WorldWideScience

Sample records for solid wastes msw

  1. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-30

    ... Measurement; Municipal Solid Waste (MSW), Recycling, and Source Reduction Measurement in the U.S. AGENCY... Subjects Environmental protection, municipal solid waste (MSW) characterization, MSW management, recycling, measurement, data, data collection, construction and demolition (C&D) recycling, source reduction, life cycle...

  2. Sequential batch anaerobic composting of municipal solid waste (MSW) and yard waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.M.; Chynoweth, D.P.; Barkdoll, A.W.; Nordstedt, R.A.; Owens, J.M.; Sifontes, J. (Florida Univ., Gainesville, FL (United States). Dept. of Agricultural Engineering)

    1993-01-01

    Sequential batch anaerobic composting (SEBAC[sup TM]) was used to treat two fractions of municipal solid waste (MSW), the organic fraction of the MSW (processed MSW) and yard waste. Processed MSW gave a mean methane yield of 0.19 m[sup 3] kg[sup -1] volatile solids (VS) after 42 days. The mean VS reduction was 49.7% for this same period. Yard waste gave a mean methane yield of 0.07 m[sup 3] kg[sup -1] VS. Methane content of the biogas stabilized at a mean of 48% from three to four days after startup. The mean VS reduction for yard waste was 19%. With processed MSW, the volatile acid concentration was over 3000 mg L[sup -1] during startup but these acids were reduced within a few days to negligible levels. The trend was similar with yard waste except that volatile acids reached maximum concentrations of less than 1000 mg L[sup -1]. Composts from the reactors were evaluated for agronomic characteristics and pollution potential. Processed MSW and yard waste residues had marginal fertilizer value but posed no potential for groundwater pollution. Yard waste residue caused no apparent inhibition to mustard (Brassica juncea) germination relative to a commercial growth medium. Anaerobic yard waste compost demonstrated the potential to improve the water holding capacity of Florida soils. (author)

  3. Development and prospects of municipal solid waste (MSW) incineration in China

    Institute of Scientific and Technical Information of China (English)

    Yongfeng NIE

    2008-01-01

    With the lack of space for new landfills, municipal solid waste (MSW) incineration is playing an increasingly important role in municipal solid waste management in China. The literatures on certain aspects of incineration plants in China are reviewed in this paper, including the development and status of the application of MSW incineration technologies, the treatment of leachate from stored MSW, air pollution control technologies, and the status of the fly-ash control method. Energy policy and its promotion of MSW-to-energy conversion are also elucidated.

  4. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    International Nuclear Information System (INIS)

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-01-01

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m 3 to 10.3 kN/m 3 at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43

  5. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India); Santhosh, L.G., E-mail: lgsanthu2006@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India)

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  6. Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško

    OpenAIRE

    Kortnik, Jože; Leskovar, Jože

    2015-01-01

    Review paper Received: October 25, 2013 Accepted: November 7, 2013 Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško Ravnanje z mešanimi komunalnimi odpadki v Zbirnem centru Spodnji Stari Grad, Krško Jože Kortnik1'*, Jože Leskovar2 University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Mining and Geotechnology, Aškerčeva 12, 1000 Ljubljana, Slovenia 2Kostak, d. d., Leskovška cesta 2a, 8270 Krško, Slovenia Correspo...

  7. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico.

    Science.gov (United States)

    Gómez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-07-01

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita(-1) day(-1). Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

  8. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-01-01

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita -1 day -1 . Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

  9. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-06-01

    With rapid economic growth and massive urbanization, China faces the problem of municipal solid waste (MSW) disposal and the pressing need for development of alternative energy. Waste-to-energy (WTE) incineration, which recovers energy from discarded MSW and produces electricity and/or steam for heating, is recognized as a renewable source of energy and is playing an increasingly important role in MSW management in China. This article provides an overview of the WTE industry, discusses the major challenges in expanding WTE incineration in China, namely, high capital and operational costs, equipment corrosion, air pollutant emissions, and fly ash disposal. A perspective on MSW as a renewable energy source in China is also presented. Currently, only approximately 13% of MSW generated in China is disposed in WTE facilities. With the significant benefits of environmental quality, the reduction of greenhouse gas (GHG) emissions, and government policies and financial incentives as a renewable energy source, WTE incineration industry is expected to experience significant growth in the coming decade and make greater contribution to supplying renewable energy in China. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    Science.gov (United States)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  11. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    International Nuclear Information System (INIS)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J.

    2015-01-01

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  12. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  13. Present and future in the municipal solid waste (MSW) management in Romania in the context of new sanitation standards

    Energy Technology Data Exchange (ETDEWEB)

    Solea, M. [ICECON SA, Bucharest (Romania)

    2000-07-01

    The production and utilization of products made of metals, plastics, asbestos, cement, glass fibers or other non-biodegradable materials generate massive accumulation of solid waste. When this waste degrades, it causes pollution through the release of heavy metals in the environment. Romania had to deal with a complex situation concerning the management of municipal solid waste (MSW). The population was not well informed of the negative effects that MSW had on the environment and was not ready to take responsibility for any aspect of the problem. The author, as a member of a City Sanitation committee, promoted the utilization of standard terminology as a first step. Then, the committee classified MSW according to origin, composition, main treatment characteristics and possibilities of reuse. The standards also included indicators to calculate the amount of MSW required to size landfills, pre-collection, collection and transport equipment, and a valorization system. Forms and sizes of containers for pre-collection were established, and specific pre-collection points were identified. It resulted in an integrated MSW management (IMSWM). Some factors had to be considered in order to select the best possible approach: waste structure, quantity produced, MSW composition, weight, moisture, caloric power. The objectives of the IMSWM were summarized as follows: (1) reduction of the generation of solid waste, (2) recycling, (3) combustion and energy recovery for productive use, and (4) the disposal of the remainder MSW. 5 refs., 1 tab., 2 figs.

  14. Raster-based outranking method: a new approach for municipal solid waste landfill (MSW) siting.

    Science.gov (United States)

    Hamzeh, Mohamad; Abbaspour, Rahim Ali; Davalou, Romina

    2015-08-01

    MSW landfill siting is a complicated process because it requires integration of several factors. In this paper, geographic information system (GIS) and multiple criteria decision analysis (MCDA) were combined to handle the municipal solid waste (MSW) landfill siting. For this purpose, first, 16 input data layers were prepared in GIS environment. Then, the exclusionary lands were eliminated and potentially suitable areas for the MSW disposal were identified. These potentially suitable areas, in an innovative approach, were further examined by deploying Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic network process (ANP), which are two of the most recent MCDA methods, in order to determine land suitability for landfilling. PROMETHEE II was used to determine a complete ranking of the alternatives, while ANP was employed to quantify the subjective judgments of evaluators as criteria weights. The resulting land suitability was reported on a grading scale of 1-5 from 1 to 5, which is the least to the most suitable area, respectively. Finally, three optimal sites were selected by taking into consideration the local conditions of 15 sites, which were candidates for MSW landfilling. Research findings show that the raster-based method yields effective results.

  15. Analysis of physical composition and heavy metals pollution of municipal solid waste (MSW) in Beijing

    Science.gov (United States)

    Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.

    2018-03-01

    By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.

  16. Composting and anaerobic digestion of MSW (Municipal Solid Waste) organic fraction. Energy and CO2 balances

    International Nuclear Information System (INIS)

    De Benedetti, B.

    2001-01-01

    The aim of this study is the comparison between different technologies for the treatment of the organic fraction of Municipal Solid Waste. The Life Cycle Assessment (LCA) methodology constitutes the basic approach of the work, as reference international method of analysis, and allows to compare the energy and CO 2 balances taking into account the fractions deriving from renewable resources or from fossils resources. Results obtained show a significant advantage of the anaerobic treatment of MSW if compared with composting technology: obviously this conclusion refers only to an environmental point of view [it

  17. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  18. A novel shredder for municipal solid waste (MSW): influence of feed moisture on breakage performance.

    Science.gov (United States)

    Luo, Siyi; Xiao, Bo; Xiao, Lei

    2010-08-01

    A novel MSW shredder was presented but many aspects of the shredder have not been fully characterized. The feed moisture is an important factor that influences crushing performance. This paper focuses on the effect of feed moisture. The breakage of municipal solid waste (MSW) at several moisture levels (0%, 10%, 20%, 40% and 60%) was conducted with a laboratory shredder to investigate the effect of feed moisture on product size distribution and specific energy consumption under two different hydraulic pressures (40 and 60 kg/cm(2)). The results showed definite effects of feed moisture on the product size distribution and specific energy consumption: there is a tendency for the fine production in products to decrease with increasing amounts of water content in the feed; with the increasing feed moisture, specific energy shows an increasing trend; the specific energy and product size distribution under lower hydraulic pressure is more sensitive to the feed moisture than it is under higher hydraulic pressure. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  19. Design of experiment (DOE) based screening of factors affecting municipal solid waste (MSW) composting.

    Science.gov (United States)

    Kazemi, Khoshrooz; Zhang, Baiyu; Lye, Leonard M; Cai, Qinghong; Cao, Tong

    2016-12-01

    A design of experiment (DOE) based methodology was adopted in this study to investigate the effects of multiple factors and their interactions on the performance of a municipal solid waste (MSW) composting process. The impact of four factors, carbon/nitrogen ratio (C/N), moisture content (MC), type of bulking agent (BA) and aeration rate (AR) on the maturity, stability and toxicity of compost product was investigated. The statistically significant factors were identified using final C/N, germination index (GI) and especially the enzyme activities as responses. Experimental results validated the use of enzyme activities as proper indices during the course of composting. Maximum enzyme activities occurred during the active phase of decomposition. MC has a significant effect on dehydrogenase activity (DGH), β-glucosidase activity (BGH), phosphodiesterase activity (PDE) and the final moisture content of the compost. C/N is statistically significant for final C/N, DGH, BGH, and GI. The results provided guidance to optimize a MSW composting system that will lead to increased decomposition rate and the production of more stable and mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-01-01

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H 2 S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS 2 ) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O 2 concentration (p −1 (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H 2 S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%

  1. Feasibility of municipal solid waste (MSW as energy sources for Saudi Arabia’s future Reverse osmosis (RO desalination plants

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2016-12-01

    Full Text Available The Kingdom of Saudi Arabia (KSA generates between 1.4–1.75 kg/person/day of Municipal Solid Waste (MSW that accounts for over 16 million tons of MSW/year. The solid waste collected from different sources is dumped in landfills, thereby creating environmental concerns. In this paper, the potential of solid waste as an energy source (Waste to Energy (WTE for Reverse Osmosis (RO water purification was evaluated. The KSA is known for its acute fresh water shortages and uses desalination technology in meeting its daily water requirements; a process that is energy intensive. The evaluation of the energy content of MSW shows a potential to produce about 927 MW in 2015, based on a total mass burn, and about 1,692 MW in 2032. The MSW-WTE plants can produce about 1.5% of the targeted 120 GW of energy for 2032. For the R.O system, it will give approximately 16.8% of the daily fresh water needed for total mass burn and 2.4% with the recycling option.

  2. Waste-to-Energy (WTE) network synthesis for Municipal Solid Waste (MSW)

    International Nuclear Information System (INIS)

    Ng, Wendy Pei Qin; Lam, Hon Loong; 2, Research Institute of Chemical and Process Engineering – MŰKKI, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprėm (Hungary))" data-affiliation=" (Centre for Process Integration and Intensification – CPI2, Research Institute of Chemical and Process Engineering – MŰKKI, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprėm (Hungary))" >Varbanov, Petar Sabev; 2, Research Institute of Chemical and Process Engineering – MŰKKI, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprėm (Hungary))" data-affiliation=" (Centre for Process Integration and Intensification – CPI2, Research Institute of Chemical and Process Engineering – MŰKKI, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprėm (Hungary))" >Klemeš, Jiří 2, Research Institute of Chemical and Process Engineering – MŰKKI, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprėm (Hungary))" data-affiliation=" (Centre for Process Integration and Intensification – CPI2, Research Institute of Chemical and Process Engineering – MŰKKI, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, H-8200 Veszprėm (Hungary))" >Jaromír

    2014-01-01

    Highlights: • The possibility of utilising MSW as the source of WTE in Malaysia is evaluated. • Real case study is developed and its economic potential is demonstrated. • A MSW supply network with multiple objectives optimisation model is synthesised. • WTE scheme using MSW is one energy solution for country that generates a lot of MSW. - Abstract: MSW has been identified as one of the alternative energy sources that can be used for electricity and/or power generation. This appears to be one enhanced channel to tackle MSW disposal problem. WTE concept is incorporated into the MSW management system in this work. The integrated system is modelled to study its practicability and significance. The proposed model is illustrated with a case study involving the supply network design and the utilisation of MSW from urban sources. The modelling steps involve the generation of a superstructure, mathematical model construction, optimisation and solution interpretation. The MSW availability and its utilisation are investigated through its supply network design. Optimal locations of processing hubs and facilities are determined. Following this, boundaries and sizes of the processing hubs are calculated. The benefits of WTE strategy from MSW is analysed and its energy generation potential is demonstrated. This WTE strategy acts as one potential MSW management scheme for all interested parties

  3. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu [Beijing Building Materials Academy of Science Research/State Key Laboratory of Solid Waste Reuse for Building Material, Beijing 100041 (China); College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Schuchardt, Frank [Johann Heinrich von Thuenen-Institute, Institute of Agricultural Technology and Biosystems Engineering, Bundesallee 50, 38116 Braunschweig (Germany); Li, Guoxue, E-mail: ligx@cau.edu.cn [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China); Yang, Jinbing; Yang, Qingyuan [College of Resources and Environment Sciences, China Agricultural University, Beijing 100094 (China)

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  4. Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp

    Science.gov (United States)

    Steam autoclaving is an efficient method for the separation and recovery of nearly all organics from MSW, yet a reliable alternative outlet for the large volume of organics produced has not yet been successfully demonstrated. The material produced by the autoclave contains a high concentration of s...

  5. Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW)

    Science.gov (United States)

    Dianda, P.; Mahidin; Munawar, E.

    2018-03-01

    Many cities in developing countries is facing a serious problems to dealing with huge municipal solid waste (MSW) generated. The main approach to manage MSW is causes environmental impact associated with the leachate and landfill gas emissions. On the other hand, the energy available also limited by rapid growth of population and economic development due to shortage of the natural resource. In this study, the potential utilized of MSW to produce refuse derived fuel (RDF) was investigate. The RDF was produced with various organic waste content. Then, the RDF was subjected to laboratory analysis to determine its characteristic including the calorific value. The results shows the moisture content was increased by increasing organic waste content, while the calorific value was found 17-36 MJ/kg. The highest calorific value was about 36 MJ/kg obtained at RDF with 40% organic waste content. This results indicated that the RDF can be use to substitute coal in main burning process and calcinations of cement industry.

  6. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia

    International Nuclear Information System (INIS)

    Tan, Sie Ting; Ho, Wai Shin; Hashim, Haslenda; Lee, Chew Tin; Taib, Mohd Rozainee; Ho, Chin Siong

    2015-01-01

    Highlights: • 3E impact of WTE derived from MSW were performed. • MSW treatment technologies significantly effects the economic and environmental benefits of WTE. • Different scenarios are conducted based on the waste projections and production. • Comprehensive discussion on the trade-off of both incineration and anaerobic digestion for MSWM. - Abstract: The utilisation of municipal solid waste (MSW) for energy production has been implemented globally for many decades. Malaysia, however, is still highly dependent on landfills for MSW management. Because of the concern for greenhouse gases (GHG) emission and the scarcity of land, Malaysia has an urgent need for a better waste management strategy. This study aims to evaluate the energy, economic and environmental (3E) impact of waste-to-energy (WTE) for municipal solid waste management. An existing landfill in Malaysia is selected as the case study for consideration to adopt the advanced WTE technologies including the landfill gas recovery system (LFGRS), incineration, anaerobic digestion (AD), and gasification. The study presented an interactive comparison of different WTE scenarios and followed by further discussion on waste incineration and AD as the two potential WTE options in Malaysia. The 3E assessment reveals incineration as the superior technology choice when the production of electricity and heat were considered; however, AD is found to be more favourable under the consideration of electricity production only

  7. Production of valuable pyrolytic oils from mixed Municipal Solid Waste (MSW in Indonesia using non-isothermal and isothermal experimental

    Directory of Open Access Journals (Sweden)

    Indra Mamad Gandidi

    2017-09-01

    Full Text Available Municipal solid waste (MSW, disposed of at open dumping sites, poses health risks, contaminates surface water, and releases greenhouse gasses such as methane. However, pyrolysis offers the opportunity to convert MSW into Bio-Oil (BO for clean energy resource. In this paper, an MSW sample consisting of plastic, paper and cardboard, rubber and textiles, and vegetable waste is pyrolysed on a laboratory scale in a fixed-bed vacuum reactor. In the non-isothermal process, the sample was fed into the reactor and then heated. In the isothermal process, the reactor is first heated and then the sample is added. The non-isothermal process created greater BO in both quality and quantity. The BO had a larger amount of gasoline species than diesel-48 fuel, with at 33.44%the BO produced by isothermal pyrolysis and 36.42% in non-isothermal pyrolysis. However the product of isothermal pyrolysis had a higher acid content that reduced its heating value.

  8. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste (MSW) landfill sites.

    Science.gov (United States)

    Asakura, Hiroshi; Matsuto, Toshihiko; Tanaka, Nobutoshi

    2007-01-01

    Influent and processed water were sampled at different points in the leachate treatment facilities of five municipal solid waste (MSW) landfill sites. Then, the concentrations of endocrine-disrupting chemicals (EDCs), namely, alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs), in the treated leachate samples were determined and the behavior of the EDCs in the treatment processes was discussed. The concentrations of APs were as low as those in surface waters, and no OTs were detected (detection limit: 0.01 microg/L). Meanwhile, diethylhexyl phthalate (DEHP), which was the most abundant of the four substances measured as PAEs, and BPA were found in all of the influent samples. BPA was considerably degraded by aeration, except when the water temperature was low and the total organic carbon (TOC) was high. By contrast, aeration, biological treatment, and coagulation/sedimentation removed only a small amount of DEHP.

  9. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China.

    Science.gov (United States)

    Wang, Yanqing; Zhang, Xiaohong; Liao, Wenjie; Wu, Jun; Yang, Xiangdong; Shui, Wei; Deng, Shihuai; Zhang, Yanzong; Lin, Lili; Xiao, Yinlong; Yu, Xiaoyu; Peng, Hong

    2018-04-25

    China has become the largest generator of municipal solid waste (MSW) in the world with its rapid urbanization, population growth and raising living standard. Among diverse solid waste disposal technologies, MSW incineration has been becoming an attractive choice. In terms of systematic point, an integrated MSW incineration system should include an incineration subsystem and a bottom ash (BA) disposal subsystem. This paper employed an extend emergy assessment method with several improved indicators, which considers the emissions' impact, to evaluate the comprehensive performances of an integrated MSW incineration system. One existing incineration plant in Yibin City, Sichuan Province, China, as a case study, is evaluated using the proposed method. Three alternative scenarios (scenario A: the incineration subsystem + the BA landfill subsystem; scenario B: the incineration subsystem + the concrete paving brick production subsystem using BA as raw material; scenario C: the incineration subsystem + the non-burnt wall brick production subsystem using BA as raw material) were compared. The study results reveal that the ratio of positive output is 1.225, 2.861 and 1.230, the improved environmental loading ratio is 2.715, 2.742 and 1.533, and the improved environmental sustainability index is 0.451, 1.043 and 0.803 for scenario A, B and C respectively. Therefore, reuse of BA can enhance the sustainability level of this integrated system greatly. Comparatively, scenario B has the best comprehensive performance among the three scenarios. Finally, some targeted recommendations are put forward for decision-making. Copyright © 2018. Published by Elsevier Ltd.

  10. Some economic and environmental considerations about the feasibility of a MSW (Municipal Solid Wastes) incinerator with energy recovery in the province of Cosenza

    International Nuclear Information System (INIS)

    Nicoletti, G.; Anile, F.; Marandola, C.

    1998-01-01

    From new years, also in Italy is increasing the awareness of the not deferability of the problems about energetic consumption and with environmental pollution. In this contest, in the present note it's pointed out the risk of the sell of unloading of the MSW (Municipal Solid Wastes) and also the importance of legislative directions promulgate recently to face correctly the problem. In this work is considered the qualitative-quantitative aspects of the municipal solid wastes in the province of Cosenza with some reference to the experiences made in this sector. It's also shown that a MSW incinerator with energy recovery is principally characterized for a strong contribution to the environmental healing and, in second step, but not less important, for a energetic saving of the fossil fuels [it

  11. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  12. Fiscal Instruments for the Municipal Solid Waste Management (MSW in the Mexican Municipality

    Directory of Open Access Journals (Sweden)

    Violeta Mendezcarlo Silva

    2013-10-01

    Full Text Available Waste generation (municipal waste in the cities is, as we all know, one of the main current environmental issues. Responsibility for this kind of pollution is not only the companies’ but also the homeowners’ and the general public’s, who must redirect their behavior towards a responsible consumption, not only regarding the choices of environmentally friendly products and services but should also strive to influence the reduction of environmental damage caused by the waste itself.  The goal of this research work is to make clear that the local government (in Mexico’s case, the municipalities has the unavoidable duty of raising awareness of this issue by using tools to encourage responsible waste management, such as fiscal instruments, which in addition results in the extra benefit of raising public funds to neutralize the problem. 

  13. Karakterisasi Unjuk Kerja Diesel Engine Generator Set Sistem Dual Fuel Solar-Syngas Hasil Gasifikasi Briket Municipal Solid Waste (MSW Secara Langsung

    Directory of Open Access Journals (Sweden)

    Achmad Rizkal

    2017-01-01

    Full Text Available Sejalan dengan semakin banyaknya kebutuhan energi untuk dapat digunakan sebagai bahan bakar maka perlu adanya pengembangan gas biomassa sebagai bahan bakar alternatif pada motor pembakaran dalam maka akan dilakukan penelitian mengenai aplikasi sistem dual fuel gas hasil gasifikasi biomassa municipal solid waste (msw pada sistem downdraft dengan minyak solar pada motor diesel stasioner. Penelitian ini bertujuan untuk mengetahui seberapa besar solar yang tersibtitusi dengan adanya penambahan syngas yang disalurkan secara langsung. Penelitian ini dilakukan secara eksperimental dengan proses pemasukan aliran syngas yang dihasilkan downdraft municipal solid waste (MSW kedalam saluran udara mesin diesel generator set secara langsung menggunakan sistem mixer. Pengujian dilakukan dengan putaran konstan 2000 rpm dengan pembebanan bervariasi dari 200 watt sampai dengan 2000 watt dengan interval 200 watt. Bahwa produksi syngas dari reaktor gasifikasi ditambahkan sistem bypass untuk mengetahui kesesuaian antara reaktor gasifikasi dan mesin generatorset data ṁ syngas yang dibutuhkan mesin diesel, ṁ syngas yang di bypass untuk mendapatkan kesesuaian antara produksi syngas dan yang di bypass.  Data-data yang diukur dari penelitian ini menunjukkan bahwa besar nilai mass flowrate gas syngas yang dibutuhkan mesin diesel pada AFR reaktor gasifier 1,39 sebesar 0,0003748 kg/s. Mass flowrate gas syngas yang di bypass menunjukkan nilai 0 pada saat sistem dijalankan karena seluruh gas syngas masuk kedalam ruang bakar. AFR rata-rata sebesar 14,54 ,Nilai Spesifik fuel consumption (sfc mengalami peningkatan 68% dari kondisi standar single fuel , Nilai efesiensi thermal mengalami kenaikan sebesar 7% dari kondisi single fuel, Nilai daya rata-rata sebesar 2,28kW, Nilai torsi rata-rata sebesar 10,94 N.m. Solar yang tersibtitusi sebesar 48%. Nilai temperatur (coolant, mesin, oil, dan gas buang pada setiap pembebanan mengalami kenaikan.

  14. Potential of municipal solid waste (MSW) as a source of energy in Sao Paulo: its impact on CO2 balance

    International Nuclear Information System (INIS)

    Leao, A.L.; Ing Hwie Tan

    1998-01-01

    Energy generation is needed in Sao Paulo and MSW represents a promising alternative, although it is more expensive than hydroelectric power. About 14 900 t/day of MSW is generated, of which 8433 t/day is domestic and commercial MSW. From this amount, 1800 t will be destined to generate 30 MW of power. The eco-balance of CO 2 has been considered for incineration and recycling. The recycling program of plastics, metals, paper and glass would represent a significant reduction in energy and CO 2 emission. The total CO 2 released is 3.34 x 10 5 t/yr without recycling, and is 1.25 x 10 5 t/yr with a recycling program. Most of the CO 2 comes from plastics and paper production. Economic aspects could probably favor incineration with energy production as the best option. (author)

  15. Sources and speciation of heavy metals in municipal solid waste (MSW) and its effect on the separation technique

    Energy Technology Data Exchange (ETDEWEB)

    Biollaz, S; Ludwig, Ch; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A literature search was carried out to determine sources and speciation of heavy metals in MSW. A combination of thermal and mechanical separation techniques is necessary to achieve the required high degrees of metal separation. Metallic goods should be separated mechanically, chemically bound heavy metals by a thermal process. (author) 1 fig., 1 tab., 6 refs.

  16. Engineering properties for high kitchen waste content municipal solid waste

    Directory of Open Access Journals (Sweden)

    Wu Gao

    2015-12-01

    Full Text Available Engineering properties of municipal solid waste (MSW depend largely on the waste's initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW. After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW, the following findings were obtained: (1 HKWC MSW has a higher initial water content (IWC than LKWC MSW, but the field capacities of decomposed HKWC and LKWC MSWs are similar; (2 the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3 compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG generation rate but a shorter duration and a lower potential capacity; (4 the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5 the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  17. Evaluation of the potentialities to reduce greenhouse gases (GHG) emissions resulting from various treatments of municipal solid wastes (MSW) in moist tropical climates: application to Yaounde.

    Science.gov (United States)

    Ngnikam, Emmanuel; Tanawa, Emile; Rousseaux, Patrick; Riedacker, Arthur; Gourdon, Rémy

    2002-12-01

    The authors here analyse the emission of greenhouse gases (GHG) resulting from the various treatment of municipal solid waste found in the town of Yaounde. Four management systems have been taken as the basis for analyses. System 1 is the traditional collection and landfill disposal, while in system 2 the hiogas produced in the landfill is recuperated to produce electricity. In systems 3 and 4, in addition to the collection, we have introduced a centralised composting or biogas plant before the landfilling disposal of refuse. A Life Cycle Inventory (LCI) of the four systems was made; this enable us to quantify the flux of matter and of energy, consumed or produced by the systems. Following this, only the greenhouse effect was taken into account to evaluate the ecological consequences of the MSW management systems. The method used to evaluate this impact takes into consideration on the one hand, GHG emissions or avoided emission following the substitution of fuel with methane recovered from landfills or produced in the digesters, and on the other hand, sequestrated carbon in the soil following the regular deposit of compost. Landfilling without recuperation of methane is the most emitting solution for greenhouse gas: it leads to the emission of 1.7 ton of carbon dioxide equivalent (tCO2E) per ton of household waste. Composting and methanisation allow one to have a comparable level of emission reduction, either respectively 1.8 and 2 tCO2E/t of MSW. In order to reduce the emission of GHG in the waste management systems, it is advisable to avoid first of all the emissions of methane coming from the landfills. System 2 seems to be a solution that would reduce the emissions of GHG at low cost (2.2 to 4 $/tCO2E). System 2 is calculated as the most effective at the environmental and economic level in the context of Yaounde. Therefore traditional collection, landfill disposal and biogas recuperation to produce electricity is preferable in moist tropical climates.

  18. Study of some characteristic Mediterranean vegetation species best suited for renaturalization of terminal-phase municipal solid waste (MSW) landfills in Puglia (Southern Italy)

    Science.gov (United States)

    De Mei, Massimiliano; Di Mauro, Mariaida

    2006-07-01

    Natural recovery of worked-out or closed municipal solid waste (MSW) landfills is a current topic, but knowledge about the adaptability of Mediterranean vegetation species to such stressful conditions is still quite poor. Autochthonous plants were selected to withstand the stresses such as hot climate and drought typical of Mediterranean areas; this characteristic potentially allows the plants an easier, efficient adaptation. Our aim was to provide information in order to obtain an adequate quality of environmental renewal of a landfill and a reduced management cost while ensuring rehabilitation to an acceptable naturalistic state. The investigation lasted 3 years; some Mediterranean scrub native plant species were selected and monitored in their morphological (total and relative height, basal diameter, number of inter-nodes) and physiological (photosynthetic rate and water potential) activity. In order to test dependence on CO 2 concentration, different meteorological parameters were also monitored. Ceratonia siliqua, Phillyrea latifolia, Olea europaea and Quercus ilex showed considerable adaptability, reacting positively to every improvement in environmental conditions, particularly those of a meteorological nature. Survival and growth was satisfactory in Hedysarum coronarium, Medicago sativa, Lotus corniculatus, Rosmarinus officinalis, Myrtus communis and Viburnum tinus. Fraxinus ornus and Acer campestre suffered stress during the summer dry period and recovered quickly when atmospheric conditions improved. A drop irrigation system to ensure a satisfactory soil moisture during summer dry periods was the fundamental element for survival.

  19. The Assessment of Municipal Solid Waste (MSW Compost Properties Produced in Sanandaj City with a View of Improving the Soil Quality and Health

    Directory of Open Access Journals (Sweden)

    Z. Sharifi

    2017-01-01

    Full Text Available Introduction: the use of municipal solid waste (MSW compost in agriculture as a soil conditioner is increasing day by day because of its positive effects on biological, physical, and chemical soil properties. However, some of the composts because of contamination with heavy metals and other impurities can have deleterious effects on groundwater quality, agricultural environment, food chain, plant growth and activity of soil microorganisms. Therefore, this study was conducted to investigate the physical and chemical properties, fertilizing potential and heavy metal polluting potential of two types of municipal solid waste composts with processing time between 4 to 8 years (type A and between1 to 4 years (type B produced in Sanandaj city with the aim of using it as an organic fertilizer. Materials and Methods: Sanadaj city, the center of Kurdistan province, with a population of about 335,000 is located in the west of Iran. The current solid waste generation from the city is about 320 t/day, which are not separated at source of generation. About 200 t of the total produced wastes are composted using an open windrows system at the Sanandaj MSW Composting Plant, which is located in 10 km of Sanadaj-Kamiaran road and the rest are disposed at the landfill site. The compost manufactured by the composting plant has been collected around it in two different locations. The first belonges to the product of 2004-2008 (type A and the second belonges to the product of 2009-2013 (type B. Till now, due to lack of quality information associated with these products, they have remained unused. Therefore, in this study, we sampled 3 samples composed of six subsamples (each containing 2 kg from the products in March 2013. The samples were analyzed to determine the physical properties (including undesirable impurities, initial moisture content, particle size distribution, particle density, bulk density (ρb, porosity, and maximum water holding capacity, and the

  20. Experimental plant for the physical-chemical treatment of groundwater polluted by Municipal Solid Waste (MSW leachate, with ammonia recovery

    Directory of Open Access Journals (Sweden)

    Massimo Raboni

    2013-12-01

    Full Text Available The paper documents the results of the experimental treatment of groundwater (flow rate: 300 m3 h-1 polluted by the leachate of an old MSW landfill (7 million tonnes in northern Italy. The process consists of a coagulation-flocculation pre-treatment at pH > 11, and subsequent ammonia stripping, after heating the water to 35-38 °C by means of the biogas produced by the landfill. The stripped ammonia was recovered by absorption with sulfuric acid, producing a 30% solution of ammonium sulfate, which was reused as a base fertilizer. In addition, the paper reports important operational aspects related to the scaling of the stripping tower’s packing and its effect on pH and temperature profiles inside the towers caused by the closed loop, which recirculates the stripping air coming from the ammonia absorption towers with sulfuric acid. The average removal efficiency of ammonia reached 95.4% with an inlet mean concentration of 199.0 mg L-1.

  1. MSW management for waste minimization in Taiwan: The last two decades

    International Nuclear Information System (INIS)

    Lu, L.-T.; Hsiao, T.-Y.; Shang, N.-C.; Yu, Y.-H.; Ma, H.-W.

    2006-01-01

    Taiwan is the second most densely populated country in the world; its 22.604 million residents (2002) live in an area of 35,967 km 2 (628 people/km 2 ). Taiwan's economy has grown rapidly during the last 20 years, resulting in a corresponding increase in the amount of municipal solid waste (MSW). This study describes and evaluates the municipal solid waste management system in Taiwan. The study's results indicate that the amount of MSW began to decline after 1997, when the government enforced aggressive MSW management policies. By 2002, total MSW production had dropped by 27%, and the average daily per capita weight of MSW had fallen from 1.14 kg in 1997 to 0.81 kg in 2002. Summarizing the successful experience of MSW reduction in Taiwan, the most important factor was the government's combining of the MSW collection system with reduction/recycling programs. The second most important factor was the policy of extended producer responsibility, which laid a foundation of recycling by producers and retailers and promoted public recycling

  2. MSW management for waste minimization in Taiwan: the last two decades.

    Science.gov (United States)

    Lu, Li-Teh; Hsiao, Teng-Yuan; Shang, Neng-Chou; Yu, Yue-Hwa; Ma, Hwong-Wen

    2006-01-01

    Taiwan is the second most densely populated country in the world; its 22.604 million residents (2002) live in an area of 35,967 km2 (628 people/km2). Taiwan's economy has grown rapidly during the last 20 years, resulting in a corresponding increase in the amount of municipal solid waste (MSW). This study describes and evaluates the municipal solid waste management system in Taiwan. The study's results indicate that the amount of MSW began to decline after 1997, when the government enforced aggressive MSW management policies. By 2002, total MSW production had dropped by 27%, and the average daily per capita weight of MSW had fallen from 1.14 kg in 1997 to 0.81 kg in 2002. Summarizing the successful experience of MSW reduction in Taiwan, the most important factor was the government's combining of the MSW collection system with reduction/recycling programs. The second most important factor was the policy of extended producer responsibility, which laid a foundation of recycling by producers and retailers and promoted public recycling.

  3. An Industrial Ecology Approach to Municipal Solid Waste Management: II. Case Studies for Recovering Energy from the Organic Fraction of MSW

    Science.gov (United States)

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery...

  4. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    Science.gov (United States)

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-05-03

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Waste into Fuel—Catalyst and Process Development for MSW Valorisation

    Directory of Open Access Journals (Sweden)

    Izabela S. Pieta

    2018-03-01

    Full Text Available The present review paper highlights recent progress in the processing of potential municipal solid waste (MSW derived fuels. These wastes come from the sieved fraction (∅ < 40 mm, which, after sorting, can differ in biodegradable fraction content ranging from 5–60%. The fuels obtained from these wastes possess volumetric energy densities in the range of 15.6–26.8 MJL−1 and are composed mainly of methanol, ethanol, butanol, and carboxylic acids. Although these waste streams are a cheap and abundant source (and decrease the fraction going to landfills, syngas produced from MSW contains various impurities such as organic compounds, nitrogen oxides, sulfur, and chlorine components. These limit its use for advanced electricity generation especially for heat and power generation units based on high temperature fuel cells such as solid oxide fuel cells (SOFC or molten carbonate fuel cells (MCFC. In this paper, we review recent research developments in the continuous MSW processing for syngas production specifically concentrating on dry reforming and the catalytic sorbent effects on effluent and process efficiency. A particular emphasis is placed on waste derived biofuels, which are currently a primary candidate for a sustainable biofuel of tomorrow, catalysts/catalytic sorbents with decreased amounts of noble metals, their long term activity, and poison resistance, and novel nano-sorbent materials. In this review, future prospects for waste to fuels or chemicals and the needed research to further process technologies are discussed.

  6. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  7. Estimation of residual MSW heating value as a function of waste component recycling

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Semiao, Viriato

    2008-01-01

    Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems

  8. characterization and composition analysis of municipal solid waste

    African Journals Online (AJOL)

    userpc

    ABSTRACT. Municipal Solid Waste (MSW) is produced through human activities and in the last two ... Solid waste samples were collected and analysed from the four major dumpsites in ..... Technology, Ueberlandstrasse 133,. Switzerland.

  9. Municipal solid waste disposal in Portugal

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Didelet, Filipe; Semiao, Viriato

    2006-01-01

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  10. Material and energy recovery in integrated waste management system--an Italian case study on the quality of MSW data.

    Science.gov (United States)

    Bianchini, A; Pellegrini, M; Saccani, C

    2011-01-01

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill.

    Science.gov (United States)

    Melnyk, A; Dettlaff, A; Kuklińska, K; Namieśnik, J; Wolska, L

    2015-10-15

    Due to a continuous demand of land for infrastructural and residential development there is a public concern about the condition of surface soil near municipal solid waste landfills. A total of 12 surface (0-20 cm) soil samples from a territory near a landfill were collected and the concentration of 16 PAHs and 7 PCB congeners were investigated in these samples. Limits of detection were in the range of 0.038-1.2 μg/kg for PAHs and 0.025-0.041 μg/kg for PCBs. The total concentration of ∑ PAHs ranged from 892 to 3514 μg/kg with a mean of 1974 μg/kg. The total concentration of ∑ PCBs ranged from 2.5 to 12 μg/kg with a mean of 4.5 μg/kg. Data analyses allowed to state that the PAHs in surface soils near a landfill were principally from pyrogenic sources. Due to air transport, PAHs forming at the landfill are transported outside the landfill. PCB origin is not connected with the landfill. Aroclor 1242 can be the source of PCBs in several samples. Copyright © 2015. Published by Elsevier B.V.

  12. Municipal solid waste management in China: status, problems and challenges.

    Science.gov (United States)

    Zhang, Dong Qing; Tan, Soon Keat; Gersberg, Richard M

    2010-08-01

    This paper presents an examination of MSW generation and composition in China, providing an overview of the current state of MSW management, an analysis of existing problems in MSW collection, separation, recycling and disposal, and some suggestions for improving MSW systems in the future. In China, along with urbanization, population growth and industrialization, the quantity of municipal solid waste (MSW) generation has been increasing rapidly. The total MSW amount increased from 31.3 million tonnes in 1980 to 212 million tonnes in 2006, and the waste generation rate increased from 0.50 kg/capita/day in 1980 to 0.98 kg/capita/year in 2006. Currently, waste composition in China is dominated by a high organic and moisture content, since the concentration of kitchen waste in urban solid waste makes up the highest proportion (at approximately 60%) of the waste stream. The total amount of MSW collected and transported was 148 million tonnes in 2006, of which 91.4% was landfilled, 6.4% was incinerated and 2.2% was composted. The overall MSW treatment rate in China was approximately 62% in 2007. In 2007, there were 460 facilities, including 366 landfill sites, 17 composing plants, and 66 incineration plants. This paper also considers the challenges faced and opportunities for MSW management in China, and a number of recommendations are made aimed at improving the MSW management system. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. OPTIMIZED WTE CONVERSION OF MUNICIPAL SOLID WASTE IN SHANGHAI APPLYING THERMOCHEMICAL TECHNOLOGIES

    OpenAIRE

    Dai, Siyang

    2016-01-01

    Thermochemical technologies have been proven effective in treating municipal solid waste (MSW) for many years. China, with a rapid increase of MSW, plans to implement more environmental friendly ways to treat MSW than landfill, which treats about 79 % of total MSW currently. The aim of this master thesis was to find out a suitable thermochemical technology to treat MSW in Shanghai, China. Several different thermochemical technologies are compared in this thesis and plasma gasification was sel...

  14. Municipal solid waste in Brazil: A review.

    Science.gov (United States)

    Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli

    2017-12-01

    The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.

  15. U.S. Trends in Solid Waste Management and GHG Emissions

    Science.gov (United States)

    In 2009, 243 million tons of municipal solid waste (MSW) was produced in the United States. Currently, 34% of the 243 million tons of MSW is recovered and recycled or composted which conserves energy and natural resources as well as avoid waste disposal. Of the remaining MSW th...

  16. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  17. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A legislator`s guide to municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  19. Comparison of potential greenhouse gas emissions from disposal of MSW in sanitary landfills vs. waste-to-energy facilities

    International Nuclear Information System (INIS)

    Taylor, H.F.

    1991-01-01

    The Environmental Protection Agency (EPA) estimates the US currently generates about 160 million tons of municipal solid waste (MSW) per year, and this figure will exceed 200 million tons annually by the year 2000. About 80 percent of the MSW will be disposed of in landfills and waste-to-energy (WTE) facilities, both of which generate greenhouse gases, namely methane and carbon dioxide. This paper provides an introductory level analysis of the potential long term greenhouse gas emissions from these two MSW disposal alternatives. Carbon dioxide credits are derived for fossil fuel offset by WTE and methane emissions are converted to equivalent CO 2 emissions in order to derive a single emission figure for comparison of the greenhouse contribution of the two disposal strategies. A secondary analysis is presented to compare the net equivalent CO 2 emissions from WTE facilities to those from landfills with methane gas recovery, combustion and energy generation. The conclusion is, that for a given amount of MSW, landfilling contributes to the greenhouse effect about 10 times more than a modern Waste-To-Energy facility. Even with 50% of all landfill methane emissions recovered and converted to electricity, the contribution to the greenhouse effect by the landfill alternative is about 6 times greater than the waste-to-energy alternative

  20. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    International Nuclear Information System (INIS)

    Gori, Manuela; Bergfeldt, Britta; Reichelt, Jürgen; Sirini, Piero

    2013-01-01

    Highlights: ► Natural weathering on BA from MSW and wood waste incineration was evaluated. ► Type of mineral phases, pH and volume stability were considered. ► Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability

  1. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Optimization of municipal solid waste collection and transportation routes

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.

  3. Optimization of municipal solid waste collection and transportation routes

    International Nuclear Information System (INIS)

    Das, Swapan; Bhattacharyya, Bidyut Kr.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length

  4. Effect of municipal solid waste ash on comprehensive strength ...

    African Journals Online (AJOL)

    The blocks were moulded in a CINVA-Ram machine by replacing 0%, 2%, 5% and 10% of municipal solid waste ash (MSW ash) as a stabilizing agent. The compressive strengths of individual blocks were obtained after curing for 7, 14 and 28 days. The 2%MSW ash replacement gave the highest compressive strength and ...

  5. Enhanced stabilisation of municipal solid waste in bioreactor landfills

    NARCIS (Netherlands)

    Valencia Vázquez, R.

    2008-01-01

    The increasing development and urbanization of the society has led to an increase per-capita production of municipal solid waste (MSW) materials. These MSW materials are of organic and inorganic nature that can be of rapidly, moderately and slowly biodegradable or inert characteristics. With regard

  6. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  7. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  8. A LABORATORY STUDY TO INVESTIGATE GASEOUS EMISSIONS AND SOLIDS DECOMPOSITION DURING COMPOSTING OF MUNICIPAL SOLID WASTE

    Science.gov (United States)

    The report gives results of a materials flow analysis performed for composting municipal solid waste (MSW) and specific biodegradable organic components of MSW. (NOTE: This work is part of an overall U.S. EPA project providing cost, energy, and materials flow information on diffe...

  9. Urban solid waste management in Chongqing: Challenges and opportunities

    International Nuclear Information System (INIS)

    Yuan Hui; Wang Li'ao; Su Fenwei; Hu Gang

    2006-01-01

    The dual influences of the resource supply and protection in ecological environments will pose a significant challenge to China's sustainable development. Solid waste management offers opportunities to improve profits by conserving resources and improving environmental performance. This paper examines municipal solid waste (MSW) management in urban Chongqing, the nation's fourth largest municipality after Beijing, Shanghai and Tianjin. In this paper, we will provide information on the quantity and composition of MSW, as well as give an overview of different methods for collection, transport, treatment and disposal of MSW. At present the daily amount of MSW generated per person is about 1.08 kg; food waste accounts for about 59% of total MSW. MSW in Chongqing has a higher moisture content (64.1%) and a lower LHV (3728 kJ/kg) than other cities in Asia, which is an obstruction for incineration. Landfills are the main method of disposal in Chongqing, but pollution caused by simple landfills and lack of backup MSW disposal capacity are becoming major problems in the main districts of Chongqing. In this paper, the challenges being faced and opportunities to MSW in Chongqing are analyzed and some suggestions are given for improving the MSW system in the future

  10. Classification of sources of municipal solid wastes in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Buenrostro, O. [Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-105, 58400, Michoacan, Morelia (Mexico); Bocco, G. [Departamento de Ecologia de los Recursos Naturales, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Campus Morelia, Apartado Postal 27-3 Xangari, 58089, Michoacan, Morelia (Mexico); Cram, S. [Departamento de Geografia Fisica, Instituto de Geografia, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.P. 04510 Ciudad Universitaria, Mexico City (Mexico)

    2001-05-01

    The existence of different classifications of municipal solid waste (MSW) creates confusion and makes it difficult to interpret and compare the results of generation analyses. In this paper, MSW is conceptualized as the solid waste generated within the territorial limits of a municipality, independently of its source of generation. Grounded on this assumption, and based on the economic activity that generates a solid waste with determinate physical and chemical characteristics, a hierarchical source classification of MSW is suggested. Thus, a connection between the source and the type of waste is established. The classification categorizes the sources into three divisions and seven classes of sources: residential, commercial, institutional, construction/demolition, agricultural-animal husbandry, industrial, and special. When applied at different geographical scales, this classification enables the assessment of the volume of MSW generated, and provides an overview of the types of residues expected to be generated in a municipality, region or state.

  11. Regionalization of municipal solid waste management in Japan: balancing the proximity principle with economic efficiency.

    Science.gov (United States)

    Okuda, Itaru; Thomson, Vivian E

    2007-07-01

    The proximity principle - disposing of waste close to its origin - has been a central value in municipal solid waste (MSW) management in Japan for the last 30 years and its widespread adoption has helped resolve numerous "Not in My Backyard" issues related to MSW management. However, MSW management costs have soared, in large part because of aggressive recycling efforts and because most MSW is incinerated in a country that has scarce landfill capacity. In addition, smaller, less sophisticated incinerators have been closed because of high dioxin emissions. Rising costs combined with the closure of smaller incinerators have shifted MSW management policy toward regionalization, which is the sharing of waste management facilities across municipalities. Despite the increased use of regionalized MSW facilities, the proximity principle remains the central value in Japanese MSW management. Municipal solid waste management has become increasingly regionalized in the United States, too, but different driving forces are at work in these two countries. The transition to regionalized MSW management in Japan results from strong governmental control at all levels, with the central government providing funds and policy direction and prefectures and municipalities being the primary implementing authorities. By contrast, market forces are a much stronger force with US MSW management, where local governments - with state government oversight - have primary responsibility for MSW management. We describe recent changes in Japan's MSW programs. We examine the connections between MSW facility regionalization, on the one hand, and, on the other hand, the proximity principle, coordination among local governments, central government control, and financing mechanisms.

  12. An industrial ecology approach to municipal solid waste management: I. Methodology

    Science.gov (United States)

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  13. Assessing the 'Waste Hierarchy' a social cost-benefit analyse of MSW management in the European Union

    International Nuclear Information System (INIS)

    Brisson, I. E.

    1997-01-01

    This paper discusses, in the context of an impending 'waste crisis', the concept of optimal waste generation and an optimal mix of municipal solid waste (MSW) management methods. It argues that excessive quantities of MSW are likely to be generated, and consequently excessive demand for waste services will exist, as long as the marginal cost of waste services facing the household is zero. In order to avoid this excess demand, households should be charged for waste services according to their use of it, and not as presently at a flat rate. In the price to be paid by householders should be included financial as well as external costs. With respect to the optimal mix of MSW management methods, the paper asserts that this would be attained when the marginal net social costs of each management methods were equal. After setting out the theoretical background, the paper then proceeds to undertake a social cost-benefit analysis of waste management methods currently employed by the 12 'old' European Union Member States, including external and financial costs of landfill, incineration, recycling and composting. The estimates obtained from this analysis are used to assess the validity of the 'waste hierarchy', which has won widespread acceptance, and is used as a guideline in a number of countries' waste policies. In the light of the widespread focus on increasing recycling efforts, a sensitivity analysis is carried out to ascertain whether particular materials are especially suited for recycling, and whether there are other materials for which recycling should not be encouraged. (au) 16 refs

  14. Investigations on mechanical biological treatment of waste in South America: Towards more sustainable MSW management strategies

    International Nuclear Information System (INIS)

    Bezama, Alberto; Aguayo, Pablo; Konrad, Odorico; Navia, Rodrigo; Lorber, Karl E.

    2007-01-01

    This work presents an analysis on the suitability of mechanical biological treatment of municipal solid waste in South America, based on two previous experimental investigations carried out in two different countries. The first experiment was performed for determining the mass and volume reduction of MSW in the province of Concepcion (Chile). The implemented bench-scale process consisted of a manual classification and separation stage, followed by an in-vessel biological degradation process. The second experiment consisted of a full-scale experiment performed in the city of Estrela (Brazil), where the existing municipal waste management facility was adapted to enhance the materials sorting and separation. Expressed in wet weight composition, 85.5% of the material input in the first experiment was separated for biological degradation. After 27 days of processing, 60% of the initial mass was reduced through degradation and water evaporation. The final fraction destined for landfilling equals 59% of the total input mass, corresponding to about 50% of the initial volume. In the second experiment, the fraction destined to landfill reaches 46.6% of the total input waste mass, whilst also significantly reducing the total volume to be disposed. These results, and the possible recovery of material streams suitable for recycling or for preparing solid recovered fuels, are the main advantages of the studied process

  15. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Optimization of municipal solid waste collection and transportation routes.

    Science.gov (United States)

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. WILCI: a LCA tool dedicated to MSW incineration in France

    OpenAIRE

    Beylot , Antoine; Muller , Stéphanie; Descat , Marie; Ménard , Yannick; Michel , Pascale; Villeneuve , Jacques

    2017-01-01

    International audience; Life Cycle Assessment (LCA) has been increasingly used in the last decades to evaluate the global environmental performance of waste treatment options. This is in particular the case considering incineration that is the major treatment route for Municipal Solid Waste (MSW) in France (28% of French MSW are incinerated, in 126 MSW incineration plants; ADEME, 2015). In this context, this article describes a new Excel-tool, WILCI (for Waste Incineration Life Cycle Inventor...

  18. Integrated solid waste management in Japan

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Japanese, through a combination of public policy, private market conditions, a geographic necessity, practice integrated municipal solid waste (MSW) management. The approach of MSW management in Japan is as follows: The basic concept of refuse treatment consists of recycling discharged refuse into usable resources, reusing such resources as much as possible, and then treating or disposing of the usable portion into a sanitary condition. Considering the difficulty of procuring land or seaside areas for such purpose as a refuse disposal site, it will be necessary to minimize the volume of refuse collected for treatment or disposal.

  19. Study on potency of municipal solid waste conversion into renewable energy by thermal incineration and bioconversion: case study of Medan city

    Science.gov (United States)

    Sarah, Maya; Misran, Erni

    2018-03-01

    Municipal solid waste (MSW) in Medan City is facing problems either with the quantity and management of MSW. Local authority only dumped approximately 73.9% MSW in the landfill over the years. Spontaneous phenomena of methane formation in dumping site indicates the potency of MSW conversion into energy by biochemical conversion. On the contrary, the presence of plastics, woods, papers, etc. in the MSW show the potency of MSW to be treated by thermal conversion. Both thermal incineration and anaerobic digestion may convert MSW Medan City into energy. This study evaluates potency of MSW conversion into renewable energy using proximate and ultimate analysis. Overall, MSW of Medan City has the opportunities to be converted into energy by both thermal and biochemical conversion with a special requirement such as pre-dry the MSW prior incineration process and degrade organic MSW in a bioreactor.

  20. Municipal solid waste management in Beijing City

    International Nuclear Information System (INIS)

    Li Zhenshan; Yang Lei; Qu XiaoYan; Sui Yumei

    2009-01-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km 2 with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  1. Municipal solid waste effective stress analysis

    International Nuclear Information System (INIS)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-01-01

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  2. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  3. Waste-to-energy, municipal solid waste treatment, and best available technology

    DEFF Research Database (Denmark)

    Wang, Zhenfeng; Ren, Jingzheng; Goodsite, Michael Evan

    2018-01-01

    The treatment of municipal solid waste (MSW) has become an urgently important task of many countries. This objective of this study is to present a novel group multi-attribute decision analysis method for prioritizing the MSW treatment alternatives based on the interval-valued fuzzy set theory...... (DEMATEL) method was developed to determine the weights of the evaluation criteria by considering the independent relationships among these criteria. The multi-actor interval-valued fuzzy grey relational analysis was developed to rank the waste-to-energy scenarios. Four alternative processes for MSW...

  4. Thermophilic composting of municipal solid waste

    International Nuclear Information System (INIS)

    Elango, D.; Thinakaran, N.; Panneerselvam, P.; Sivanesan, S.

    2009-01-01

    Process of composting has been developed for recycling of organic fraction of municipal solid waste (MSW). The bioreactor design was modified to reduce the composting process time. The main goal of this investigation was to find the optimal value of time period for composting of MSW in thermophilic bioreactor under aerobic condition. The temperature profiles correlated well with experimental data obtained during the maturation process. During this period biological degraders are introduced in to the reactor to accelerate the composting process. The compost materials were analyzed at various stages and the environmental parameters were considered. The final composting materials contained large organic content with in a short duration of 40 days. The quantity of volume reduction of raw MSW was 78%. The test result shows that the final compost material from the thermophilic reactor provides good humus to build up soil characteristics and some basic plant nutrients

  5. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-03-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  6. Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-12-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  7. Biodegradability of leachates from Chinese and German municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    SELIC E.; WANG Chi; BOES N., HERBELL J.D.

    2007-01-01

    The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water.

  8. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  9. Energy potential from municipal solid waste in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Sivapalan Kathirvale; Muhd Noor Muhd Yunus [Malaysian Institute for Nuclear Technology Research, Selangor Darul Ehsan (Malaysia). Incineration and Renewable Energy Center; Kamaruzzaman Sopian; Abdul Halim Samsuddin [University Kebangsaan Malaysia, Selangor Darul Ehsan (Malaysia). Faculty of Engineering

    2004-04-01

    The average amount of municipal solid waste (MSW) generated in Malaysia is 0.5-0.8 kg/person/day and has increased to 1.7 kg/person/day in major cities. This paper highlights the MSW characteristics for the city of Kuala Lumpur. Currently, the waste management approach being employed is landfill, but due to rapid development and lack of space for new landfills, big cities in Malaysia are switching to incineration. A simple evaluation was conducted to establish the amount of energy that would be recovered based on the characteristics of the MSW if it were to be incinerated. From the characterization exercise, the main components of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80% of the waste by weight. The average moisture content of the MSW was about 55%, making incineration a challenging task. The calorific value of the Malaysian MSW ranged between 1500 and 2600 kcal/kg. However, the energy potential from an incineration plant operating based on 1500 ton of MSW/day with an average calorific value of 2200 kcal/kg is assessed to be at 640 kW/day. (author)

  10. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  11. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Science.gov (United States)

    2010-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity less...

  12. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    Science.gov (United States)

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Lebersorger, S.; Beigl, P.

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  14. Tourism and solid waste generation in Europe: A panel data assessment of the Environmental Kuznets Curve.

    Science.gov (United States)

    Arbulú, Italo; Lozano, Javier; Rey-Maquieira, Javier

    2015-12-01

    The relationship between tourism growth and municipal solid waste (MSW) generation has been, until now, the subject of little research. This is puzzling since the tourism sector is an important MSW generator and, at the same time, is willing to avoid negative impacts from MSW mismanagement. This paper aims to provide tools for tourism and MSW management by assessing the effects of tourism volume, tourism quality and tourism specialization on MSW generation in the UE. This is done using the Environmental Kuznets Curve (EKC) framework. The study considers a panel data for 32 European economies in the 1997-2010 periods. Empirical results support the EKC hypothesis for MSW and shows that northern countries tend to have lower income elasticity than less developed countries; furthermore, results confirm a non-linear and significant effect of tourism arrivals, expenditure per tourist and tourism specialization on MSW generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Research challenges in municipal solid waste logistics management.

    Science.gov (United States)

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cellulase hydrolysis of unsorted MSW

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Felby, Claus; Jørgensen, Henning

    2011-01-01

    A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition of surfact......A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition...... of calcium, potassium, sodium, chloride and others that may affect cellulolytic enzymes. Cellulase performance showed no effect of adding the metal ion-chelating agent EDTA to the solution. The cellulases were stable, tolerated and functioned in the presence of several contaminants....

  17. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.

    2013-01-01

    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  18. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang; Zekkos, Dimitrios

    2017-01-01

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between

  19. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  20. Change in MSW characteristics under recent management strategies in Taiwan.

    Science.gov (United States)

    Chang, Yu-Min; Liu, Chien-Chung; Hung, Chao-Yang; Hu, Allen; Chen, Shiao-Shing

    2008-12-01

    Reduction and recycling initiatives such as producer responsibility and pay-as-you-throw are being implemented in Taiwan. This paper presents a study assessing the impact of recently implemented municipal solid waste (MSW) reduction and recycling management strategies on the characteristics of waste feedstock for incineration in Taiwan. Through the periodic sampling of two typical MSW incineration plants, proximate and ultimate analyses were conducted according to standard methods to explore the influence of MSW reduction and recycling management strategies on incineration feed waste characteristics. It was observed that the annual amount of MSW generated in 2005 decreased by about 10% compared to 2003 and that the characteristics of MSW have changed significantly due to recent management strategies. The heating value of the MSW generated in Taiwan increased yearly by about 5% after program implementation. A comparison of the monthly variations in chemical concentrations indicated that the chlorine content in MSW has changed. This change results from usage reduction of PVC plastic due to the recycling fund management (RFM) program, and the food waste as well as salt content reduction due to the total recycling for kitchen garbage program. This achievement will improve the reduction of dioxin emissions from MSW incineration. In summary, management strategies must be conducted in tandem with the global trend to achieve a zero-waste-discharge country. When implementing these strategies and planning for future MSW management systems, it is important to consider the changes that may occur in the composition and characteristics of MSW over time.

  1. Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India.

    Science.gov (United States)

    Ramaiah, B J; Ramana, G V; Datta, Manoj

    2017-10-01

    The article presents the physical and mechanical properties of the emplaced municipal solid waste (MSW) recovered from different locations of the Ghazipur and Okhla dumps both located at Delhi, India. Mechanical compressibility and shear strength of the collected MSW were evaluated using a 300×300mm direct shear (DS) shear box. Compression ratio (C c ') of MSW at these two dumps varied between 0.11 and 0.17 and is falling on the lower bound of the range (0.1-0.5) of the data reported in the literature for MSW. Low C c ' of MSW is attributed to the relatively low percentages of compressible elements such as textiles, plastics and paper, coupled with relatively high percentages of inert materials such as soil-like and gravel sized fractions. Shear strength of MSW tested is observed to be displacement dependent. The mobilized shear strength parameters i.e., the apparent cohesion intercept (c') and friction angle (ϕ') of MSW at these two dumps are best characterized by c'=13kPa and ϕ'=23° at 25mm displacement and c'=17kPa and ϕ'=34° at 55mm displacement and are in the range reported for MSW in the literature. A large database on the shear strength of MSW from 18 countries that includes: the experimental data from 277 large-scale DS tests (in-situ and laboratory) and the data from back analysis of 11 failed landfill slopes is statistically analyzed. Based on the analysis, a simple linear shear strength envelope, characterized by c'=17kPa and ϕ'=32°, is proposed for MSW for preliminary use in the absence of site-specific data for stability evaluation of the solid waste landfill under drained conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Utilisation of solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Balu, K

    1978-07-01

    The prime solution to the present energy crisis is the recovery of latent energy from waste materials, for solid waste contains recoverable energy and it merely needs to be released. The paper is concerned with classification of solid waste, energy content of waste, methods of solid waste disposal, and chemical processing of solid waste. Waste disposal must be performed in situ with energy recovery. Scarcity of available land, pollution problem, and unrecovered latent energy restrict the use of the land-filling method. Pyrolysis is an effective method for the energy recovery and disposal problems. Chemical processing is suitable for the separated cellulosic fraction of the waste material.

  3. Conversion of cellulose rich municipal solid waste blends using ionic liquids: Feedstock convertibility and process scale-up

    OpenAIRE

    Liang, L; Li, C; Xu, F; He, Q; Yan, J; Luong, T; Simmons, BA; Pray, TR; Singh, S; Thompson, VS; Sun, N

    2017-01-01

    © 2017 The Royal Society of Chemistry. Sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) a...

  4. An industrial ecology approach to municipal solid waste ...

    Science.gov (United States)

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  5. methane generation potentia generation potential of municipal solid

    African Journals Online (AJOL)

    User

    2014-01-01

    Jan 1, 2014 ... environmental effect of its consumption made many ... Solid Waste (MSW) of two landfills serving four local govern landfills ... solid waste management in .... for efficient applicability of MSW incineration .... Collection Systems?

  6. Environmental performance of the Kvaerner BFB boilers for MSW combustion -- Analysis of gaseous emissions and solid residues

    International Nuclear Information System (INIS)

    Lundberg, M.; Hagman, U.; Andersson, B.A.; Olofsson, J.

    1997-01-01

    Kvaerner Pulping AB (formerly Kvaerner EnviroPower AB) has, due to the stringent demands on emissions performance, developed a state-of-the-art bubbling fluidized bed boiler (BFB) designed for waste fuel firing with very low emissions to the air. A complete evaluation of the environmental performance of the Kvaerner BFB technique for MSW combustion is now possible thanks to a thorough characterization study of the solid residues from the Lidkoeping plant. This paper gives an overall mapping of the emissions performance. Data from the operating plants on solid residue characteristics and leachability, heavy metal and dioxin emissions, nitrogen oxides, carbon monoxide, acid gases, and other emissions to air are presented. Comparisons are made with legislative limits and data from the mass burning technique. It is concluded that the emissions are low compared both with data from traditional mass burn incinerators and with legislative limits in the USA and Europe. Furthermore, the bottom and cyclone ash characteristics are shown not to cause any particular problem from an environmental point of view, and that the leachability is well below the existing legislative limits in Europe and the USA. The results show that fluidized bed combustion of municipal solid waste is a very competitive alternative to the traditional mass burning technique in every respect

  7. Mercury emissions from municipal solid waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  8. Anaerobic digestion of municipal solid waste: Technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  9. Geotechnical properties of municipal solid waste at different phases of biodegradation

    International Nuclear Information System (INIS)

    Reddy, Krishna R.; Hettiarachchi, Hiroshan; Gangathulasi, Janardhanan; Bogner, Jean E.

    2011-01-01

    Highlights: → Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. → Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. → Hydraulic conductivity decreased by two orders of magnitude due to degradation. → Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. → Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35 o for fresh MSW to 28 o for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1 o to 9 o , respectively, while the effective strength parameters, cohesion

  10. URBAN SOLID WASTE MANAGEMENT OF GUWAHATI CITY IN NORTH-EAST INDIA

    Directory of Open Access Journals (Sweden)

    Prasanta Kumar Pradhan

    2012-12-01

    Full Text Available In recent years municipal solid waste (MSW management has been one of the most environmental concerns for all urban areas of India. Most of the urban centers have neither adequate land nor any facility for MSW disposal. In view of scarcity of lands for making landfill sites, solid wastes can be used for energy recovery resulting in volume reduction, thus requires less area for its disposal. Guwahati is one such city of North-East India, having the potential to recover the energy from solid wastes and at the same time the waste management system of the city can be improved. This paper attempts to characterize the urban solid waste of the city as well as its energy potential for various uses. Results showed that the average generation rate of MSW was 0.7 kg/capita/day and the city has the potential to generate the power of 30 MW from the solid waste.

  11. URBAN SOLID WASTE MANAGEMENT OF GUWAHATI CITY IN NORTH-EAST INDIA

    Directory of Open Access Journals (Sweden)

    P. K. Pradhan

    2012-01-01

    Full Text Available In recent years municipal solid waste (MSW management has been one of the most environmental concerns for all urban areas of India. Most of the urban centers have neither adequate land nor any facility for MSW disposal. In view of scarcity of lands for making landfill sites, solid wastes can be used for energy recovery resulting in volume reduction, thus requires less area for its disposal. Guwahati is one such city of North-East India, having the potential to recover the energy from solid wastes and at the same time the waste management system of the city can be improved. This paper attempts to characterize the urban solid waste of the city as well as its energy potential for various uses. Results showed that the average generation rate of MSW was 0.7 kg/capita/day and the city has the potential to generate the power of 30 MW from the solid waste.

  12. Assessment of municipal solid waste for energy production in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  13. The current municipal solid waste management situation in Tibet.

    Science.gov (United States)

    Jiang, Jianguo; Lou, Zhiying; Ng, Silo; Luobu, Ciren; Ji, Duo

    2009-03-01

    The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km2, which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa city and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper.

  14. The current municipal solid waste management situation in Tibet

    International Nuclear Information System (INIS)

    Jiang Jianguo; Lou Zhiying; Ng Silo; Luobu Ciren; Ji Duo

    2009-01-01

    The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km 2 , which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa city and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper

  15. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Science.gov (United States)

    2010-07-01

    ... waste landfill emissions. 60.33c Section 60.33c Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW...

  16. An overview of municipal solid waste management in China

    International Nuclear Information System (INIS)

    Chen Xudong; Geng Yong; Fujita, Tsuyoshi

    2010-01-01

    Municipal solid waste management (MSWM) in China warrants particular attention as China has become the largest MSW generator in the world and the total amount of MSW it produces continues to increase. In recent years, central and local governments have made great efforts to improve MSWM in China. New regulations and policies have been issued, urban infrastructure has been improved, and commercialization and international cooperation have been encouraged. Considering these developments, an overview is necessary to analyze the current state as well as new opportunities and challenges regarding MSWM in China. This paper shows that since the late 1990s, the amount of MSW collected has been largely decoupled from economic growth and incineration has become an increasingly widespread treatment method for MSW. We identify and discuss four major challenges and barriers related to China's MSWM, and propose an integrated management framework to improve the overall eco-efficiency of MSWM.

  17. Greenhouse gases and solid waste management systems: Understanding the relationships

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, K.; Smith, P.A.

    1999-07-01

    In one of the first applications of life cycle analysis at the state level, the Minnesota Office of Environmental Assistance has assessed the resource conservation benefits and greenhouse gas impacts of the state's municipal solid waste (MSW) system. Using a life cycle inventory, the Phase 1 work estimated the resource conservation benefits of Minnesota's 1996 MSW reduction and management strategies. It compared the production processes used to obtain useful products from MSW with alternative production processes using virgin materials. The Phase 2 work, conducted under a grant from the US Environmental Protection Agency (USEPA), focused specifically on measuring the greenhouse gas implications of reduction, recycling, and management from 1991--1996. This phase expanded the analysis to included life cycle assessment and improvement. The work will be used in Minnesota's MSW policy and program development efforts, as well as in climate change mitigation planning.

  18. Updating and testing of a Finnish method for mixed municipal solid waste composition studies.

    Science.gov (United States)

    Liikanen, M; Sahimaa, O; Hupponen, M; Havukainen, J; Sorvari, J; Horttanainen, M

    2016-06-01

    More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Integrated Solid Waste Management for Urban Area in Basrah District

    Directory of Open Access Journals (Sweden)

    Abdulhussain Abdul Kareem Abbas

    2016-09-01

    Full Text Available The success of waste management requires accurate data on generation and composition of waste which is pivotal for the decisions towards the appropriate waste management system. A five years (2008-2012 study was conducted to evaluate the solid wastes management system in all the six divisions of Basrah district (more than 30 sub-districts. Recent investigations in 2012 resulted information that population of Basrah district has reached 1,018,000 person The quantity of municipal solid waste generated was recorded to be 634 tons per day with MSW generation rates of 0.62 kg per capita per day. Municipal solid waste density was conducted as 192.6 kg/m³ with moisture content of 31.1%. The main components of the MSW were Food wastes represents largest proportion (54.8%, followed by plastic (25.2% and paper (7%. The study results reveal that the MSW stream has the largest proportion of biodegradable and recyclable waste. Therefore, the study recommends to use methods of waste treatment such composting, recycling and incineration in order to reduce the amount of waste that are taken to the landfill.

  20. Municipal solid waste management in Rasht City, Iran

    International Nuclear Information System (INIS)

    Alavi Moghadam, M.R.; Mokhtarani, N.; Mokhtarani, B.

    2009-01-01

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years

  1. Optimizing Resource and Energy Recovery for Municipal Solid Waste Management

    Science.gov (United States)

    Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...

  2. HOLISTIC APPROACH TO ENVIRONMENTAL MANAGEMENT OF MUNICIPAL SOLID WASTE

    Science.gov (United States)

    The paper presents results from the application of a new municipal solid waste (MSW) management planning aid to EPA's new facility in the Research Triangle Park, NC. This planning aid, or decision support tool, is computer software that analyzes the cost and environmental impact ...

  3. Challenges for municipal solid waste management practices in Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Luong

    2013-11-01

    Full Text Available Municipal solid waste (MSW management is currently one of the major environmental problems facing by Vietnam. Improper management of MSW has caused adverse impacts on the environment, community health, and social-economic development. This study attempts to provide a review of the generation and characterization, disposal and treatment technologies of MSW to evaluate the current status and identify the problems of MSW management practices in Vietnam. Finally, this study is concluded with fruitful recommendations which may be useful in encouraging the responsible agencies to work towards the further improvement of the existing MSW management system.Doi: http://dx.doi.org/10.12777/wastech.1.1.17-21Citation:  Luong, N.D., Giang, H.M., Thanh, B.X. and Hung, N.T.  2013. Challenges for municipal solid waste management practices in Vietnam. Waste Technology 1(1:6-9.Doi: http://dx.doi.org/10.12777/wastech.1.1.17-21

  4. Emission from open burning of municipal solid waste in India.

    Science.gov (United States)

    Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh

    2017-07-27

    Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.

  5. Prospective application of municipal solid wastes for energy production in Portugal

    International Nuclear Information System (INIS)

    Teixeira, Sandra; Monteiro, Eliseu; Silva, Valter; Rouboa, Abel

    2014-01-01

    Municipal solid waste (MSW) collection and disposal is a major urban environment issue in the world today. MSW management solutions have to be technologically feasible, legally and socially acceptable and environmentally and financially sustainable. European policy is pushing for a rational management of natural resources; a promising technological perspective today is waste valorisation, a process that involves sorting at the source, combined with material recycling and waste-to-energy conversion. In this paper, we analyze the evolution of the Portuguese MSW management system, criticize the environmental policy issues for MSW management in Portugal and identify weak points in the criteria used for the technologies selection. Portugal is facing multiple problems with MSW management and is attempting to tackle them by passing legislation in order to improve the performance of waste management systems. At the technological level, gasification increasingly presents as an efficient and viable alternative to incineration. Gasification is a waste-to-energy conversion scheme that offers an attractive solution to both waste disposal and energy problems. Waste gasification by plasma has been validated but the economic viability of this technology must be proven before to be accepted by the industry. - Highlights: • MSW collection and disposal are a major problem of urban environment. • Portugal is facing multiple problems and improving the MSW management system. • Gasification offers the most attractive solution to both waste disposal and energy problems. • Plasma gasification seems to be validated but the economic viability must be proven

  6. Rainfall Reliability Evaluation for Stability of Municipal Solid Waste Landfills on Slope

    Directory of Open Access Journals (Sweden)

    Fu-Kuo Huang

    2013-01-01

    Full Text Available A method to assess the reliability for the stability of municipal solid waste (MSW landfills on slope due to rainfall infiltration is proposed. Parameter studies are first done to explore the influence of factors on the stability of MSW. These factors include rainfall intensity, duration, pattern, and the engineering properties of MSW. Then 100 different combinations of parameters are generated and associated stability analyses of MSW on slope are performed assuming that each parameter is uniform distributed around its reason ranges. In the following, the performance of the stability of MSW is interpreted by the artificial neural network (ANN trained and verified based on the aforementioned 100 analysis results. The reliability for the stability of MSW landfills on slope is then evaluated and explored for different rainfall parameters by the ANN model with first-order reliability method (FORM and Monte Carlo simulation (MCS.

  7. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  8. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  9. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  10. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  11. Determination of as-discarded methane potential in residential and commercial municipal solid waste.

    Science.gov (United States)

    Chickering, Giles W; Krause, Max J; Townsend, Timothy G

    2018-06-01

    Methane generation potential, L 0 , is a primary parameter of the first-order decay (FOD) model used for prediction and regulation of landfill gas (LFG) generation in municipal solid waste (MSW) landfills. The current US EPA AP-42 default value for L 0 , which has been in place for almost 20 years, is 100 m 3 CH 4 /Mg MSW as-discarded. Recent research suggests the yield of landfilled waste could be less than 60 m 3 CH 4 /Mg MSW. This study aimed to measure the L 0 of present-day residential and commercial as-discarded MSW. In doing so, 39 waste collection vehicles were sorted for composition before samples of each biodegradable fraction were analyzed for methane generation potential. Methane yields were determined for over 450 samples of 14 different biodegradable MSW fractions, later to be combined with moisture content and volatile solids data to calculate L 0 values for each waste load. An average value of 80 m 3 CH 4 /Mg MSW was determined for all samples with 95% of values in the interval 74-86 m 3 CH 4 /Mg MSW as-discarded. While no statistically significant difference was observed, commercial MSW yields (mean 85, median 88 m 3 CH 4 /Mg MSW) showed a higher average L 0 than residential MSW (mean 75, median 71 m 3 CH 4 /Mg MSW). Many methane potential values for individual fractions described in previous work were found within the range of values determined by BMP in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions

    OpenAIRE

    Bakare Babatunde Femi

    2011-01-01

    Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This p...

  13. Atmospheric pollution problems and control proposals associated with solid waste management in China: A review

    International Nuclear Information System (INIS)

    Tian, Hezhong; Gao, Jiajia; Hao, Jiming; Lu, Long; Zhu, Chuanyong; Qiu, Peipei

    2013-01-01

    Highlights: ► Air pollution problems generated in MSW management processes in China are presented. ► Both quantity and composition of MSW generation in China are identified. ► The status of different methods for MSW treatment and disposal are reviewed. ► Some comprehensive control proposals for improving MSW management are proposed. -- Abstract: Along with population growth, rapid urbanization and industrialization process, the volume of municipal solid waste (MSW) generation in China has been increasing sharply in the past 30 years and the total amount of MSW yields will continue to increase. Nowadays, due to global warming warrants particular attention throughout the world, a series of air pollutants (including greenhouse gases, odorous gases, PCDD/Fs, heavy metals, PM, etc.) discharged from waste disposal and treatment processes have become one of the new significant emerging air pollution sources, which arousing great concerns about their adverse effects on surrounding ambient air quality and public health. At present, the overall safely disposed ratio of the collected MSW in China is reported at approximately 78% in 2010, and there are mainly three types of MSW disposal methods practiced in China, including landfill, composting and incineration. The characteristics of air pollutants and greenhouse gases discharge vary substantially among different MSW disposal methods. By presenting a thorough review of MSW generation in China and providing a summarization of the current status of MSW disposal methods practices, this review article makes an integrated overview analysis of existing air pollution problems associated with MSW collection, separation, and disposal processes. Furthermore, some comprehensive control proposals to prevent air pollution for improving MSW management of China in the future are put forward

  14. Atmospheric pollution problems and control proposals associated with solid waste management in China: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hezhong, E-mail: hztian@bnu.edu.cn [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875 (China); Gao, Jiajia [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875 (China); Hao, Jiming [School of Environment, Tsinghua University, Beijing 100084 (China); Lu, Long; Zhu, Chuanyong; Qiu, Peipei [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2013-05-15

    Highlights: ► Air pollution problems generated in MSW management processes in China are presented. ► Both quantity and composition of MSW generation in China are identified. ► The status of different methods for MSW treatment and disposal are reviewed. ► Some comprehensive control proposals for improving MSW management are proposed. -- Abstract: Along with population growth, rapid urbanization and industrialization process, the volume of municipal solid waste (MSW) generation in China has been increasing sharply in the past 30 years and the total amount of MSW yields will continue to increase. Nowadays, due to global warming warrants particular attention throughout the world, a series of air pollutants (including greenhouse gases, odorous gases, PCDD/Fs, heavy metals, PM, etc.) discharged from waste disposal and treatment processes have become one of the new significant emerging air pollution sources, which arousing great concerns about their adverse effects on surrounding ambient air quality and public health. At present, the overall safely disposed ratio of the collected MSW in China is reported at approximately 78% in 2010, and there are mainly three types of MSW disposal methods practiced in China, including landfill, composting and incineration. The characteristics of air pollutants and greenhouse gases discharge vary substantially among different MSW disposal methods. By presenting a thorough review of MSW generation in China and providing a summarization of the current status of MSW disposal methods practices, this review article makes an integrated overview analysis of existing air pollution problems associated with MSW collection, separation, and disposal processes. Furthermore, some comprehensive control proposals to prevent air pollution for improving MSW management of China in the future are put forward.

  15. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather......The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... constant between 50 - 60 % wet weight and therefore holds a potential for bioenergy production. The degradable fraction has positive effects for anaerobic digestion when evaluated to desired parameters of anaerobic digestion plants. Wanted parameters are: 1) high organic content (high volatile solid...

  16. Optimal planning for the sustainable utilization of municipal solid waste.

    Science.gov (United States)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    International Nuclear Information System (INIS)

    Tan, S T; Hashim, H; Lee, C T; Lim, J S; Kanniah, K D

    2014-01-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study

  18. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    Science.gov (United States)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  19. The impact of municipal solid waste management on greenhouse gas emissions in the United States.

    Science.gov (United States)

    Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria

    2002-09-01

    Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.

  20. Atmospheric pollution problems and control proposals associated with solid waste management in China: a review.

    Science.gov (United States)

    Tian, Hezhong; Gao, Jiajia; Hao, Jiming; Lu, Long; Zhu, Chuanyong; Qiu, Peipei

    2013-05-15

    Along with population growth, rapid urbanization and industrialization process, the volume of municipal solid waste (MSW) generation in China has been increasing sharply in the past 30 years and the total amount of MSW yields will continue to increase. Nowadays, due to global warming warrants particular attention throughout the world, a series of air pollutants (including greenhouse gases, odorous gases, PCDD/Fs, heavy metals, PM, etc.) discharged from waste disposal and treatment processes have become one of the new significant emerging air pollution sources, which arousing great concerns about their adverse effects on surrounding ambient air quality and public health. At present, the overall safely disposed ratio of the collected MSW in China is reported at approximately 78% in 2010, and there are mainly three types of MSW disposal methods practiced in China, including landfill, composting and incineration. The characteristics of air pollutants and greenhouse gases discharge vary substantially among different MSW disposal methods. By presenting a thorough review of MSW generation in China and providing a summarization of the current status of MSW disposal methods practices, this review article makes an integrated overview analysis of existing air pollution problems associated with MSW collection, separation, and disposal processes. Furthermore, some comprehensive control proposals to prevent air pollution for improving MSW management of China in the future are put forward. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The effects of changing municipal solid waste characteristics on combustion fuel quality

    International Nuclear Information System (INIS)

    Artz, N.S.; Franklin, M.A.

    1991-01-01

    This paper discusses the quality of municipal solid waste (MSW) as a combustion fuel based on two aspects: heat of combustion and heavy metal content. Characterization of MSW by the material flows methodology now provides a historical data series on the composition of MSW for nearly 30 years (1960-1988). Over this period, there have been marked changes in MSW composition, with paper and plastics increasing in percentage while glass and metals have declined. This paper will illustrate the effects of this changing composition on heat of combustion. Using a computer model and standard heat of combustion values for the components of MSW, heating values of MSW (in Btu per pound) are calculated for the 30-year time period. Changes in heating values are highlighted and projections are made to year 2010. Recognizing the increasing importance of the recovery of materials from MSW for recycling, the paper illustrates the effects of removing varying quantities of recyclable materials (e.g., newspapers, corrugated boxes, plastic bottles, glass bottles, metals, yard wastes) on the heating value of the remaining MSW. The paper's final section summarizes recent studies performed for EPA and others on the presence of heavy metals (lead, cadmium, and mercury) in the products discarded in MSW. Again, time trends are used to demonstrate the changing presence of these metals

  2. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Economopoulou, M.A. [Hellenic Statistical Authority, Pireos 46 and Eponiton, Pireus 185 10 (Greece); Economopoulou, A.A. [Ministry of Environment, Energy and Climatic Change, 15 Amaliados Street, Athens 11523 (Greece); Economopoulos, A.P., E-mail: eco@otenet.gr [Environmental Engineering Dept., Technical University of Crete, Chania 73100 (Greece)

    2013-11-15

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to

  3. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    International Nuclear Information System (INIS)

    Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P.

    2013-01-01

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to

  4. Integrated solid waste management of Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  5. Risks of municipal solid waste incineration: an environmental perspective.

    Science.gov (United States)

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  6. The state of municipal solid waste management in Israel.

    Science.gov (United States)

    Daskal, Shira; Ayalon, Ofira; Shechter, Mordechai

    2018-06-01

    Regulation is a key tool for implementing municipal solid waste (MSW) management strategies and plans. While local authorities in Israel are responsible for the storage, collection, and disposal of MSW, Israel's Ministry of Environmental Protection (MoEP) is responsible for the formulation and implementation of waste management policies and legislation. For the past 12 years, about 80% of the MSW in Israel has been landfilled and recycling rates have not increased, despite regulations. This paper presents the state of MSW management in Israel in light of the MoEP's strategic goal of landfilling reduction, the regulations and legislation designed and implemented for achieving this goal, and the ensuing results. Among other things, the results indicate the importance of monitoring and assessing policy and regulations to examine whether regulation is in fact effective and whether it keeps track of its own targets and goals or not. It is also concluded that even when there is an extensive regulation that includes a wide range of laws, economic penalties and financial incentives (such as landfill levy and financing of MSW separation at source arrangements), this does not guarantee proper treatment or even an improvement in waste management. The key to success is first and foremost a suitable infrastructure that will enable achievement of the desired results.

  7. Dry anaerobic digestion of the organic fraction of municipal solid waste

    NARCIS (Netherlands)

    Brummeler, ten E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so-

  8. A preliminary study of waste to energy potential of municipal solid waste in Havana

    International Nuclear Information System (INIS)

    Llanes, Junior Lorenzo; Kalogirou, Efstratios

    2017-01-01

    One of the challenges that must be face by a growing society is its waste management. This is crucial in the particular case of developing countries like Cuba. Waste to energy is a well-established technology for municipal solid waste (MSW) treatment. The aim of this work was to estimate the energetic potential of MSW in the city of Havana. An average low heating value (LHV) of 7.35 MJ/kg was estimated by applying different models. From the mass and energy balances, the emissions and the energy recovered for electricity generation were determined. Two steam turbine configurations (back – pressure and condensing) were designed by a rigorous method and later simulated in Aspen Plus simulator. The results showed that for a feeding rate of 49.5 tonh-1 of MSW it was possible to generate 257 GWh per year with an overall plant efficiency of 25.4% in a four-stage turbine. (author)

  9. Developments in, and environmental impacts of, electricity generation from municipal solid waste and landfill gas combustion

    International Nuclear Information System (INIS)

    Porteous, A.

    1993-01-01

    The 1991 NFFO allocations for renewable energy generation are reviewed with emphasis on electricity from municipal solid waste (MSW) and landfill gas (LFG) combustion tranches. The implications of materials recovery on the calorific value of MSW are considered, as are the environmental impacts of both MSW and LFG combustion with special reference to air pollutant emissions. The performance and economics of state of the art incineration and LFG power generating plants are examined. It is shown that energy recovery from these wastes can be both cost effective and environmentally desirable. (Author)

  10. Solid Waste Biodegradation Enhancements and the Evaluation of Analytical Methods Used to Predict Waste Stability

    OpenAIRE

    Kelly, Ryan J.

    2002-01-01

    Conventional landfills are built to dispose of the increasing amount of municipal solid waste (MSW) generated each year. A relatively new type of landfill, called a bioreactor landfill, is designed to optimize the biodegradation of the contained waste to stabilized products. Landfills with stabilized waste pose little threat to the environment from ozone depleting gases and groundwater contamination. Limited research has been done to determine the importance of biodegradation enhancement tech...

  11. Sustainable recycling of municipal solid waste in developing countries

    International Nuclear Information System (INIS)

    Troschinetz, Alexis M.; Mihelcic, James R.

    2009-01-01

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors

  12. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  13. Innovative landfill bioreactor systems for municipal solid waste treatment in East Africa aimed at optimal energy recovery and minimal greenhouse gas emissions

    NARCIS (Netherlands)

    Salukele, F.M.

    2013-01-01

    Landfilling is currently the dominant disposal method for municipal solid waste (MSW) in developing countries. Approximately 50% of the MSW generated in East Africa is disposed in landfills. Low costs and availability of land have made landfilling the most common waste management option in East

  14. Is Municipal Solid Waste Recycling Economically Efficient?

    Science.gov (United States)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  15. Using life cycle assessment to address stakeholders' potential for improving municipal solid waste management.

    Science.gov (United States)

    de Andrade Junior, Milton Aurelio Uba; Zanghelini, Guillherme Marcelo; Soares, Sebastião Roberto

    2017-05-01

    Because the consumption of materials is generally higher than their recovery rate, improving municipal solid waste (MSW) management is fundamental for increasing the efficiency of natural resource use and consumption in urban areas. More broadly, the characteristics of a MSW management system influence the end-of-life (EOL) impacts of goods consumed by households. We aim to indicate the extent to which greenhouse gas emissions from a MSW management system can be reduced by increasing waste paper recycling. We also address the stakeholders' contribution for driving transition towards an improved scenario. Life cycle assessment (LCA) addresses the EOL impacts of the paper industry, driven by the characteristics of MSW management in Florianópolis, Brazil, by varying the level of stakeholders' commitment through different recycling scenarios. The results show that 41% of the climate change impacts from waste paper management could be reduced when increasing the waste paper recycling rates and reducing waste paper landfilling. To achieve such emissions reduction, the industry contribution to the MSW management system would have to increase from 17% in the business-as-usual scenario to 74% in the target scenario. We were able to measure the differences in stakeholders' contribution by modelling the MSW management system processes that are under the industry's responsibility separately from the processes that are under the government's responsibility, based on the Brazilian legal framework. The conclusions indicate that LCA can be used to support policy directions on reducing the impacts of MSW management by increasing resource recovery towards a circular economy.

  16. Data summary of municipal solid waste management alternatives. Volume 1, Report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste`s origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  17. Municipal solid waste management for total resource recycling: a case study on Haulien County in Taiwan.

    Science.gov (United States)

    Chang, Yu-Min; Liu, Chien-Chung; Dai, Wen-Chien; Hu, Allen; Tseng, Chao-Heng; Chou, Chieh-Mei

    2013-01-01

    This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.

  18. Optimal planning for the sustainable utilization of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Santibañez-Aguilar, José Ezequiel [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Ponce-Ortega, José María, E-mail: jmponce@umich.mx [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Betzabe González-Campos, J. [Institute of Chemical and Biological Researches, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); Serna-González, Medardo [Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060 (Mexico); El-Halwagi, Mahmoud M. [Chemical Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Adjunct Faculty at the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589 (Saudi Arabia)

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  19. Optimal planning for the sustainable utilization of municipal solid waste

    International Nuclear Information System (INIS)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-01-01

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits

  20. Productive efficiency of public and private solid waste logistics and its implications for waste management policy

    Directory of Open Access Journals (Sweden)

    Daisuke Ichinose

    2013-03-01

    Full Text Available This paper measures the productive efficiency of municipal solid waste (MSW logistics by applying data envelopment analysis (DEA to cross-sectional data of prefectures in Japan. Either through public operations or by outsourcing to private waste collection operators, prefectural governments possess the fundamental authority over waste processing operations in Japan. Therefore, we estimate a multi-input multi-output production efficiency at the prefectural level via DEA, employing several different model settings. Our data classify the MSW into household solid waste (HSW and business solid waste (BSW collected by both private and public operators as separate outputs, while the numbers of trucks and workers used by private and public operators are used as inputs. The results consistently show that geographical characteristics, such as the number of inhabited remote islands, are relatively more dominant factors for determining inefficiency. While the implication that a minimum efficient scale is not achieved in these small islands is in line with the literature suggesting that waste logistics has increasing returns at the municipal level, our results indicate that waste collection efficiency in Japan is well described by CRS technology at the prefectural level. The results also show that prefectures with higher private-sector participation, measured in terms of HSW collection, are more efficient, whereas a higher private–labor ratio negatively affects efficiency. We also provide evidence that prefectures with inefficient MSW logistics have a higher tendency of suffering from the illegal dumping of industrial waste.

  1. Combustible and incombustible speciation of Cl and S in various components of municipal solid waste.

    Science.gov (United States)

    Watanabe, Nobuhisa; Yamamoto, Osamu; Sakai, Mamoru; Fukuyama, Johji

    2004-01-01

    Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.

  2. Energetic potential of the urban solid waste generated in the municipality Los Tanques, Venezuela

    International Nuclear Information System (INIS)

    Mustiola Mavares, Ana Carolina

    2011-01-01

    The large amount of solid waste (MSW) without use, incurred in the evaluation of the potential energy for the use of MSW, specifically organic matter processed in the Municipality's Taques, applying the technique of generation of biogas, in which used for measuring the fluid displacement method. The research is descriptive and explanatory, in the form pure experimental and documentary. Developed in four phases: Determination of MSW, determining the properties of MSW, MSW use and design of the unit for treatment and disposal of MSW. We determined the physicochemical characteristics of MSW, was selected anaerobic digestion technology to treat MSW. For inoculation were selected pig manure, 58.10% of methane in the biogas production in the laboratory also worked with a mixture of MSW, pig and goat manure. We selected a Chinese-type digester with a capacity of 316.024 m3 for the generation of 363.97 m3/day of biogas. Finally resulting in estimated costs for construction digester 263.330BsF. (author)

  3. Solid waste handling

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1995-01-01

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.)

  4. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes

    International Nuclear Information System (INIS)

    Ionescu, Gabriela; Rada, Elena Cristina; Ragazzi, Marco; Mărculescu, Cosmin; Badea, Adrian; Apostol, Tiberiu

    2013-01-01

    Highlights: • Appropriate solution for MSW management in new and future EU countries. • Decrease of landfill disposal applying an Integrated MSW approach. • Technological impediments and environmental assessment. - Abstract: In this paper an Integrated Municipal Solid Waste scenario model (IMSW-SM) with a potential practical application in the waste management sector is analyzed. The model takes into account quantification and characterization of Municipal Solid Waste (MSW) streams from different sources, selective collection (SC), advanced mechanical sorting, material recovery and advanced thermal treatment. The paper provides a unique chain of advanced waste pretreatment stages of fully commingled waste streams, leading to an original set of suggestions and future contributions to a sustainable IMSWS, taking into account real data and EU principles. The selection of the input data was made on MSW management real case studies from two European regions. Four scenarios were developed varying mainly SC strategies and thermal treatment options. The results offer useful directions for decision makers in order to calibrate modern strategies in different realities

  5. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  6. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  7. Possible global environmental impacts of solid waste practices

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.M.; Holter, G.M.; DeForest, T.J.; Stapp, D.C. [Pacific Northwest Lab., Richland, WA (United States); Dibari, J.C. [Heritage College, Toppenish, WA (United States)

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardous solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.

  8. Modern technologies of processing municipal solid waste: investing in the future

    Science.gov (United States)

    Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.

    2017-06-01

    The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.

  9. Municipal solid waste generation rates and its management at Yusmarg forest ecosystem, a tourist resort in Kashmir.

    Science.gov (United States)

    Bhat, Rouf Ahmad; Nazir, Rumisa; Ashraf, Samia; Ali, Mudasir; Bandh, Suhaib A; Kamili, Azra N

    2014-02-01

    The present study was carried out at Yusmarg, a forest ecosystem and tourist resort, in the Kashmir valley during 2012 with the objectives of determining the municipal solid waste (MSW) generation rates per capita and on a daily basis, and assessing the existing MSW system. It was estimated that daily generation of MSW at Yusmarg by tourists, as well as residents, was 107.74 kg; on average, the MSW generated at each site was about 36.48 kg/day. The per capita generation of MSW was highest (0.97 kg/person/day) at site 1 followed by 0.288 kg/person/day at site 2 and 0.201 kg/person/day at site 3, with an average per capita MSW generation rate of 0.484 kg/person/day. Manual segregation of the collected wastes showed that it comprised some recyclable, combustible, compostable and inert materials. Among the different waste categories, 56% of waste was recyclable materials, 29% was compostable wastes, 9% was combustible wastes and 6% was inert materials. The present study infers that MSW management in Yusmarg was inappropriate, and infrastructure, skilled manpower and a proper scientific disposal mechanism is lacking in the area. In order to conserve the forest wealth of the area there is a great need to focus on the solid waste problem of the tourist resort.

  10. Implication of heavy metals distribution for a municipal solid waste management system - a case study in Shanghai

    International Nuclear Information System (INIS)

    Zhang Hua; He Pinjing; Shao Liming

    2008-01-01

    Heavy metal contamination in municipal solid waste (MSW) is of increasing concern. The occurrence and distribution of heavy metals in MSW and their implications for the integrated MSW management system in mega-cities have been investigated by means of material flow analysis based on a case study of Shanghai in China. A good statistical basis was provided through a one-year monitoring program on the mass and metals composition of the waste from three MSW treatment facilities. The results showed that the main heavy metals in the MSW were Zn, Cr, Cu, and Pb (on average > 100 mg kg -1 ), followed by Ni, Cd, and Hg. The MSW contained higher levels of Cu and Ni in metals, Cr and Pb in plastics, and Pb and Zn in the inorganic fractions. Regardless of the sources, the statistically similar heavy metal contents in the organic fractions indicated that effective blending and diffusion of heavy metals had taken place throughout the MSW collection, transfer, transportation, and storage, leading to cross-contamination of the waste fractions. PU (composed of putrescible waste and miscellaneous indistinguishable particles) contributed the majority of the heavy metals to the MSW, followed by plastics, as a result of the predominance in the overall composition of PU and plastics rather than from differences in their heavy metal contents. Therefore, manual or mechanical separation of some significantly heavy metal-rich fractions alone is not sufficient to reduce the heavy metal contents in the MSW. Source separation of organic waste and the diversion of tailored inorganic waste such as hazardous components, construction and demolition waste, etc., are proposed to control the heavy metal contamination in MSW. For the mixed MSW management system, physicochemical fractionation to exclude particles containing high levels of heavy metals can be conducted

  11. Implication of heavy metals distribution for a municipal solid waste management system - a case study in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hua [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)], E-mail: solidwaste@mail.tongji.edu.cn; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2008-09-01

    Heavy metal contamination in municipal solid waste (MSW) is of increasing concern. The occurrence and distribution of heavy metals in MSW and their implications for the integrated MSW management system in mega-cities have been investigated by means of material flow analysis based on a case study of Shanghai in China. A good statistical basis was provided through a one-year monitoring program on the mass and metals composition of the waste from three MSW treatment facilities. The results showed that the main heavy metals in the MSW were Zn, Cr, Cu, and Pb (on average > 100 mg kg{sup -1}), followed by Ni, Cd, and Hg. The MSW contained higher levels of Cu and Ni in metals, Cr and Pb in plastics, and Pb and Zn in the inorganic fractions. Regardless of the sources, the statistically similar heavy metal contents in the organic fractions indicated that effective blending and diffusion of heavy metals had taken place throughout the MSW collection, transfer, transportation, and storage, leading to cross-contamination of the waste fractions. PU (composed of putrescible waste and miscellaneous indistinguishable particles) contributed the majority of the heavy metals to the MSW, followed by plastics, as a result of the predominance in the overall composition of PU and plastics rather than from differences in their heavy metal contents. Therefore, manual or mechanical separation of some significantly heavy metal-rich fractions alone is not sufficient to reduce the heavy metal contents in the MSW. Source separation of organic waste and the diversion of tailored inorganic waste such as hazardous components, construction and demolition waste, etc., are proposed to control the heavy metal contamination in MSW. For the mixed MSW management system, physicochemical fractionation to exclude particles containing high levels of heavy metals can be conducted.

  12. Data summary of municipal solid waste management alternatives. Volume I: report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  13. Leaching of nano-ZnO in municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sakallioglu, T.; Bakirdoven, M.; Temizel, I. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Demirel, B., E-mail: burak.demirel@boun.edu.tr [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Copty, N.K.; Onay, T.T.; Uyguner Demirel, C.S. [Institute of Environmental Sciences, Bogazici University, 34342 Istanbul (Turkey); Karanfil, T. [Environmental Engineering and Earth Science, Clemson University, Clemson, SC 29634 (United States)

    2016-11-05

    Highlights: • Leaching potential of 3 different types of nano-ZnO in real fresh MSW was investigated. • Batch tests were conducted at different pH, ionic strength and ZnO concentrations. • Most of the added nano-ZnO mass was retained within the solid waste matrix. • The pH and IS conditions did not significantly influence the leaching behavior of ZnO. • A kinetic particle deposition/detachment model was developed to analyze ZnO behavior. - Abstract: Despite widespread use of engineered nanomaterials (ENMs) in commercial products and their potential disposal in landfills, the fate of ENMs in solid waste environments are still not well understood. In this study, the leaching behavior of nano ZnO -one of the most used ENMs- in fresh municipal solid waste (MSW) was investigated. Batch reactors containing municipal solid waste samples were spiked with three different types of nano ZnO having different surface stabilization. The leaching of ZnO was examined under acidic, basic and elevated ionic strength (IS) conditions. The results of the 3-day batch tests showed that the percent of the added nano-ZnO mass retained within the solid waste matrix ranged between 80% and 93% on average for the three types of nano-ZnO tested. The pH and IS conditions did not significantly influence the leaching behavior of ZnO. To further analyze the behavior of ZnO in the MSW matrix, a kinetic particle deposition/detachment model was developed. The model was able to reproduce the main trends of the batch experiments. Reaction rate constants for the batch tests ranged from 0.01 to 0.4 1/hr, reflecting the rapid deposition of nano-ZnO within the MSW matrix.

  14. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  15. Solid waste study

    International Nuclear Information System (INIS)

    Ortiz, Paul G.

    1995-01-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ''Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel

  16. SOLID WASTE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    PAUL G. ORTIZ - COLEMAN RESEARCH CORP/COMPA INDUSTRIES

    1995-08-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ``Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel.

  17. Characterization of municipal solid waste from the main landfills of Havana city.

    Science.gov (United States)

    Espinosa Lloréns, Ma Del C; Torres, Matilde López; Alvarez, Haydee; Arrechea, Alexis Pellón; García, Jorge Alejandro; Aguirre, Susana Díaz; Fernández, Alejandro

    2008-01-01

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vías landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana.

  18. Characterization of municipal solid waste from the main landfills of Havana city

    International Nuclear Information System (INIS)

    Espinosa Llorens, Ma. del C; Lopez Torres, Matilde; Alvarez, Haydee; Pellon Arrechea, Alexis; Garcia, Jorge Alejandro; Diaz Aguirre, Susana; Fernandez, Alejandro

    2008-01-01

    The city of Havana, the political, administrative and cultural centre of Cuba, is also the centre of many of the economic activities of the nation: industries, services, scientific research and tourism. All of these activities contribute to the generation of municipal solid waste (MSW), which also impact other Cuban cities. Inadequate handling of waste and the lack of appropriate and efficient solutions for its final disposal and treatment increase the risk and possibility of contamination. The main difficulty in the development of a system of management of MSW lies in the lack of knowledge of the chemical composition of the waste that is generated in the country as a whole, and especially in Havana, where solid waste management decisions are made. The present study characterizes MSW in Havana city during 2004. The Calle 100, Guanabacoa and Ocho Vias landfills were selected for physical-chemical characterization of MSW, as they are the three biggest landfills in the city. A total of 16 indicators were measured, and weather conditions were recorded. As a result, the necessary information regarding the physical-chemical composition of the MSW became available for the first time in Cuba. The information is essential for making decisions regarding the management of waste and constitutes a valuable contribution to the Study on Integrated Management Plan of MSW in Havana

  19. Scenarios for biodegradable solid waste management and energy recovery in the 'A' Ward in Mumbai, India

    OpenAIRE

    Tellnes, Lars Gunnar Furelid

    2010-01-01

    Introduction. Mumbai is one of the most highly-populated cities in the world and the commercial capital of India. Every day, about 6500 tons of municipal solid waste (MSW) and 2500 tons of construction and demolition waste are generated. The collection efficiency in Mumbai is relatively high for an Indian city, but there is a paucity of space for landfilling.. With the introduction of the Municipal Solid Waste (Management & Handling) Rules, 2000, biodegradable wastes could not be landfilled w...

  20. Experimental Studies on Combustion Characteristics of Mixed Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    Fan Jiang; Zhonggang Pan; Shi Liu; Haigang Wang

    2003-01-01

    In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper,thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3~3.5 rain to burn out in FB, but in thermogravimetric analyzer, the time is 20~25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures.Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures,there was interference among the components during fluidized bed combustion.

  1. European trends in greenhouse gases emissions from integrated solid waste management.

    Science.gov (United States)

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  2. Models of municipal solid waste generation and collection costs applicable to all municipalities in Thailand

    Directory of Open Access Journals (Sweden)

    Chira Bureecam

    2015-08-01

    Full Text Available The aim of this paper is to identify and measure the variables which influence municipal solid waste (MSW generation and collection costs in Thai municipality. The empirical analysis is based on the information derived from a survey conducted in a sample size of 570 municipalities across the country. The results from the MSW generation model indicate that the population density, the household size and the size of municipality are the significant determinant of waste generation. Meanwhile, with regards to the MSW collection cost model, the results showed some existence of positive in the volume of MSW collected, population density, the distance between the center of municipality to the disposal site the hazardous sorting and the size of municipality whereas, there were no evidence of the frequency of collection and the ratio of recycled material to waste generation on cost.

  3. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  4. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2012-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of a SOFC is fed wherein...

  5. Municipal Solid Waste Composition Study of Selected Area in Gambang, Pahang

    Science.gov (United States)

    Mokhtar, Nadiah; Ishak, Wan Faizal Wan; Suraya Romali, Noor; Fatimah Che Osmi, Siti; Armi Abu Samah, Mohd

    2013-06-01

    The amount of municipal solid waste (MSW) generated continue to increase in response to rapid growth in population, change in life style and accelerated urbanization and industrialization process. The study on MSW is important in order to determine the composition further seeks an immediate remedy to minimize the waste generated at the early stage. As most of the MSW goes to the landfill or dumping sites, particularly in Malaysia, closure of filled-up landfill may become an alarm clock for an immediate action of proper solid waste management. This research aims to determine the waste composition generated from selected residential area at Gambang, Kuantan, Pahang which represent Old residential area (ORA), Intermediate residential area (IRA) and New residential area (NRA). The study was conducted by segregating and weighing solid waste in the residential area into 6 main components ie., food waste, paper, plastic, glass, metal and others. In a period of four weeks, samples from the residential unit were taken and analyzed. The MSW generation rates were recorded vary from 0.217 to 0.388 kg person-1day-1. Food waste has become the major solid waste component generated daily which mounted up to 50%. From this research, the result revealed that the recyclable composition of waste generated by residents have a potential to be reuse, recycle and reduce at the point sources.

  6. Municipal Solid Waste Composition Study of Selected Area in Gambang, Pahang

    International Nuclear Information System (INIS)

    Mokhtar, Nadiah; Romali, Noor Suraya; Osmi, Siti Fatimah Che; Ishak, Wan Faizal Wan; Samah, Mohd Armi Abu

    2013-01-01

    The amount of municipal solid waste (MSW) generated continue to increase in response to rapid growth in population, change in life style and accelerated urbanization and industrialization process. The study on MSW is important in order to determine the composition further seeks an immediate remedy to minimize the waste generated at the early stage. As most of the MSW goes to the landfill or dumping sites, particularly in Malaysia, closure of filled-up landfill may become an alarm clock for an immediate action of proper solid waste management. This research aims to determine the waste composition generated from selected residential area at Gambang, Kuantan, Pahang which represent Old residential area (ORA), Intermediate residential area (IRA) and New residential area (NRA). The study was conducted by segregating and weighing solid waste in the residential area into 6 main components ie., food waste, paper, plastic, glass, metal and others. In a period of four weeks, samples from the residential unit were taken and analyzed. The MSW generation rates were recorded vary from 0.217 to 0.388 kg person −1 day −1 . Food waste has become the major solid waste component generated daily which mounted up to 50%. From this research, the result revealed that the recyclable composition of waste generated by residents have a potential to be reuse, recycle and reduce at the point sources.

  7. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  8. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    International Nuclear Information System (INIS)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  9. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  10. Thermo-Catalytic Reforming of municipal solid waste.

    Science.gov (United States)

    Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas

    2017-10-01

    Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models

    International Nuclear Information System (INIS)

    Intharathirat, Rotchana; Abdul Salam, P.; Kumar, S.; Untong, Akarapong

    2015-01-01

    Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period

  12. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models

    Energy Technology Data Exchange (ETDEWEB)

    Intharathirat, Rotchana, E-mail: rotchana.in@gmail.com [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, KlongLuang, Pathumthani 12120 (Thailand); Abdul Salam, P., E-mail: salam@ait.ac.th [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, KlongLuang, Pathumthani 12120 (Thailand); Kumar, S., E-mail: kumar@ait.ac.th [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, KlongLuang, Pathumthani 12120 (Thailand); Untong, Akarapong, E-mail: akarapong_un@hotmail.com [School of Tourism Development, Maejo University, Chiangmai (Thailand)

    2015-05-15

    Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period.

  13. Integrated solid waste management of Scottsdale, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  14. Alternatives for solid waste management in Isfahan, Iran: a case study.

    Science.gov (United States)

    Abduli, Mohammed A; Tavakolli, Hossein; Azari, Ariandokht

    2013-05-01

    This articles presents the status of municipal solid waste (MSW) management practices in the city of Isfahan, Iran. It provides an overview of the generation, collection, separation, recycling and disposal of MSW. Field studies were carried out from 2009 to 2010. According to this study, the city generates about 399,000 metric tons of MSW per year, of which 72.5% is organic matter. In Isfahan more than 90% of the MSW is collected by official municipal forces and the other 10% is collected by informal collectors. About 70% of the MSW in Isfahan is composted to produce a humus material, 5% is rejected and 25% is stockpiled for future use as fuel in a waste-to-energy incineration plant. Non-compostable waste and other residues are landfilled. This investigation also includes an analysis of economic benefits that could be realized by implementing incineration and a discussion of the challenges confronted in Isfahan for implementing changes to the city's existing MSW management system. This article concludes with recommendations for improving the city's MSW management system.

  15. Integrated solid waste management in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.S. [CSI Resource Systems, Boston, MA (United States)

    1993-12-31

    The Japanese, through a combination of public policy, private market conditions, and geographic necessity, practice integrated municipal solid waste management as defined by the US Environmental Protection Agency. The Japanese have not defined a specific hierarchical preference for alternative waste management practices, i.e., waste reduction, reuse and recycling, combustion, composting, and landfill disposal. However, in marked contrast to the US approach, the Japanese system relies heavily on waste combustion, with and without energy recovery. {open_quotes}Discards{close_quotes}, as the term is used in this paper, refers to all materials considered used and spent by residential and commercial generators. That which is discarded (whether recyclable or nonrecyclable) by a municipality is referred to as MSW. This paper provides an overview of MSW management practices and private-sector recycling in Japan. Estimates of the total generation of residential and commercial discards and their disposition are also presented. Such an overview of Japanese practices can be used to assess the potential effectiveness of US integrated solid waste management programs. Of the estimated 61.3 to 72.1 million tons of residential and commercial discards generated in Japan during its 1989 fiscal year (April 1, 1989, through March 31, 1990), an estimated 55 to 64 percent was incinerated; 15 to 28 percent was recycled (only 2 to 3 percent through municipal recycling activities); less than 0.1 percent was composted or used as animal feed; and 17 to 20 percent was landfilled. Including ash disposal, 26 to 30 percent, by weight, of the gross discards were landfilled.

  16. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  17. An experimental method for designing the municipal solid waste biodrying

    International Nuclear Information System (INIS)

    Rada, E.C.; Politecnico Univ., Bucarest; Franzinelli, A.; Taiss, M.; Ragazzi, M.; Panaitescu, V.; Apostol, T.

    2005-01-01

    In the management of Municipal Solid Waste (MSW), in agreement with the new European directives concerning the valorization of materials and energy recovery, a recent approach based on a one-stream Biological Mechanical Treatment (BMT) is spreading as an alternative to the traditional two-stream approach. The bio-mechanical treatment of MSW is an increasing option either as a pre-treatment before land filling or as a pre-treatment before combustion. In the present paper an experimental method for designing the Municipal Solid Waste bio-drying is proposed. That means this paper deals with the option of energy recovery. The aim is to provide design criteria for bio-drying plants independent from the patents available in the sector [it

  18. Comparative analysis of municipal solid waste (MSW) composition ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology ... BB Babatunde, IF Vincent-Akpu, GN Woke, E Atarhinyo, UC Aharanwa, AF Green, O Isaac-Joe ... could have several benefits including resources recovery and energy generation.

  19. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions.

    Science.gov (United States)

    Lu, Jia-Wei; Zhang, Sukun; Hai, Jing; Lei, Ming

    2017-11-01

    With the rapid expansion of municipal solid waste (MSW) incineration, the applicability, technical status, and future improvement of MSW incineration attract much attention in China. This paper aims to be a sensible response, with the aid of a comparison between China and some representative developed regions including the EU, the U.S., Japan, South Korea, and Taiwan area. A large number of up-to-date data and information are collected to quantitatively and impartially support the comparison, which covers a wider range of key points including spatial distribution, temporal evolution, technologies, emissions, and perspectives. Analysis results show that MSW incineration is not an outdated choice; however, policy making should prevent the potentially insufficient utilization of MSW incinerators. The structure of MSW incineration technologies is changing in China. The ratio of plants using fluidized bed is decreasing due to various realistic reasons. Decision-makers would select suitable combustion technologies by comprehensive assessments, rather than just by costs. Air pollution control systems are improved with the implementation of China's new emission standard. However, MSW incineration in China is currently blamed for substandard emissions. The reasons include the particular elemental compositions of Chinese MSW, the lack of operating experience, deficient fund for compliance with the emission standard, and the lack of reliable supervisory measures. Some perspectives and suggestions from both technical and managerial aspects are given for the compliance with the emission standard. This paper can provide strategic enlightenments for MSW management in China and other developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Integrated solid waste management of Seattle, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  1. Integrated solid waste management of Sevierville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  2. Solid medical waste

    DEFF Research Database (Denmark)

    Udofia, Emilia Asuquo; Gulis, Gabriel; Fobil, Julius

    2017-01-01

    BACKGROUND: Solid medical waste (SMW) in households is perceived to pose minimal risks to the public compared to SMW generated from healthcare facilities. While waste from healthcare facilities is subject to recommended safety measures to minimize risks to human health and the environment, similar...... waste in households is often untreated and co-mingled with household waste which ends up in landfills and open dumps in many African countries. In Ghana, the management of this potentially hazardous waste stream at household and community level has not been widely reported. The objective of this study...... likely to report harm in the household (OR 2.75, 95%CI 1.15-6.54). CONCLUSION: The belief that one can be harmed by diseases associated with SMW influenced reporting rates in the study area. Disposal practices suggest the presence of unwanted medicines and sharps in the household waste stream conferring...

  3. Municipal solid waste source-separated collection in China: A comparative analysis

    International Nuclear Information System (INIS)

    Tai Jun; Zhang Weiqian; Che Yue; Feng Di

    2011-01-01

    A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

  4. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  5. Effects of biodrying process on municipal solid waste properties.

    Science.gov (United States)

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Characterization, quantification and management of China's municipal solid waste in spatiotemporal distributions: A review.

    Science.gov (United States)

    Gu, Binxian; Jiang, Suqin; Wang, Haikun; Wang, Zibo; Jia, Renfu; Yang, Jie; He, Sheng; Cheng, Rong

    2017-03-01

    Municipal Solid Waste (MSW) is a heterogeneous waste stream, which is harmful for human health and the ecological environment if it is not well managed. Based on results from different authors by analyzing the generation, physical components and management of MSW from different cities, this paper presents an overview of the temporal trends and spatial variation characterization of MSW generation and its physical components in China. Total MSW generation has increased from 31,320 thousand tons in 1980 to 178,602 thousand tons in 2014, and MSW generation per capita has also increased from 448.3g to 653.2g. The distribution of MSW generation is mostly concentrated in the coastal southeastern region, as well as large point sources of more than 200 thousand tons per year are mostly distributed in Jiangsu, Zhejiang, Shandong, Hebei and Guangdong provinces. The review shows that the largest proportion of food waste, plastics and paper is 61.2% (54.2-65.9%, 95% CI), 9.8% (7.2-14.0%, 95% CI), 9.6% (6.7-12.3%, 95% CI), respectively, in 2014; the best estimates of other waste were as follows: 3.1% textile, 2.1% glass, 1.1% metal, 1.8% wood and grass, 1.3% rubber and leather, 1.8% ceramic, 2.5% ash, 1.2% hazardous waste, and 4.5% miscellaneous. To better manage China's MSW, several possible and appropriate solutions (e.g., concentrating on key regions, intensifying source separation, promoting green lifestyle, and establishing specialized regulations and policies) should be adopted, which might facilitate the application of China's 13th Five, and identify gaps in our knowledge of MSW management subject. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Urban and Rural MSW Stream Characterization for Separate Collection Improvement

    Directory of Open Access Journals (Sweden)

    Simona Ciuta

    2015-01-01

    Full Text Available In the new legislation framework enacted by new member countries of the European Union (EU, the characterization of municipal solid waste (MSW represents an important instrument for local governments and sanitation operators in setting and achieving targets for waste recycling and recovery. This paper presents the results of a study conducted in accordance with the Romanian methodology for domestic wastes characterization ROMECOM, aiming to provide a proper basis for developing clear and realistic forecasts in current municipal waste management, based on MSW composition and generation rate. The analyzed MSW came both from areas where the waste is collected in mixed and separate ways, in urban and rural areas. The MSW composition by fraction is detailed for dense urban areas, urban areas, rural and touristic areas from Romania. Based on these results, the MSW composition was determined for the eight development regions in Romania, and a generation rate of 0.9·kgMSW inhabitant−1·day−1 for the urban region and 0.4·kgMSW inh−1·day−1 for the rural region was established. The calorific values of urban and rural areas were determined as 6801 kJ·kg−1 and 5613 kJ·kg−1, respectively. In the perspective of sustainable development in this technical area, based on the obtained results and on the prognosis made for the following years, two proposals for urban and rural areas were developed for MSW treating options improvement. The two systems are characterized by selective collection (different efficiencies for urban and rural areas with subsequent recovery of the separated materials and energy recovery of the residual waste in a large-scale waste to energy (WTE plant.

  8. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    International Nuclear Information System (INIS)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-01-01

    Highlights: ► Residential waste diversion initiatives are more successful with organic waste. ► Using a incineration to manage part of the waste is better environmentally. ► Incineration leads to more power plant emission offsets. ► Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  9. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  10. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits......-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese...

  11. Solid waste management: an overview

    International Nuclear Information System (INIS)

    Ayoub, G.M.

    1995-01-01

    The source, effect and characterization of solid wastes are discussed. Constituents of municipal solid wastes and a comparative compositions of municipal solid waste with some data on Lebanon are given. Collection, transport and processing practices are next introduced. Finally treatment and disposal techniques are presented with emphasis on the solid waste as energy source and as material source. Methods of recycling are evaluated in respect with their environmental impact. 7 refs. 2 tabs

  12. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    Science.gov (United States)

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sequential batch anaerobic composting (SEBAC sup TM ) of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, D.P.; O' Keefe, D.M.; Barkdoll, A.W.; Owens, J.M. (Department of Agricultural Engineering, University of Florida, Gainesville, Florida (US)); Legrand, R. (Radian Corporation, Austin, Texas (US))

    1992-01-01

    Anaerobic high-solids digestion (anaerobic composting) is an attractive option for treatment of organic wastes. The main advantages of anaerobic composting are the lack of aeration requirements and production of methane. An anaerobic composting design, sequential batch anaerobic composting (SEBAC{sup TM}), has been developed and demonstrated at the pilot scale which has proven to be stable and effective for treatment of the non-yeard waste and yard waste organic fractions of municipal solid waste (MSW). The design employs leachate recycle for wetting, inoculation, and removal of volatile organic acids during startup. Performance is similar to that of other designs requiring heavy solids inoculation and mixing and which do not have a mechanism for volatile organic acid removal during imbalance. (au) (12 refs.).

  14. Characterization of the constitutive behavior of municipal solid waste considering particle compressibility.

    Science.gov (United States)

    Lü, Xilin; Zhai, Xinle; Huang, Maosong

    2017-11-01

    This paper presents a characterization of the mechanical behavior of municipal solid waste (MSW) under consolidated drained and undrained triaxial conditions. The constitutive model was established based on a deviatoric hardening plasticity model. A power form function and incremental hyperbolic form function were proposed to describe the shear strength and the hardening role of MSW. The stress ratio that corresponds to the zero dilatancy was not fixed but depended on mean stress, making the Rowe's rule be able to describe the stress-dilatancy of MSW. A pore water pressure reduction coefficient, which attributed to the compressibility of a particle and the solid matrix, was introduced to the effective stress formulation to modify the Terzaghi's principle. The effects of particle compressibility and solid matrix compressibility on the undrained behavior of MSW were analyzed by parametric analysis, and the changing characteristic of stress-path, stress-strain, and pore-water pressure were obtained. The applicability of the proposed model on MSW under drained and undrained conditions was verified by model predictions of three triaxial tests. The comparison between model simulations and experiments indicated that the proposed model can capture the observed different characteristics of MSW response from normal soil, such as nonlinear shear strength, pressure dependent stress dilatancy, and the reduced value of pore water pressure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Assessment of Power Generation Potential from Municipal Solid Wastes: A Case Study of Hyderabad City, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Safar Korai

    2014-06-01

    Full Text Available This paper is an attempt to estimate the power generation potential through utilization of municipal solid waste (MSW in order to overcome energy crisis, faced by country now a days. The waste-to-energy has proven itself to be an environment friendly solution for the disposal of municipal solid waste. Representative samples of the MSW were collected from the open dumping sites of solid wastes and analyzed for calorific value by using a Bomb Calorimeter in the laboratory. Net and gross calorific value of mixed MSW were obtained as 6519 & 6749 kcal/kg, respectively. Based upon its calorific value, net power generation was estimated as 1512 kWh per ton of MSW generated. This shows that MSW generated in the study area is more suitable for thermal treatment process. In this regard, different thermal treatment technologies have been compared with respect to various parameters and mass burn incinerator is found suitable for generation of power. This technology for conversion of MSW into power generation would not only be beneficial to meet the power demand but also reduce the environmental pollution to certain extent.

  16. Advanced characterisation of municipal solid waste ashes

    Energy Technology Data Exchange (ETDEWEB)

    Skytte Pedersen, Randi

    2002-12-15

    This report deals with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant Maebjergvaerket, Holstebro. MSW has been used as a fuel since the mid 1960's and since then, the MSW incineration plants have experienced operational problems due to deposit formation and corrosion. Inorganic elements tightly or loosely bound in the waste are the main cause of these problems. The tightly bound elements will mainly stay on the grate during combustion, whereas the loosely bound elements are volatilised and recondensed elsewhere in the furnace. Many of the heavy metals form volatile chlorides during the incineration, and the fly ash fraction thus show enrichment in these elements. Presence of chlorides and heavy metals in deposits may cause severe corrosion due to formation of low-melting eutectics. Chlorine gas in the flue gas is also of major concern with respect to corrosion, due to formation of volatile chlorides when chlorine comes in contact with the tube material. Four different ash fractions (bottom ash, super heater ash, economiser ash and fly ash) taken from Maebjergvaerket have been analysed with respect to particle sizes, structures, shapes and composition. The applied methods were scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX) and mapping, which were used in order to determine sizes, chemical composition and structure of the particles. X-ray powder diffraction (XRD) was used to provide information about crystallography and mineral phases. Chemical analysis was also performed along with a particle size distribution for the fine-grained fractions (economiser and fly ash). The amount of silicates consisting of Ca, Al and Si, were found to decrease through the furnace, whereas the amount of alkali (Na, K) chlorides and heavy metals (Pb, Zn) increased. The bonding in the waste before incineration is the direct cause of this, since silicates are tightly bound and chlorides are loosely bound. There was a

  17. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    Science.gov (United States)

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Predicting the calorific value of refuse derived fuel from the characteristics of municipal solid waste

    International Nuclear Information System (INIS)

    Sivapalan Kathiravale; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Mohamad Azman Che Mat Isa; Mohd Fairus Abdul Farid; Norasalwa Zakaria; Khaironie Mohd Takip; Rohyiza Ba'an

    2006-01-01

    The Imposing need to manage the municipal solid waste generated by society in a proper manner has urged municipalities to look into new management methods, which are not only environmentally friendly but also economically profitable. One such way is by converting this waste material into fuel. Currently, Kajang in the State of Selangor, Malaysia, generates about 700 tons of Municipal Solid Waste (MSW) a day. Due to rapid development, lack of land area for new landfill and the environmental impact of raw landfills, the local municipal council has collaborated with a local company in the management of this waste. The company has proposed to convert the MSW to Refuse Derived Fuel (RDF). In view of this, a pilot plant to convert MSW to RDF was erected by the company and begun operation in January 2002. This pilot plant has the capability of converting 15 tons of MSW to 5 tons of RDF. At the same time studies, have been carried out to assess the plant performance, the flue gas analysis, and also the MSW and RDF characteristic. This paper will highlight the findings of the MSW and RDF characterization work carried out over the past year. Sampling and analysis was carried in accordance with ASTM standards. Results of the waste analysis showed that the calorific value of the resulting RDF could be predicted from the physical characteristics as well as the moisture content. Regression analysis on the available data has been used to create equations relating the proximate composition and moisture content of the incoming municipal solid waste to the calorific value of the RDF

  19. Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City

    Directory of Open Access Journals (Sweden)

    K. M. Nazmul Islam

    2016-01-01

    Full Text Available Increased generation of methane (CH4 from municipal solid wastes (MSW alarms the world to take proper initiative for the sustainable management of MSW, because it is 34 times stronger than carbon dioxide (CO2. Mounting land scarcity issue around the world brands the waste to energy (WtE strategy for MSW management in urban areas as a promising option, because WtE not only reduces the land pressure problem, but also generates electricity, heat, and green jobs. The goal of this study is to evaluate the renewable electricity generation potential and associated carbon reduction of MSW management in Bangladesh using WtE strategies. The study is conducted in two major cities of Bangladesh: Dhaka and Chittagong. Six different WtE scenarios are evaluated consisting of mixed MSW incineration and landfill gas (LFG recovery system. Energy potential of different WtE strategy is assessed using standard energy conversion model and subsequent GHGs emissions models. Scenario A1 results in highest economic and energy potential and net negative GHGs emission. Sensitivity analysis by varying MSW moisture content reveals higher energy potential and less GHGs emissions from MSW possessing low moisture content. The study proposes mixed MSW incineration that could be a potential WtE strategy for renewable electricity generation in Bangladesh.

  20. Socio-technical systems analysis of waste to energy from municipal solid waste in developing economies: a case for Nigeria

    Directory of Open Access Journals (Sweden)

    Iyamu Hope O.

    2017-01-01

    Full Text Available Waste generation is an inevitable by-product of human activity, and it is on the rise due to rapid urbanisation, industrialisation, increased wealth and population. The composition of municipal solid waste (MSW in developed and developing economies differ, especially with the organic fraction. Research shows that the food waste stream of MSW in developing countries is over 50%. The case study for this investigation, Nigeria, has minimal formal recycling or resource recovery programs. The average composition of waste from previous research in the country is between 50–70% putrescible and 30–50% non-putrescible, presenting significant resource recovery potential in composting and biogas production. Waste-to-energy (WtE is an important waste management solution that has been successfully implemented and operated in most developed economies. This contribution reports the conditions that would be of interest before WtE potentials of MSW is harnessed, in an efficient waste management process in a developing economy like Nigeria. The investigation presents a set of socio-technical parameters and transition strategy model that would inform a productive MSW management and resource recovery, in which WtE can be part of the solution. This model will find application in the understanding of the interactions between the socio-economic, technical and environmental system, to promote sustainable resource recovery programs in developing economies, among which is WtE.

  1. Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression.

    Science.gov (United States)

    Abdulredha, Muhammad; Al Khaddar, Rafid; Jordan, David; Kot, Patryk; Abdulridha, Ali; Hashim, Khalid

    2018-04-26

    Major-religious festivals hosted in the city of Kerbala, Iraq, annually generate large quantities of Municipal Solid Waste (MSW) which negatively impacts the environment and human health when poorly managed. The hospitality sector, specifically hotels, is one of the major sources of MSW generated during these festivals. Because it is essential to establish a proper waste management system for such festivals, accurate information regarding MSW generation is required. This study therefore investigated the rate of production of MSW from hotels in Kerbala during major festivals. A field questionnaire survey was conducted with 150 hotels during the Arba'een festival, one of the largest festivals in the world, attended by about 18 million participants, to identify how much MSW is produced and what features of hotels impact on this. Hotel managers responded to questions regarding features of the hotel such as size (Hs), expenditure (Hex), area (Ha) and number of staff (Hst). An on-site audit was also carried out with all participating hotels to estimate the mass of MSW generated from these hotels. The results indicate that MSW produced by hotels varies widely. In general, it was found that each hotel guest produces an estimated 0.89 kg of MSW per day. However, this figure varies according to the hotels' rating. Average rates of MSW production from one and four star hotels were 0.83 and 1.22 kg per guest per day, respectively. Statistically, it was found that the relationship between MSW production and hotel features can be modelled with an R 2 of 0.799, where the influence of hotel feature on MSW production followed the order Hs > Hex > Hst. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case

    International Nuclear Information System (INIS)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-01-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N 2 O emission factors from MSW incineration plants, and calculate the N 2 O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N 2 O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N 2 O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N 2 O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N 2 O emissions from MSW incineration comprised 19% of the total N 2 O emissions.

  3. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment.

    Science.gov (United States)

    Zhang, Xiaodong; Huang, Gordon

    2014-03-15

    Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.

    Science.gov (United States)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N(2)O emission factors from MSW incineration plants, and calculate the N(2)O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N(2)O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N(2)O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153g-N(2)O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N(2)O emissions from MSW incineration comprised 19% of the total N(2)O emissions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Critical evaluation of municipal solid waste composting and potential compost markets.

    Science.gov (United States)

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  6. Modelling of a combustion process for the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Rohyiza Ba'an Sivapalan Kathiravale Mohamad Puad Abu Muhd Noor Muhd Yunus

    2005-01-01

    Municipal Solid Waste (MSW) in Malaysia is increasing rapidly with increase in the population and economic growth. Landfill capacity required to accommodate the generated waste is anticipated to exceed 20,000 tons per day by year 2020. The current management system of solely depending on landfill disposal is inadequate and calls for a more environmentally friendly management system, which include the prospects of an eco park. To understand the combustion process, the development of mathematical model based on waste characteristic is required. Hence this paper will present the mathematical model developed to predict the mass and heat balance for MSW combustion process. This results of this mathematical model will be compared against the actual combustion of MSW in Thermal Oxidation Plant, so that the accuracy of the developed model can be determined accordingly. (Author)

  7. Municipal solid waste management: A bibliography of US Department of Energy contractor report through 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-09-01

    U.S. Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 516,000 metric tons (567,000 tons) of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US DOE. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

  8. Analysis of Indirect Emissions Benefits of Wind, Landfill Gas, and Municipal Solid Waste Generation

    Science.gov (United States)

    Techniques are introduced to calculate the hourly indirect emissions benefits of three types of green power resources: wind energy, municipal solid waste (MSW) combustion, and landfill gas (LFG) combustion. These techniques are applied to each of the U.S. EPA's eGRID subregions i...

  9. Regional integrated solid waste management: an optimization model for northern Lebanon

    International Nuclear Information System (INIS)

    Abou Najm, M.; El Fadel, M.; El-Taha, M.; Ayoub, G.; Al-Awar

    2000-01-01

    Full text.Increased environmental concerns and the emphasis on material and energy recovery are gradually changing the orientation of municipal solid waste (MSW) management and planning. In this context, the application of optimization techniques have been introduced to design the least cost solid waste management systems, considering the variety of management processes (recycling, composting, anaerobic digestion, incineration and land filling) and the existence of uncertainties associated with the number of system components and their interrelations. This study presents a model that was developed and applied to serve as a solid socio-economic and environmental considerations. The model accounts for solid waste generation rates, composition, collection, treatment, disposal as well as potential environmental impacts of various MSW management techniques. The model follows a linear programming formulation with the framework of dynamic optimization. The model can serve as a tool to evaluate various MSW management alternatives and obtain the optimal combination of technologies for the handling, treatment and disposal of MSW in an economic and environmentally sustainable way. The sensitivity of various waste management policies is also addressed. Finally, the region of Northern Lebanon was considered as a case study with data collected for the year 2000, to demonstrate the applicability of the model

  10. Theoretical analysis of municipal solid waste treatment by leachate recirculation under anaerobic and aerobic conditions

    NARCIS (Netherlands)

    van Turnhout, A.G.; Brandstätter, Christian; Kleerebezem, R.; Fellner, Johann; Heimovaara, T.J.

    2018-01-01

    Long-term emissions of Municipal Solid Waste (MSW) landfills are a burden for future generations because of the required long-term aftercare. To shorten aftercare, treatment methods have to be developed that reduce long-term emissions. A treatment method that reduces emissions at a lysimeter

  11. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  12. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Municipal Solid Waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by th eir use it is possible to reduce the waste...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification......, waste is subject to chemical treatments through air or/and steam utilization; the result is a synthesis gas, called “Syngas” which is principally composed of hydrogen and carbon monoxide. Traces of hydrogen sulfide could also be present which can easily be separated in a desulfurization reactor...

  13. Effects of the opening of the Qinghai-Tibet Railway on municipal solid waste management generation in Lhasa.

    Science.gov (United States)

    Ding, Xu-Tong; Wang, Ji-Hua

    2018-03-01

    Lhasa, the capital of Tibet, is located on the Tibetan Plateau. Accelerated economic development and flourishing tourism resulting from the opening of the Qinghai-Tibet Railway (QTR) have increased solid waste generation and contamination in recent years. Using data from Lhasa Statistical Yearbooks and previous studies, this study estimates the future population of permanent residents and tourists using the least squares method to extrapolate the population from 2015-2025, and evaluates the effects of the QTR on municipal solid waste (MSW) generation in Lhasa and estimates future MSW generation. There were approximately 1.35 million tourists in 2008 when the QTR had been operating for 2 years and MSW generation was approximately 470 tons per day. The amount of MSW generated increased dramatically with time after opening the QTR. This study estimates that MSW generation will reach 962 tons per day in 2025. Due to the existence of the QTR, increasing numbers of people are traveling to Lhasa, and tourism has driven the development of the local economy. During the studies, the proportion of MSW produced by tourists increased from 2.99% to 20.06%, and it is estimated that it will increase to 33.49% in 2025. If the current trend continues, Lhasa will face significant challenges from garbage disposal. This study analyzes the current situation of urban garbage treatment in Lhasa, and it suggests several options for improvement to MSW generation, transportation equipment, disposal, and resource recycling.

  14. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Wei [School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Nankai District 300072 (China); Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300RA, Leiden (Netherlands)], E-mail: zhao@cml.leidenuniv.nl; Voet, Ester van der [Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300RA, Leiden (Netherlands); Zhang Yufeng [School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Nankai District 300072 (China); Huppes, Gjalt [Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300RA, Leiden (Netherlands)

    2009-02-15

    The environmental impacts of municipal solid waste (MSW) management have been highlighted in China, due to the continually increasing amount of MSW being generated and the limited capacity of waste treatment facilities. Of particular interest is greenhouse gas (GHG) mitigation, aided by the Kyoto Mechanisms. China is an important case study for this global issue; however, an analysis of the entire life cycle of MSW management on GHG emissions is not available for China. This study evaluates the current and possible patterns of MSW management with regard to GHG emissions, using life cycle assessment (LCA), based on the Tianjin case. We assess the baseline scenario, reflecting the existing MSW management system, as well as a set of alternative scenarios, five exploring waste treatment technology innovations and one exploring integrated MSW management, to quantitatively predict potentials of GHG mitigation for Tianjin. Additionally, a sensitivity analysis is used to investigate the influence of landfill gas (LFG) collection efficiency, recycling rate and methodological choice, especially allocation, on the outcomes. The results show GHG emissions from Tianjin's MSW management system amount to 467.34 Mg CO{sub 2} eq. per year, based on the treatment of MSW collected in the central districts in 2006, and the key issue is LFG released. The integrated MSW management scenario, combining different improvement options, shows the highest GHG mitigation potential. Given the limited financial support and the current waste management practice in Tianjin, LFG utilization scenario would be the preferred choice. The sensitivity analysis of recycling rate shows an approximately linear relation of inverse proportion between recycling rate and total GHG emissions. Kitchen waste composting makes a considerable contribution to total GHG emissions reduction. Allocation choices result in differences in total quantitative outcomes, but preference orders and contributions analysis are

  15. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of Tianjin, China

    International Nuclear Information System (INIS)

    Zhao Wei; Voet, Ester van der; Zhang Yufeng; Huppes, Gjalt

    2009-01-01

    The environmental impacts of municipal solid waste (MSW) management have been highlighted in China, due to the continually increasing amount of MSW being generated and the limited capacity of waste treatment facilities. Of particular interest is greenhouse gas (GHG) mitigation, aided by the Kyoto Mechanisms. China is an important case study for this global issue; however, an analysis of the entire life cycle of MSW management on GHG emissions is not available for China. This study evaluates the current and possible patterns of MSW management with regard to GHG emissions, using life cycle assessment (LCA), based on the Tianjin case. We assess the baseline scenario, reflecting the existing MSW management system, as well as a set of alternative scenarios, five exploring waste treatment technology innovations and one exploring integrated MSW management, to quantitatively predict potentials of GHG mitigation for Tianjin. Additionally, a sensitivity analysis is used to investigate the influence of landfill gas (LFG) collection efficiency, recycling rate and methodological choice, especially allocation, on the outcomes. The results show GHG emissions from Tianjin's MSW management system amount to 467.34 Mg CO 2 eq. per year, based on the treatment of MSW collected in the central districts in 2006, and the key issue is LFG released. The integrated MSW management scenario, combining different improvement options, shows the highest GHG mitigation potential. Given the limited financial support and the current waste management practice in Tianjin, LFG utilization scenario would be the preferred choice. The sensitivity analysis of recycling rate shows an approximately linear relation of inverse proportion between recycling rate and total GHG emissions. Kitchen waste composting makes a considerable contribution to total GHG emissions reduction. Allocation choices result in differences in total quantitative outcomes, but preference orders and contributions analysis are found to

  16. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia

    International Nuclear Information System (INIS)

    Tan, Sie Ting; Hashim, Haslenda; Lim, Jeng Shiun; Ho, Wai Shin; Lee, Chew Tin; Yan, Jinyue

    2014-01-01

    Highlights: • Feasibility study on the energy and GHG emission reduction for WtE strategies for municipal solid waste (MSW) in Malaysia. • Greenhouse gases (GHG) emissions from WtE strategies analysed using IPCC guideline. • Scenario analysis by comparison of different WtE strategies. • Impact of moisture content of MSW towards energy potential and GHG emission reduction. - Abstract: Ineffective waste management that involves dumping of waste in landfills may degrade valuable land resources and emit methane gas (CH 4 ), a more potent greenhouse gas than carbon dioxide (CO 2 ). The incineration of waste also emits polluted chemicals such as dioxin and particle. Therefore, from a solid waste management perspective, both landfilling and incineration practices pose challenges to the development of a green and sustainable future. Waste-to-energy (WtE) has become a promising strategy catering to these issues because the utilisation of waste reduces the amount of landfilled waste (overcoming land resource issues) while increasing renewable energy production. The goal of this paper is to evaluate the energy and carbon reduction potential in Malaysia for various WtE strategies for municipal solid waste (MSW). The material properties of the MSW, its energy conversion potential and subsequent greenhouse gases (GHG) emissions are analysed based on the chemical compositions and biogenic carbon fractions of the waste. The GHG emission reduction potential is also calculated by considering fossil fuel displacement and CH 4 avoidance from landfilling. In this paper, five different scenarios are analysed with results indicating a integration of landfill gas (LFG) recovery systems and waste incinerator as the major and minor WtE strategies shows the highest economical benefit with optimal GHG mitigation and energy potential. Sensitivity analysis on the effect of moisture content of MSW towards energy potential and GHG emissions are performed. These evaluations of Wt

  17. Solid waste containing method and solid waste container

    International Nuclear Information System (INIS)

    Sawai, Takeshi.

    1997-01-01

    Solid wastes are filled in a sealed vessel, and support spacers are inserted to the gap between the inner wall of a vessel main body and the solid wastes. The solid wastes comprise shorn pieces (crushed pieces) of spent fuel rod cladding tubes, radioactively contaminated metal pieces and miscellaneous solids pressed into a disk-like shape. The sealed vessel comprises, for example, a stainless steel. The solid wastes are filled while being stacked in a plurality of stages. A solidifying filler is filled into the gap between the inner wall and the solid wastes in the vessel main body by way of an upper opening, and the upper opening is closed by a closing lid to provide an entirely sealed state. Alumina particles having high heat conductivity and excellent heat durability are used for the solid filler. It is preferable to fill an inert gas such as a dried nitrogen gas in the sealed vessel. (I.N.)

  18. Municipal Solid Waste Characterization according to Different Income Levels: A Case Study

    Directory of Open Access Journals (Sweden)

    Huseyin Kurtulus Ozcan

    2016-10-01

    Full Text Available Solid waste generation and characterization are some of the most important parameters which affect environmental sustainability. Municipal solid waste (MSW characterization depends on social structure and income levels. This study aims to determine the variations in waste components within MSW mass by income levels and seasonal conditions following the analysis conducted on the characterization of solid wastes produced in the Kartal district of the province of Istanbul, which is the research area of this study. To this end, 1.9 tons of solid waste samples were collected to represent four different lifestyles (high, medium, and low income levels, and downtown in the winter and summer periods, and characterization was made on these samples. In order to support waste characterization, humidity content and calorific value analyses were also conducted and various suggestions were brought towards waste management in line with the obtained findings. According to the results obtained in the study, organic waste had the highest rate of waste mass by 57.69%. Additionally, significant differences were found in municipal solid waste components (MSWC based on income level. Average moisture content (MC of solid waste samples was 71.1% in moisture analyses. The average of calorific (heating value (HHV was calculated as 2518.5 kcal·kg−1.

  19. Effect of intermediate soil cover on municipal solid waste decomposition.

    Science.gov (United States)

    Márquez-Benavides, L; Watson-Craik, I

    2003-01-01

    A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.

  20. Effect of initial bulk density on high-solids anaerobic digestion of MSW: General mechanism.

    Science.gov (United States)

    Caicedo, Luis M; Wang, Hongtao; Lu, Wenjing; De Clercq, Djavan; Liu, Yanjun; Xu, Sai; Ni, Zhe

    2017-06-01

    Initial bulk density (IBD) is an important variable in anaerobic digestion since it defines and optimizes the treatment capacity of a system. This study reveals the mechanism on how IBD might affect anaerobic digestion of waste. Four different IBD values: D 1 (500-700kgm -3 ), D 2 (900-1000kgm -3 ), D 3 (1100-1200kgm -3 ) and D 4 (1200-1400kgm -3 ) were set and tested over a period of 90days in simulated landfill reactors. The main variables affected by the IBD are the methane generation, saturation degree, extraction of organic matter, and the total population of methanogens. The study identified that IBD >1000kgm -3 may have significant effect on methane generation, either prolonging the lag time or completely inhibiting the process. This study provides a new understanding of the anaerobic digestion process in saturated high-solids systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  2. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co......Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery...

  3. The impact of a 50% reduction of solid waste disposal in Canada on methane emissions from landfills in 2000

    International Nuclear Information System (INIS)

    Patenaude, L.M.F.; Owen, G.T.; Barclay, J.A.

    1993-01-01

    Canada's Green Plan established a goal of 50% reduction in municipal solid waste (MSW) disposal between 1988 and the year 2000. Canada has also committed to stabilizing greenhouse gas emissions at 1990 levels by 2000. MSW landfills are targeted since they account for a significant portion of anthropogenic methane emissions. Current composition and quantities of MSW were estimated. Using five scenarios for achieving a 50% reduction of waste disposed, the quantities and composition of waste managed were estimated through to the year 2000. A first-order decay model was used to estimate methane emissions from landfills of each scenario by varying the methane generation potential (L o ) based on the amount of biodegradable carbon in the MSW stream. Despite the overall reduction in waste, methane emissions are still projected on increase between 1990 and 2000 for scenarios with 25 to 45% of waste going to landfill in 2000. The estimated increases in methane emissions range from 2% for the high composting scenario to 16% for the high landfill scenario. In general, emissions peak during the 1990's and are decreasing by 2000. The projected increase in emissions is due to the 65--75% contribution of MSW landfilled before 1990. In conclusion, a significant reduction in methane emissions from landfills by 2000 will require methane recovery systems in addition to MSW reduction initiatives

  4. An empirical model for prediction of household solid waste generation rate - A case study of Dhanbad, India.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-10-01

    Accurate prediction of the quantity of household solid waste generation is very much essential for effective management of municipal solid waste (MSW). In actual practice, modelling methods are often found useful for precise prediction of MSW generation rate. In this study, two models have been proposed that established the relationships between the household solid waste generation rate and the socioeconomic parameters, such as household size, total family income, education, occupation and fuel used in the kitchen. Multiple linear regression technique was applied to develop the two models, one for the prediction of biodegradable MSW generation rate and the other for non-biodegradable MSW generation rate for individual households of the city Dhanbad, India. The results of the two models showed that the coefficient of determinations (R 2 ) were 0.782 for biodegradable waste generation rate and 0.676 for non-biodegradable waste generation rate using the selected independent variables. The accuracy tests of the developed models showed convincing results, as the predicted values were very close to the observed values. Validation of the developed models with a new set of data indicated a good fit for actual prediction purpose with predicted R 2 values of 0.76 and 0.64 for biodegradable and non-biodegradable MSW generation rate respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  6. Methodology to design a municipal solid waste pre-collection system. A case study

    International Nuclear Information System (INIS)

    Gallardo, A.; Carlos, M.; Peris, M.; Colomer, F.J.

    2015-01-01

    Highlights: • MSW recovery starts at homes; therefore it is important to facilitate it to people. • Additionally, to optimize MSW collection a previous pre-collection must be planned. • A methodology to organize pre-collection considering several factors is presented. • The methodology has been verified applying it to a Spanish middle town. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consists in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the selective collection. To verify the methodology it has

  7. Characterisation of the physico-mechanical parameters of MSW.

    Science.gov (United States)

    Stoltz, Guillaume; Gourc, Jean-Pierre; Oxarango, Laurent

    2010-01-01

    Following the basics of soil mechanics, the physico-mechanical behaviour of municipal solid waste (MSW) can be defined through constitutive relationships which are expressed with respect to three physical parameters: the dry density, the porosity and the gravimetric liquid content. In order to take into account the complexity of MSW (grain size distribution and heterogeneity larger than for conventional soils), a special oedometer was designed to carry out laboratory experiments. This apparatus allowed a coupled measurement of physical parameters for MSW settlement under stress. The studied material was a typical sample of fresh MSW from a French landfill. The relevant physical parameters were measured using a gas pycnometer. Moreover, the compressibility of MSW was studied with respect to the initial gravimetric liquid content. Proposed methods to assess the set of three physical parameters allow a relevant understanding of the physico-mechanical behaviour of MSW under compression, specifically, the evolution of the limit liquid content. The present method can be extended to any type of MSW. 2010 Elsevier Ltd. All rights reserved.

  8. Removal of batteries from solid waste using trommel separation.

    Science.gov (United States)

    Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G

    2005-01-01

    This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.

  9. Municipal solid waste management in Lebanon: the need for an integrated approach

    International Nuclear Information System (INIS)

    Khoury, R.; El-Fadel, M.

    2000-01-01

    Full text.This study focuses on the management of municipal solid waste (MSW) in Lebanon. It addresses the current status of MSW management in Lebanon in terms of collection, transport and disposal, infers the associated impacts of such practices and discusses mitigation measures and finally proposes basic guidelines for a national strategy for solid waste management in the country. The study is based on available previous investigations and on a field survey of 113 villages in four different countries. The study revealed the absence of an effective environmental policy and poor collection and disposal methods throughout the country, except for the Greater Beirut Area (G A), where better solid waste management practices are employed. Although collection of MSW outside GBA was found to be acceptable by local authorities, resources (labor and equipment) were not used efficiently. Furthermore, treatment of collected waste is almost not available. Waste collected is invariably open dumped and /or open burned outside GBA. The poor quality of the services were reflected by the low budgets available in the solid waste sanitation departments of most surveyed villages. Unlike the situation outside the GBA a solid waste management component can be identified in the GBA. However, until recently, nearly 90 percent of the total waste generated in the GBA is being ultimately disposed of at the landfill. This raises into question the purpose of the sorting-processing-composting facilities as well as the recycling program. Apparently, the current waste management activities, particularly source reduction and recycling have not measured up favorably with the steps outlined in an integrated solid waste management system. The study concludes with a series of policy measures that can constitute the framework for a long-term strategy in order to implement an effective solid waste master plan in Lebanon

  10. Investigation of solid organic waste processing by oxidative pyrolysis

    Science.gov (United States)

    Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.

    2017-11-01

    A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.

  11. Municipal solid waste management challenges in developing countries - Kenyan case study

    International Nuclear Information System (INIS)

    Henry, Rotich K.; Zhao Yongsheng; Dong Jun

    2006-01-01

    This paper provides an overview of the state of municipal solid waste management (MSWM) by local authorities in Kenya as a case study of a low-income developing country. Approaches of possible solutions that can be undertaken to improve municipal solid waste (MSW) services are discussed. Poor economic growth (1.1% in 1993) has resulted in an increase in the poverty level which presently stands at 56%. Migration from the rural areas to the urban areas has resulted in unplanned settlements in suburban areas accommodating about 60% of the urban population on only 5% urban land area. Political interference also hampers smooth running of local authorities. Vulnerability of pollution of surface and groundwater is high because local authorities rarely considered environmental impact in siting MSW disposal sites. Illegal dumping of MSW on the river banks or on the roadside poses environmental and economic threats on nearby properties. Poor servicing of MSW collection vehicles, poor state of infrastructure and the lack of adequate funding militate against optimization of MSW disposal service. The rural economy needs to be improved if rural-urban migration is to be managed. Involvement of stakeholders is important to achieve any meaningful and sustainable MSWM. The role of the informal sector through community-based organizations (CBOs), Non-Governmental Organizations (NGOs) and the private sector in offering solutions towards improvement of MSWM also is explored

  12. Prediction of the compression ratio for municipal solid waste using decision tree.

    Science.gov (United States)

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  13. Recovery of ethanol from municipal solid waste

    International Nuclear Information System (INIS)

    Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

    1992-01-01

    Methods for disposal of MSW that reduce the potential for groundwater or air pollution will be essential in the near future. Seventy percent of MSW consists of paper, food waste, yard waste, wood and textiles. These lignocellulosic components may be hydrolyzed to sugars with mineral acids, and the sugars may be subsequently fermented to ethanol or other industrial chemicals. This chapter presents data on the hydrolysis of the lignocellulosic fraction of MSW with concentrated HC1 and the fermentation of the sugars to ethanol. Yields, kinetics, and rates are presented and discussed. Design and economic projections for a commercial facility to produce 20 MM gallons of ethanol per year are developed. Novel concepts to enhance the economics are discussed

  14. The prospects for methane recovery from the anaerobic digestion of municipal solid waste in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. (CPL Scientific Ltd., Newbury (GB))

    1990-01-01

    The availability, composition and energy output of municipal solid wastes (MSW) in the United Kingdom are considered. The sorting of MSW, the production of organic fractions and the technical aspects of their biological consolidation are examined. A description of anaerobic digestion activities and pilot and commercial scale plants in the United Kingdom, the European Communities and the USA is given. Finally,the potential for electricity generation from, and the co-products, by-products and cost of, the anaerobic digestion of MWS are summarized. It is concluded that, on the basis of the evidence available, there appears to be a good case for government support aimed at boosting the waste treatment industry's confidence in the anaerobic digestion of the organic fraction of MSW in fabricated systems. A programme of field trials and related research is recommended. (UK).

  15. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Directory of Open Access Journals (Sweden)

    Jairo F. Pereira

    2010-07-01

    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  16. Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Xingpeng Chen

    2014-12-01

    Full Text Available As the largest solid waste (SW generator in the world, China is facing serious pollution issues induced by increasing quantities of SW. The sustainability assessment of SW management is very important for designing relevant policy for further improving the overall efficiency of solid waste management (SWM. By focusing on industrial solid waste (ISW and municipal solid waste (MSW, the paper investigated the sustainability performance of SWM by applying decoupling analysis, and further identified the main drivers of SW change in China by adopting Logarithmic Mean Divisia Index (LMDI model. The results indicate that China has made a great achievement in SWM which was specifically expressed as the increase of ISW utilized amount and harmless disposal ratio of MSW, decrease of industrial solid waste discharged (ISWD, and absolute decoupling of ISWD from economic growth as well. However, China has a long way to go to achieve the goal of sustainable management of SW. The weak decoupling, even expansive negative decoupling of ISW generation and MSW disposal suggests that China needs timely technology innovation and rational institutional arrangement to reduce SW intensity from the source and promote classification and recycling. The factors of investment efficiency and technology are the main determinants of the decrease in SW, inversely, economic growth has increased SW discharge. The effects of investment intensity showed a volatile trend over time but eventually decreased SW discharged. Moreover, the factors of population and industrial structure slightly increased SW.

  17. Optimization of waste to energy routes through biochemical and thermochemical treatment options of municipal solid waste in Hyderabad, Pakistan

    International Nuclear Information System (INIS)

    Korai, Muhammad Safar; Mahar, Rasool Bux; Uqaili, Muhammad Aslam

    2016-01-01

    Highlights: • Existing practice of municipal solid waste management of Hyderabad city, Pakistan have been analyzed. • Development of scenarios on basis of nature of waste components for optimizing waste to energy route. • Analyzing the biochemical and thermochemical potential of MSW through various scenarios. • Evaluation of various treatment technologies under scenarios to optimize waste to energy route. - Abstract: Improper disposal of municipal solid waste (MSW) has created many environmental problems in Pakistan and the country is facing energy shortages as well. The present study evaluates the biochemical and thermochemical treatment options of MSW in order to address both the endemic environmental challenges and in part the energy shortage. According to the nature of waste components, a number of scenarios were developed to optimize the waste to energy (WTE) routes. The evaluation of treatment options has been performed by mathematical equations using the special characteristics of MSW. The power generation potential (PGP) of biochemical (anaerobic digestion) has been observed in the range of 5.9–11.3 kW/ton day under various scenarios. The PGP of Refuse Derived Fuel (RDF), Mass Burn Incinerator (MBI), Gasification/Pyrolysis (Gasi./Pyro.) and Plasma Arc Gasification (PAG) have been found to be in the range of 2.7–118.6 kW/ton day, 3.8–164.7 kW/ton day, 4.2–184.5 kW/ton day and 5.2–224 kW/ton day, respectively. The highest values of biochemical and all thermochemical technologies have been obtained through the use of scenarios including the putrescible components (PCs) of MSW such as food and yard wastes, and the non-biodegradable components (NBCs) of MSW such as plastic, rubber, leather, textile and wood respectively. Therefore, routes which include these components are the optimized WTE routes for maximum PGP by biochemical and thermochemical treatments of MSW. The findings of study lead to recommend that socio-economic and environmental

  18. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br [Department of Engineering and Technology, Federal University of Espírito Santo – UFES, Rodovia BR 101 Norte, Km 60, Bairro Litorâneo, São Mateus, ES, 29.932-540 (Brazil); Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br [Department of Engineering and Technology, Federal University of Espírito Santo – UFES, Rodovia BR 101 Norte, Km 60, Bairro Litorâneo, São Mateus, ES, 29.932-540 (Brazil); Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br [Transportation Engineering Programme, Federal University of Rio de Janeiro – UFRJ, Centro de Tecnologia, Bloco H, Sala 106, Cidade Universitária, Rio de Janeiro, 21949-900 (Brazil)

    2015-06-15

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  19. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    International Nuclear Information System (INIS)

    Ferri, Giovane Lopes; Diniz Chaves, Gisele de Lorena; Ribeiro, Glaydston Mattos

    2015-01-01

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  20. The impact of tourism on municipal solid waste generation: the case of Menorca Island (Spain).

    Science.gov (United States)

    Mateu-Sbert, Josep; Ricci-Cabello, Ignacio; Villalonga-Olives, Ester; Cabeza-Irigoyen, Elena

    2013-12-01

    Tourism can sustain high levels of employment and income, but the sector is a source of environmental and health impacts. One of the most important is the generation of municipal solid waste (MSW). However, there is a lack of studies which quantify how much the tourist population engages in total MSW and separately collected recyclables. The aim of this paper is to estimate the impact of the tourist population on MSW, both total and separately collected, for the period 1998-2010, for the Mediterranean island of Menorca (Spain). We use dynamic regressions models, including data for monthly stocks of tourists. The results show that, on average, a 1% increase in the tourist population in Menorca causes an overall MSW increase of 0.282% and one more tourist in Menorca generates 1.31 kg day(-1) (while one more resident generates 1.48 kg day(-1)). This result could be useful to better estimate the seasonal population of different regions, since intrannual fluctuation of MSW is used as a proxy measure of actual population (the sum of residents and tourists). Moreover, an increase of 1% in the tourist population causes an increase of 0.232% in separately collected recyclables and an additional tourist generates 0.160 kg day(-1). One resident selectively collects on average 47.3% more than one tourist. These results can help in the planning of waste infrastructure and waste collection services in tourist areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A review of national municipal solid waste generation assessments in the USA.

    Science.gov (United States)

    Tonjes, David J; Greene, Krista L

    2012-08-01

    Municipal solid waste (MSW) is generated in very large quantities (probably between 200 and 400 million tonnes per year) in the USA. MSW is generated at millions of places and there is no one precise, general definition for MSW that is generally applied-despite US Environmental Protection Agency efforts. As an element of both commerce and politics, reporting may be framed towards particular ends. Therefore, the two best known assessments of the quantity of US MSW production differ by approximately 50%. The assessors understand some of the reasons for the differences, but our analysis suggests that there are profound factors, not openly discussed, that affect estimates of waste stream size. Many regulators propose that strict, universal formats be adopted so that there is consistency in waste reporting; we note that this will not change the materials requiring management, only what is counted. Therefore, the most accurate assessments may be those where controllable errors are minimized but which suffer from differing definitions of 'MSW'.

  2. Experimental Investigation and Aspen Plus Simulation of the MSW Pyrolysis Process

    Science.gov (United States)

    Ansah, Emmanuel

    Municipal solid waste (MSW) is a potential feedstock for producing transportation fuels because it is readily available using an existing collection/transportation infrastructure and fees are provided by the suppliers or government agencies to treat MSW. North Carolina with a population of 9.4 millions generates 3.629 million metric tons of MSW each year, which contains about 113,396,356 TJs of energy. The average moisture content of MSW samples is 44.3% on a wet basis. About 77% of the dry MSW mass is combustible components including paper, organics, textile and plastics. The average heating values of MSW were 9.7, 17.5, and 22.7 MJ/kg on a wet basis, dry basis and dry combustible basis, respectively. The MSW generated in North Carolina can produce 7.619 million barrels of crude bio-oil or around 4% of total petroleum consumption in North Carolina. MSW can be thermally pyrolyzed into bio-oil in the absence of oxygen or air at a temperature of 500°C or above. As bio-oil can be easily stored and transported, compared to bulky MSW, landfill gas and electricity, pyrolysis offers significant logistical and economic advantages over landfilling and other thermal conversion processes such as combustion and gasification. Crude bio-oils produced from the pyrolysis of MSW can be further refined to transportation fuels in existing petroleum refinery facilities. The objective of this research is to analyze the technical and economic feasibility of pyrolyzing MSW into liquid transportation fuels. A combined thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC) instrument, which can serve as a micro-scale pyrolysis reactor, was used to simultaneously determine the degradation characteristics of MSW during pyrolysis. An ASPEN Plus-based mathematical model was further developed to analyze the technical and economic feasibility of pyrolysing of MSW into liquid transportation fuels in fixed bed reactors at varying operating conditions

  3. State of municipal solid waste management in Delhi, the capital of India

    International Nuclear Information System (INIS)

    Talyan, Vikash; Dahiya, R.P.; Sreekrishnan, T.R.

    2008-01-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000 tonnes/day of MSW, which is projected to rise to 17,000-25,000 tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW is collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system

  4. Life cycle assessment of solid waste management options for Eskisehir, Turkey

    International Nuclear Information System (INIS)

    Banar, Mufide; Cokaygil, Zerrin; Ozkan, Aysun

    2009-01-01

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management

  5. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Feng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sathitsuksanoh, Noppadon [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Thompson, Vicki S. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cafferty, Kara [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Li, Chenlin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Narani, Akash [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Pray, Todd R. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Singh, Seema [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  6. Exploring social dimensions of municipal solid waste management around the globe - A systematic literature review.

    Science.gov (United States)

    Ma, Jing; Hipel, Keith W

    2016-10-01

    Currently, municipal solid waste (MSW) is experiencing a massive increase in both the amount and composition throughout the world. Effective and efficient MSW management has been widely accepted as an emergent factor for future social development, which requires not only technical innovation, but also the involvement of all stakeholders as well as social, economic, and psychological components. On account of this reality, there is an urgent need for research related to the social dimensions of MSW management. In this paper, a systematic literature review was carried out to characterize and critically evaluate the published literature on the social dimensions of MSW management from 1980 to 2014 in terms of vulnerability, public participation, public attitude and behavior, and policy. A keyword search was first performed by using the Institute for Scientific Information (ISI) Web of Science, which retrieves 1843 documents. After removing the papers that were not closely related to the topic, 200 articles were retained for an in-depth review. In each category, major research issues and observations were summarized, and important insights were obtained. Besides compiling a related list of key references, the analysis results indicate that the global distribution of social dimensions reports on MSW management is inequitable and the research on the social dimensions of MSW management is insufficient, which may attract increased research interest and attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang

    2017-10-25

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.

  8. From Solid Waste to Energy.

    Science.gov (United States)

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  9. Electrodialytic remediation of solid waste

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...

  10. Municipal solid waste options : integrating organics management and residual disposal treatment : executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Cant, M. (comp.) [Totten Sims Hubicki Associates Ltd., Calgary, AB (Canada); Van der Werf, P. [2cg Inc., Edmonton, AB (Canada); Kelleher, M. [Kelleher Environmental, Toronto, ON (Canada); Merriman, D. [MacViro Consultants, Markham, ON (Canada); Fitcher, K. [Gartner Lee Ltd., Toronto, ON (Canada); MacDonald, N. [CH2M Hill Engineering Ltd., Calgary, AB (Canada)

    2006-04-15

    The Municipal Solid Waste (MSW) Options Report explored different MSW management options for 3 community sizes: 20,000, 80,000 and 200,0000 people. It was released at a time when many communities were developing waste management plans to cost-effectively reduce environmental impacts and conserve landfill capacity. The purpose of this report was to provide a greater understanding on the environmental, social, economic, energy recovery/utilization and greenhouse gas (GHG) considerations of MSW management. The report also demonstrated the interrelationships between the management of organics and residuals. It was based on information from existing waste diversion and organics management options and emerging residual treatment technology options. The following organics management and residual treatment disposal options were evaluated: composting; anaerobic digestion; sanitary landfills; bioreactor landfills; and thermal treatment. Composting was examined with reference to both source separated organics (SSO) and mixed waste composting. SSO refers to the separation of materials suitable for composting solid waste from households, while mixed waste composting refers to the manual or mechanical removal of recyclable material from the waste, including compost. The composting process was reviewed along with available technologies such as non-reactor windrow; aerated static pile; reactor enclosed channel; and, container tunnel. An evaluation of SSO and mixed waste composting was then presented in terms of environmental, social, financial and GHG impacts. refs., tabs., figs.

  11. Solid waste as an energy source

    International Nuclear Information System (INIS)

    Armenski, Slave

    2004-01-01

    The solid wastes as sources of heat and electrical energy were analysed. Typical structure of solid waste and organic products from: municipal solid wastes, industrial wastes and agricultural wastes for some developed countries are presented. Some dates of agricultural wastes for R. Macedonia are presented. The structure and percentage of organic products and energy content of solid wastes are estimated. The quantity of heat from solid wastes depending of the waste mass is presented. The heat quantity of some solid wastes component and the mixed municipal waste is presented. (Original)

  12. Solid Waste Management in Jordan

    OpenAIRE

    Aljaradin, Mohammad; Persson, Kenneth M

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced mi...

  13. Solid Waste Management in Jordan

    OpenAIRE

    Mohammad Aljaradin

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced migra...

  14. Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria

    International Nuclear Information System (INIS)

    Kofoworola, O.F.

    2007-01-01

    The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods clean have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested

  15. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  16. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  17. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    Science.gov (United States)

    Kong, Qingna; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill. PMID:28044139

  18. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.

    Science.gov (United States)

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  19. Bio-charcoal production from municipal organic solid wastes

    Science.gov (United States)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  20. Curbing dioxin emissions from municipal solid waste incineration in China: re-thinking about management policies and practices.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-09-01

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China

    International Nuclear Information System (INIS)

    Tang, YuTing; Ma, XiaoQian; Lai, ZhiYi; Chen, Yong

    2013-01-01

    The entire life cycle of a municipal solid waste (MSW) oxy-fuel incineration power plant was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impacts. The functional unit was 1000 kg (1 t) MSW. During the life cycle, the saving standard coal by electricity generation was more than diesel consumption, and the effect of soot and ashes was the greatest among all calculated categorization impacts. The total weighted resource consumption and total weighted environment potential of MSW oxy-fuel incineration were −0.37 mPR 90 (milli person equivalent) and −0.27 PET 2010 (person equivalent), better than MSW incineration with CO 2 capture via monoethanolamine (MEA) absorption. The sensitivity analysis showed that the electric power consumption of air separation unit (ASU) was the primary influencing parameter, and the influence of electric power consumption of CO 2 compressor was secondary, while transport distance had small influence. Overall, MSW oxy-fuel incineration technology has certain development potential with the increment of MSW power supply efficiency and development of ASU in the future. - Highlights: • Life cycle assessment of a MSW oxy-fuel incineration power plant is novel. • The MSW oxy-fuel incineration was better than the MSW incineration with MEA. • Among calculated impacts, the effect of soot and ashes was the greatest. • The electric power consumption of ASU was the primary influencing parameter

  2. A quantitative analysis of municipal solid waste disposal charges in China.

    Science.gov (United States)

    Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue

    2015-03-01

    Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.

  3. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  4. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh.

    Science.gov (United States)

    Islam, K M Nazmul

    2017-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Permeability and compression characteristics of municipal solid waste samples

    Science.gov (United States)

    Durmusoglu, Ertan; Sanchez, Itza M.; Corapcioglu, M. Yavuz

    2006-08-01

    Four series of laboratory tests were conducted to evaluate the permeability and compression characteristics of municipal solid waste (MSW) samples. While the two series of tests were conducted using a conventional small-scale consolidometer, the two others were conducted in a large-scale consolidometer specially constructed for this study. In each consolidometer, the MSW samples were tested at two different moisture contents, i.e., original moisture content and field capacity. A scale effect between the two consolidometers with different sizes was investigated. The tests were carried out on samples reconsolidated to pressures of 123, 246, and 369 kPa. Time settlement data gathered from each load increment were employed to plot strain versus log-time graphs. The data acquired from the compression tests were used to back calculate primary and secondary compression indices. The consolidometers were later adapted for permeability experiments. The values of indices and the coefficient of compressibility for the MSW samples tested were within a relatively narrow range despite the size of the consolidometer and the different moisture contents of the specimens tested. The values of the coefficient of permeability were within a band of two orders of magnitude (10-6-10-4 m/s). The data presented in this paper agreed very well with the data reported by previous researchers. It was concluded that the scale effect in the compression behavior was significant. However, there was usually no linear relationship between the results obtained in the tests.

  6. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  7. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste.

    Science.gov (United States)

    Zhang, Yuanyuan; Yue, Dongbei; Liu, Jianguo; Lu, Peng; Wang, Ying; Liu, Jing; Nie, Yongfeng

    2012-06-30

    Characteristics of non-methane organic compounds (NMOCs) emissions during the anaerobic decomposition of untreated (APD-0) and four aerobically pretreated (APD-20, APD-39, APD-49, and APD-63) samples of municipal solid waste (MSW) were investigated in laboratory. The cumulative mass of the NMOCs of APD-20, APD-39, APD-49, and APD-63 accounted for 15%, 9%, 16%, and 15% of that of APD-0, respectively. The intensities of the NMOC emissions calculated by dividing the cumulative NMOC emissions by the quantities of organic matter removed (Q(VS)) decreased from 4.1 mg/kg Q(VS) for APD-0 to 0.8-3.4 mg/kg Q(VS) for aerobically pretreated MSW. The lipid and starch contents might have significant impact on the intensity of the NMOC emissions. Alkanes dominated the NMOCs released from the aerobically pretreated MSW, while oxygenated compounds were the chief component of the NMOCs generated from untreated MSW. Aerobic pretreatment of MSW prior to landfilling reduces the organic content of the waste and the intensity of the NMOC emissions, and increases the odor threshold, thereby reducing the environmental impact of landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    Science.gov (United States)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  9. Solid waste electron beam treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1998-01-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  10. Solid waste electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1998-07-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g., cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  11. Solid wastes management in Lebanon

    International Nuclear Information System (INIS)

    Daniel, Simon E.

    1999-01-01

    The paper describes the problem of wastes in Lebanon and their management according to international (European and French) descriptions. It presents the situation in Lebanon including the policies taken by the ministry of environment towards the treatment of different types of wastes especially solid wastes. It is estimated that the production of wastes in Lebanon is 5854 tones per day and it is distributed as follows: Domestic wastes 3200 t/d; industrial wastes 1300 t/d; commercial wastes 1000 t/d; slaughter-houses 150 t/d; waste oils 100 t/d; hospital wastes 64 t/d; vehicle wheels 40 t/d. The annual production within regions is also presented in tables. Collection, transportation, recycling, composting and incineration of wastes are included

  12. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  13. Impact Of Aerobic Biostabilisation And Biodrying Process Of Municipal Solid Waste On Minimisation Of Waste Deposited In Landfills

    Directory of Open Access Journals (Sweden)

    Dziedzic Krzysztof

    2015-12-01

    Full Text Available The article discusses an innovative system used for aerobic biostabilisation and biological drying of solid municipal waste. A mechanical–biological process (MBT of municipal solid waste (MSW treatment were carried out and monitored in 5 bioreactors. A two-stage biological treatment process has been used in the investigation. In the first step an undersize fraction was subjected to the biological stabilisation for a period of 14 days as a result of which there was a decrease of loss on ignition, but not sufficient to fulfill the requirements of MBT technology. In the second stage of a biological treatment has been applied 7-days intensive bio-drying of MSW using sustained high temperatures in bioreactor. The article presents the results of the chemical composition analysis of the undersize fraction and waste after biological drying, and also the results of temperature changes, pH ratio, loss on ignition, moisture content, combustible and volatile matter content, heat of combustion and calorific value of wastes. The mass balance of the MBT of MSW with using the innovative aeration system showed that only 14.5% of waste need to be landfilled, 61.5% could be used for thermal treatment, and nearly 19% being lost in the process as CO2 and H2O.

  14. Municipal solid waste management in Phnom Penh, capital city of Cambodia.

    Science.gov (United States)

    Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko

    2011-05-01

    This paper presents an overview of municipal solid waste management (MSWM) for both technical and regulatory arrangements in the municipality of Phnom Penh (MPP), Cambodia. Problems with the current MSWM are identified, and challenges and recommendations for future improvement are also given in this paper. MPP is a small city with a total area of approximately 374 km(2) and an urban population of about 1.3 million in 2008. For the last 14 years, average annual municipal solid waste (MSW) generated in MPP has increased rapidly from 0.136 million tons in 1995 to 0.361 million tons in 2008. The gross generation rate of MSW per capita was 0.74 kg day(-1). However, the per capita household waste generation was 0.487 kg day(- 1). At 63.3%, food waste is the predominant portion of generated waste, followed by plastics (15.5%), grass and wood (6.8%), and paper and cardboard (6.4%). The remaining waste, including metals, glass, rubber/leather, textiles, and ceramic/ stone, accounted for less than 3%. Waste recycling through informal sectors is very active; recycled waste accounted for about 9.3% of all waste generated in 2003. Currently, the overall technical arrangement, including storage and discharge, collection and transport, and disposal, is still in poor condition, which leads to environmental and health risks. These problems should be solved by improving legislation, environmental education, solid waste management facilities, and management of the waste scavengers.

  15. RD & D priorities for energy production and resource conservation from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    This report identifies research, development, and demonstration (RD&D) needs and priorities associated with municipal solid waste (MSW) management technologies that conserve or produce energy or resources. The changing character of MSW waste management and the public`s heightened awareness of its real and perceived benefits and costs creates opportunities for RD&D in MSW technologies. Increased recycling, for example, creates new opportunities for energy, chemicals, and materials recovery. New technologies to control and monitor emissions from MSW combustion facilities are available for further improvement or application. Furthermore, emerging waste-to-energy technologies may offer environmental, economic, and other advantages. Given these developments, DOE identified a need to assess the RD&D needs and pdodties and carefully target RD&D efforts to help solve the carbon`s waste management problem and further the National Energy Strategy. This report presents such an assessment. It identifies and Documents RD&D needs and priorities in the broad area of MSW resource . recovery, focusing on efforts to make MSW management technologies commercially viable or to improve their commercial deployment over a 5 to l0 year period. Panels of technical experts identifies 279 RD&D needs in 12 technology areas, ranking about one-fifth of these needs as priorities. A ``Peer Review Group`` identified mass-burn combustion, ``systems studies,`` landfill gas, and ash utilization and disposal as high priority areas for RD&D based on cost and the impacts of further RD&D. The results of this assessment are intended to provide guidance to DOE concerning possible future RD&D projects.

  16. Solubility of heavy metals added to MSW

    International Nuclear Information System (INIS)

    Lo, H.M.; Lin, K.C.; Liu, M.H.; Pai, T.Z.; Lin, C.Y.; Liu, W.F.; Fang, G.C.; Lu, C.; Chiang, C.F.; Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C.

    2009-01-01

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO 3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K d (l g -1 ) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K d (l g -1 ) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions

  17. Solubility of heavy metals added to MSW

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H.M. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)], E-mail: hmlo@cyut.edu.tw; Lin, K.C. [Department of Occupational Safety and Health, Chung Shan Medical University, 110, Sec. 1, Jiangguo N. Rd., Taichung 402, Taiwan (China); Liu, M.H.; Pai, T.Z. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China); Lin, C.Y. [Department of Soil and Water Conservation, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Liu, W.F. [Department of Electronical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan (China); Fang, G.C. [Department of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Sha Lu, Taichung 433, Taiwan (China); Lu, C. [Department of Environmental Engineering, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Chiang, C.F. [Department of Health Risk Management, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)

    2009-01-15

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO{sub 3} and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K{sub d} (l g{sup -1}) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K{sub d} (l g{sup -1}) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.

  18. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  19. A Basic Accounting of Variation in Municipal Solid-Waste Generation at the County Level in Texas, 2006: Groundwork for Applying Metabolic-Rift Theory to Waste Generation

    Science.gov (United States)

    Clement, Matthew Thomas

    2009-01-01

    Environmental social scientists debate whether or not modern development reduces society's impact on the biosphere. The empirical research informing the discussion has not yet adequately examined the social determinants of municipal solid-waste (MSW) generation, an increasingly relevant issue, both ecologically and sociologically. A primary…

  20. Model predictive control as a tool for improving the process operation of MSW combustion plants

    International Nuclear Information System (INIS)

    Leskens, M.; Kessel, L.B.M. van; Bosgra, O.H.

    2005-01-01

    In this paper a feasibility study is presented on the application of the advanced control strategy called model predictive control (MPC) as a tool for obtaining improved process operation performance for municipal solid waste (MSW) combustion plants. The paper starts with a discussion of the operational objectives and control of such plants, from which a motivation follows for applying MPC to them. This is followed by a discussion on the basic idea behind this advanced control strategy. After that, an MPC-based combustion control system is proposed aimed at tackling a typical MSW combustion control problem and, using this proposed control system, an assessment is made of the improvement in performance that an MPC-based MSW combustion control system can provide in comparison to conventional MSW combustion control systems. This assessment is based on simulations using an experimentally obtained process and disturbance model of a real-life large-scale MSW combustion plant

  1. Municipal solid waste compost as a novel sorbent for antimony(V): adsorption and release trials at acidic pH.

    Science.gov (United States)

    Diquattro, Stefania; Garau, Giovanni; Lauro, Gian Paolo; Silvetti, Margherita; Deiana, Salvatore; Castaldi, Paola

    2018-02-01

    The ability of two municipal solid waste composts (MSW-Cs) to sorb antimony(V) in acidic conditions (pH 4.5) was investigated. Sorption isotherms and kinetics showed that both MSW-Cs could sorb antimony(V), even if in different amounts (~ 0.18 and 0.24 mmol g -1 of Sb(V) by MSW-C1 and MSW-C2, respectively). These differences were ascribed to the chemical composition of composts, as well as to the total acidity of their humic substances. The Sb(V) sorption by both MSW-Cs followed a pseudo-second-order kinetic model, while the sorption isotherms data fitted the Freundlich model better than the Langmuir one. The humic acids extracted from composts contributed to 4.26 and 8.24% of Sb(V) sorption by MSW-C1 and MSW-C2 respectively. SEM-EDX spectra of the MSW-C+Sb(V) systems showed a certain association of Ca(II) with Sb(V), while sequential extraction procedures indicated that more than 80% of the Sb(V) sorbed was strongly retained by MSW-Cs. On the other hand, treatment with oxalic acid at pH 4.5 favored the release of more than 98 and 65% of the Sb(V) sorbed by MSW-C1 and MSW-C2 respectively, supporting a possible role of calcium in Sb(V) retention. The results from this study suggest that MSW-Cs could be used as amendments for the in-situ immobilization of Sb(V) in acidic-polluted soils.

  2. Possible applications for municipal solid waste fly ash.

    Science.gov (United States)

    Ferreira, C; Ribeiro, A; Ottosen, L

    2003-01-31

    The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.

  3. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  4. Estimation of optimal biomass fraction measuring cycle formunicipal solid waste incineration facilities in Korea.

    Science.gov (United States)

    Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan

    2018-01-01

    This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, P

    1994-07-01

    US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.

  6. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    Science.gov (United States)

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  7. Energy recovery from municipal solid waste by refuse derived fuel production in Malaysia

    International Nuclear Information System (INIS)

    Sanaz Saheri; Noorezlin Ahmad Baseri; Masoud Aghajani Mir; Malmasi Saeed

    2010-01-01

    Energy recovery from municipal solid waste (MSW) is so beneficial both for the energy and for the positive environmental implications. Mainly related to the saving of primary energy derived from fossil fuel. Malaysia as a fast growing population country has the average amount of municipal solid waste (MSW) generated around 0.5-0.8 kg/person/day and it has been increased to 1.7 kg/person/day in major cities. Regarding characterization exercise, the main parts of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80 % of the waste by weight. Furthermore, the average moisture content of the MSW was about 55 %, making incineration a challenging mission. In addition waste sectors in Malaysia contributes to 1.3 million ton of CH 4 compare to total CH 4 emission which is 2.2 MT. In order to overcome waste problem considering other technical, environmental and economical methods seems to be necessarily. Resource recovery centers recovers the maximum proportion of recyclable and recoverable resources from the mixed municipal solid waste .The resource recovery process itself is one of the step-by-step segregation and elimination of all non-combustibles , and separation of the combustibles in the desired form of fuel for good combustion. Then, a further mechanical separation process converts combustible materials to refuse derived fuel (RDF) with moisture content between 20 and 30 % and an average calorific fuel value of about 3450 kcal/kg. So, the aim of this paper is taking into account resource recovery from waste using refuse derived fuel as a secondary resource with regarding advantages and disadvantages of this kind of energy production in Malaysia as a developing country. (author)

  8. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    Science.gov (United States)

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  9. The successful demonstration of aerobic landfilling. The potential for a more sustainable solid waste management approach?

    Energy Technology Data Exchange (ETDEWEB)

    Read, A.D. [School of Earth Science and Geography, Center for Environmental and Earth Science Research, Kingston University, Penrhyn Road, Surrey, KT1 2EE Kingston upon Thames (United Kingdom); Hudgins, M. [Environmental Control Systems Inc., Atlanta, GA (United States); Harper, S. [US Environmental Protection Agency, Region IV, Atlanta, GA (United States); Phillips, P. [School of Environmental Science, University College Northampton, Northampton (United Kingdom); Morris, J. [School of Law and Accountancy, University College Northampton, Northampton (United Kingdom)

    2001-06-01

    Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential, economic and environmental impacts to worldwide solid waste management practices.

  10. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    Science.gov (United States)

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mathematical modelling of MSW incineration in a packed bed

    DEFF Research Database (Denmark)

    Chen, Guanyi; Gu, Tianbao; He, Xiao

    2017-01-01

    Grate-firing is the most commonly used technology for municipal solid waste (MSW) incineration for heat and power generation, in which MSW undergoes thermochemical conversion (e.g., drying, devolatilization, char gasification and oxidation) in the fuel bed on the grate while the combustible gases...... and the entrained fine particles are further burned in the freeboard. Nevertheless, grate-firing generally needs to be improved in terms of efficiency and overall environmental impacts, in which computational fluid dynamics (CFD) modelling plays the vital role. In this paper, a comprehensive mathematical model...

  12. Viscosity of ashes from energy production and municipal solid waste handling: A comparative study between two different experimental setups

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming; Folkedahl, B.

    2008-01-01

    This paper discusses the viscosity characteristics of ash fractions produced from the co-combustion of coal and biomass in a pilot-scale pulverized fuel (PF) boiler and from the incineration of municipal solid waste (MSW) in a Danish incinerator that were determined using the high...

  13. Municipal solid waste conversion to transportation fuels: a life-cycle estimation of global warming potential and energy consumption

    DEFF Research Database (Denmark)

    Pressley, Phillip N.; Aziz, Tarek N.; DeCarolis, Joseph F.

    2014-01-01

    This paper utilizes life cycle assessment (LCA) methodology to evaluate the conversion of U.S. municipal solid waste (MSW) to liquid transportation fuels via gasification and Fischer-Tropsch (FT). The model estimates the cumulative energy demand and global warming potential (GWP) associated...

  14. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    OpenAIRE

    Gogina Elena; Pelipenko Alexey

    2016-01-01

    The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW), on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities,...

  15. Effects of prevailing conditions during second Palestinian uprising on solid waste management system in Nablus city in Palestine.

    Science.gov (United States)

    Arafat, Hassan A; Al-Khatib, Issam A; Zahra, Abdulsalam Abu

    2006-08-01

    Since the start of the second Palestinian uprising (Al-Aqsa Intifada), and due to the Israeli activities, curfews, closures, and military checkpoints imposed since 2000, the quality of social services rendered by Nablus city has been gradually deteriorating. Solid waste management in Nablus city was badly affected by these conditions, and this situation is negatively affecting health and damaging the environment. Most of these cases were due to reasons beyond the capability of the municipality with its limited resources. This study revealed that some of the important municipal solid waste (MSW) equipment had been damaged during the uprising. The workforce in the MSW system was reduced and certain MSW-related development projects and activities have been frozen due to the current conditions. The city's medical waste incinerator had been phased out and the number of special medical containers had been reduced from 16 to 10. Some MSW compressing trucks had been out of use with no substitute. Another important figure is the number of waste collection workers which decreased from 420 to 301, although the city is growing in premises as well as population. The created unsanitary solid waste transfer station is now a pollution source on its own, causing an ugly scene at the eastern entrance of Nablus city. There should be a comprehensive and urgent solution for this problem and the needed resources should be invested.

  16. The Diffusion Effect of MSW Recycling

    Directory of Open Access Journals (Sweden)

    Yi-Tui Chen

    2017-12-01

    Full Text Available The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator to measure recycling performance. Due to a large variation among waste fractions in municipal solid waste (MSW, the recycling rate cannot reflect the actual recycling performance. The ceiling of recycling rate for each waste fraction estimated from the diffusion models is incorporated into a model to calculate recycling performance. The results show that (1 the diffusion effect exists significantly for the recycling of most recyclables but no evidence is found to support the diffusion effect for the recycling of food waste and bulk waste; (2 the recycling performance of waste metal products ranks the top, compared to waste paper, waste glass and other waste fractions; (3 furthermore, an importance-performance analysis (IPA is employed to analyze the priority of recycling programs and thus this paper suggests that the recycling of food waste should be seen as the most priority item to recycle.

  17. Characterization of organic compounds in biochars derived from municipal solid waste.

    Science.gov (United States)

    Taherymoosavi, Sarasadat; Verheyen, Vince; Munroe, Paul; Joseph, Stephen; Reynolds, Alicia

    2017-09-01

    Municipal solid waste (MSW) generation has been growing in many countries, which has led to numerous environmental problems. Converting MSW into a valuable biochar-based by-product can manage waste and, possibly, improve soil fertility, depending on the soil properties. In this study, MSW-based biochars, collected from domestic waste materials and kerbsides in two Sydney's regions, were composted and pyrolysed at 450°C, 550°C and 650°C. The characteristics of the organic components and their interactions with mineral phases were investigated using a range of analytical techniques, with special attention given to polycyclic aromatic hydrocarbons and heavy metal concentrations. The MSW biochar prepared at 450°C contained the most complex organic compounds. The highest concentration of fixed C, indicating the stability of biochar, was detected in the high-temperature-biochar. Microscopic analysis showed development of pores and migration of mineral phases, mainly Ca/P/O-rich phases, into the micro-pores and Si/Al/O-rich phases on the surface of the biochar in the MSW biochar produced at 550°C. Amalgamation of organic phases with mineral compounds was observed, at higher pyrolysis temperatures, indicating chemical reactions between these two phases at 650°C. XPS analysis showed the main changes occurred in C and N bonds. During heat treatment, N-C/C=N functionalities decomposed and oxidized N configurations, mainly pyridine-N-oxide groups, were formed. The majority of the dissolved organic carbon fraction in both MSW biochar produced at 450°C and 550°C was in the form of building blocks, whereas LMW acids was the main fraction in high-temperature-biochar (59.9%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (Mexico)

    International Nuclear Information System (INIS)

    Hernandez-Berriel, Ma.C.; Marquez-Benavides, L.; Gonzalez-Perez, D.J.; Buenrostro-Delgado, O.

    2008-01-01

    The State of Mexico, situated in central Mexico, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ('El Socavon') does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ('El Socavon')

  19. Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis.

    Science.gov (United States)

    Adamović, Vladimir M; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V

    2017-01-01

    This paper presents the development of a general regression neural network (GRNN) model for the prediction of annual municipal solid waste (MSW) generation at the national level for 44 countries of different size, population and economic development level. Proper modelling of MSW generation is essential for the planning of MSW management system as well as for the simulation of various environmental impact scenarios. The main objective of this work was to examine the potential influence of economy crisis (global or local) on the forecast of MSW generation obtained by the GRNN model. The existence of the so-called structural breaks that occur because of the economic crisis in the studied period (2000-2012) for each country was determined and confirmed using the Chow test and Quandt-Andrews test. Two GRNN models, one which did not take into account the influence of the economic crisis (GRNN) and another one which did (SB-GRNN), were developed. The novelty of the applied method is that it uses broadly available social, economic and demographic indicators and indicators of sustainability, together with GRNN and structural break testing for the prediction of MSW generation at the national level. The obtained results demonstrate that the SB-GRNN model provide more accurate predictions than the model which neglected structural breaks, with a mean absolute percentage error (MAPE) of 4.0 % compared to 6.7 % generated by the GRNN model. The proposed model enhanced with structural breaks can be a viable alternative for a more accurate prediction of MSW generation at the national level, especially for developing countries for which a lack of MSW data is notable.

  20. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  1. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  3. Solid waste management - Pakistan's perspective

    International Nuclear Information System (INIS)

    Hussain, M.

    2003-01-01

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  4. Solid waste composition analysis and recycling evaluation: Zaatari Syrian Refugees Camp, Jordan.

    Science.gov (United States)

    Saidan, Motasem N; Drais, Ammar Abu; Al-Manaseer, Ehab

    2017-03-01

    There is a need for Municipal Solid Waste (MSW) stream characterization and composition analysis to allow for an accurate estimation of its recycling potential and for effective management of the entire system. Recycling provides employment and a livelihood for vulnerable social groups such as refugees. The aim of this paper is to determine the composition of MSW in Zaatari Syrian Refugee Camp, where approximately 430,000 Syrian refugees have passed through the camp. The representative waste samples and analysis included household waste and commercial waste produced by the refugees in the selected districts in Zaatari. The waste sampling was performed in 2015 over two seasons to ensure that the seasonal fluctuations in the composition of the waste stream are taken into consideration. Hand sorting was used for classifying the collected wastes into the categories and subcategories. The organic waste represents the main waste category with 53% of the total MSW, while plastics, textile, and paper and cardboard are 12.85%, 10.22% and 9%, respectively. Moreover, the MSW composition percentage in Zaatari Camp is similar to that in municipalities in Jordan with slight disparity. The potential recyclable materials market has been investigated in this study. Plastics and paper and cardboard have significant potential to be separated and collected for recycling purposes. Financial revenues of potential recyclables have been analyzed based on local prices. Recycling model in the camp is also proposed based on the present study findings. Consequently, these results should be taken as a baseline for all Syrian refugees camps in the Middle East, as well as, in Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Radiation treatment of solid wastes

    International Nuclear Information System (INIS)

    Brenner, W.; Rugg, B.; Rogers, C.

    1977-01-01

    Solid waste is now generally recognized as both a major problem and an underutilized renewable resource for materials and energy recovery. Current methods for dealing with solid wastes are admittedly inadequate for cost effective utilization of the latest material and energy values, especially of cellulose and other organics. Processes for production of energy from organic wastes including incineration, pyrolysis and biodegradation, are receiving considerable attention even though the heating value of dried organic wastes is substantially less than that of fossil fuels. An attractive alternative approach is conversion into chemical feedstocks for use as fuels, intermediates for plastics, rubbers, fibers etc., and in the preparation of foods. Radiation treatment of solid wastes offers attractive possibilities for upgrading the value of such organic waste components as cellulose and putrescible matter. The latter can be cold sterilized by radiation treatments for the production of animal feed supplements. The wide availability of cellulosic wastes warrants their consideration as an alternate feedstock to petrochemicals for fuels, intermediates and synthesis of single cell protein. The crucial step in this developing technology is optimizing the conversion of cellulose to its monomer glucose which can be accomplished by either acid or enzymatic hydrolysis. A combination pretreatment consisting of radiation of hydropulped cellulosic wastes has shown considerable promise in improving the yields of glucose for acid hydrolysis reactions at substantially lower cost than presently used methods such as grinding. Data are presented to compare the effectiveness of this pretreatment with other techniques which have been investigated. (author)

  6. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  7. Treatment of solid non-active wastes

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2008-01-01

    In this part of the text-book treatment of solid non-active wastes is described. This part consist of following chapters: (1) Law on wastes; (2) Present situation in waste management; (3) Strategic tendencies of waste management; (4) Incineration (disposal of solid wastes); (5) Disposal; (6) Composting; (7) Treatment of sludge from sewage clarification plant; (8) Biodegradation; (9) Recycling of wastes (assessing of secondary raw materials). Legal aspects of treatment of solid non-active wastes is presented

  8. Monitoring and Inventory of Hazardous Pollutants Emissions from Solid Waste Open Burning

    Science.gov (United States)

    KIM Oanh, N. T.

    2017-12-01

    Open burning remains a way to dispose of solid waste in developing countries, commonly practiced in places where municipal solid waste (MSW) management is not sufficiently efficient. This open burning practice emits huge amounts of toxic air pollutants, including semi-VOC of dioxins (PCDD/F) and polycyclic aromatic hydrocarbons (PAHs), particulate matters (PM), and toxic gases. This study measured toxic substances released from simulated open burning experiments of MSW (5 batches) and plastic waste (3 batches) to determine emission factors (EFs). Carbon content of the waste before and after burning was measured and the EFs were calculated using the carbon balance method. The obtained EFs of CO; CO2; NO2 and SO2 were 102±61; 1,684±96; 0.69±0.54; and 1.44±1.18 g/kg of dry MSW. The corresponding values for plastic waste were 13.0±6.0; 1,824±10; 0.12±0.07; and 0.14±0.09 g/kg, respectively. The EF of coarse PM (PM10-2.5); PM2.5 and BC in PM2.5 were, respectively, 6.1±5.6; 6.4±5.1 and 1.1±0.7 g/kg of MSW, and 2.3±0.1; 2.5±0.3; and 0.2±0.2 g/kg of plastic waste. The EFs of 17 dioxins and 16 PAHs were respectively 1,050±500 ng-TEQ dioxins (70% in gas phase) and 117± 21 mg PAHs (92% in gas phase) per kg of MSW, while those for plastic waste were 8.6 ng TEQ dioxins (36% in gas phase) and 85.2±0.06 mg PAHs (99% in gas phase). Using the activity data from own surveys and literature, we estimated the annual emissions from solid waste open burning in Southeast Asia for 2015. Higher emissions in the domain were seen during the dry months and over large urban areas. The large amounts of toxic pollutants emitted from this open burning activity call for actions to stop this practice which in turn requires integrated environmental management approach simultaneously considering both solid waste and air pollution.

  9. Statistical analysis in MSW collection performance assessment.

    Science.gov (United States)

    Teixeira, Carlos Afonso; Avelino, Catarina; Ferreira, Fátima; Bentes, Isabel

    2014-09-01

    The increase of Municipal Solid Waste (MSW) generated over the last years forces waste managers pursuing more effective collection schemes, technically viable, environmentally effective and economically sustainable. The assessment of MSW services using performance indicators plays a crucial role for improving service quality. In this work, we focus on the relevance of regular system monitoring as a service assessment tool. In particular, we select and test a core-set of MSW collection performance indicators (effective collection distance, effective collection time and effective fuel consumption) that highlights collection system strengths and weaknesses and supports pro-active management decision-making and strategic planning. A statistical analysis was conducted with data collected in mixed collection system of Oporto Municipality, Portugal, during one year, a week per month. This analysis provides collection circuits' operational assessment and supports effective short-term municipality collection strategies at the level of, e.g., collection frequency and timetables, and type of containers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2015-01-01

    the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification process can compete......Municipal solid waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by their use it is possible to reduce the waste...... storage in landfills and devote these spaces to other human activities. It is also important to point out that this kind of renewable energy suffers significantly less availability which characterizes other type of renewable energy sources such as in wind and solar energy.In a gasification process, waste...

  11. A Historical Perspective of Global Warming Potential from Municipal Solid Waste Management

    DEFF Research Database (Denmark)

    Habib, Komal; Schmidt, Jannick Højrup; Christensen, Per

    2013-01-01

    The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical...... development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP100), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies...

  12. Combined Electricity Production and Thermally Driven Cooling from Municipal Solid Waste

    OpenAIRE

    Udomsri, Seksan

    2011-01-01

    Increasingly intensive efforts are being made to enhance energy systems via augmented introduction of renewable energy along with improved energy efficiency. Resource constraints and sustained high fossil fuel prices have created a new phenomenon in the world market. Enhanced energy security and renewable energy development are currently high on public agenda worldwide for achieving a high standard of welfare for future generations. Biomass and municipal solid waste (MSW) have widely been acc...

  13. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Hu, Shanchao; Ma, Xiaoqian; Lin, Yousheng; Yu, Zhaosheng; Fang, Shiwen

    2015-01-01

    Highlights: • Thermogravimetric analysis of paper mill sludge and municipal solid waste were studied. • The combustion of paper mill sludge could be improved by blending municipal solid waste. • There existed significant interaction during co-combustion of the blends. • The OFW and Starink methods were used to obtain the activation energy. • The average activation energy was the lowest by blending 20% municipal solid waste. - Abstract: The thermal characteristics and kinetics of paper mill sludge (PMS), municipal solid waste (MSW) and their blends in the combustion process were investigated in this study. The mass percentages of PMS in the blends were 10%, 30%, 50%, 70% and 90%, respectively. The experiments were carried out at different heating rates (10 °C/min, 20 °C/min and 30 °C/min) and the temperature ranged from room temperature to 1000 °C in a thermogravimetric simultaneous thermal analyzer. The results suggested that the ignition temperature and burnout temperature of MSW were lower than that of PMS, and the mass loss rate of MSW was larger especially at low temperatures. There were only two mass loss peaks in the differential thermogravimetry (DTG) curve, while three mass loss peaks were observed when the blending ratios of PMS were 30%, 50%, 70%. The value of the comprehensive combustion characteristic index of the blends indicated a good combustibility when the percentage of PMS (PPMS) in the blends was less than 30%. There existed certain interaction between the combustion process of PMS and MSW, especially at high temperature stage. Activation energy (E) value obtained by the Ozawa–Flynn–Wall (OFW) method and the Starink method were very consistent. When the mass percentage of PMS in the blends was 80%, the E average value attained the minimum

  14. Fundamental characteristics of input waste of small MSW incinerators in Korea.

    Science.gov (United States)

    Choi, Ki-In; Lee, Suk-Hui; Lee, Dong-Hoon; Osako, Masahiro

    2008-11-01

    Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas.

  15. Impact of co-landfill proportion of bottom ash and municipal solid waste composition on the leachate characteristics during the acidogenesis phase.

    Science.gov (United States)

    He, Pin-Jing; Pu, Hong-Xia; Shao, Li-Ming; Zhang, Hua

    2017-11-01

    Incineration has become an important municipal solid waste (MSW) treatment strategy, and generates a large amount of bottom ash (BA). Although some BA is reused, much BA and pretreatment residues from BA recycling are disposed in landfill. When BA and MSW are co-landfilled together, acid neutralization capacity and alkaline earth metal dissolution of BA, as well as different components of MSW may change environmental conditions within the landfill, so the degradation of organic matter and the physical and chemical properties of leachate would be affected. In this study, the effect of co-landfilled BA and MSW on the leachate characteristics during the hydrolysis and acidogenesis phase was studied using different BA/MSW ratios and MSW compositions. The results showed that the co-landfill system increased leachate pH, electric conductivity and alkalinity. For MSW with a high content of degradable components, the release and degradation of total organic carbon (TOC) and volatile fatty acids (VFA) from MSW were promoted when the BA ratio by wet weight was less than 50%, and the biodegradability of leachate was improved. When the BA ratio exceeded 50%, the degradation of organic matters was inhibited. For MSW with low content of degradable components, when the proportion of BA was less than 20%, the release and degradation of TOC and VFA from MSW were promoted and alkalinity increased. When the BA ratio exceeded 20%, the degradation of organic matters was inhibited. The 50% BA ratio could improve the bio-treatability of leachate indicated by the leachate pH and C/N ratio. However, BA inhibited the release of nitrogen (TN and NH 4 + -N) at all BA ratios and MSW compositions. At the same time, the addition of BA increased the risk of leachate collection system clogging due to the dissolution and re-precipitation of alkaline earth metals contained in BA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Environmental pollution from solid wastes

    International Nuclear Information System (INIS)

    Jervis, R.E.; Krishnan, S.S.; Accetone, P.; Arifin, N.; Ko, M.M.C.; Nhan, C.; Nguyen, L.; Vela, L.; Yee, T.

    1992-01-01

    Research completed under the CRP during the past two years has encompassed several related aspects of environmental problems associated with solid wastes: assessment of major sources of toxic elements in a variety of solid waste forms, their leachability by simulated groundwater or rain/acid rain and the determination of the contribution of hospital incinerator to atmospheric releases. The summary of the findings of these investigations are given in this report. Unexpected high levels of cadmium have been found in many solid wastes. Leaching tests indicate that, in some cases, over 70% of this can be leached out into the nearby waterways. Combustibility tests indicated that 35 to 45% of it is emitted to the atmosphere during burning. This explains the increased levels of cadmium in air particulates sampled downwind from waste incinerators. Plastic items in municipal and hospital wastes were particularly elevated in Cd, Cl, Cr, Ba and Zn. Up to 1300 μg/g of Cd was found in some domestic items. By inference, Pb also is found in some common plastics but the current studies did not permit Pb determination in solid wastes, but only in aerosols. (author). 8 tabs

  17. Energy recovery from municipal solid wastes in Italy: Actual study and perspective for future

    International Nuclear Information System (INIS)

    Brunetti, N.; Ciampa, F.; De Cecco, C.

    1992-01-01

    Materials and energy recovery from municipal solid wastes (MSW) and assimilable waste, and their re-use is one of strong points of current regulations and tendencies, both at the national and at community level in Europe. In Italy, the interest in energy recovery from renewable sources has been encouraged by energy-savings law which included financial incentives for thermal plant building if low grade fuels such as MSW were employed. New electric power prices imposed by Italian Electric Power Authority, ENEL, encourage energy recovery from waste burners. This paper aims to point out the present state of energy recovery from wastes in Italy, trends and prospects to satisfy, with new plants, the need for waste thermal destruction and part of the demand for energy in the different Italian regions: only about 10% of MSW are burned and just a small percentage of the estimated amount of recoverable energy (2 MTOE/y) is recuperated. Different technological cycles are discussed: incineration of untreated wastes and energy recovery; incineration (or gasification) of RDF (refuse derived fuels) and heat-electricity co-generation; burning of RDF in industrial plants, in addition to other fuels

  18. Flow analysis of metals in a municipal solid waste management system

    International Nuclear Information System (INIS)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small

  19. Dynamic evaluation of municipal solid waste ash leachate

    International Nuclear Information System (INIS)

    Theis, T.L.; Gardner, K.H.

    1992-01-01

    The incineration of municipal solid waste (MSW) produces ashes which are concentrated in many inorganic species. The release of toxic elements from the ash to the aqueous environment is of concern as present methods of ash disposal consist primarily of landfilling. It was the goal of this paper to achieve an understanding of the mechanisms by which elements are transported from the solid ash phase to the aqueous phase. Twelve ash samples were collected from six different incinerators with varying designs and capacities. The leaching experiments were conducted using small (mini) dynamic columns to investigate the variation of leachate chemical characteristics with time. In analyzing the data, a multicomponent chemical equilibrium model was used to determine chemical speciation and component activities. Auxiliary experiments included an array of physical measurements, and aqueous batch leach tests

  20. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  2. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste

    International Nuclear Information System (INIS)

    Fang, Shiwen; Yu, Zhaosheng; Lin, Yousheng; Hu, Shanchao; Liao, Yanfen; Ma, Xiaoqian

    2015-01-01

    Highlights: • The co-pyrolysis of municipal solid waste, paper sludge and the blends was studied. • The reactivity of paper sludge could be improved by blending municipal solid waste. • The FWO and KAS methods were used to calculate activation energy. • The average activation energy was the minimum by blending 50% paper sludge. - Abstract: The pyrolysis characteristics of municipal solid waste (MSW), paper sludge (PS) and their blends were studied through a thermogravimetric simultaneous thermal analyzer from room temperature to 1000 °C. Meanwhile their kinetics were studied by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The mass proportions of PS in the blends were 10%, 30%, 50%, 70%, 90%, respectively and the experiments were carried out at different heating rates (30, 40 and 50 °C/min). The initial temperature of MSW was lower than that of PS and the terminated temperature was higher than PS. The comprehensive characteristic index decreased progressively along with the decrease of the MSW proportion. The values of average activation energies calculated by FWO and KAS methods were highly consistent. The average activation energy reached the minimum number, 96.7 kJ/mol by KAS and 11.56 kJ/mol by FWO, with the proportion of PS was 50%

  3. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  4. Multisteps Global Kinetic Analysis of MSW Slow Pyrolysis

    Directory of Open Access Journals (Sweden)

    Dwi Aries Himawanto

    2013-12-01

    Full Text Available The goal of this research is to find relationships between single components slow pyrolysis characteristics and mixed component slow pyrolysis characteristics of segregated municipal solid wastes (MSW. The material of this research consists of organic wastes (bamboo wastes and banana leaves wastes and inorganic wastes (styrofoam wastes and snack wrapping wastes. The materials which used to study were the unprosessing waste. The samples were collected, dried and crushed until passing 20 mesh shieves then characterized in self manufactured macro balance. The thermogravimetry analyses were done to find the MSW slow pyrolysis characteristics. The 20 gram sample was placed in the furnace whose temperature is increased with 10 0C/min heating rate until reached 400 0 final temperature and held for 30 minutes before the sample is cooled into room temperature. One hundred ml/min nitrogen introduced from the bottom of furnace as a swept gas. The results of the research show that the global kinetic method could be used to predict the MSW single component activation energy but it should be modified to calculate the mixed sample activation energy . The predictive activation energy values which calculated based on weighed sum of single component have 18.5 % deviations if compared with experimental result.

  5. The Impact of Urban Solid Waste Management on Urban Environment

    Directory of Open Access Journals (Sweden)

    خالد عبد الوهاب

    2017-03-01

    Full Text Available The growing population and the rising standard of living in cities as well as the increased commercial, industrial and agricultural activities around the world led to massive production of waste containing different materials and one of them is the municipal solid waste (MSW, so there is a major problem facing the cities around the world about the waste, how to collect, transfer it and how to discard it. Because the accumulation of wastes, whether in the city alleys or in its squares and especially in its residential areas affect the health of their populations besides this situation will be a major indication of the deteriorating quality of life in the city, as hygiene considered a fundamental criterion for the city beauty as well as an indication of the protection provided by the city to their environment and the level of protection provided to the health of city residence. The accumulated waste which is left in the city without treatment significantly affects the psychological behavior of the residence of these areas towards their community and environment and therefore their behavior towards their regions and their cities. From here emerged the general research problem concerning the modern civilization and its lifestyle that produced great amounts of (municipal solid waste, which became a big problem facing the modern cities concerning their collection, transportation and finally their disposal, how can these great amounts of waste be used whether by recycling, energy recovery or transferring to plant fertilizers ... etc. To serve the sustainable growth of these modern cities, this lead to the specific research problem concerning the lack of clarity concerning the impact of waste collection, transporting and treating and city urban environment and its townscape. Research Hypothesis: The process of collecting, transporting and. treating city solid waste or using it has a great impact on city urban environment and its townscape.

  6. Boundaries matter: Greenhouse gas emission reductions from alternative waste treatment strategies for California’s municipal solid waste

    DEFF Research Database (Denmark)

    Vergara, Sintana E.; Damgaard, Anders; Horvathc, Arpad

    2011-01-01

    How waste is managed – whether as a nuisance to be disposed of, or as a resource to be reused – directly affects local and global environmental quality. This analysis explores the GHG benefits of five treatment options for residual municipal solid waste (MSW) in California: Business As Usual...... landfills. Using two different waste LCA models, EASEWASTE (a Danish model) and WARM (a U.S. model), we find that improved biogenic waste management through anaerobic digestion and waste reduction can lead to life-cycle GHG savings when compared to Business As Usual. The magnitude of the benefits depends...... strongly on a number of model assumptions: the type of electricity displaced by waste-derived energy, how biogenic carbon is counted as a contributor to atmospheric carbon stocks, and the landfill gas collection rate. Assuming that natural gas is displaced by waste-derived energy, that 64% of landfill gas...

  7. Prediction of stress-strain state of municipal solid waste with application of soft soil creep model

    Directory of Open Access Journals (Sweden)

    Ofrikhter Vadim Grigor'evich

    Full Text Available The deformation of municipal solid waste is a complex process caused by the nature of MSW, the properties of which differ from the properties of common soils. The mass of municipal solid waste shows the mixed behaviour partially similar to granular soils, and partially - to cohesive. So, one of mechanical characteristics of MSW is the cohesion typical to cohesive soils, but at the same time the filtration coefficient of MSW has an order of 1 m/day that is characteristic for granular soils. It has been established that MSW massif can be simulated like the soil reinforced by randomly oriented fibers. Today a significant amount of the verified and well proved software products are available for numerical modelling of soils. The majority of them use finite element method (FEM. The soft soil creep model (SSC-model seems to be the most suitable for modelling of municipal solid waste, as it allows estimating the development of settlements in time with separation of primary and secondary consolidation. Unlike the soft soil, one of the factors of secondary consolidation of MSW is biological degradation, the influence of which is possible to consider at the definition of the modified parameters essential for soft soil model. Application of soft soil creep model allows carrying out the calculation of stress-strain state of waste from the beginning of landfill filling up to any moment of time both during the period of operation and in postclosure period. The comparative calculation presented in the paper is executed in Plaxis software using the soft-soil creep model in contrast to the calculation using the composite model of MSW. All the characteristics for SSC-model were derived from the composite model. The comparative results demonstrate the advantage of SSC-model for prediction of the development of MSW stress-strain state. As far as after the completion of the biodegradation processes MSW behaviour is similar to cohesion-like soils, the demonstrated

  8. Co-composting as an oxygen stabilization of an organic fraction of municipal solid waste and industrial sewage sludge.

    Science.gov (United States)

    Milczarek, M; Neczaj, E; Parkitna, K

    2013-01-01

    The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW), sewage sludge, grass and sawdust. Differing proportions of biodegradable waste were investigated through changes of temperature, oxygen consumption, organic matters, moisture content, carbon, nitrogen, C/N ratio as well as heavy metals and pathogen microorganisms content. The present study has shown that addition of MSW above 10% had a negative impact on the composting process. The initial C/N of the mixtures with a higher MSW content was below 18. Lower losses of organic matter occurred during composting for the mixture with the highest addition of MSW. Although studies have shown that composting is a good method for the disposal of organic waste additional research is required in order to optimize the organic and nitrogen compounds degradation during the co-composting process. In conclusion, a 1:4:4:1 mixture of MSW:sewage sludge:grass:sawdust is recommended because it can achieve high temperature as well as the highest organic matter degradation and highest N content in the final composting product. The concentration of heavy and light metals in all composts was within the limits of regulation of the Polish Minister of Agriculture and Rural Development.

  9. Effect of municipal solid waste compost and sewage sludge on yield and heavy metal accumulation in soil and black cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    F. Akbarnejad

    2016-04-01

    Full Text Available In order to investigate the effect of municipal solid waste (MSw compost and sewage sludge (SS on yield and concentration of heavy metals in soil and black cumin (Nigella sativa L. an experiment with MSW compost at 0, 15, 30 t.ha-1 (C0, C15 and C30 and sewage sludge at 0, 15, 30 t.ha-1 (S0, S15 and S30 in a factorial experiment based on completely randomized design with three replications was conducted in greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. Results showed that MSW compost and SS had significant effects on plant dry matter. Increasing the amounts of SS increased dry matter of plant. But increasing MSW compost from 15 to 30 t.ha-1 was decreased in dry matter. The Effect of MSW compost and SS on concentration of heavy metals (Ni and Pb in plant except Cd was significant. Addition of MSW compost and sewage sludge increased availability of Pb, Ni and Cd in soil. But effect of MSW compost and sewage sludge on Cd availability was not significant. Results showed that the amounts of Ni exceed the standard limits in dry matter. Therefore in use of organic wastes for medicinal plants we should be careful..

  10. Municipal Solid Waste Management in Latin America and the Caribbean: Issues and Potential Solutions from the Governance Perspective

    Directory of Open Access Journals (Sweden)

    Hiroshan Hettiarachchi

    2018-05-01

    Full Text Available Municipal Solid Waste (MSW management is an essential service for an urban population to maintain sanitation. Managing MSW is complex as the treatment/recovery options depend not only on the volume of waste, but also on the socioeconomic conditions of the population. This paper focusses on MSW management in the Latin American and Caribbean (LAC countries. Dominance of uncontrolled disposal options of MSW in the region, such as open dumps, has an adverse influence on health and sanitation. Interest in source separation practices and recycling is low in the LAC region. Furthermore, economic matters such as poor financial planning and ineffective billing systems also hinder service sustainability. Rapid urbanization is another characteristic feature in the region. The large urban centres that accommodate over 80% of the region’s population pose their own challenges to MSW management. However, the same large volume of MSW generated can become a steady supply of resources, if recovery options are prioritized. Governance is one aspect that binds many activities and stakeholders involved in MSW management. This manuscript describes how we may look at MSW management in LAC from the governance perspective. The issues, as well as the best potential solutions, are both described within three categories of governance: bureaucratic, market, and network. The governance perspective can assist by explaining which stakeholders are involved and who should be responsible for what. Financial issues are the major setbacks observed in the bureaucratic governance institutions that can be reversed with better billing strategies. MSW is still not seen by the private sector as a place to make investments, perhaps due to the negative social attitude associated with waste. The market governance aspects may help increase the efficiency and profitability of the MSW market. Private sector initiatives such as cost-effective microenterprises should be encouraged and the

  11. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.

    Science.gov (United States)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-01

    Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Environmental assessment of municipal solid waste management in Sri Lanka and India in a life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Menikpura, S.N.M.; Bonnet, Sebastien; Gheewala, Shabbir H. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Joint Graduate School of Energy and Environment; Ministry of Education (Thailand). Center for Energy Technology and Environment

    2010-07-01

    At present, many Asian developing countries are practicing poor Municipal Solid Waste (MSW) management methods such as open dumping and non-engineered landfilling. This creates severe burdens on the environment and threat to human health. The quantification of the environmental impacts resulting from such poor MSW management practices is necessary to serve as a baseline against which alternative treatment technology options can be assessed for implementation of more environmentally sustainable MSW management systems that are adapted to local situation. In this study, existing MSW management systems in Ski Lanka and India were evaluated in order to assess the severity of their environmental impacts with focus on global warming potential and abiotic resource depletion. Life Cycle Assessment methodology was followed to perform this investigation. Results from this study reveal that the existing MSW management methods used in both countries cause severe environmental damages. However, the situation in India is slightly better as compared to Sri Lanka since 24% of its MSW is being composted. The implementation of landfill with landfill gas recovery for energy was identified as an important initial step to overcome the existing environmental impacts assessed. The results obtained revealed that implementation of such systems would help substantially to reduce global warming potential and abiotic resources depletion. (orig.)

  13. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  15. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  16. Municipal solid waste management in Africa: Strategies and livelihoods in Yaounde, Cameroon

    International Nuclear Information System (INIS)

    Parrot, Laurent; Sotamenou, Joel; Dia, Bernadette Kamgnia

    2009-01-01

    This paper provides an overview of the state of municipal solid waste (MSW) management in the capital of Cameroon, Yaounde, and suggests some possible solutions for its improvement. The institutional, financial, and physical aspects of MSW management, as well as the livelihoods of the population, were analyzed. Our study revealed that distances and lack of infrastructure have a major impact on waste collection. Garbage bins are systematically mentioned as the primary infrastructure needed by the population in all quarters, whether it be a high or low standard community. The construction of transfer stations and the installation of garbage bins are suggested as a solution to reduce distances between households and garbage bins, thus improving waste collection vehicle accessibility. Transfer stations and garbage bins would enable the official waste collection company to expand its range of services and significantly improve waste collection rates. Several transfer stations have already been set up by non-governmental organizations (NGOs) and community-based organizations (CBOs), but they require technical, institutional and funding support. Research is needed on the quality and safety of community-made compost, as well as on soil fertility in urban and peri-urban areas. Most of the stakeholders, municipalities, the official waste collection company and households acknowledge the need for better monitoring and regulation of MSW management. The urban community of Yaounde also needs to maintain its support of MSW management and promote the sustainability of NGOs and CBOs operating in underserved areas not yet covered by adequate infrastructures. A major opportunity for implementation of such waste policy is the heavily indebted poor countries (HIPC) program dedicated to urban planning and good governance

  17. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.

    Science.gov (United States)

    Zhao, Wei; Huppes, Gjalt; van der Voet, Ester

    2011-06-01

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Municipal solid waste management in Kolkata, India - A review

    International Nuclear Information System (INIS)

    Chattopadhyay, Subhasish; Dutta, Amit; Ray, Subhabrata

    2009-01-01

    Kolkata is one of four metropolitan cities in India. With an area of 187.33 sq km and a population of about 8 million, it generates around 3,000 t d -1 of municipal solid waste (MSW) at a rate of 450-500 g per capita per day. With rapid urbanization as a result of planned and unplanned growth and industrialization, the problems associated with handling MSW have increased at an alarming rate over the past few years. No source segregation arrangement exists; there is only limited (60%) house-to-house collection; and 50-55% open vats are used in the present collection system. The operational efficiency of the Kolkata Municipal Corporation (KMC) transport system is about 50%, with a fleet composed of about 30-35% old vehicles. The majority (80%) of these, particularly the hired vehicles, are more than 20 years old. The newly added areas covered by KMC have even lower collection efficiencies, and only an informal recycling system exists. The waste collected has a low energy value (3,350-4,200 kJ kg -1 ) with high moisture and inert content. A 700 t d -1 compost plant set up in 2000 has not been functioning effectively since 2003. Open dumping (without liners and without a leachate management facility) and the threat of groundwater pollution, as well as saturation of an existing landfill site (Dhapa) are the most pressing problems for the city today. KMC spends 70-75% of its total expenditures on collection of solid waste, 25-30% on transportation, and less than 5% on final disposal arrangements. The Kolkata Environmental Improvement Project, funded by the Asian Development Bank, is seen as only a partial solution to the problem. A detailed plan should emphasize segregation at the source, investment in disposal arrangements (including the use of liners and leachate collection), and an optimized transport arrangement, among improvements

  19. Solid waste management in Greece and potential for waste-to-energy; Die Abfallwirtschaft und das Waste-to-Energy Potenzial in Griechenland

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, Efstratios [WTERT Greece - SYNERGIA, A.I.T., Attica (Greece); Manolis, Klados [INTRAKAT, Attica (Greece); Bourtsalas, Athanasios; Themelis, Nickolas J. [Columbia Univ., New York, NY (United States). Earth Engineering Center; Karagiannidis, Avraam [Aristotle Univ., Thessaloniki (Germany). Lab. of Heat Transfer and Environmental Engineering

    2011-05-15

    In Greece the daily production of Municipal Solid Waste (MSW) is estimated to be 15,000 tones, which means roughly 5.4 million tons per year, from which 77 % is deposited in Landfills, while 23 % is recycled and composted. The European Union Legislation for Sanitary Landfills (1999/31/EC), imposes the decrease of biodegradable waste that are deposit to sanitary landfills; thus WTE methods of MSW is one of the best, in terms of affordability in a competitive world and environmental friendly, proposed solutions. Waste-to-Energy methods produce steam and/or electricity. Also, the weight of MSW is reduced up to 70-80 % and the volume up to 90 %, and finally the land area requirements are very small. Our proposal for the WTE technology implementation in Greece is the construction of MSW WTE plants in all major cities operating with an annual capacity of 200.000-400.000 tones. The required land area will be only 4-7 hectares. The basic income of such plants is the gate fee, varying from 50 to 80 Euro/ton. The second income comes from selling of the produced electricity to the Public Power Corporation for 87.85 Euro/MWh (referring to the biodegradable fraction of MSW), according to the new Greek law for renewable energy sources (L. 3851/2010). Additional income comes from the recovered metals of the bottom ash. Furthermore, there is a considerable prospect for state subsidy of the whole investment, according to the Greek Development Law. (orig.)

  20. LCA comparison of container systems in municipal solid waste management

    International Nuclear Information System (INIS)

    Rives, Jesus; Rieradevall, Joan; Gabarrell, Xavier

    2010-01-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  1. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.

    Science.gov (United States)

    Babel, Sandhya; Vilaysouk, Xaysackda

    2016-01-01

    Municipal solid waste (MSW) is one of the major environmental problems throughout the world including in Lao PDR. In Vientiane, due to the lack of a collection service, open burning and illegal dumping are commonly practised. This study aims to estimate the greenhouse gas (GHG) emission from the current situation of MSW management (MSWM) in Vientiane and proposes an alternative solution to reduce the GHG emission and environmental impacts. The 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories (IPCC 2006 model) are used for the estimation of GHG emission from landfill and composting. For the estimation of GHG emission from open burning, the Atmospheric Brown Clouds Emission Inventory Manual (ABC EIM) is used. In Vientiane, a total of 232, 505 tonnes year(-1) of MSW was generated in 2011. Waste generation in Vientiane is 0.69 kg per capita per day, and about 31% of the total MSW generated was directly sent to landfill (71,162 tonnes year(-1)). The total potential GHG emission from the baseline scenario in 2011 was 110,182 tonnes year(-1) CO2-eq, which is 0.15 tonne year(-1) CO2-eq per capita. From the three MSWM scenarios proposed, scenario S3, which includes recycling, composting and landfilling, seems to be an effective solution for dealing with MSW in Vientiane with less air pollution, and is environmentally friendly. The total GHG emission in scenario S3 is reduced to 91,920 tonnes year(-1) CO2-eq (47% reduction), compared with the S1 scenario where all uncollected waste is diverted to landfill. © The Author(s) 2015.

  2. Methods and machinery for pulverising solid wastes

    CSIR Research Space (South Africa)

    Simpkins, MJ

    1976-11-01

    Full Text Available This report is published on behalf of the South African Committee for Solid Wastes which in turn advises the National Committee for Environmental Sciences on problems concerned with Solid Wastes in South Africa. It is particularly concerned...

  3. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment

    International Nuclear Information System (INIS)

    Nowak, B.; Pessl, A.; Aschenbrenner, P.; Szentannai, P.; Mattenberger, H.; Rechberger, H.; Hermann, L.; Winter, F.

    2010-01-01

    Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000deg. C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwaerme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments.

  4. ALTENER. Strategic framework municipal solid waste. Waste for energy network

    International Nuclear Information System (INIS)

    Kwant, K.W.; Van Halen, C.; Pfeiffer, A.E.

    1997-01-01

    General objective of European, national and regional waste for energy (WfE) policies is to support sustainable development. In each of the Altener WfE countries (Austria, Denmark, Finland, Italy, Netherlands, Portugal, Spain, Sweden and UK) general waste management strategies have been implemented. Common aspects are waste management hierarchies and general objectives such as: (1) to reduce the amount of wastes; (2) to make the best use of the wastes that are produced; and (3) to choose waste management practices, which (4) minimise the risks of immediate and future environmental pollution and harm to human health. All WfE countries have defined an order of preference for waste handling, starting with prevention as most preferred option, through re-use and recycling, thermal treatment with energy-recovery to landfill as a least desired option. In all Altener WfE countries, waste management structures are in a phase of transformation. At least three general transition processes can be recognized to take place, which are of great importance for the waste for energy future of the Altener countries: (1) increased energy recovery from MSW; (2) increased separation of MSW for recycling and recovery; and (3) reorganization of landfills. Two groups of instruments to stimulate the use of waste to energy are distinguished: (1) instruments, aiming to create improved WfE solutions; and (2) instruments, aiming to create a WfE market. In this framework document an overview is given of today's WfE situation in 9 European countries, as well as up-to-date national waste and energy policies, including the available instruments and future goals

  5. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  6. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  7. Bio-methanation of municipal solid wastes for ecological balance and sustainable development

    International Nuclear Information System (INIS)

    Sadangi, Subhash Ch.

    2000-01-01

    The importance of bio-methanation of municipal solid wastes for over all improvement of environment and for converting wastes into wealth, the national planners should make all out efforts to implement the concept on a large scale to meet the challenges of future demands of energy, ecology and sustainable development. The huge quantity of methane generated from MSW (Municipal Solid Wastes) after treatment and desulfuration is utilised to generate electric power. Hence, development of methane resource as an alternative to energy source has attracted attention in recent years in many parts of the world. Methane is a much more powerful green house gas as its adverse impacts are felt more intensely due to its higher residence and higher potency in the atmosphere. The article highlights the process of bio-methanation of municipal solid wastes and planning for ecological balance and sustainable development

  8. Energy and solid/hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  9. Solid Waste Activity Packet for Teachers.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  10. Energy and solid/hazardous waste

    International Nuclear Information System (INIS)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included

  11. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    Science.gov (United States)

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  12. An environmentally sustainable decision model for urban solid waste management

    International Nuclear Information System (INIS)

    Costi, P.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R.

    2004-01-01

    The aim of this work is to present the structure and the application of a decision support system (DSS) designed to help decision makers of a municipality in the development of incineration, disposal, treatment and recycling integrated programs. Specifically, within a MSW management system, several treatment plants and facilities can generally be found: separators, plants for production of refuse derived fuel (RDF), incinerators with energy recovery, plants for treatment of organic material, and sanitary landfills. The main goal of the DSS is to plan the MSW management, defining the refuse flows that have to be sent to recycling or to different treatment or disposal plants, and suggesting the optimal number, the kinds, and the localization of the plants that have to be active. The DSS is based on a decision model that requires the solution of a constrained non-linear optimization problem, where some decision variables are binary and other ones are continuous. The objective function takes into account all possible economic costs, whereas constraints arise from technical, normative, and environmental issues. Specifically, pollution and impacts, induced by the overall solid waste management system, are considered through the formalization of constraints on incineration emissions and on negative effects produced by disposal or other particular treatments

  13. Examining the effectiveness of municipal solid waste management systems: an integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan.

    Science.gov (United States)

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-06-01

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O&M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Examining the effectiveness of municipal solid waste management systems: An integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan

    International Nuclear Information System (INIS)

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-01-01

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O and M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.

  15. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    International Nuclear Information System (INIS)

    Udomsri, Seksan; Martin, Andrew R.; Fransson, Torsten H.

    2010-01-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO 2 levels by 3% in comparison with current thermal power plants.

  16. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    Science.gov (United States)

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  17. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  18. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  19. Municipal solid wastes incineration with combined cycle: a case study from Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Cerda Balcazar, Juan Galvarino; Dias, Rubens Alves; Balestieri, Jose Antonio Perrella [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil)], E-mails: pos09007@feg.unesp.br, rubdias@feg.unesp.br

    2010-07-01

    Large urban centers have a huge demand for electricity, for the needs of its residents, and a growing problem of management of solid waste generated by it, that becomes an public administrative and great social problem. The correct disposal of solid waste generated by large urban centers is now one of the most complex engineering problems involving logistics, safety, environment, energy spent among other tools for sound management of municipal solid waste (MSW). This study was carried out a study of the use of incinerators and residue derived fuel and MSW with combined cycles, with the aim of producing thermal and mechanical energy (this later becomes electrical energy) and solid waste treatment in Sao Paulo. We used existing models and real plants in the European Union in this case, with the aim of making it the most viable and compatible with the current context of energy planning and resource today. A technical and economic feasibility study for a plant of this nature, using the scheme, is presented. It is expected a good attractiveness of using incinerators combined-cycle, due to its high efficiency and its ability to thermoelectric generation. (author)

  20. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    Science.gov (United States)

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...... separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste....

  2. Proposal for processes map of post-consumption reverse logistics under the perspective of the national solid waste policy

    OpenAIRE

    Emmily Caroline Cabral da Fonseca; Eriton Carlos Martins Barreiros; Paulo Vitor dos Santos Gonçalves; André Cristiano Silva Melo; Denilson Ricardo de Lucena Nunes

    2017-01-01

    The National Policy on Solid Waste (NPSW) points to the Reverse Logistics (RL) as an instrument that enables actions and strategies that allow adequate management of Urban Solid Waste (USW) according to their guidelines. After more than five years of its publication, studies of RL in Brazil haven´t met the demands for defining procedures in the implementation of proper management of MSW in accordance with the NPSW. This class of waste is the result of post-consumer and it is relev...

  3. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    International Nuclear Information System (INIS)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-01-01

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  4. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  5. Research and demonstration results for a new "Double-Solution" technology for municipal solid waste treatment.

    Science.gov (United States)

    Erping, Li; Haoyun, Chen; Yanyang, Shang; Jun, Pan; Qing, Hu

    2017-11-01

    In this paper, the pyrolysis characteristics of six typical components in municipal solid waste (MSW) were investigated through a TG-FTIR combined technique and it was concluded that the main pyrolysis process of the biomass components (including food residues, sawdust and paper) occurred at 150-600°C. The main volatiles were multi-component gas including H 2 O, CO 2 , and CO. The main pyrolysis temperatures of three artificial products (PP, PVC and leather) was ranged from 200to 500°C. The wavelength of small molecule gases (CH 4 , CO 2 and CO) and the the chemical bonds (CO and CC) were observed in the infrared spectrum Based on the pyrolysis temperature interval and volatile constituent, a new "double-solution" process of pyrolysis and oxygen-enrichment decomposition MSW was designed. To achieve this process, a double-solution project was built for the direct treatment of MSW (10t/d). The complete setup of equipment and analysis of the byproducts has been reported in this paper to indicate the performance of this process. Energy balance and economic benefits were analysed for the process supporting. It was successfully demonstrated that the double-solution process was the environmentally friendly alternative method for MSW treatment in Chinese rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Solid waste management in Khartoum industrial area

    International Nuclear Information System (INIS)

    Elsidig, N. O. A.

    2004-05-01

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  7. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    Science.gov (United States)

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Evaluation of the risk for heavy metals and dioxin from the incineration plant of urban solid wastes; Evaluacion del riesgo por exposicion a metales pesados y dioxinas emitidos por una planta incineradora de RSU

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, J.L.; Schuhmacher, M.

    1997-12-31

    Public fear of dioxin and cancer has heightened the controversy surrounding municipal solid waste (MSW) incinerators. Concern about MSW incineration has focused especial attention on the emissions of dioxins together with metals, as potential sources of human exposure to these toxics. This paper provides data on the assessment of the human health risks for the population living in the neighbourhood of a modern MSW incinerator. Results show that food is the major source of human exposure to metals and dioxin, while MSW incineration is not a principal source of human exposure. The authors conclude suggesting that studies on the background levels of metals and dioxin in the vicinity of new MSW incinerators are essentials. (Author) 7 refs.

  9. Metal loss from treated wood products in contact with municipal solid waste landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Brajesh [Department of Environmental Health, PO Box 70682, East Tennessee State University, Johnson City, TN 37614 (United States); Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Solo-Gabriele, Helena [Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33124-0630 (United States)

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations.

  10. Pacific Northwest Laboratory's Solid Waste Initiative

    International Nuclear Information System (INIS)

    Holter, G.M.

    1993-09-01

    In fiscal year 1992 (FY-92), a Solid Waste Initiative was undertaken within the Pacific Northwest Laboratory (PNL). This action was partly in response to a perceived increase in the frequency and severity of impacts associated with solid waste issues at all levels. It also recognized the limited attention of previous efforts in addressing the broader impacts resulting from solid waste and, thus, dealing with solid waste issues in a holistic fashion. This paper provides a description of the Solid Waste Initiative at PNL, including a historical perspective on PNL's involvement in solid waste issues, the goals and objectives of the Solid Waste Initiative, and a discussion of selected activities being conducted under the Initiative

  11. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia.

    Science.gov (United States)

    Malakahmad, Amirhossein; Abualqumboz, Motasem S; Kutty, Shamsul Rahman M; Abunama, Taher J

    2017-12-01

    Malaysian authorities has planned to minimize and stop when applicable unsanitary dumping of waste as it puts human health and the environment at elevated risk. Cost, energy and revenue are mostly adopted to draw the blueprint of upgrading municipal solid waste management system, while the carbon footprint emissions criterion rarely acts asa crucial factor. This study aims to alert Malaysian stakeholders on the uneven danger of carbon footprint emissions of waste technologies. Hence, three scenarios have been proposed and assessed mainly on the carbon footprint emissions using the 2006 IPCC methodology. The first scenario is waste dumping in sanitary landfills equipped with gas recovery system, while the second scenario includes anaerobic digestion of organics and recycling of recyclable wastes such as plastic, glass and textile wastes. The third scenario is waste incineration. Besides the carbon footprint emissions criterion, other environmental concerns were also examined. The results showed that the second scenario recorded the lowest carbon footprint emissions of 0.251t CO 2 eq./t MSW while the third scenario had the highest emissions of 0.646t CO 2 eq./t MSW. Additionally, the integration between anaerobic digestion and recycling techniques caused the highest avoided CO 2 eq. emissions of 0.74t CO 2 eq./t MSW. The net CO 2 eq. emissions of the second scenario equaled -0.489t CO 2 eq./t MSW due to energy recovery from the biogas and because of recycled plastic, glass and textile wastes that could replace usage of raw material. The outcomes also showed that the first scenario generates huge amount of leachate and hazardous air constituents. The study estimated that a ton of dumped waste inside the landfills generates approximately 0.88m 3 of trace risky compounds and 0.188m 3 of leachate. As for energy production, the results showed that the third scenario is capable of generating 639kWh/t MSW followed by the second scenario with 387.59kWh/t MSW. The first

  12. Microbial community structure and diversity in a municipal solid waste landfill.

    Science.gov (United States)

    Wang, Xiaolin; Cao, Aixin; Zhao, Guozhu; Zhou, Chuanbin; Xu, Rui

    2017-08-01

    Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  14. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  15. Landfill operation and waste management procedures in the reduction of methane and leachate pollutant emissions from municipal solid waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, J.

    2002-07-01

    The objective of the present research was to find ways of minimising emissions from municipal solid waste (MSW) landfills by means of laboratory experiments. During anaerobic incubation for 237 days, the grey waste components produced between 120 and 320 m{sup 3}CH{sub 4} tTS{sup -1} and between 0.32 and 3.5 kg NH{sub 4}-N tTS{sup -1} and the first-order rate constant of degradation ranged from 0.021 and 0.058 d{sup -1}. High amounts of COD and NH{sub 4}-N were observed in the leachate of grey waste in all the procedures tested during lysimeter experiments lasting 573 days. In the 10- year-old landfilled MSW, a high rate of methanisation was achieved with rainwater addition and leachate recirculation over 538 days, whereas initially pre-wetted grey waste and landfilled MSW were rapidly acidified, thus releasing a high amount of COD into the leachate. In batch assays, the grey waste produced a methane potential amounting to 70-85 % of the total methane potential of the grey waste plus putrescibles. In low moisture conditions, i.e. below 55%, methane production was delayed in the old landfill waste and prevented in the grey waste. In the emission potential study with five waste types, putrescibles produced 410 m{sup 3}CH{sub 4} tTS{sup -1} and 3.6 kgNH{sub 4}-N tTS{sup -1}, whereas composted putrescibles produced 41 m{sup 3}CH{sub 4} tVS{sup -1}, and 2.0 kgNH{sub 4}-N tTS{sup -1}. The remains of putrescibles probably caused the leaching potential of 2.1 kgNH{sub 4}-N tTS{sup -1} in the grey waste. Aeration for 51 days in lysimeters reduced the CH{sub 4} potential of putrescibles by more than 68 % and of the lysimeter landfilled grey waste by 50 %, indicating the potential of aeration for CH4 emission reduction. Nitrogen removal of landfill leachate was studied in the laboratory as well as on-site. Over 90 % nitrification of leachate was obtained with loading rates between 100 and 130 mgNH{sub 4}-N l{sup -1} d-1 at 25 deg C. Nitrified leachate was denitrified with a

  16. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    Science.gov (United States)

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  17. The application of life cycle assessment to integrated solid waste management. Pt. 1: Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Clift, R.; Doig, A.; Finnveden, G.

    2000-07-01

    Integrated Waste Management is one of the holistic approaches to environmental and resource management which are emerging from applying the concept of sustainable development. Assessment of waste management options requires application of Life Cycle Assessment (LCA). This paper summarizes the methodology for applying LCA to Integrated Waste Management of Municipal Solid Wastes (MSW) developed for and now used by the UK Environment Agency, including recent developments in international fora. Particular attention is devoted to system definition leading to rational and clear compilation of the Life Cycle Inventory, with appropriate 'credit' for recovering materials and/or energy from the waste. LCA of waste management is best seen as a way of structuring information to help decision processes. (Author)

  18. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  19. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    Science.gov (United States)

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  1. Regional Energy Potential of Municipal Solid Waste in Croatia

    International Nuclear Information System (INIS)

    Potocnik, V.

    1997-01-01

    MSW energy recovery in Croatia by thermal treatment in waste and landfill gas plants, similar to some 1200 such plants operating worldwide, could reduce waste impact on health and environment, and simultaneously substitute approximate 300000 tonnes of imported hard coal. (author)

  2. SUSTAINABILITY AND ITS IMPACT ON SOLID WASTE MANAGEMENT

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  3. Methodology to design a municipal solid waste generation and composition map: A case study

    International Nuclear Information System (INIS)

    Gallardo, A.; Carlos, M.; Peris, M.; Colomer, F.J.

    2014-01-01

    Highlights: • To draw a waste generation and composition map of a town a lot of factors must be taken into account. • The methodology proposed offers two different depending on the available data combined with geographical information systems. • The methodology has been applied to a Spanish city with success. • The methodology will be a useful tool to organize the municipal solid waste management. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consist in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the

  4. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    International Nuclear Information System (INIS)

    Rentizelas, Athanasios A.; Tolis, Athanasios I.; Tatsiopoulos, Ilias P.

    2014-01-01

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  5. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  6. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  7. Current status of solid waste management in small island developing states: A review

    International Nuclear Information System (INIS)

    Mohee, Romeela; Mauthoor, Sumayya; Bundhoo, Zumar M.A.; Somaroo, Geeta; Soobhany, Nuhaa; Gunasee, Sanjana

    2015-01-01

    Highlights: • Waste management is a matter of great concern for small island developing states. • On average, waste generation rate in these islands amounts to 1.29 kg/capita/day. • Illegal dumping and landfilling prevail in most small island developing states. • Sustainable waste management practices, previously absent, are now emerging. • However, many challenges still hinder the implementation of these practices. - Abstract: This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographic regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1 kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29 kg/capita/day while that for OECD countries was at a mean value of 1.35 kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the expense of

  8. Current status of solid waste management in small island developing states: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mohee, Romeela [University of Mauritius, Réduit (Mauritius); Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu [Department of Chemical & Environmental Engineering, University of Mauritius, Réduit (Mauritius); Bundhoo, Zumar M.A.; Somaroo, Geeta; Soobhany, Nuhaa; Gunasee, Sanjana [Department of Chemical & Environmental Engineering, University of Mauritius, Réduit (Mauritius)

    2015-09-15

    Highlights: • Waste management is a matter of great concern for small island developing states. • On average, waste generation rate in these islands amounts to 1.29 kg/capita/day. • Illegal dumping and landfilling prevail in most small island developing states. • Sustainable waste management practices, previously absent, are now emerging. • However, many challenges still hinder the implementation of these practices. - Abstract: This article reviews the current status of waste management in Small Island Developing States (SIDS) and the challenges that are faced in solid waste management. The waste generation rates of SIDS were compared within the three geographic regions namely Caribbean SIDS, Pacific SIDS and Atlantic, Indian Ocean, Mediterranean and South China (AIMS) SIDS and with countries of the Organisation for Economic Co-Operation and Development (OECD). Only Pacific SIDS had a waste generation rate less than 1 kg/capita/day. The waste generation rates for the three SIDS regions averaged 1.29 kg/capita/day while that for OECD countries was at a mean value of 1.35 kg/capita/day. The waste compositions in the different SIDS regions were almost similar owing to comparable consumption patterns while these differed to a large extent with wastes generated in OECD countries. In SIDS, the major fraction of MSW comprised of organics (44%) followed by recyclables namely paper, plastics, glass and metals (total: 43%). In contrast, MSW in OECD countries consisted mainly of recyclables (43%) followed by organics (37%). This article also reviewed the other functional elements of the waste management systems in SIDS. Several shortcomings were noted in the process of waste collection, transfer and transport namely the fact of having outdated collection vehicles and narrow roads which are inaccessible. Among the waste management practices in SIDS, waste disposal via landfilling, illegal dumping and backyard burning were favoured most of the time at the expense of

  9. Hydrodynamic Modelling of Municipal Solid Waste Residues in a Pilot Scale Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    João Cardoso

    2017-11-01

    Full Text Available The present study investigates the hydrodynamics and heat transfer behavior of municipal solid waste (MSW gasification in a pilot scale bubbling fluidized bed reactor. A multiphase 2-D numerical model following an Eulerian-Eulerian approach within the FLUENT framework was implemented. User defined functions (UDFs were coupled to improve hydrodynamics and heat transfer phenomena, and to minimize deviations between the experimental and numerical results. A grid independence study was accomplished through comparison of the bed volume fraction profiles and by reasoning the grid accuracy and computational cost. The standard deviation concept was used to determine the mixing quality indexes. Simulated results showed that UDFs improvements increased the accuracy of the mathematical model. Smaller size ratio of the MSW-dolomite mixture revealed a more uniform mixing, and larger ratios enhanced segregation. Also, increased superficial gas velocity promoted the solid particles mixing. Heat transfer within the fluidized bed showed strong dependence on the MSW solid particles sizes, with smaller particles revealing a more effective process.

  10. Technical and economic assessment of energy conversion technologies for MSW

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.

    2002-07-01

    Thermal processes for municipal solid wastes (MSW) based on pyrolysis and/or gasification that have relevance to the emerging UK market are described in this report, and the results of the technical and economical assessment of these processes are presented. The Mitsui R21 Technology, the Thermoselect Process, the Nippon Steel Waste Melting Process, the Pyropleq Process, and the Compact Power Process are selected for detailed comparison on the basis of the overall technical concept, the energy balance and the requirements for consumables, environmental performance, and the technical and commercial status of the technology. Details are also given of a comparison of the novel thermal technologies with conventional mass burn incineration for MSW.

  11. Technical and economic assessment of energy conversion technologies for MSW

    International Nuclear Information System (INIS)

    Livingston, W.R.

    2002-01-01

    Thermal processes for municipal solid wastes (MSW) based on pyrolysis and/or gasification that have relevance to the emerging UK market are described in this report, and the results of the technical and economical assessment of these processes are presented. The Mitsui R21 Technology, the Thermoselect Process, the Nippon Steel Waste Melting Process, the Pyropleq Process, and the Compact Power Process are selected for detailed comparison on the basis of the overall technical concept, the energy balance and the requirements for consumables, environmental performance, and the technical and commercial status of the technology. Details are also given of a comparison of the novel thermal technologies with conventional mass burn incineration for MSW

  12. Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz

    2017-04-01

    Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.

  13. Effect of microwaves on solubilization of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Shahriari, H.; Warith, M.; Kennedy, K.J. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Civil Engineering

    2009-07-01

    Landfilling is the most common method for disposing of municipal solid waste (MSW) in North America. MSW consists of nonbiodegradable fractions as well as biodegradable fractions known as the organic fraction of municipal solid waste (OFMSW). Because of its high moisture content, OFMSW produces large amounts of leachate in landfills. If not treated properly, leachates can pollute groundwater and negatively affect health and the environment. This paper reported on a study that was conducted to determine the effects of microwave (MW) irradiation on the solubilization of organic fraction of municipal solid waste (OFMSW) at different temperatures, MW ramp times, and supplemental water addition (SWA). The objective was to enhance solubilization before anaerobic digestion (AD). MW pretreatment resulted in higher soluble chemical oxygen demand (sCOD), proteins and sugars in the supernatant phase. The highest increase in sCOD was achieved at 175 degrees C. For the same condition, the free liquid volume from bound water released from OFMSW into the supernatant was about 1.39 times higher than the control. The increase in potentially bio-available sCOD increased significantly to more than 200 per cent after microwaving at high temperature. It was concluded that microwaving of OFMSW at high temperature with SWA provides the best conditions for waste solubilisation in preparation for anaerobic digestion. The actual effect of MW pre-treatment on the anaerobic digestion process has yet to be determined. 49 refs., 5 tabs., 3 figs.

  14. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  15. Application of ANP and DEMATEL to evaluate the decision-making of municipal solid waste management in Metro Manila.

    Science.gov (United States)

    Tseng, Ming-Lang

    2009-09-01

    A municipal solid waste management (MSW) expert group was consulted in order to mirror how government officials might reach an effective solution regarding municipal solid waste management in Metro Manila. A critical issue regarding this is how the expert group can better evaluate and select a favorable MSW management solution using a series of criteria. MSW management solution selection is a multiple criteria decision-making (MCDM) problem, which requires the consideration of a large number of complex criteria. A robust MCDM method should consider the interactions among these criteria. The analytic network process (ANP) is a relatively new MCDM method which can deal with all kinds of interactions systematically. The Decision Making Trial and Evaluation Laboratory (DEMATEL) not only can convert the relations between cause and effect of criteria into a structural model, but also can be used as a way to handle the inner dependences within a set of criteria. Hence, this paper applies an effective solution based on a combined ANP and DEMATEL method to assist the expert group evaluating different MSW management solutions. According to the results, the best solution is for each city to have its own type of thermal process technology and resource recovery facility before landfill rather than entering a joint venture with enterprises or going into build-operate-transfer projects in order to be able to construct thermal process technologies and resource recovery facilities.

  16. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  17. Radioactive solid waste management at Trombay

    International Nuclear Information System (INIS)

    Jayaraman, A.P.; Balu, K.

    1977-01-01

    The Radioactive solid waste management programme at BARC, India during 1965-1975 is described in detail. The operational experience, which includes the handling treatment and disposal of these solid wastes is reported alongwith the special problems faced in the case of large volume low hazard potential wastes from the nuclear fuel cycle. (K.B.)

  18. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  19. Instructive for radioactive solid waste management

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia

    2014-01-01

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM [es

  20. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  1. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    Science.gov (United States)

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  2. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.

    Science.gov (United States)

    Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos

    2012-03-01

    In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Curbing dioxin emissions from municipal solid waste incineration in China: Re-thinking about management policies and practices

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hefa, E-mail: hefac@umich.ed [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Hu Yuanan [Education Program for Gifted Youth, Stanford University, Stanford, CA 94025 (United States)

    2010-09-15

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. - The management policies and practices need to be improved to curb the increasing dioxin releases from municipal solid waste incineration in China.

  4. Curbing dioxin emissions from municipal solid waste incineration in China: Re-thinking about management policies and practices

    International Nuclear Information System (INIS)

    Cheng Hefa; Hu Yuanan

    2010-01-01

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. - The management policies and practices need to be improved to curb the increasing dioxin releases from municipal solid waste incineration in China.

  5. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.

    Science.gov (United States)

    Lu, Liang; Jin, Yuqi; Liu, Hongmei; Ma, Xiaojun; Yoshikawa, Kunio

    2014-01-01

    Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution. Copyright © 2013. Published by Elsevier Ltd.

  6. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    Science.gov (United States)

    Ali Rajaeifar, Mohammad; Tabatabaei, Meisam; Ghanavati, Hossein

    2015-01-01

    Environmental assessment of municipal solid waste (MSW) management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0), landfilling combined with composting (Sc-1), incineration (Sc-2), incineration combined with composting (Sc-3), and AD combined with incineration (Sc-4). The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6). The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4). PMID:26217743

  7. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajaeifar

    2015-06-01

    Full Text Available Environmental assessment of municipal solid waste (MSW management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0, landfilling combined with composting (Sc-1, incineration (Sc-2, incineration combined with composting (Sc-3, and AD combined with incineration (Sc-4. The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6. The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4.

  8. Accumulative behavior of radioactive cesium during the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Mizuhara, Shinji; Kawamoto, Katsuya; Maeseto, Tomoharu; Kuramochi, Hidetoshi; Osako, Masahiro

    2015-01-01

    Understanding the long-term accumulation behavior of radioactive cesium (r- Cs) in municipal solid waste (MSW) incineration plants is important for safety management of them. In this study, first, not only air dose rate but also r-Cs activity in wall adhesion dust at different point in the inside of a MSW incineration plant were measured. The results showed that higher amounts of the Cs were observed in the surface layer of refractory and that higher air dose ratios were obtained in the upstream region in incineration process. However, the Cs content of adhered dust onto the surface material of incineration equipment was higher in downstream than upstream because of the decrease of flue gas temperature. (author)

  9. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review

    Science.gov (United States)

    Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli

    2017-12-01

    Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.

  10. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.

    Science.gov (United States)

    Woon, K S; Lo, Irene M C

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2014-01-01

    Data for the composition of municipal solid waste is a critical basis for any assessment of waste technologies and waste management systems. The detailed quantification of waste fractions is absolutely needed for a better technological development of waste treatment. The current waste composition...... comparability to characterize municipal solid waste. This methodology was applied to residual waste collected from 1,442 households in three municipalities in Denmark. The main fractions contributing to the residual household waste were food waste and miscellaneous waste. Statistical analysis suggested...... of standardised and commonly accepted waste characterization methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. The purpose of this study was to introduce a consistent methodology that reduces uncertainties and ensures data...

  12. On the determination of metals in municipal solid waste

    International Nuclear Information System (INIS)

    Grazman, B.L.

    1991-01-01

    The analytical capability to determine the elemental composition of a compost made from municipal solid waste (MSW) has been developed and successfully demonstrated. Prompt Gamma Neutron Activation Analysis (PGNAA) was used for the determination of cadmium via the 113 Cd(n,γ) 114 Cd reaction. Using a small, portable neutron source, an untreated 2.5 kg sample of a MSW compost was found to contain 25 ppm ± 16% (relative counting error) Cd, in good agreement with the determination of Cd in three 100 gram samples of ashed compost. The results of the analysis of the ashed compost was 30 ppm ± 20% (relative standard deviation) Cd. The limit of detection for the technique was 5 ppm in a 2.5 kg sample; calculations indicate that the use of a larger neutron source or more than one detector would decrease this. Treated and untreated samples of compost ranging from 0.1 to 100 grams were analyzed for a number of other elements at trace to percent levels by instrumental neutron activation analysis (INAA). The analysis of treated samples (ashed or ashed and digested) showed that the elemental composition of treated samples statistically differed depending on sample size. 27% of the weight of the compost was made up of insoluble solids, possibly accounting for some of the differences seen. The untreated samples were shown to have consistent mean concentrations regardless of sample size. The differences between the results for treated and untreated samples show some of the potential problems of sample treatment. The accuracy of analytical techniques that require treated samples is limited by the integrity of the sample treatment. INAA and PGNAA, on the other hand, require no sample treatment and are therefore free from these problems

  13. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Hupponen, M., E-mail: mari.hupponen@lut.fi; Grönman, K.; Horttanainen, M.

    2015-08-15

    Highlights: • Environmental criteria for the MSW incineration location procurements are needed. • Focus should be placed on annual energy efficiency and on substitute fuels. • In SRF combustion it is crucial to know the share and the treatment of rejects. • The GWP of transportation is a small part of the total emissions. - Abstract: The ongoing trend in the public sector is to make more sustainable procurements by taking into account the impacts throughout the entire life cycle of the procurement. Despite the trend, the only deciding factor can still be the total costs. This article answers the question of how greenhouse gas (GHG) emissions should be taken into account in municipal solid waste (MSW) management when selecting an incineration plant for source separated mixed MSW. The aim is to guide the decision making of MSW management towards more environmentally friendly procurements. The study was carried out by calculating the global warming potentials (GWPs) and costs of mixed MSW management by using the waste composition from a case area in Finland. Scenarios of landfilling and combustion in three actual waste incineration plants were used to recognise the main processes that affect the results. GWP results show that the combustion of mixed MSW is a better alternative than landfilling the waste. The GHG results from combustion are greatly affected by emissions from the combustion and substituted energy production. The significance of collection and transportation is higher from the costs’ perspective than from the point of view of GHG emissions. The main costs, in addition to collection and transportation costs, result from the energy utilization or landfilling of mixed MSW. When tenders are invited for the incineration location of mixed MSW, the main focus should be: What are the annual electricity and heat recovery efficiencies and which are the substituted fuels in the area? In addition, in the case of a fluidized bed combustor it is crucial to

  14. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland

    International Nuclear Information System (INIS)

    Hupponen, M.; Grönman, K.; Horttanainen, M.

    2015-01-01

    Highlights: • Environmental criteria for the MSW incineration location procurements are needed. • Focus should be placed on annual energy efficiency and on substitute fuels. • In SRF combustion it is crucial to know the share and the treatment of rejects. • The GWP of transportation is a small part of the total emissions. - Abstract: The ongoing trend in the public sector is to make more sustainable procurements by taking into account the impacts throughout the entire life cycle of the procurement. Despite the trend, the only deciding factor can still be the total costs. This article answers the question of how greenhouse gas (GHG) emissions should be taken into account in municipal solid waste (MSW) management when selecting an incineration plant for source separated mixed MSW. The aim is to guide the decision making of MSW management towards more environmentally friendly procurements. The study was carried out by calculating the global warming potentials (GWPs) and costs of mixed MSW management by using the waste composition from a case area in Finland. Scenarios of landfilling and combustion in three actual waste incineration plants were used to recognise the main processes that affect the results. GWP results show that the combustion of mixed MSW is a better alternative than landfilling the waste. The GHG results from combustion are greatly affected by emissions from the combustion and substituted energy production. The significance of collection and transportation is higher from the costs’ perspective than from the point of view of GHG emissions. The main costs, in addition to collection and transportation costs, result from the energy utilization or landfilling of mixed MSW. When tenders are invited for the incineration location of mixed MSW, the main focus should be: What are the annual electricity and heat recovery efficiencies and which are the substituted fuels in the area? In addition, in the case of a fluidized bed combustor it is crucial to

  15. Comparative study of municipal solid waste generation and composition in Shiraz city (2014

    Directory of Open Access Journals (Sweden)

    A. Norouzian Baghani

    2017-06-01

    Full Text Available Background: Exponential growths of population and urbanization, and the development of social economy have resulted in an increase in the amount of MSW generation throughout the world. Objective: The present study aimed to survey qualitative and quantitative analysis of solid waste in Shiraz city and comparative these results with the world scenario of solid wastes generation for improving the sustainable management of solid waste. Methods: This cross-sectional study was conducted in 2014 in nine municipality regions Shiraz with a total population of approximately 1,549,354 people. Basic data was gathered through Shiraz waste management organization. Then generation (per capita and constituent percent of the solid waste were evaluated based on the sampling and field analyzing from reliable guidelines. Data were analyzed with Stata-13 and Excel statistical software. Kolmogorov-Smirnov test used for the normality of variables. Means were compared by Student T test and Mann-Whitney test. Findings: The rate of solid waste generated in the Shiraz city was 222.65 kg per person per year in 2014. Statistical analysis showed that the variables of organic materials, paper and cardboard, glass and metal between developed and developing countries were a significant difference (P0.05. Conclusion: Solid waste per capita in Shiraz city (about 600 g/day was near to the average amount of solid waste generation in Iran and other developing countries. Due to the high content of organic material in municipal solid waste of Shiraz, minimization of these material and separation of dry and wet solid wastes must be noted from the people and municipalities.

  16. Exergy analysis of Portuguese municipal solid waste treatment via steam gasification

    International Nuclear Information System (INIS)

    Couto, Nuno; Silva, Valter; Monteiro, Eliseu; Rouboa, Abel

    2017-01-01

    Highlights: • Evaluation of Portuguese municipal solid waste gasification was conducted. • Previously studied biomass substrate was used as benchmark. • Numerical model built upon a reliable set of experimental runs was used. • Thermodynamic analysis on steam as gasifying agent was showed. • A CFD model was combined with RSM to optimize exergy efficiency. - Abstract: The presented study focuses on a thermodynamic analysis conducted on steam gasification of Portuguese municipal solid wastes (MSW). Current literature addressing this issue is extremely scarce due to the complexity in handling MSW’s heterogeneity. To fill this significant gap, a mathematical model built upon a reliable set of experimental runs from a semi-industrial gasifier was used to evaluate the effects of reactor temperature and steam-to-biomass ratio (SBR) on produced gas and tar content. Results from a previously studied biomass substrate were used as benchmark. Numerical results were validated with both experimental results and existing literature. Increase in gasification temperature led to a clear increase in both exergy values and exergy efficiency. On the other hand, increase in SBR led to a sharp increase in the exergy values when steam was first introduced, leading to relatively constant values when SBR was further increased. Regarding exergy efficiency, SBR led to a clear maximum value, which in the case of forest residues was found at SBR = 1, while for MSW at 1.5. In order to promote a more hydrogen-rich gas, data obtained from the numerical model was used to design an exergy efficiency optimization model based on the response surface method. Maximum hydrogen efficiency was found at 900 °C with a SBR of 1.5 for MSW and 1 for forest residues. Surprisingly, forest residues and MSW presented virtually the same maximum hydrogen efficiency.

  17. Microbial diversity and dynamics during methane production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu [Civil and Environmental Engineering, Colorado State University, Ft. Collins, CO 80532 (United States); Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wolfe, Georgia L., E-mail: gwolfe@wisc.edu [Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); McMahon, Katherine D., E-mail: tmcmahon@engr.wisc.edu [Bacteriology, Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Civil and Environmental Engineering, Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  18. Microbial diversity and dynamics during methane production from municipal solid waste

    International Nuclear Information System (INIS)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-01-01

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  19. Public perception of hazardousness caused by current trends of municipal solid waste management.

    Science.gov (United States)

    Al-Khatib, Issam A; Kontogianni, Stamatia; Abu Nabaa, Hendya; Alshami, Ni'meh; Al-Sari', Majed I

    2015-02-01

    Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) as a result of inequitable waste collection and treatment. Citizens' collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent's educational attainment and their awareness of hazardous waste (hazard perception); the results will indicate the measure taking required to avoid accidents occurred in those regions (burns from toxics, cuts from sharps, etc). National policy and legislation development based on the research outcomes will ensure equitable and accessible services are in place in order to move towards a healthier environment. Specialized health education and training programs on national scale are also needed to enhance awareness on hazardous waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Solid waste disposal into salt mines

    International Nuclear Information System (INIS)

    Repke, W.

    1981-01-01

    The subject is discussed as follows: general introduction to disposal of radioactive waste; handling of solid nuclear waste; technology of final disposal, with specific reference to salt domes; conditioning of radioactive waste; safety barriers for radioactive waste; practice of final disposal in other countries. (U.K.)

  1. Monitoring of plutonium contaminated solid waste streams

    International Nuclear Information System (INIS)

    Birkhoff, G.; Notea, A.

    1977-01-01

    The planning of a system for monitoring Pu contaminated solid waste streams, from the nuclear fuel cycle, is considered on the basis of given facility waste management program. The inter relations between the monitoring system and the waste management objectives are stressed. Selection criteria with pertinent data of available waste monitors are given. Example of monitoring systems planning are presented and discussed

  2. A review of groundwater contamination near municipal solid waste landfill sites in China.

    Science.gov (United States)

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  3. evaluation of municipal solid waste management system

    African Journals Online (AJOL)

    eobe

    Keywords: solid waste, household, waste bin, willingness to pay, municipal. 1. INTRODUCTION .... significant differences between WTP and household ... Gender. Income of Household. Education Status. House Type. Household Size. Male.

  4. Infrastructure Task Force Tribal Solid Waste Management

    Science.gov (United States)

    These documents describe 1) issues to consider when planning and designing community engagement approaches for tribal integrated waste management programs and 2) a proposed approach to improve tribal open dumps data and solid waste projects, and 3) an MOU.

  5. Solid wastes research in South Africa

    CSIR Research Space (South Africa)

    Noble, RG

    1976-06-01

    Full Text Available The importance of solid wastes management in environmental pollution control cannot be over-emphasised. Increased socio-economic development in South Africa has brought with it increasing volumes of urban, industrial and agricultural wastes...

  6. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  7. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  8. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    International Nuclear Information System (INIS)

    Sun, Rui; Ismail, Tamer M.; Ren, Xiaohan; Abd El-Salam, M.

    2015-01-01

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW

  9. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Rui, E-mail: Sunsr@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China); Ismail, Tamer M., E-mail: temoil@aucegypt.edu [Department of Mechanical Engineering, Suez Canal University, Ismailia (Egypt); Ren, Xiaohan [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China); Abd El-Salam, M. [Department of Basic Science, Cairo University, Giza (Egypt)

    2015-05-15

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.

  10. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    Science.gov (United States)

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Report: risk factors associated with treatment of mixed municipal solid waste in the Indian context.

    Science.gov (United States)

    Nema, Asit

    2009-12-01

    Across India, all small and large urban local bodies (ULB) alike are grappling with the problem of municipal solid waste (MSW), which has reached critical dimensions because of, among others, rapidly increasing quantities and complex characteristics, inadequate regulation, lack of awareness, concern and cooperation on the part of the urban residents, limited resources for collection, transport and safe disposal, and limited expertise on the part of the ULBs. A number of ULBs have attempted to address the two-fold constraint of resources and land by setting up treatment plants under the premise of generating revenue and reducing liability of safe disposal. Over the last three decades, under the paradigms of converting 'waste to energy' and 'waste to wealth' various technologies have been tried out, however time and again it is seen that irrespective of the technology, MSW treatment plants run in to difficulties and/or close down. The issues do not pertain just to technology but are systemic and encompass project development, feedstock delivery system including quality and quantity, climate, high life-cycle costs, low value realization on outputs and adverse environmental and social impacts. With such a wide range of risk factors, experience has shown that the probability of manifestation of any one of them or a combination thereof at one or the other stages of the project is quite high. Investment in a mixed MSW treatment plant therefore can not deliver positive financial returns, rather it can become a non-performing asset without even guaranteeing the desired environmental and public health benefits. This paper therefore argues for the adoption of a robust, elastic and most forgiving option of sanitary landfill as a dependable and safe disposal system for MSW.

  13. An incentive-based source separation model for sustainable municipal solid waste management in China.

    Science.gov (United States)

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.

  14. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal