to 16-foot thick Dietz coal bed could increase dissolved-solids concentrations in shallow aquifers and in Hanging Woman Creek because of leaching of soluble minerals from mine spoils. Analysis of saturated-paste extracts from 158 overburden samples indicated that water moving through mine spoils would have a median increase in dissolved-solids concentration of about 3,700 mg/L, resulting in an additional dissolved-solids load to Hanging Woman Creek of about 3.0 tons/day. Hanging Woman Creek near Birney could have an annual post-mining dissolved-solids load of 3,415 tons at median discharge, a 47% increase from pre-mining conditions load. Post-mining concentrations of dissolved solids, at median discharge, could range from 2,380 mg/L in March to 3,940 mg/L in August, compared to mean pre-mining concentrations that ranged from 1,700 mg/L in July, November, and December to 2,060 mg/L in May. Post-mining concentrations and loads in Hanging Woman Creek would be smaller if a smaller area were mined. (USGS)

  19. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT plans already planned on treatment planning system (TPS for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA. All the gantry angles were set to zero in case of slab phantom while set to as it is in actual plan in case of other two phantoms. All the plans were delivered by linear accelerator (LA and dose for each plan was measured by 0.13 cc ion chamber. The percentage (% variations between planned and measured doses were calculated and analyzed. Results: The mean % variations between planned and measured doses of all IMRT quality assurance (QA plans were as 0.65 (Standard deviation (SD: 0.38 with confidence limit (CL 1.39, 1.16 (SD: 0.61 with CL 2.36 and 2.40 (SD: 0.86 with CL 4.09 for slab phantom, acrylic head phantom and goat head phantom respectively. Conclusion: Higher dose variations found in case of real tissue phantom compare to results in case of slab and acrylic body phantoms. The algorithm AAA does not calculate doses in heterogeneous medium as accurate as it calculates in homogeneous medium. Therefore the patient specific absolute dosimetry should be done using heterogeneous phantom mimicking density wise as well as design wise to the actual human body.  

  20. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    Science.gov (United States)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  1. Distributions of neutron and gamma doses in phantom under a mixed field

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.

    1982-06-01

    A calculation program, based on Monte Carlo method, allowed to estimate the absorbed doses relatives to the reactor primary radiation, in a water cubic phantom and in cylindrical phantoms modelized from tissue compositions. This calculation is a theoretical approach of gamma and neutron dose gradient study in an animal phantom. PIN junction dosimetric characteristics have been studied experimentally. Air and water phantom radiation doses measured by PIN junction and lithium 7 fluoride, in reactor field have been compared to doses given by dosimetry classical techniques as tissue equivalent plastic and aluminium ionization chambers. Dosimeter responses have been employed to evaluate neutron and gamma doses in plastinaut (tissue equivalent plastic) and animal (piglet). Dose repartition in the piglet bone medulla has been also determined. This work has been completed by comparisons with Doerschell, Dousset and Brown results and by neutron dose calculations; the dose distribution related to lineic energy transfer in Auxier phantom has been also calculated [fr

  2. A Conceptual Supercritical Water Cooled Reactor Design Using a Cruciform Solid Moderator

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Bae, Kang Mok; Yoo, Jae Woon; Lee, Hyun Chul; Noh, Jae Man; Bae, Yoon Yong

    2006-01-15

    A Super Critical Water-Cooled Reactor(SCWR) concept proposed by Gen-IV has an advantage of a high thermal efficiency. However, there are some difficulties in neutronic core design for a SCWR due to lower moderator density resulting from the high operating temperature over the pseudo-critical temperature. In this report, the design concepts for the fuel assembly and the core for a SCWR were described as a feasibility study on the SCWR core design. HELIOS lattice code which will be used for group constants generation was verified for the application to the low coolant density condition of a SCWR. The TAF module for a thermal hydraulic feedback in MASTER was modified to consider high pressure and temperature of the supercritical coolant with single-phase fluid. A cruciform ZrH{sub 2} solid moderator was proposed for the SCWR fuel assembly design to compensate the lower coolant density. The axial zoning concept with three different enrichments for a fuel rod was used for the axial power shape control. Gadolinia burnable poison rods were used to reduce excess reactivity. Control rod system was grouped into 6 banks to control the excess reactivity of the core during normal operation. An orifice concept for each assembly was applied to control a coolant flow rate individually. As a result of the neutronic analysis for the equilibrium SCWR core, the maximum linear heat generation rete limit was satisfied and the maximum coolant temperature of the core outlet was {approx}590 .deg. C which is lower than 620 .deg. C of the maximum clad temperature limit.

  3. Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco, E-mail: jhe08@syr.edu, E-mail: gvidali@syr.edu [Physics Department, Syracuse University, Syracuse, NY 13244 (United States)

    2017-03-01

    Observations by ISO and Spitzer toward young stellar objects showed that CO{sub 2} segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO{sub 2} along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO{sub 2} molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO{sub 2} diffuses significantly on an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO{sub 2} on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 10{sup 12} s{sup −1}. This energy should also apply to the diffusion of CO{sub 2} on the wall of pores. The binding energy of CO{sub 2} from CO{sub 2} clusters and CO{sub 2} from H{sub 2}O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO{sub 2}–CO{sub 2} interaction is stronger than CO{sub 2}–H{sub 2}O interaction, in agreement with the experimental finding that CO{sub 2} does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H{sub 2}O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO{sub 2} on the icy mantles of dust grains.

  4. Conceptual design of solid breeder blanket system cooled by supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li{sub 2}TiO{sub 3} or Li{sub 2}O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for

  5. Conceptual design of solid breeder blanket system cooled by supercritical water

    International Nuclear Information System (INIS)

    Enoeda, Mikio; Akiba, Masato; Ohara, Yoshihiro

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li 2 TiO 3 or Li 2 O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for the energy

  6. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV experimentation

    Directory of Open Access Journals (Sweden)

    Hütter Larissa

    2016-09-01

    Full Text Available Compliant phantoms of the human aortic arch can mimic patient specific cardiovascular dysfunctions in vitro. Hence, phantoms may enable elucidation of haemodynamic disturbances caused by aortic dysfunction. This paper describes the fabrication of a thin-walled silicone phantom of the human ascending aorta and brachiocephalic artery. The model geometry was determined via a meta-analysis and modelled in SolidWorks before 3D printing. The solid model surface was smoothed and scanned with a 3D scanner. An offset outer mould was milled from Ebalta S-Model board. The final phantom indicated that ABS was a suitable material for the internal model, the Ebalta S-Model board yielded a rough external surface. Co-location of the moulds during silicone pour was insufficient to enable consistent wall thickness. The resulting phantom was free of air bubbles but did not have the desired wall thickness consistency.

  7. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    International Nuclear Information System (INIS)

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-01-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material. (paper)

  8. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    OpenAIRE

    Gogina Elena; Pelipenko Alexey

    2016-01-01

    The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW), on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities,...

  9. Evaluating the Efficiency of Tragacanth Coagulant Aid in Removing Colloidal Materials and Suspended Solids Creating Turbidity from Karun River Water

    OpenAIRE

    Majid Farhadi; Afshin Takdastan; Roghayeh Baghbany

    2016-01-01

    Introduction: Colloidal materials and suspended solids cause turbidity in water. To remove turbidity, clarification method is used that includes processes of coagulation, flocculation, and sedimentation. Due to the long duration of coagulation process, coagulant aids are applied. Despite the favorable efficiency of synthetic polyelectrolytes as a coagulant aid, due to their harmful effects on human health, in this process, natural organic polymers are used instead. Materials and Methods: I...

  10. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  11. Photosynthesis and yield reductions from wheat stem sawfly (Hymenoptera: Cephidae): interactions with wheat solidness, water stress, and phosphorus deficiency.

    Science.gov (United States)

    Delaney, Kevin J; Weaver, David K; Peterson, Robert K D

    2010-04-01

    The impact of herbivory on plants is variable and influenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to (1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to influence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and (2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16-20 d after infestation, but were detected at 40-42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deficient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions. Our results emphasize the importance of sufficient water and macronutrients for plants grown in regions impacted by C. cinctus. Also, solid stemmed varieties not only reduce wheat lodging from C. cinctus, they may reduce harvested grain losses from infested stems.

  12. Study of Image Quality From CT Scanner Multi-Detector by using Americans College of Radiology (ACR) Phantom

    Science.gov (United States)

    Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang

    2018-03-01

    In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.

  13. Evaluation of alternative environmentally friendly matrix solid phase dispersion solid supports for the simultaneous extraction of 15 pesticides of different chemical classes from drinking water treatment sludge.

    Science.gov (United States)

    Soares, Karina Lotz; Cerqueira, Maristela Barnes Rodrigues; Caldas, Sergiane Souza; Primel, Ednei Gilberto

    2017-09-01

    This study describes the development, optimization and validation of a method for the extraction of 15 pesticides of different chemical classes in drinking water treatment sludge (DWTS) by vortex-assisted Matrix Solid Phase Dispersion (MSPD) with determination by gas chromatography coupled to mass spectrometry. It focused on the application of alternative and different solid supports to the extraction step of the MSPD. The main parameters that influenced the extraction were studied in order to obtain better recovery responses. Recoveries ranged from 70 to 120% with RSD below 20% for all analytes. Limits of quantification (LOQ) of the method ranged from 5 to 500 μg kg -1 whereas the analytical curves showed correlation coefficients above 0.997. The method under investigation used low volume of solvent (5 mL), low sample mass (1.5 g) and low mass of chitin (0.5 g), an environmentally friendly support. It has advantages, such as speed, simplicity and low cost material, over other methods. When the method was applied, 4 out of 15 pesticides were detected in the DWTS samples in concentrations below the LOQ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preconcentrate of thorium in solid phase and its direct determination by X-ray fluorescence in natural waters

    International Nuclear Information System (INIS)

    Carvalho, Marcelo S. de; Domingues, Maria de Lourdes F.; Mantovano, Jose Luiz; Cunha, Jose Waldemar S.D. da

    2000-01-01

    This paper describe a methodology to pre concentrate thorium from natural water samples by using solid phase extraction (SPE) before its direct determination by X-ray fluorescence. Polyurethane foam supporting 2- ethyl hexyl phosfonic acid was used as SPE. The extraction was maximum at 0.25 mol/L in hydrochloric acid, for 30 minutes of shaking time. At least 8 mg/L thorium could be determined what allowed us to apply this methodology successfully for determination of thorium in natural water reference samples. (author)

  15. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    that is least soluble. Hence electrodialytic treatment of the ash suspended in water is not a solution to improve the ash quality in terms of Pb. The water-soluble Cl content per unit weight of the original ash was 12.4%. The removal of water-soluble Cl was efficient and >98% of Cl was removed (calculated......The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...... of the concrete. The Cl content in MSWI fly ash is also too high and will cause corrosion problems in reinforced concrete. The possibility of removing some of the unwanted heavy metals (Cu and Pb) together with Cl from an MSWI fly ash suspended in water using an electrodialytic separation method was investigated...

  16. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  17. 3D Printing Openable Imaging Phantom Design

    International Nuclear Information System (INIS)

    Kim, Myoung Keun; Won, Jun Hyeok; Lee, Seung Wook

    2017-01-01

    The purpose of this study is to design an openable phantom that can replace the internal measurement bar used for contrast comparison in order to increase the efficiency of manufacturing imaging phantom used in the medical industry and to improve convenience using 3D printer. Phantom concept design, 3D printing, and Image reconstruction were defined as the scope of the thesis. Also, we study metal artifact reduction with openable phantom. We have designed a Openable phantom using 3D printing, and have investigated metal artifact reduction after inserting a metallic material inside the phantom. The openable phantom can be adjusted at any time to suit the user's experiment and can be easily replaced and useful.

  18. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids.

    Science.gov (United States)

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-11-01

    Stability of entrapped crystalline β-carotene as affected by water activity, solids microstructure, and composition of freeze-dried systems was investigated. Aliquots (1000 mm(3) , 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040:DE6, M100:DE11, and M250:DE25.5), M100-sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β-carotene were frozen at -20, -40, or -80 °C and freeze-dried. Glass transition and α-relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β-Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β-carotene stability. Small pores with thin walls and large surface area allowed β-carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β-carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β-carotene degradation. Stability of dispersed β-carotene was highest at around 0.2 a(w) , but decreasing structural relaxation times above the glass transition correlated well with the rate of β-carotene degradation at higher a(w) . Microstructure, a(w) , and component mobility are important factors in the control of stability of β-carotene in freeze-dried solids. β-Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β-carotene in freeze-dried foods, the amount of oxygen penetration need to be limited. The modification of freeze-dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β-carotene in freeze-dried solids. © 2012 Institute of Food Technologists®

  19. Estimation of computed tomography dose in various phantom shapes and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Lae [Dept. of Radiological Science, Yonsei University, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The CTDI100center values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but CTDI{sub 100center} values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom CTDI{sub 100center} values were relatively low as the material density increased. However, in the case of Polyethylene, the CTDI{sub 100center} value was higher than that of PMMA at diameters exceeding 15 cm (CTDI{sub 100center} : 35.0 mGy). And a diameter greater than 30 cm (CTDI{sub 100center} : 17.7 mGy) showed more CTDI{sub 100center} than Water. We have used limited phantoms to evaluate CT doses. In this study, CTDI{sub 100center} values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

  20. Magnetic micro-solid-phase-extraction of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Naing, Nyi Nyi; Yau Li, Sam Fong; Lee, Hian Kee

    2016-04-01

    A novel sorbent, magnetic chitosan functionalized graphene oxide (MCFG) was synthesized and used in the micro-solid-phase-extraction (μ-SPE) and gas chromatography-mass spectrometric (GC-MS) analysis of polycyclic aromatic hydrocarbons (PAHs) from water. Through the use of the magnetic sorbent, the μ-SPE device also functioned as a stir bar during extraction. Three types of MCFG were prepared using glutaraldehyde cross-linked chitosan and graphene oxide with different amounts of magnetic nanoparticles (Fe3O4) (0.05g, 0.07g and 0.1g). The material was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Parameters affecting the extraction such as the type of sorbent, extraction and desorption times, volume of sample solution and type of desorption solvent were optimized. Under the most favourable conditions, the highest extraction was obtained by using the composite prepared with 0.1g of Fe3O4. For the latter material as sorbent, the linearity of the analytes was in the range of 0.01 and 100μgL(-1) for naphthalene, fluoranthene and pyrene while acenaphthylene and phenanthrene exhibited linearity in the range of 0.05 and 100μgL(-1). For fluorene and anthracene, the linearity range was from 0.01 to 50μgL(-1). The coefficients of determination (r(2)) associated with the above linear ranges were higher than 0.987. The limits of detection from GC-MS analysis of the seven PAHs were in the range 0.2-1.8ngL(-1); limits of quantification were between 0.8 and 5.9ngL(-1) while the relative standard deviations (RSDs) varied from 2.1 to 8.2%. The recoveries of the method for the compounds at spiking levels of 1 and 5μgL(-1) were in the range 67.5-106.9% with RSDs below 15%. The enrichment factors were found to be in between 67 and 302. The developed method afforded an interesting and innovative approach using MCFG as an efficient and promising sorbent. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Recent progress in safety assessments of Japanese water cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Tsuru, Daigo; Enoeda, Mikio; Akiba, Masato

    2007-01-01

    Water Cooled Solid Breeder Test Blanket Module (WCSB TBM) is being designed by JAEA for the primary candidate TBM of Japan, and the safety evaluation of WCSB TBM has been performed. This reports presents summary of safety evaluation activities of the Japanese WCSB TBM, including nuclear analysis, source of RI, waste evaluation, occupational radiolysis exposure (ORE), failure mode effect analysis (FMEA) and postulated initiating event (PIE). For the purpose of basic evaluation of source terms on nuclear heating and radioactivity generation, two-dimensional nuclear analysis has been carried out. By the nuclear analysis, distributions of neutron flux, tritium breeding ratio (TBR), nuclear heat, decay heat and induced activity are calculated. Tritium production is calculated by the nuclear analysis by integrating distributions of TBR values, as about 0.2 g-T/FPD. With respect to the radioactive waste, the induced activity of the irradiated TBM is estimated. For the purpose of occupational radiolysis exposure (ORE), RI inventory is estimated. Tritium inventory in pebble bed of TBM is about 3 x 10 12 Bq, and tritium in purge gas is about 3 x 10 11 Bq. FMEA has been carried out to identify the PIEs that need safety evaluation. PIEs are summarized into three groups, i.e., heating, pressurization and release of RI. PIEs of local heating are converged without any special cares. With respect to heating of whole module, two PIEs are selected as the most severe events, i.e., loss of cooling of TBM during plasma operation and ingress of coolant into TBM during plasma operation. With respect to PIEs about pressurization, the PIEs of pressurization of the compartment nearby the pipes of cooling system are evaluated, because rupture of the pipes result pressurization of such compartments, i.e., box structure of TBM, purge gas loop, TRS, VV, port cell and TCWS vault. Box structure of TBM is designed to withstand the maximum pressure of the cooling system. At other compartments

  2. Activity of NaOH buffered by silicate solids in molten sodium acetate-water at 3170C

    International Nuclear Information System (INIS)

    Weres, O.; Tsao, L.

    1988-01-01

    Silica and sodium acetate are present in the steam generator tube sheet crevices of many nuclear power plants. Trace solutes in the condensate are tremendously concentrated in the crevices by boiling. Sparingly soluble sodium silicates and other solids precipitate from the crevice liquid leaving an extremely concentrated molten mixture of water, sodium acetate and other salts. The precipitates buffer the activity of sodium hydroxide in the superheated liquid that remains. The activity of NaOH corresponding to the buffers quartz/sodium disilicate and sodium disilicate/sodium metasilicate at 317 0 C has been determined experimentally. The sodium hydroxide content of a sodium acetate-water melt buffered by these reactions was determined by chemical analysis, and the corresponding activity of NaOH at temperature was calculated using the recently published Pitzer-Simonson Model of molten salt-water mixtures. The molten mixture of sodium acetate and water plays the role solvent in these experiments and calculations. The free energies of formation of solid sodium silicates at 317 0 C were also determined. The activity of NaOH corresponding to other silicate and phosphate buffers was calculated using published thermodynamic data and estimated from phase diagrams

  3. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    Science.gov (United States)

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  4. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

  5. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    Science.gov (United States)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  6. Effect of phantom voxelization in CT simulations

    International Nuclear Information System (INIS)

    Goertzen, Andrew L.; Beekman, Freek J.; Cherry, Simon R.

    2002-01-01

    In computer simulations of x-ray CT systems one can either use continuous geometrical descriptions for phantoms or a voxelized representation. The voxelized approach allows arbitrary phantoms to be defined without being confined to geometrical shapes. The disadvantage of the voxelized approach is that inherent errors are introduced due to the phantom voxelization. To study effects of phantom discretization, analytical CT simulations were run for a fan-beam geometry with phantom voxel sizes ranging from 0.0625 to 2 times the reconstructed pixel size and noise levels corresponding to 10 3 -10 7 photons per detector pixel prior to attenuation. The number of rays traced per detector element was varied from 1 to 16. Differences in the filtered backprojection images caused by changing the phantom matrix sizes and number of rays traced were assessed by calculating the difference between reconstructions based on the finest matrix and coarser matrix simulations. In noise free simulations, all phantom matrix sizes produced a measurable difference in comparison with the finest phantom matrix used. When even a small amount of noise was added to the projection data, the differences due to the phantom discretization were masked by the noise, and in all cases there was almost no improvement by using a phantom matrix that was more than twice as fine as the reconstruction matrix. No substantial improvement was achieved by tracing more than 4 rays per detector pixel

  7. Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Yen, Hung-Kai; Lin, Tsair-Fuh; Liao, Pao-Chi

    2011-08-01

    A solid-phase extraction (SPE)-liquid chromatography (LC)-mass spectrometry (MS) method was developed to concentrate and detect nine cyanotoxins simultaneously, including six microcystins (MCs) congeners, nodularin (NOD), anatoxin-a (ATX) and cylindrospermopsin (CYN), in pure and natural waters. A dual cartridge SPE assembly was tested for the operating parameters of cyanotoxin extraction. A surrogate standard (SS), 1,9-diaminononane, was spiked in all the samples before the SPE extraction, and an internal standard (IS), 2,3,5-trimethylphenyl methyl carbamate, was spiked before LC/MS analysis. The method detection limit (MDL) was 2-100 ng/L for nine cyanotoxins in pure water and was increased by a factor of three to ten in a more complicated water matrix. The recoveries based on SS were between 83 and 104%, while those based on IS were 80-120%. The developed method was successfully employed in analyzing 33 water samples collected from eutrophic lakes, water treatment plants and distribution taps. MCs, NOD, and CYN were detected in the reservoir water, with concentrations as high as 36 μg/L. In addition, for the first time in Taiwan's tap water, CYN was detected at concentrations as high as 8.6 μg/L. Quality control data for the field samples shows that the analytical scheme developed is appropriate for monitoring cyanotoxins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    Science.gov (United States)

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  9. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    York, Roger L. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal

  10. Determination of ethylenediaminetetraacetic acid in sea water by solid-phase extraction and high-performance liquid chromatography.

    Science.gov (United States)

    Kemmei, Tomoko; Kodama, Shuji; Fujishima, Hironori; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2012-01-04

    The chelating agent EDTA is widely used, and as a result is showing up widely in the aquatic environment. Here we describe a preconcentration procedure for measuring EDTA concentration in sea water samples by HPLC. The procedure consists of forming an Fe(III) complex followed by solid-phase extraction using an activated carbon cartridge. After the preconcentration, EDTA was quantified by HPLC with ultraviolet detection (260 nm). The enrichment permitted the determination of EDTA at concentrations as low as 1 nM. Good recoveries were obtained for both brackish and full-strength sea water with high repeatability (RSD<6%). The method was applied to sea water samples taken from near the mouth of the Oyabe River in Japan. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Factors affecting the release of radioactivity to the biosphere during deep geologic disposal of radioactive solids through underground water

    International Nuclear Information System (INIS)

    Solomah, A.G.

    1984-01-01

    The chemical alteration formed by ground water on the solidified radioactive waste during deep geologic disposal represents the most likely mechanism by which dangerous radioactive species could be reintroduced into the biosphere. Knowing the geologic history of the repository, the chemistry of the ground water and the mechanisms involved in the corrosion of the radioactive solids can provide help to predict the long-term stability of these materials. The factors that must be considered in order to assess the safety and the risk associated with such a disposal strategy are presented. The leaching behavior of a solidified radioactive waste form called SYNROC-B (SYNthetic ROCks) is discussed. Different simulated ground water brines similar to those of the repository sites were prepared and used as the leaching media in leaching experiments

  12. An investigation of the sorption/desorption of organics from natural waters by solid adsorbents and anion exchangers

    International Nuclear Information System (INIS)

    Larin, B.M.; Sedlov, A.S.

    2006-01-01

    The results of laboratory and operational tests at thermal and nuclear power stations on anion exchangers and solid adsorbents of makeup water treatment plants with regard to the sorption/desorption of organic substances in natural water and condensate are presented. The resins Amberlite trademark IRA-67, IRA-900, IRA-958Cl, Purolite registered 2 A-500P, Dowex TM3 Marathon, and others were tested. Retention of up to 60-80% of the ''organic'' material on the anion exchangers and organic absorbers installed at different places in the technological scheme of the water processing unit was attained. The possibility of a partial ''poisoning'' of the resins and the degradation of the working characteristics over the first year of operation are discussed. (orig.)

  13. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  14. Design, development, and implementation of the Radiological Physics Center's pelvis and thorax anthropomorphic quality assurance phantoms

    International Nuclear Information System (INIS)

    Followill, David S.; Radford Evans, DeeAnn; Cherry, Christopher; Molineu, Andrea; Fisher, Gary; Hanson, William F.; Ibbott, Geoffrey S.

    2007-01-01

    The Radiological Physics Center (RPC) developed two heterogeneous anthropomorphic quality assurance phantoms for use in verifying the accuracy of radiation delivery: one for intensity-modulated radiation therapy (IMRT) to the pelvis and the other for stereotactic body radiation therapy (SBRT) to the thorax. The purpose of this study was to describe the design and development of these two phantoms and to demonstrate the reproducibility of measurements generated with them. The phantoms were built to simulate actual patient anatomy. They are lightweight and water-fillable, and they contain imageable targets and organs at risk of radiation exposure that are of similar densities to their human counterparts. Dosimetry inserts accommodate radiochromic film for relative dosimetry and thermoluminesent dosimetry capsules for absolute dosimetry. As a part of the commissioning process, each phantom was imaged, treatment plans were developed, and radiation was delivered at least three times. Under these controlled irradiation conditions, the reproducibility of dose delivery to the target TLD in the pelvis and thorax phantoms was 3% and 0.5%, respectively. The reproducibility of radiation-field localization was less than 2.5 mm for both phantoms. Using these anthropomorphic phantoms, pelvic IMRT and thoracic SBRT radiation treatments can be verified with a high level of precision. These phantoms can be used to effectively credential institutions for participation in specific NCI-sponsored clinical trials

  15. SU-E-T-496: A Study of Two Commercial Dose Calculation Algorithms in Low Density Phantom

    International Nuclear Information System (INIS)

    Lim, S; Lovelock, D; Yorke, E; Kuo, L; LoSasso, T

    2014-01-01

    Purpose: Some lung cancer patients have very low lung density due to comorbidities. We investigate calculation accuracy of Eclipse AAA and Acuros(AXB) using a phantom that simulates this situation. Methods: A 2.5 x 5.0 x 5 cm (long) solid water inhomogeneity positioned 10 cm deep in a Balsa lung phantom (density 0.099 gm/cc) was irradiated with an off-center field such that the central axis was parallel to one side of the inhomogeneity. Radiochromic films were placed at 2.5cm(S1) and 5cm(S2) depths. After CT scanning, Hounsfield Units(HU) were converted to electron(ρe) and mass(ρm) density using in-house(IH) and vendor-supplied(V) calibration curves. IH electron densities were generated using a commercial electron density phantom. The phantom was exposed to 6 MV 3x3 and 20x20 fields. Dose distributions were calculated using the AAA and AXB algorithms. Results: The HU of BW is -910±40 which translates to ρe of 0.088±0.050(IH) and 0.090±0.050(V), and ρm of 0.101±0.045(IH) and 0.103±0.039(V). Both ρe(V) and ρm(V) are higher than ρe(IH) and ρm(IH) respectively by 1.4-5.3% and 0.5-12.3%. The average calculated dose inside the solid water ‘tumor’ are within 3.7% and 2.4% of measurements for both calibrations and field sizes using AAA and AXB. Within 10mm outside the ‘tumor’, AAA on average underestimates by 18.3% and 17.0% respectively for 3x3 using IH and V. AXB underestimates by 5.9%(S1)-6.6%(S2) and 13.1%(S1)-16.0%(S2) respectively using IH and V. For 20x20, AAA and AXB underestimate by 2.8%(S1)-4.4%(S2) and 0.3%(S1)-1.4%(S2) respectively with either calibration. Conclusion: The difference in the HU calibration between V and IH is not of clinical significance in normal field sizes. In the low density region of small fields, the calculations from both algorithms differ significantly from measurements. This may be attributed to the insufficient lateral electron transport modeled by two algorithms resulting in the over-estimation in penumbra

  16. A Software Phantom : Application in Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lazos, D; Kolitsi, Z; Badea, C; Pallikarakis, N [Medical Physics Laboratory, School of Medicine, Univercity of Patras (Greece)

    1999-12-31

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author) 4 refs., 3 figs

  17. A Software Phantom : Application in Digital Tomosynthesis

    International Nuclear Information System (INIS)

    Lazos, D.; Kolitsi, Z.; Badea, C.; Pallikarakis, N.

    1998-01-01

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author)

  18. Influence of water on stability of geopolymers investigated by NMR solid state spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kobera, Libor; Brus, Jiří; Urbanová, Martina; Slavík, R.

    2008-01-01

    Roč. 33, - (2008), s. 86 ISSN 1896-2203. [Mid-European Clay Conference MECC 08 /4./. 22.09.2008-27.09.2008, Zakopane] R&D Projects: GA AV ČR IAA400500602 Institutional research plan: CEZ:AV0Z40500505 Keywords : stability * NMR * solid state spectroscopy * geopolymer Subject RIV: CD - Macromolecular Chemistry

  19. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

    Science.gov (United States)

    Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto

    2017-10-01

    The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

  20. Heat and water transfer in a rotating drum containing solid substrate particles

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Weber, F.J.; Briels, W.J.; Rinzema, A.; Boom, R.M.

    2003-01-01

    In previous work we reported on the simulation of mixing behavior of a slowly rotating drum for solid-state fermentation (SSF) using a discrete particle model. In this investigation the discrete particle model is extended with heat and moisture transfer. Heat transfer is implemented in the model via

  1. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    Science.gov (United States)

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water.

    Science.gov (United States)

    Quinn, Casey W; Cate, David M; Miller-Lionberg, Daniel D; Reilly, Thomas; Volckens, John; Henry, Charles S

    2018-03-20

    Metal contamination of natural and drinking water systems poses hazards to public and environmental health. Quantifying metal concentrations in water typically requires sample collection in the field followed by expensive laboratory analysis that can take days to weeks to obtain results. The objective of this work was to develop a low-cost, field-deployable method to quantify trace levels of copper in drinking water by coupling solid-phase extraction/preconcentration with a microfluidic paper-based analytical device. This method has the advantages of being hand-powered (instrument-free) and using a simple "read by eye" quantification motif (based on color distance). Tap water samples collected across Fort Collins, CO, were tested with this method and validated against ICP-MS. We demonstrate the ability to quantify the copper content of tap water within 30% of a reference technique at levels ranging from 20 to 500 000 ppb. The application of this technology, which should be sufficient as a rapid screening tool, can lead to faster, more cost-effective detection of soluble metals in water systems.

  3. Assessing the full costs of water, liquid waste, energy and solid waste infrastructure in the Fraser Valley Regional District (FVRD)

    International Nuclear Information System (INIS)

    Pollard, D.

    2001-01-01

    This document presents a newly drafted growth strategy developed by the Fraser Valley Regional District (FVRD) in British Columbia. It guides the sustainable growth, change and development of the region for the next 25 years and deals with air pollution, water quality, traffic congestion, affordable housing, employment, energy use, parks and green space. In particular, this case study develops a method to apply full cost accounting (FCA) to a growth strategy. FCA is the most appropriate way to approach a sustainable strategy because it considers economic, social and environmental issues. The study also includes the development of a software tool consisting of an ACCESS database and an ARCVIEW GIS file for compiling and analyzing detailed infrastructure profiles which can be used to assess the full costs of different growth scenarios. The following four issue categories of environmental and economic indicators of FVRD performance were addressed: solid waste, water and wastewater, energy, and infrastructure costs. Each issue category was then used to establish a set of 5 performance indicators that can be measured and assessed over time. These included solid waste, water consumption, wastewater, energy consumption and air emissions. The database and methodology developed for this project is suitable for other regions. The software can be viewed by contacting the Sheltair Group Resource Consultants Inc. in Vancouver

  4. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, J.; Loock, H.-P., E-mail: hploock@chem.queensu.ca; Cann, N. M., E-mail: ncann@chem.queensu.ca [Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

    2015-07-21

    Photoexcitation of crystalline ice Ih and amorphous solid water at 7-9 eV is examined using molecular dynamics simulations and a fully flexible water model. The probabilities of photofragment desorption, trapping, and recombination are examined for crystalline ice at 11 K and at 125 K and for amorphous solid water at 11 K. For 11 K crystalline ice, a fully rigid water model is also employed for comparison. The kinetic energy of desorbed H atoms and the distance travelled by trapped fragments are correlated to the location and the local environment of the photoexcited water molecule. In all cases, H atom desorption is found to be the most likely outcome in the top bilayer while trapping of all photofragments is most probable deeper in the solid where the likelihood for recombination of the fragments into H{sub 2}O molecules also rises. Trajectory analysis indicates that the local hydrogen bonding network in amorphous solid water is more easily distorted by a photodissociation event compared to crystalline ice. Also, simulations indicate that desorption of OH radicals and H{sub 2}O molecules are more probable in amorphous solid water. The kinetic energy distributions for desorbed H atoms show a peak at high energy in crystalline ice, arising from photoexcited water molecules in the top monolayer. This peak is less pronounced in amorphous solid water. H atoms that are trapped may be displaced by up to ∼10 water cages, but migrate on average 3 water cages. Trapped OH fragments tend to stay near the original solvent cage.

  5. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  6. Do you believe in phantoms?

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    “Phantoms” are tools that simulate a therapy’s response by mimicking the conditions of the human body. They are required in hadron therapy in order to optimise and verify the therapy before performing it on the patient. The better the phantom, the more accurate the treatment plan and the more effective the therapy. In the framework of the EU-funded project ENTERVISION*, a team of CERN researchers has designed an innovative piece of equipment able to evaluate radiobiology-related parameters in a very accurate way.   The ENTERVISION phantom being tested at HIT. A key challenge in hadron therapy – i.e. the medical use of hadrons to treat cancer – is to evaluate the biological effect of the delivered radiation. This can be achieved by using accurate dosimetry techniques to study the biological response in terms of the dose deposited and other physical parameters of the beam, such as the Linear Energy Transfer (LET). The job of the “phan...

  7. Transorbital therapy delivery: phantom testing

    Science.gov (United States)

    Ingram, Martha-Conley; Atuegwu, Nkiruka; Mawn, Louise; Galloway, Robert L.

    2011-03-01

    We have developed a combined image-guided and minimally invasive system for the delivery of therapy to the back of the eye. It is composed of a short 4.5 mm diameter endoscope with a magnetic tracker embedded in the tip. In previous work we have defined an optimized fiducial placement for accurate guidance to the back of the eye and are now moving to system testing. The fundamental difficulty in testing performance is establishing a target in a manner which closely mimics the physiological task. We have to have a penetrable material which obscures line of sight, similar to the orbital fat. In addition we need to have some independent measure of knowing when a target has been reached to compare to the ideal performance. Lastly, the target cannot be rigidly attached to the skull phantom since the optic nerve lies buried in the orbital fat. We have developed a skull phantom with white cloth stellate balls supporting a correctly sized globe. Placed in the white balls are red, blue, orange and yellow balls. One of the colored balls has been soaked in barium to make it bright on CT. The user guides the tracked endoscope to the target as defined by the images and tells us its color. We record task accuracy and time to target. We have tested this with 28 residents, fellows and attending physicians. Each physician performs the task twice guided and twice unguided. Results will be presented.

  8. Quality assessment of brain images by Hoffman phantom

    International Nuclear Information System (INIS)

    Karimian, A.R.; Saddad, F.; Mosalla, B.; Moradkhani, S.; Degbankhan, R.; Pouladi, M.

    2002-01-01

    The purpose of this investigation is using Hoffman brain phantom for quality assessment of brian images in SPECT system. There are the following standards for quality control in nuclear medicine: American Association of Physicists in Medicine, National Electrical Manufacturers Association, International Electromechanical Commission, International Atomic Energy Agency. Each of the above standards has the following important orders: Physical inspection, Acceptance and Reference Testing, Periodic Q C tests (Daily, Weekly, Monthly, Quarterly, Annually). The above tests are simple physics measures. To more meaningful ones based on performance of some tasks related to clinical application it is better to use from organs' phantoms, such as: brain, cardiac, etc. In this research we made a comparison between normal and abnormal states of Hoffman brain phantom. Methods of Hoffman brain phantom was filled with a solution of Tc- 99 m (5 mCi) and water (1300 cc). this results: The investigation of small abnormalities strongly related to the operating conditions and deviation from best tuning state of the system

  9. Development of a phantom for quality control of radiosurgery

    International Nuclear Information System (INIS)

    Scheidegger Soboll, D.; Reuters Schelin, H.

    2008-01-01

    The aim of this work was to build a phantom for quality control of stereotactic radiosurgery on linear accelerators. The outward appearance is a translucent human head filled with water and enclosing an insert with test objects of known shapes. The phantom was submitted to computerized tomography, magnetic resonance imaging and angiography exams, in order to perform a radiosurgery planning. Contours of the internal structures on the therapy planning system were drawn over the MRI images. Through the image fusion of CT and MRI, the contour data was transferred to CT images. Stereotactic registration of CT and angiography was made. One isocenter treatment was created, and using the stereotactic coordinates given by the therapy planning system, the phantom was placed on a linac. X-ray images were performed in order to verify the final positioning of the planned isocenter. In the whole process the phantom showed usefulness and adequacy for the positioning quality control of stereotactic radiosurgery with linacs, according to the main documents concerning the issue. (author)

  10. The current state of municipal solid waste landfills in Suceava county and their impact on water and soil

    OpenAIRE

    Dumitru MIHĂILĂ; Valeria DIȚOIU; Petruț-Ionel BISTRICEAN

    2013-01-01

      The location of municipal solid waste (MSW) landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of chemical pollution and biological contamination of soil, groundwater and surface waters due to the high content of heavy metals and organic substances with low biodegradation rate.The paper discusses in detail the issues of the landfill sites territorial distribution in Suceava County (the Mirăuţi ...

  11. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV

    International Nuclear Information System (INIS)

    Benites R, J.; Vega C, H. R.; Velazquez F, J.

    2012-10-01

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm 3 . The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  12. Physical-Chemical Characterization of Solid Waste Generated in the Water Industry: Case Study of the Water Treatment Stations of the Metropolitan Region of Recife

    Directory of Open Access Journals (Sweden)

    Rosângela Gomes Tavares

    2017-12-01

    Full Text Available The objective of this research is to characterize the solid waste, commonly known as sludge, from the water treatment industry. Six main water treatment plants (Alto do Céu, Botafogo, Caixa d'água, Gurjaú, Suape and Tapacurá were selected from the Metropolitan Region of Recife, managed by Companhia Pernambucana de Saneamento. Nine samples were collected in the eleven month period in the discharge of the sludge from the decanters. These samples were characterized physico-chemically, based on the methodology of the Standard Methods for the Examination of Water and Wastewater (2012. The results indicated average humidity of 93%, average COD around 30 g/L and BOD of 4.5 g/L, indicating sludge of low biodegradability. The average values of total solids were 72 g/L, with 75% corresponding to fixed residues and 25% to volatiles. High concentrations of aluminum (1000 mg/L were observed, due to the use of aluminum sulphate as a coagulant, and iron, around 500 mg/L. This study assists the manager in the decision making of the sustainable management of the sludge, mainly in relation to the final disposal.

  13. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    Science.gov (United States)

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  14. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins.

    Science.gov (United States)

    Grohe, Kristof; Movellan, Kumar Tekwani; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2017-05-01

    We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1 H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.

  15. Optical propagation in linear media atmospheric gases and particles, solid-state components, and water

    CERN Document Server

    Thomas, Michael E

    2006-01-01

    PART I: Background Theory and Measurement. 1. Optical Electromagnetics I. 2. Optical Electromagnetics II. 3. Spectroscopy of Matter. 4. Electrodynamics I: Macroscopic Interaction of Light and Matter. 5. Electrodynamics II: Microscopic Interaction of Light and Matter. 6. Experimental Techniques. PART II: Practical Models for Various Media. 7. Optical Propagation in Gases and the Atmosphere of the Earth. 8. Optical Propagation in Solids. 9. Optical Propagation in Liquids. 10. Particle Absorption and Scatter. 11. Propagation Background and Noise

  16. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms

    International Nuclear Information System (INIS)

    Lee, C.C.; Lee, Y.J.; Tung, C.J.; Cheng, H.W.; Chao, T.C.

    2014-01-01

    A dose simulation system was constructed based on the MCNPX Monte Carlo package to simulate proton dose distribution in homogeneous and CT phantoms. Conversion from Hounsfield unit of a patient CT image set to material information necessary for Monte Carlo simulation is based on Schneider's approach. In order to validate this simulation system, inter-comparison of depth dose distributions among those obtained from the MCNPX, GEANT4 and FLUKA codes for a 160 MeV monoenergetic proton beam incident normally on the surface of a homogeneous water phantom was performed. For dose validation within the CT phantom, direct comparison with measurement is infeasible. Instead, this study took the approach to indirectly compare the 50% ranges (R 50% ) along the central axis by our system to the NIST CSDA ranges for beams with 160 and 115 MeV energies. Comparison result within the homogeneous phantom shows good agreement. Differences of simulated R 50% among the three codes are less than 1 mm. For results within the CT phantom, the MCNPX simulated water equivalent R eq,50% are compatible with the CSDA water equivalent ranges from the NIST database with differences of 0.7 and 4.1 mm for 160 and 115 MeV beams, respectively. - Highlights: ► Proton dose simulation based on the MCNPX 2.6.0 in homogeneous and CT phantoms. ► CT number (HU) conversion to electron density based on Schneider's approach. ► Good agreement among MCNPX, GEANT4 and FLUKA codes in a homogeneous water phantom. ► Water equivalent R 50 in CT phantoms are compatible to those of NIST database

  18. Phantom pain and phantom sensations in upper limb amputees : an epidemiological study

    NARCIS (Netherlands)

    Kooijman, CM; Dijkstra, PU; Geertzen, JHB; Elzinga, A; van der Schans, CP

    Phantom pain in subjects with an amputated limb is a well-known problem. However, estimates of the prevalence of phantom pain differ considerably in the literature. Various factors associated with phantom pain have been described including pain before the amputation, gender, dominance, and time

  19. Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Pérez, Rosa Ana; Albero, Beatriz; Férriz, Macarena; Tadeo, José Luis

    2017-11-30

    Macrolides are one of the most commonly used families of antibiotics employed in human and veterinary treatment. These compounds are considered emerging contaminants with potential ecological and human health risks that could be present in surface water. This paper describes the development and application of a simple and efficient extraction procedure for the determination of tilmicosin; erythromycin, tylosin and erythromycin-H 2 O from water samples. Sample extraction was carried out using magnetic solid-phase extraction using oleate functionalized magnetic nanoparticles followed by LC-MS/MS analysis. The effects of several parameters on the extraction efficiency of MLs from water were evaluated. The recovery results obtained were >84% for most of the compounds, except for erytromycin. The LOD and LOQ values ranged from 11.5 to 26ngL -1 and from 34 to 77ngL -1 , respectively. The selected method was applied to monitor these contaminants in water samples from different sources. Tilmicosin and tylosin were not detected in any of the samples, but erythromycin and erythromycin-H 2 O were found in 50% of the surface water samples at levels from

  20. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    Directory of Open Access Journals (Sweden)

    Gogina Elena

    2016-01-01

    Full Text Available The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW, on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities, using the example of an actual landfill situated in the territory of Moscow. A scheme of reconstruction is recommended for the drainage water treatment plant at this landfill, which will lead to improvement of the environmental situation and contribute to the development of territories in the adjacent districts, and to reduction of pollution load on the river and atmosphere.

  1. Inter- and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT : an anthropomorphic phantom study

    NARCIS (Netherlands)

    Xie, X.; Willemink, M. J.; Zhao, Y.; de Jong, P. A.; van Ooijen, P. M. A.; Oudkerk, M.; Greuter, M. J. W.; Vliegenthart, R.

    Objective: To assess inter- and intrascanner variability in volumetry of solid pulmonary nodules in an anthropomorphic thoracic phantom using low-dose CT. Methods: Five spherical solid artificial nodules [diameters 3, 5, 8, 10 and 12mm; CT density 1100 Hounsfield units (HU)] were randomly placed

  2. Green synthesis of water-glass from municipal solid waste incineration bottom ash

    NARCIS (Netherlands)

    Hendrix, Y.; Alam, Q.; Thijs, L.; Lazaro Garcia, A.; Brouwers, H.J.H.

    2017-01-01

    Water-glass is extensively used as a silica precursor in different chemical applications such as alkali activated binders and nano-silica. The current production of water-glass involves the fusion of sand with soda ash at temperatures above 1000 ºC, which makes the production expensive and

  3. AN INVESTIGATION OF ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING DRINKING WATER TREATMENT

    Science.gov (United States)

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the regulations. One of the treatment options is iron co-precipitation. This treatment is attractive because ars...

  4. Hexagonal boron nitride nanosheets as adsorbents for solid-phase extraction of polychlorinated biphenyls from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shiliang; Wang, Zhenhua; Ding, Ning [Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan, Shandong (China); Elaine Wong, Y.-L. [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Chen, Xiangfeng, E-mail: xiangfchensdas@163.com [Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan, Shandong (China); Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Qiu, Guangyu [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Dominic Chan, T.-W., E-mail: twdchan@cuhk.edu.hk [Department of Chemistry, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong)

    2016-09-14

    The adsorptive potential of hexagonal boron nitride nanosheets (h-BNNSs) for solid-phase extraction (SPE) of pollutants was investigated for the first time. Seven indicators of polychlorinated biphenyls (PCBs) were selected as target analytes. The adsorption of PCBs on the surface of the h-BNNSs in water was simulated by the density functional theory and molecular dynamics. The simulation results indicated that the PCBs are adsorbed on the surface by π–π, hydrophobic, and electrostatic interactions. The PCBs were extracted with an h-BNNS-packed SPE cartridge, and eluted by dichloromethane. Gas chromatography–tandem mass spectrometry working in the multiple reaction monitor mode was used for the sample quantification. The effect of extraction parameters, including the flow rate, pH value, breakthrough volume, and the ionic strength, were investigated. Under the optimal working conditions, the developed method showed low limits of detection (0.24–0.50 ng L{sup −1}; signal-to-noise ratio = 3:1), low limits of quantification (0.79–1.56 ng L{sup −1}; signal-to-noise ratio = 10:1), satisfactory linearity (r > 0.99) within the concentration range of 2–1000 ng L{sup −1}, and good precision (relative standard deviation < 12%). The PCBs concentration in environmental water samples was determined by the developed method. This results demonstrate that h-BNNSs have high analytical potential in the enrichment of pollutants. - Highlights: • The hexagonal boron nitride nanosheets were synthesized. • The nanosheets were used as adsorbent for solid-phase extraction. • The h-BN demonstrates remarkable adsorption of PCBs from water samples. • The method was successfully applied in determination of PCBs in water samples.

  5. Solid phase extraction using molecular imprinting polymers (MISPE for the determination of estrogens in surface water by HPLC

    Directory of Open Access Journals (Sweden)

    Viviane do Nascimento Bianchi

    2017-05-01

    Full Text Available Estrogens are emerging pollutants and traditional sewage treatments unable to remove them. They are harmful to human health and to the environment. It is therefore important to evaluate the presence and concentration of estrogens in water bodies and environmental matrices. This work presents the development and application of a methodology for the determination of E1, E3, EE2 and E2 in surface waters using solid phase extraction with molecular imprinting polymers (MISPE followed by identification and quantification by HPLC-DAD. Acetonitrile and water deionized acidified with phosphoric acid pH 3 (1:1, v/v, a flow rate of 1.0 ml min-1, at 40°C and an injection volume of 5 µL. The method was validated according to the protocol ICH Q2R. Reproducibility and repeatability tests resulted in a smaller variation coefficient of 10%; the calibration curves in the concentration ranged from 1 to 20 mg L-1, with return linearity values greater than 0.99. The limits of detection and quantification were less than 1 mg L-1 and the method was satisfactory for specificity and selectivity tests using caffeine, which is often found in water bodies receiving effluent, and DES, an estrogen used in the treatment of prostate cancer. Selected samples underwent clean-up and pre-concentration treatments using solid phase extraction with commercial phase (C18 and molecularly imprinted polymers (MISPE. The analysis of MISPE extracts indicate that it is possible to obtain results with greater sensitivity and precision for analyses of complex environmental matrices, demonstrating that the developed method can be applied in complex environmental matrices.

  6. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    International Nuclear Information System (INIS)

    Nikov, R.G.; Nikolov, A.S.; Nedyalkov, N.N.; Dimitrov, I.G.; Atanasov, P.A.; Alexandrov, M.T.

    2012-01-01

    Highlights: ► Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. ► The alteration of the produced colloids during one month was investigated. ► Optical transmission spectra of the samples were measured from 350 to 800 nm. ► TEM measurements were made of as-prepared colloids and on the 30-th day. ► Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  7. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    Science.gov (United States)

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  8. Post-mortem computed tomography angiography utilizing barium sulfate to identify microvascular structures : a preliminary phantom model and case study

    NARCIS (Netherlands)

    Haakma, Wieke; Rohde, Marianne; Kuster, Lidy; Uhrenholt, Lars; Pedersen, Michael; Boel, Lene Warner Thorup

    2016-01-01

    We investigated the use of computer tomography angiography (CTA) to visualize microvascular structures in a vessel-mimicking phantom and post-mortem (PM) bodies. A contrast agent was used based on 22% barium sulfate, 20% polyethylene glycol and 58% distilled water. A vessel-mimicking phantom

  9. Determination of trace iron in the boiler water used in power generation plants by solid-phase spectrophotometry.

    Science.gov (United States)

    Sarenqiqige; Maeda, Akihiro; Yoshimura, Kazuhisa

    2014-01-01

    A sensitive, simple and low-cost determination method for the total iron concentration in boiler water systems of power generation plants was developed by solid phase spectrometry (SPS) using 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) as a coloring agent. The reagents and 0.08 cm(3) of a cation exchanger were added to a 50-cm(3) boiler water sample, then mixed for 30 min to adsorb/concentrate the produced Fe(TPTZ)2(2+) colored complex on the solid beads, resulting in a 625 times concentration of the target analyte without any other procedure. The detection limit of 0.1 μg dm(-3) was obtained, and the optimum conditions for the digestion procedure and color developing reaction was investigated and reported. According to the application of this method to real samples, the present SPS method is the best one because of the shorter analysis time, simpler operation and use of very low-cost equipment compared to the conventional methods, such as TPTZ solution spectrophotometric method after a 16 times concentration, ICP-MS and AAS.

  10. Solid dispersions, part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    Science.gov (United States)

    Bikiaris, Dimitrios N

    2011-12-01

    The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest. This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles. Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.

  11. Significance of excipients to enhance the bioavailability of poorly water-soluble drugs in oral solid dosage forms: A Review

    Science.gov (United States)

    Vadlamudi, Manoj Kumar; Dhanaraj, Sangeetha

    2017-11-01

    Nowadays most of the drug substances are coming into the innovation pipeline with poor water solubility. Here, the influence of excipients will play a significant role to improve the dissolution of poorly aqueous soluble compounds. The drug substance needs to be dissolved in gastric fluids to get the better absorption and bioavailability of an orally administered drug. Dissolution is the rate-controlling stage for drugs which controls the rate and degree of absorption. Usually, poorly soluble oral administrated drugs show a slower dissolution rate, inconsistent and incomplete absorption which can lead to lower bioavailability. The low aqueous solubility of BCS class II and IV drugs is a major challenge in the drug development and delivery process. Several technologies have been used in an attempt to progress the bioavailability of poorly water-soluble drug compounds which include solid dispersions, lipid-based formulations, micronization, solvent evaporation, co-precipitation, ordered mixing, liquid-solid compacts, solvent deposition inclusion complexation, and steam aided granulation. In fact, most of the technologies require excipient as a carrier which plays a significant role in improving the bioavailability using Hypromellose acetate succinate, Cyclodextrin, Povidone, Copovidone, Hydroxypropyl cellulose, Hydroxypropyl methylcellulose, Crospovidone, Starch, Dimethylacetamide, Polyethylene glycol, Sodium lauryl sulfate, Polysorbate, Poloxamer. Mesoporous silica and so on. This review deliberates about the excipients significance on bioavailability enhancement of drug products in a single platform along with pragmatically proved applications so that user can able to select the right excipients as per the molecule.

  12. Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations.

    Science.gov (United States)

    Song, Lei; Kästner, Johannes

    2016-10-26

    Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.

  13. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    Science.gov (United States)

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  14. Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique.

    Science.gov (United States)

    Baig, Jameel A; Kazi, Tasneem G; Shah, Abdul Q; Arain, Mohammad B; Afridi, Hassan I; Kandhro, Ghulam A; Khan, Sumaira

    2009-09-28

    The simple and rapid pre-concentration techniques viz. cloud point extraction (CPE) and solid phase extraction (SPE) were applied for the determination of As(3+) and total inorganic arsenic (iAs) in surface and ground water samples. The As(3+) was formed complex with ammonium pyrrolidinedithiocarbamate (APDC) and extracted by surfactant-rich phases in the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was diluted with 0.1 mol L(-1) HNO(3) in methanol. While total iAs in water samples was adsorbed on titanium dioxide (TiO(2)); after centrifugation, the solid phase was prepared to be slurry for determination. The extracted As species were determined by electrothermal atomic absorption spectrometry. The multivariate strategy was applied to estimate the optimum values of experimental factors for the recovery of As(3+) and total iAs by CPE and SPE. The standard addition method was used to validate the optimized methods. The obtained result showed sufficient recoveries for As(3+) and iAs (>98.0%). The concentration factor in both cases was found to be 40.

  15. Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI.

    Science.gov (United States)

    He, Qin; Chen, Hong-zhang

    2015-12-01

    The water in a solid substrate is generally divided into three forms: hygroscopic, capillary, and free. However, there are few methods available for detecting the contents of different states of water in substrates. In this paper, low-field NMR and MRI were used to analyze the water occurrence characteristics of steam-exploded corn straw in solid-state fermentation (SSF). A significant linear relationship was found between the total NMR peak areas and the total water contents with a correlation coefficient of 0.993. It was further proved to be successful in comparing the contents and distributions of different states of water in static SSF and gas double-dynamic SSF (GDD-SSF). The results showed that among the three states of water, capillary water was the main form of water present and lost in substrates during fermentation. Total water and capillary water contents did not significantly differ as a result of different sample treatments, but hygroscopic water and free water contents in static SSF were respectively 0.38 and 2.98 times that in GDD-SSF with a packing height of 3 cm after fermentation. A relatively uniform water distribution and deep-depth region for microbial growth were found in GDD-SSF, suggesting that GDD-SSF was more suitable for industrialization. This technology has great potential for achieving efficient on-line water supply through water loss detection in SSF.

  16. Development of Iridium Solid-state Reference Electrode for the Water Chemistry Status Measurement in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ku, Heekwon; Lim, Dongseok; Cho, Jaeseon

    2013-01-01

    The result of ECP measurement of piping material in nuclear power plant at low temperature using the developed iridium (SSRE) reference electrode is approximately -0.370V. Based on the various results of this study, the developed iridium (SSRE) reference electrode can be applied to the water chemistry environments of nuclear power plant. Various metallic materials used in a nuclear power plant have been exposed to a variety of water chemistry environments and the corrosion of metallic materials occurs due to the reactions between metal structures and water chemistry environments. Therefore, the management of the water chemistry factors is needed to prevent corrosion. The chemical factors affecting the corrosion are pH and Electrochemical Corrosion Potential (ECP). The world-wide studies suggest that ECP and pH are effective indicators for preventing the material damage from water chemistry condition. ECP and pH should be measured as the reference electrodes, and should show stable potential characteristics with fast responses. In this study, the iridium reference electrodes using a solid-state metal oxide electrode has been developed to measure effective indicators such as ECP and pH. The iridium (SSRE) reference electrode for the ECP measurement in water chemistry environment of nuclear power plants has been developed. A calibration for water chemistry measurement was performed by potential measurement of iridium (SSRE) reference electrode with Ag/AgCl (SSRE) reference electrode. The result exhibited a stable potential for 117 hours and a super-Nernst ian response with 63.12mV/p H. In this study, the iridium (SSRE) reference electrode shows super-Nernst ian characteristic and it may be caused by the property of electrolytically coated iridium oxide. Considering the long-term stability of the developed electrode, it is possible to apply as a reference electrode through calibration procedure

  17. The Japanese adult, child and infant phantoms

    International Nuclear Information System (INIS)

    Cristy, Mark; Egbert, Stephen D.

    1987-01-01

    The mathematical phantom for adult Japanese atomic-bomb survivors is a modification of the 57-kg ORNL (Oak Ridge National Laboratory) phantom for Western 15-year-old males and adult females. For younger Japanese survivors mathematical phantoms were similarly modified from the 18 and 9 kg ORNL phantoms for Western 5- and 1-year-olds, respectively. To make the phantom correspond more closely with dimensions and organ sizes recommended for Japanese adults by Maruyama and coworkers (cf E184), changes were made in the size of the lungs, the pancreas, the thyroid, and the testes and in the length of the legs. Also, the head-and-neck region was modified to improve the dose estimates for the thyroid from external radiation, after the ideas of Nagarajan et al. The arms were separated from the trunk to represent more accurately the shielding by the phantom in external exposures. Furthermore, provisions were made to provide a phantom in a kneeling posture. The elemental composition of the tissues was changed to that given by Kerr. The resulting phantom is slightly smaller in mass (55 kg). Details of these changes are given

  18. SUB-PPB QUANTITATION AND CONFIRMATION OF PERCHLORATE IN DRINKING WATERS CONTAINING HIGH TOTAL DISSOLVED SOLIDS USING ION CHROMATOGRAPHY WITH MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...

  19. The collapsed cone algorithm for (192)Ir dosimetry using phantom-size adaptive multiple-scatter point kernels.

    Science.gov (United States)

    Tedgren, Åsa Carlsson; Plamondon, Mathieu; Beaulieu, Luc

    2015-07-07

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient/phantom

  20. The use of solid sorbents for direct accumulation of organic compounds from water matrices : a review of solid-phase extraction techniques

    NARCIS (Netherlands)

    Liska, I.; Krupcik, J.; Leclercq, P.A.

    1989-01-01

    The main principles of solid-phase extraction techniques are reviewed in this paper. Various solid sorbents can be used as a suitable trap for direct accumulation of organic compounds from aqueous solutions. The trapped analytes can be desorbed by elution with suitably chosen liquid phases. These

  1. A Simple Method for Automated Solid Phase Extraction of Water Samples for Immunological Analysis of Small Pollutants.

    Science.gov (United States)

    Heub, Sarah; Tscharner, Noe; Kehl, Florian; Dittrich, Petra S; Follonier, Stéphane; Barbe, Laurent

    2016-01-01

    A new method for solid phase extraction (SPE) of environmental water samples is proposed. The developed prototype is cost-efficient and user friendly, and enables to perform rapid, automated and simple SPE. The pre-concentrated solution is compatible with analysis by immunoassay, with a low organic solvent content. A method is described for the extraction and pre-concentration of natural hormone 17β-estradiol in 100 ml water samples. Reverse phase SPE is performed with octadecyl-silica sorbent and elution is done with 200 µl of methanol 50% v/v. Eluent is diluted by adding di-water to lower the amount of methanol. After preparing manually the SPE column, the overall procedure is performed automatically within 1 hr. At the end of the process, estradiol concentration is measured by using a commercial enzyme-linked immune-sorbent assay (ELISA). 100-fold pre-concentration is achieved and the methanol content in only 10% v/v. Full recoveries of the molecule are achieved with 1 ng/L spiked de-ionized and synthetic sea water samples.

  2. Development of equipment for migration control of radioactive cesium absorbed in suspended solid in the river water

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Ishikawa, Hiroyasu

    2015-01-01

    To prevent inflow of radiocesium with suspended solids (SS) into farmland and increase in dose rate of the river bank in the midstream and downstream, it is important to reduce SS in the river water; therefore we newly developed the test equipment using non-woven fabrics as a trapping material to capture and reduce the SS in running small river water. Authors installed this equipment into the small river which is located in mountainous area surrounded by forests where radionuclides released from the Fukushima Daiichi Nuclear Power Plant were deposited. Two turbidity gauges are installed in inflow and outflow point of this equipment and the turbidity has been continuously measured. From the result of a comparison of turbidity between inflow point and outflow point, a turbidity of inflow point is always higher than outflow point during ordinary water-level; this equipment can capture and reduce the SS in the river water. Through the analysis of particle size distribution, identification of minerals and measurement of concentration of radioactive Cs of the captured SS in the non-woven fabric should be carried out, to clarify the effectiveness of this equipment and non-woven fabrics for reducing the radioactive Cs in small rivers in the future. (author)

  3. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    Science.gov (United States)

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  5. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  6. Study on the levels of activity of radionuclides in products solids of catalan water purification

    International Nuclear Information System (INIS)

    Montana, M.; Camacho, A.; Cespedes, R.; Devesa, R.; Serrano, I.; Duch, M. A.; Valles, I.

    2013-01-01

    In this work the results of radioactivity are presented in the sludge obtained part of the treatment process of 2 water treatment plants in Catalonia in which it is water from the rivers Ter and Llobregat. He has been also assessed the radiological impact of the sludge generated in these plants when used as raw material for the production of materials for the construction. (Author)

  7. Determination of trace U in beverages and mineral water using SSNTD (solid state nuclear track detector)

    International Nuclear Information System (INIS)

    Lin Junying; Zheng Liping; Cheng Yulin; Hao Xiuhong

    1991-01-01

    Trace U in beverages and mineral water has been estimated using the fission track analysis technique. The U contents in beverages vary from 0.26 ± 0.03 to 1.65 ± 0.07 ppb, with an average of 0.93 ± 0.05 ppb. The mean U content in mineral water is 9.20 ± 0.16 ppb, which is 10 times higher than that in other beverages

  8. Highly Adaptive Solid-Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy.

    Science.gov (United States)

    Zhao, Xue Jiao; Kuang, Shuang Yang; Wang, Zhong Lin; Zhu, Guang

    2018-05-22

    Harvesting water wave energy presents a significantly practical route to energy supply for self-powered wireless sensing networks. Here we report a networked integrated triboelectric nanogenerator (NI-TENG) as a highly adaptive means of harvesting energy from interfacing interactions with various types of water waves. Having an arrayed networking structure, the NI-TENG can accommodate diverse water wave motions and generate stable electric output regardless of how random the water wave is. Nanoscaled surface morphology consisting of dense nanowire arrays is the key for obtaining high electric output. A NI-TENG having an area of 100 × 70 mm 2 can produce a stable short-circuit current of 13.5 μA and corresponding electric power of 1.03 mW at a water wave height of 12 cm. This merit promises practical applications of the NI-TENG in real circumstances, where water waves are highly variable and unpredictable. After energy storage, the generated electric energy can drive wireless sensing by autonomously transmitting data at a period less than 1 min. This work proposes a viable solution for powering individual standalone nodes in a wireless sensor network. Potential applications include but are not limited to long-term environment monitoring, marine surveillance, and off-shore navigation.

  9. The Octavius1500 2D ion chamber array and its associated phantoms: Dosimetric characterization of a new prototype

    International Nuclear Information System (INIS)

    Van Esch, Ann; Huyskens, Dominique P.; Basta, Katarzyna; Evrard, Marie; Ghislain, Michel; Sergent, Francois

    2014-01-01

    Purpose: The purpose of the study is to characterize the prototype of the new Octavius1500 (PTW, Freiburg, Germany) 2D ion chamber array, covering its use in different phantom setups, from the most basic solid water sandwich setup to the more complex cylindrical Octavius ® 4D (Oct4D) (PTW) phantom/detector combination. The new detector houses nearly twice the amount of ion chambers as its predecessors (Seven29 and Octavius729), thereby tackling one of the most important limitations of ion chamber (or diode) arrays, namely the limited detector density. The 0.06 cm 3 cubic ion chambers are now arranged in a checkerboard pattern, leaving no lines (neither longitudinally nor laterally) without detectors. Methods: All measurements were performed on a dual energy (6 MV and 18 MV) iX Clinac (Varian Medical Systems, Palo Alto, CA) and all calculations were done in the Eclipse treatment planning system (Varian) with the Anisotropic Analytical Algorithm. First, the basic characteristics of the 2D array, such as measurement stability, dose rate dependence and dose linearity were investigated in the solid water sandwich setup. Second, the directional dependence was assessed to allow the evaluation of the new Octavius2D phantom (Oct2D 1500 ) for planar verification measurements of composite plans. Third, measurements were performed in the Oct4D phantom to evaluate the impact of the increased detector density on the accuracy of the volumetric dose reconstruction. Results: While showing equally good dose linearity and dose rate independence, the Octavius1500 outperforms the previous models because of its instantaneous measurement stability and its twofold active area coverage. Orthogonal field-by-field measurements immediately benefit from the increased detector density. The 3.9 cm wide compensation cavity in the new Oct2D 1500 phantom prototype adequately corrects for directional dependence from the rear, resulting in good agreement within the target dose. Discrepancies may

  10. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    Science.gov (United States)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  11. A statistically defined anthropomorphic software breast phantom

    International Nuclear Information System (INIS)

    Lau, Beverly A.; Reiser, Ingrid; Nishikawa, Robert M.; Bakic, Predrag R.

    2012-01-01

    Purpose: Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Methods: Phantoms with (0.5 mm) 3 voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm) 3 voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm 2 regions of interest. Results: Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Conclusions: Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable

  12. A review of the benefits and pitfalls of phantoms in ultrasound-guided regional anesthesia.

    Science.gov (United States)

    Hocking, Graham; Hebard, Simon; Mitchell, Christopher H

    2011-01-01

    With the growth of ultrasound-guided regional anesthesia, so has the requirement for training tools to practice needle guidance skills and evaluate echogenic needles. Ethically, skills in ultrasound-guided needle placement should be gained in a phantom before performance of nerve blocks on patients in clinical practice. However, phantom technology is varied, and critical evaluation of the images is needed to understand their application to clinical use. Needle visibility depends on the echogenicity of the needle relative to the echogenicity of the tissue adjacent the needle. We demonstrate this point using images of echogenic and nonechogenic needles in 5 different phantoms at both shallow angles (20 degrees) and steep angles (45 degrees). The echogenicity of phantoms varies enormously, and this impacts on how needles are visualized. Water is anechoic, making all needles highly visible, but does not fix the needle to allow practice placement. Gelatin phantoms and Blue Phantoms provide tactile feedback but have very low background echogenicity, which greatly exaggerates needle visibility. This makes skill acquisition easier but can lead to false confidence in regard to clinical ability. Fresh-frozen cadavers retain much of the textural feel of live human tissue and are nearly as echogenic. Similar to clinical practice, this makes needles inserted at steep angles practically invisible, unless they are highly echogenic. This review describes the uses and pitfalls of phantoms that have been described or commercially produced. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine

  13. N-nitrosodimethylamine in drinking water using a rapid, solid-phase extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, S W.D. [Ministery of Environment and Energy, Etobicoke, ON (Canada). Lab. Services Branch; Koester, C J [Ministery of Environment and Energy, Etobicoke, ON (Canada). Lab. Services Branch; Taguchi, V Y [Ministery of Environment and Energy, Etobicoke, ON (Canada). Lab. Services Branch; Wang, D T [Ministery of Environment and Energy, Etobicoke, ON (Canada). Lab. Services Branch; Palmentier, J P.F.P. [Ministery of Environment and Energy, Etobicoke, ON (Canada). Lab. Services Branch; Hong, K P [Ministery of Environment and Energy, Etobicoke, ON (Canada). Lab. Services Branch

    1995-12-01

    A simple, rapid method for the extraction of N-nitrosodimethylamine (NDMA) from drinking and surface waters was developed using Ambersorb 572. Development of an alternative method to classical liquid-liquid extraction techniques was necessary to handle the workload presented by implementation of a provincial guideline of 9 ppt for drinking water and a regulatory level of 200 ppt for effluents. A granular absorbent, Ambersorb 572, was used to extract the NDMA from the water in the sample bottle. The NDMA was extracted from the Ambersorb 572 with dichloromethane in the autosampler vial. Method characteristics include a precision of 4% for replicate analyses, and accuracy of 6% at 10 ppt and a detection limit of 1.0 ppt NDMA in water. Comparative data between the Ambersorb 572 method and liquid-liquid extraction showed excellent agreement (average difference of 12%). With the Ambersorb 572 method, dichloromethane use has been reduced by a factor of 1,000 and productivity has been increased by a factor of 3-4. Monitoring of a drinking water supply showed rapidly changing concentrations of NDMA from day to day. (orig.)

  14. Light-water-reactor pressure-vessel surveillance dosimetry using solid-state track recorders

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.

    1983-07-01

    The accumulation of neutron dose by the pressure vessel of an operating nuclear power plant results in damage in the form of steel embrittlement. In order to ascertain the safe operating lifetime of the reactor pressure vessel, dosimetric measurements must be made to evaluate the neutron dose to the pressure vessel and relate this dose to the cumulative radiation damage. Advanced dosimetry techniques are being evaluated for surveillance of operating reactors. Solid-state track recorder (SSTR) techniques are included among these advanced dosimetry techniques. Described herein are low neutron fluence calibration and standardization measurements that are being carried out in pressure vessel mockup benchmark neutron fields in the USA, Belgium, and England. In addition, high fluence SSTR dosimetry capsules have been irradiated with metallurgical specimens in a pressure vessel mockup facility. The design and deployment of advances SSTR dosimetry capsules in operating power reactors are also described

  15. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  16. A 2D ion chamber array audit of wedged and asymmetric fields in an inhomogeneous lung phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lye, Jessica; Dunn, Leon, E-mail: leon.dunn@arpansa.gov.au; Alves, Andrew [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085 (Australia); Kenny, John [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and Radiation Oncology Queensland, Toowoomba, Queensland 4350 (Australia); Lehmann, Joerg; Williams, Ivan [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and School of Applied Science, RMIT University, Melbourne 3000 (Australia); Kron, Tomas [School of Applied Science, RMIT University, Melbourne 3000, Australia and Peter MacCallum Cancer Centre, Melbourne 3008 (Australia); Cole, Andrew [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia)

    2014-10-15

    Purpose: The Australian Clinical Dosimetry Service (ACDS) has implemented a new method of a nonreference condition Level II type dosimetric audit of radiotherapy services to increase measurement accuracy and patient safety within Australia. The aim of this work is to describe the methodology, tolerances, and outcomes from the new audit. Methods: The ACDS Level II audit measures the dose delivered in 2D planes using an ionization chamber based array positioned at multiple depths. Measurements are made in rectilinear homogeneous and inhomogeneous phantoms composed of slabs of solid water and lung. Computer generated computed tomography data sets of the rectilinear phantoms are supplied to the facility prior to audit for planning of a range of cases including reference fields, asymmetric fields, and wedged fields. The audit assesses 3D planning with 6 MV photons with a static (zero degree) gantry. Scoring is performed using local dose differences between the planned and measured dose within 80% of the field width. The overall audit result is determined by the maximum dose difference over all scoring points, cases, and planes. Pass (Optimal Level) is defined as maximum dose difference ≤3.3%, Pass (Action Level) is ≤5.0%, and Fail (Out of Tolerance) is >5.0%. Results: At close of 2013, the ACDS had performed 24 Level II audits. 63% of the audits passed, 33% failed, and the remaining audit was not assessable. Of the 15 audits that passed, 3 were at Pass (Action Level). The high fail rate is largely due to a systemic issue with modeling asymmetric 60° wedges which caused a delivered overdose of 5%–8%. Conclusions: The ACDS has implemented a nonreference condition Level II type audit, based on ion chamber 2D array measurements in an inhomogeneous slab phantom. The powerful diagnostic ability of this audit has allowed the ACDS to rigorously test the treatment planning systems implemented in Australian radiotherapy facilities. Recommendations from audits have led to

  17. A 2D ion chamber array audit of wedged and asymmetric fields in an inhomogeneous lung phantom

    International Nuclear Information System (INIS)

    Lye, Jessica; Dunn, Leon; Alves, Andrew; Kenny, John; Lehmann, Joerg; Williams, Ivan; Kron, Tomas; Cole, Andrew

    2014-01-01

    Purpose: The Australian Clinical Dosimetry Service (ACDS) has implemented a new method of a nonreference condition Level II type dosimetric audit of radiotherapy services to increase measurement accuracy and patient safety within Australia. The aim of this work is to describe the methodology, tolerances, and outcomes from the new audit. Methods: The ACDS Level II audit measures the dose delivered in 2D planes using an ionization chamber based array positioned at multiple depths. Measurements are made in rectilinear homogeneous and inhomogeneous phantoms composed of slabs of solid water and lung. Computer generated computed tomography data sets of the rectilinear phantoms are supplied to the facility prior to audit for planning of a range of cases including reference fields, asymmetric fields, and wedged fields. The audit assesses 3D planning with 6 MV photons with a static (zero degree) gantry. Scoring is performed using local dose differences between the planned and measured dose within 80% of the field width. The overall audit result is determined by the maximum dose difference over all scoring points, cases, and planes. Pass (Optimal Level) is defined as maximum dose difference ≤3.3%, Pass (Action Level) is ≤5.0%, and Fail (Out of Tolerance) is >5.0%. Results: At close of 2013, the ACDS had performed 24 Level II audits. 63% of the audits passed, 33% failed, and the remaining audit was not assessable. Of the 15 audits that passed, 3 were at Pass (Action Level). The high fail rate is largely due to a systemic issue with modeling asymmetric 60° wedges which caused a delivered overdose of 5%–8%. Conclusions: The ACDS has implemented a nonreference condition Level II type audit, based on ion chamber 2D array measurements in an inhomogeneous slab phantom. The powerful diagnostic ability of this audit has allowed the ACDS to rigorously test the treatment planning systems implemented in Australian radiotherapy facilities. Recommendations from audits have led to

  18. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, 2–5-1 Akebono-cho, Kochi 780-8520 (Japan); Murakami, Takeshi; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-11-15

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  19. Growth behavior of LiMn2O4 particles formed by solid-state reactions in air and water vapor

    International Nuclear Information System (INIS)

    Kozawa, Takahiro; Yanagisawa, Kazumichi; Murakami, Takeshi; Naito, Makio

    2016-01-01

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn 2 O 4 particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn 2 O 4 particles in air and water vapor atmospheres as model reactions; LiMn 2 O 4 is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO 3 precursor impregnated with LiOH, LiMn 2 O 4 spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn 2 O 4 particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn 2 O 4 particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  20. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    Science.gov (United States)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  1. Solid-phase extraction-spectrophotometric determination of uranium(VI) in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Susan; Mohammadzadeh, Darush [Department of Chemistry, University of Birjand, Birjand (Iran); Yamini, Yadollah [Department of Chemistry, Tarbiat Moddars University, Tehran (Iran)

    2003-03-01

    A method for the extraction and determination of uranyl ion in natural waters using octadecyl bonded silica membrane disks modified with piroxicam and spectrophotometry with arsenazo(III) is proposed. The perconcentration step was studied with regard to experimental parameters such as amount of extractant, type and amount of eluent, pH, flow rates and tolerance limit of diverse ions on the recovery of uranyl ion. The limit of detection of the proposed method is 0.4 {mu}g L{sup -1} of uranyl. The method was applied to the recovery of uranyl from different water samples. (orig.)

  2. Solid-phase extraction-spectrophotometric determination of uranium(VI) in natural waters

    International Nuclear Information System (INIS)

    Sadeghi, Susan; Mohammadzadeh, Darush; Yamini, Yadollah

    2003-01-01

    A method for the extraction and determination of uranyl ion in natural waters using octadecyl bonded silica membrane disks modified with piroxicam and spectrophotometry with arsenazo(III) is proposed. The perconcentration step was studied with regard to experimental parameters such as amount of extractant, type and amount of eluent, pH, flow rates and tolerance limit of diverse ions on the recovery of uranyl ion. The limit of detection of the proposed method is 0.4 μg L -1 of uranyl. The method was applied to the recovery of uranyl from different water samples. (orig.)

  3. Washing of fly ash from combustion of municipal solid waste using water as leachant; Vattentvaett av flygaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Zhao, Dongmei

    2010-03-15

    Ashes from combustion of municipal solid waste contain a large amount of minerals, salts and other metal compounds that are more or less soluble in water. The metal salts are often enriched in the fly ash which leads to a classification of the ash as hazardous waste. This makes ash management complicated and costly. Many stabilisation methods for Municipal Solid Waste Incineration (MSWI) fly ash have been developed and most of them are based on a removal of chloride and sulfate in addition to a binding of metals in less soluble forms. The aim is to avoid the common situation that the ash does not comply to leaching limit values due to release of harmless salts. The aim of this project was to investigate if a simple washing with water can remove enough of the fly ash content of chloride and sulphate so that the ash can be landfilled in a simpler and less costly way than today. The project was focused on fly ashes from the MSWI units owned by Boraas Energi och Miljoe AB and Renova AB Goeteborg, i.e. a electro filter ash from grate fired boilers at Renova and a cyclone ash from a fluid bed boiler at Boraas. The results show that the main part of the chloride content of the ashes can be removed easily, but the washing with water is less effective in the removal of sulphate. A water-to-ash ratio of 1-2 l/kg removes about 100% of chloride but only 8-16% of the sulphate content. In many cases, the leachability of sulphate increases after the washing step. This is due to the rather complex sulphate chemistry with several possible reactions taking place in the ash-water system. For both the tested ashes the high level of chloride leaching is an important factor that prevents admittance on a landfill for hazardous waste without treatment.. The leaching of certain metals, such as Pb, is also high from both ashes but in the case of the Renova fly ash this is dealt with by treatment of the ash according to the Bamberg method. After a water washing with L/S 1-2 (L/kg dry ash

  4. Development of digital phantom for DRR evaluation

    International Nuclear Information System (INIS)

    Ikeda, Tsuyoshi; Katsuta, Shoichi; Oyama, Masaya; Ogino, Takashi

    2009-01-01

    Generally, digitally reconstructed radiograph (DRR) is evaluated by physical phantom. The CT image is camouflaged by the performance of the radiation treatment planning system and contains a variety of error factors. The CT image (as follows the digital phantom), where an arbitrary CT value is arranged in the matrix, is necessary to evaluate the pure performance of the radiation treatment planning system. In this study, the development of a digital phantom is described, and the utility is discussed. CTport and the radiation treatment planning system are evaluated with the use of a digital phantom as follows: geometrical accuracy evaluation of DRR, consisting of the center position, size of irradiation field, distortion, extension of X-ray, and beam axis, and the image quality evaluation of DRR, which consists of the contrast resolution. As for DRR made with CTport and the treatment planning system, the part that shifted geometrically was confirmed. In the image quality evaluation, there was a remarkable difference. Because the making accuracy and the installation accuracy of the phantom do not influence the digital phantom, the geometrical accuracy of the DRR is reliable. Because the CT conditions and the phantom factor have no influence, the peculiar DRR image quality can be evaluated and used to evaluate the best image processing parameters. (author)

  5. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  6. A comparison study of exploding a Cu wire in air, water, and solid powders

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan

    2017-11-01

    In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.

  7. Comparison of the lateral retention forces on sessile and pendant water drops on a solid surface

    Science.gov (United States)

    de la Madrid, Rafael; Whitehead, Taylor; Irwin, George M.

    2015-06-01

    We present a simple experiment that demonstrates how a water drop hanging from a Plexiglas surface (pendant drop) experiences a lateral retention force that is comparable to, and in some cases larger than, the lateral retention force on a drop resting on top of the surface (sessile drop). The experiment also affords a simple demonstration of the Coriolis effect in two dimensions.

  8. Surface rearrangement of water-immersed hydrophobic solids by gaseous nanobubbles

    Czech Academy of Sciences Publication Activity Database

    Tarábková, Hana; Bastl, Zdeněk; Janda, Pavel

    2014-01-01

    Roč. 30, č. 48 (2014), s. 14522-14531 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GAP208/12/2429 Institutional support: RVO:61388955 Keywords : Deionized water * Drops * Floods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.457, year: 2014

  9. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating...

  10. Evaluation of absorbed doses at the interface solid surfaces - tritiated water solutions

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2003-01-01

    Studies concerning the isotopic exchange H/D/T in the system elemental hydrogen -- water and in the presence of platinum metals on hydrophobic supports as catalysts were carried out at ICSI (Institute of Cryogenics and Isotope Separations) - Rm. Valcea, Romania. Due to the very low energy of β-radiation emitted by tritium, the direct measurements of dose absorbed by the isotopic exchange catalyst using classical methods is practically impossible. For this purpose an evaluation model was developed. The volume of tritiated water which can irradiate the catalyst was represented by a hemisphere with the radius equal to the maximal rate of β-radiation emitted by tritium. The catalyst surface is represented by a circle with a 0.2 μm radius and the same centre as the circle of the hemisphere secant plane. Flow rate of absorbed dose is calculated with the relation: d (1/100)(Φ·E m /m), where d = dose flow rate, in rad/s, Φ total radiation flux interacting with the catalyst surface, expressed in erg and m = catalyst weight, in grams. Total flux of available radiation, Φ, was determined as a function of three parameters: a) total flow of tritium β-radiation emitted in the hemisphere of tritiated water, dependent on the volume and radioactive concentration; b) emission coefficient in the direction of the catalyst surface; c) attenuation coefficient (due to self-absorption) of the tritium β-radiation in the tritiated water body. (authors)

  11. Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters.

    Science.gov (United States)

    Zhou, Xiao-Xia; Lai, Yu-Jian; Liu, Rui; Li, Sha-Sha; Xu, Jing-Wen; Liu, Jing-Fu

    2017-12-05

    Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag + , aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 μg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.

  12. Determination of polycyclic aromatic hydrocarbons in drinking water samples by solid-phase nanoextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Huiyong; Campiglia, Andres D

    2008-11-01

    A novel alternative is presented for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAH) from water samples. The new approachwhich we have named solid-phase nanoextraction (SPNE)takes advantage of the strong affinity that exists between PAH and gold nanoparticles. Carefully optimization of experimental parameters has led to a high-performance liquid chromatography method with excellent analytical figures of merit. Its most striking feature correlates to the small volume of water sample (500 microL) for complete PAH analyses. The limits of detection ranged from 0.9 (anthracene) to 58 ng.L (-1) (fluorene). The relative standard deviations at medium calibration concentrations vary from 3.2 (acenaphthene) to 9.1% (naphthalene). The analytical recoveries from tap water samples of the six regulated PAH varied from 83.3 +/- 2.4 (benzo[ k]fluoranthene) to 95.7 +/- 4.1% (benzo[ g,h,i]perylene). The entire extraction procedure consumes less than 100 microL of organic solvents per sample, which makes it environmentally friendly. The small volume of extracting solution makes SPNE a relatively inexpensive extraction approach.

  13. Magnetic solid-phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples.

    Science.gov (United States)

    Lian, Lili; Lv, Jinyi; Wang, Xiyue; Lou, Dawei

    2018-01-26

    A novel magnetic solid-phase extraction approach was proposed for extraction of potential residues of tetracyclines (TCs) in tap and river water samples, based on Fe 3 O 4 @SiO 2 @FeO magnetic nanocomposite. Characterized results showed that the received Fe 3 O 4 @SiO 2 @FeO had distinguished magnetism and core-shell structure. Modified FeO nanoparticles with an ∼5 nm size distribution were homogeneously dispersed on the surface of the silica shell. Owing to the strong surface affinity of Fe (II) toward TCs, the magnetic nanocomposite could be applied to efficiently extract three TCs antibiotics, namely, oxytetracycline, tetracycline and chlortetracycline from water samples. Several factors, such as sorbent amount, pH condition, adsorption and desorption time, desorption solvent, selectivity and sample volume, influencing the extraction performance of TCs were investigated and optimized. The developed method showed excellent linearity (R > 0.9992) in the range of 0.133-333 μg L -1 , under optimized conditions. The limits of detection were between 0.027 and 0.107 μg L -1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The feasibility of this method was evaluated by analysis of tap and river water samples. The recoveries at the spiked concentration levels ranged from 91.0% to 104.6% with favorable reproducibility (RSD < 4%). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2013-08-01

    Full Text Available Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  15. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet.

    Science.gov (United States)

    Kang, Can; Liu, Haixia

    2013-08-14

    Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS) velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA) technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM) and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  16. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    Science.gov (United States)

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...... of delivering hot water for the household and returning the coldest fluid back to SOFC heat recovery heat-exchanger. A model of the SOFC system is developed to determine the energy required to meet the hourly average electric load of the residence. The model evaluates the amount of heat generated and the amount...... of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...

  18. Loss of deuterium in faecal solids and by sequestration in reindeer: effect on doubly labelled water studies

    Directory of Open Access Journals (Sweden)

    Geir Gotaas

    2000-03-01

    Full Text Available An underlying assumption when estimating total energy expenditure (TEE using doubly labelled water (DLW is that the injected isotopes (lsO and 2H leave the body only in the form of CO, and H20. However, both isotopes have additional routes of loss. We quantified the loss of 2H (i attached to faecal solids and (ii by sequestration into newly synthesised fat in reindeer (Rangifer tarandus tarandus. Estimates of the errors caused by these processes were applied to data from DLW studies with reindeer in summer and in winter. Given the net rate of faecal dry matter output and lipid synthesis in the present study, ignoring both sources of error caused the TEE of reindeer to be underestimated by approximately 5% in winter and approximately 9% in summer. The separate effect of each source of error was evaluated in summer. If ignored, loss of 2H through sequestration alone caused TEE to be underestimated by approximately 3.7%. Similarly, if ignored, loss of 2H attached to faecal solids alone caused TEE to be underestimated by approximately 5.9%.

  19. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  20. The current state of municipal solid waste landfills in Suceava county and their impact on water and soil

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2013-08-01

    Full Text Available   The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of chemical pollution and biological contamination of soil, groundwater and surface waters due to the high content of heavy metals and organic substances with low biodegradation rate.The paper discusses in detail the issues of the landfill sites territorial distribution in Suceava County (the Mirăuţi landfill, located in the adjacent area of Suceava city and the Gura Humorului, Radauti, Siret, Campulung Moldovenesc, Fălticeni and Vatra Dornei urban landfills, together with a review of the technical data of the landfills, as well as an evaluation of the qualitative and quantitative effects they produce on the landscape, soil and groundwater quality.

  1. Halloysite Nanotubes as a New Adsorbent for Solid Phase Extraction and Spectrophotometric Determination of Iron in Water and Food Samples

    Science.gov (United States)

    Samadi, A.; Amjadi, M.

    2016-07-01

    Halloysite nanotubes (HNTs) have been introduced as a new solid phase extraction adsorbent for preconcentration of iron(II) as a complex with 2,2-bipyridine. The cationic complex is effectively adsorbed on the sorbent in the pH range of 3.5-6.0 and efficiently desorbed by trichloroacetic acid. The eluted complex has a strong absorption around 520 nm, which was used for determination of Fe(II). After optimizing extraction conditions, the linear range of the calibration graph was 5.0-500 μg/L with a detection limit of 1.3 μg/L. The proposed method was successfully applied for the determination of trace iron in various water and food samples, and the accuracy was assessed through the recovery experiments and analysis of a certified reference material (NIST 1643e).

  2. Study of optimal transformation of liquid effluents resulting from the destruction of radioactive sodium by water into ultimate solid wastes

    International Nuclear Information System (INIS)

    Rodriguez, G.; Camaro, S.; Fiquet, O.; Bernard, A.; Le Bescop, P.

    1997-01-01

    In the framework of sodium waste processing, it has been proposed to retain only processes that treat the sodium using water, thus generating the same by-products: hydrogen and sodium hydroxide. As the objective is to minimise radioactive liquid releases and as, moreover, the authorizations with respect to sodium salt releases are highly restrictive, several solutions have been envisaged for transforming the active sodium hydroxide coming from sodium destruction processes into ultimate solid wastes that can be stored on the surface in a storage site approved by the ANDRA (National Radioactive Waste Management Agency): the Aube Storage Site (CSA). Two processes have been considered and compared: immobilisation in concrete (cementation) and immobilisation in ceramic (ceramisation). These two processes are evaluated according to several criteria: the state of advancement of the process, the quantity of sodium hydroxide (and therefore of sodium) that can be treated per package. (author)

  3. Solid-in-Oil-in-Water Emulsions for Delivery of Lactase To Control in Vitro Hydrolysis of Lactose in Milk.

    Science.gov (United States)

    Zhang, Yun; Zhong, Qixin

    2017-11-01

    There is an established need to deliver lactase in milk to retain activity during storage and hydrolyze lactose after ingestion. In this work, spray-dried lactase powder was encapsulated in solid-in-oil-in-water (S/O/W) emulsions to fabricate delivery systems. The adoption of Span 80 in milk fat and lecithin in protein solution enabled the encapsulation of ∼76% lactase and lactose hydrolysis during a 14 day refrigeration (from ∼70 to lactose during the simulated gastric and intestinal digestions, and resulted in the hydrolysis of most lactose during the simulated digestions. Therefore, the studied S/O/W emulsions have the potential to deliver lactase in milk for lactose-intolerant consumers.

  4. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    Science.gov (United States)

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  5. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  6. Wormholes supported by phantom energy

    International Nuclear Information System (INIS)

    Gonzalez, J. A.; Guzman, F. S.; Montelongo-Garcia, N.; Zannias, T.

    2009-01-01

    By a combination of analytical and numerical techniques, we demonstrate the existence of spherical, asymptotically flat traversable wormholes supported by exotic matter whose stress tensor relative to the orthonormal frame of Killing observers takes the form of a perfect fluid possessing anisotropic pressures and subject to linear equations of state: τ=λρc 2 , P=μρc 2 . We show that there exists a four parameter family of asymptotically flat spherical wormholes parametrized by the area of the throat A(0), the gradient Λ(0) of the red shift factor evaluated on the throat as well as the values of (λ,μ). The latter are subject to restrictions: λ>1 and 2μ>λ or λ<0 and 2μ<-|λ|. For particular values of (λ,μ), the stress tensor may be interpreted as representing a phantom configuration, while for other values represents exotic matter. All solutions have the property that the two asymptotically flat ends possess finite Arnowitt-Deser-Misner mass.

  7. MO-E-17A-12: Direct Realization of the CT Dose to Phantom: Energy to Heat Conversion in Polyethylene Using Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Mayer, H; Tosh, R [NIST, Gaithersburg, MD (United States)

    2014-06-15

    Purpose: To develop a primary reference standard for absorbed dose to phantom for medical CT dosimetry. CT dosimetry relies on the implementation of the CTDI standard based on air kerma. We are taking a step toward an absorbed dose to water standard by first investigating the dose in a solid phantom. By directly measuring the heat converted from the incident radiation, the absorbed dose in the phantom at a point can be assessed with primary methods without relying on indirect conversions. Methods: The calorimeter contains two small thermistors embedded in a removable PE “core” inserted into the cylindrical HDPE phantom. A core made with polystyrene (PS) was also tested because of its purportedly negligible heat defect. Measurements were made using the two cores and with a calibrated ionization chamber in a CT beam. The air chamber values were converted to the dose to medium using appropriate stopping-power ratios from the literature, and then compared to the thermal data. Results: The PS core data yielded a dose of 1.3 times (4-run average, 3% std. dev.) higher than the converted chamber value, whereas the PE core data were inexplicably higher. The possible systematic errors include 1) excess heat from the thermistors, 2) in PE the exothermic chemical reactions, 3) uncertainties of the specific heat capacities of the materials, 4) thermal drift, and 5) theoretical conversion of chamber values. Monte Carlo simulations and finite element heat transfer calculations were performed to address some of these issues. The general validity was assessed in a 6 MV photon beam with an entirely different calibration scheme. Conclusion: This study demonstrates the feasibility but also revealed the difficulty in developing a new primary reference standard for absorbed dose to material for CT. Additional experimental and theoretical work is planned to achieve our goal.

  8. Environmental impact of APC residues from municipal solid waste incineration: reuse assessment based on soil and surface water protection criteria.

    Science.gov (United States)

    Quina, Margarida J; Bordado, João C M; Quinta-Ferreira, Rosa M

    2011-01-01

    Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of "building material not allowed". The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Experimental investigation of solid sodium-water reaction: tests results and phenomenological analysis

    International Nuclear Information System (INIS)

    Daudin, K.; Beauchamp, F.; Proust, C.

    2014-01-01

    Sodium-Water Reaction (SWR) is an issue one has to be capable to deal with for the next generation of nuclear reactors (SFR for GEN IV). The background of these experiments is the improvement of safety demonstration regarding SWR in an open volume. This experimental campaign is conducted at the CEA Cadarache inside a cylindrical reactor filled with inert gas. The sodium is inside a loading pot and water comes into contact by immersion. SWR and its physical effects are followed by different pressure and temperature sensors. The results show a limit to the overpressure increasing sodium mass. Global assessment of physical effects of SWR contributes to put forward the relative nature of phenomena with geometric configuration, and the importance of scale effects. (authors)

  10. Co-adsorption of surfactants and water at inorganic solid surfaces.

    Science.gov (United States)

    Cooper, Timothy G; de Leeuw, Nora H

    2002-07-21

    Computer simulations of the co-adsorption of water and methanoic acid at a range of surface features of calcite and fluorite minerals have shown that the relative adsorption energies for the two minerals are reversed when solvent effects are included in the calculations, a finding which is important in the search for effective surfactant reagents in flotation techniques, which are used extensively in the mining and pharmaceutical industries and in environmental remediation processes.

  11. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  12. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  13. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-Y. [Institute of Environmental Health, College of Public Health, National Taiwan University, 17 Hsu-Chou Road, Taipei (10055), Taiwan (China)]. E-mail: dbms@ntu.edu.tw; Wen, T.-Y. [Institute of Environmental Health, College of Public Health, National Taiwan University, 17 Hsu-Chou Road, Taipei (10055), Taiwan (China); Wang, G.-S. [Institute of Environmental Health, College of Public Health, National Taiwan University, 17 Hsu-Chou Road, Taipei (10055), Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, 17 Hsu-Chou Road, Taipei (10055), Taiwan (China); Cheng, H.-W. [Institute of Environmental Health, College of Public Health, National Taiwan University, 17 Hsu-Chou Road, Taipei (10055), Taiwan (China); Lin, Y.-H. [Institute of Environmental Health, College of Public Health, National Taiwan University, 17 Hsu-Chou Road, Taipei (10055), Taiwan (China); Lien, G.-W. [Institute of Environmental Health, College of Public Health, National Taiwan University, 17 Hsu-Chou Road, Taipei (10055), Taiwan (China)

    2007-06-01

    River water and wastewater treatment plant (WWTP) effluents from metropolitan Taipei, Taiwan were tested for the presence of the pollutants estrone (E{sub 1}), estriol (E{sub 3}), 17{beta}-estradiol (E{sub 2}), and 17{alpha}-ethinylestradiol (EE{sub 2}) using a new methodology that involves high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. The method was also used to investigate the removal of the analytes by conventional drinking water treatment processes. Without adjusting the pH, we extracted 1-L samples with PolarPlus C{sub 18} Speedisks under a flow rate exceeding 100 mL/min, in which six samples could be done simultaneously using an extraction station. The adsorbent was washed with 40% methanol/60% water and then eluted by 50% methanol/50% dichloromethane. The eluate was concentrated until almost dry and was reconstituted by 20 {mu}L of methanol. Quantitation was done by LC-MS/MS-negative electrospray ionization in the selected reaction monitoring mode with isotope-dilution techniques. The mobile phase was 10 mM N-methylmorpholine aqueous solution/acetonitrile with gradient elution. Mean recoveries of spiked Milli-Q water were 65-79% and precisions were within 2-20% of the tested concentrations (5.0-200 ng/L). The method was validated with spiked upstream river water; precisions were most within 10% of the tested concentrations (10-100 ng/L) with most RSDs < 10%. LODs of the environmental matrixes were 0.78-7.65 ng/L. A pre-filtration step before solid-phase extraction may significantly influence the measurement of E{sub 1} and EE{sub 2} concentrations; disk overloading by water matrix may also impact analyte recoveries along with ion suppression. In the Taipei water study, the four steroid estrogens were detected in river samples (ca. 15 ng/L for E{sub 2} and EE{sub 2} and 35-45 ng/L for E{sub 1} and E{sub 3}). Average levels of 19-26 ng/L for E{sub 1}, E{sub 2}, and EE{sub 2} were detected in most wastewater effluents

  14. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  15. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study.

    Science.gov (United States)

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell

    2011-05-01

    To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0

  16. Construction of a preclinical multimodality phantom using tissue-mimicking materials for quality assurance in tumor size measurement.

    Science.gov (United States)

    Lee, Yongsook C; Fullerton, Gary D; Goins, Beth A

    2013-07-29

    World Health Organization (WHO) and the Response Evaluation Criteria in Solid Tumors (RECIST) working groups advocated standardized criteria for radiologic assessment of solid tumors in response to anti-tumor drug therapy in the 1980s and 1990s, respectively. WHO criteria measure solid tumors in two-dimensions, whereas RECIST measurements use only one-dimension which is considered to be more reproducible (1, 2, 3,4,5). These criteria have been widely used as the only imaging biomarker approved by the United States Food and Drug Administration (FDA) (6). In order to measure tumor response to anti-tumor drugs on images with accuracy, therefore, a robust quality assurance (QA) procedures and corresponding QA phantom are needed. To address this need, the authors constructed a preclinical multimodality (for ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI)) phantom using tissue-mimicking (TM) materials based on the limited number of target lesions required by RECIST by revising a Gammex US commercial phantom (7). The Appendix in Lee et al. demonstrates the procedures of phantom fabrication (7). In this article, all protocols are introduced in a step-by-step fashion beginning with procedures for preparing the silicone molds for casting tumor-simulating test objects in the phantom, followed by preparation of TM materials for multimodality imaging, and finally construction of the preclinical multimodality QA phantom. The primary purpose of this paper is to provide the protocols to allow anyone interested in independently constructing a phantom for their own projects. QA procedures for tumor size measurement, and RECIST, WHO and volume measurement results of test objects made at multiple institutions using this QA phantom are shown in detail in Lee et al. (8).

  17. Design configurations affecting flow pattern and solids accumulation in horizontal free water and subsurface flow constructed wetlands.

    Science.gov (United States)

    Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E

    2013-03-01

    The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  19. Phantom inflation and the 'Big Trip'

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, Pedro F.; Jimenez-Madrid, Jose A.

    2004-01-01

    Primordial inflation is regarded to be driven by a phantom field which is here implemented as a scalar field satisfying an equation of state p=ωρ, with ω-1. Being even aggravated by the weird properties of phantom energy, this will pose a serious problem with the exit from the inflationary phase. We argue, however, in favor of the speculation that a smooth exit from the phantom inflationary phase can still be tentatively recovered by considering a multiverse scenario where the primordial phantom universe would travel in time toward a future universe filled with usual radiation, before reaching the big rip. We call this transition the 'Big Trip' and assume it to take place with the help of some form of anthropic principle which chooses our current universe as being the final destination of the time transition

  20. Phantom cosmology without Big Rip singularity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yurov, Artyom V.

    2012-01-01

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time (“phantom energy” without “Big Rip” singularity) and (ii) energy density tends to constant value with time (“cosmological constant” with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.