WorldWideScience

Sample records for solid waste gasification

  1. Gasification versus combustion of solid wastes. Environmental aspects. Supplementary report

    International Nuclear Information System (INIS)

    Stenholm, M.; Dalager, S.; Kristensen, O.

    1994-04-01

    The report is supplementary to the main one of the same title and contains detailed descriptions of the plants for gasification and pyrolysis of biomass visited in Europe, Canada and USA in order to evaluate the technology development, especially with regard to the use of solid wastes as fuel. (AB)

  2. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  3. Gasification of solid waste — potential and application of co-current moving bed gasifiers

    NARCIS (Netherlands)

    Groeneveld, M.J.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    A review is given of gasification processes for solid fuels with special emphasis on waste gasification. Although the co-current moving bed gasifier has not been under consideration for a long time, it offers interesting possibilities for waste gasification. Some operational data are given. Two

  4. FORMATION OF DIOXINS AND FURANS DURING MUNICIPAL SOLID WASTE GASIFICATION

    Directory of Open Access Journals (Sweden)

    E. J. Lopes

    2015-03-01

    Full Text Available Abstract Thermal treatment is an interesting strategy to dispose of municipal solid waste: it reduces the volume and weight of the material dumped in landfills and generates alternative energy. However, the process emits pollutants, such as dioxins and furans. The present study evaluated MSW gasification-combustion integrated technologies in terms of dioxin and furan emission; and compared the obtained data with literature results on incineration, to point out which operational features differentiate the release of pollutants by these two processes. The results show that the process of integrated gasification and combustion emitted 0.28 ng N-1 m-3, expressed in TEQ (Total Equivalent Toxicity, of PCDD/F, less than the maximum limits allowed by local and international laws, whereas incineration normally affords values above these limits and requires a gas treatment system. The distinct operational conditions of the two thermal processes, especially those related to temperature and the presence of oxygen and fixed carbon, led to a lower PCDD/F emission in gasification.

  5. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  6. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Municipal Solid Waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by th eir use it is possible to reduce the waste...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification......, waste is subject to chemical treatments through air or/and steam utilization; the result is a synthesis gas, called “Syngas” which is principally composed of hydrogen and carbon monoxide. Traces of hydrogen sulfide could also be present which can easily be separated in a desulfurization reactor...

  7. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2012-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of a SOFC is fed wherein...

  8. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Rotary Kiln Gasification of Solid Waste for Base Camps

    Science.gov (United States)

    2017-10-02

    design principles : • accept and process mixed, unsorted municipal waste materials • minimize process energy required through careful heat management ...ABSTRACT This project was undertaken to design and construct a battalion-scale waste-to-energy (WTE) system based on the principle of gasification...careful heat management and use of hydraulics, and (3) to integrate into contingency utility systems by using standard diesel generators. 15. SUBJECT TERMS

  10. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    International Nuclear Information System (INIS)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-01-01

    Highlights: ► This study evaluates the effects of co-gasification of MSW with MSW bottom ash. ► No significant difference between MSW treatment with and without MSW bottom ash. ► PCDD/DFs yields are significantly low because of the high carbon conversion ratio. ► Slag quality is significantly stable and slag contains few hazardous heavy metals. ► The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by

  11. Process and technological aspects of municipal solid waste gasification. A review

    International Nuclear Information System (INIS)

    Arena, Umberto

    2012-01-01

    Highlights: ► Critical assessment of the main commercially available MSW gasifiers. ► Detailed discussion of the basic features of gasification process. ► Description of configurations of gasification-based waste-to-energy units. ► Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  12. Co-gasification of bituminous coal and hydrochar derived from municipal solid waste: Reactivity and synergy.

    Science.gov (United States)

    Wei, Juntao; Guo, Qinghua; He, Qing; Ding, Lu; Yoshikawa, Kunio; Yu, Guangsuo

    2017-09-01

    In this work, the influences of gasification temperature and blended ratio on co-gasification reactivity and synergy of Shenfu bituminous coal (SF) and municipal solid waste-derived hydrochar (HTC) were investigated using TGA. Additionally, active alkaline and alkaline earth metal (AAEM) transformation during co-gasification was quantitatively analyzed by inductively coupled plasma optical emission spectrometer for correlating synergy on co-gasification reactivity. The results showed that higher char gasification reactivity existed at higher HTC char proportion and gasification temperature, and the main synergy behaviour on co-gasification reactivity was performed as synergistic effect. Enhanced synergistic effect at lower temperature was mainly resulted from more obviously inhibiting the primary AAEM (i.e. active Ca) transformation, and weak synergistic effect still existed at higher temperature since more active K with prominent catalysis was retained. Furthermore, more active HTC-derived AAEM remaining in SF sample during co-gasification would lead to enhanced synergistic effect as HTC char proportion increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2015-01-01

    the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification process can compete......Municipal solid waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by their use it is possible to reduce the waste...... storage in landfills and devote these spaces to other human activities. It is also important to point out that this kind of renewable energy suffers significantly less availability which characterizes other type of renewable energy sources such as in wind and solar energy.In a gasification process, waste...

  14. SFW-Funk process for gasification of solid urban and industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Hummelsiep, H; Heinrich, F

    1982-01-01

    It was the purpose of the R+D-project, to develop the SFW-Funk process for gasification of solid urban and industrial waste for commercial plants. On the base of a literature study and some experiments on a laboratory plant, a demonstration plant was designed and built. The test runs can be divided into two sections. During the first, problems of the enlarging of the plant were examined and solved. In the second section, gasification tests where run under several conditions. During the period of run, different input-materials (domestic waste of different composition, grain size and closeners of grain, rubber and wood) were gasified at varying operating conditions (composition, quantity and constitution of the oxidant) with good results. The experiments showed, that, unless the reactor was optimized during the period of run, it is possible to optimize some further elements of the gasification plant.

  15. Assessment on steam gasification of municipal solid waste against biomass substrates

    International Nuclear Information System (INIS)

    Couto, Nuno Dinis; Silva, Valter Bruno; Rouboa, Abel

    2016-01-01

    Highlights: • Steam gasification as an alternative for MSW treatment was studied. • A previously developed numerical model for MSW gasification was used. • Results were validated with data gathered from the literature. • Results were compared with previously studied biomass substrates. • Environment and economic assessment based on the results was conducted. - Abstract: Waste management is becoming one of the main concerns of our time. Not only does it takes up one of the largest portions of municipal budgets but it also entails extensive land use and pollution to the environment using current treatment methods. Steam gasification of Portuguese municipal solid wastes was studied using a previously developed computational fluid dynamics (CFD) model, and experimental and numerical results were found to be in agreement. To assess the potential of Portuguese wastes, these results were compared to those obtained from previously investigated Portuguese biomass substrates and steam-to-biomass ratio was used to characterize and understand the effects of steam in the gasification process. The properties of syngas produced from municipal solid waste and from biomass substrates were compared and results demonstrated that wastes present the lowest carbon conversion, gas yield and cold gas efficiency with the highest tar content. Nevertheless, the pre-existing collection and transportation infrastructure that is currently available for municipal waste does not exist for the compared biomass resources which makes it an interesting process. In addition a detailed economic study was carried out to estimate the environmental and economic benefits of installing the described system. The hydrogen production cost was also estimated and compared with alternative methods.

  16. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  17. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  18. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    Science.gov (United States)

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Exergy analysis of Portuguese municipal solid waste treatment via steam gasification

    International Nuclear Information System (INIS)

    Couto, Nuno; Silva, Valter; Monteiro, Eliseu; Rouboa, Abel

    2017-01-01

    Highlights: • Evaluation of Portuguese municipal solid waste gasification was conducted. • Previously studied biomass substrate was used as benchmark. • Numerical model built upon a reliable set of experimental runs was used. • Thermodynamic analysis on steam as gasifying agent was showed. • A CFD model was combined with RSM to optimize exergy efficiency. - Abstract: The presented study focuses on a thermodynamic analysis conducted on steam gasification of Portuguese municipal solid wastes (MSW). Current literature addressing this issue is extremely scarce due to the complexity in handling MSW’s heterogeneity. To fill this significant gap, a mathematical model built upon a reliable set of experimental runs from a semi-industrial gasifier was used to evaluate the effects of reactor temperature and steam-to-biomass ratio (SBR) on produced gas and tar content. Results from a previously studied biomass substrate were used as benchmark. Numerical results were validated with both experimental results and existing literature. Increase in gasification temperature led to a clear increase in both exergy values and exergy efficiency. On the other hand, increase in SBR led to a sharp increase in the exergy values when steam was first introduced, leading to relatively constant values when SBR was further increased. Regarding exergy efficiency, SBR led to a clear maximum value, which in the case of forest residues was found at SBR = 1, while for MSW at 1.5. In order to promote a more hydrogen-rich gas, data obtained from the numerical model was used to design an exergy efficiency optimization model based on the response surface method. Maximum hydrogen efficiency was found at 900 °C with a SBR of 1.5 for MSW and 1 for forest residues. Surprisingly, forest residues and MSW presented virtually the same maximum hydrogen efficiency.

  20. Gasification of municipal solid waste in a downdraft gasifier: Analysis of tar formation

    Directory of Open Access Journals (Sweden)

    Tabitha Geoffrey Etutu

    2016-04-01

    Full Text Available In this study, municipal solid waste (MSW from a dumpsite was converted into refuse derived fuel (RDF and used as feedstock for an air-blown gasification process. The gasification process was conducted in a 10 kg.hr -1 downdraft gasifier at different air flow rates of 300, 350, 400, 450 and 550 NL.min1 at atmospheric pressure in order to investigate the quantity and quality of tar formed. It was shown that the increase in the air flow rate from 300 NL.min1 to 550 NL.min1 led to an increase in the oxidation temperature from 719°C to 870°C and an increase in the reduction temperature from 585°C to 750°C, respectively. Tar was reduced from 15 g.Nm3 to 4.7 g.Nm3 respectively. Heavy tar compounds (>C17 e.g. pyrene and phenathrene, decreased with the increase in the light tar compounds (

  1. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Science.gov (United States)

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    Science.gov (United States)

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Development and operation of a 30 ton/ day gasification and melting plant for municipal solid wastes

    International Nuclear Information System (INIS)

    Jung, Hae Young; Seo, Yong-Chil; Cho, Sung-Jin; Lee, Jang-Su; Lee, Ki-Bae; Jeong, Dae-Woon; Kim, Woo-Hyun; Roh, Seon-Ah; Min, Tai-Jin

    2010-01-01

    As one of the efforts to increase recycling rate of end of life vehicles enforcing by the governmental regulation, automobile shredder residue (ASR) was considered to treat by a thermal method with converting waste to energy. Gasification and melting experimental processes of lab (1 kg/ hour) and pilot (5 ton. day) scale were installed. ASR collected from a domestic shredding company was experimented at a lab-scale and pilot-scale gasification and melting process which is similar to the shaft type gasification melting furnace. The characteristics of syngas, tar and residue (slag) generated from a conversion process (gasification and melting) were analyzed to provide the information to further utilize them as fuel and recyclable materials in scaled up plants. A series of experiments have been conducted with various air equivalent ratios (ERs), and syngas compositions, carbon conversion efficiency, heating value of syngas, yield and characteristics of slag were analyzed. Finally, slags generated from the process were recycled with various alternative technologies. In summary, energy conversion technology of ASR with the least production of residue by gasification and slag utilization has been developed. The main components in product gas were H 2 , CO, CH 4 and CO 2 ; and concentrations of C 2 H 4 and C 2 H 6 were less. This can be used as clean fuel gas whose heating value ranged from 2.5 to 14.0 MJ/ m 3 . Most of slag generated from the process can further be fabricated to valuable and usable products. Such combined technology would result in achieving almost zero waste release from ELVs. (author)

  4. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  5. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  6. Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model.

    Science.gov (United States)

    Deng, Na; Zhang, Awen; Zhang, Qiang; He, Guansong; Cui, Wenqian; Chen, Guanyi; Song, Chengcai

    2017-07-01

    A self-sustained municipal solid waste (MSW) pyrolysis-gasification process with self-produced syngas as heat source was proposed and an equilibrium model was established to predict the syngas reuse rate considering variable MSW components. Simulation results indicated that for constant moisture (ash) content, with the increase of ash (moisture) content, syngas reuse rate gradually increased, and reached the maximum 100% when ash (moisture) content was 73.9% (60.4%). Novel ternary diagrams with moisture, ash and combustible as axes were proposed to predict the adaptability of the self-sustained process and syngas reuse rate for waste. For wastes of given components, its position in the ternary diagram can be determined and the syngas reuse rate can be obtained, which will provide guidance for system design. Assuming that the MSW was composed of 100% combustible content, ternary diagram shows that there was a minimum limiting value of 43.8% for the syngas reuse rate in the process. Copyright © 2017. Published by Elsevier Ltd.

  7. The small-scale production of hydrogen, with the co-production of electricity and district heat, by means of the gasification of municipal solid waste

    International Nuclear Information System (INIS)

    Hognert, Johannes; Nilsson, Lars

    2016-01-01

    Highlights: • Outline of a process for handling municipal solid waste potentially leading to reduced use of fossil transportation fuels. • The integration of waste gasification into a district heat plant leads to excellent energy efficiency. • Analysis based on actual production data from a district heat plant over the period of one year. • Simulation of a plant with productions of heat, power and gaseous hydrogen. - Abstract: Reducing the use of fossil fuels and increasing the recycling of waste are two important challenges for a sustainable society. Fossil fuels contribute to global warming whilst waste causes the pollution of land, water and air. Alternative fuels and innovative waste management systems are needed to address these issues. In this study a gasification process, fuelled with municipal solid waste, was assumed to be integrated into a heat plant to produce hydrogen, electricity and district heat. A whole system, which includes a gasification reactor, heat plant, steam cycle, pressure swing adsorption, gas turbine and compressors was modelled in Microsoft Excel and an energy balance of the system was solved. Data from the scientific literature were used when setting up the heat and mass balances of the gasification process as well as for assessment of the composition of the syngas. The allocation of energy of the products obtained in the process is 29% hydrogen, 26% electricity and 45% district heat. A significant result of the study is the high energy efficiency (88%) during the cold period of the year when the produced heat in the system is utilized for district heat. The system also shows a competitive energy efficiency (56.5%) all year round.

  8. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    International Nuclear Information System (INIS)

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-01-01

    Highlights: ► We investigate sulphur during MSW gasification within a fluid bed-plasma process. ► We review the literature on the feed, sulphur and process principles therein. ► The need for research in this area was identified. ► We perform thermodynamic modelling of the fluid bed stage. ► Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H 2 S) – Na and K based species in particular. Work is underway to further investigate and validate this.

  9. Design of Waste Gasification Energy Systems with Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2017-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence, and to increase the use of renewable energies. In the last several years, new technologies have been developed and some...... of them received subsidies to increase installation and reduce cost. This article presents a new sustainable trigeneration system (power, heat and cool) based on a solid oxide fuel cell (SOFC) system integrated with an absorption chiller for special applications such as hotels, resorts, hospitals, etc....... with a focus on plant design and performance. The proposal system is based on the idea of gasifying the municipal waste, producing syngas serving as fuel for the trigeneration system. Such advanced system when improved is thus self-sustainable without dependency on net grid, district heating and district...

  10. Catalytic gasification in fluidized bed, of orange waste. Comparison with non catalytic gasification

    International Nuclear Information System (INIS)

    Aguiar Trujillo, Leonardo; Marquez Montesinos, Francisco; Ramos Robaina, Boris A.; Guerra Reyes, Yanet; Arauzo Perez, Jesus; Gonzalo Callejo, Alberto; Sanchez Cebrian, Jose L

    2011-01-01

    The industry processing of the orange, generates high volumes of solid waste. This waste has been used as complement in the animal feeding, in biochemical processes; but their energy use has not been valued by means of the gasification process. They were carried out gasification studies with air in catalytic fluidized bed (using dolomite and olivine as catalysts in a secondary reactor, also varying the temperature of the secondary reactor and the catalyst mass), of the solid waste of orange and the results are compared with those obtained in the gasification with non catalytic air. In the processes we use a design of complete factorial experiment of 2k, valuing the influence of the independent variables and their interactions in the answers, using the software Design-Expert version 7 and a grade of significance of 95 %. The results demonstrate the qualities of the solid waste of orange in the energy use by means of the gasification process for the treatment of these residuals, obtaining a gas of low caloric value. The use of catalysts also diminishes the yield of tars obtained in the gasification process, being more active the dolomite that the olivine in this process. (author)

  11. Market for small waste gasification projects - preliminary scoping study

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents the findings of a market analysis for small waste gasification/pyrolysis plant in the UK. The overall objectives of the study are to assess the potential merits in establishing a demonstration plant in the UK, and to identify the size, profile and characteristics of the potential market based on municipal solid waste (MSW) feedstock. (author)

  12. Incineration and pyrolysis vs. steam gasification of electronic waste.

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2018-05-15

    Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  14. Gasification experience with biomass and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H P; Adlhoch, W [Rheinbraun AG, Cologne (Germany)

    1997-12-31

    The HTW process is particularly favourable for the gasification of low-rank feedstocks. During various tests - performed in b-bench- scale, pilot-scale and industrial scale units - consequences with regard to feedstock preparation. Gasification behaviour, corrosion, emission and residual matter were carefully studied for a large number of different feedstocks. Information is now available for optimal utilisation of several types of biomass and waste materials in relation to plant operation, emission and residue utilization. Different types of biomass were tested in bench-scale conditions in an atmospheric HTW process development unit. Industrial-scale experience concerning biomass is available from the Gasification plant at Oulu, Finland, which operated from 1988 to 1991, producing ammonia synthesis gas from dried Finnish peat. During several test campaigns performed at the HTW demonstration plant sewage sludge, loaded coke and used plastics were co-gasified at feeding rates of up to 5 t/h. Operability, conversion efficiency, syngas contaminants, solid residue characteristics and emissions were monitored very carefully. Co-gasification in a dried lignite mixture allows synthesis gas for methanol production to be obtained also from waste materials. Thus, waste is converted into a useful chemical feedstock. For both sewage sludge and loaded coke, conversion efficiency and syngas yield were sufficient. Within the scope of a solid residue characterization various contaminants, including chlorine, sulphur, heavy metals and other trace elements or organic compounds, their formation and/or release were detected. Emissions were well below the limits. However, an increase in the benzene and naphthalene concentrations in the crude gas occurred. Thus, a commercial application requires additional gas treatment. In the next few years, feedstock recycling of mixed plastics household waste from Duales System Deutschland GmbH will call for a plant capacity of 350 000 to 400 000

  15. Gasification experience with biomass and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H.P.; Adlhoch, W. [Rheinbraun AG, Cologne (Germany)

    1996-12-31

    The HTW process is particularly favourable for the gasification of low-rank feedstocks. During various tests - performed in b-bench- scale, pilot-scale and industrial scale units - consequences with regard to feedstock preparation. Gasification behaviour, corrosion, emission and residual matter were carefully studied for a large number of different feedstocks. Information is now available for optimal utilisation of several types of biomass and waste materials in relation to plant operation, emission and residue utilization. Different types of biomass were tested in bench-scale conditions in an atmospheric HTW process development unit. Industrial-scale experience concerning biomass is available from the Gasification plant at Oulu, Finland, which operated from 1988 to 1991, producing ammonia synthesis gas from dried Finnish peat. During several test campaigns performed at the HTW demonstration plant sewage sludge, loaded coke and used plastics were co-gasified at feeding rates of up to 5 t/h. Operability, conversion efficiency, syngas contaminants, solid residue characteristics and emissions were monitored very carefully. Co-gasification in a dried lignite mixture allows synthesis gas for methanol production to be obtained also from waste materials. Thus, waste is converted into a useful chemical feedstock. For both sewage sludge and loaded coke, conversion efficiency and syngas yield were sufficient. Within the scope of a solid residue characterization various contaminants, including chlorine, sulphur, heavy metals and other trace elements or organic compounds, their formation and/or release were detected. Emissions were well below the limits. However, an increase in the benzene and naphthalene concentrations in the crude gas occurred. Thus, a commercial application requires additional gas treatment. In the next few years, feedstock recycling of mixed plastics household waste from Duales System Deutschland GmbH will call for a plant capacity of 350 000 to 400 000

  16. The development of municipal solid waste treatment technology based on refuse derived fuel and bio-gasification integration

    International Nuclear Information System (INIS)

    Muhd Noor Muhd Yunus

    2006-01-01

    The amount of MSW generated in big cities in Malaysia is very alarming. In Kuala Lumpur, the total waste generated is about 2,500 t/day. The existing landfills are being overused and should have been closed by now. However, till today, the solution is not really in place. The Government is planning to build a 1200 t/day Gasification and Ash Melting (GAMF) plant to partially resolve the above problem in Kuala Lumpur. However, even though environmentally rated as one of the best, technology is not cheap, thus failed to meet the BATNEEC concept. Currently, the Government, through the Strategic Master Plan, encourages the development of local technologies that are cheap and yet comply to international standards. As such, a private company, Recycle Energy Sdn Bhd (RESB), took the initiative to develop the RDF from Malaysian MSW. MINT Incineration and Renewable Energy Center (MIREC) has been commissioned to collaborate in the development of this technology, together with Universiti Putra Malaysia (UPM). A 15 t/day pilot scale RDF plant was established in 2001 in Kajang, to refine the concept as well as to establish more data. One year later, the company was given permission by the Government to set up a 700 t/day commercial facility in Semenyih, based on early success of the pilot testing done in Kajang. The integration of RDF, Anaerobic Digester and Fuel Cell Technology is adopted to generate in house power and export to the national grid, besides recycling a portion of the waste materials. This integration seems to be the best environmental as well as economic option that complies to BATNEEC concept. This paper highlights and discusses the issues and challenges in the process of developing RDF technology, both at the pilot scale R and D as well as the commercial scale plant planning

  17. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-09-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  18. Analytical characterization of an industrial waste treated by gasification

    Energy Technology Data Exchange (ETDEWEB)

    Washington, M.D.; Larsen, D.W.; Manahan, S.E. [University of Missouri-St. Louis, St. Louis, MO (United States). Chemistry Dept.

    1999-04-15

    Previous studies have shown that an effective general treatment for hazardous wastes is sorption of the waste onto a specially prepared, macroporous coal char followed by gasification of the mixture in reverse mode. In the present study, an industrial waste comprised of styrene manufacturing and petroleum byproducts was gasified, and the waste, coal, virgin char, and char/waste mixture (before and after gasification) were examined by various instrumental methods, infrared, nuclear magnetic resonance, gas chromatography, gas chromatography/mass spectroscopy, scanning electron microscopy, and ultimate and proximate analyses, to determine which methods give useful information. The composition of the waste was found to be 38% water, 27% inorganic, and 35% organic. NMR showed that the organic components are a mixture of aliphatic and olefinic/aromatics. About 8% of the sludge is chromatographable and GC/MS revealed the presence of aromatics and polyaromatic hydrocarbons. Solid-state NMR showed that the sludge components are strongly immobilized on the char up to a 1:1 (wt:wt) ratio. SEM results showed changes in the char macroporous surface as waste is incorporated by the char and as the mixture is subsequently gasified. In addition, a portion of the elemental content of the char surface was revealed by energy dispersive (EDAX) measurements. IR photoaccoustic spectroscopy showed that peaks attributable to aqueous and organic fractions of the waste disappear upon gasification. 19 refs., 7 figs., 5 tabs.

  19. Research results of sewage sludge and waste oil disposal by entrained bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schingnitz, M.; Goehler, P.; Wenzel, W.; Seidel, W. (Noell-DBI Energie- und Entsorgungstechnik GmbH, Freiberg (Germany))

    1992-01-01

    Presents results of gasifying sewage sludge and waste oil with the GSP technology, developed by the Freiberg Fuel Institute (FRG). The GSP reactor was developed in 1976 for gasification of pulverized brown coal. An industrial reactor of this design operated for over 5 years with a total coal throughput of more than 300,000 t. The design of the gasification generator and the flowsheet of a 3 MW experimental pilot plant for waste gasification are presented. The PCB content in the gasification sludge is 6.14 mg/kg, in waste oil - 160 mg/kg. Gasification takes place at high temperatures of more than 1,400 C for complete destruction of toxic pollutants. Gasification results compare composition of raw gas produced by gasification of brown coal, sewage sludge and waste oil. A detailed list of content of pollutants (PCDD, PCDF, PAH, dioxin and furan) in the gasification gas, in process waters and in solid residue of the process water is provided. It is concluded that the GSP gasification process is suitable for safe disposal of waste with toxic content. 3 refs.

  20. Design and analysis of a waste gasification energy system with solid oxide fuel cells and absorption chillers

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2018-01-01

    Energy saving is an open point in most European countries where energy policies are oriented to reduce the use of fossil fuels, greenhouses emissions and energy independence, and to increase the use of renewable energies. In the last several years, new technologies have been developed and some...... of them received subsidies to increase installation and reduce cost. This article presents a new sustainable trigeneration system (power, heat and cool) based on a solid oxide fuel cell (SOFC) system integrated with an absorption chiller for special applications such as hotels, resorts, hospitals, etc....... with a focus on plant design and performance. The proposal system is based on the idea of gasifying the municipal waste, producing syngas serving as fuel for the trigeneration system. Such advanced system when improved is thus self-sustainable without dependency on net grid, district heating and district...

  1. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I [Condens Oy, Haemeenlinna (Finland)

    1997-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  2. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  3. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  4. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  5. Planning for gasification of cellulosic wastes: Issues, feasibility and case study

    International Nuclear Information System (INIS)

    Staniewski, M.E.

    1993-01-01

    Gasification is presented as a concept that can assist municipalities and private companies to reduce the amount of solid waste generated and to utilize the cellulosic fraction of such waste as a biofuel. The technical and economic feasibility of cellulosic waste gasification is examined along with the implications associated with the environmental, social, and regulatory issues within a planning context. Study methods included a literature review, survey research employing nonstructured interviews, and a case study analysis. Opportunities for gasification are focused on regional governments in Ontario. The case study concentrated on the Regional Municipality of Waterloo. Regional governments in Ontario can benefit from utilizing the gasification concept to achieve a substantial reduction in the waste stream in an environmentally sound manner and contribute to solving worldwide problems associated with fossil fuel utilization. However, provincial and public acceptance will affect regional government decisions regarding gasification. Separate legislation should be enacted distinguishing gasification from incineration. In addition, the effectiveness of the environmental approval process must be improved; present procedures consume excess time and resources and act to discourage the involvement of public and private proponents. Public acceptance is likely to be affected by negative experiences associated with solid waste combustion. Nonbiased, reliable information is needed to clarify doubts and stress gasification's potential benefits. 85 refs., 15 figs., 26 tabs

  6. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  7. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (EUROPEAN OFFICE), Am Seestern 8, 40547 Dusseldorf (Germany); Ishida, Yoshihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2015-03-15

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  8. Bio gasification of industrial bio waste and sewage sludge-management of biogas quality

    Energy Technology Data Exchange (ETDEWEB)

    Kymalainen, M.; Lahde, K.; Kaarnakoski, M.; Pirttijarvi, T.; Arnold, M.; Kurola, J.; Kautola, H.

    2009-07-01

    Bio gasification, i. e. anaerobic digestion, is a well known sustainable option for the management of organic solid wastes and sludges. the produced biogas is a valuable bio fuel to replace fossil fuels in different technical applications (like heating, electricity, transport fuel generation) which in turn determine its quality requirements. (Author)

  9. Gasification

    International Nuclear Information System (INIS)

    White, David J.

    1999-12-01

    Contains Executive Summary and Chapters on: Introduction; Review of driving forces for change; Gasification technology; Versatility of the gasification process; Commercial Application of gasification; Gas turbine development; Fuel Cell Development; Economics of gasification; Global warming and gasification; Discussion; Summary and Conclusions. (Author)

  10. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  11. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Frostell, Bjoern [Royal Inst. of Technology, Stockholm (Sweden). Div. of Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Technology, Stockholm (Sweden). Div. of Chemical Technology

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second

  12. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    International Nuclear Information System (INIS)

    Assefa, Getachew; Frostell, Bjoern; Jaeraas, Sven; Kusar, Henrik

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second and third

  13. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  14. Hydrogen-rich gas as a product of two-stage co-gasification of lignite/waste mixtures

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Bičáková, Olga

    2014-01-01

    Roč. 39, č. 21 (2014), s. 10987-10995 ISSN 0360-3199 Institutional support: RVO:67985891 Keywords : co-gasification * waste plastics * lignite * hydrogen-rich gas Subject RIV: DM - Solid Waste and Recycling Impact factor: 3.313, year: 2014 http://authors.elsevier.com/sd/article/S0360319914014025

  15. Removing H{sub 2}S from syngas using proven technology in Japanese waste gasification facilities

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.; Jones, K.D. [Merichem Chemicals & Refinery Services LLC, Schaumberg, IL (United States). Gas Technology Products

    2007-07-01

    LO-CAT Process from the Gas Technology Products division of Merichem Chemicals and Refinery Services LLC can recover sulfur and provide clean syngas for a variety of uses. The successful implementation of LO-CAT technology in the solid waste gasification market in Japan provided the technical basis for extending the technology into other gasification markets around the world. The first European gasifier project utilizing LO-CAT is scheduled to startup this year, and LO-CAT units are currently under design and construction for coal gasification projects in China and the United States. Whenever the total sulfur contained in the raw syngas is less than 40 tonnes per day, LO-CAT is a valid option for purifying the syngas and recovering the sulfur in a useable form. 1 ref., 2 figs., 1 tab.

  16. Utilisation of solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Balu, K

    1978-07-01

    The prime solution to the present energy crisis is the recovery of latent energy from waste materials, for solid waste contains recoverable energy and it merely needs to be released. The paper is concerned with classification of solid waste, energy content of waste, methods of solid waste disposal, and chemical processing of solid waste. Waste disposal must be performed in situ with energy recovery. Scarcity of available land, pollution problem, and unrecovered latent energy restrict the use of the land-filling method. Pyrolysis is an effective method for the energy recovery and disposal problems. Chemical processing is suitable for the separated cellulosic fraction of the waste material.

  17. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.

    Science.gov (United States)

    Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

    2014-02-01

    Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Treatment of Mixed Wastes via Fixed Bed Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-10-28

    This report outlines the details of research performed under USDOE Cooperative Agreement DE-FC21-96MC33258 to evaluate the ChemChar hazardous waste system for the destruction of mixed wastes, defined as those that contain both RCRA-regulated haz- ardous constituents and radionuclides. The ChemChar gasification system uses a granular carbonaceous char matrix to immobilize wastes and feed them into the gasifier. In the gasifier wastes are subjected to high temperature reducing conditions, which destroy the organic constituents and immobilize radionuclides on the regenerated char. Only about 10 percent of the char is consumed on each pass through the gasifier, and the regenerated char can be used to treat additional wastes. When tested on a 4-inch diameter scale with a continuous feed unit as part of this research, the ChemChar gasification system was found to be effective in destroying RCRA surrogate organic wastes (chlorobenzene, dichloroben- zene, and napht.halene) while retaining on the char RCRA heavy metals (chromium, nickel, lead, and cadmium) as well as a fission product surrogate (cesium) and a plutonium surrogate (cerium). No generation of harmful byproducts was observed. This report describes the design and testing of the ChemChar gasification system and gives the operating procedures to be followed in using the system safely and effectively for mixed waste treatment.

  19. Solid Oxide Fuel Cells coupled with a biomass gasification unit

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available A possibility of fuelling a solid oxide fuel cell stack (SOFC with biomass fuels can be realized by coupling a SOFC system with a self-standing gasification unit. Such a solution enables multi-fuel operation, elasticity of the system as well as the increase of the efficiency of small-scale biomass-to-electricity conversion units. A system of this type, consisting of biomass gasification unit, gas purification unit, SOFC stack, anode off-gas afterburner and peripherals was constructed and operated successfully. During the process, biomass fuel (wood chips was gasified with air as gasification agent. The gasifier was capable of converting up to 30 kW of fuel to syngas with efficiencies up to 75%. Syngas leaving the gasification unit is delivered to a medium temperature adsorber for sulphur compounds removal. Steam is added to the purified fuel to maintain steam to carbon ratio higher than 2. The syngas then is passed to a SOFC stack through a fuel preheater. In such a configuration it was possible to operate a commercial 1.3 kW stack within its working regime. Conducted tests confirmed successful operation of a SOFC stack fuelled by biomass-sourced syngas.

  20. The development of solid fuel gasification systems for cost-effective power generation with low environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M; Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J; Ranta, J; Hepola, J; Kangasmaa, K [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1997-10-01

    Relatively low carbon conversion is a disadvantage related to the air-blown fluidised-bed coal-biomass co-gasification process. Low carbon conversion is due to different reactivities and ash sintering behaviour of coal and biomass which leads to compromises in definition of gasification process conditions. In certain cases co-gasification may also lead to unexpected deposit formations or corrosion problems in downstream components especially when high alkali metal or chlorine containing biomass feedstocks are co-gasified with coal. During the reporting period, the work focused on co-gasification of coal and wood waste. The objectives of the present work were to find out the optimum conditions for improving the carbon conversion and to study the formation of different gas impurities. The results based on co-gasification tests with a pressurised fluidised-bed gasifies showed that in co-gasification even with only 15 % coal addition the heavy tar concentration was decreased significantly and, simultaneously, an almost total carbon conversion was achieved by optimising the gasification conditions. The study of filter fines recirculation and solid residues utilisation was started by characterizing filter dust. The work was carried out with an entrained-flow reactor in oxidising, inert and reducing gas conditions. The aim was to define the conditions required for achieving increased carbon conversion in different reactor conditions

  1. Operating and environmental performances of commercial-scale waste gasification and melting technology.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro

    2013-11-01

    Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling.

  2. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  3. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  4. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  5. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  6. Trigeneration System Based on Municipal Waste Gasification, Fuel Cell and an Absorption Chiller

    DEFF Research Database (Denmark)

    Katsaros, Giannis; Nguyen, Tuong-Van; Rokni, Masoud

    2016-01-01

    of a specific building is also investigated and the system can fully meet the electricity and cooling demands, whereas the heat needs can be satisfied only up to 55%. Moreover, assuming 20 years of operation, the payback period is 4.3 years and the net present value exceeds 5 MEUR.......The present work focuses on the design of a novel tri-generation system based on municipal solid wastes gasification, solid oxide fuel cell and an ammonia-water absorption chiller. Trigeneration systems can be implemented in buildings such as hospitals, where there is a continuous and large demand...

  7. Energy from waste by gasification; Energi ur avfall genom foergasning

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader; Nilsson, Torbjoern; Berge, Niklas [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-12-01

    At present the investigation on alternative techniques to solve the problem with the growing amount of the wastes within European countries is a highly propitiated research area. The driving forces behind this priority are the current EU-legislations regarding the ban on landfill of combustible wastes and also the regulation on emission limits from waste treatment plants. The alternatives for waste treatment besides recycling are incineration, direct co-combustion and gasification. Co-combustion of waste with biomass can be considered a short-term solution for the problem but has the disadvantages of decreasing the capacity for clean fuels such as biomass and set demands on intensive modifications in the existing heat or heat and power plants. Waste gasification is an attractive alternative that can compete with incineration and co-combustion processes when the environmental and economical aspects are concerned. The product gas from a waste gasifier can be burned alone in conventional oil fired boilers or be co-fired with biomass in biomass plant. Fuel quality, gas cleaning system and questions related to ash treatment are the key parameters that must be considered in design and construction of a waste gasification process. Gasification of waste fractions that have limited contents of contaminants such as nitrogen, sulfur and chlorine will simplify the gas cleaning procedure and increase the competitiveness of the process. Heavy metals will be in captured in the fly ash if a gas filtering temperature below 200 deg C is applied. Activated carbon can be used as a sorbent for mercury, lime or alkali for capturing chlorine. For fuels with low Zn content a higher gas filtering temperature can be applied. Direct co-combustion or gasification/co-combustion of a fuel with low heating value affects two main parameters in the boiler: the adiabatic combustion temperature and the total capacity of the boiler. It is possible to co-fire: a) sorted MSW: 25%, b) sorted industrial

  8. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  9. Solid waste handling

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1995-01-01

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.)

  10. Change in the electric potential of solid fuels on their combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Zakharov, A.G.; Plitsyn, V.T.

    1979-01-01

    Solid fuels of various degrees of graphitization (graphite, coke, hard coal, lignite) were used to study the changes in electric potential of samples during gasification and combustion in air. The potential shows three peaks during combustion, the third corresponding to ignition. Two peaks occur during the gasification process.

  11. Plasma gasification process: Modeling, simulation and comparison with conventional air gasification

    International Nuclear Information System (INIS)

    Janajreh, Isam; Raza, Syed Shabbar; Valmundsson, Arnar Snaer

    2013-01-01

    Highlights: ► Plasma/conventional gasification are modeled via Gibbs energy minimization. ► The model is applied to wide range of feedstock, tire, biomass, coal, oil shale. ► Plasma gasification show high efficiency for tire waste and coal. ► Efficiency is around 42% for plasma and 72% for conventional gasification. ► Lower plasma gasification efficiency justifies hazardous waste energy recovery. - Abstract: In this study, two methods of gasification are developed for the gasification of various feedstock, these are plasma gasification and conventional air gasification. The two methods are based on non-stoichiometric Gibbs energy minimization approach. The model takes into account the different type of feedstocks, which are analyzed at waste to energy lab at Masdar Institute, oxidizer used along with the plasma energy input and accurately evaluates the syngas composition. The developed model is applied for several types of feedstock, i.e. waste tire material, coal, plywood, pine needles, oil shale, and municipal solid waste (MSW), algae, treated/untreated wood, instigating air/steam as the plasma gas and only air as oxidizer for conventional gasification. The results of plasma gasification and conventional air gasification are calculated on the bases of product gas composition and the process efficiency. Results of plasma gasification shows that high gasification efficiency is achievable using both tire waste material and coal, also, the second law efficiency is calculated for plasma gasification that shows a relative high efficiency for tire and coal as compare to other feedstock. The average process efficiency for plasma gasification is calculated to be around 42%. On other hand the result of conventional gasification shows an average efficiency of 72%. The low efficiency of plasma gasification suggest that if only the disposal of hazard waste material is considered then plasma gasification can be a viable option to recover energy.

  12. Solid waste study

    International Nuclear Information System (INIS)

    Ortiz, Paul G.

    1995-01-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ''Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel

  13. SOLID WASTE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    PAUL G. ORTIZ - COLEMAN RESEARCH CORP/COMPA INDUSTRIES

    1995-08-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ``Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel.

  14. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    Science.gov (United States)

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  16. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  17. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  18. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, Magin; Hernandez, Juan J.; Pazo, Amparo; Lopez, Julio [Universidad de Castilla-La Mancha, Escuela Tecnica Superior de Ingenieros Industriales (Edificio Politecnico), Avenida Camilo Jose Cela s/n. 13071 Ciudad Real (Spain)

    2008-09-15

    Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal-coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H{sub 2} and CH{sub 4}) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H{sub 2}-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H{sub 2} concentration increased with increasing temperature. (author)

  19. Microwave-driven plasma gasification for biomass waste treatment at miniature scale

    NARCIS (Netherlands)

    Sturm, G.S.J.; Navarrete Muñoz, A.; Purushothaman Vellayani, A.; Stefanidis, G.

    2016-01-01

    Gasification technology may combine waste treatment with energy generation. Conventional gasification processes are bulky and inflexible. By using an external energy source, in the form of microwave-generated plasma, equipment size may be reduced and flexibility as regards to the feed composition

  20. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  1. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    International Nuclear Information System (INIS)

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-01-01

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  2. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    Energy Technology Data Exchange (ETDEWEB)

    Evangelisti, Sara [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Tagliaferri, Carla [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom); Clift, Roland [Centre for Environmental Strategy, The University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Chemical Engineering Department, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Taylor, Richard; Chapman, Chris [Advanced Plasma Power (APP), Unit B2, Marston Gate, South Marston Business Park, Swindon SN3 4DE (United Kingdom)

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  3. Solid medical waste

    DEFF Research Database (Denmark)

    Udofia, Emilia Asuquo; Gulis, Gabriel; Fobil, Julius

    2017-01-01

    BACKGROUND: Solid medical waste (SMW) in households is perceived to pose minimal risks to the public compared to SMW generated from healthcare facilities. While waste from healthcare facilities is subject to recommended safety measures to minimize risks to human health and the environment, similar...... waste in households is often untreated and co-mingled with household waste which ends up in landfills and open dumps in many African countries. In Ghana, the management of this potentially hazardous waste stream at household and community level has not been widely reported. The objective of this study...... likely to report harm in the household (OR 2.75, 95%CI 1.15-6.54). CONCLUSION: The belief that one can be harmed by diseases associated with SMW influenced reporting rates in the study area. Disposal practices suggest the presence of unwanted medicines and sharps in the household waste stream conferring...

  4. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS

    International Nuclear Information System (INIS)

    Bassyouni, M.; Waheed ul Hasan, Syed; Abdel-Aziz, M.H.; Abdel-hamid, S.M.-S.; Naveed, Shahid; Hussain, Ahmed; Ani, Farid Nasir

    2014-01-01

    Highlights: • Simulation of date palm waste gasification using ASPEN HYSYS was studied. • A steady state simulation of downdraft gasifier has been developed. • The results were used to predict synthesis gas composition. • Simulation results and experimental results are in good agreement. - Abstract: The present research aims to study the simulation of date palm waste gasification using ASPEN HYSYS. A steady state simulation of downdraft gasifier firing date palm leaves has been developed. The model is able to predict syngas composition with sound accuracy and can be used to find optimal operating conditions of the gasifier. Biomass is defined as an unconventional hypothetical solid component in HYSYS. A set of six reactor models simulates various reaction zones of the downdraft gasifier in accordance with its hydrodynamics. Biomass decomposition into constituents in the pyrolysis zone is modeled with a conversion reactor. The combustion of char and volatiles in the combustion zone are modeled with equilibrium and Gibbs reactor models respectively. The gasification zone is modeled with a Gibbs and equilibrium reactor. The results of simulation are validated against experimental results of a parametric variability study on a lab scale gasifier. The proportion of synthesis gas increase as temperature increases (concentration, molar fraction, and partial pressure). CO 2 and CH 4 in the product gases were also found to decrease with increasing temperature. At 800 °C, the exit gas reaches a stable molar composition (H 2 = 56.27%, CO = 21.71%, CO 2 = 18.24%, CH 4 = 3.78%). Increasing steam to biomass ratio increases CO 2 and H 2 at the expense of CO, governed by shift reaction. Steam induction increases the methane contents, thereby improves the heating value of the product gas

  5. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS

    Energy Technology Data Exchange (ETDEWEB)

    Bassyouni, M. [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Department of Chemical Engineering, Higher Technological Institute, Tenth of Ramdan City (Egypt); Waheed ul Hasan, Syed [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Abdel-Aziz, M.H., E-mail: helmy2002@gmail.com [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Abdel-hamid, S. M.-S. [Department of Chemical Engineering, Higher Technological Institute, Tenth of Ramdan City (Egypt); Naveed, Shahid [Punjab Institute of Contemporary Sciences, 5.5 KM Raiwind Road, Lahore (Pakistan); Hussain, Ahmed [Department of Nuclear Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ani, Farid Nasir [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, UTM 81310 Johor Bahru (Malaysia)

    2014-12-15

    Highlights: • Simulation of date palm waste gasification using ASPEN HYSYS was studied. • A steady state simulation of downdraft gasifier has been developed. • The results were used to predict synthesis gas composition. • Simulation results and experimental results are in good agreement. - Abstract: The present research aims to study the simulation of date palm waste gasification using ASPEN HYSYS. A steady state simulation of downdraft gasifier firing date palm leaves has been developed. The model is able to predict syngas composition with sound accuracy and can be used to find optimal operating conditions of the gasifier. Biomass is defined as an unconventional hypothetical solid component in HYSYS. A set of six reactor models simulates various reaction zones of the downdraft gasifier in accordance with its hydrodynamics. Biomass decomposition into constituents in the pyrolysis zone is modeled with a conversion reactor. The combustion of char and volatiles in the combustion zone are modeled with equilibrium and Gibbs reactor models respectively. The gasification zone is modeled with a Gibbs and equilibrium reactor. The results of simulation are validated against experimental results of a parametric variability study on a lab scale gasifier. The proportion of synthesis gas increase as temperature increases (concentration, molar fraction, and partial pressure). CO{sub 2} and CH{sub 4} in the product gases were also found to decrease with increasing temperature. At 800 °C, the exit gas reaches a stable molar composition (H{sub 2} = 56.27%, CO = 21.71%, CO{sub 2} = 18.24%, CH{sub 4} = 3.78%). Increasing steam to biomass ratio increases CO{sub 2} and H{sub 2} at the expense of CO, governed by shift reaction. Steam induction increases the methane contents, thereby improves the heating value of the product gas.

  6. Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems

    International Nuclear Information System (INIS)

    Colpan, C.O.; Hamdullahpur, F.; Dincer, I.; Yoo, Y.

    2009-01-01

    In this study, an integrated SOFC and biomass gasification system is modeled. For this purpose, energy and exergy analyses are applied to the control volumes enclosing the components of the system. However, SOFC is modeled using a transient heat transfer model developed by the authors in a previous study. Effect of gasification agent, i.e. air, enriched oxygen and steam, on the performance of the overall system is studied. The results show that steam gasification case yields the highest electrical efficiency, power-to-heat ratio and exergetic efficiency, but the lowest fuel utilization efficiency. For this case, it is found that electrical, fuel utilization and exergetic efficiencies are 41.8%, 50.8% and 39.1%, respectively, and the power-to-heat ratio is 4.649. (author)

  7. Tri-generation System based on Municipal Waste Gasification, Fuel Cell and an Absorption Chiller

    Directory of Open Access Journals (Sweden)

    Giannis Katsaros

    2018-03-01

    Full Text Available The present work focuses on the design of a novel tri-generation system based on gasification of municipal solid wastes, a solid oxide fuel cell and an ammonia-water absorption chiller. Tri-generation systems can be implemented in buildings such as hospitals and hotels, where there is a continuous and large demand for electricity, heating and cooling. The system is modelled in Aspen Plus and the influence of different operating parameters on the system performance was studied. The findings suggest that low air equivalent ratios and high gasification temperatures enhance the overall system performance. Syngas cleaning with metal sorbents zinc oxide and sodium bicarbonate for the removal of hydrogen sulfide and hydrogen chloride concentrations proved to be very effective, reducing the concentration of contaminants to < 1 ppm (part per million levels. The possibility of covering the demand profiles of a specific building was also investigated: the system could fully meet the electricity and cooling demands, whereas the heat requirements could be satisfied only up to 55%. Moreover, assuming 20 years of operation, the payback period was 4.5 years and the net present value exceeded 5 million euros.

  8. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  9. Thermal and biological gasification

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P.; Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomass over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.

  10. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    Directory of Open Access Journals (Sweden)

    Lucio Zaccariello

    2015-08-01

    Full Text Available The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%, producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively. Plastic waste and wood gasification presented similar cold gas efficiency (CGE values (0.75 and 0.76, respectively, while that obtained during the co-gasification tests varied from 0.53 to 0.73.

  11. Solid waste management: an overview

    International Nuclear Information System (INIS)

    Ayoub, G.M.

    1995-01-01

    The source, effect and characterization of solid wastes are discussed. Constituents of municipal solid wastes and a comparative compositions of municipal solid waste with some data on Lebanon are given. Collection, transport and processing practices are next introduced. Finally treatment and disposal techniques are presented with emphasis on the solid waste as energy source and as material source. Methods of recycling are evaluated in respect with their environmental impact. 7 refs. 2 tabs

  12. Low-temperature catalytic gasification of wet industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  13. Research into Biomass and Waste Gasification in Atmospheric Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Skala, Zdenek; Ochrana, Ladislav; Lisy, Martin; Balas, Marek; Kohout, Premysl; Skoblja, Sergej

    2007-07-01

    Considerable attention is paid in the Czech Republic to renewable energy sources. The largest potential, out of them all, have biomass and waste. The aim therefore is to use them in CHP in smaller units (up to 5MWel). These are the subject of the research summarized in our article. The paper presents results of experimental research into gasification in a 100 kW AFB gasifier situated in Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, and fitted with gas cleaning equipment. Within the research, study was carried out into gas cleaning taking primary measures in the fluidized bed and using hot filter, metal-based catalytic filter, and wet scrubber. Descriptions and diagrams are given of the gasifier and new ways of cleaning. Results include: Impact of various fuels (farming and forest wastes and fast-growing woods and culm plants) on fuel gas quality. Individual kinds of biomass have very different thermal and physical properties; Efficiency of a variety of cleaning methods on content of dust and tars and comparison of these methods; and, Impact of gasifier process parameters on resultant gas quality. (auth)

  14. Combined heat and power system with advanced gasification technology for biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, S.; Abe, T.; Yasuda, T. [Nippon Furnace Kogyo Kaisha Ltd, Yokohama (Japan); Gupta, A.K. [Maryland Univ., College Park, MD (United States). Dept. of Mechnical Engineering

    2013-07-01

    The results obtained from an advanced gasification system utilizing high temperature steam are presented here. The results showed successful demonstration of clean syngas production having high calorific value fuel ({proportional_to}10 MJ/m{sup 3}N) using woody biomass wastes in a downdraft type gasifier. The gasification capacity of the plant on dry basis was 60 kg/h. The syngas produced can be utilized in an absorption type chiller for air conditioning. This advanced gasification technology allows one to transform wastes to clean energy at local production sites without any environmental impact and expensive waste transportation costs. The experience gained from the demonstration plant allows one to implement to other industrial applications for use as a decentralized unit and obtain clean syngas for local use. The demonstration conducted here shows that the system is favorable for onsite use of compatible combined heat and power (CHP) system including light oil supported diesel engine power generator. The biomass waste fuel from a lumber mill factory was used in this study. The factory handles a wide forests area of about 50 ha and produces about 2,500 m{sup 3}/year of wood chips from thin out trees and waste lumbers. This translates to a maximum 110 kg/h of wood chips that can be fed to a gasifier. The syngas produced was used for the combined heat and power system. Local use of biomass for fuel reforming reduces the cost of collection and transportation costs so that a sustainable business is demonstrated with profit from the generated electricity and thermal energy. The cost structure incorporates both the depreciation cost and operation cost of the system. Thermal energy from hot water can be used for drying lumbers and wood chips in a cascade manner. The drying process can be adopted for enhancing its productivity with increased variability on the quality of lumber. The results show that the combined heat and power system (CHP) offers good profitable

  15. Hydrogen production by supercritical water gasification of wastewater from food waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Korean food wastes have high moisture content (more than 85 wt%) and their major treatment processes such as drying or biological fermentations generate concentrated organic wastewater (CODs of about 100,000 mgO{sub 2}/L). For obtaining both wastewater treatment and hydrogen production from renewable resources, supercritical water gasification (SCWG) of the organic wastewater was carried out in this work. The effect of catalyst, reaction temperature, and reactor residence time on COD destruction and composition of gas products was examined. As a result, a SCWG of the wastewater over Ni- Y/activated charcoal at 700 C, 28 MPa yielded 99 % COD destruction and hydrogen-rich gas production (45 vol% H{sub 2}). A liquid-phase thermal pretreatment to destroy solid particles from the wastewater was proposed for more effective operation of the SCWG system. (orig.)

  16. Element partitioning in combustion- and gasification-based waste-to-energy units

    International Nuclear Information System (INIS)

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-01-01

    Highlights: ► Element partitioning of waste-to-energy units by means of a substance flow analysis. ► A comparison between moving grate combustors and high temperature gasifiers. ► Classification of key elements according to their behavior during WtE processes. ► Slags and metals from waste gasifiers are completely and immediately recyclable. ► Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal

  17. Iron-based materials as tar cracking catalyst in waste gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nordgreen, Thomas

    2011-07-01

    The treatment of municipal solid waste (MSW) in Sweden has changed during the past decades due to national legislation and European Union directives. The former landfills have more or less been abandoned in favour of material recycling and waste incineration. On a yearly basis approximately 2.2 million tonnes waste are incinerated in Sweden with heat recovery and to some extent also with electricity generation, though at a low efficiency. It is desirable to alter this utilisation and instead employ MSW as fuel in a fluid bed gasification process. Then electrical energy may be produced at a much higher efficiency. However, MSW contain about 1 % chlorine in the form of ordinary table salt (NaCl) from food scraps. This implies that the tar cracking catalyst, dolomite, which is normally employed in gasification, will suffer from poisoning if applied under such conditions. Then the tar cracking capacity will be reduced or vanish completely with time. Consequently, an alternative catalyst, more resistant to chlorine, is needed. Preliminary research at KTH has indicated that iron in its metallic state may possess tar cracking ability. With this information at hand and participating in the project 'Energy from Waste' an experimental campaign was launched. Numerous experiments were conducted using iron as tar cracking catalyst. First iron sinter pellets from LKAB were employed. They were reduced in situ with a stream of hydrogen before they were applied. Later iron-based granules from Hoeganaes AB were tested. These materials were delivered in the metallic state. In all tests the KTH atmospheric fluidised bed gasifier with a secondary catalytic reactor housing the catalytic material was deployed. Mostly, the applied fuel was birch. The results show that metallic iron possesses an intrinsic ability, almost in the range of dolomite, to crack tars. Calculations indicate that iron may be more resistant to chlorine than dolomite. The exploration of metallic iron

  18. Solid waste containing method and solid waste container

    International Nuclear Information System (INIS)

    Sawai, Takeshi.

    1997-01-01

    Solid wastes are filled in a sealed vessel, and support spacers are inserted to the gap between the inner wall of a vessel main body and the solid wastes. The solid wastes comprise shorn pieces (crushed pieces) of spent fuel rod cladding tubes, radioactively contaminated metal pieces and miscellaneous solids pressed into a disk-like shape. The sealed vessel comprises, for example, a stainless steel. The solid wastes are filled while being stacked in a plurality of stages. A solidifying filler is filled into the gap between the inner wall and the solid wastes in the vessel main body by way of an upper opening, and the upper opening is closed by a closing lid to provide an entirely sealed state. Alumina particles having high heat conductivity and excellent heat durability are used for the solid filler. It is preferable to fill an inert gas such as a dried nitrogen gas in the sealed vessel. (I.N.)

  19. PLASMA GASIFICATION – THE WASTE-to-ENERGY SOLUTION FOR THE FUTURE

    Directory of Open Access Journals (Sweden)

    Birsan N.

    2014-12-01

    Full Text Available Plasma WtE is currently subject of extensive research and a number of companies across the globe are trying to develop a suitable, eco-friendly and efficient WtE technology for the future. While all of these companies are still working on concept designs or small-scale prototypes, there is one company already building large industrial scale plasma gasifiers around the globe to treat MSW, Industrial and Toxic waste all together. In 1999 in Japan, Hitachi Metals and Westinghouse Plasma Corp (“WPC” built the World’s First commercial demonstration plasma WtE plant. Hitachi Metals operated the plant for one year on municipal solid waste and obtained a certification from the Japan Waste Research Foundation (JWRF. Subsequently, Hitachi Metals leveraged this success into the two commercial plants at Mihama-Mikata and Utashinai in Japan, both having at the very core the now proven Westinghouse Plasma gasification technology. For more than 20 years, Westinghouse Plasma Corp (WPC has been leading the technology platform for converting the world’s waste into clean energy for a healthier planet. The WPC technology makes landfills obsolete and replaces Incineration as the primary process for WtE. The WPC technology already operates in three reference plants around the world and other three new commercial plants are under construction (two plants of 1000 tons/day in UK and a 650 tons/day in China, all three designed to convert municipal solid waste to electricity and district heat, in the most efficient and environmental-friendly manner.

  20. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  1. Potential electrical energy generation in Brazil with biomass waste by gasification process; Potencial para geracao de energia eletrica no Brasil com residuos de biomassa atraves da gaseificacao

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, Rachel Martins

    2009-01-15

    The adoption of new technologies for generating electricity is based on technical, economic and environmental analysis. An important factor for choose the technology to be adopted is the raw material available for this purpose. Given the energy application below the potential of agricultural and urban solid waste, the growing demand for energy and the existence of environmental concerns, this thesis aims to emphasize the technology of gasification as an alternative for energy use of agricultural and urban solid waste. Thus, it describes the technology's state of the art, its maturity and improvement. Of great importance for understanding this process, it is needed to add the conclusions derived from experience in the gasification pilot plant at the University of Louvain la Neuve, Belgium. Considering the waste selected, the quantity available and the technology chosen, it is estimated the potential for electric energy that could be generated if the inputs were gasified. (author)

  2. Potential electrical energy generation in Brazil with biomass waste by gasification process; Potencial para geracao de energia eletrica no Brasil com residuos de biomassa atraves da gaseificacao

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, Rachel Martins

    2009-01-15

    The adoption of new technologies for generating electricity is based on technical, economic and environmental analysis. An important factor for choose the technology to be adopted is the raw material available for this purpose. Given the energy application below the potential of agricultural and urban solid waste, the growing demand for energy and the existence of environmental concerns, this thesis aims to emphasize the technology of gasification as an alternative for energy use of agricultural and urban solid waste. Thus, it describes the technology's state of the art, its maturity and improvement. Of great importance for understanding this process, it is needed to add the conclusions derived from experience in the gasification pilot plant at the University of Louvain la Neuve, Belgium. Considering the waste selected, the quantity available and the technology chosen, it is estimated the potential for electric energy that could be generated if the inputs were gasified. (author)

  3. Modules for estimating solid waste from fossil-fuel technologies

    International Nuclear Information System (INIS)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides

  4. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

    Energy Technology Data Exchange (ETDEWEB)

    Portofino, Sabrina, E-mail: sabrina.portofino@enea.it [UTTP NANO – C.R. ENEA Portici, P.le E. Fermi, 1 Loc. Granatello, 80055 Portici (Italy); Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto [UTTTRI RIF – C.R. ENEA Trisaia, SS Jonica 106, km 419.5, 75026 Rotondella (Italy); Galvagno, Sergio [UTTP NANO – C.R. ENEA Portici, P.le E. Fermi, 1 Loc. Granatello, 80055 Portici (Italy)

    2013-03-15

    Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.

  5. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...

  6. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei

    2015-01-01

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  7. Steam gasification of oil palm trunk waste for clean syngas production

    International Nuclear Information System (INIS)

    Nipattummakul, Nimit; Ahmed, Islam I.; Kerdsuwan, Somrat; Gupta, Ashwani K.

    2012-01-01

    Highlights: ► Initial high values of syngas flow rate are attributed to rapid devolatilization. ► Over 50% of syngas generated was obtained during the first five minutes of the process. ► Increase in steam flow rate resulted in reduced gasification time. ► Variation in steam flow rate slightly affected the apparent thermal efficiency. ► Oil palm yielded more energy than that from mangrove wood, paper and food waste. -- Abstract: Waste and agricultural residues offer significant potential for harvesting chemical energy with simultaneous reduction of environmental pollution, providing carbon neutral (or even carbon negative) sustained energy production, energy security and alleviating social concerns associated with the wastes. Steam gasification is now recognized as one of the most efficient approaches for waste to clean energy conversion. Syngas generated during the gasification process can be utilized for electric power generation, heat generation and for other industrial and domestic uses. In this paper results obtained from the steam assisted gasification of oil palm trunk waste are presented. A batch type gasifier has been used to examine the syngas characteristics from gasification of palm trunk waste using steam as the gasifying agent. Reactor temperature was fixed at 800 °C. Results show initial high values of syngas flow rate, which is attributed to rapid devolatilization of the sample. Approximately over 50% of the total syngas generated was obtained during the first five minutes of the process. An increase in steam flow rate accelerated the gasification reactions and resulted in reduced gasification time. The effect of steam flow rate on the apparent thermal efficiency has also been investigated. Variation in steam flow rate slightly affected the apparent thermal efficiency and was found to be very high. Properties of the syngas obtained from the gasification of oil palm trunk waste have been compared to other samples under similar operating

  8. Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Jurascik, M.; Ptasinski, K.J.

    2011-01-01

    This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by

  9. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...... for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance...

  10. Thermodynamic Analysis of a Woodchips Gasification Integrated with Solid Oxide Fuel Cell and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Integrated gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power application is analysed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas which is utilized for feeding the SOFC stacks for electricity...... and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on LHV (lower heating value) can be achieved. Different parameter studies are performed to analysis system behaviour under different conditions. The analysis show that increasing fuel mass flow from the design point results...

  11. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  12. Prospective application of municipal solid wastes for energy production in Portugal

    International Nuclear Information System (INIS)

    Teixeira, Sandra; Monteiro, Eliseu; Silva, Valter; Rouboa, Abel

    2014-01-01

    Municipal solid waste (MSW) collection and disposal is a major urban environment issue in the world today. MSW management solutions have to be technologically feasible, legally and socially acceptable and environmentally and financially sustainable. European policy is pushing for a rational management of natural resources; a promising technological perspective today is waste valorisation, a process that involves sorting at the source, combined with material recycling and waste-to-energy conversion. In this paper, we analyze the evolution of the Portuguese MSW management system, criticize the environmental policy issues for MSW management in Portugal and identify weak points in the criteria used for the technologies selection. Portugal is facing multiple problems with MSW management and is attempting to tackle them by passing legislation in order to improve the performance of waste management systems. At the technological level, gasification increasingly presents as an efficient and viable alternative to incineration. Gasification is a waste-to-energy conversion scheme that offers an attractive solution to both waste disposal and energy problems. Waste gasification by plasma has been validated but the economic viability of this technology must be proven before to be accepted by the industry. - Highlights: • MSW collection and disposal are a major problem of urban environment. • Portugal is facing multiple problems and improving the MSW management system. • Gasification offers the most attractive solution to both waste disposal and energy problems. • Plasma gasification seems to be validated but the economic viability must be proven

  13. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions

    International Nuclear Information System (INIS)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing; Richards, George

    2016-01-01

    Highlights: • BaFe 2 O 4 and CaFe 2 O 4 are excellent for chemical looping coal gasification. • BaFe 2 O 4 and CaFe 2 O 4 have minimal reactivity with synthesis gas. • Steam enhances the gasification process with these oxygen carriers. • Reaction rates of steam gasification of coal with CaFe 2 O 4 was better than with gaseous oxygen. • Coal gasification appears to be via solid–solid interaction with the oxygen carrier. - Abstract: Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe 2 O 4 ) and calcium ferrite (CaFe 2 O 4 ). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe 2 O 4 and CaFe 2 O 4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H 2 ) and carbon monoxide (CO), but carbon dioxide (CO 2 ) remained low because these oxygen carriers have minimal reactivity with H 2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H 2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  14. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    of the different operating conditions reveals an optimum for the chosen pressure ratio with respect to the resulting electrical efficiency. Furthermore, the SOFC operating temperature and fuel utilization should be maintained at a high level and the cathode temperature gradient maximized. Based on 1st and 2nd law...... based on biomass will improve the competitiveness of decentralized CHP production from biomass as well as move the development towards a more sustainable CHP production. The aim of this research is to contribute to enhanced electrical efficiencies and sustainability in future decentralized CHP plants....... The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  15. About the gasification of untreated scrap and waste wood in fluidized bed reactor for use in decentralized gas engine-cogeneration plants; Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren fuer dezentrale Energieversorgungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Tepper, H.

    2005-10-20

    This dissertation examines the thermochemical conversion (gasification) of untreated scrap and waste wood in combustible gases for use in decentralized gas engine-cogeneration plants of low output (1 to 10 MW fuel power). A general section goes into the basics of the energetic utilization of solid biomass, the subprocesses of thermochemical conversion being described in more detail. Special attention is given to the processes and state of the art of biomass gasification in decentralized plants. A theoretical section analyzes the gasification models for solid biomass presented in the literature. Based on this analysis, a simplified kinetic model is derived for the gasification of untreated scrap and waste wood with air in bubbling fluidized bed reactors. It includes a fluid mechanic analysis of the fluidized bed based on HILLIGARDT, an empirical pyrolysis model and a global kinetic approach to the main chemical reaction taken from the literature. An experimental section describes the tests of the gasification of forest scrap wood in a semi-industrial fluidized bed gasification test plant with 150 kW fuel power and presents the significant test results. The gasification model derived is applied to check the test plant's standard settings and compare them with measured values. Furthermore, the model is employed to explain basic reaction paths and zones and to perform concluding parameter simulations. (orig.)

  16. Gasification of Wood and Non-wood Waste of Timber Production as Perspectives for Development of Bioenergy

    Science.gov (United States)

    Kislukhina, Irina A.; Rybakova, Olga G.

    2018-03-01

    The article deals with biomass gasification technology using the gasification plant running on wood chips and pellets, produced from essential oils waste (waste of coniferous boughs). During the study, the authors solved the process task of improving the quality of the product gas derived from non-wood waste of timber production (coniferous boughs) due to the extraction of essential oils and the subsequent thermal processing of spent coniferous boughs at a temperature of 250-300°C degrees without oxygen immediately before pelleting. The paper provides the improved biomass gasification process scheme including the grinding of coniferous boughs, essential oil distillation and thermal treatment of coniferous boughs waste and pelletizing.

  17. From Solid Waste to Energy.

    Science.gov (United States)

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  18. Electrodialytic remediation of solid waste

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...

  19. Study of technical, environmental and economic assessment of the process of waste gasification by plasma torch of PlascoEnergy Group - Report

    International Nuclear Information System (INIS)

    Kunegel, Andre

    2009-10-01

    This study aims at assessing technical, environmental and economic performance of a technology developed by PlascoEnergy Group in its application to French household and similar wastes, at analysing PlascoEnergy project for their processing in a city of southern France, and at providing a global analysis of the appropriateness of plasma torch technologies to the gasification of these wastes, of other wastes to be defined, biomass and so on. After a presentation of the technology and a reference to a demonstrator project in Ottawa, the report presents the PlascoEnergy Company, the French installation and its differences with the demonstration project. Based on documents provided by PlascoEnergy, it reports an analysis of various critical points (waste preparation, gasification, waste introduction, waste movements in the oven, hot air recovery, gasification performance, syngas processing, engines, valorisation and removal of solid residues). Performance of the Ottawa plant are presented and commented. The use of the plasma torch technology in waste processing is described

  20. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    Science.gov (United States)

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  1. Solid waste as an energy source

    International Nuclear Information System (INIS)

    Armenski, Slave

    2004-01-01

    The solid wastes as sources of heat and electrical energy were analysed. Typical structure of solid waste and organic products from: municipal solid wastes, industrial wastes and agricultural wastes for some developed countries are presented. Some dates of agricultural wastes for R. Macedonia are presented. The structure and percentage of organic products and energy content of solid wastes are estimated. The quantity of heat from solid wastes depending of the waste mass is presented. The heat quantity of some solid wastes component and the mixed municipal waste is presented. (Original)

  2. Solid Waste Management in Jordan

    OpenAIRE

    Aljaradin, Mohammad; Persson, Kenneth M

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced mi...

  3. Solid Waste Management in Jordan

    OpenAIRE

    Mohammad Aljaradin

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced migra...

  4. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  5. Co-gasification of a lignite/waste-tyre in a moving bed

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Bučko, Z.

    2009-01-01

    Roč. 90, č. 10 (2009), s. 1202-1206 ISSN 0378-3820 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : co-gasification * waste-tyre * lignite Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.321, year: 2009

  6. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  7. Solid waste electron beam treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1998-01-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  8. Solid waste electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1998-07-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g., cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  9. Solid wastes management in Lebanon

    International Nuclear Information System (INIS)

    Daniel, Simon E.

    1999-01-01

    The paper describes the problem of wastes in Lebanon and their management according to international (European and French) descriptions. It presents the situation in Lebanon including the policies taken by the ministry of environment towards the treatment of different types of wastes especially solid wastes. It is estimated that the production of wastes in Lebanon is 5854 tones per day and it is distributed as follows: Domestic wastes 3200 t/d; industrial wastes 1300 t/d; commercial wastes 1000 t/d; slaughter-houses 150 t/d; waste oils 100 t/d; hospital wastes 64 t/d; vehicle wheels 40 t/d. The annual production within regions is also presented in tables. Collection, transportation, recycling, composting and incineration of wastes are included

  10. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  11. An Industrial Ecology Approach to Municipal Solid Waste ...

    Science.gov (United States)

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  12. Use of farm waste biomass in the process of gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Piechocki, J. [Warmia and Mazury Univ., Olsztyn (Poland)

    2010-07-01

    The process of gasification of waste biomass from farm production was examined along with the energy balance of the process. A newly developed biomass gasification technology that uses manure from poultry farms as the input material was shown to meet all environmental requirements. The gas was purified in a membrane process to increase its calorific value. The gas was then used in an internal combustion engine powering a current generating system to produce electricity and heat in a combined heat and power system (CHP).

  13. CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study.

    Science.gov (United States)

    Gupta, Ankita; Thengane, Sonal K; Mahajani, Sanjay

    2018-04-25

    In this study, the dry leaves litter from jackfruit, raintree, mango and eucalyptus trees, lignin, and cellulose were characterized, pyrolysed, and evaluated for their char reactivity towards CO 2 gasification using TGA. The differences in char reactivity were attributed to the difference in char morphology and the varying inorganic contents. The mineral analysis of biomass ash showed the presence of alkali minerals some of which could act as catalysts. The adverse effect of high silica content was also evident through the experimental results. The kinetic parameters for gasification reaction were determined using three different reaction models. A modified random pore model was investigated to account for the influence of inorganic content. The effect of external catalyst on CO 2 gasification was also studied by adding potassium carbonate to biomass char and pellets. The results obtained from this study can be conveniently used in the design of a gasifier for lignocellulosic garden waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Gasification of waste. Summary and conclusions of twenty-five years of development

    Energy Technology Data Exchange (ETDEWEB)

    Rensfelt, Erik [TPS Termiska Processer AB, Nykoeping (Sweden); Oestman, Anders [Kemiinformation AB, Stockholm (Sweden)

    2000-04-01

    An overview of nearly thirty years development of waste gasification and pyrolysis technology is given, and some major general conclusions are drawn. The aim has been to give new developers an overview of earlier major attempts to treat MSW/RDF with thermochemical processes, gasification or pyrolysis. Research work in general is not covered, only R and D efforts that have led to substantial testing in pilot scale or demonstration. For further details, especially related to ongoing R and D, readers are referred to other recent reviews. The authors' view is that gasification of RDF with appropriate gas cleaning can play an important role in the future, for environmentally acceptable and efficient energy production. A prerequisite is that some of the major mistakes can be avoided, such as: (1) too rapid scale-up without experimental base, (2) unsuitable pretreatment of MSW to RDF and poor integration with material recycling, and (3) too limited gas/flue gas cleaning.

  15. Thermodynamic investigation of an integrated gasification plant with solid oxide fuel cell and steam cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering, Thermal Energy System

    2012-07-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas was rather clean for feeding to the SOFC stacks after a simple cleaning step. Because all the fuel cannot be burned in the SOFC stacks, a burner was used to combust the remaining fuel. The off-gases from the burner were then used to produce steam for the bottoming steam cycle in a heat recovery steam generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system integration configurations are completely novel and have not been studied elsewhere. Plant efficiencies of 56% were achieved under normal operation which was considerably higher than the IGCC (Integrated Gasification Combined Cycle) in which a gasification plant is integrated with a gas turbine and a steam turbine. Furthermore, it is shown that under certain operating conditions, plant efficiency of about 62 is also possible to achieve. (orig.)

  16. Sampling of tar from sewage sludge gasification using solid phase adsorption.

    Science.gov (United States)

    Ortiz González, Isabel; Pérez Pastor, Rosa Ma; Sánchez Hervás, José Ma

    2012-06-01

    Sewage sludge is a residue from wastewater treatment plants which is considered to be harmful to the environment and all living organisms. Gasification technology is a potential source of renewable energy that converts the sewage sludge into gases that can be used to generate energy or as raw material in chemical synthesis processes. But tar produced during gasification is one of the problems for the implementation of the gasification technology. Tar can condense on pipes and filters and may cause blockage and corrosion in the engines and turbines. Consequently, to minimize tar content in syngas, the ability to quantify tar levels in process streams is essential. The aim of this work was to develop an accurate tar sampling and analysis methodology using solid phase adsorption (SPA) in order to apply it to tar sampling from sewage sludge gasification gases. Four types of commercial SPA cartridges have been tested to determine the most suitable one for the sampling of individual tar compounds in such streams. Afterwards, the capacity, breakthrough volume and sample stability of the Supelclean™ ENVI-Carb/NH(2), which is identified as the most suitable, have been determined. Basically, no significant influences from water, H(2)S or NH(3) were detected. The cartridge was used in sampling real samples, and comparable results were obtained with the present and traditional methods.

  17. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  18. Gasification of waste from furniture industries for generation of sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.L.; Silva, J.N.; Pereira, E.G.; Machado, C.S.; Da Conceicao, M.; Bezerra, T. [Federal Univ. of Vicosa, Minas Gerais State (Brazil)

    2010-07-01

    The global interest in renewable energy is attributed to the decline in fossil fuel sources and the need for technical, economic, social and environmental sustainability. This study focused on the new techniques that have been developed for the use of biomass for energy from wood wastes from the forest-based industry. As an energy source, wood waste contributes positively to the environment by reducing environmental problems related to contamination of soil, air and water through improper disposal of waste. Biomass gasification has the advantage of converting biomass into a combustible gas that can be used for heat generation, electricity and synthesis of chemicals. Syngas produced from gasification of eucalyptus residues has significant potential, with an average High Heating Value of 6.60 MJ/m{sup 3}, and regular composition during the process, with predominance of carbon monoxide, followed by hydrogen, carbon dioxide and methane.

  19. Operating experience in the gasification of municipal waste and other waste at the `secondary feedstocks recycling centre` (SVZ) Schwarze Pumpe; Betriebserfahrungen zur Vergasung von Hausmuell und anderen Abfaellen im Sekundaerrohstoffverwertungszentrum Schwarze Pumpe (SVZ)

    Energy Technology Data Exchange (ETDEWEB)

    Buttker, B. [Sekundaerrohstoffverwertungszentrum Schwarze Pumpe GmbH, Schwarze Pumpe (Germany)

    1998-12-31

    The business purpose of SVZ Schwarze Pumpe is the production of synthesis gas from hydro-carbon-containing waste material and the use of synthesis gas in gas production or energy generation. For synthesis gas production, the techniques of packed-bed pressure gasification (FDV) and entrained-flow gasification (FSV) are used in close interconnection. Process control is such that only inert slags accrue, apart from the final products methanol and gypsum as well as generated energy in the form of electricity, process steam and heat. Currently, the following materials are mainly used in gasification: plastic materials after being subjected to conditioning, industrial and municipal sewage sludge, shredded goods, contaminated used wood, contaminated used oil, oil components obtained from oil/water mixtures, and slurry products. A special in-house know-how for waste oil gasification, and for the combined gasification of solid waste and coal by packed-bed pressure gasification with gradual stepping-up of the waste portion was realized. (orig.) [Deutsch] Der Geschaetszweck des SVZ Schwarze Pumpe besteht in der Herstellung von Synthesegas aus kohlenwasserstoffhaltigen Einsatzstoffen und in der stofflichen und energetischen Nutzung des Wertstoffes Synthesegas. Zur Synthesegasgewinnung werden die Verfahren der Festbettdruckvergasung (FDV) und Flugstromvergasung (FSV) in einer engen verbundwirtschaftlichen Kopplung angewandt. Die Betriebsfuehrung ist so gestaltet, dass neben den Endprodukten Methnaol und Gips sowie erzeugter Energie in Form von Strom, Prozessdampf und Waerme nur noch inerte Schlacken entstehen. Die Haupteinsatzprodukte fuer die Vergasung sind ggw. aufbereitete Altkunststoffe, industrielle und kommunale Klaerschlaemme, Shreddergueter, kontaminiertes Altholz, kontaminierte Altoele, Oelkomponenten, die aus Oel-Wasser-Gemischen gewonnen werden, und Slurry-Produkte. Es wurde ein spezielles Betriebs-Know-how zur Abfalloel-Vergasung und zur kombinierten Vergasung

  20. Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®

    International Nuclear Information System (INIS)

    Fernandez-Lopez, M.; Pedroche, J.; Valverde, J.L.; Sanchez-Silva, L.

    2017-01-01

    Highlights: • The gasification of manure was evaluated using the software Aspen Plus®. • Composition and LHV of the obtained syngas depends on the operating conditions. • CO 2 net emissions for the steam and CO 2 gasification processes were calculated. • Manure steam gasification can be used as feedstock for Fischer-Tropsch. • Manure CO 2 gasification lead to a syngas suitable for energy production. - Abstract: The gasification of an animal waste biomass (manure) in a dual gasifier was studied using the software Aspen Plus®. For this purpose, a model based on a Gibbs free energy reactor was considered. Effects of the gasification temperature, the gasifying/biomass ratio and the use of steam and CO 2 as the gasifying agents on the composition and the low heating value (LHV) of the produced syngas were evaluated. In this sense, the H 2 /CO ratio and the LHV were the parameters calculated to stablish the best operating conditions for the production of either hydrocarbons via Fischer-Tropsch or energy. Furthermore, the CO 2 net emissions generated by the gasification process were also important in the selection of the best operating conditions from an environmental point of view. The obtained results showed that for both gasifying agents the H 2 and CO production was favoured at high temperatures whereas the production of CH 4 and CO 2 was favoured at low ones. On the other hand, the H 2 production was higher when steam was used as the gasifying agent and the formation of CO was enhanced when CO 2 was considered as gasification agent. An increase of the gasifying agent/biomass ratio had a negatively influence on the production of CH 4 , leading to a decrease of the LHV. Therefore, steam as the gasifying agent and high temperatures favoured the obtaining of a syngas suitable for the Fischer-Tropsch process whereas CO 2 and low gasification temperatures enhanced a syngas with a high LHV which could be used for energy production. Finally, the net CO 2

  1. Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant with a Kalina Cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud

    2015-01-01

    % is achieved; plant size and nominal power are selected based on the required cultivation area. SOFC heat recovery with SKC is compared to a Steam Cycle (SC). Although ammonia-water more accurately fits the temperature profile of the off-gases, the presence of a Hybrid Recuperator enhances the available work......-treated fuel then enters the anode side of the SOFC. Complete fuel oxidation is ensured in a burner by off-gases exiting the SOFC stacks. Off-gases are utilized as heat source for a SKC where a mixture of ammonia and water is expanded in a turbine to produce additional electric power. Thus, a triple novel......A hybrid plant that consists of a gasification system, Solid Oxide Fuel Cells (SOFC) and a Simple Kalina Cycle (SKC) is investigated. Woodchips are introduced into a fixed bed gasification plant to produce syngas, which is then fed into an integrated SOFC-SKC plant to produce electricity. The pre...

  2. Catalytic Gasification of Lignocellulosic Biomass

    NARCIS (Netherlands)

    Chodimella, Pramod; Seshan, Kulathuiyer; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid

  3. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  4. Solid waste management - Pakistan's perspective

    International Nuclear Information System (INIS)

    Hussain, M.

    2003-01-01

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  5. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance-of-plant is designed and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on the lower heating value (LHV) can be achieved if all input parameters are selected conservatively. Different parameter studies are performed to analyze the system behavior under different conditions. The analysis shows that the decreasing number of stacks from a design viewpoint, indicating that plant efficiency decreases but power production remains nearly unchanged. Furthermore, the analysis shows that there is an optimum value for the utilization factor of the SOFC for the suggested plant design with the suggested input parameters. This optimum value is approximately 65%, which is a rather modest value for SOFC. In addition, introducing a methanator increases plant efficiency slightly. If SOFC operating temperature decreases due to new technology then plant efficiency will slightly be increased. Decreasing gasifier temperature, which cannot be controlled, causes the plant efficiency to increase also. - Highlights: • Design of integrated gasification with solid oxide fuel and Stirling engine. • Important plant parameters study. • Plant running on biomass with and without methanator. • Thermodynamics of integrated gasification SOFC-Stirling engine plants

  6. Radiation treatment of solid wastes

    International Nuclear Information System (INIS)

    Brenner, W.; Rugg, B.; Rogers, C.

    1977-01-01

    Solid waste is now generally recognized as both a major problem and an underutilized renewable resource for materials and energy recovery. Current methods for dealing with solid wastes are admittedly inadequate for cost effective utilization of the latest material and energy values, especially of cellulose and other organics. Processes for production of energy from organic wastes including incineration, pyrolysis and biodegradation, are receiving considerable attention even though the heating value of dried organic wastes is substantially less than that of fossil fuels. An attractive alternative approach is conversion into chemical feedstocks for use as fuels, intermediates for plastics, rubbers, fibers etc., and in the preparation of foods. Radiation treatment of solid wastes offers attractive possibilities for upgrading the value of such organic waste components as cellulose and putrescible matter. The latter can be cold sterilized by radiation treatments for the production of animal feed supplements. The wide availability of cellulosic wastes warrants their consideration as an alternate feedstock to petrochemicals for fuels, intermediates and synthesis of single cell protein. The crucial step in this developing technology is optimizing the conversion of cellulose to its monomer glucose which can be accomplished by either acid or enzymatic hydrolysis. A combination pretreatment consisting of radiation of hydropulped cellulosic wastes has shown considerable promise in improving the yields of glucose for acid hydrolysis reactions at substantially lower cost than presently used methods such as grinding. Data are presented to compare the effectiveness of this pretreatment with other techniques which have been investigated. (author)

  7. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  8. Treatment of solid non-active wastes

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2008-01-01

    In this part of the text-book treatment of solid non-active wastes is described. This part consist of following chapters: (1) Law on wastes; (2) Present situation in waste management; (3) Strategic tendencies of waste management; (4) Incineration (disposal of solid wastes); (5) Disposal; (6) Composting; (7) Treatment of sludge from sewage clarification plant; (8) Biodegradation; (9) Recycling of wastes (assessing of secondary raw materials). Legal aspects of treatment of solid non-active wastes is presented

  9. Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis

    International Nuclear Information System (INIS)

    Galvagno, S.; Casciaro, G.; Casu, S.; Martino, M.; Mingazzini, C.; Russo, A.; Portofino, S.

    2009-01-01

    In the field of waste management, thermal disposal is a treatment option able to recover resources from 'end of life' products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products

  10. Environmental pollution from solid wastes

    International Nuclear Information System (INIS)

    Jervis, R.E.; Krishnan, S.S.; Accetone, P.; Arifin, N.; Ko, M.M.C.; Nhan, C.; Nguyen, L.; Vela, L.; Yee, T.

    1992-01-01

    Research completed under the CRP during the past two years has encompassed several related aspects of environmental problems associated with solid wastes: assessment of major sources of toxic elements in a variety of solid waste forms, their leachability by simulated groundwater or rain/acid rain and the determination of the contribution of hospital incinerator to atmospheric releases. The summary of the findings of these investigations are given in this report. Unexpected high levels of cadmium have been found in many solid wastes. Leaching tests indicate that, in some cases, over 70% of this can be leached out into the nearby waterways. Combustibility tests indicated that 35 to 45% of it is emitted to the atmosphere during burning. This explains the increased levels of cadmium in air particulates sampled downwind from waste incinerators. Plastic items in municipal and hospital wastes were particularly elevated in Cd, Cl, Cr, Ba and Zn. Up to 1300 μg/g of Cd was found in some domestic items. By inference, Pb also is found in some common plastics but the current studies did not permit Pb determination in solid wastes, but only in aerosols. (author). 8 tabs

  11. Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine

    Science.gov (United States)

    Talebi Anaraki, Saber

    The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

  12. Intrinsic char reactivity of plastic waste (PET) during CO2 gasification

    International Nuclear Information System (INIS)

    Gil, M.V.; Fermoso, J.; Pevida, C.; Pis, J.J.; Rubiera, F.

    2010-01-01

    Char reactivity has a strong influence on the gasification process, since char gasification is the slowest step in the process. A sample of waste PET was devolatilised in a vertical quartz reactor and the resulting char was partially gasified under a CO 2 atmosphere at 925 C in order to obtain samples with different degrees of conversion. The reactivity of the char in CO 2 was determined by isothermal thermogravimetric analysis at different temperatures in a kinetically controlled regime and its reactive behaviour was evaluated by means of the random pore model (RPM). The texture of the char was characterised by means of N 2 and CO 2 adsorption isotherms. The results did not reveal any variation in char reactivity during conversion, whereas the micropore surface area was affected during the gasification process. It was found that the intrinsic reaction rate of the char can be satisfactorily calculated by normalizing the reaction rate by the narrow micropore surface area calculated from the CO 2 adsorption isotherms. It can be concluded therefore that the surface area available for the gasification process is the area corresponding to the narrow microporosity. (author)

  13. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  14. Landfill gas from solid urban waste - an opportunity evaluation

    International Nuclear Information System (INIS)

    Gramatikov, Plamen; Kovachev, Vassil; Gramatikova, Marija

    2004-01-01

    The problems (technical, economic, social etc.) which have to be solved by municipal waste treatment, especially in Central/East European towns, are discussed in this work. Percentages of products and calorific values of the main solid organic wastes are estimated. Different urban waste utilisation methods - Landfills Anaerobic digestion, Incineration, Refuse-derived fuels, Pyrolysis and Gasification are comment in this paper. These methods are compared using the town of Blagoevgrad (Bulgaria) as an example. It is round that a well established landfill gas production technology offers simplicity of collection (such as is practised in most of low and moderately developed countries like Bulgaria), relatively simple operation and maintenance, improvement of the environmental protection and of the energy production (based on the local disposal and renewable energy sources) and is more feasible for the East European urban concentrations. (Author)

  15. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  16. Biomass gasification: a strategy for energy recovery and disposal of ...

    African Journals Online (AJOL)

    Biomass gasification: a strategy for energy recovery and disposal of industrial and municipal wastes. Anurag Pandey, Anupam Shukla. Abstract. Energy from biological organic waste as an aspect of sustainable waste management is probably the most contentious. Solid and liquid wastes are a rapidly growing problem ...

  17. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  18. Small Scale Gasification Application and Perspectives in Circular Economy

    Science.gov (United States)

    Klavins, Maris; Bisters, Valdis; Burlakovs, Juris

    2018-06-01

    Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.

  19. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations......A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced...... achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant. © 2013 Elsevier Ltd. All rights reserved....

  20. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  1. Methods and machinery for pulverising solid wastes

    CSIR Research Space (South Africa)

    Simpkins, MJ

    1976-11-01

    Full Text Available This report is published on behalf of the South African Committee for Solid Wastes which in turn advises the National Committee for Environmental Sciences on problems concerned with Solid Wastes in South Africa. It is particularly concerned...

  2. Energy and solid/hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  3. Solid Waste Activity Packet for Teachers.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  4. Energy and solid/hazardous waste

    International Nuclear Information System (INIS)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included

  5. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  6. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  7. Low-temperature gasification of waste tire in a fluidized bed

    International Nuclear Information System (INIS)

    Xiao Gang; Ni Mingjiang; Chi Yong; Cen Kefa

    2008-01-01

    In order to recovery energy and materials from waste tire efficiently, low-temperature gasification is proposed. Experiments are carried out in a lab-scale fluidized bed at 400-800 deg. C when equivalence ratio (ER) is 0.2-0.6. Low heat value (LHV) of syngas increases with increasing temperature or decreasing ER, and the yield is in proportion to ER linearly. The yield of carbon black decreases with increasing temperature or ER lightly. When temperature is over 600 deg. C, characteristics of carbon black is similar. When temperature is over 700 deg. C, LHV of syngas rises up lightly with increasing temperature, which indicates that it hardly facilitates gasification any more. It is suitable for tire gasification when temperature is 650-700 deg. C and ER is 0.2-0.4. Under this condition, LHV and yield of syngas are about 4000-9000 kJ/Nm 3 and 1.8-3.7 Nm 3 /kg, respectively; surface area and yield of carbon black lie in range of 20-30 m 3 /g and 550-650 g/kg, respectively. The carbon balance of these experiments achieves 85-95% when temperature is over 600 deg. C

  8. Study of a nuclear graphite waste 14C decontamination process by CO2 gasification

    International Nuclear Information System (INIS)

    Pageot, Justin

    2014-01-01

    The decommissioning of French gas cooled nuclear reactors (UNGG), all arrested since 1994, will generate 23,000 tons of graphite waste classified Low Level and Long Lived and notably containing 14 C. The aim of this thesis is to study a new method for selective extraction of this radionuclide by CO 2 gasification.The multi-scale organization of virgin and irradiated graphite has been studied by a coupling between microspectrometry Raman and transmission electron microscopy. With the neutron fluence, the structure degrades and the nano-structure can be greatly changed. In extreme cases, the lamellar nano-structure nuclear graphite has become nano-porous. Furthermore, these damages are systematically heterogeneous. An orientation effect of 'crystallites', shown experimentally by ion implantation, could be a cause of these heterogeneities.This study also showed that from a specific fluence, there is an important development of nano-porous zones coinciding with a dramatic 14 C concentration increase. This radionuclide could be preferentially concentrated in the nano-porous areas which are potentially more reactive than the remaining laminar areas which could be less rich in 14 C. This process by CO 2 gasification was firstly tested on 'analogous' non-radioactive materials (mechanically milled graphite). These tests confirmed, for temperatures between 950 and 1000 C, the selective and complete elimination of nano-porous areas.Tests were then carried out on graphite waste from Saint-Laurent-des-Eaux A2 and G2 reactors. The results are promising with notably the quarter of 14 C inventory extracted for a weight loss of only few percent. Up to 68 % of 14 C inventory was extracted, but with an important gasification. Thus, this treatment could allow extracting selectively a share of 14 C inventory (mobile or linked to nano-porous areas) and allows imagining alternative scenarios for graphite waste managing. (author) [fr

  9. Solid waste management in Khartoum industrial area

    International Nuclear Information System (INIS)

    Elsidig, N. O. A.

    2004-05-01

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  10. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  11. Pacific Northwest Laboratory's Solid Waste Initiative

    International Nuclear Information System (INIS)

    Holter, G.M.

    1993-09-01

    In fiscal year 1992 (FY-92), a Solid Waste Initiative was undertaken within the Pacific Northwest Laboratory (PNL). This action was partly in response to a perceived increase in the frequency and severity of impacts associated with solid waste issues at all levels. It also recognized the limited attention of previous efforts in addressing the broader impacts resulting from solid waste and, thus, dealing with solid waste issues in a holistic fashion. This paper provides a description of the Solid Waste Initiative at PNL, including a historical perspective on PNL's involvement in solid waste issues, the goals and objectives of the Solid Waste Initiative, and a discussion of selected activities being conducted under the Initiative

  12. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  13. Municipal solid waste conversion to transportation fuels: a life-cycle estimation of global warming potential and energy consumption

    DEFF Research Database (Denmark)

    Pressley, Phillip N.; Aziz, Tarek N.; DeCarolis, Joseph F.

    2014-01-01

    This paper utilizes life cycle assessment (LCA) methodology to evaluate the conversion of U.S. municipal solid waste (MSW) to liquid transportation fuels via gasification and Fischer-Tropsch (FT). The model estimates the cumulative energy demand and global warming potential (GWP) associated...

  14. Gasification of fruit wastes and agro-food residues in supercritical water

    International Nuclear Information System (INIS)

    Nanda, Sonil; Isen, Jamie; Dalai, Ajay K.; Kozinski, Janusz A.

    2016-01-01

    Highlights: • Supercritical water gasification of various fruit wastes and agro-food residues. • Coconut shell had superior carbon content and calorific value due to high lignin. • Maximum H_2 yields at 600 °C with 1:10 biomass-to-water ratio, 45 min and 23–25 MPa. • High H_2 yields from coconut shell, bagasse and aloe vera rind with 2 wt% K_2CO_3. • High CH_4 yields from coconut shell with 2 wt% NaOH due to methanation reaction. - Abstract: Considerable amounts of fruit wastes and agro-food residues are generated worldwide as a result of food processing. Converting the bioactive components (e.g., carbohydrates, lipids, fats, cellulose, hemicellulose and lignin) in food wastes to biofuels is a potential remediation approach. This study highlights the characterization and hydrothermal conversion of several fruit wastes and agro-food residues such as aloe vera rind, banana peel, coconut shell, lemon peel, orange peel, pineapple peel and sugarcane bagasse to hydrogen-rich syngas through supercritical water gasification. The agro-food wastes were gasified in supercritical water to study the impacts of temperature (400–600 °C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15–45 min) at a pressure range of 23–25 MPa. The catalytic effects of NaOH and K_2CO_3 were also investigated to maximize the hydrogen yields and selectivity. The elevated temperature (600 °C), longer reaction time (45 min) and lower feed concentration (1:10 biomass-to-water ratio) were optimal for higher hydrogen yield (0.91 mmol/g) and total gas yield (5.5 mmol/g) from orange peel. However, coconut shell with 2 wt% K_2CO_3 at 600 °C and 1:10 biomass-to-water ratio for 45 min revealed superior hydrogen yield (4.8 mmol/g), hydrogen selectivity (45.8%) and total gas yield (15 mmol/g) with enhanced lower heating value of the gas product (1595 kJ/Nm"3). The overall findings suggest that supercritical water gasification of fruit wastes and agro-food residues could serve as

  15. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  16. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kWe have been performed. Woodchips are used as gasification feedstock to produce syngas......Wh. Furthermore, hot water is considered as a by-product, and the cost of hot water is found to be 0.0214$/kWh. When compared to other renewable systems of similar scales, this result shows that if both SOFC and Stirling engine technology enter the commercialization phase, then they can deliver electricity...

  17. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  18. Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor

    International Nuclear Information System (INIS)

    Arena, Umberto; Di Gregorio, Fabrizio

    2014-01-01

    Two plastic wastes obtained as co-products from an industrial process were fed in a pilot-scale bubbling fluidized bed gasifier, having an internal diameter of 0.38 m and a maximum thermal output of about 400 kW. The experimental runs were carried out by reaching a condition of thermal and chemical steady state under values of equivalence ratio ranging from 0.2 to 0.3. Olivine, a neo-silicate of Fe and Mg, already tested as a good catalyst for tar removal during gasification of polyolefin plastic wastes, was used as bed material. The results provide the complete composition of the syngas, including the tar, particulate and acid/basic gas contents as well as the chemical and physical characterization of the bed material and entrained fines. The gasification process appears technically feasible, yielding a producer gas of valuable quality for energy applications in an appropriate plant configuration. On the other hand, under the experimental conditions tested, olivine particles show a strongly reduced catalytic activity in all the runs. The differences in the gasification behaviour of the two industrial plastics are explained on the basis of the structure and composition of the wastes, taking also into account the results of a combined material and substance flow analysis. - Highlights: • Pilot-scale investigation of fluidized bed gasification of two industrial plastic wastes. • Tests under conditions of thermal/chemical steady state at various equivalence ratios. • Complete composition of the producer gas, including tar, particulate and acid/basic gases. • Differences in the gasification behaviour of plastic wastes. • Material, substance, and feedstock energy flow analysis for different gasification tests

  19. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  20. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    Science.gov (United States)

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J. [US Naval Academy, Department of Mechanical Engineering, 590 Holloway Road, Annapolis, MD 21402 (United States)

    2010-06-15

    Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for energy content, and compared with the same analyses of wood (a more typical biomass fuel). Three different samples of food waste showed relative uniformity of properties despite being sampled on different days, with different menus. Food waste had lower oxygen content, higher nitrogen and ash content, and higher energy content than wood. The food waste in this study had approximately 70% water content. Temperatures and emissions from combustion of wood pellets, dried pelletized food waste, and dried non-pelletized food waste were measured and compared using a modified residential pellet stove. Temperatures were higher for food waste due to the higher energy content. Emissions of NO, HC, and soot were slightly higher for food waste. Despite the large water content, thermodynamic analysis showed that regenerative dehydration, in which waste energy from the combustion system is used to remove water from the incoming wet fuel, is possible. An excess enthalpy ratio is defined to formalize the comparison of waste sensible enthalpy with the energy required for dehydration. Analysis of fuel-lean combustion and fuel-rich gasification shows that little, if any, external energy would necessarily be required to remove the water from the incoming fuel. An equilibrium model was used to simulate waste food gasification by extending the simulation to high water content levels. Probable ranges for successful food waste gasification are identified. Energy recovery of waste food could result in cost savings by offsetting traditional fuel-use (e.g. natural gas for heating) and by reducing disposal costs. (author)

  2. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study

    International Nuclear Information System (INIS)

    Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J.

    2010-01-01

    Energy recovery from food waste was studied using the food service at the US Naval Academy as a case study. Post-consumer food waste was captured over a period of ten days to estimate individual waste per meal and total waste per month. The food waste was analyzed for chemical composition and water content using ultimate and proximate analysis, and for energy content, and compared with the same analyses of wood (a more typical biomass fuel). Three different samples of food waste showed relative uniformity of properties despite being sampled on different days, with different menus. Food waste had lower oxygen content, higher nitrogen and ash content, and higher energy content than wood. The food waste in this study had approximately 70% water content. Temperatures and emissions from combustion of wood pellets, dried pelletized food waste, and dried non-pelletized food waste were measured and compared using a modified residential pellet stove. Temperatures were higher for food waste due to the higher energy content. Emissions of NO, HC, and soot were slightly higher for food waste. Despite the large water content, thermodynamic analysis showed that regenerative dehydration, in which waste energy from the combustion system is used to remove water from the incoming wet fuel, is possible. An excess enthalpy ratio is defined to formalize the comparison of waste sensible enthalpy with the energy required for dehydration. Analysis of fuel-lean combustion and fuel-rich gasification shows that little, if any, external energy would necessarily be required to remove the water from the incoming fuel. An equilibrium model was used to simulate waste food gasification by extending the simulation to high water content levels. Probable ranges for successful food waste gasification are identified. Energy recovery of waste food could result in cost savings by offsetting traditional fuel-use (e.g. natural gas for heating) and by reducing disposal costs.

  3. OPTIMIZED WTE CONVERSION OF MUNICIPAL SOLID WASTE IN SHANGHAI APPLYING THERMOCHEMICAL TECHNOLOGIES

    OpenAIRE

    Dai, Siyang

    2016-01-01

    Thermochemical technologies have been proven effective in treating municipal solid waste (MSW) for many years. China, with a rapid increase of MSW, plans to implement more environmental friendly ways to treat MSW than landfill, which treats about 79 % of total MSW currently. The aim of this master thesis was to find out a suitable thermochemical technology to treat MSW in Shanghai, China. Several different thermochemical technologies are compared in this thesis and plasma gasification was sel...

  4. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  5. Radioactive solid waste management at Trombay

    International Nuclear Information System (INIS)

    Jayaraman, A.P.; Balu, K.

    1977-01-01

    The Radioactive solid waste management programme at BARC, India during 1965-1975 is described in detail. The operational experience, which includes the handling treatment and disposal of these solid wastes is reported alongwith the special problems faced in the case of large volume low hazard potential wastes from the nuclear fuel cycle. (K.B.)

  6. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  7. Instructive for radioactive solid waste management

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia

    2014-01-01

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM [es

  8. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  9. Air gasification of agricultural waste in a fluidized bed gasifier: hydrogen production performance

    Energy Technology Data Exchange (ETDEWEB)

    Wan Ab Karim Ghani, W. A.; Moghadam, R. A.; Mohd Salleh, M. A. [Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Alias, A. B. [Chemical Engineering, Universiti Teknologi MARA Malaysia, 54500 Shah Alam, Selangor (Malaysia)

    2009-07-01

    Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell) by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900 {sup o}C), fluidization ratio (2 to 3.33 m/s), static bed height (10 to 30 mm) and equivalence ratio (0.16 to 0.46) were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol%) could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900 {sup o}C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidising velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced. (author)

  10. Preliminary studies of lignocellulosics and waste fuels for fixed bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, H [Marmara Research Center, Kocaeli (Turkey). Energy Systems and Environmental Research Institute; Dogru, M; Howarth, C R [University of Newcastle (United Kingdom). Dept. of Chemical and Process Engineering; Malik, A A [University of Northumbria, Newcastle (United Kingdom). Dept. of Chemical and Life Science

    2001-07-01

    This study was carried out to understand the decomposition behaviour of a range of biofuel and waste feedstock during gasification in a downdraft gasifier. A laboratory scale large sample thermogravimetric analyser (LSTA) is used which allows the data on burn-out characteristics of different fuel particles to be measured under agitated conditions. The conditions chosen simulate the combustion behaviour in a gasifier for a range of biofuels and wastes, namely hazelnut, pistachio, and peanut shells, wood chips and sewage sludge pellets. From this data the activation energy is calculated for a heating rate of 20{sup o}C/min. It was found that, as the weight loss increases, the activation energy decreases. In addition the influence of a range of gasification air/N{sub 2} levels on constituents of the gas released during hazelnut shell decomposition was observed. It was found that the composition of the product gases consisted of CH{sub 4}, H{sub 2}, CO, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}. This was analysed as function of time for hazelnut shells showing that the primary products are H{sub 2}, CO, CH{sub 4} and CO{sub 2}. (author)

  11. Air Gasification of Agricultural Waste in a Fluidized Bed Gasifier: Hydrogen Production Performance

    Directory of Open Access Journals (Sweden)

    A. B. Alias

    2009-05-01

    Full Text Available Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900°C, fluidization ratio (2 to 3.33 m/s, static bed height (10 to 30 mm and equivalence ratio (0.16 to 0.46 were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol% could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900°C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidizing velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced.

  12. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  13. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2014-01-01

    Data for the composition of municipal solid waste is a critical basis for any assessment of waste technologies and waste management systems. The detailed quantification of waste fractions is absolutely needed for a better technological development of waste treatment. The current waste composition...... comparability to characterize municipal solid waste. This methodology was applied to residual waste collected from 1,442 households in three municipalities in Denmark. The main fractions contributing to the residual household waste were food waste and miscellaneous waste. Statistical analysis suggested...... of standardised and commonly accepted waste characterization methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. The purpose of this study was to introduce a consistent methodology that reduces uncertainties and ensures data...

  14. Biomass Waste Gasification – Can Be the Two Stage Process Suitable for Tar Reduction and Power Generation?

    Czech Academy of Sciences Publication Activity Database

    Šulc, J.; Štojdl, J.; Richter, M.; Popelka, J.; Svoboda, Karel; Smetana, J.; Vacek, J.; Skoblia, S.; Buryan, P.

    2012-01-01

    Roč. 32, č. 4 (2012), s. 692-700 ISSN 0956-053X Grant - others:RFCR(XE) CT-2010-00009 Institutional research plan: CEZ:AV0Z40720504 Keywords : waste biomass * gasification * tar Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.485, year: 2012

  15. Solid waste disposal into salt mines

    International Nuclear Information System (INIS)

    Repke, W.

    1981-01-01

    The subject is discussed as follows: general introduction to disposal of radioactive waste; handling of solid nuclear waste; technology of final disposal, with specific reference to salt domes; conditioning of radioactive waste; safety barriers for radioactive waste; practice of final disposal in other countries. (U.K.)

  16. Monitoring of plutonium contaminated solid waste streams

    International Nuclear Information System (INIS)

    Birkhoff, G.; Notea, A.

    1977-01-01

    The planning of a system for monitoring Pu contaminated solid waste streams, from the nuclear fuel cycle, is considered on the basis of given facility waste management program. The inter relations between the monitoring system and the waste management objectives are stressed. Selection criteria with pertinent data of available waste monitors are given. Example of monitoring systems planning are presented and discussed

  17. evaluation of municipal solid waste management system

    African Journals Online (AJOL)

    eobe

    Keywords: solid waste, household, waste bin, willingness to pay, municipal. 1. INTRODUCTION .... significant differences between WTP and household ... Gender. Income of Household. Education Status. House Type. Household Size. Male.

  18. Infrastructure Task Force Tribal Solid Waste Management

    Science.gov (United States)

    These documents describe 1) issues to consider when planning and designing community engagement approaches for tribal integrated waste management programs and 2) a proposed approach to improve tribal open dumps data and solid waste projects, and 3) an MOU.

  19. Solid wastes research in South Africa

    CSIR Research Space (South Africa)

    Noble, RG

    1976-06-01

    Full Text Available The importance of solid wastes management in environmental pollution control cannot be over-emphasised. Increased socio-economic development in South Africa has brought with it increasing volumes of urban, industrial and agricultural wastes...

  20. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  1. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  2. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    a waste management perspective, pyrolysis and gasification are of relatively little importance as an overall management option. Today, gasification is primarily used on specific waste fractions as opposed to mixed household wastes. The main commercial activity so far has been in Japan, with only limited....... Today gasification is used within a range of applications, the most important of which are conversion of coal into syngas for use as chemical feedstock or energy production; but also gasification of biomass and waste is gaining significant interest as emerging technologies for sustainable energy. From...... success in Europe and North America (Klein et al., 2004). However, pyrolysis and gasification of waste are generally expected to become more widely used in the future. A main reason for this is that public perceptions of waste incineration in some countries is a major obstacle for installing new...

  3. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  4. GASIFICATION FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  5. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.

    Science.gov (United States)

    Rollinson, Andrew N; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.

  6. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    Science.gov (United States)

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 1995 Solid Waste 30-year volume summary

    International Nuclear Information System (INIS)

    Valero, O.J.; DeForest, T.J.; Templeton, K.J.

    1995-06-01

    This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), provides a description of the annual low-level mixed waste (LLMW) and transuranic/transuranic mixed solid waste (TRU-TRUM) volumes expected to be managed by Hanford's Solid Waste Central Waste Complex (CWC) over the next 30 years. The waste generation sources and waste categories are also described. This document is intended to be used as a reference for short- and long-term planning of the Hanford treatment, storage, and disposal (TSD) activities over the next several decades. By estimating the waste volumes that will be generated in the future, facility planners can determine the timing of key waste management activities, evaluate alternative treatment strategies, and plan storage and disposal capacities. In addition, this document can be used by other waste sites and the general public to gain a better understanding of the types and volumes of waste that will be managed at Hanford

  8. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  9. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  10. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  11. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  12. New strategic solid waste management in Sicily

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2005-01-01

    The solid waste management is, today, a very critical issue. In spite of all the attempts in order to recovery and to recycle waste, the dump still remains the more followed solution, while only a small part of solid waste is going to be burnt down. But the rubbish dump isn't, actually, an environmentally sustainable solution. In the last years the waste incineration systems with energy recovery are spreading more over the territory, and if on one hand they allow to recover energy, on the other they also generate waste. So the emergency remains and it has to be faced. Today, the waste incineration system with energy recovery seems to be the best solution for this problem. the following article examinates the main strategic aspects of the solid waste management in Sicily after the General Plan of Waste Management application [it

  13. Storage of long lived solid waste

    International Nuclear Information System (INIS)

    Ozarde, P.D.; Agarwal, K.; Gupta, R.K.; Gandhi, K.G.

    2009-01-01

    Long lived solid waste, generated during the fuel cycle mainly includes high level vitrified waste product, high level cladding hulls and low and intermediate level alpha wastes. These wastes require storage in specially designed engineered facilities before final disposal into deep geological repository. Since high-level vitrified waste contain heat generating radionuclides, the facility for their storage is designed for continuous cooling. High level cladding hulls undergo volume reduction by compaction and will be subsequently stored. (author)

  14. Managing America's solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J. A.

    1998-09-15

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  15. Solid Waste Management Holistic Decision Modeling

    OpenAIRE

    World Bank

    2008-01-01

    This study provides support to the Bank's ability to conduct client dialogue on solid waste management technology selection, and will contribute to client decision-making. The goal of the study was to fully explore the use of the United States Environmental Protection Agency and the Research Triangle Institute (EPA/RTI) holistic decision model to study alternative solid waste systems in a ...

  16. Land Use Management for Solid Waste Programs

    Science.gov (United States)

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  17. Managing America`s solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  18. Cadmium complexation by solid waste leachates

    DEFF Research Database (Denmark)

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste......, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter is due...

  19. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  20. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  1. Radioactive Solid Waste Management Site (RSMS), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Nuclear operations generate a variety of primary solid waste comprising of tissue materials, glassware, plastics, protective rubber-wears, used components like filters, piping, structural items, unserviceable equipment, etc. This type of solid waste is generally associated with low and intermediate level of beta and gamma radiation and, in some cases, by low levels of alpha contamination. Radioactive Solid Waste Management Site (RSMS), Trombay is operational with an objective of safe and efficient management of low and intermediate level solid waste generated from various nuclear fuel cycle facilities of BARC, Trombay. The RSMS also manages the spent radioactive sources, utilised in healthcare, industries and research institutes, after completion of their useful life. The radioactive solid waste is first segregated, treated for volume reduction and disposed in engineered disposal module to prevent the migration of radionuclides and isolate them from human environment

  2. Method of processing radioactive solid wastes

    International Nuclear Information System (INIS)

    Ootaka, Hisashi; Aizu, Tadashi.

    1980-01-01

    Purpose: To improve the volume-reducing effect for the radioactive solids wastes by freezing and then pulverizing them. Method: Miscellaneous radioactive solid wastes produced from a nuclear power plant and packed in vinyl resin bags are filled in a drum can and nitrogen gas at low temperature (lower than 0 0 C) from a cylinder previously prepared by filling liquid nitrogen (at 15kg/cm 2 , -196 0 C) to freeze the radioactive solid wastes. Thereafter, a hydraulic press is inserted into the drum can to compress and pulverize the thus freezed miscellaneous radioactive solid wastes into powder. The powder thus formed does not expand even after removing the hydraulic press from the drum can, whereby the volume reduction of the radioactive solid wastes can be carried out effectively. (Horiuchi, T.)

  3. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  4. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  5. Thermal treatments of solid wastes. Different strategies for related pollutant management

    Energy Technology Data Exchange (ETDEWEB)

    Nicolella, C; Convertti, A; Rovatti, M [Genoa Univ. (Italy); Boschi, R; Cozzani, V; Tognotti, L [Pisa Univ. (Italy). Dept. of Chemistry Engineering

    1996-12-31

    Thermal treatment of solid wastes present different advantages/disadvantages as far as recovery and emissions concerns. They provide a captive energy source; reduce the quantity of waste to be landfilled; there are limited by-product and pollutant generating problems. Combined treatment of solid wastes (incineration, pyrolysis, gasification) have been considered to evaluate the energy recovery as well as the quality and the amount of pollutants potentially generated by the combined processes. Direct incineration of MSW, RDF or specific industrial wastes represents a viable, definitive, low environmental impact solution for most refuses. Treatment of emissions can be efficiently achieved by dry or wet processes. Nowadays abatement technologies are able to provide emissions within the guidelines of EEC countries. Problems arise when wastes contain large amount of chlorinated compounds (for example PVC) and/or heavy rentals: incineration may be not best way to be pursued. The general aim of the research program carried out by ISTIC (Genova), and Department of Chemical Engineering (Pisa) is to gain fundamental information on pyrolysis of refuse materials and to study the possible industrial application of these processes. Possible solutions have been studied in terms of material and energy balances, in order to verify the feasibility of combined treatments. Here, preliminary results are given on a two-stage process (low temperature pyrolysis (LTP) followed by incineration or gasification/pyrolysis) for treating specific wastes. (author)

  6. Thermal treatments of solid wastes. Different strategies for related pollutant management

    Energy Technology Data Exchange (ETDEWEB)

    Nicolella, C.; Convertti, A.; Rovatti, M. [Genoa Univ. (Italy); Boschi, R.; Cozzani, V.; Tognotti, L. [Pisa Univ. (Italy). Dept. of Chemistry Engineering

    1995-12-31

    Thermal treatment of solid wastes present different advantages/disadvantages as far as recovery and emissions concerns. They provide a captive energy source; reduce the quantity of waste to be landfilled; there are limited by-product and pollutant generating problems. Combined treatment of solid wastes (incineration, pyrolysis, gasification) have been considered to evaluate the energy recovery as well as the quality and the amount of pollutants potentially generated by the combined processes. Direct incineration of MSW, RDF or specific industrial wastes represents a viable, definitive, low environmental impact solution for most refuses. Treatment of emissions can be efficiently achieved by dry or wet processes. Nowadays abatement technologies are able to provide emissions within the guidelines of EEC countries. Problems arise when wastes contain large amount of chlorinated compounds (for example PVC) and/or heavy rentals: incineration may be not best way to be pursued. The general aim of the research program carried out by ISTIC (Genova), and Department of Chemical Engineering (Pisa) is to gain fundamental information on pyrolysis of refuse materials and to study the possible industrial application of these processes. Possible solutions have been studied in terms of material and energy balances, in order to verify the feasibility of combined treatments. Here, preliminary results are given on a two-stage process (low temperature pyrolysis (LTP) followed by incineration or gasification/pyrolysis) for treating specific wastes. (author)

  7. A review on technological options of waste to energy for effective management of municipal solid waste.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    OpenAIRE

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-01-01

    Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management ...

  9. Management of Port Solid Waste Framework

    OpenAIRE

    Pereira, Sergio Luiz; Fontana, , Carla Marísia Maccagnan; Fontana, Caio Fernando; Sakurai, Claedson Akio

    2014-01-01

    One of contemporary environmental issues refers to progressive and diverse generation of solid waste in urban areas or specific, and requires solutions because the traditional methods of treatment and disposal are becoming unviable over the years and, consequently, a significant contingent of these wastes presents final destination inappropriate. The diversity of solid waste generated as a result of human activities must have the appropriate allocation to specific ...

  10. Solid Waste Projection Model: Model user's guide

    International Nuclear Information System (INIS)

    Stiles, D.L.; Crow, V.L.

    1990-08-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  11. Waterproofing improvement of radioactive waste asphalt solid

    International Nuclear Information System (INIS)

    Adachi, Katsuhiko; Yamaguchi, Takashi; Ikeoka, Akira.

    1981-01-01

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 60 0 C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  12. Solid Waste Management Practices in EBRP Schools.

    Science.gov (United States)

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  13. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    Directory of Open Access Journals (Sweden)

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  14. Fine tuning of process parameters for improving briquette production from palm kernel shell gasification waste.

    Science.gov (United States)

    Bazargan, Alireza; Rough, Sarah L; McKay, Gordon

    2018-04-01

    Palm kernel shell biochars (PKSB) ejected as residues from a gasifier have been used for solid fuel briquette production. With this approach, palm kernel shells can be used for energy production twice: first, by producing rich syngas during gasification; second, by compacting the leftover residues from gasification into high calorific value briquettes. Herein, the process parameters for the manufacture of PKSB biomass briquettes via compaction are optimized. Two possible optimum process scenarios are considered. In the first, the compaction speed is increased from 0.5 to 10 mm/s, the compaction pressure is decreased from 80 Pa to 40 MPa, the retention time is reduced from 10 s to zero, and the starch binder content of the briquette is halved from 0.1 to 0.05 kg/kg. With these adjustments, the briquette production rate increases by more than 20-fold; hence capital and operational costs can be reduced and the service life of compaction equipment can be increased. The resulting product satisfactorily passes tensile (compressive) crushing strength and impact resistance tests. The second scenario involves reducing the starch weight content to 0.03 kg/kg, while reducing the compaction pressure to a value no lower than 60 MPa. Overall, in both cases, the PKSB biomass briquettes show excellent potential as a solid fuel with calorific values on par with good-quality coal. CHNS: carbon, hydrogen, nitrogen, sulfur; FFB: fresh fruit bunch(es); HHV: higher heating value [J/kg]; LHV: lower heating value [J/kg]; PKS: palm kernel shell(s); PKSB: palm kernel shell biochar(s); POME: palm oil mill effluent; RDF: refuse-derived fuel; TGA: thermogravimetric analysis.

  15. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.

    Science.gov (United States)

    Hla, San Shwe; Roberts, Daniel

    2015-07-01

    The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  17. Radionanalysis in solid waste research and management

    International Nuclear Information System (INIS)

    Das, H.A.

    1994-01-01

    Risk assessment of dumping or recycling of solid waste makes part of environmental geochemistry. Radioanalysis provides efficient procedures for the characterization of solid wastes, both granular and as recycled products. Radiotracers are applied to measure the situ values of transport parameters. Activation analysis is used in the determination of trace constituents in solids and leachates. This text summarizes some important applications of radioanalysis in this part of environmental monitoring

  18. Gasification of oil sand coke: review

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    1998-08-01

    The production of synthetic crude from the tar sands in Western Canada has been steadily increasing. Most of the delayed coke produced by Suncor is combusted on site, whereas all fluid coke produced by Syncrude is stockpiled.The database on the chemical and physical properties of the oil sand coke, including the composition and fusion properties of the mineral matter, has been established. The reactivity of the coke was determined by oxygen chemisorption, fixed bed and fluid bed bench scale gasification and pilot plant gasification. The reactivity of the oil sand coke for gasification is rather low and comparable to high rank coals, such as anthracite. Slurrability tests revealed that a solid concentration in water, approaching 70 wt%, can be achieved. Gasification is the front runner among clean technologies for the conversion of carbonaceous solids to useful products. Several commercial gasifiers are available to cover the wide range of severity. Because of the low reactivity of oil sands coke, high severity conditions are required to achieve high gasification conversion. Such conditions can be attained in entrained bed gasifiers. Gasifiers employing both dry and slurry feeding systems are suitable. A high efficiency, low SO{sub x} and NO{sub x} emissions, as well as a low solid waste production are among the key advantages of the gasification technology compared with thecompeting technologies. Commercial gasification of oil sands coke is delayed because of the availability of natural gas on the site of the upgrading plants. Potential for the transportation of the oil sand coke to USA for electricity generation using the integrated gasification combined-cycle (IGCC) technology was evaluated. 27 refs., 17 figs., 9 tabs.

  19. Influence of waste solid on nuclide dispersal

    International Nuclear Information System (INIS)

    Seitz, M.G.; Steindler, M.J.

    1981-01-01

    The method most often considered for permanent disposal of radioactive waste is to incorporate the waste into a solid, which is then placed in a geologic formation. The solid is made of waste and nonradioactive additives, with the formulation selected to produce a durable solid that will minimize the potential for dispersal of the radionuclides. Leach rates of radionuclides incorporated in the solid waste indicate the quantity of radioactivity available for dispersal at any time; but leach rates of stable constituents can be just as important to radionuclide dispersal by groundwater. The constituents of the solid will perturb the chemical character of the groundwater and, thereby, profoundly affect the interaction of radionuclides with the geologic medium. An explicit example of how the solid waste can affect radionuclide dispersal is illustrated by the results of experiments that measure cesium adsorption in the presence of rubidium. The experiments were performed with granulated oolitic limestone that absorbed cesium from groundwater solutions to which various concentrations of stable rubidium chloride had been added. The results are expressed as partition coefficients. Large coefficients indicate strong adsorption by the rock and, hence, slow migration. The partition coefficient for cesium decreases as the rubidium concentration in solution is increased. Because the coeficient for cesium depends on the amount of rubidium in solution, it will depend on the leach rate of rubidium from the solid. Rubidium has no radionuclides of concern for long-term isolation of nuclear waste, so its leach rate from a waste solid is rarely ever reported

  20. Solid waste 30-year volume summary

    International Nuclear Information System (INIS)

    Valero, O.J.; Armacost, L.L.; DeForest, T.J.; Templeton, K.J.; Williams, N.C.

    1994-06-01

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford's Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m 3 of LLMW and TRU/TRUM waste will be managed at Hanford's SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m 3 of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D ampersand D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford's future solid waste management requirements

  1. 1994 Solid waste forecast container volume summary

    International Nuclear Information System (INIS)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company's Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m 3 of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford's past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D ampersand D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D ampersand D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers

  2. Synergistic combination of biomass torrefaction and co-gasification: Reactivity studies.

    Science.gov (United States)

    Zhang, Yan; Geng, Ping; Liu, Rui

    2017-12-01

    Two typical biomass feedstocks obtained from woody wastes and agricultural residues were torrefied or mildly pyrolized in a fixed-bed reactor. Effects of the torrefaction conditions on product distributions, compositional and energetic properties of the solid products, char gasification reactivity, and co-gasification behavior between coal and torrefied solids were systematically investigated. Torrefaction pretreatment produced high quality bio-solids with not only increased energy density, but also concentrated alkali and alkaline earth metals (AAEM). As a consequence of greater retention of catalytic elements in the solid products, the chars derived from torrefied biomass exhibited a faster conversion than those derived from raw biomass during CO 2 gasification. Furthermore, co-gasification of coal/torrefied biomass blends exhibited stronger synergy compared to the coal/raw biomass blends. The results and insights provided by this study filled a gap in understanding synergy during co-gasification of coal and torrefied biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Municipal solid waste generation in Kathmandu, Nepal.

    Science.gov (United States)

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Gasification of wet biomass waste flows for electric power generation. Vergassing van natte biomassa-afvalstromen voor elektriciteitsproduktie

    Energy Technology Data Exchange (ETDEWEB)

    Faaij, A; Blok, K; Worrell, E

    1992-06-01

    Feasibility of gasification of biomass waste streams for electricity production is studied. An inventory of available wet biomass wastes and their features is made. A potential of at least 28 PJ/year is available in the Netherlands. On the basis of a technical survey two systems were selected. The first is a steam-injected gas turbine (STIG) of net 15 MWe, and the second system is a STIG of net 49 MWe. Both make use of the Atmospheric Circulating Fluidized Bed (ACFB) gasification technology, wet scrubber gas cleaning and of flue gas for drying the waste. Efficiencies of 27% and 30% were calculated for 160 kton and 500 kton biomass waste a year respectively. Waste treatment costs are expected to be DFl 31 and DFl 24 per ton respectively, which is significant lower than the alternatives, being compost and anaerobic digestion of biomass waste. Moreover, this technique represents a considerable potential for saving fossil fuels and reducing CO[sub 2] emissions. This indicates that gasification can become a strong competitor for anaerobic digestion, composting and incineration on biomass waste treatment. The main technical problems to be solved are optimization of pre-treatment of the waste, especially drying, the behavior of the ash and heavy metals and adaptation of gas turbines for low calorific gas, possibly combined with steam injection. Fundamental problems to prohibit further development of this option seem not to be present. It is expected that realization of the option discussed here is possible within 4-7 years. 3 figs., 6 tabs., 64 refs.

  5. Business unusual - Waste Act implementation: solid waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2013-08-01

    Full Text Available The preamble to the Waste Act (2008) is very clear that, as a result of this legislation, waste management in South Africa will never be the same again. This should send a clear message that ‘business as usual’ will no longer be sufficient....

  6. Plastic solid waste utilization technologies: A Review

    Science.gov (United States)

    Awasthi, Arun Kumar; Shivashankar, Murugesh; Majumder, Suman

    2017-11-01

    Plastics are used in more number of applications in worldwide and it becomes essential part of our daily life. In Indian cities and villages people use the plastics in buying vegetable as a carry bag, drinking water bottle, use of plastic furniture in home, plastics objects uses in kitchen, plastic drums in packing and storage of the different chemicals for industrial use, use plastic utensils in home and many more uses. After usage of plastics it will become part of waste garbage and create pollution due to presence of toxic chemicals and it will be spread diseases and give birth to uncontrolled issues in social society. In current scenario consumption of plastic waste increasing day by day and it is very difficult to manage the plastic waste. There are limited methodologies available for reutilization of plastic waste again. Such examples are recycling, landfill, incineration, gasification and hydrogenation. In this paper we will review the existing methodologies of utilization of plastic waste in current scenario

  7. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  8. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  9. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  10. Hydrogen and syngas production from sewage sludge via steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nipattummakul, Nimit [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand); Ahmed, Islam I.; Gupta, Ashwani K. [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kerdsuwan, Somrat [The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand)

    2010-11-15

    High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 C was found to be 0.076 g{sub gas} g{sub sample}{sup -1}. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes. (author)

  11. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  12. Challenges of solid waste management and environmental ...

    African Journals Online (AJOL)

    Challenges of solid waste management and environmental sanitation in Ibadan North ... African Journal for the Psychological Study of Social Issues ... inadequate manpower and welfare, poor provision of health services, negative attitudes, ...

  13. Solid and liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author) [pt

  14. Processing method for miscellaneous radioactive solid waste

    International Nuclear Information System (INIS)

    Matsuda, Masami; Komori, Itaru; Nishi, Takashi.

    1995-01-01

    Miscellaneous solid wastes are subjected to heat treatment at a temperature not lower than a carbonizing temperature of organic materials in the wastes and not higher than the melting temperature of inorganic materials in the wastes, for example, not lower than 200degC but not higher than 660degC, and then resultant miscellaneous solid wastes are solidified using a water hardening solidification material. With such procedures, the organic materials in the miscellaneous solids are decomposed into gases. Therefore, solid materials excellent in long term stability can be formed. In addition, since the heat treatment is conducted at a relatively low temperature such as not higher than 660degC, the generation amount of off gases is reduced to simplify an off gas processing system, and since molten materials are not formed, handing is facilitated. (T.M.)

  15. Solid Waste Management In Kosova

    OpenAIRE

    , F. Tahiri; , A. Maçi; , V. Tahiri; , K. Tahiri

    2016-01-01

    Waste management accordingly from concept and practices that are used in different countries there are differences, particularly between developed and developing countries. Our country takes part in the context of small developing countries where waste management right is almost at the beginning. In order to have better knowledge about waste management in Kosovo is done a research. The research has included the institutions that are responsible for waste management, including central and loca...

  16. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    Science.gov (United States)

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  17. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    Science.gov (United States)

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Estimation of restaurant solid waste generation rates

    International Nuclear Information System (INIS)

    Heck, H.H.; Major, I.

    2002-01-01

    Most solid waste utilities try to create a billing schedule that is proportional to solid waste generation rates. This research was trying to determine if the current billing rate structure was appropriate or if a different rate structure should be implemented. A multiple regression model with forward stepwise addition was developed which accurately predicts weekly solid waste generation rates for restaurants. The model was based on a study of daily solid waste generation at twenty-one different businesses. The weight and volume of solid waste generated was measure daily for two weeks during the winter and two weeks during the summer. Researchers followed the collection truck and measured the volume and weight of the container contents. Data was collected on the following independent variables describing each establishment; weight of waste per collection, volume per collection, container utilization factor, building area, contract haulers bill, yearly property tax, yearly solid waste tax, average number of collections per week, type of restaurant, modal number of collections per week, storage container size, waste density, number of employees, number of hours open per week, and weekly collection capacity (collections per week times storage container size). Independent variables were added to the regression equation based on their partial correlation coefficient and confidence level. The regression equations developed had correlation coefficients of 0.87 to 1.00, which was much better than the correlation coefficient (0.84) of an existing model DeGeare and Ongerth (1971) and a correlation coefficient of 0.54 based on the current solid waste disposal tax. (author)

  19. Solid low-level waste certification strategy

    International Nuclear Information System (INIS)

    Smith, M.A.

    1991-08-01

    The purpose of the Solid Low-Level Waste (SLLW) Certification Program is to provide assurance that SLLW generated at the ORNL meets the applicable waste acceptance criteria for those facilities to which the waste is sent for treatment, handling, storage, or disposal. This document describes the strategy to be used for certification of SLLW or ORNL. The SLLW Certification Program applies to all ORNL operations involving the generation, shipment, handling, treatment, storage and disposal of SLLW. Mixed wastes, containing both hazardous and radioactive constituents, and transuranic wastes are not included in the scope of this document. 13 refs., 3 figs

  20. Phase 2, Solid waste retrieval strategy

    International Nuclear Information System (INIS)

    Johnson, D.M.

    1994-01-01

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve

  1. Phase 2, Solid waste retrieval strategy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.M.

    1994-09-29

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  2. Modeling barriers of solid waste to energy practices: An Indian perspective

    International Nuclear Information System (INIS)

    Bag, S.; Mondal, N.; Dubey, R.

    2016-01-01

    In recent years managing solid wastes has been one of the burning problems in front of state and local municipal authorities. This is mainly due to scarcity of lands for landfill sites. In this context experts suggest that conversion of solid waste to energy and useful component is the best approach to reduce space and public health related problems. The entire process has to be managed by technologies that prevent pollution and protect the environment and at the same time minimize the cost through recovery of energy. Energy recovery in the form of electricity, heat and fuel from the waste using different technologies is possible through a variety of processes, including incineration, gasification, pyrolysis and anaerobic digestion. These processes are often grouped under “Waste to Energy technologies”. The objective of the study is twofold. First authors assessed the current status of solid waste management practices in India. Secondly the leading barriers are identified and Interpretive structural modeling technique and MICMAC analysis is performed to identify the contextual interrelationships between leading barriers influencing the solid waste to energy programs in the country. Finally the conclusions are drawn which will assist policy makers in designing sustainable waste management programs.

  3. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120 kW e have been performed. Woodchips are used as gasification feedstock to produce syngas, which is then utilized to feed the anode side of the SOFC stacks. A thermal efficiency of 0.424 LHV (lower heating value) for the plant is found to use 89.4 kg/h of feedstock to produce the above mentioned electricity. Thermoeconomic analysis shows that the production price of electricity is 0.1204 $/kWh. Furthermore, hot water is considered as a by-product, and the cost of hot water is found to be 0.0214 $/kWh. When compared to other renewable systems of similar scales, this result shows that if both SOFC and Stirling engine technology enter the commercialization phase, then they can deliver electricity at a cost that is competitive with the corresponding renewable systems of the same size. - Highlights: • A 120 kW e integrated gasification SOFC–Stirling CHP is presented. • Effect of important parameters on plant characteristic and economy are studied. • A modest thermal efficiency of 0.41 is found after thermoeconomic optimization. • Reducing stack numbers cuts cost of electricity at expense of thermal efficiency. • The plant cost is estimated to be about 3433 $/kW when disposal costs are neglected

  4. Carbon conversion predictor for fluidized bed gasification of biomass fuels - from TGA measurements to char gasification particle model

    Energy Technology Data Exchange (ETDEWEB)

    Konttinen, J.T. [University of Jyvaeskylae, Department of Chemistry, Renewable Energy Programme, POB 35, Jyvaeskylae (Finland); Moilanen, A. [VTT Technical Research Centre of Finland, POB 1000, Espoo (Finland); Martini, N. de; Hupa, M. [Abo Akademi University, Process Chemistry Centre, Combustion and Materials Chemistry, Turku (Finland)

    2012-09-15

    When a solid fuel particle is injected into a hot fluidized bed, the reactivity of fuel char in gasification reactions (between char carbon and steam and CO{sub 2}) plays a significant role for reaching a good carbon conversion. In this paper, the gasification reactivity data of some solid waste recovered fuels (SRF) obtained from thermogravimetric analysis (TGA) experiments is presented. Gas mixtures (H{sub 2}O, H{sub 2}, CO{sub 2}, CO), were used in the experiments to find the inhibitive effects of CO and H{sub 2}. Average char gasification reactivity values are determined from the TGA results. Kinetic parameters for char carbon gasification reactivity correlations are determined from this data. The Uniform Conversion model is used to account for the change of gasification reaction rate as function of carbon conversion. Some discrepancies, due to complicated ash-carbon interactions, are subjects of further research. In the carbon conversion predictor, laboratory measured reactivity numbers are converted into carbon conversion numbers in a real-scale fluidized bed gasifier. The predictor is a relatively simple and transparent tool for the comparison of the gasification reactivity of different fuels in fluidized bed gasification. The residence times for solid fuels in fluidized bed gasifiers are simulated. Simulations against some pilot-scale results show reasonable agreement. (orig.)

  5. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  6. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe

    In response to continuous pressure on resources, and the requirement for secure and sustainable consumption, public authorities are pushing the efficient use of resources. Among other initiatives, the prevention, reduction and recycling of solid waste have been promoted. In this context, reliable...... data for the material and resource content of waste flows are crucial to establishing baselines, setting targets and tracking progress on waste prevention, reduction and recycling goals. Waste data are also a critical basis for the planning, development and environmental assessment of technologies...... the comparison of waste data with various objectives. Analysis revealed that Danish residual household waste constitutes mainly food waste (42 – 45% mass per wet basis). Misplaced recyclable materials in residual waste bins, such as paper, board, glass, metal and plastic, amounted to 20% (mass per wet basis...

  7. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.

    Science.gov (United States)

    Kaewpengkrow, Prangtip; Atong, Duangduen; Sricharoenchaikul, Viboon

    2012-12-01

    Pyrolysis and gasification processes were utilized to study the feasibility of producing fuels from landfilled plastic wastes. These wastes were converted in a gasifier at 700-900 degrees C. The equivalence ratio (ER) was varied from 0.4-0.6 with or without addition ofa Ni-Mg-La/Al2O3 catalyst. The pyrolysis and gasification of plastic wastes without catalyst resulted in relatively low H2, CO and other fuel gas products with methane as the major gaseous species. The highest lower heating value (LHV) was obtained at 800 degrees C and for an ER of 0.4, while the maximum cold gas efficiency occurred at 700 degrees C and for an ER of 0.4. The presence of the Ni-Mg-La/Al2O3 catalyst significantly enhanced H2 and CO production as well as increasing the gas energy content to 15.76-19.26 MJ/m3, which is suitable for further usage as quality fuel gas. A higher temperature resulted in more H2 and CO and other product gas yields, while char and liquid (tars) decreased. The maximum gas yield, gas calorific value and cold gas efficiency were achieved when the Ni-Mg-La/Al2O3 catalyst was used at 900 degrees C. In general, addition of prepared catalyst resulted in greater H2, CO and other light hydrocarbon yields from superior conversion of wastes to these gases. Thus, thermochemical treatment of these problematic wastes using pyrolysis and gasification processes is a very attractive alternative for sustainable waste management.

  8. Alternative policies for solid waste management

    OpenAIRE

    Percoco Marco

    2004-01-01

    Because of the recent dramatic increase in waste production, solid waste management and control have become one of the central issues in environmental policy. In this paper we review alternative fiscal instruments to control the production of residuals by using the benchmark given by the social optimum. Finnally, we apply the model to theoretically evaluate the TARI.

  9. Solid waste disposal in the Netherlands

    NARCIS (Netherlands)

    Brasser, L.J.

    1990-01-01

    In The Netherlands, a small and densely populated country, the disposal of solid waste requires strict precautions. Because the landscape is flat and the watertable just under groundlevel, landfilling and dumping must be avoided as much as possible. Incineration of municipal and industrial waste are

  10. Storage process of large solid radioactive wastes

    International Nuclear Information System (INIS)

    Morin, Bruno; Thiery, Daniel.

    1976-01-01

    Process for the storage of large size solid radioactive waste, consisting of contaminated objects such as cartridge filters, metal swarf, tools, etc, whereby such waste is incorporated in a thermohardening resin at room temperature, after prior addition of at least one inert charge to the resin. Cross-linking of the resin is then brought about [fr

  11. Disposal and environmental assessment of solid waste and radioactive waste

    International Nuclear Information System (INIS)

    Tan Chenglong

    2000-01-01

    Along with the development of economic construction, the industrial and agricultural production, military and scientific activities of human being, large amounts of solid and radioactive wastes have been produced, causing serious pollution of ecologic environments and living space of human being itself. To assess and administer the solid and radioactive wastes in geologic-ecologic environments are duty-bound responsibilities of modern geologists and the focus of recent geo-ecologic work

  12. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping is a serious problem in the urban areas because most solid wastes are not dumped in the suitable areas. Bahir Dar Town has the problem of solid waste dumping site identification. The main objective of this study was to select potential areas for suitable solid waste dumping sites for Bahir Dar Town, ...

  13. Cleaner production for solid waste management in leather industry ...

    African Journals Online (AJOL)

    Cleaner production for solid waste management in leather industry. ... From the processes, wastes are generated which include wastewater effluents, solid wastes, and hazardous wastes. In developing countries including Ethiopia, many ... The solid waste inventory of the factory has been carried out. The major problems ...

  14. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, M.I.

    1995-08-01

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  15. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-11-01

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Solid and Liquid Waste Drying Bag

    Science.gov (United States)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  17. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  18. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  19. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  20. 1995 Solid Waste 30-year volume summary

    Energy Technology Data Exchange (ETDEWEB)

    Valero, O.J. [Westinghouse Hanford Co., Richland, WA (United States); DeForest, T.J.; Templeton, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), provides a description of the annual low-level mixed waste (LLMW) and transuranic/transuranic mixed solid waste (TRU-TRUM) volumes expected to be managed by Hanford`s Solid Waste Central Waste Complex (CWC) over the next 30 years. The waste generation sources and waste categories are also described. This document is intended to be used as a reference for short- and long-term planning of the Hanford treatment, storage, and disposal (TSD) activities over the next several decades. By estimating the waste volumes that will be generated in the future, facility planners can determine the timing of key waste management activities, evaluate alternative treatment strategies, and plan storage and disposal capacities. In addition, this document can be used by other waste sites and the general public to gain a better understanding of the types and volumes of waste that will be managed at Hanford.

  1. Potential useful products from solid wastes.

    Science.gov (United States)

    Golueke, C G; Diaz, L F

    1991-10-01

    Wastes have been aptly defined as "items, i.e. resources, that have been discarded because their possessors no longer have an apparent use for them". Accordingly, "wastes" have a significance only in relation to the items and those who have discarded them. The discarded items now are resources awaiting reclamation. Reclamation usually involves either salvage or conversion--or in modern terminology, "reuse" or "recycling". Reclamation for reuse consists in refurbishing or other upgrading without significantly altering original form and composition. Examples of wastes amenable to reuse are containers (bottles, etc.), cartons and repairable tires. With "recycling" (i.e. conservation), the discarded items are processed such that they become raw material, i.e. resources in the manufacture of "new" products. The variety of processes is wide, ranging from simply physical (grinding) through thermal (melting, gasification, combustion), to biological (composting, biogasification, hydrolysis, microbial protein production). In the paper, reuse and recycling (conversion) are evaluated in terms of advantages and disadvantages (limitations) and their respective technologies are described and discussed in detail.

  2. Physical-Mathematical Model for Fixed-Bed Solid Fuel Gasification Process Simulation

    Directory of Open Access Journals (Sweden)

    Slyusarskiy Konstantin V.

    2017-01-01

    Full Text Available Phycial-mathmatical model for fixed-bed coal gasification process simulation is proposed. The heterogeneous carbon oxidation chemical reactions were simulated via Arrhenius equation while homogeneous reactions in gas phase were calculated using Gibbs free energy minimization procedure. The syngas component concentration field and fuel conversion distribution as well as syngas final temperature and composition were defined for fixed bed gasification of T-grade coal of Kuznetskiy deposit. The optimal fuel residence time and gasifyer specific productivity were defined. The prevail reactions in oxidizing and reduction zones together with its height were defined.

  3. Inventory and sources of transuranic solid waste

    International Nuclear Information System (INIS)

    1978-08-01

    In the past, solid radioactive waste has often been buried in the most accessible and convenient vacant place, without a great deal of thought for the long-term consequences. The transuranium (TRU) elements were very strictly conserved and, at first, solid waste containing separated fission products was not a serious land burial problem. Wartime pressures for production and lack of knowledge or understanding led to siting and operational practices that, in many situations, are unsatisfactory by present day standards. Purpose of this report is to support the development of standards and criteria which will specifically address the problem of TRU contaminated waste generated by Department of Energy (DOE) nuclear programs and commercial application of nuclear technology. This report covers: DOE facilities, commercial disposal sites, commercial nuclear industry, TRU-contaminated waste inventory, and waste projections

  4. Solid waste - the long term strategy

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1990-01-01

    Until deep underground repository sites for low-and intermediate-level radioactive wastes can be identified and prepared by Nirex Limited, these products are being encapsulated into solid concrete form by British Nuclear Fuels Limited (BNFL), and stored in 500- litre drums. Low-level solid waste is dealt with at BNFL's Drigg plant where it is buried in trenches. Recent improvements in rainwater leaching are outlined. Concrete-lined vaults and compactification devices are now operational as well. High-level waste which contains 97% of the radioactivity from irradiated fuel reprocessing, is converted into a vitrified glass product at the new Windscale Vitrification Plant. Together these form BNFL's comprehensive strategy for the treatment, interim storage and disposal of nuclear waste arising from its operations. Progress in the provision of waste management and of disposal facilities has been substantial. U.K

  5. Data summary of municipal solid waste management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  6. 1993 baseline solid waste management system description

    International Nuclear Information System (INIS)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford's solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents

  7. Social Technology Apply to National Policy on Solid Waste: Solid Waste Management Integrated in the Countryside

    Directory of Open Access Journals (Sweden)

    Greice Kelly Lourenco Porfirio de Oliveira

    2016-06-01

    Full Text Available This article aims to study the environmentally friendly social technologies through appropriate techniques to the treatment of solid waste disposed of improperly. After exposure of concepts, a reflection on the use of social technologies as a mechanism for realization of integrated management objectives of waste set by the National Solid Waste Policy will be made – 12.305/10 . Finally, data from the Social Technologies Bank of Brazil Foundation will be displayed showing the results of the use of technology to promote the integrated management of solid waste in rural communities Crateús/CE , through a provision aimed at PNRS, selective collection

  8. Kinetics of Pyrolysis and Gasification Using Thermogravimetric and Thermovolumetric Analyses

    Directory of Open Access Journals (Sweden)

    Czerski Grzegorz

    2016-03-01

    Full Text Available The carbon dioxide gasification process of Miscanthus giganteus biomass was examined using two methods. First an isothermal thermovolumetric method was applied. The measurement was conducted at 950°C and pressure of 0.1 MPa. Based on the continuous analysis of different kinds of gases formed during the gasification process, the thermovolumetric method allowed the determination of yields and composition of the resulting gas as well as the rate constant of CO formation. Then a non-isothermal thermogravimetric method was applied, during which the loss of weight of a sample as a function of temperature was recorded. In the course of the measurement, the temperature was raised from ambient to 950°C and the pressure was 0.1 MPa. As a result, a change in the carbon conversion degree was obtained. Moreover, TGA methods allow distinguishing various stages of the gasification process such as primary pyrolysis, secondary pyrolysis and gasification, and determining kinetic parameters for each stage. The presented methods differs from each other as they are based either on the analysis of changes in the resulting product or on the analysis of changes in the supplied feedstock, but both can be successfully used to the effective examination of kinetics of the gasification process. In addition, an important advantage of both methods is the possibility to carry out the gasification process for different solid fuels as coal, biomass, or solid waste in the atmosphere of a variety of gasification agents.

  9. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1993-03-01

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates

  10. Life Cycle Assessment of Thermal Treatment Technologies. An environmental and financial systems analysis of gasification, incineration and landfilling of waste

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Eriksson, Ola [Royal Inst. of Tech., Stockholm (Sweden). Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Tech., Stockholm (Sweden). Chemical Technology

    2003-05-01

    A technology which is currently developed by researchers at KTH is catalytic combustion. which is one component of a gasification system. Instead of performing the combustion in the gas turbine by a flame, a catalyst is used. When the development of a new technology (as catalytic combustion) reaches a certain step where it is possible to quantify material-, energy- and capital flows, the prerequisites for performing a systems analysis is at hand. The systems analysis can be used to expand the know-how about the potential advantages of the catalytic combustion technology by highlighting its function as a component of a larger system. In this way it may be possible to point out weak points which have to be investigated more, but also strong points to emphasise the importance of further development. The aim of this project was to assess the energy turnover as well as the potential environmental impacts and economic costs of thermal treatment technologies in general and catalytic combustion in particular. By using a holistic assessment of the advantages and disadvantages of catalytic combustion of waste it was possible to identify the strengths and weaknesses of the technology under different conditions. Following different treatment scenarios have been studied: (1) Gasification with catalytic combustion, (2) Gasification with flame combustion, (3) Incineration with energy recovery and (4) Landfilling with gas collection. In the study compensatory district heating is produced by combustion. of biofuel. The power used for running the processes in the scenarios is supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced. from natural gas. The emissions from the system studied were classified and characterised using methodology from Life Cycle Assessment into the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical

  11. Evaluation of dental solid waste in Hamedan

    Directory of Open Access Journals (Sweden)

    Nabizadeh R.

    2009-08-01

    Full Text Available "nBackground and Aim: Today, one of the most important environmental issues is dental solid wastes which are of great importance because of the presence of hazardous, toxic and pathogen agents. In this survey, solid waste produced in Hamedan general dental offices is evaluated. "nMaterials and Methods: In this descriptive study, from 104 general dental offices in Hamedan , 10 offices were selected in simple random way. From each offices, 3 sample at the end of successive working day (Sunday, Monday and Tuesday were analyzed. Samples were manually sorted into different 74 components and measured by means of laboratory scale. Then, measured components were classified in the basis of characteristic and hazardous potential as well as material type. "nResults: Total annual waste produced in general dental offices in Hamadan is 14662.67 Kg (9315.45>95.0% Confidence Interval>20009.88. Production percentages of infectious, domestic type, chemical and pharmaceutical and toxic wastes were 51.93, 38.16, 9.47, 0.44 respectively. Main components of produced dental waste were 14 components that consist of more than 80 percents of total dental solid waste. So, waste reduction, separation and recycling plans in the offices must be concentrated on these main components. "nConclusion: In order to dental waste proper management, it is suggested that in addition to educate dentists for waste reduction, separation and recycling in the offices, each section of dental waste(toxic,chemical and pharmaceutical, infectious and domestic type wastes separately and according to related criteria should be managed.

  12. Electric Energy production through Municipal solid wastes

    International Nuclear Information System (INIS)

    Agorio Comas, M.; Chediak Nunez, M.; Galan Prado, A.

    2010-01-01

    The main objective in this investment Project is to improve the integral management of urban solid waste in the city of Salto, Uruguay, obtaining favorable results for the environment and society, contributing moreover in Sustainable Development.First of all, it is recommended the remediation of the current Open air Municipal dumping site. Simultaneously with the Remediation process, a controlled dumping site with daily covers of the compacted solid waste has been designed, as a transition methodology with a lifetime of 3 years approximately.In addition to this, two sanitary landfills are designed wits29h a total lifetime of 7 years, for the operation after the controlled dumping site is closed. There is also a leachate treatment system to process the effluents of the landfills. In order to optimize the use of the landfills, is proposed the simultaneous implementation of a Separated Urban Solid Waste Collection System (SisRReVa). This consist in separating the Valuable Waste (VW) from wet or organic solid waste in origin (home, stores,etc)and collecting it separately.The VW are separated by type (paper, board, glass, plastic and metal) in a Valuable Waste Classification Plant. This plant is designed to process the VW generated in Salto and collected by the SisRReVa for about ten years from now on. (Author)

  13. Solid waste management. Principles and practice

    Energy Technology Data Exchange (ETDEWEB)

    Chandrappa, Ramesha [Karnataka State Pollution Control Board, Biomedical Waste, Bangalore (India); Bhusan Das, Diganta [Loughborough Univ. of Technology (United Kingdom). Dept. of Chemical Engineering

    2012-11-01

    Solid waste was already a problem long before water and air pollution issues attracted public attention. Historically the problem associated with solid waste can be dated back to prehistoric days. Due to the invention of new products, technologies and services the quantity and quality of the waste have changed over the years. Waste characteristics not only depend on income, culture and geography but also on a society's economy and, situations like disasters that affect that economy. There was tremendous industrial activity in Europe during the industrial revolution. The twentieth century is recognized as the American Century and the twenty-first century is recognized as the Asian Century in which everyone wants to earn 'as much as possible'. After Asia the currently developing Africa could next take the center stage. With transitions in their economies many countries have also witnessed an explosion of waste quantities. Solid waste problems and approaches to tackling them vary from country to country. For example, while efforts are made to collect and dispose hospital waste through separate mechanisms in India it is burnt together with municipal solid waste in Sweden. While trans-boundary movement of waste has been addressed in numerous international agreements, it still reaches developing countries in many forms. While thousands of people depend on waste for their lively hood throughout the world, many others face problems due to poor waste management. In this context solid waste has not remained an issue to be tackled by the local urban bodies alone. It has become a subject of importance for engineers as well as doctors, psychologist, economists, and climate scientists and any others. There are huge changes in waste management in different parts of the world at different times in history. To address these issues, an effort has been made by the authors to combine their experience and bring together a new text book on the theory and practice of the

  14. Mercury removal from solid mixed waste

    International Nuclear Information System (INIS)

    Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

    1994-01-01

    The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I 2 leaching processes to determine the applicability of this process to mercury containing solid mixed waste

  15. 40 CFR 261.2 - Definition of solid waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Definition of solid waste. 261.2 Section 261.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.2 Definition of solid waste. (a)(1) A...

  16. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  17. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  18. Solid waste management complex site development plan

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-01-01

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  19. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  20. Methane potential of sterilized solid slaughterhouse wastes.

    Science.gov (United States)

    Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo

    2012-07-01

    The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather......The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... constant between 50 - 60 % wet weight and therefore holds a potential for bioenergy production. The degradable fraction has positive effects for anaerobic digestion when evaluated to desired parameters of anaerobic digestion plants. Wanted parameters are: 1) high organic content (high volatile solid...

  2. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    Science.gov (United States)

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  3. Solid Waste Burial Grounds/Central Waste Complex hazards assessment

    International Nuclear Information System (INIS)

    Broz, R.E.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning Activities for Solid Waste Burial Grounds/Central Waste Complex on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is documented

  4. Melt-processing method for radioactive solid wastes

    International Nuclear Information System (INIS)

    Kobayashi, Hiroaki

    1998-01-01

    Radioactive solid wastes are charged into a water-cooled type cold crucible induction melting furnace disposed in high frequency coils, and high frequency currents are supplied to high frequency coils which surround the melting furnace to melt the solid wastes by induction-heating. In this case, heat plasmas are jetted from above the solid wastes to the solid wastes to conduct initial heating to melt a portion of the solid wastes. Then, high frequency currents are supplied to the high frequency coils to conduct induction heating. According to this method, even when waste components of various kinds of materials are mixed, a portion of the solid wastes in the induction melting furnace can be melted by the initial heating by jetting heat plasmas irrespective of the kinds and the electroconductivity of the materials of the solid wastes. With such procedures, entire solid wastes in the furnace can be formed into a molten state uniformly and rapidly. (T.M.)

  5. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  6. Torrefaction Processing for Human Solid Waste Management

    Science.gov (United States)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  7. Wood biomass gasification in the world today

    International Nuclear Information System (INIS)

    Nikolikj, Ognjen; Perishikj, Radovan; Mikulikj, Jurica

    1999-01-01

    Today gasification technology of different kinds represents a more and more interesting option of the production of energy forms. The article describes a biomass gasification plant (waste wood) Sydkraft, Vernamo from Sweden. (Author)

  8. The Museum of Solid Waste and Energy.

    Science.gov (United States)

    National Energy Education Development Project, Reston, VA.

    This activity geared for grades 5-9 involves students in creating museum stations on eight solid waste and energy topics. While working in groups, students present their station topic to other students who are conducting a "museum tour." In doing so participants are encouraged to enhance their reading, writing, public speaking, and artistic skills…

  9. Solid Waste Program technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  10. Solid Waste Management Planning--A Methodology

    Science.gov (United States)

    Theisen, Hilary M.; And Others

    1975-01-01

    This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)

  11. General survey of solid-waste management

    Science.gov (United States)

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  12. Brazil's new national policy on solid waste

    DEFF Research Database (Denmark)

    Jabbour, A.B.L.d.S.; Jabbour, C.J.C.; Sarkis, J.

    2014-01-01

    Brazil, one of the world's largest developing countries, has recently introduced a new solid waste management regulatory policy. This new regulatory policy will have implications for a wide variety of stakeholders and sets the stage for opportunities and lessons to be learned. These issues...

  13. Solid waste handling and decontamination facility

    International Nuclear Information System (INIS)

    Lampton, R.E.

    1979-01-01

    The Title 1 design of the decontamination part of the SWH and D facility is underway. Design criteria are listed. A flowsheet is given of the solid waste reduction. The incinerator scrubber is described. Design features of the Gunite Tank Sludge Removal and a schematic of the sluicer, TV camera, and recirculating system are given. 9 figures

  14. Theoretical aspects of solid waste incineration

    International Nuclear Information System (INIS)

    Tarbell, J.M.

    1975-01-01

    Theoretical considerations that may be incorporated into the design basis of a prototype incinerator for solid transuranic wastes are described. It is concluded that primary pyrolysis followed by secondary afterburning is a very unattractive incineration strategy unless waste resource recovery is a process goal. The absence of primary combustion air leads to poor waste dispersion with associated diffusion and conduction limitations rendering the process inefficient. Single step oxidative incineration is most attractive when volume reduction is of primary importance. The volume of this type of incinerator (including afterburner) should be relatively much smaller than the pyrolysis type. Afterburning is limited by soot oxidation when preceded by pyrolysis, but limited by turbulent mixing when preceded by direct solid waste oxidation. In either case, afterburner temperatures above 1300 0 K are not warranted. Results based on a nominal solid waste composition and anticipated throughput indicate that NO/sub x/, HF, and SO 2 will not exceed the ambient air quality standards. Control of radioactive particulates, which can be achieved by multiple HEPA filtration, will reduce the conventional particulate emission to the vanishing point. Chemical equilibrium calculations also indicate that chlorine and to a lesser extent fluorine may be precipitated out in the ash as sodium salts if a sufficient flux of sodium is introduced into the incinerator

  15. Combustion chamber for solid and liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Vcelak, L.; Kocica, J.; Trnobransky, K.; Hrubes, J. (VSCHT, Prague (Czechoslovakia))

    1989-04-01

    Describes combustion chamber incorporated in a new boiler manufactured by Elitex of Kdyne to burn waste products and occasionally liquid and solid waste from neighboring industries. It can handle all kinds of solids (paper, plastics, textiles, rubber, household waste) and liquids (volatile and non-volatile, zinc, chromium, etc.) and uses coal as a fuel additive. Its heat output is 3 MW, it can burn 1220 kg/h of coal (without waste, calorific value 11.76 MJ/kg) or 500 kg/h of coal (as fuel additive, calorific value 11.76 MJ/kg) or 285 kg/h of solid waste (calorific value 20.8 MJ/kg). Efficiency is 75%, capacity is 103 m{sup 3} and flame temperature is 1,310 C. Individual components are designed for manufacture in small engineering workshops with basic equipment. A disk absorber with alkaline filling is fitted for removal of harmful substances arising when PVC or tires are combusted.

  16. Integrated solid waste management of Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  17. Evaluation of Waste-to-Energy Potential of Domestic Solid Wastes in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    waste in the metropolis ends up on illegal waste dumpsites. The aim of this paper was to investigate the waste-to-energy potentials of domestic solid wastes in Benin metropolis, Nigeria using a three-phase study plan - study of current waste management activities, characterization of domestic solid waste and determination ...

  18. Coal gasification and the power production market

    International Nuclear Information System (INIS)

    Howington, K.; Flandermeyer, G.

    1995-01-01

    The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance

  19. Biogas production from solid pineapple waste

    Energy Technology Data Exchange (ETDEWEB)

    Tanticharoen, M.; Bhumiratana, S.; Tientanacom, S.; Pengsobha, L.

    1984-01-01

    Solid pineapple waste composed of shell and core was used as substrate in anaerobic fermentation producing CH4. The experiments were carried out using four 30-L vessels and no mixing, a 200-L plug-flow reactor, and a 5-cubic m stirred tank. Because of high acidity of the substrate, the loading rate is as low as 2.5 g dry solid added/L-day. The average gas yield is 0.3-0.5 L/g dry substrate. A pretreatment of wet solid with sludge effluent prior loading to the digester resulted in better stability of the biodigester than without pretreatment. These studies showed that loading rate can be much higher than those previously used. The 2-stage process was tested to determine a conversion efficiency of high loading and at much shorter reactor retention times. The results of the entire program indicated that biogas production from cannery pineapple waste is technically feasible.

  20. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  1. Power from municipal solid waste

    International Nuclear Information System (INIS)

    Fidalgo dos Reis, A.

    1993-01-01

    This paper evaluates the energy production potential from urban wastes for several cities in Latin America. Technologies available for transforming wastes into energy are reviewed and the high efficiency and low pollution levels obtained are discussed based on some very successful examples in the developed countries. Several criteria to help plan a plant and choose its location and appropriate size are presented under the framework of environmental and energy constraints. Economic and financial feasibility, barriers to the introduction of new technologies and their transfer to developing countries, and political obstacles created by the lobby that is taking advantage of the present situation are presented. Management of such plants requires that a social communication program be well designed to touch and inform the public about the importance of the plants; it should also emphasize the gains to society. Marketing strategies are presented that will highlight life quality improvement and preservation of the environment to decision makers and the public. A case study for the city of Sao Paulo, Brazil, will be discussed in detail, showing how several levels of decision makers are involved in the preparation of the feasibility study and in raising financial resources both inside and outside the country. The study is for a large plant with a capacity of 1,800 ton/day and the generation of 27 MW of electric power

  2. Municipal solid waste disposal in Portugal

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Didelet, Filipe; Semiao, Viriato

    2006-01-01

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  3. CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2011-07-01

    Full Text Available The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

  4. Exhumation test with aged radioactive solid wastes

    International Nuclear Information System (INIS)

    Horton, J.H.

    1977-01-01

    The deterioration of solid radioactive waste buried in soil is an important consideration when estimating the migration of radionuclides from the burial site, planning procedures for exhuming buried waste, and evaluating hazards caused by intentional or unintentional uncovering of the waste. This report presents observations during the excavation of low-level waste buried for 14 years in the humid environment of the Savannah River Plant. The radiation dose rates that were used to define the limits for low-level beta-gamma wastes were <50 mR/hr from an unshielded package or <50 mR/hr at 10 feet from a truck load. The waste was buried in sandy clay soil trenches more than 20 feet above the water table and covered with soil soon after burial. Rainfall for the area averages 47 inches per year. Because of the higher water permeability in backfilled soil than in undisturbed soil, perched water was sometimes found in the bottom of some trenches. However, the duration and/or extent of perched water is limited so that most waste is not subjected to water-saturated soil. The waste uncovered included wood, steel, plastics, cotton cloth, rubber, and paper. Cardboard boxes not enclosed in plastic were the only materials that deteriorated visibly. Apparently, decades would be required for all cellulose materials to decompose; plastics, rubber, and metals will probably survive indefinitely

  5. characterization and composition analysis of municipal solid waste

    African Journals Online (AJOL)

    userpc

    ABSTRACT. Municipal Solid Waste (MSW) is produced through human activities and in the last two ... Solid waste samples were collected and analysed from the four major dumpsites in ..... Technology, Ueberlandstrasse 133,. Switzerland.

  6. Fire propagation through arrays of solid-waste storage drums

    International Nuclear Information System (INIS)

    Smith, S.T.; Hinkle, A.W.

    1995-01-01

    The extent of propagation of a fire through drums of solid waste has been an unresolved issue that affects all solid-waste projects and existing solid-waste storage and handling facilities at the Hanford site. The issue involves the question of how many drums of solid waste within a given fire area will be consumed in a design-basis fire for given parameters such as drum loading, storage arrays, initiating events, and facility design. If the assumption that all drums of waste within a given fire area are consumed proves valid, then the construction costs of solid waste facilities may be significantly increased

  7. DECHEMA annual meetings `98. Part 2. Environmental engineering, safety engineering, industrial catalysis, membrane, techniques, gasification and combustion of waste and fossil fuels, reaction techniques, innovative separation techniques: zeolites, GVC lecture series crystallization, precipitation, flocculation, solid/liquid separation; special event `patents`. Condensed papers; DECHEMA-Jahrestagungen `98. Bd. 2. Fachtreffen Umwelttechnik, Fachtreffen Sicherheitstechnik, Fachtreffen Industrielle Katalyse, Fachtreffen Membrantechnik, Fachtreffen Vergasung und Verbrennung von Abfaellen und fossilen Brennstoffen, Fachtreffen Reaktionstechnik, Fachtreffen Innovative Trenntechnik: Zeolithe, GVC-Vortragsreihe Kristallisation / Faellung / Flockung / Fest-Fluessig-Trennung, Sonderveranstaltung Patente. Kurzfassungen

    Energy Technology Data Exchange (ETDEWEB)

    Hess, C. [comp.

    1998-12-31

    In a many-sided, often interdisciplinary programme, the 1998 annual meetings of DECHEMA presented new scientific results, the current state of the art and also the persons, companies and institutions engaged in the various sectors. The major subjects of the meetings were as follows: biotechnology, environmental engineering, safety engineering, catalysis, membrane techniques, reaction techniques, gasification and combustion of waste and fossil fuels as well as separating techniques with the emphasis on zeolites and solid/liquid separation. Results reported are from work done by DECHEMA`s scientific committees and technical sections and from other projects initiated or sponsored under the aegis of DECHEMA. The contributions to solid/liquid separation stem from activities of VDI-GVC. (orig.) [Deutsch] Die DECHEMA-Jahrestagungen `98 stellen in einem vielseitigen, oft interdisziplinaeren Programm neue Ergebnisse aus der Forschung, den aktuellen Stand der Technik und nicht zuletzt auch die auf den jeweiligen Gebieten aktiven Personen, Firmen und Institutionen vor. Schwerpunkte der aktuellen Jahrestagungen bilden Biotechnologie, Umwelttechnik, Sicherheitstechnik, Katalyse, Membrantechnik, Reaktionstechnik, die Vergasung und Verbrennung von Abfaellen und fossilen Brennstoffen sowie die Trenntechnik mit den Schwerpunkten Zeolithe und Fest-Fluessig-Trennung. Damit werden Ergebnisse aus der Arbeit der DECHEMA-Forschungsausschuesse, der Fachsektionen und weiterer unter dem Dach der DECHEMA initiierter oder gefoerderter Arbeiten vorgestellt. Die Beitraege zum Thema Fest-Fluessig-Trennung entstammen Aktivitaeten innerhalb der VDI-GVC. (orig.)

  8. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    Science.gov (United States)

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  9. 77 FR 69769 - Solid Waste Rail Transfer Facilities

    Science.gov (United States)

    2012-11-21

    ...] Solid Waste Rail Transfer Facilities AGENCY: Surface Transportation Board, DOT. ACTION: Final rules. SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... Transportation Board over solid waste rail transfer facilities. The Act also added three new statutory provisions...

  10. 40 CFR 266.202 - Definition of solid waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Definition of solid waste. 266.202 Section 266.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Military Munitions § 266.202 Definition of solid waste. (a) A military munition is not...

  11. Household Solid Waste Disposal in Public Housing Estates in Awka ...

    African Journals Online (AJOL)

    This paper presents the results of a study on household solid waste disposal in the public housing estates in Awka, Anambra State. The study identified solid waste disposal methods from the households in AHOCOL, Udoka, Iyiagu and Real Housing Estates with an intention to make proposals for better solid waste disposal.

  12. Exploring the sustainability of composting as a solid waste ...

    African Journals Online (AJOL)

    Solid waste composting has emerged as an innovative approach to managing solid waste in various regions of the world. However, the sustainability of this approach to solid waste management has been sparsely investigated in the study area. This paper reviews composting case studies in Nigeria with the aim of providing ...

  13. studies on municipal solid wastes dumping on soil anions, cations

    African Journals Online (AJOL)

    Osondu

    and selected soil enzymes activities of Njoku solid waste dumpsite Owerri municipal, Nigeria were investigated. ... wastes) and sometimes commercial wastes collected by a ... Ethiopian Journal of Environmental Studies and Management Vol.

  14. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    International Nuclear Information System (INIS)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-01-01

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  15. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  16. Genotoxicity and mutagenicity of solid waste leachates: A review

    African Journals Online (AJOL)

    user

    2013-07-03

    Jul 3, 2013 ... There is need for a shift from waste disposal to sustainable waste management. Awareness on possible health ... Key words: Solid waste leachate, genotoxicity, mutagenicity, environmental pollution. INTRODUCTION. Solid wastes .... landfills and incineration residues from Japan include persistent organic ...

  17. Hanford solid waste management system simulation

    International Nuclear Information System (INIS)

    Shaver, S.R.; Armacost, L.L.; Konynenbelt, H.S.; Wehrman, R.R.

    1994-12-01

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  18. Production of high quality syngas from argon/water plasma gasification of biomass and waste

    Czech Academy of Sciences Publication Activity Database

    Hlína, Michal; Hrabovský, Milan; Kavka, Tetyana; Konrád, Miloš

    2014-01-01

    Roč. 34, č. 1 (2014), s. 63-66 ISSN 0956-053X R&D Projects: GA ČR GAP205/11/2070; GA MŠk MEB020814 Institutional support: RVO:61389021 Keywords : Biomass * Gasification * Plasma * Tar Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.220, year: 2014

  19. Storage and Disposal of Solid Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pomarola, J. [Head of Technical Section, Monitoring and Protection Division, Atomic Energy Commission, Saclay (France)

    1960-07-01

    This paper deals with solutions for the problem of final disposal of solid radioactive waste. I. It is first essential to organize a proper system of temporary storage. II. Final Storage In order to organize final storage, it is necessary to fix, according to the activity and form of the waste, the site and the modes of transport to be used within and outside the nuclear centre. The choice of solutions follows from the foregoing essentials. The paper then considers, in turn, final storage, on the ground, in the sub-soil and in the sea. Economic considerations are an important factor in determining the choice of solution. (author)

  20. Stock flow diagram analysis on solid waste management in Malaysia

    Science.gov (United States)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  1. Electricity and combined heat and power from municipal solid waste; theoretically optimal investment decision time and emissions trading implications.

    Science.gov (United States)

    Tolis, Athanasios; Rentizelas, Athanasios; Aravossis, Konstantin; Tatsiopoulos, Ilias

    2010-11-01

    Waste management has become a great social concern for modern societies. Landfill emissions have been identified among the major contributors of global warming and climate changes with significant impact in national economies. The energy industry constitutes an additional greenhouse gas emitter, while at the same time it is characterized by significant costs and uncertain fuel prices. The above implications have triggered different policies and measures worldwide to address the management of municipal solid wastes on the one hand and the impacts from energy production on the other. Emerging methods of energy recovery from waste may address both concerns simultaneously. In this work a comparative study of co-generation investments based on municipal solid waste is presented, focusing on the evolution of their economical performance over time. A real-options algorithm has been adopted investigating different options of energy recovery from waste: incineration, gasification and landfill biogas exploitation. The financial contributors are identified and the impact of greenhouse gas trading is analysed in terms of financial yields, considering landfilling as the baseline scenario. The results indicate an advantage of combined heat and power over solely electricity production. Gasification, has failed in some European installations. Incineration on the other hand, proves to be more attractive than the competing alternatives, mainly due to its higher power production efficiency, lower investment costs and lower emission rates. Although these characteristics may not drastically change over time, either immediate or irreversible investment decisions might be reconsidered under the current selling prices of heat, power and CO(2) allowances.

  2. Optimization of waste to energy routes through biochemical and thermochemical treatment options of municipal solid waste in Hyderabad, Pakistan

    International Nuclear Information System (INIS)

    Korai, Muhammad Safar; Mahar, Rasool Bux; Uqaili, Muhammad Aslam

    2016-01-01

    Highlights: • Existing practice of municipal solid waste management of Hyderabad city, Pakistan have been analyzed. • Development of scenarios on basis of nature of waste components for optimizing waste to energy route. • Analyzing the biochemical and thermochemical potential of MSW through various scenarios. • Evaluation of various treatment technologies under scenarios to optimize waste to energy route. - Abstract: Improper disposal of municipal solid waste (MSW) has created many environmental problems in Pakistan and the country is facing energy shortages as well. The present study evaluates the biochemical and thermochemical treatment options of MSW in order to address both the endemic environmental challenges and in part the energy shortage. According to the nature of waste components, a number of scenarios were developed to optimize the waste to energy (WTE) routes. The evaluation of treatment options has been performed by mathematical equations using the special characteristics of MSW. The power generation potential (PGP) of biochemical (anaerobic digestion) has been observed in the range of 5.9–11.3 kW/ton day under various scenarios. The PGP of Refuse Derived Fuel (RDF), Mass Burn Incinerator (MBI), Gasification/Pyrolysis (Gasi./Pyro.) and Plasma Arc Gasification (PAG) have been found to be in the range of 2.7–118.6 kW/ton day, 3.8–164.7 kW/ton day, 4.2–184.5 kW/ton day and 5.2–224 kW/ton day, respectively. The highest values of biochemical and all thermochemical technologies have been obtained through the use of scenarios including the putrescible components (PCs) of MSW such as food and yard wastes, and the non-biodegradable components (NBCs) of MSW such as plastic, rubber, leather, textile and wood respectively. Therefore, routes which include these components are the optimized WTE routes for maximum PGP by biochemical and thermochemical treatments of MSW. The findings of study lead to recommend that socio-economic and environmental

  3. Solid Waste Projection Model: Database User's Guide

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1993-10-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  4. Definitions of solid and hazardous wastes

    International Nuclear Information System (INIS)

    1992-08-01

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles

  5. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Science.gov (United States)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  6. Municipal solid waste in Brazil: A review.

    Science.gov (United States)

    Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli

    2017-12-01

    The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.

  7. Solid Waste/Disease Relationships, A Literature Survey.

    Science.gov (United States)

    Hanks, Thrift G.

    Presented is a comprehensive survey of the literature on the relationships between disease and solid wastes. Diseases are grouped on the basis of waste type or disease vector, such as chemical waste, human fecal waste, animal fecal waste, rodent-borne disease, mosquito-borne disease and miscellaneous communicable disease. The following format is…

  8. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction.

    Science.gov (United States)

    Gorazda, K; Tarko, B; Werle, S; Wzorek, Z

    2018-03-01

    Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H_2S and CO_2 emissions by improving syngas production

    International Nuclear Information System (INIS)

    Bassani, Andrea; Pirola, Carlo; Maggio, Enrico; Pettinau, Alberto; Frau, Caterina; Bozzano, Giulia; Pierucci, Sauro; Ranzi, Eliseo; Manenti, Flavio

    2016-01-01

    Highlights: • Coal gasification with improved yield and reduced emissions. • AG2S™ process converts H_2S and CO_2 into syngas, elemental sulfur and water. • Techno-economic simulation of AG2S™ process is carried out. • Industrial case-study on the Sotacarbo S.p.A. gasification pilot plant is proposed. - Abstract: The paper deals with the application of the novel Acid Gas To Syngas (AG2S™) technology to the gasification of solid fuels. The AG2S technology is a completely new effective route of processing acid gases: H_2S and CO_2 are converted into syngas (CO and H_2) by means of a regenerative thermal reactor. To show the application of the AG2S technology, modeling and simulation advances for gasification systems are initially discussed. The multi-scale, multi-phase, and multi-component coal gasification system is described by means of detailed kinetic mechanisms for coal pyrolysis, char heterogeneous reactions and for successive gas-phase reactions. These kinetic mechanisms are then coupled with transport resistances resulting in first-principles dynamic modeling of non-ideal reactors of different types (e.g., downdraft, updraft, traveling grate), also including the catalytic effect of ashes. The generalized approach pursued in developing the model allows characterizing the main phenomena involved in the coal gasification process, including the formation of secondary species (e.g., COS, CS_2). This tool is here further validated on literature data and, then, adopted to demonstrate the AG2S effectiveness, where H_2S and CO_2 emissions are reduced with an increase of syngas production. The resulting process solution is more economically appealing with respect to the traditional Claus process and finds several application areas.

  10. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.

    Science.gov (United States)

    Yap, H Y; Nixon, J D

    2015-12-01

    Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Solid, low-level radioactive waste certification program

    International Nuclear Information System (INIS)

    Grams, W.H.

    1991-11-01

    The Hanford Site solid waste treatment, storage, and disposal facilities accept solid, low-level radioactive waste from onsite and offsite generators. This manual defines the certification program that is used to provide assurance that the waste meets the Hanford Site waste acceptance criteria. Specifically, this program defines the participation and responsibilities of Westinghouse Hanford Company Solid Waste Engineering Support, Westinghouse Hanford Company Quality Assurance, and both onsite and offsite waste generators. It is intended that waste generators use this document to develop certification plans and quality assurance program plans. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved in providing assurance that generators have implemented a waste certification program. This assurance involves review and approval of generator certification plans, and review of generator's quality assurance program plans to ensure that they address all applicable requirements. The document also details the Westinghouse Hanford Company Waste Management Audit and Surveillance Program. 5 refs

  12. Characteristics and utilisation of high-temperature (HTHP) filter dusts from pfb gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The aim of the study was to survey characteristics, utilisation and possible environmental impacts of solid wastes, i.e., in case of biomass, mainly high-temperature filter ash (HTHP) from pressurised fluidised-bed gasification (PFBG). The aim is to utilise solid wastes (slag, filter dust, additives) from biomass gasification instead of dumping. One alternative is recycling to the soil as liming material or fertiliser. It is expected that the ash recycled to forest soils changes the environment less than non-recycled ash. (orig.) 3 refs.

  13. Characteristics and utilisation of high-temperature (HTHP) filter dusts from pfb gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, J [VTT Energy, Espoo (Finland)

    1997-12-31

    The aim of the study was to survey characteristics, utilisation and possible environmental impacts of solid wastes, i.e., in case of biomass, mainly high-temperature filter ash (HTHP) from pressurised fluidised-bed gasification (PFBG). The aim is to utilise solid wastes (slag, filter dust, additives) from biomass gasification instead of dumping. One alternative is recycling to the soil as liming material or fertiliser. It is expected that the ash recycled to forest soils changes the environment less than non-recycled ash. (orig.) 3 refs.

  14. Development of a master plan for industrial solid waste management

    International Nuclear Information System (INIS)

    Karamouz, M.; Zahraie, B.; Kerachian, R.; Mahjouri, N.; Moridi, A.

    2006-01-01

    Rapid industrial growth in the province of Khuzestan in the south west of Iran has resulted in disposal of about 1750 tons of solid waste per day. Most of these industrial solid wastes including hazardous wastes are disposed without considering environmental issues. This has contributed considerably to the pollution of the environment. This paper introduces a framework in which to develop a master plan for industrial solid waste management. There are usually different criteria for evaluating the existing solid waste pollution loads and how effective the management schemes are. A multiple criteria decision making technique, namely Analytical Hierarchy Process, is used for ranking the industrial units based on their share in solid waste related environmental pollution and determining the share of each unit in total solid waste pollution load. In this framework, a comprehensive set of direct, indirect, and supporting projects are proposed for solid waste pollution control. The proposed framework is applied for industrial solid waste management in the province of Khuzestan in Iran and a databank including GIS based maps of the study area is also developed. The results have shown that the industries located near the capital city of the province, Ahwaz, produce more than 32 percent of the total solid waste pollution load of the province. Application of the methodology also has shown that it can be effectively used for development of the master plan and management of industrial solid wastes

  15. Possible global environmental impacts of solid waste practices

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.M.; Holter, G.M.; DeForest, T.J.; Stapp, D.C. [Pacific Northwest Lab., Richland, WA (United States); Dibari, J.C. [Heritage College, Toppenish, WA (United States)

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardous solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.

  16. Assessment of LANL solid low-level waste management documentation

    International Nuclear Information System (INIS)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G.; Davis, K.D.; Rutz, A.C.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A

  17. Municipal solid waste management in Beijing City

    International Nuclear Information System (INIS)

    Li Zhenshan; Yang Lei; Qu XiaoYan; Sui Yumei

    2009-01-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km 2 with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  18. Municipal solid waste effective stress analysis

    International Nuclear Information System (INIS)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-01-01

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  19. Solid low-level waste forecasting guide

    International Nuclear Information System (INIS)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford's experience within the last six years. Hanford's forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford's annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford's forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data

  20. Obtaining fuel briquets from the solid municipal waste

    International Nuclear Information System (INIS)

    Armenski, Slave; Kachurkov, Gjorgji; Vasilevski, Goce

    1998-01-01

    Recycling systems for solid waste materials are designed to reduce the amount of solid waste materials going to land fields. Through the Trash Separation Systems, clean municipal waste are reused in production of fuel pellets. Other waste streams such as coal fines, sawdust, wood chips, coke breeze and agricultural waste can be blended with these pellets along with a high thermal value binder and/or used motor oil to form a quality clean burning alternative fuel. (Author)

  1. Minimization of radioactive solid wastes from uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Zhang Xueli; Xu Lechang; Wei Guangzhi; Gao Jie; Wang Erqi

    2010-01-01

    The concept and contents of radioactive waste minimization are introduced. The principle of radioactive waste minimization involving administration optimization, source reduction, recycling and reuse as well as volume reduction are discussed. The strategies and methods to minimize radioactive solid wastes from uranium mining and metallurgy are summarized. In addition, the benefit from its application of radioactive waste minimization is analyzed. Prospects for the research on radioactive so-lid waste minimization are made in the end. (authors)

  2. Integrated solid waste management of Scottsdale, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  3. Integrated solid waste management in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.S. [CSI Resource Systems, Boston, MA (United States)

    1993-12-31

    The Japanese, through a combination of public policy, private market conditions, and geographic necessity, practice integrated municipal solid waste management as defined by the US Environmental Protection Agency. The Japanese have not defined a specific hierarchical preference for alternative waste management practices, i.e., waste reduction, reuse and recycling, combustion, composting, and landfill disposal. However, in marked contrast to the US approach, the Japanese system relies heavily on waste combustion, with and without energy recovery. {open_quotes}Discards{close_quotes}, as the term is used in this paper, refers to all materials considered used and spent by residential and commercial generators. That which is discarded (whether recyclable or nonrecyclable) by a municipality is referred to as MSW. This paper provides an overview of MSW management practices and private-sector recycling in Japan. Estimates of the total generation of residential and commercial discards and their disposition are also presented. Such an overview of Japanese practices can be used to assess the potential effectiveness of US integrated solid waste management programs. Of the estimated 61.3 to 72.1 million tons of residential and commercial discards generated in Japan during its 1989 fiscal year (April 1, 1989, through March 31, 1990), an estimated 55 to 64 percent was incinerated; 15 to 28 percent was recycled (only 2 to 3 percent through municipal recycling activities); less than 0.1 percent was composted or used as animal feed; and 17 to 20 percent was landfilled. Including ash disposal, 26 to 30 percent, by weight, of the gross discards were landfilled.

  4. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  5. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  6. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  7. Nordic seminar on biomass gasification and combustion

    International Nuclear Information System (INIS)

    1993-01-01

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs

  8. Energy recovery from municipal solid wastes in Italy: Actual study and perspective for future

    International Nuclear Information System (INIS)

    Brunetti, N.; Ciampa, F.; De Cecco, C.

    1992-01-01

    Materials and energy recovery from municipal solid wastes (MSW) and assimilable waste, and their re-use is one of strong points of current regulations and tendencies, both at the national and at community level in Europe. In Italy, the interest in energy recovery from renewable sources has been encouraged by energy-savings law which included financial incentives for thermal plant building if low grade fuels such as MSW were employed. New electric power prices imposed by Italian Electric Power Authority, ENEL, encourage energy recovery from waste burners. This paper aims to point out the present state of energy recovery from wastes in Italy, trends and prospects to satisfy, with new plants, the need for waste thermal destruction and part of the demand for energy in the different Italian regions: only about 10% of MSW are burned and just a small percentage of the estimated amount of recoverable energy (2 MTOE/y) is recuperated. Different technological cycles are discussed: incineration of untreated wastes and energy recovery; incineration (or gasification) of RDF (refuse derived fuels) and heat-electricity co-generation; burning of RDF in industrial plants, in addition to other fuels

  9. Flow analysis of metals in a municipal solid waste management system

    International Nuclear Information System (INIS)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small

  10. Slaughter house solid waste management in Indonesia

    Directory of Open Access Journals (Sweden)

    Rhenny Ratnawati

    2014-12-01

    Full Text Available The solid slaughter house waste (SSW in Indonesia is generally disposed of into open dumped landfill. This type of solid waste can cause odor and atmospheric pollution if discharged directly into the environment. Additionally, it may spread disease due to the nesting vectors, and the resulting leachate can lead to groundwater contamination. This paper reviews the characterization of slaughter house (SH types and SSW generation potential and to review the development of treatment technology of SSW and its application. The SH in Indonesia is divided into 3 classes, namely: 1 SH for large and small ruminants; 2 SH for poultry; 3 SH for pigs. Application technologies in Indonesia include compost and biogas technologies, and the use of rumen content for animal feed. Problem in biogas technology is generally caused by the high nitrogen content in the SSW. The most suitable raw material for biogas production is herbivore waste. The main advantages of using SSW for compost production are: the appropriate characteristics for composting process, free of hazardous contaminant, and appropriate composting technologies are available to reduce environmental problems caused by SSW. In addition, rumen content is considered to be a potential alternative for animal feed because have high content of amino acids (approximately 73.4% of the total protein and rich in vitamin B complex. Among the disadvantages, the composting process of SSW requires long time period and generate air pollutants, such as ammonia and hydrogen sulphide.

  11. Biogas. Biofuels. Urban waste. Solid biomass

    International Nuclear Information System (INIS)

    2009-01-01

    The European production of primary energy from biogas reached 7.5*10 6 toe in 2008, it means a 4.4% increase on 2007. The bio-fuel consumption rose to 10.5 Mtoe in 2008, i.e. 2.5 Mtoe more than in 2007, this 31.4% growth seems relatively slow when compared with previous performances of 45.7% (between 2006 and 2007) and 70.9% (between 2005 and 2006). Primary energy production by combustion of renewable municipal solid waste in the European Union rose slightly in 2008 by 3% over 2007 to reach 6806 ktoe. The solid biomass that is made up of wood and its waste in addition to organic and animal waste was one of renewable energy production's safe bets. The primary energy production from this sector rose by 4.6% and reached 70292 ktoe. In all the renewable energy sources we have reviewed Germany ranks first in terms of global production. (A.C.)

  12. Site suitability analysis and route optimization for solid waste ...

    African Journals Online (AJOL)

    Solid waste management system is a tedious task that is facing both developing and developed countries. Site Suitability analysis and route optimization for solid waste disposal can make waste management cheap and can be used for sustainable development. However, if the disposal site(s) is/are not sited and handle ...

  13. Pre-1970 transuranic solid waste at the Hanford Site

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1995-01-01

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides

  14. State of affairs on pollutants and syngas removal techniques stemming from thermal treatment of waste by gasification. Extended abstract

    International Nuclear Information System (INIS)

    Megret, O.; Bequet, L.

    2011-10-01

    The aim of the current study is to outline the state of affairs related to pollutants and slaughtering techniques of syngas that result both from waste thermal treatment by gasification. The study starts by a review permitting to classify the gasification techniques applied to waste thermal treatment. This review leads to distinguish between auto-thermal and allo-thermal equipments. Furthermore, are described, in this first part, the general principles and parameters of functioning and adjustment of the factors characterizing the thermal treatment in reducing atmosphere. It is also about the composition of the syngas products according to the different driving behaviours of gasifiers. Finally, we state succinctly, on one hand, the possible promotion procedures in the frame of syngas development and, on the other hand, the thresholds that we ought to reach in order to make this promotion achievable. The second part of the study deals with the characteristics of the pollutants located in the syngas. This description took the shape of a detailed index card where pollutants are classified into minority components (including those of pollutants, those of gaseous and those of particulates) according to their concentrations, to their driving behaviours and to their thermochemical conditions of formation (temperature, pressure, response-type agents, atmosphere...). In the last part, we discuss the current and the considered types of slaughtering devices in reducing atmosphere in relation with their performance in slaughtering and regarding the departure point of syngas promotion ways. Finally, are exposed the key postures and the barricades within those technologies. Hereupon, research axes are proposed. (authors)

  15. Municipal Solid Waste Management in Phuntsholing City, Bhutan

    Directory of Open Access Journals (Sweden)

    Norbu

    2010-01-01

    Full Text Available Municipal solid waste problem is a major concern in major cities in Bhutan. Despite the lack of reliable data on both waste composition and quantity, no studies have been conducted to identify problems and alternatives to improve the current system. The study objectives are: 1 to determine solid waste composition and generation rate; and 2 to investigate current solid waste management system. Six waste samples were selected in Phuntsholing city from three designated collection spots and from three collection vehicles and analyzed for their composition. Waste generation rate was computed from waste collected by collection vehicles. The investigation was carried out through interviews with municipal authorities, existing document reviews, and field observations. The organic fraction of solid waste composition comprised about 71 percent. The waste generation rate was estimated to 0.40 kg/capita.day. The current management system is inefficient, and recommendations are given to improve the current situation.

  16. Integrated solid waste management of Seattle, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  17. Chrome recycling from leather solid wastes

    International Nuclear Information System (INIS)

    Mohamed, O.A.; Mohamady, H.S.; El-Sayed, N.H.

    2005-01-01

    Leather processing is one of the industrial activities that generate chromium bearing wastes in different forms, one of them is chrome shavings which contributes about 10% of the quantum raw skins /hides, and causes on burning dangerous human hazardous. Hydrolysis processes by different alkalis such as (LiOK KOH, NaOH) have been applied to recover chrome from solid wastes. The extent of hydrolysis was studied as a function of alkalis concentrations, in presence and absence of reducing agents, shaking time and temperature. Hydrolysis process exhibits 99%, 98% and 97%, chrome recovery for LiOH, KOH and NaOH respectively. The recovered chrome has been used in retaining process, examined through visual and mechanical tests of leather samples. The evaluation of the tanning process with recovered chrome gave acceptable results

  18. SOLID WASTE: PRESENCE AND THREATIN GEOGRAPHICAL SPACE

    Directory of Open Access Journals (Sweden)

    Clesley Maria Tavares do Nascimento

    2017-12-01

    Full Text Available This article deals with the trajectory of the solid waste in different historical periods, configuring them as a constructive element of geographical space. The intention to bring the theme from the timeline perspective, is marked out in the conviction of the inseparability of the categories of space and time and its importance in understanding a geographical phenomenon. The methodological support of this research relied on the documentary type of research involving literature, consultation of secondary sources such as books, academic journals, dissertations and theses on the subject. The results presented and discussed in this paper indicated that the production of waste is adjacent to historical time, reflects societies and techniques that generated them, and is a permanent part of the dialectical process of spatial formation.

  19. Integrated solid waste management of Sevierville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  20. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  1. Assessing total and volatile solids in municipal solid waste samples.

    Science.gov (United States)

    Peces, M; Astals, S; Mata-Alvarez, J

    2014-01-01

    Municipal solid waste is broadly generated in everyday activities and its treatment is a global challenge. Total solids (TS) and volatile solids (VS) are typical control parameters measured in biological treatments. In this study, the TS and VS were determined using the standard methods, as well as introducing some variants: (i) the drying temperature for the TS assays was 105°C, 70°C and 50°C and (ii) the VS were determined using different heating ramps from room tempature to 550°C. TS could be determined at either 105°C or 70°C, but oven residence time was tripled at 70°C, increasing from 48 to 144 h. The VS could be determined by smouldering the sample (where the sample is burnt without a flame), which avoids the release of fumes and odours in the laboratory. However, smouldering can generate undesired pyrolysis products as a consequence of carbonization, which leads to VS being underestimated. Carbonization can be avoided using slow heating ramps to prevent the oxygen limitation. Furthermore, crushing the sample cores decreased the time to reach constant weight and decreased the potential to underestimate VS.

  2. Integrated solid waste management in Japan

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Japanese, through a combination of public policy, private market conditions, a geographic necessity, practice integrated municipal solid waste (MSW) management. The approach of MSW management in Japan is as follows: The basic concept of refuse treatment consists of recycling discharged refuse into usable resources, reusing such resources as much as possible, and then treating or disposing of the usable portion into a sanitary condition. Considering the difficulty of procuring land or seaside areas for such purpose as a refuse disposal site, it will be necessary to minimize the volume of refuse collected for treatment or disposal.

  3. Volume reduction techniques for solid radioactive wastes

    International Nuclear Information System (INIS)

    Clarke, J.H.

    1980-01-01

    This report gives an account of some of the techniques in current use in the UK for the treatment of solid radioactive wastes to reduce their volume prior to storage or disposal. Reference is also made to current research and development projects. It is based on a report presented at a recent International Atomic Energy Agency Technical Committee when this subject was the main theme. An IAEA Technical Series report covering techniques in use in all parts of the world should be published within the next two years. (author)

  4. Apparatus for filling a container with radioactive solid wastes

    International Nuclear Information System (INIS)

    Adachi, T.; Hiratake, S.

    1984-01-01

    In apparatus for filling a container suitable for storage with radioactive solid wastes arising from atomic power plants or the like, a plasma arc is irradiated toward a portion of the wastes to melt the portion of the wastes; portions of the wastes are successively moved so as to be subjected to irradiation of the plasma arc to continuously melt the wastes; and the melts obtained by melting the wastes are permitted to flow down toward the bottom of the container

  5. The Construction Solid Waste Minimization Practices among Malaysian Contractors

    Directory of Open Access Journals (Sweden)

    Che Ahmad A.

    2014-01-01

    Full Text Available The function of minimization of construction solid waste is to reduce or eliminates the adverse impacts on the environment and to human health. Due to the increase of population that leads to rapid development, there are possibilities of construction solid waste to be increased shortly from the construction works, demolition or renovation works. Materials such as wood, concrete, paint, brick, roofing, tiles, plastic and any other materials would contribute problem involving construction solid waste. Therefore, the proper waste minimization is needed to control the quantity of construction solid waste produced. This paper identifies the type of construction solid waste produced and discusses the waste minimization practice by the contractors at construction sites in Selangor, Kuala Lumpur and Putrajaya, Malaysia.

  6. Engineering properties for high kitchen waste content municipal solid waste

    Directory of Open Access Journals (Sweden)

    Wu Gao

    2015-12-01

    Full Text Available Engineering properties of municipal solid waste (MSW depend largely on the waste's initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW. After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW, the following findings were obtained: (1 HKWC MSW has a higher initial water content (IWC than LKWC MSW, but the field capacities of decomposed HKWC and LKWC MSWs are similar; (2 the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3 compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG generation rate but a shorter duration and a lower potential capacity; (4 the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5 the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  7. 6th international solid wastes congress and exhibition

    International Nuclear Information System (INIS)

    Ategrus

    1992-01-01

    Proceedings of the sixth International Solid Wastes Congress and exhibition held in Madrid the dates June 14-19, 1992, and organized by ISWA. It sumps up 3 volumes dealing with Environmental Aspects, Administrative Aspects, Waste treatment Technologies, Waste Minimization, Land disposal and Hazardous Wastes

  8. HIGH-TEMPERATURE GASIFICATION OF RDF WASTE AND MELTING OF FLY ASH OBTAINED FROM THE INCINERATION OF MUNICIPAL WASTE

    Directory of Open Access Journals (Sweden)

    Marián Lázár

    2015-02-01

    Full Text Available Objective of this paper is to describe innovative solutions of thermal processing of selected components of municipal waste (so-called RDF waste using low-ionized depended plasma arc generated by a progressive and promising technology, which is plasma reactor. Its application can transform hazardous waste into inert waste while significantly reducing the volume of waste. Results given in this paper indicate experimentally achieved outputs with thermal disposal of RDF waste and ash from municipal waste

  9. Evaluation of Solid Waste Generation, Categories and Disposal ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Journal of Applied Sciences and Environmental Management ... collection service and waste management regulations, respectively; while 28.4% separated their solid wastes at source ...

  10. Electricity generation in Nigeria from municipal solid waste using the ...

    African Journals Online (AJOL)

    Electricity generation in Nigeria from municipal solid waste using the Swedish Wasteto-Energy Model. ... Journal of Applied Sciences and Environmental Management ... Waste-to-energy (WTE) technology in Nigeria is still at the infancy stage ...

  11. Management of radioactive wastes (solids and liquids) of CDTN

    International Nuclear Information System (INIS)

    Prado, M.A.S. do; Reis, L.C.A.

    1984-01-01

    Estimates of solid and liquid radioactive wastes produced in CDTN, the foreseen treatment and the responsibilities of various organs of CDTN involved in radioactive waste management are presented. (C.M.)

  12. Recovering method for solid waste and facility therefor

    International Nuclear Information System (INIS)

    Omura, Yutaka

    1998-01-01

    When recovering solid wastes in a dry-type storage vessel, a crusher is hoisted down from a cask, and the crusher is operated to crush the solid wastes while holding them. The crushed wastes are temporarily stored at the upper portion of the crusher, and recovered as crushed wastes. In this case, the crusher is turned down, and a shielding vessel is laid the recover downwardly to temporary store the crushed wastes in the shielding vessel. Then, the crusher and the shielding vessel are turned 180deg to contain the crushed wastes into the shielding vessel. With such procedures, the stored solid wastes can be recovered reliably, the stored solid wastes can be reduced in the size, and efficiency of recovering operation can be improved. (T.M.)

  13. Race, Wealth, and Solid Waste Facilities in North Carolina

    OpenAIRE

    Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Kaufman, Jay S.; Marshall, Stephen W.; Cravey, Altha J.

    2007-01-01

    Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain ...

  14. Municipal solid waste management system: decision support through systems analysis

    OpenAIRE

    Pires, Ana Lúcia Lourenço

    2010-01-01

    Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, ...

  15. Is Municipal Solid Waste Recycling Economically Efficient?

    Science.gov (United States)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  16. Data summary of municipal solid waste management alternatives. Volume 1, Report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste`s origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  17. Immobilization of wet solid wastes at nuclear power plants

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.

    1977-01-01

    Wet solid wastes are classified into four basic types: spent resins, filter sludges, evaporator concentrates, and miscellaneous liquids. Although the immobilization of wet solid wastes is primarily concerned with the incorporation of the waste with a solidification agent, there are a number of other discrete operations or subsystems involved in the treatment of these wastes that may affect the immobilized waste product. The immobilization process may be broken down into five basic operations: waste collection, waste pretreatment, solidification agent handling, mixing/packaging, and waste package handling. The properties of the waste forms that are ultimately shipped from the reactor site are primarily influenced by the methods utilized during the waste collection, waste pretreatment and mixing/packaging operations. The mixing/packaging (solidification) operation is perhaps the most important stage of the immobilization process. The basic solidification agent types are: absorbants, hydraulic cement, urea-formaldehyde, bitumen, and other polymer systems

  18. Spanish solid wastes legislation; Legislacion espanola de Residuos Solidos

    Energy Technology Data Exchange (ETDEWEB)

    Castrillon Pelaez, L.; Maranon Maison, E.; Rodriguez Iglesias

    2001-07-01

    A review is made of the regulations in the field of solid wastes with the aim of providing a useful working tool for those entities that generate or manage some type of waste. The coming into force of the current Spanish Wastes Law establishes common regulations for all wastes, substituting all previous Municipal Waste and Toxic and Dangerous Waste Laws. For reasons of greater practical applicability, we have preferred in this paper to classify wastes on the basis of their characteristics. The regulations are thus presented in a series of sections: municipal waste, dangerous wastes, sewage plant sludge, cattle waste and specific risk materials, highlighting in each case those areas of the regulations that are of greater interest for the producers and managers of solid wastes. (Author)

  19. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  20. An integrated approach of composting methodologies for solid waste management

    International Nuclear Information System (INIS)

    Kumaresan, K.; Balan, R.; Sridhar, A.; Aravind, J.; Kanmani, P.

    2016-01-01

    Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, p H and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  1. Solid Waste Land Applications with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  2. The Reduction of Solid Waste Associated with Military Ration Packaging

    National Research Council Canada - National Science Library

    Ratto, Jo Ann; Lucciarini, Jeanne; Thellen, Christopher; Froio, Danielle; D'Souza, Nandika A

    2006-01-01

    ... decrease the amount of solid waste generated by the military. These nanocomposites formulations were melt processed into films and characterized for barrier, mechanical, thermal, and biodegradation properties...

  3. Anaerobic digestion of municipal solid waste: Technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  4. Effects of Moisture Content in Solid Waste Landfills

    National Research Council Canada - National Science Library

    Eck, Craig

    2000-01-01

    Solid waste landfills are an extremely complex and heterogeneous environment. Modeling the biodegradation processes within a landfill must involve an understanding of how environmental factors affect these processes...

  5. Contributions of Solid Wastes Disposal Practice to Malaria ...

    African Journals Online (AJOL)

    Akorede

    KEYWORDS: Malaria, solid waste, open drainage, RDT, environment. ... Natural and man-made habitats include temporary .... require community cooperation and Government interventions for alleviation. Prioritizing willingness of community.

  6. Solid Waste Management Facilities with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  7. Life cycle assessments of energy from solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  8. Characterization of urban solid waste in Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2008-01-01

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system

  9. Environmental assessment of solid waste systems and technologies: EASEWASTE

    DEFF Research Database (Denmark)

    Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund

    2006-01-01

    A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able...... may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system....... to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners...

  10. Characterization of urban solid waste in Chihuahua, Mexico.

    Science.gov (United States)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2008-12-01

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.

  11. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    Science.gov (United States)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  12. Evaluation of municipal solid waste management in egyptian rural areas.

    Science.gov (United States)

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  13. Households willingness to pay for improved solid waste management

    Directory of Open Access Journals (Sweden)

    S. Akhtar

    2017-04-01

    Full Text Available Waste is a byproduct of human life. Nowadays, municipal solid waste is being produced in excessive amounts and in this way, both developing and developed countries are facing challenges regarding generation of waste. Economic development, urbanization and improved living standards in cities have contributed to increase in the amount and complexity of solid waste produced. The present study was conducted in the residential area of main Boulevard Gulberg, Lahore to determine the present methods and efficiency of current solid waste management facility and to estimate the willingness of the selected households to pay for the improvement of solid waste management through questionnaire survey. It was found that current Solid waste management system in the area is fair but needs more improvement in terms of improved collection efficiency and rates, recycling bins, and segregation of waste at storage. According to the questionnaire survey, majority of the respondents despite belonging to middle class incomes are willing to pay an amount less than USD 4.8 for the improvement of waste management facility in the area. The area lacks frequent collection of waste containers. Therefore, there is a need for upgradation of storage and collection facilities in terms of increase in collection efficiency and rates, introduction of recycling facility and segregation of waste at source. Waste storage and collection sites of the area should be monitored periodically and waste should be disposed of in a scientific manner in sanitary landfills.

  14. Municipal solid waste management in Malaysia: Practices and challenges

    International Nuclear Information System (INIS)

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-01-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  15. A Survey of Municipal Solid Waste Generation in 22 Regions of Tehran With Solid Waste Reduction Approach

    OpenAIRE

    MA Abduli; M Akbarpour Shirazi; B Omidvar; R Samieifard

    2015-01-01

    Introduction: Solid waste reduction is a key and fundamental factor in creating a sustainable society. Tehran Municipality has embarked on a series of positive measures in recent years in different areas of waste management such as source separation, mechanized waste collection, and constructing compost factories. However these measures have not only brought about any reduction in solid waste reduction but have also resulted in their increase. In this article, first we will describe the curre...

  16. Race, wealth, and solid waste facilities in North Carolina.

    Science.gov (United States)

    Norton, Jennifer M; Wing, Steve; Lipscomb, Hester J; Kaufman, Jay S; Marshall, Stephen W; Cravey, Altha J

    2007-09-01

    Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. We used census block groups to obtain racial and economic characteristics, and information on solid waste facilities was abstracted from solid waste facility permit records. We used logistic regression to compute prevalence odds ratios for 2003, and Cox regression to compute hazard ratios of facilities issued permits between 1990 and 2003. The adjusted prevalence odds of a solid waste facility was 2.8 times greater in block groups with > or = 50% people of color compared with block groups with or = 100,000 dollars. Among block groups that did not have a previously permitted solid waste facility, the adjusted hazard of a new permitted facility was 2.7 times higher in block groups with > or = 50% people of color compared with block groups with waste facilities present numerous public health concerns. In North Carolina solid waste facilities are disproportionately located in communities of color and low wealth. In the absence of action to promote environmental justice, the continued need for new facilities could exacerbate this environmental injustice.

  17. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    Science.gov (United States)

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  19. Pyrolysis and gasification of waste: a worldwide technology and business review. Vol.1: Markets and trends; Vol. 2: Technologies and processes

    International Nuclear Information System (INIS)

    2000-01-01

    The two volume report, Pyrolysis and Gasification of Waste; a Worldwide Technology and Business Review, covers technology trends and market forces, applications and markets, market profiles by region, decision makers' preferences, and the market forecast for 1999 to 2008 in Volume I. Technologies and processes are addressed in Volume II, with technology concepts, analysis of the processes, a comparative review of selected processes examined. A directory of suppliers, process developers and licenses is provided in the appendices to Volume II. (UK)

  20. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  1. Solid Waste from the Operation and Decommissioning of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn Ann [Georgia Inst. of Technology, Atlanta, GA (United States); D' Arcy, Daniel [Georgia Inst. of Technology, Atlanta, GA (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Isha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Yufei [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-01-05

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  2. Storing solid radioactive wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate

  3. Life-cycle assessment of municipal solid wastes: Development of the WASTED model

    International Nuclear Information System (INIS)

    Diaz, R.; Warith, M.

    2006-01-01

    This paper describes the development of the Waste Analysis Software Tool for Environmental Decisions (WASTED) model. This model provides a comprehensive view of the environmental impacts of municipal solid waste management systems. The model consists of a number of separate submodels that describe a typical waste management process: waste collection, material recovery, composting, energy recovery from waste and landfilling. These submodels are combined to represent a complete waste management system. WASTED uses compensatory systems to account for the avoided environmental impacts derived from energy recovery and material recycling. The model is designed to provide solid waste decision-makers and environmental researchers with a tool to evaluate waste management plans and to improve the environmental performance of solid waste management strategies. The model is user-friendly and compares favourably with other earlier models

  4. Thermophilic composting of municipal solid waste

    International Nuclear Information System (INIS)

    Elango, D.; Thinakaran, N.; Panneerselvam, P.; Sivanesan, S.

    2009-01-01

    Process of composting has been developed for recycling of organic fraction of municipal solid waste (MSW). The bioreactor design was modified to reduce the composting process time. The main goal of this investigation was to find the optimal value of time period for composting of MSW in thermophilic bioreactor under aerobic condition. The temperature profiles correlated well with experimental data obtained during the maturation process. During this period biological degraders are introduced in to the reactor to accelerate the composting process. The compost materials were analyzed at various stages and the environmental parameters were considered. The final composting materials contained large organic content with in a short duration of 40 days. The quantity of volume reduction of raw MSW was 78%. The test result shows that the final compost material from the thermophilic reactor provides good humus to build up soil characteristics and some basic plant nutrients

  5. Leaching behavior of various low-level waste solids

    International Nuclear Information System (INIS)

    Ito, Akihiko; Ouchi, Yasuyoshi; Matsuzuru, Hideo; Wadachi, Yoshiki

    1985-01-01

    This report deals with the leaching of radioactive nuclides from low-level wastes solidified with cement, bitumen or plastics. Considerations are made on the effects of type of solidification matrix and waste; type, amount and exchange frequency of leachate; type and conditions of embedding soil; temperature and pressure; and secular deterioration. It is assumed that a waste composite is entirely immersed in leachate and that the amount of the leachate is large compared to the surface area of the waste. Cement solid is characterized by its high alkalinity and porosity while plastic and bitumen solids are dense and neutral. The content of waste in a composite is low for cement and high for plastics. It is generally high in bitumen solid though it should be reduced if the solid is likely to bulge. The leaching of 137 Cs from cement solid is slightly dependent on the waste-cement ratio while it increases with increasing waste content in the case of plastic or bitumen solid. For 60 Co, the leaching from cement solid depends on the alkalinity of the cement material used though it is not affected by the waste-cement ratio. In the case of plastics and bitumen, on the other hand, the pH value of the waste have some effects on the leaching of 60 Co; the leaching decreases with increasing pH. (Nogami, K.)

  6. Assessment of LANL solid low-level mixed waste documentation

    International Nuclear Information System (INIS)

    Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section and the Chemical Waste Operations Section capabilities regarding preparation and maintenance of appropriate criteria, plans, and procedures. Additionally, a comparison is made which identifies areas where these documents are not presently in existence or being fully implemented. The documents being assessed in this report are: Solid Low-Level Mixed Waste Acceptance Criteria, Solid Low-Level Mixed Waste Characterization Plan, Solid Low-Level Mixed waste Certification Plan, Solid Low-Level Mixed Waste Acceptance Procedures, Solid Low-Level Mixed Waste characterization Procedures, Solid Low-Level Mixed Waste Certification Procedures, Solid Low-Level Mixed Waste Training Procedures, and Solid Low-Level Mixed Waste Recordkeeping Requirements. This report compares the current status of preparation and implementation, by the Radioactive Waste Operations Section and the Chemical Waste Operations Section, of these documents to the requirements of DOE 5820.2A,. 40 CFR 260 to 270, and to recommended practice. Chapters 2 through 9 of the report presents the results of the comparison in tabular form for each of the documents being assessed, followed by narrative discussion of all areas which are perceived to be unsatisfactory or out of compliance with respect to the availability and content of the documents. The final subpart of each of the following chapters provides recommendations where documentation practices may be improved to achieve compliance or to follow the recommended practice

  7. Survey of Environmental Technician Employment Needs in Solid Waste Occupations.

    Science.gov (United States)

    Sen, Satyakam

    A study was done to determine the extent of current employment, expected job growth, necessary job skills, and the educational background preferred by employers in the solid waste field. Eight different questionnaires were developed and representatives of the solid waste management industry from 1,004 state agencies, municipalities, and private…

  8. Youth Solid Waste Educational Materials List, November 1991.

    Science.gov (United States)

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…

  9. Preparation of nonwoven and green composites from tannery solid wastes

    Science.gov (United States)

    The disposal of solid wastes, such as trimmings and splits generated in various manufacturing processes in a tannery, is a serious challenge to the hides and leather industries. Our effort to address this challenge is to develop new uses and novel biobased products from solid wastes to improve prosp...

  10. Factors Influencing Household Solid Waste Management in Urban ...

    African Journals Online (AJOL)

    The main objective of this study was to determine factors that influence household solid waste management practices in urban Nyeri Municipality. Descriptive cross- sectional ... Results from the survey showed that 26.2% of households practiced correct methods of household solid waste management. The percentage of ...

  11. Municipal Household Solid Waste Compost: Effects on Carrot ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the impact of municipal household solid waste compost on N, P and K uptake and yield of carrot (Daucus carrota), using a coastal savanna Haplic Acrisol. Bulked samples of fresh solid waste from 45 households within the Cape Coast Municipality in the Central Region of Ghana ...

  12. Solid domestic wastes as a renewable resource: European experience

    Science.gov (United States)

    Fridland, V. S.; Livshits, I. M.

    2011-01-01

    Ways in which different types of solid domestic wastes, such as wastepaper, crushed glass, plastics and worn-out tires, can be efficiently included into the production, raw-material, and energy balances of the national economy are shown taking Germany and other European countries an example. Methods for recycling these solid domestic wastes and application fields of the obtained products are discussed.

  13. Decentralized Urban Solid Waste Management in Indonesia | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Urban areas of Indonesia generate about 55 000 tonnes of solid waste per day, ... four models of decentralized solid waste management in low-income urban ... En partenariat avec l'Organization for Women in Science for the Developing ...

  14. Problems Associated With Solid Waste Management Among Peri ...

    African Journals Online (AJOL)

    The problem of solid waste management in Nigeria has been an important issue for discussion among scientists and researchers in recent times. This study evaluates the problems associated with effective solid waste management among peri-urban households in southeastern Nigeria. Data were collected from 94 ...

  15. Facility for low-level solid waste treatment

    International Nuclear Information System (INIS)

    Vicente, R.; Miyamoto, H.

    1987-01-01

    A facility for low-level solid waste compaction, encapsulation and storage is described. Solid wastes are compacted in 200 l drums and stored over concrete platforms covered with canvas, for decay or for interim storage before transport to the final disposal site. (Author) [pt

  16. Solid Waste Management: Abstracts From the Literature - 1964.

    Science.gov (United States)

    Connolly, John A.; Stainback, Sandra E.

    The Solid Waste Disposal Act of 1965 (Public Law 89-272, Title II) and its amending legislation, the Resource Recovery Act of 1970 (Public Law 91-512, Title I), authorize collection, storage, and retrieval of information relevant to all aspects of solid-waste management. As part of this effort, the U.S. Environmental Protection Agency's…

  17. Solid Waste Management: A List of Available Literature.

    Science.gov (United States)

    Environmental Protection Agency, Cincinnati, OH.

    Information, demonstration projects, and other activities, pertaining to solid-waste-related research, available from the U.S. Environmental Protection Agency (EPA), are contained in this document. These EPA publications are reports of the research, development, and demonstrations in progress as authorized by the Solid Waste Disposal Act of 1965.…

  18. Solid Waste Management: A List of Available Literature, October 1972.

    Science.gov (United States)

    Environmental Protection Agency, Cincinnati, OH.

    Listed are 269 solid waste management publications available from the U. S. Environmental Protection Agency (EPA). There are EPA publications reporting on results of the research, development, and demonstrations in progress as authorized by the Solid Waste Disposal Act of 1965. Certain conference proceedings, findings of various commissions and…

  19. Composting of Municipal Solid Wastes in the United States.

    Science.gov (United States)

    Breidenbach, Andrew W.

    To gain more comprehensive knowledge about composting as a solid waste management tool and to better assess the limited information available, the Federal solid waste management program, within the U. S. Public Health Service, entered into a joint experimental windrow composting project in 1966 with the Tennessee Valley Authority and the City of…

  20. Data summary of municipal solid waste management alternatives. Volume I: report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  1. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    Science.gov (United States)

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  2. Health risk assessment as an approach to manage an old landfill and to propose integrated solid waste treatment: A case study in Italy.

    Science.gov (United States)

    Paladino, O; Massabò, M

    2017-10-01

    The aim of the present paper is to show how an approach based on human health risk analysis can be used as a decisional tool for the evaluation of impacts on population and for deciding between different waste treatment processes. The situation in which the increasing production of solid wastes cannot be confined in the old existing Municipal Solid Waste landfill (settled in Genoa, Liguria Region, Italy) is used as a case study. Risk assessment for human health due to air, surface water, groundwater and soil contamination is performed in different scenarios for the old landfill and compared with alternative Waste-to-Energy management solutions that consider thermal treatment by gasification of the total waste or gasification of the dry fraction coupled with anaerobic digestion of the wet fraction, plus biogas combustion with or without sludge and bottom ash/slag disposal in the old landfill. Hazard Index (HI) and Cancer Risk (CR) in case of operating landfill and under the suspected situation of failure of the sealing system, were respectively 1.15 and 1.1∗10 -7 . Unacceptable HI were found due to groundwater contamination, while HI due to river pollution was slightly under the threshold. Vegetables ingestion was the most important pathway and ammonia the most responsible of toxic adverse effects. Fish ingestion and dermal contact with contaminated water were found to be the most important exposure pathways for carcinogenic risk, due mainly to BTEX. HI and CR in the supposed scenario of total waste gasification were respectively 9.4∗10 -1 and 1.1∗10 -5 while they were respectively 3.2∗10 -1 and 6∗10 -6 in case of gasification of the dry fraction. CR in both scenarios was over the threshold mainly due to dioxins, where milk and meat ingestion were found to be the highest risk pathways. Inhalation resulted as the highest not-carcinogenic risk exposure pathway, mainly due to NOx. Decision making was made by weighing up the different scenarios, and results

  3. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia

    International Nuclear Information System (INIS)

    Tan, Sie Ting; Ho, Wai Shin; Hashim, Haslenda; Lee, Chew Tin; Taib, Mohd Rozainee; Ho, Chin Siong

    2015-01-01

    Highlights: • 3E impact of WTE derived from MSW were performed. • MSW treatment technologies significantly effects the economic and environmental benefits of WTE. • Different scenarios are conducted based on the waste projections and production. • Comprehensive discussion on the trade-off of both incineration and anaerobic digestion for MSWM. - Abstract: The utilisation of municipal solid waste (MSW) for energy production has been implemented globally for many decades. Malaysia, however, is still highly dependent on landfills for MSW management. Because of the concern for greenhouse gases (GHG) emission and the scarcity of land, Malaysia has an urgent need for a better waste management strategy. This study aims to evaluate the energy, economic and environmental (3E) impact of waste-to-energy (WTE) for municipal solid waste management. An existing landfill in Malaysia is selected as the case study for consideration to adopt the advanced WTE technologies including the landfill gas recovery system (LFGRS), incineration, anaerobic digestion (AD), and gasification. The study presented an interactive comparison of different WTE scenarios and followed by further discussion on waste incineration and AD as the two potential WTE options in Malaysia. The 3E assessment reveals incineration as the superior technology choice when the production of electricity and heat were considered; however, AD is found to be more favourable under the consideration of electricity production only

  4. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Science.gov (United States)

    2013-07-31

    ... section 307 of the Clean Water Act (CWA)); A municipal solid waste landfill that is regulated under 40 CFR... laundries and dry cleaners could dispose of sludge from cleaning solvent-contaminated wipes in solid waste landfills if the sludge does not exhibit a hazardous waste characteristic. \\8\\ The Agency stated in the...

  5. Solid waste management in Macao: Practices and challenges

    International Nuclear Information System (INIS)

    Jin Jianjun; Wang Zhishi; Ran Shenghong

    2006-01-01

    The rapid economic development and population growth in Macao have resulted in a large increase in refuse generated over the past decade. In 2003, the quantity of solid waste generated reached 249,255 tons, corresponding to 1.52 kg/day per capita. This figure has been gradually increasing. Domestic solid waste is the primary source of solid waste generation. The data showed that a considerable amount of the solid waste generated can be recycled and reutilized. Due to Macao's small geographic area and high cost of land, landfilling has the lowest priority for waste disposal. Solid waste incineration has been given a top priority over other waste disposal methods although it is much more expensive. In the last decade, more than 80% of the total waste in Macao was incinerated. However, the incineration capacity of the Macao Incineration Plant is going to reach its saturation earlier than expected. Waste minimization, the establishment of an effective waste collection and disposal fee system, and alternate ways dealing with the limited capacity of waste treatment facilities are regarded to be major challenges in the future

  6. Solid Waste Management in Nigeria: Problems and Issues.

    Science.gov (United States)

    AGUNWAMBA

    1998-11-01

    / This paper is a presentation of the problems of solid waste management in Nigeria and certain important issues that must be addressed in order to achieve success. At the core of the problems of solid waste management are the absence of adequate policies, enabling legislation, and an environmentally stimulated and enlightened public. Government policies on the environment are piecemeal where they exist and are poorly implemented. Public enlightenment programs lacked the needed coverage, intensity, and continuity to correct the apathetic public attitude towards the environment. Up to now the activities of the state environmental agencies have been hampered by poor funding, inadequate facilities and human resources, inappropriate technology, and an inequitable taxation system. Successful solid waste management in Nigeria will require a holistic program that will integrate all the technical, economic, social, cultural, and psychological factors that are often ignored in solid waste programs.KEY WORDS: Solid waste; Management; Problems; Solutions; Nigeria

  7. Public concerns and behaviours towards solid waste management in Italy.

    Science.gov (United States)

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  8. Solid waste management of Jakarta : Indonesia an environmental systems perspective

    OpenAIRE

    Trisyanti, Dini

    2004-01-01

    Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the city has faced serious threat of environmental deterioration andhealth hazard. It relies on one sanitary landfill only, whose capacity is currently beingexceeded, leading to excessive amounts of solid wastes left untreated in the city. An assessment with a system perspective was carried out, aiming to examine thecomplexity ...

  9. Economic evaluation of municipal solid waste recycling in Yazd:

    OpenAIRE

    Eslami H; Mokhtari M; Eslami Dost Z; Barzegar Khanghah MR; Ranjbar Ezzatabadi M

    2017-01-01

    Background and aims: In every urban waste management plan, recycling and reuse is considered as an economic pattern. This study aimed to economic evaluation of municipal solid waste recycling in Yazd by cost-benefit analysis in 2015. Methods: This research is a descriptive–analytic study which in the data about quality and quantity of municipal solid waste in Yazd city were collected through the sampling and physical analysis and the data about total income and costs from the implementatio...

  10. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  11. Comparative analysis of solid waste management in 20 cities

    NARCIS (Netherlands)

    Wilson, D.C.; Rodic-Wiersma, L.; Scheinberg, A.; Velis, C.A.; Alabaster, G.

    2012-01-01

    This paper uses the ‘lens’ of integrated and sustainable waste management (ISWM) to analyse the new data set compiled on 20 cities in six continents for the UN-Habitat flagship publication Solid Waste Management in the World’s Cities. The comparative analysis looks first at waste generation rates

  12. A Study on the Evaluation of Industrial Solid Waste Management ...

    African Journals Online (AJOL)

    Industrial solid waste is a serious health concern in Aba, South East Nigeria. This study was undertaken to assess the approaches of some industries toward some aspects of waste management in Aba. Interviews, observation and questionnaires administered to industry executives and waste managers were used to ...

  13. Management of the solid waste in perforation projects exploratory hydrocarbons

    International Nuclear Information System (INIS)

    Rodriguez Miranda, J.P.

    2010-01-01

    This paper describes de considerations for solid waste management in hydrocarbons exploration projects, as the serious environmental affectation as a function of soil contamination by leachate form the temporary storage of contaminated industrial waste hydrocarbons, altered by the presence of deposits landscaping waste materials, pollution of water and vegetation and the production of odors.

  14. Treatment of low- and intermediate-level solid radioactive wastes

    International Nuclear Information System (INIS)

    1983-01-01

    One of the essential aims in the waste management is to reduce as much as possible the waste volumes to be stored or disposed of, and to concentrate and immobilize as much as possible the radioactivity contained in the waste. This document describes the treatment of low- and intermediate-level solid waste prior to its conditioning for storage and disposal. This report aims primarily at compiling the experience gained in treating low- and intermediate-active solid wastes, one of the major waste sources in nuclear technology. Apart from the description of existing facilities and demonstrated handling schemes, this report provides the reader with the basis for a judgement that facilitates the selection of appropriate solutions for a given solid-waste management problem. It thus aims at providing guidelines in the particular field and indicates new promising approaches that are actually under investigation and development

  15. Research challenges in municipal solid waste logistics management.

    Science.gov (United States)

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Baumol-Oates approach to solid waste taxation

    DEFF Research Database (Denmark)

    Andersen, M. S.; Dengsøe, N.

    2002-01-01

    A national Baumol–Oates tax on waste in Denmark helped achieve a reduction of 26% in net solid waste from 1987 to 1998. The tax, which is levied per ton of waste, was particularly effective as regards the heavier waste streams such as construction waste and garden waste. When it comes to industrial...... and commercial waste, there are indications that the waste tax is not sufficiently significant to induce changes in behavior, and that except for very waste-intensive enterprises, companies do not seem to be very price sensitive. For household waste, the impact of the tax can be improved where tariffs...... for garbage collection are weight based, rather than per unit. However, the waste sector is an area in which the price signals are modified and filtered by institutionalized practices in municipal administration, and in which true-cost pricing is not easy to achieve. Hence, the rational choice assumption...

  17. Method and device of decontaminating radioactive solid wastes

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Tamada, Masami.

    1983-01-01

    Purpose: To surely enable grinding for the inner surface of hollow radioactive solid wastes such as pipeways or valves, as well as enable to decontaminate these solid wastes to such a level as being capable of processing in the same manner for the ordinary wastes. Method: A grinding piece abutting resiliently against the inner surface of a hollow radioactive solid wastes to be contaminated is attached at the top end of a flexible shaft, and the inner surface of the radioactive solid wastes is ground while rotating and slightly reciprocating, as well as axially moving the flexible shaft. Consequently, since the grinding piece is always abutted against the inner surface of the radioactive solid wastes just following after the profile of the inner surface, and the flexible shaft is resiliently flexed corresponding to the profile of the inner surface of the radioactive solid wastes, even an inner surface of radioactive solid wastes with a complicated configuration can surely be ground entirely. This surely enables to remove radioactive claddings and contaminated layers deposited on the surface. (Yoshihara, H.)

  18. Advanced characterisation of municipal solid waste ashes

    Energy Technology Data Exchange (ETDEWEB)

    Skytte Pedersen, Randi

    2002-12-15

    This report deals with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant Maebjergvaerket, Holstebro. MSW has been used as a fuel since the mid 1960's and since then, the MSW incineration plants have experienced operational problems due to deposit formation and corrosion. Inorganic elements tightly or loosely bound in the waste are the main cause of these problems. The tightly bound elements will mainly stay on the grate during combustion, whereas the loosely bound elements are volatilised and recondensed elsewhere in the furnace. Many of the heavy metals form volatile chlorides during the incineration, and the fly ash fraction thus show enrichment in these elements. Presence of chlorides and heavy metals in deposits may cause severe corrosion due to formation of low-melting eutectics. Chlorine gas in the flue gas is also of major concern with respect to corrosion, due to formation of volatile chlorides when chlorine comes in contact with the tube material. Four different ash fractions (bottom ash, super heater ash, economiser ash and fly ash) taken from Maebjergvaerket have been analysed with respect to particle sizes, structures, shapes and composition. The applied methods were scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX) and mapping, which were used in order to determine sizes, chemical composition and structure of the particles. X-ray powder diffraction (XRD) was used to provide information about crystallography and mineral phases. Chemical analysis was also performed along with a particle size distribution for the fine-grained fractions (economiser and fly ash). The amount of silicates consisting of Ca, Al and Si, were found to decrease through the furnace, whereas the amount of alkali (Na, K) chlorides and heavy metals (Pb, Zn) increased. The bonding in the waste before incineration is the direct cause of this, since silicates are tightly bound and chlorides are loosely bound. There was a

  19. ITM oxygen for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.A.; Foster, E.P. [Air Products and Chemicals Inc., Toronto, ON (Canada); Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-11-01

    This paper described a newly developed air separation technology called Ionic Transport Membrane (ITM), which reduces the overall cost of the gasification process. The technology is well suited for advanced energy conversion processes such as integrated gasification combined cycle (IGCC) that require oxygen and use heavy carbonaceous feedstocks such as residual oils, bitumens, coke and coal. It is also well suited for traditional industrial applications for oxygen and distributed power. Air Products Canada Limited developed the ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates well with the gasification process and an IGCC option for producing electricity from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed the attractive economics of ITM. 6 refs., 2 tabs., 6 figs.

  20. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    Science.gov (United States)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  1. Rural Solid Waste Management in China: Status, Problems and Challenges

    Directory of Open Access Journals (Sweden)

    Aiqin Wang

    2017-03-01

    Full Text Available This paper seeks to describe the overall state of Rural Solid Waste Management (RSWM in China in three main areas: waste collection services, waste transportation services and waste disposal services. Given China’s urbanization, industrialization, and the subsequent improvement of household living standards, the amount of solid waste generated in rural China has increased rapidly. Based on primary data collected in 2016 from 100 villages across five provinces in China, we find that the proportion of villages with waste collection, waste transportation, and waste disposal services in 2015 is 80%, 55% and 22%, respectively. The differences in shares of villages with these services across provinces are statistically significant. Using descriptive and econometric analyses, the authors show that richer villages are more likely to provide rural solid waste (RSW collection and transportation services. Villages with new (newly elected or appointed village leaders are more likely to supply RSW disposal services. While the majority of villages report that they offer waste collection services (installing waste collection facilities and employing waste collection workers, the vast majority of villages do not transport their waste to treatment plants. Even fewer villages report using centralized disposal methods to dispose of waste, as required by law or regulation. This study represents the first effort to describe the state and determinants of waste management services in rural China in the wake of increased investment in and new policies regarding RSWM released in 2015. Additionally, we provide evidence-based suggestions that might be useful for policy makers interested in improving RSWM in China. These suggestions include increasing investments in waste collection facilities and worker services; encouraging local residents to classify and recycle waste; designing optimal waste transportation networks and routes; and improving on-site waste disposal

  2. Optimization of municipal solid waste collection and transportation routes

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.

  3. Optimization of municipal solid waste collection and transportation routes

    International Nuclear Information System (INIS)

    Das, Swapan; Bhattacharyya, Bidyut Kr.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length

  4. Analysis of Solid Waste Management and Strategies for Bangkok Metropolitan

    Directory of Open Access Journals (Sweden)

    Palika Wannawilai

    2017-04-01

    Full Text Available This study aimed to examine and analyze strategic gaps and the environment of waste management of Bangkok Metropolitan Administration (BMA in order to suggest suitable waste management strategies for Bangkok Metropolitan. The study was conducted by interviewing BMA and districts’ administrators and officers, local leaders and people, and private sectors, conducting a focus group, as well as reviewing relevant documents. The data was analyzed by applying Gap analysis and SWOT analysis. The proposed five strategies are: 1 enhancement of efficiency in solid waste and hazardous waste management; 2 discipline, participation and responsibility of citizens and all sectors related to waste management; 3 appropriate and integrated waste management; 4 capacity building for BMA’s staff and improvement of solid waste management system; and 5 research and development of knowledge and technology in waste management. The study also suggested driving approaches for effective implementation of the strategies.

  5. 40 CFR 260.30 - Non-waste determinations and variances from classification as a solid waste.

    Science.gov (United States)

    2010-07-01

    ... from classification as a solid waste. 260.30 Section 260.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.30 Non-waste determinations and variances from classification as a solid waste. In...

  6. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    International Nuclear Information System (INIS)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  7. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  8. Conversion of Waste into Wealth: A Study in Solid Waste Management

    OpenAIRE

    Janakiram, T.; Sridevi, K.

    2010-01-01

    Disposal of solid waste has been the talk of the day. An attempt has been made to dispose of the solid waste Jatropha (Kattamanakku). Aerobic composting method was employed. Properly treated solid wastes of different composition were mixed with slurries of cowdung and physicochemical parameters were measured after 30 and 60 days of composting. It was observed that percentages of nitrogen, phosphorous, potassium, sodium, calcium and magnesium increased as time elapsed. Water holding capacity, ...

  9. Combustion and gasification of solid biomass: energy solutions for the Amazon; Combustao e gasificacao de biomassa solida: solucoes energeticas para a Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Eduardo Jose Fagundes; Rendeiro, Goncalo; Nogueira, Manoel Fernandes Martins; Brasil, Augusto Cesar de Mendonca; Cruz, Daniel Onofre de Almeida; Guerra, Danielle Regina da Silva; Macedo, Emanuel Negrao; Ichihara, Jorge de Araujo

    2008-07-01

    For electrify isolated rural communities in the Amazon, the Ministerio de Minas e Energia - MME (Brazilian Mining and Energy Ministry), promoted under the 'Luz para todos' (Light for All) program, a series of activities aimed at the development and implementation of projects for small- scale power generation and training professionals, in the region, for the deployment of alternative energy solutions from renewable energy sources. Among these activities are the production of the collection 'Energy Solutions for the Amazon', consisting of five volumes. This is the fourth volume in the series that presents an overview of the combustion and gasification of solid biomass.

  10. Low and medium activity solid wastes processing and encapsulation

    International Nuclear Information System (INIS)

    Taillard, D.; Claes, J.; Hennart, D.

    1983-01-01

    This work, carried out under contract with the European Atomic Energy Community, describes the techniques in use for waste management. The activity of low and medium activity solid wastes is from few curies to few tens of curies per cubic meter, they are produced by nuclear facilities and are often complex mixtures. Radioactive wastes are characterized and processing and conditioning are described. Leaching, stability, mechanical resistance and radiolysis of encapsulated wastes are examined. Handling, storage and disposal are treated

  11. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  12. Characterization of the solid radioactive waste From Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Laotaru, V.

    2005-01-01

    Full text: During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from which other. For a CANDU type reactor, the appearance of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  13. Producer gas fuelling of a 20kW output engine by gasification of solid biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hollingdale, A C; Breag, G R; Pearce, D

    1988-11-01

    Motive power requirements in the range up to 100 kW shaft power are common in developing country processing operations. Producer gas-fuelled systems based upon a relatively cheap and simple manually operated gasifier or reactor using readily available biomass feedstock can offer in some cases an attractive alternative to fossil-fuelled power units. This bulletin outlines research and development work by the Industrial Development Department of the Overseas Development Natural Resources Institute for 20 kW shaft power output from producer gas derived from solid biomass. Biomass materials such as wood or shells can be carbonized to form charcoal or left in the natural uncarbonized state. In this work both carbonized and uncarbonized biomass fuel has been used to provide producer gas to fuel a Ford 2274E engine, an industrial version of a standard vehicle spark-ignition engine. Cross-draught and down-draught reactor designs were evaluated during trials with this engine. Also different gas cleaning and cooling arrangements were tested. Particular emphasis was placed on practical aspects of reactor/engine operation. This work follows earlier work with a 4 kW shaft power output system using charcoal-derived producer gas. (author).

  14. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  15. 1995 solid waste 30-year characteristics volume summary

    International Nuclear Information System (INIS)

    Templeton, K.J.; DeForest, T.J.; Rice, G.I.; Valero, O.J.

    1995-10-01

    The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D ampersand D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford's SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and the transuranic - transuranic mixed waste (TWunderscoreTRUM)

  16. Solid Waste Management with Emphasis on Environmental Aspect

    Science.gov (United States)

    Sinha, Navin Kr.; Choudhary, Binod Kumar; Shree, Shalini

    2011-12-01

    In this paper focus on Solid waste management. Its comprises of purposeful and systematic control of generation, storage, collection, transport, separations, processing, recycling, recovery and disposal of solid waste. Awareness of Four R's management & EMS support also for management Solid waste. Basel convention on the Control of transboundary movements of hazardous wastes and their Disposal usually known simply as the Basel Convention, is an international treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of hazardous waste from developed to less developed countries (LDCs). it came into force 5 May 1992. According to this "Substances or objects which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law"(UNEP).

  17. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    Science.gov (United States)

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  18. Towards sustainable solid waste management: Investigating household participation in solid waste management

    Science.gov (United States)

    Akil, A. M.; Ho, C. S.

    2014-02-01

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.

  19. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).

    Science.gov (United States)

    Al-Salem, S M; Antelava, A; Constantinou, A; Manos, G; Dutta, A

    2017-07-15

    Plastic plays an important role in our daily lives due to its versatility, light weight and low production cost. Plastics became essential in many sectors such as construction, medical, engineering applications, automotive, aerospace, etc. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. Hence, a sustainable and an efficient plastic waste treatment is essential to avoid such issues. Pyrolysis is a thermo-chemical plastic waste treatment technique which can solve such pollution problems, as well as, recover valuable energy and products such as oil and gas. Pyrolysis of plastic solid waste (PSW) has gained importance due to having better advantages towards environmental pollution and reduction of carbon footprint of plastic products by minimizing the emissions of carbon monoxide and carbon dioxide compared to combustion and gasification. This paper presents the existing techniques of pyrolysis, the parameters which affect the products yield and selectivity and identify major research gaps in this technology. The influence of different catalysts on the process as well as review and comparative assessment of pyrolysis with other thermal and catalytic plastic treatment methods, is also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Co-combustor: the solid waste thermal treatment plant in MINT

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Mohd Azman Che Mat Isa; Sivapalan Kathiravale; Mohd Fairus Abdul Farid; Mohamad Puad Hj Abu; Rosli Darmawan; Muhd Noor Muhd Yunus

    2005-01-01

    MINT has geared up into the field of solid waste thermal treatment processing back in 1999 when a new unit known as MIREC was established. Since then, a fast progress has taken place including the design and construction of a pilot scale incinerator, named as the Co-Combustor. The Co-combustor was designed and developed based on the gasification principles, which employs combustion in starved air condition. In year 2001, this plant was commissioned. To date, it has been running quite well according to its design values. Several test runs were also performed in order to collect and gather data, which serve as a background or backtrack record for upgrading purposes and optimizing its performance in future. On going research is also conducted on this plant especially on the study of the waste's behaviors under combustion. Besides the typical RND activities, the Co-combustor is also currently being used to burn waste paper especially to dispose restricted and confidential documents. This paper will highlight on the design, performance, application and usage of the co-combustor. The direction for research and development activities for this plant is also discussed in this paper so as to strengthen the knowledge and build up expertise in the field of incineration

  1. A legislator`s guide to municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  2. Storage facility for highly radioactive solid waste

    International Nuclear Information System (INIS)

    Kitano, Shozo

    1996-01-01

    A heat insulation plate is disposed at an intermediate portion between a ceiling wall of a storage chamber and an upper plate of a storage pit in parallel with them. A large number of highly radioactive solid wastes contained in canisters are contained in the storage pit. Cooling air is introduced from an air suction port, passes a channel on the upper side of the heat insulation plate formed by the ceiling of the storage chamber and the heat insulation plate, and flows from a flow channel on the side of the wall of the storage chamber to the lower portion of the storage pit. Afterheat is removed by the air flown from the lower portion to ventilation tubes at the outer side of container tubes. The air heated to a high temperature through the flow channel on the lower side of the heat insulation plate between the heat insulation plate and the upper plate of the storage pit, and is exhausted to an exhaustion port. Further, a portion of a heat insulation plate as a boundary between the cooling air and a high temperature air formed on the upper portion of the storage pit is formed as a heat transfer plate, so that the heat of the high temperature air is removed by the cooling air flowing the upper flow channel. This can prevent heating of the ceiling wall of the storage chamber. (I.N.)

  3. Management of radioactive solid waste arisings from PFR reprocessing

    International Nuclear Information System (INIS)

    Allardice, R.H.; Hackney, S.; Bailey, G.; Bremner, W.; Lillyman, E.; Pugh, O.; Reekie, J.

    1982-01-01

    A description is given of the solid radioactive waste management facilities for dealing with the arisings from PFR reprocessing at the Dounreay Nuclear Power Development Establishment. Four major categories of solid waste are identified. The 'La Calhene' posting system for the transfer of active wastes which has been installed is discussed. The three new retrievable stores for high α#betta##betta#, high α low #betta##betta# and low α high #betta##betta# are described. The methods of waste categorisation by non-destructive assay techniques are outlined. Finally a review of operating experience with the facilities is presented. (U.K.)

  4. Strategic solid waste management in cities in Japan

    International Nuclear Information System (INIS)

    Tanaka, M.

    2005-01-01

    SWM (Solid Waste Management) systems have always been compatible with the societal need at every point of time. In 1950's it was oriented towards maintaining public health standards mainly to control infectious diseases. While in 1970's energy generation was considered as the vital aspect of the system. In 1990's reduction in waste generation and recycling were officially incorporated in the waste management regulation. By enacting basic law in 2000 A.D.; the society is poised to become a recycling based society in its drive towards sustainable society. The document explain the actual solid waste strategic management, and related issues, in Japan [it

  5. Municipal solid wastes (RSU) treatment in land filled controlled: Of its sanitary problems to energy production

    International Nuclear Information System (INIS)

    Urzola C, R.A.

    1995-01-01

    Excessive world wastes production generates constant preoccupations with relation to its management. The methods of classic elimination as sanitary landfill controlled as compared to controvertible incineration and gasification plants as well as expectations created in connection with practices of recycling, its are intensive discussions motive between town halls, technical specialists, ecologists and general public. What is certain is that wastes in the last 30 years have been valued economically. Today the wastes are appreciated by certain sectors that begin to monopolize the recycling line because they see an excellent business. All methods of residues elimination produce at same time other wastes. Solid nature wastes generally end in the landfill and semi-liquid waste are dehydrated with same objective. In the present Thesis, without intending to say that the landfill processing will be the better option, is outlined the form of optimizing the utilization of same. It's demonstrated that landfill, furthermore to fulfil its sanitary function, are converted into an energetic alternative with utilization of flammable gas generated in them, something which represents an interesting value added if is converted into source of welfare for social and economically kernels, as happens in peripheries of the sanitary landfill at large Latin American cities. Of other side are considered principal aspects that intervene in methane gas generation and quality and utilization alternatives. Finally it is made emphasis in environmental situation at European and international level about the landfill gases, how is outlined greenhouse effect topic, what are environmental actions for year 2000 and are related some biogas utilization experiences at Europe

  6. Implementation of a management applied program for solid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the Post-irradiated Fuel Examination Facility, the Irradiated Material Examination Facility, the Research Reactor, and the laboratories at KAERI. A data collection of a solid radioactive waste treatment process of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by treatment process. Data on the actual treatment process that is not limited experiment improve by a document, human traces, saving of material resources and improve with efficiency of tracking about a radioactive waste and a process and give help to radioactive waste material balance and inventory study.

  7. Hydrodynamic Modelling of Municipal Solid Waste Residues in a Pilot Scale Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    João Cardoso

    2017-11-01

    Full Text Available The present study investigates the hydrodynamics and heat transfer behavior of municipal solid waste (MSW gasification in a pilot scale bubbling fluidized bed reactor. A multiphase 2-D numerical model following an Eulerian-Eulerian approach within the FLUENT framework was implemented. User defined functions (UDFs were coupled to improve hydrodynamics and heat transfer phenomena, and to minimize deviations between the experimental and numerical results. A grid independence study was accomplished through comparison of the bed volume fraction profiles and by reasoning the grid accuracy and computational cost. The standard deviation concept was used to determine the mixing quality indexes. Simulated results showed that UDFs improvements increased the accuracy of the mathematical model. Smaller size ratio of the MSW-dolomite mixture revealed a more uniform mixing, and larger ratios enhanced segregation. Also, increased superficial gas velocity promoted the solid particles mixing. Heat transfer within the fluidized bed showed strong dependence on the MSW solid particles sizes, with smaller particles revealing a more effective process.

  8. A Survey of Municipal Solid Waste Generation in 22 Regions of Tehran With Solid Waste Reduction Approach

    Directory of Open Access Journals (Sweden)

    MA Abduli

    2015-07-01

    Methods: The study was a descriptive cross-sectional one conducted from 2010 to 2014. Relevant officials of the waste recovery in 22 regions of Tehran were approached in order to collect data about municipal solid waste generation through interviewing, filling out questionnaires, conducting field visits from Aradkooh Disposal and Processing Complex and collecting information on disposal and destiny of wastes. Then the data were compiled and analyzed. Results: Total solid waste generation in Tehran from 2010 to 2014 amounted to respectively 3389662, 3399344, 3449338 and 3245157 Metric Tons, categorized into three groups of municipal, companies and townships and hospital wastes. Most of the generated waste produced in Tehran was that of households and commercial (known as municipal waste from 22 Regions of Tehran. Based on the surveys conducted, per capita solid waste generation of 11 regions of Tehran ranged from 550 to 1000 grams and in other 11 ones from 1000 to 1521 grams per capita per day. The lowest and highest waste generation rate belonged respectively to region 13 with 556 grams and region 12 with 1521 grams per capita per day in 2011. Conclusion: Comparing per capita generation of municipal solid waste in different municipal regions in Tehran with maximum acceptable capacity of waste generation indicates the deviation of waste generation of all Tehran regions from the standard acceptable amount. Therefore, not only is it necessary to plan and take strategic measures to reduce Tehran waste generation but also these programs and measures should be specific to each region considering its specifications and solid waste quality and quantity.

  9. Assessment of anaerobic biodegradability of five different solid organic wastes

    Science.gov (United States)

    Kristanto, Gabriel Andari; Asaloei, Huinny

    2017-03-01

    The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

  10. Investigation on catalytic gasification of high-ash coal with mixing-gas in a small-scale fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Zhang, J.; Lin, J. [Fuzhou University, Fuzhou (China)

    2005-10-15

    The experimental study on the Yangquan high-ash coal catalytic gasification with mixing gas by using solid alkali or waste liquid of viscose fiber as the catalyst in a small-scale fluidized bed with 28 mm i.d. was carried out. The loading saturation levels of two catalysts in Yangquan high-ash coal are about 6%. Under the gasification temperature ranging from 830 to 900{sup o}C and from 900 to 920{sup o}C, the apparent reaction order of Yangquan high-ash coal with respect to the unreacted carbon fraction approximates to 2.3 and 1/3 for the non-catalyst case, respectively. Also, the different values of apparent reaction order in the two temperature ranges are presented for the case with 3% solid alkali catalyst loaded. At the low temperature ranging from 830 to 860{sup o}C, the apparent reaction order of catalytic gasification is 1 since enough active carbon sites on the coal surface are formed during the catalytic gasification by solid alkali. But at the high temperature ranging from 860 to 920{sup o}C, the sodium carbonate produced by the reaction of solid alkali with carbon dioxide can be easily fused, transferred and re-distributed, which affects the gasification reaction rate, and the apparent reaction order of catalytic gasification is reduced to 1.3. 10 refs., 9 figs., 4 tab s.

  11. Solid waste retrieval. Phase 1, Operational basis

    International Nuclear Information System (INIS)

    Johnson, D.M.

    1994-01-01

    This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose

  12. Solid waste retrieval. Phase 1, Operational basis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.M.

    1994-09-30

    This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

  13. Application of FT-IR Absorption Spectroscopy to Characterize Waste and Bio-Fuels for Pyrolysis and Gasification

    Czech Academy of Sciences Publication Activity Database

    Kalisz, S.; Svoboda, Karel; Robak, Z.; Baxter, D.; Andersen, L. K.

    2008-01-01

    Roč. 8, - (2008), s. 51-52 ISSN 1733-4381 Institutional research plan: CEZ:AV0Z40720504 Keywords : ft-Iir spectroscopy * bio-fuels * gasification Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  15. Decentralized Urban Solid Waste Management in Indonesia | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Urban areas of Indonesia generate about 55 000 tonnes of solid waste per day, an amount that ... The lessons learned and best (and worst) practices will be compiled, ... development and production to benefit farmers across the Global South.

  16. Assessment of solid waste management systems in Ibadan North ...

    African Journals Online (AJOL)

    Assessment of solid waste management systems in Ibadan North, Oyo State using geo-spatial ... Ethiopian Journal of Environmental Studies and Management ... Keywords: GIS, Median, Nearest Neighbour Analysis (NNA), Skip Bins ...

  17. feasibility study on solid waste management in port harcourt

    African Journals Online (AJOL)

    user

    generation, storage, segregation, collection, treatment and disposal has been investigated. ... system is still being used instead of the integrated solid waste management system (1SWMS) and that about 75% ..... Master thesis, Submitted to the.

  18. The Primary Solid Waste Storage Gaps Experienced By Nairobi ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    This study identifies and analyses the solid waste management service gaps and situations in these different socio-economic ... identifying gaps existing at primary (household) SW ... internal structure is based on land uses and income levels.

  19. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  20. IMPROVEMENT OF THE PROCESSING OF SOLID WASTE IN UKRAINE

    Directory of Open Access Journals (Sweden)

    T. Kharchenko

    2014-12-01

    Full Text Available The article is dedicated to the problems of recycling and solid waste. It is investigated traditional methods of waste management (storage, disposal, incineration. Authors insist on ineffectiveness of these methods, because of the pollution increases anthropogenic pressure on the environment. It is proved harmful health effects using the traditional methods of disposal. The question of introducing innovative recycling, particularly separating solid waste, the development and use of clean technology waste processing, using microorganisms, pyrolysis. It is determined implementation barriers such as lack of effective government support, and high cost. It is noted that there is a problem of underestimating the complexity, scope and specifics of the issue. The experience of developed countries is outlined. The comparative performance of existing tariffs for disposal of solid waste is used. The ways of solving problems are done.