WorldWideScience

Sample records for solid supported lipid

  1. Method of fabricating lipid bilayer membranes on solid supports

    Science.gov (United States)

    Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)

    2012-01-01

    The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.

  2. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Science.gov (United States)

    Kreuzer, Martin; Trapp, Marcus; Dahint, Reiner; Steitz, Roland

    2015-01-01

    In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride) (PAH) in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions. PMID:26703746

  3. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    Science.gov (United States)

    Ye, Jiesheng; Wang, Aihua; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2008-07-01

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo.

  4. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jiesheng; Liu Chunxi; Chen Zhijin; Zhang Na [School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, Ji' nan (China); Wang Aihua [Department of Respiratory Medicine, Affiliated Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Ji' nan (China)], E-mail: zhangnancy9@sdu.edu.cn

    2008-07-16

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles ({<=}20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 {+-} 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 {+-} 1.14 mV to -17.16 {+-} 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 {+-} 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo.

  5. Solid-Supported Lipid Membranes: Formation, Stability and Applications

    Science.gov (United States)

    Goh, Haw Zan

    This thesis presents a comprehensive investigation of the formation of supported lipid membranes with vesicle hemifusion, their stability under detergents and organic solvents and their applications in molecular biology. In Chapter 3, we describe how isolated patches of DOPC bilayers supported on glass surfaces are dissolved by various detergents (decyl maltoside, dodecyl maltoside, CHAPS, CTAB, SDS, TritonX-100 and Tween20) at their CMC, as investigated by fluorescence video microscopy. In general, detergents partition into distal leaflets of bilayers and lead to the expansion of the bilayers through a rolling motion of the distal over the proximal leaflets, in agreement with the first stage of the established 3-stage model of lipid vesicle solubilization by detergents. Subsequently, we study the partitioning of organic solvents (methanol, ethanol, isopropanol, propanol, acetone and chloroform) into isolated bilayer patches on glass in Chapter 4 with fluorescence microscopy. The area expansion of bilayers due to the partitioning of organic solvents is measured. From the titration of organic solvents, we measured the rate of area expansion as a function of the volume fraction of organic solvents, which is proposed to be a measure of strength of interactions between solvents and membranes. From the same experiments, we also measure the maximum expansion of bilayers (or the maximum binding stoichiometry between organic solvents and lipids) before structural breakdown, which depends on the depth of penetration of solvents to the membranes. In Chapter 5, we investigate the formation of sparsely-tethered bilayer lipid membranes (stBLMs) with vesicle hemifusion. In vesicle hemifusion, lipid vesicles in contact with a hydrophobic alkyl-terminated self-assembled monolayer (SAM) deposit a lipid monolayer to the SAM surface, thus completing the bilayer. Electrical Impedance Spectroscopy and Neutron Reflectivity are used to probe the integrity of stBLMs in terms of their

  6. Distribution of Fullerene Nanoparticles between Water and Solid Supported Lipid Membranes: Thermodynamics and Effects of Membrane Composition on Distribution.

    Science.gov (United States)

    Ha, Yeonjeong; Katz, Lynn E; Liljestrand, Howard M

    2015-12-15

    The distribution coefficient (Klipw) of fullerene between solid supported lipid membranes (SSLMs) and water was examined using different lipid membrane compositions. Klipw of fullerene was significantly higher with a cationic lipid membrane compared to that with a zwitterionic or anionic lipid membrane, potentially due to the strong interactions between negative fullerene dispersions and positive lipid head groups. The higher Klipw for fullerene distribution to ternary lipid mixture membranes was attributed to an increase in the interfacial surface area of the lipid membrane resulting from phase separation. These results imply that lipid composition can be a critical factor that affects bioconcentration of fullerene. Distribution of fullerene into zwitterionic unsaturated lipid membranes was dominated by the entropy contribution (ΔS) and the process was endothermic (ΔH > 0). This result contrasts the partitioning thermodynamics of highly and moderately hydrophobic chemicals indicating that the lipid-water distribution mechanism of fullerene may be different from that of molecular level chemicals. Potential mechanisms for the distribution of fullerene that may explain these differences include adsorption on the lipid membrane surfaces and partitioning into the center of lipid membranes (i.e., absorption).

  7. AFM characterization of solid-supported lipid multilayers prepared by spin-coating.

    Science.gov (United States)

    Pompeo, G; Girasole, M; Cricenti, A; Cattaruzza, F; Flamini, A; Prosperi, T; Generosi, J; Castellano, A Congiu

    2005-06-15

    Lipids are the principal components of biologically relevant structures as cellular membranes. They have been the subject of many studies due to their biological relevance and their potential applications. Different techniques, such as Langmuir-Blodgett and vesicle-fusion deposition, are available to deposit ordered lipid films on etched surfaces. Recently, a new technique of lipid film deposition has been proposed in which stacks of a small and well-controlled number of bilayers are prepared on a suitable substrate using a spin-coater. We studied the morphological properties of multi-layers made of cationic and neutral lipids (DOTAP and DOPC) and mixtures of them using dynamic mode atomic force microscopy (AFM). After adapting and optimizing, the spin-coating technique to deposit lipids on a chemically etched Silicon (1,0,0) substrate, a morphological nanometer-scale characterization of the aforementioned samples has been provided. The AFM study showed that an initial layer of ordered vesicles is formed and, afterward, depending on details of the spin-coating preparation protocol and to the dimension of the silicon substrate, vesicle fusion and structural rearrangements of the lipid layers may occur. The present data disclose the possibility to control the lipid's structures by acting on spin-coating parameters with promising perspectives for novel applications of lipid films.

  8. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study

    Energy Technology Data Exchange (ETDEWEB)

    Wah, Benny; Breidigan, Jeffrey M.; Adams, Joseph; Horbal, Piotr; Garg, Sumit; Porcar, Lionel; Perez-Salas, Ursula

    2017-03-29

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesides and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order I. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.

  9. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis.

    Science.gov (United States)

    Xu, Yihui; Kuhlmann, Jan; Brennich, Martha; Komorowski, Karlo; Jahn, Reinhard; Steinem, Claudia; Salditt, Tim

    2018-02-01

    SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of ...

    African Journals Online (AJOL)

    Purpose: To prepare solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) of loratadine (LRT) for the treatment of allergic skin reactions. Methods: SLN and NLC were prepared by high pressure homogenization method. Their entrapment efficiency (EE) and loading capacity (LC) were determined.

  11. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of ...

    African Journals Online (AJOL)

    Solid Lipid Nanoparticles and Nanostructured Lipid. Carriers of Loratadine for Topical Application: Physicochemical Stability and Drug Penetration through. Rat Skin. Melike Üner1*, Ecem Fatma Karaman1 and Zeynep Aydoğmuş2. Istanbul University, Faculty of Pharmacy, 1Department of Pharmaceutical Technology, ...

  12. Polydopamine-Supported Lipid Bilayers

    OpenAIRE

    Souryvanh Nirasay; Antonella Badia; Grégoire Leclair; Claverie, Jerome P.; Isabelle Marcotte

    2012-01-01

    We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) vesicles. Polydopamine...

  13. Characterization of Celecoxib-Loaded Solid Lipid Nanoparticles ...

    African Journals Online (AJOL)

    Purpose: To prepare solid lipid nanoparticles employing softisan 100 (SOFTI) or tristearin (TS) as solid lipid carriers for celecoxib (CXB) to overcome its dissolution challenge. Methods: The solid lipid nanoparticles (SLN) of CXB were prepared by ultrasonic melt-emulsification technique. SLN was characterized using ...

  14. Polydopamine-Supported Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Souryvanh Nirasay

    2012-12-01

    Full Text Available We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC and dioleoylphosphatidylcholine (DOPC vesicles. Polydopamine films preserved the lateral mobility of the phospholipids as shown by fluorescence microscopy recovery after photobleaching (FRAP experiments. Diffusion coefficients of ~5.9 and 7.2 µm2 s−1 were respectively determined for DMPC and DOPC at room temperature, values which are characteristic of lipids in a free standing bilayer system.

  15. Polydopamine-Supported Lipid Bilayers

    Science.gov (United States)

    Nirasay, Souryvanh; Badia, Antonella; Leclair, Grégoire; Claverie, Jerome P.; Marcotte, Isabelle

    2012-01-01

    We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) vesicles. Polydopamine films preserved the lateral mobility of the phospholipids as shown by fluorescence microscopy recovery after photobleaching (FRAP) experiments. Diffusion coefficients of ~5.9 and 7.2 µm2 s−1 were respectively determined for DMPC and DOPC at room temperature, values which are characteristic of lipids in a free standing bilayer system.

  16. Molecular phospholipid films on solid supports

    DEFF Research Database (Denmark)

    Czolkos, Ilja; Jesorka, Aldo; Orwar, Owe

    2011-01-01

    Phospholipid membranes are versatile structures for mimicking biological surfaces. Bilayer and monolayer membranes can be formed on solid supports, leading to enhanced stability and accessibility of the biomimetic molecular film. This has facilitated functional studies of membrane proteins...... and aided the development of membrane-based applications in, for example, biosensing, self-assembled reaction kinetics and catalysis. Assembly and preparation of lipid films on supporting surfaces is a challenging engineering task with the goal of fabricating mechanically, chemically and thermodynamically...... stable lipid membranes. In this review, the current state of the art of molecularly thin lipid layer fabrication is presented with an emphasis on support materials, film formation mechanisms, characterisation methods, and applications....

  17. Lipid mobility in supported lipid bilayers by single molecule tracking

    Science.gov (United States)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  18. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency

    NARCIS (Netherlands)

    de Jesus, Marcelo B.; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dirk; Zuhorn, Inge S

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that

  19. Imaging of blood plasma coagulation at supported lipid membranes.

    Science.gov (United States)

    Faxälv, Lars; Hume, Jasmin; Kasemo, Bengt; Svedhem, Sofia

    2011-12-15

    The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ∼6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Preparation and evaluation of carvedilol-loaded solid lipid ...

    African Journals Online (AJOL)

    Purpose: To develop suitable solid lipid nanoparticles (SLN) containing carvedilol (CL) for controlled delivery to site of action. Methods: Solid lipid nanoparticles (SLNs) containing carvedilol (CL) were prepared by hot homogenization and ultrasonication methods. The SLNs were characterized in terms of entrapment ...

  1. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  2. Solid lipid nanoparticles: an advanced drug delivery system

    National Research Council Canada - National Science Library

    Reddy, Raghu Nandan; Shariff, Arshia

    2013-01-01

    Solid lipid nanoparticles are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery, research and clinical medicine, as well as in other varied sciences...

  3. Characterization of Celecoxib-Loaded Solid Lipid Nanoparticles ...

    African Journals Online (AJOL)

    of solid lipid Nanoparticles (SLN) made of cacao butter and curdlan. Eur J Pharm Sci 2005; 24: 199-. 205. 19. Reddy LH, Murthy RS. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPS PharmSciTech 2005; 6(2): E158–. E166. 20.

  4. Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ryugo Tero

    2012-12-01

    Full Text Available Supported lipid bilayers are artificial lipid bilayer membranes existing at the interface between solid substrates and aqueous solution. Surface structures and properties of the solid substrates affect the formation process, fluidity, two-dimensional structure and chemical activity of supported lipid bilayers, through the 1–2 nm thick water layer between the substrate and bilayer membrane. Even on SiO2/Si and mica surfaces, which are flat and biologically inert, and most widely used as the substrates for the supported lipid bilayers, cause differences in the structure and properties of the supported membranes. In this review, I summarize several examples of the effects of substrate structures and properties on an atomic and nanometer scales on the solid-supported lipid bilayers, including our recent reports.

  5. Peptide macrocycles featuring a backbone secondary amine: a convenient strategy for the synthesis of lipidated cyclic and bicyclic peptides on solid support.

    Science.gov (United States)

    Oddo, Alberto; Münzker, Lena; Hansen, Paul R

    2015-05-15

    A convenient strategy for the on-resin synthesis of macrocyclic peptides (3- to 13-mers) via intramolecular halide substitution by a diamino acid is described. The method is compatible with standard Fmoc/tBu SPPS and affords a tail-to-side-chain macrocyclic peptide featuring an endocyclic secondary amine. This functional group is still reactive toward acylation, allowing for the continuation of the synthesis. An application to the synthesis of lipidated cyclic and bicyclic antimicrobial peptides is presented.

  6. Peptide Macrocycles Featuring a Backbone Secondary Amine: A Convenient Strategy for the Synthesis of Lipidated Cyclic and Bicyclic Peptides on Solid Support

    DEFF Research Database (Denmark)

    Oddo, Alberto; Münzker, Lena; Hansen, Paul Robert

    2015-01-01

    A convenient strategy for the on-resin synthesis of macrocyclic peptides (3- to 13-mers) via intramolecular halide substitution by a diamino acid is described. The method is compatible with standard Fmoc/tBu SPPS and affords a tail-to-side-chain macrocyclic peptide featuring an endocyclic seconda...... amine. This functional group is still reactive toward acylation, allowing for the continuation of the synthesis. An application to the synthesis of lipidated cyclic and bicyclic antimicrobial peptides is presented....

  7. Preparation and evaluation of carvedilol-loaded solid lipid ...

    African Journals Online (AJOL)

    delivery to site of action. Methods: Solid lipid nanoparticles (SLNs) containing carvedilol (CL) were prepared by hot ... efficiency, particle size, zeta potential, polydispersity index, cytotoxicity, solid state characterization and drug release. The stability of ..... powders had a non-uniform shape, while SLN formulations had a flaky ...

  8. Preparation and evaluation of carvedilol-loaded solid lipid ...

    African Journals Online (AJOL)

    Solid lipid nanoparticles were deposited on metallic stubs placed in liquid nitrogen and dried under vacuum. Then sputter was coated with gold in a cathodic evaporator. [12]. Solid-state characterization. Differential scanning calorimetric curve of pure carvedilol, polymer and mixture of drug and polymer measurement were ...

  9. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.

    Science.gov (United States)

    Savarala, Sushma; Monson, Frederick; Ilies, Marc A; Wunder, Stephanie L

    2011-05-17

    Control of the stabilization/destabilization of supported lipid bilayers (SLBs) on nanoparticles is important for promotion of their organized assembly and for their use as delivery vehicles. At the same time, understanding the mechanism of these processes can yield insight into nanoparticle-cell interactions and nanoparticle toxicity. In this study, the suspension/precipitation process of zwitterionic lipid/SiO(2) nanosystems was analyzed as a function of ionic strength and as a function of the ratio of lipid/SiO(2) surface areas, at pH = 7.6. Salt is necessary to induce supported lipid bilayer (SLB) formation for zwitterionic lipids on silica (SiO(2)) (Seantier, B.; Kasemo, B., Influence of Mono- and Divalent Ions on the Formation of Supported Phospholipid Bilayers via Vesicle Adsorption. Langmuir 2009, 25 (10), 5767-5772). However, for zwitterionic SLBs on SiO(2) nanoparticles, addition of salt can cause precipitation of the SLBs, due to electrostatic shielding by both the lipid and the salt and to the suppression of thermal undulation/protrusion repulsive forces for lipids on solid surfaces. At ionic strengths that cause precipitation of SLBs, it was found that addition of excess SUVs, at ratios where there were equal populations of SUVs and SLBs, restored the undulation/protrusion repulsive forces and restabilized the suspensions. We suggest that SUVs separate SLBs in the suspension, as observed by TEM, and that SLB-SLB interactions are replaced by SLB-SUV interactions. Decreasing the relative amount of lipid, to the extent that there was less lipid available than the amount required for complete bilayer coverage of the SiO(2), resulted in precipitation of the nanosystem by a process of nanoparticle lipid bridging. For this case, we postulate a process in which lipid bilayer patches on one nanoparticle collide with bare silica patches on another SiO(2) nanoparticle, forming a single bilayer bridge between them. TEM data confirmed these findings, thus

  10. Novel biomedical applications of supported lipid bilayers

    NARCIS (Netherlands)

    van Weerd, Jasper

    2015-01-01

    Studying and steering cell behaviour on artificial surfaces is challenged by the correct presentation of ligands and interaction with cells. Cell membrane mimics such as supported lipid bilayers (SLBs) offer unique possibilities in this field. For example, ligands that are displayed on SLBs can move

  11. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids

    DEFF Research Database (Denmark)

    Wei, Wei; Lu, Xiaonan; Wang, Zegao

    2017-01-01

    HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect...... the smallest mean size (∼100nm with PdI of 0.26). In addition, they displayed high entrapment efficiency of fenofibrate (95%) and long term drug release. Nanocarriers prepared by emulsification-diffusion method entrapped fenofibrate into lipid bilayers. In contrast, Nanocarriers prepared by melting......-probe sonication method had a micelle structure with fenofibrate incorporated into a lipid monolayer. This study provides an insight into the systematic development of novel amphiphilic lipids for solid lipid-based drug delivery system....

  12. Preparation of solid lipid nanoparticles using a membrane contactor.

    Science.gov (United States)

    Charcosset, Catherine; El-Harati, Assma; Fessi, Hatem

    2005-11-02

    Solid lipid nanoparticles (SLN) were introduced at the beginning of the 1990s, as an alternative to solid nanoparticles, emulsions and liposomes in cosmetic and pharmaceutical preparations. The present study investigates a new process for the preparation of SLN using a membrane contactor. The lipid phase is pressed, at a temperature above the melting point of the lipid, through the membrane pores allowing the formation of small droplets. The aqueous phase circulates inside the membrane module, and sweeps away the droplets forming at the pore outlets. SLN are formed by the following cooling of the preparation to room temperature. The influence of process parameters (aqueous phase and lipid phase temperatures, aqueous phase cross-flow velocity and lipid phase pressure, membrane pore size) on the SLN size and on the lipid phase flux is investigated. It is shown that the membrane contactor allows the preparation of SLN with a lipid phase flux between 0.15 and 0.35 m3/h m2, and a mean SLN size between 70 and 215 nm. The advantages of this new process are its facility of use, the control of the SLN size by an appropriate choice of process parameters, and its scaling-up abilities.

  13. Phase behavior of supported lipid bilayers: A systematic study by coarse-grained molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poursoroush, Asma; Sperotto, Maria Maddalena; Laradji, Mohamed

    2017-01-01

    Solid-supported lipid bilayers are utilized by experimental scientists as models for biological membranes because of their stability. However, compared to free standing bilayers, their close proximity to the substrate may affect their phase behavior. As this is still poorly understood, and few...... computational studies have been performed on such systems thus far, here we present the results from a systematic study based on molecular dynamics simulations of an implicit-solvent model for solid-supported lipid bilayers with varying lipid-substrate interactions. The attractive interaction between...

  14. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    Science.gov (United States)

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  15. Preparation and characterization of citral-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Tian, Huaixiang; Lu, Zhuoyan; Li, Danfeng; Hu, Jing

    2018-05-15

    Citral-loaded solid lipid nanoparticles (citral-SLNs) were prepared via a high-pressure homogenization method, using glyceryl monostearate (GMS) as the solid lipid and a mixture of Tween 80 (T-80) and Span 80 (S-80) at a weight ratio of 1:1 as the surfactant. The microstructure and properties of the citral-SLNs were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The chemical stability of citral in the citral-SLNs was analyzed by solid-phase microextraction gas chromatography (SPME-GC). The GC results showed that 67.0% of the citral remained in the citral-SLN suspensions after 12 days, while only 8.22% remained in the control. Therefore, the encapsulation of citral in the solid lipid can enhance its stability in acidic surroundings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids

    DEFF Research Database (Denmark)

    Wei, Wei; Lu, Xiaonan; Wang, Zegao

    2017-01-01

    HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect the...

  17. Solid Lipid Nanoparticles (SLNs) for Intracellular Targeting Applications

    OpenAIRE

    Calderón-Colón, Xiomara; Raimondi, Giorgio; Benkoski, Jason J.; Patrone, Julia B.

    2015-01-01

    Nanoparticle-based delivery vehicles have shown great promise for intracellular targeting applications, providing a mechanism to specifically alter cellular signaling and gene expression. In a previous investigation, the synthesis of ultra-small solid lipid nanoparticles (SLNs) for topical drug delivery and biomarker detection applications was demonstrated. SLNs are a well-studied example of a nanoparticle delivery system that has emerged as a promising drug delivery vehicle. In this study, S...

  18. Preliminary Studies on Solid Lipid Microparticles of Loratadine for ...

    African Journals Online (AJOL)

    HP

    ... Duracher L, Baux C, Vian L, Marti-Mestres. G. Benzophenone-3 entrapped in solid lipid microspheres: Formulation and in vitro skin evaluation. Int J Pharm 2010; 400(1-2): 1-7. 9. Üner M, Gönüllü Ü, Yener G, Altınkurt T. A new approach for preparing a controlled release ketoprofen tablets by using beeswax. Farmaco.

  19. Supported lipid bilayers as templates to design manganese oxide ...

    Indian Academy of Sciences (India)

    This work reports on the preparation of nanoclusters of manganese oxide using biotemplating techniques. Supported lipid bilayers (SLBs) on quartz using cationic lipid [Dioctadecyldimethylammonium bromide (DOMA)] and mixed systems with neutral phospholipids dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl ...

  20. Critical point fluctuations in supported lipid membranes.

    Science.gov (United States)

    Connell, Simon D; Heath, George; Olmsted, Peter D; Kisil, Anastasia

    2013-01-01

    In this paper, we demonstrate that it is possible to observe many aspects of critical phenomena in supported lipid bilayers using atomic force microscopy (AFM) with the aid of stable and precise temperature control. The regions of criticality were determined by accurately measuring and calculating phase diagrams for the 2 phase L(d)-L(o) region, and tracking how it moves with temperature, then increasing the sampling density around the estimated critical regions. Compositional fluctuations were observed above the critical temperature (T(c)) and characterised using a spatial correlation function. From this analysis, the phase transition was found to be most closely described by the 2D Ising model, showing it is a critical transition. Below T(c) roughening of the domain boundaries occurred due to the reduction in line tension close to the critical point. Smaller scale density fluctuations were also detected just below T(c). At T(c), we believe we have observed fluctuations on length scales greater than 10 microm. The region of critically fluctuating 10-100 nm nanodomains has been found to extend a considerable distance above T(c) to temperatures within the biological range, and seem to be an ideal candidate for the actual structure of lipid rafts in cell membranes. Although evidence for this idea has recently emerged, this is the first direct evidence for nanoscale domains in the critical region.

  1. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification.

    Science.gov (United States)

    Akhoond Zardini, Ali; Mohebbi, Mohebbat; Farhoosh, Reza; Bolurian, Shadi

    2018-01-01

    In this study, lycopene, was loaded on nanostructured lipid carrier and solid lipid nanoparticles using combination of high shear homogenization and ultrasonication method. Effect of applied lipids types, nanocarrier's type and lycopene loading on physicochemical properties of developed nanocarriers were studied. Particle sizes of developed nanocarriers were between 74.93 and 183.40 nm. Encapsulation efficiency of nanostructured lipid carrier was significantly higher than solid lipid nanoparticles. Morphological study of developed nanocarriers using scanning electron microscopy showed spherical nanoparticles with smooth surface. Lycopene was entrapped in nanocarriers without any chemical interaction with coating material according to Fourier transform infrared spectroscopy spectrum and differential scanning calorimetry thermogram. Glycerol monostearate containing nanoparticles showed phase separation after 30 days in 6 and 25 °C, whereas this event was not observed in nanosuspensions that produced by glycerol distearate. Lycopene release in gastrointestinal condition was studied by the dialysis bag method. To evaluate nanocarrier's potential for food fortification, developed lycopene-loaded nanocarriers were added to orange drink. Results of sensory analysis indicated that nanoencapsulation could obviate the poor solubility and tomato after taste of lycopene. Fortified sample with lycopene nanocarriers didn't show significant difference with blank orange drink sample except in orange odor.

  2. Solid Lipid Nanoparticles of Guggul Lipid as Drug Carrier for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2013-01-01

    Full Text Available Diclofenac sodium loaded solid lipid nanoparticles (SLNs were formulated using guggul lipid as major lipid component and analyzed for physical parameters, permeation profile, and anti-inflammatory activity. The SLNs were prepared using melt-emulsion sonication/low temperature-solidification method and characterized for physical parameters, in vitro drug release, and accelerated stability studies, and formulated into gel. Respective gels were compared with a commercial emulgel (CEG and plain carbopol gel containing drug (CG for ex vivo and in vivo drug permeation and anti-inflammatory activity. The SLNs were stable with optimum physical parameters. GMS nanoparticle 1 (GMN-1 and stearic acid nanoparticle 1 (SAN-1 gave the highest in vitro drug release. Guggul lipid nanoparticle gel 3 (GLNG-3 showed 104.68 times higher drug content than CEG in receptor fluid. The enhancement ratio of GLNG-3 was 39.43 with respect to CG. GLNG-3 showed almost 8.12 times higher Cmax than CEG at 4 hours. The AUC value of GLNG-3 was 15.28 times higher than the AUC of CEG. GLNG-3 showed edema inhibition up to 69.47% in the first hour. Physicochemical properties of major lipid component govern the properties of SLN. SLN made up of guggul lipid showed good physical properties with acceptable stability. Furthermore, it showed a controlled drug release profile along with a promising permeation profile.

  3. Rupture and Spreading Dynamics of Lipid Membranes on a Solid Surface

    Science.gov (United States)

    Perazzo, Antonio; Shin, Sangwoo; Colosqui, Carlos; Young, Yuan-Nan; Stone, Howard A.

    2017-11-01

    The spreading of lipid membranes on solid surfaces is a dynamic phenomenon relevant to drug delivery, endocytosis, biofouling, and the synthesis of supported lipid bilayers. Current technological developments are limited by an incomplete understanding of the spreading and adhesion dynamics of a lipid bilayer under different physicochemical conditions. Here, we present recent experimental and theoretical results for the spreading of giant unilamellar vesicles (GUVs), where the vesicle shell consists of a lipid bilayer. In particular, we study the effect of different background ion concentrations, osmolarity mismatches between the interior and the exterior of the vesicles, and different surface chemistries of the glass substrate. In all of the studied cases, we observe a delay time before a GUV in contact with the solid surface eventually ruptures. The rupture kinetics and subsequent spreading dynamics is controlled by the ionic screening within the thin film of liquid between the vesicle and the surface. Different rupture mechanisms, mobilities of the spreading vesicle, and degrees of substrate coverage are observed by varying the electrolyte concentration, solid surface charge, and osmolarity mismatch.

  4. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique

    Directory of Open Access Journals (Sweden)

    Marina Gallarate

    2011-01-01

    Full Text Available Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can act in vitro as a sustained release system for peptide.

  5. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chuan Junlan [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Li Yanzhen [Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics (China); Yang Likai; Sun Xun [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Zhang Qiang [Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences (China); Gong Tao, E-mail: gongtaoy@126.com; Zhang Zhirong, E-mail: zrzzl@vip.sina.com [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China)

    2013-05-15

    The present study aimed at developing a drug delivery system targeting the densest site of tuberculosis infection, the alveolar macrophages (AMs). Rifampicin (RFP)-loaded solid lipid nanoparticles (RFP-SLNs) with an average size of 829.6 {+-} 16.1 nm were prepared by a modified lipid film hydration method. The cytotoxicity of RFP-SLNs to AMs and alveolar epithelial type II cells (AECs) was examined using MTT assays. The viability of AMs and AECs was above 80 % after treatment with RFP-SLNs, which showed low toxicity to both AMs and AECs. Confocal Laser Scanning Microscopy was employed to observe the interaction between RFP-SLNs and both AMs and AECs. After incubating the cells with RFP-SLNs for 2 h, the fluorescent intensity in AMs was more and remained longer (from 0.5 to 12 h) when compared with that in AECs (from 0.5 to 8 h). In vitro uptake characteristics of RFP-SLNs in AMs and AECs were also investigated by detection of intracellular RFP by High performance liquid chromatography. Results showed that RFP-SLNs delivered markedly higher RFP into AMs (691.7 ng/mg in cultured AMs, 662.6 ng/mg in primary AMs) than that into AECs (319.2 ng/mg in cultured AECs, 287.2 ng/mg in primary AECs). Subsequently, in vivo delivery efficiency and the selectivity of RFP-SLNs were further verified in Sprague-Dawley rats. Under pulmonary administration of RFP-SLNs, the amount of RFP in AMs was significantly higher than that in AECs at each time point. Our results demonstrated that solid lipid nanoparticles are a promising strategy for the delivery of rifampicin to alveolar macrophages selectively.

  6. Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking

    Directory of Open Access Journals (Sweden)

    Markus Rose

    2015-11-01

    Full Text Available Diffusion in lipid membranes is an essential component of many cellular process and fluorescence a method of choice to study membrane dynamics. The goal of this work was to directly compare two common fluorescence methods, line-scanning fluorescence correlation spectroscopy and single-particle tracking, to observe the diffusion of a fluorescent lipophilic dye, DiD, in a complex five-component mitochondria-like solid-supported lipid bilayer. We measured diffusion coefficients of \\(D_{\\text{FCS}} \\sim\\ 3 \\(μ\\text{m}^2\\cdot\\text{s}^{-1}\\ and \\(D_{\\text{SPT}} \\sim\\ 2 \\( μ\\text{m}^2\\cdot\\text{s}^{-1}\\, respectively. These comparable, yet statistically different values are used to highlight the main message of the paper, namely that the two considered methods give access to distinctly different dynamic ranges: \\(D \\gtrsim\\ 1 \\(μ\\text{m}^2\\cdot\\text{s}^{-1}\\ for FCS and \\(D \\lesssim\\ 5 \\(μ\\text{m}^2\\cdot\\text{s}^{-1}\\ for SPT (with standard imaging conditions. In the context of membrane diffusion, this means that FCS allows studying lipid diffusion in fluid membranes, as well as the diffusion of loosely-bound proteins hovering above the membrane. SPT, on the other hand, is ideal to study the motions of membrane-inserted proteins, especially those presenting different conformations, but only allows studying lipid diffusion in relatively viscous membranes, such as supported lipid bilayers and cell membranes.

  7. Formation of supported lipid bilayers by vesicle fusion

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup; Cardenas Gomez, Marite; Wacklin, Hanna

    2014-01-01

    phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid......We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main...... bilayers formed below or above Tmby neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses...

  8. Supported lipid bilayers as templates to design manganese oxide ...

    Indian Academy of Sciences (India)

    dioleoyl phosphatidylcholine (DOPC) have been used as templates to synthesize these nanoparticles in a water- based medium at room ... Keywords. Manganese oxide; supported lipid bilayers; nanoparticles; organized assemblies. 1. Introduction .... before coating with two layers of the lipid DOMA,. DOMA+DPPC or ...

  9. Topical Amphotericin B solid lipid nanoparticles: Design and development.

    Science.gov (United States)

    Butani, Dhruv; Yewale, Chetan; Misra, Ambikanandan

    2016-03-01

    The present work is focused on design and development of topical Amphotericin B solid lipid nanoparticles (SLNs) to improve the therapeutic antifungal activity. Amphotericin B loaded SLNs were prepared by novel solvent diffusion method and were characterized for particle size, zeta potential, drug entrapment, surface morphology, in vitro antifungal activity, ex vivo permeation, retention and skin-irritation. Optimized SLNs were spherical with average size of 111.1±2.2nm, zeta potential of -23.98±1.36mV and 93.8±1.8% of drug entrapment. Characterization of Amphotericin B SLNs by differential scanning calorimetry, Fourier transform infrared spectroscopy and Powder X-ray diffraction studies revealed absence of interaction between Amphotericin B and lipid. Amphotericin B is well dispersed in the lipid matrix without any crystallization. The SLNs were lyophilized with and without cryoprotectants to evaluate the stability and it was observed that the particle size of the SLNs significantly increased in SLN formulations lyophilized without cryoprotectant. The optimized SLN 5 formulation exhibited 2 fold higher drug permeation as compared to plain drug dispersion and higher zone of inhibition in Trichophyton rubrum fungal species. Formulation was found to be stable at 2-8°C and 25±2°C for the period of three months. Results of present study indicate that SLNs are suitable carriers for entrapment of poorly water soluble drugs and for enhancement of therapeutic efficacy of antifungal drug. Copyright © 2015. Published by Elsevier B.V.

  10. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  11. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures.

    Science.gov (United States)

    Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P

    2013-10-03

    infection. The present study shows that HFPmn_V2E induces much less vesicle fusion than HFPmn. "HFPtr" contained three strands with HFPmn sequence that were chemically cross-linked near their C-termini. HFPtr mimics the trimeric topology of gp41 and induces much more rapid and extensive vesicle fusion than HFPmn. For HFPmn and HFPtr, well-resolved α and β peaks were observed for A6-, L9-, and L12-labeled samples. For each of these samples, there were similar HFP (13)CO to lipid (31)P proximities in the α and β structures, which evidenced comparable membrane locations of the HFP in either structure including insertion into a single membrane leaflet. The data were also consistent with deeper insertion of HFPtr relative to HFPmn in both the α and β structures. The results supported a strong correlation between the membrane insertion depth of the HFP and its fusogenicity. More generally, the results supported membrane location of the HFP as an important determinant of its fusogenicity. The deep insertion of HFPtr in both the α and β structures provides the most relevant membrane location of the FP for HIV gp41-catalyzed membrane fusion because HIV gp41 is natively trimeric. Well-resolved α and β signals were observed in the HFPmn_V2E samples with L9- and L12- but not A6-labeling. The α signals were much more dominant for L9- and L12-labeled HFPmn_V2E than the corresponding HFPmn or HFPtr. The structural model for the less fusogenic HFPmn_V2E includes a shorter helix and less membrane insertion than either HFPmn or HFPtr. This greater helical population and different helical structure and membrane location could result in less membrane perturbation and lower fusogenicity of HFPmn_V2E and suggest that the β sheet fusion peptide is the most functionally relevant structure of HFPmn, HFPtr, and gp41.

  12. Solid-State Nuclear Magnetic Resonance Measurements of HIV Fusion Peptide 13CO to Lipid 31P Proximities Support Similar Partially Inserted Membrane Locations of the α Helical and β Sheet Peptide Structures

    Science.gov (United States)

    Gabrys, Charles M.; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D.; Weliky, David P.

    2013-10-01

    present study shows that HFPmn_V2E induces much less vesicle fusion than HFPmn. -HFPtr- contained three strands with HFPmn sequence that were chemically cross-linked near their C-termini. HFPtr mimics the trimeric topology of gp41 and induces much more rapid and extensive vesicle fusion than HFPmn. For HFPmn and HFPtr, well-resolved α and - peaks were observed for A6-, L9-, and L12-labeled samples. For each of these samples, there were similar HFP 13CO to lipid 31P proximities in the α and - structures, which evidenced comparable membrane locations of the HFP in either structure including insertion into a single membrane leaflet. The data were also consistent with deeper insertion of HFPtr relative to HFPmn in both the α and - structures. The results supported a strong correlation between the membrane insertion depth of the HFP and its fusogenicity. More generally, the results supported membrane location of the HFP as an important determinant of its fusogenicity. The deep insertion of HFPtr in both the α and - structures provides the most relevant membrane location of the FP for HIV gp41-catalyzed membrane fusion because HIV gp41 is natively trimeric. Well-resolved α and - signals were observed in the HFPmn_V2E samples with L9- and L12- but not A6-labeling. The α signals were much more dominant for L9- and L12-labeled HFPmn_V2E than the corresponding HFPmn or HFPtr. The structural model for the less fusogenic HFPmn_V2E includes a shorter helix and less membrane insertion than either HFPmn or HFPtr. This greater helical population and different helical structure and membrane location could result in less membrane perturbation and lower fusogenicity of HFPmn_V2E and suggest that the - sheet fusion peptide is the most functionally relevant structure of HFPmn, HFPtr, and gp41.

  13. Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Kresten Bertelsen

    Full Text Available There is a considerable interest in understanding the function of antimicrobial peptides (AMPs, but the details of their mode of action is not fully understood. This motivates extensive efforts in determining structural and mechanistic parameters for AMP's interaction with lipid membranes. In this study we show that oriented-sample (31P solid-state NMR spectroscopy can be used to probe the membrane perturbations and disruption by AMPs. For two AMPs, alamethicin and novicidin, we observe that the majority of the lipids remain in a planar bilayer conformation but that a number of lipids are involved in the peptide anchoring. These lipids display reduced dynamics. Our study supports previous studies showing that alamethicin adopts a transmembrane arrangement without significant disturbance of the surrounding lipids, while novicidin forms toroidal pores at high concentrations leading to more extensive membrane disturbance.

  14. Solid lipid particles for oral delivery of peptide and protein drugs I - Elucidating the release mechanism of lysozyme during lipolysis

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten B; Zhang, L.; Yang, M

    2013-01-01

    The mechanism of protein release from solid lipid particles was investigated by a new lipolysis model in a biorelevant medium containing both bile salts and phospholipids. Lysozyme, a model protein, was formulated into solid lipid particles using four different types of lipids, two triglycerides ...... the drug release mechanism from solid lipid particles and can potentially be used in rational selection of lipid excipients for oral delivery of peptide/protein drugs....

  15. Solid Lipid Nanoparticles (SLNs) for Intracellular Targeting Applications

    Science.gov (United States)

    Calderón-Colón, Xiomara; Raimondi, Giorgio; Benkoski, Jason J.; Patrone, Julia B.

    2015-01-01

    Nanoparticle-based delivery vehicles have shown great promise for intracellular targeting applications, providing a mechanism to specifically alter cellular signaling and gene expression. In a previous investigation, the synthesis of ultra-small solid lipid nanoparticles (SLNs) for topical drug delivery and biomarker detection applications was demonstrated. SLNs are a well-studied example of a nanoparticle delivery system that has emerged as a promising drug delivery vehicle. In this study, SLNs were loaded with a fluorescent dye and used as a model to investigate particle-cell interactions. The phase inversion temperature (PIT) method was used for the synthesis of ultra-small populations of biocompatible nanoparticles. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylphenyltetrazolium bromide (MTT) assay was utilized in order to establish appropriate dosing levels prior to the nanoparticle-cell interaction studies. Furthermore, primary human dermal fibroblasts and mouse dendritic cells were exposed to dye-loaded SLN over time and the interactions with respect to toxicity and particle uptake were characterized using fluorescence microscopy and flow cytometry. This study demonstrated that ultra-small SLNs, as a nanoparticle delivery system, are suitable for intracellular targeting of different cell types. PMID:26650036

  16. Solid lipid nanoparticles for delivery of Calendula officinalis extract.

    Science.gov (United States)

    Arana, Lide; Salado, Clarisa; Vega, Sandra; Aizpurua-Olaizola, Oier; de la Arada, Igor; Suarez, Tatiana; Usobiaga, Aresatz; Arrondo, José Luis R; Alonso, Alicia; Goñi, Félix M; Alkorta, Itziar

    2015-11-01

    Solid lipid nanoparticles (SLN) composed of long-chain fatty acids (palmitic acid, stearic acid or arachidic acid), Epikuron 200 (purified phosphatidylcholine), and bile salts (cholate, taurocholate or taurodeoxycholate) have been prepared by dilution of a microemulsion. A total of five different systems were prepared, and characterized by photon correlation spectroscopy, transmission electron microscopy, differential scanning calorimetry, and infrared spectroscopy. The SLN formulation showing optimal properties (lowest size and polydispersity index and highest zeta potential) was obtained with stearic acid and taurodeoxycholate as cosurfactant. This formulation was loaded with Calendula officinalis extract, a natural compound used on ophthalmic formulations given its anti-inflammatory, emollient, and wound repairing activity. Calendula-loaded SLN preparations were characterized in order to determine loading capacity and entrapment efficiency. In vitro cytotoxicity and wound healing efficacy of Calendula-loaded SLN compared to that of a free plant extract were evaluated on a conjunctival epithelium cell line WKD. Our results suggest that this SLN formulation is a safe and solvent-free Calendula extract delivery system which could provide a controlled therapeutic alternative for reducing disease-related symptoms and improving epithelium repair in ocular surface. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Lipid exchange and transfer on nanoparticle supported lipid bilayers: effect of defects, ionic strength, and size.

    Science.gov (United States)

    Drazenovic, Jelena; Ahmed, Selver; Tuzinkiewicz, Nicole-Marie; Wunder, Stephanie L

    2015-01-20

    Lipid exchange/transfer has been compared for zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (DMPC) small unilamellar vesicles (SUVs) and for the same lipids on silica (SiO2) nanoparticle supported lipid bilayers (NP-SLBs) as a function of ionic strength, temperature, temperature cycling, and NP size, above the main gel-to-liquid crystal phase transition temperature, Tm, using d- and h-DMPC and DPPC. Increasing ionic strength decreases the exchange kinetics for the SUVs, but more so for the NP-SLBs, due to better packing of the lipids and increased attraction between the lipid and support. When the NP-SLBs (or SUVs) are cycled above and below Tm, the exchange rate increases compared with exchange at the same temperature without cycling, for similar total times, suggesting that defects provide sites for more facile removal and thus exchange of lipids. Defects can occur: (i) at the phase boundaries between coexisting gel and fluid phases at Tm; (ii) in bare regions of exposed SiO2 that form during NP-SLB formation due to mismatched surface areas of lipid and NPs; and (iii) during cycling as the result of changes in area of the lipids at Tm and mismatched thermal expansion coefficient between the lipids and SiO2 support. Exchange rates are faster for NP-SLBs prepared with the nominal amount of lipid required to form a NP-SLB compared with NP-SLBs that have been prepared with excess lipids to minimize SiO2 patches. Nanosystems prepared with equimolar mixtures of NP-SLBs composed of d-DMPC (d(DMPC)-NP-SLB) and SUVs composed of h-DMPC (h(DMPC)-SUV) show that the calorimetric transition of the "donor" h(DMPC)-SUV decreases in intensity without an initial shift in Tm, indicating that the "acceptor" d(DMPC)-NP-SLB can accommodate more lipids, through either further fusion or insertion of lipids into the distal monolayer. Exchange for d/h(DMPC)-NP-SLB is in the order 100 nm SiO2 > 45 nm SiO2 > 5 nm SiO2.

  18. Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery

    Directory of Open Access Journals (Sweden)

    Gönüllü Ümit

    2015-03-01

    Full Text Available Solid lipid nanoparticles (SLN, nanostructured lipid carriers (NLC and nanoemulsion (NE of lornoxicam (LRX were prepared for the treatment of painful and inflammatory conditions of the skin. Compritol® 888 ATO, Lanette® O and oleic acid were used as solid and liquid lipids. SLN, NLC and NE were found physically stable at various temperatures for 6 months. Case I diffusional drug release was detected as the dominant mechanism indicating Fickian drug diffusion from nanoparticles and nanoemulsion. The highest rate of drug penetration through rat skin was obtained with NE followed by NLC, SLN and a gel formulation. Nanoformulations significantly increased drug penetration through rat skin compared to the gel (p < 0.05. Thus, SLN, NLC and NE of LRX can be suggested for relieving painful and inflammatory conditions of the skin

  19. New Approach to Solid Lipid Microparticles USING Biocompatible ...

    African Journals Online (AJOL)

    Tallowation refers to the modification of lipid molecules using tallow fat while P90Gylation is the modification of lipid molecules by one or more phospholipid chains. Phospholipon® 90G (P90G) contains about 94.0 % of phosphatidylcholine stabilized with 0.1 % ascorbyl palmitate and is parenterally safe (GRAS) FDA ...

  20. Effect of support corrugation on silica xerogel--supported phase-separated lipid bilayers.

    Science.gov (United States)

    Goksu, Emel I; Nellis, Barbara A; Lin, Wan-Chen; Satcher, Joe H; Groves, Jay T; Risbud, Subhash H; Longo, Marjorie L

    2009-04-09

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations hold interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g., porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, lateral diffusion coefficient, and lipid density in comparison to mica-supported lipid bilayers were characterized by atomic force microscopy, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the silica xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface in the fluid regions. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of fluid lipids on silica xerogel (approximately 1.7 microm2/s) is lower than on mica (approximately 3.9 microm2/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on silica xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase lipid bilayer that penetrates approximately midway into the first layer of approximately 50 nm silica xerogel beads.

  1. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two-co...

  2. Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.

    Science.gov (United States)

    Zhang, Jianguo; Hu, Bo

    2012-02-01

    Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

  3. Optimization of {beta}-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Michael D., E-mail: triplettm@battelle.or [Battelle Memorial Institute, Health and Life Sciences Global Business (United States); Rathman, James F. [The Ohio State University, Department of Chemical and Biomolecular Engineering (United States)

    2009-04-15

    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, {beta}-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of {beta}-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. {beta}-Carotene entrapment efficiency averaged 40%. {beta}-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  4. Phase transition process in DDAB supported lipid bilayer

    Science.gov (United States)

    Isogai, Takumi; Nakada, Sakiko; Yoshida, Naoya; Sumi, Hayato; Tero, Ryugo; Harada, Shunta; Ujihara, Toru; Tagawa, Miho

    2017-06-01

    We report the results of microscope measurements examining the phase transition process of a cationic lipid, Dimethyldioctadecylammonium bromide (DDAB) supported lipid bilayer (SLB). Due to lateral fluidity and strong electrostatic interaction with DNA, SLB serves as a fluid substrate for assembling 2D lattices of DNA functionalized nanoparticles (DNA-NPs): lipid molecules work as carriers for transporting DNA-NPs. By fluorescence microscopy and atomic force microscopy (AFM), two types of phase transitions, which correspond to liquid crystalline-gel and liquid crystalline-interdigitated gel (LβI) ones, were observed in DDAB SLB during cooling. In thermal equilibrium at room temperature both gel and LβI phases have enough adsorbed amounts of DNA-NPs which indicate that both domains have enough surface charge densities for adsorbing DNA-NPs, however, during phase transition DNA-NPs preferably distributed into LβI phase.

  5. Determination of solid state characteristics of spray-congealed Ibuprofen solid lipid microparticles and their impact on sustaining drug release.

    Science.gov (United States)

    Wong, Priscilla Chui Hong; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-05-04

    This study was used to find solid state characteristics of ibuprofen loaded spray-congealed solid lipid microparticles (SLMs) by employing simple lipids as matrices, with or without polymeric additives, and the impact of solid drug-matrix miscibility on sustaining drug release. Solid miscibility of ibuprofen with two lipids, cetyl alcohol (CA) and stearic acid (SA), were investigated using differential scanning calorimetry (DSC). SLMs containing 20% w/w ibuprofen with or without polymeric additives, PVP/VA and EC, were produced by spray congealing, and the resultant microparticles were subjected to visual examination by scanning electron microscopy (SEM), thermal analysis using DSC, and hot-stage microscopy. Intermolecular interactions between lipids and drug as well as additives were investigated by Fourier-transformed infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). X-ray diffractometry (XRD) was utilized to study polymorphic changes of drug and matrix over the course of a year. Ibuprofen was found to depress the melting points of CA and SA in a colligative manner, reaching maximum solubility at 10% w/w and 30% w/w for CA and SA, respectively. Drug encapsulation efficiencies and yields of spray-congealed SLMs containing 20% w/w ibuprofen were consistently high for both lipid matrices. CA and SA were found to adopt their stable γ- and β-polymorphs, respectively, immediately after spray congealing. The spray congealing process resulted in ibuprofen adopting an amorphous or poorly crystalline state, with no further changes over the course of a year. SEM, DSC, and hot stage microscope studies on the SLMs confirmed the formation of a solid dispersion between ibuprofen and CA and a solid solution between ibuprofen and SA. SA was found to sustain the release of ibuprofen significantly better than CA. PVP/VA and EC showed some interactions with CA, which led to an expansion of unit cell dimensions of CA upon spray congealing, whereas they

  6. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers.

    Science.gov (United States)

    Gota, Vikram S; Maru, Girish B; Soni, Tejal G; Gandhi, Tejal R; Kochar, Nitin; Agarwal, Manish G

    2010-02-24

    Curcumin is the lipid-soluble antioxidant compound obtained from the rhizome of Curcuma longa Linn, also known as turmeric. Curcumin targets multiple chemotherapeutic and inflammatory pathways and has demonstrated safety and tolerability in humans, supporting its potential as a therapeutic agent; however, the clinical literature lacks conclusive evidence supporting its use as a therapeutic agent due to its low bioavailability in humans. The purpose of this study was to quantify plasma levels of free curcumin after dosing of a solid lipid curcumin particle (SLCP) formulation versus unformulated curcumin in healthy volunteers and to determine its tolerability and dose-plasma concentration relationship in late-stage osteosarcoma patients. Doses of 2, 3, and 4 g of SLCP were evaluated in 11 patients with osteosarcoma. Plasma curcumin levels were measured using a validated high-performance liquid chromatography method. The limit of detection of the assay was 1 ng/mL of curcumin. In healthy subjects, the mean peak concentration of curcumin achieved from dosing 650 mg of SLCP was 22.43 ng/mL, whereas plasma curcumin from dosing an equal quantity of unformulated 95% curcuminoids extract was not detected. In both healthy individuals and osteosarcoma patients, high interindividual variability in pharmacokinetics and nonlinear dose dependency was observed, suggesting potentially complex absorption kinetics. Overall, good tolerability was noted in both healthy and osteosarcoma groups.

  7. Density imbalances and free energy of lipid transfer in supported lipid bilayers

    Science.gov (United States)

    Xing, Chenyue; Faller, Roland

    2009-11-01

    Supported lipid bilayers are an abundant research platform for understanding the behavior of real cell membranes as they allow for additional mechanical stability and at the same time have a fundamental structure approximating cell membranes. However, in computer simulations these systems have been studied only rarely up to now. An important property, which cannot be easily determined by molecular dynamics or experiments, is the unsymmetrical density profiles of bilayer leaflets (density imbalance) inflicted on the membrane by the support. This imbalance in the leaflets composition has consequences for membrane structure and phase behavior, and therefore we need to understand it in detail. The free energy can be used to determine the equilibrium structure of a given system. We employ an umbrella sampling approach to obtain the free energy of a lipid crossing the membrane (i.e., lipid flip-flop) as a function of bilayer composition and hence the equilibrium composition of the supported bilayers. In this paper, we use a variant of the coarse-grained Martini model. The results of the free energy calculation lead to a 5% higher density in the proximal leaflet. Recent data obtained by large scale modeling using a water free model suggested that the proximal leaflet had 3.2% more lipids than the distal leaflet [Hoopes et al., J. Chem. Phys. 129, 175102 (2008)]. Our findings are in line with these results. We compare results of the free energy of transport obtained by pulling the lipid across the membrane in different ways. There are small quantitative differences, but the overall picture is consistent. We additionally characterize the intermediate states, which determine the barrier height and therefore the rate of translocation. Calculations on unsupported bilayers are used to validate the approach and to determine the barrier to flip-flop in a free membrane.

  8. Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes.

    Science.gov (United States)

    Blachon, Florence; Harb, Frédéric; Munteanu, Bogdan; Piednoir, Agnès; Fulcrand, Rémy; Charitat, Thierry; Fragneto, Giovanna; Pierre-Louis, Olivier; Tinland, Bernard; Rieu, Jean-Paul

    2017-03-07

    In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bilayers, a unique biomimetic model, deposited on etched surfaces bearing nanometric corrugations. The surface roughness and mean curvature are carefully characterized by AFM imaging using ultrasharp tips. Neutron specular reflectivity supplements this surface characterization and indicates that the bilayers follow the large-scale corrugations of the substrate. We measure the lateral mobility of lipids in both the fluid and gel phases by fluorescence recovery after patterned photobleaching. Although the mobility is independent of the roughness in the gel phase, it exhibits a 5-fold decrease in the fluid phase when the roughness increases from 0.2 to 10 nm. These results are interpreted with a two-phase model allowing for a strong decrease in the lipid mobility in highly curved or defect-induced gel-like nanoscale regions. This suggests a strong link between membrane curvature and fluidity, which is a key property for various cell functions such as signaling and adhesion.

  9. Sesamol loaded solid lipid nanoparticles: a promising intervention for control of carbon tetrachloride induced hepatotoxicity

    OpenAIRE

    Singh, Neha; Khullar, Neeraj; Kakkar, Vandita; Kaur, Indu Pal

    2015-01-01

    Background Sesamol, a component of sesame seed oil, exhibited significant antioxidant activity in a battery of in vitro and ex vivo tests including lipid peroxidation induced in rat liver homogenates. Latter established its potential for hepatoprotection. However, limited oral bioavailability, fast elimination (as conjugates) and tendency towards gastric irritation/toxicity (especially forestomach of rodents) may limit its usefulness. Presently, we packaged sesamol into solid lipid nanopartic...

  10. Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Shen, Shoucang; Kim, Sanggu; Tan, Reginald B H

    2012-06-01

    This work aimed at developing continuous and scalable nanoprecipitation synthesis of solid lipid nanoparticles (SLN) by mixing lipids acetonic solution with water using static mixers. The developed platform exhibited good control over the nanoprecipitation process and enabled the production of SLN below 200 nm at a throughput of 37.5-150 g/h (for 25 mg/ml lipid solution at a flow rate of 25-100 ml/min). Among the several process parameters investigated, the lipid concentration played primary role in influencing the size of the SLN and higher lipid concentration resulted in relatively larger particles. Fenofibrate, a model drug, has been successfully loaded into the SLN. Our work demonstrates the potential of applying static mixing-nanoprecipitation for continuous and large scale production of SLN. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  12. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham Medical Research Institute (United States)

    2015-04-15

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396–10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure–activity correlation experiments across a wide range of timescales.

  13. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers.

    Science.gov (United States)

    El-Salamouni, Noha S; Farid, Ragwa M; El-Kamel, Amal H; El-Gamal, Safaa S

    2015-12-30

    Nanoparticulate delivery systems have recently been under consideration for topical ophthalmic drug delivery. Brimonidine base-loaded solid lipid nanoparticles and nanostructured lipid carrier formulations were prepared using glyceryl monostearate as solid lipid and were evaluated for their physical stability following sterilization by autoclaving at 121°C for 15min. The objective of this work was to evaluate the effect of autoclaving on the physical appearance, particle size, polydispersity index, zeta potential, entrapment efficiency and particle morphology of the prepared formulations, compared to non-autoclaved ones. Results showed that, autoclaving at 121°C for 15min allowed the production of physically stable formulations in nanometric range, below 500nm suitable for ophthalmic application. Moreover, the autoclaved samples appeared to be superior to non-autoclaved ones, due to their increased zeta potential values, indicating a better physical stability. As well as, increased amount of brimonidine base entrapped in the tested formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor.

    Science.gov (United States)

    El-Harati, Assma Ahmed; Charcosset, Catherine; Fessi, Hatem

    2006-01-01

    Solid lipid nanoparticles (SLN) were introduced in the 1990s as an alternative to microemulsions, polymeric nanoparticles, and liposomes. The SLN are reported to have several advantages, i.e., their biocompatibility and their controlled and targeted drug release. In this paper, we present a new process for the preparation of SLN using a membrane contactor to allow large scale production. The lipid phase is pressed, at a temperature above the melting point of the lipid, through the membrane pores allowing the formation of small droplets. The lipid droplets are then detached from the membrane pores by the aqueous phase flowing tangentially to the membrane surface. The SLN are formed by the following cooling of the preparation below the lipid melting point. The influence of the aqueous phase and lipid phase formulations on the lipid phase flux and on the SLN size are studied. It is shown that SLN are obtained with a lipid phase flux between 0.21 and 0.27 m3/h.m2, SLN size between 175 and 260 nm. The advantages of this new process are demonstrated to be its facility of use and its scaling-up ability.

  15. Solid lipid nanoparticles as nucleic acid delivery system : Properties and molecular mechanisms

    NARCIS (Netherlands)

    Bispo de Jesus, Marcelo; Zuhorn, Inge S.

    2015-01-01

    Solid lipid nanoparticles (SLNs) have been proposed in the 1990s as appropriate drug delivery systems, and ever since they have been applied in a wide variety of cosmetic and pharmaceutical applications. In addition, SLNs are considered suitable alternatives as carriers in gene delivery. Although

  16. Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA to dendritic cells

    Science.gov (United States)

    Penumarthi, Alekhya; Parashar, Deepti; Abraham, Amanda N.; Dekiwadia, Chaitali; Macreadie, Ian; Shukla, Ravi; Smooker, Peter M.

    2017-06-01

    There is an increasing demand for novel DNA vaccine delivery systems, mainly for the non-viral type as they are considered relatively safe. Therefore, solid lipid nanoparticles (SLNs) were investigated for their suitability as a non-viral DNA vaccine delivery system. SLNs were synthesised by a modified solvent-emulsification method in order to study their potential to conjugate with plasmid DNA and deliver them in vitro to dendritic cells using eGFP as the reporter plasmid. The DNA-SLN complexes were characterised by electron microscopy, gel retardation assays and dynamic light scattering. The cytotoxicity assay data supported their biocompatibility and was used to estimate safe threshold concentration resulting in high transfection rate. The transfection efficiency of these complexes in a dendritic cell line was shown to increase significantly compared to plasmid alone, and was comparable to that mediated by lipofectamine. Transmission electron microscopy studies delineated the pathway of cellular uptake. Endosomal escape was observed supporting the mechanism of transfection.

  17. Development of solid supports for electrochemical study of biomimetic membrane systems

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka

    Biomimetic membranes are model membrane systems used as an experimental tool to study fundamental cellular membrane physics and functionality of reconstituted membrane proteins. By exploiting the properties of biomimetic membranes resembling the functions of biological membranes, it is possible...... to construct biosensors for high-throughput screening of potential drug candidates. Among a variety of membrane model systems used for biomimetic approach, lipid bilayers in the form of black lipid membranes (BLMs) and lipo-polymersomes (vesicle structures composed of lipids and polymers), both...... with reconstituted membrane spanning proteins, are attractive tools. However, BLMs suffer from intrinsic fragility, therefore, requiring techniques to increase their robustness and stability. This PhD thesis presents strategies to construct solid supports for electrochemical studies of two biomimetic membrane...

  18. Development and Evaluation of Solid Lipid Nanoparticles of Raloxifene Hydrochloride for Enhanced Bioavailability

    Directory of Open Access Journals (Sweden)

    Anand Kumar Kushwaha

    2013-01-01

    Full Text Available Raloxifene hydrochloride (RL-HCL is an orally selective estrogen receptor modulator (SERM with poor bioavailability of nearly 2% due to its poor aqueous solubility and extensive first pass metabolism. In order to improve the oral bioavailability of raloxifene, raloxifene loaded solid lipid nanoparticles (SLN have been developed using Compritol 888 ATO as lipid carrier and Pluronic F68 as surfactant. Raloxifene loaded SLN were prepared by solvent emulsification/evaporation method, and different concentrations of surfactant, and homogenization speed were taken as process variables for optimization. SLN were characterized for particle size, zeta potential, entrapment efficiency, surface morphology, and crystallinity of lipid and drug. In vitro drug release studies were performed in phosphate buffer of pH 6.8 using dialysis bag diffusion technique. Particle sizes of all the formulations were in the range of 250 to 1406 nm, and the entrapment efficiency ranges from 55 to 66%. FTIR and DSC studies indicated no interaction between drug and lipid, and the XRD spectrum showed that RL-HCL is in amorphous form in the formulation. In vitro release profiles were biphasic in nature and followed Higuchi model of release kinetics. Pharmacokinetics of raloxifene loaded solid lipid nanoparticles after oral administration to Wistar rats was studied. Bioavailability of RL-HCL loaded SLN was nearly five times than that of pure RL-HCL.

  19. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability.

    Science.gov (United States)

    Kushwaha, Anand Kumar; Vuddanda, Parameswara Rao; Karunanidhi, Priyanka; Singh, Sanjay Kumar; Singh, Sanjay

    2013-01-01

    Raloxifene hydrochloride (RL-HCL) is an orally selective estrogen receptor modulator (SERM) with poor bioavailability of nearly 2% due to its poor aqueous solubility and extensive first pass metabolism. In order to improve the oral bioavailability of raloxifene, raloxifene loaded solid lipid nanoparticles (SLN) have been developed using Compritol 888 ATO as lipid carrier and Pluronic F68 as surfactant. Raloxifene loaded SLN were prepared by solvent emulsification/evaporation method, and different concentrations of surfactant, and homogenization speed were taken as process variables for optimization. SLN were characterized for particle size, zeta potential, entrapment efficiency, surface morphology, and crystallinity of lipid and drug. In vitro drug release studies were performed in phosphate buffer of pH 6.8 using dialysis bag diffusion technique. Particle sizes of all the formulations were in the range of 250 to 1406 nm, and the entrapment efficiency ranges from 55 to 66%. FTIR and DSC studies indicated no interaction between drug and lipid, and the XRD spectrum showed that RL-HCL is in amorphous form in the formulation. In vitro release profiles were biphasic in nature and followed Higuchi model of release kinetics. Pharmacokinetics of raloxifene loaded solid lipid nanoparticles after oral administration to Wistar rats was studied. Bioavailability of RL-HCL loaded SLN was nearly five times than that of pure RL-HCL.

  20. Lipid asymmetry in DLPC/DSPC supported lipid bilayers, a combined AFM and fluorescence microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W; Blanchette, C D; Ratto, T V; Longo, M L

    2005-06-20

    A fundamental attribute of cell membranes is transmembrane asymmetry, specifically the formation of ordered phase domains in one leaflet that are compositionally different from the opposing leaflet of the bilayer. Using model membrane systems, many previous studies have demonstrated the formation of ordered phase domains that display complete transmembrane symmetry but there have been few reports on the more biologically relevant asymmetric membrane structures. Here we report on a combined atomic force microscopy (AFM) and fluorescence microscopy study whereby we observe three different states of transmembrane symmetry in phase-separated supported bilayers formed by vesicle fusion. We find that if the leaflets differ in gel-phase area fraction, then the smaller domains in one leaflet are in registry with the larger domains in the other leaflet and the system is dynamic. In a presumed lipid flip-flop process similar to Ostwald Ripening, the smaller domains in one leaflet erode away while the large domains in the other leaflet grow until complete compositional asymmetry is reached and remains stable. We have quantified this evolution and determined that the lipid flip-flop event happens most frequently at the interface between symmetric and asymmetric DSPC domains. If both leaflets have nearly identical area fraction of gel-phase, gel-phase domains are in registry and are static in comparison to the first state. The stability of these three DSPC domain distributions, the degree of registry observed, and the domain immobility have direct biological significance with regards to maintenance of lipid asymmetry in living cell membranes, communication between inner leaflet and outer leaflet, membrane adhesion, and raft mobility.

  1. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

    Science.gov (United States)

    Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y

    2011-01-01

    Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508

  2. Encapsulation of solid dispersion in solid lipid particles for dissolution enhancement of poorly water-soluble drug.

    Science.gov (United States)

    Tran, Khanh Thi My; Vo, Toi Van; Tran, Phuong Ha-Lien; Lee, Beom-Jin; Duan, Wei; Tran, Thao Truong-Dinh

    2017-06-05

    The aim of this research was to engineer solid dispersion lipid particles (SD-SLs) in which a solid dispersion (SD) was encapsulated to form the core of solid lipid particles (SLs), thereby achieving an efficient enhancement in the dissolution of a poorly water-soluble drug. Ultrasonication was introduced into the process to obtain micro/nanoscale SLs. The mechanism of dissolution enhancement was investigated by analysing the crystalline structure, molecular interactions, and particle size of the formulations. The drug release from the SD-SLs was significantly greater than that from the SD or SLs alone. This enhancement in drug release was dependent on the preparation method and the drug-to-polymer ratio of the SD. With an appropriate amount of polymer in the SD, the solidification method had the potential to alter the drug crystallinity to an amorphous state, resulting in particle uniformity and molecular interactions in the SD-SLs. The proposed system provides a new strategy for enhancing the dissolution rate of poorly water-soluble drugs and further improving their bioavailability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Stabilization of soft lipid colloids: competing effects of nanoparticle decoration and supported lipid bilayer formation.

    Science.gov (United States)

    Savarala, Sushma; Ahmed, Selver; Ilies, Marc A; Wunder, Stephanie L

    2011-04-26

    Stabilization against fusion of zwitterionic lipid small unilamellar vesicles (SUVs) by charged nanoparticles is essential to prevent premature inactivation and cargo unloading. In the present work, we examined the stabilization of DMPC and DPPC SUVs by monolithic silica (SiO(2)) nanoparticle envelopment, for SiO(2) with 4-6, 10-20, 20-30, and 40-50 nm nominal diameter. We found that for these soft colloids stabilization is critically dependent on whether fusion occurs between the charged nanoparticles and neutral SUVs to form supported lipid bilayers (SLBs), or whether the reverse occurs, namely, nanoparticle decoration of the SUVs. While SLB formation is accompanied by precipitation, nanoparticle decoration results in long-term stabilization of the SUVs. The fate of the nanosystem depends on the size of the nanoparticles and on the ionic strength of the medium. We found that, in the case of highly charged SiO(2) nanoparticles in water, there is no SUV fusion to SiO(2) for a specific range of nanoparticle sizes. Instead, the negatively charged SiO(2) nanoparticles surround the uncharged SUVs, resulting in electrostatic repulsion between the decorated SUVs, thus preventing their aggregation and precipitation. Addition of millimolar amounts of NaCl results in rapid SLB formation and precipitation. This study has great potential impact toward better understanding the interaction of nanoparticles with biological membranes and the factors affecting their use as drug carriers or sensors.

  4. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuanwen; Carvalho-de-Souza, João L.; Wong, Raymond C. S.; Luo, Zhiqiang; Isheim, Dieter; Zuo, Xiaobing; Nicholls, Alan W.; Jung, Il Woong; Yue, Jiping; Liu, Di-Jia; Wang, Yucai; De Andrade, Vincent; Xiao, Xianghui; Navrazhnykh, Luizetta; Weiss, Dara E.; Wu, Xiaoyang; Seidman, David N.; Bezanilla, Francisco; Tian, Bozhi

    2016-06-27

    Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young’s modulus that is 2–3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.

  5. Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes.

    Science.gov (United States)

    Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi

    2017-07-01

    In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

  6. Symmetrical, bi-electrode supported solid oxide fuel cell

    Science.gov (United States)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2009-01-01

    The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.

  7. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy

    DEFF Research Database (Denmark)

    Christophersen, Philip C.; Birch, Ditlev; Saarinen, Jukka

    2015-01-01

    -destructive method for elucidating the distribution of lysozyme in SLMs. The interpretation of protein distribution and release during lipolysis enabled elucidation of protein release mechanisms. In future, CARS microscopy analysis could facilitate development of a wide range of protein-lipid matrices with tailor-made......The aim of this study was to gain new insights into protein distribution in solid lipid microparticles (SLMs) and subsequent release mechanisms using a novel label-free chemical imaging method, coherent anti-Stokes Raman scattering (CARS) microscopy. Lysozyme-loaded SLMs were prepared using...... different lipids with lysozyme incorporated either as an aqueous solution or as a solid powder. Lysozyme distribution in SLMs was investigated using CARS microscopy with supportive structural analysis using electron microscopy. The release of lysozyme from SLMs was investigated in a medium simulating...

  8. Amyloids of Alpha-Synuclein Affect the Structure and Dynamics of Supported Lipid Bilayers

    NARCIS (Netherlands)

    Iyer, A.S.; Petersen, N.O.; Claessens, Mireille Maria Anna Elisabeth; Subramaniam, Vinod

    2014-01-01

    Interactions of monomeric alpha-synuclein (αS) with lipid membranes have been suggested to play an important role in initiating aggregation of αS. We have systematically analyzed the distribution and self-assembly of monomeric αS on supported lipid bilayers. We observe that at protein/lipid ratios

  9. Amyloids of alpha-synuclein affect the structure and dynamics of supported lipid bilayers

    NARCIS (Netherlands)

    Iyer, Aditya; Petersen, Nils O; Claessens, Mireille M A E; Subramaniam, Vinod

    2014-01-01

    Interactions of monomeric alpha-synuclein (αS) with lipid membranes have been suggested to play an important role in initiating aggregation of αS. We have systematically analyzed the distribution and self-assembly of monomeric αS on supported lipid bilayers. We observe that at protein/lipid ratios

  10. Tuning the mobility coupling of quaternized polyvinylpyridine and anionic phospholipids in supported lipid bilayers.

    Science.gov (United States)

    Shi, Xiaojun; Li, Xiaosi; Kaliszewski, Megan J; Zhuang, Xiaodong; Smith, Adam W

    2015-02-10

    Binding of biomacromolecules to anionic lipids in the plasma membrane is a common motif in many cell signaling pathways. Previous work has shown that macromolecules with cationic sequences can form nanodomains with sequestered anionic lipids, which alters the lateral distribution and mobility of the membrane lipids. Such sequestration is believed to result from the formation of a lipid-macromolecule complex. To date, however, the molecular structure and dynamics of the lipid-polymer interface are poorly understood. We have investigated the behavior of polycationic quaternized polyvinylpyridine (QPVP) on supported lipid bilayers doped with phosphatidylserine (PS) or phosphatidylinositol phosphate (PIP) lipids using time-resolved fluorescence microscopy, including pulsed interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS is a dual-color fluorescence spectroscopy that translates fluctuations in fluorescence signal into a measurement of diffusion and colocalization. By labeling the polymer and lipids, we investigated the adsorption-induced translational mobility of lipids and systematically studied the influence of lipid charge density and solution ionic strength. Our results show that alteration of anionic lipid lateral mobility is dependent on the net charge of the lipid headgroup and is modulated by the ionic strength of the solution, indicating that electrostatic interactions drive the decrease in lateral mobility of anionic lipids by adsorbed QPVP. At physiological salt concentration we observe that the lipid lateral mobility is weakly influenced by QPVP and that there is no evidence of stable lipid-polymer complexes.

  11. Fabrication, Characterization, and In Vivo Evaluation of Famotidine Loaded Solid Lipid Nanoparticles for Boosting Oral Bioavailability

    Directory of Open Access Journals (Sweden)

    Muhammad Shafique

    2017-01-01

    Full Text Available Famotidine as H2 receptor has antagonistic effects on gastric secretion. Unfortunately, its hydrophobic nature contributes to its variable and poor oral bioavailability. In the current study efforts are being made to fabricate famotidine loaded solid lipid nanoparticles with narrow size distribution. Prepared nanoformulations were pharmaceutically evaluated to confirm the desired boosted oral bioavailability. Famotidine loaded nanoformulation (FFSe-4 showed particle size 111.9±1.3 nm, polydispersity index 0.464±0.03, zeta potential −33.46±2 mV, entrapment efficiency 84±2.7%, and drug loading capacity 2.709±0.13%. Drug-excipients compatibility was confirmed by Fourier transformed infrared spectroscopy. Scanning electron microscopy confirmed spherical shaped, nanosized particles. Differential scanning calorimetry and powder X-ray diffractometry confirmed the change in crystalline nature. Prepared nanoformulation was more stable at refrigerated temperature. In vitro study showed that drug release time is proportional to drug pay load and followed zero order kinetics. Release exponent (n>0.5 confirmed non-Fickian-diffusion mechanism for drug release. In vivo pharmacokinetic studies showed 2.06-fold increase in oral bioavailability of famotidine dispersed in solid lipid nanoparticles compared to commercial product. These results authenticate solid lipid nanoparticles as drug delivery system and propose prolonged release with improved oral bioavailability for famotidine.

  12. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  13. Using crosslinkable diacetylene phospholipids to construct two-dimensional packed beds in supported lipid bilayer separation platforms

    Directory of Open Access Journals (Sweden)

    Shu-Kai Hu, Sheng-Wen Hsiao, Hsun-Yen Mao, Ya-Ming Chen, Yung Chang and Ling Chao

    2013-01-01

    Full Text Available Separating and purifying cell membrane-associated biomolecules has been a challenge owing to their amphiphilic property. Taking these species out of their native lipid membrane environment usually results in biomolecule degradation. One of the new directions is to use supported lipid bilayer (SLB platforms to separate the membrane species while they are protected in their native environment. Here we used a type of crosslinkable diacetylene phospholipids, diynePC (1,2-bis(10,12-tricosadiynoyl-sn-glycero-3-phosphocholine, as a packed material to create a 'two-dimensional (2D packed bed' in a SLB platform. After the diynePC SLB is exposed to UV light, some of the diynePC lipids in the SLB can crosslink and the non-crosslinked monomer lipids can be washed away, leaving a 2D porous solid matrix. We incorporated the lipid vesicle deposition method with a microfluidic device to pattern the location of the packed-bed region and the feed region with species to be separated in a SLB platform. Our atomic force microscopy result shows that the nano-scaled structure density of the '2D packed bed' can be tuned by the UV dose applied to the diynePC membrane. When the model membrane biomolecules were forced to transport through the packed-bed region, their concentration front velocities were found to decrease linearly with the UV dose, indicating the successful creation of packed obstacles in these 2D lipid membrane separation platforms.

  14. Characterization and evaluation of sensory acceptability of ice creams incorporated with beta-carotene encapsulated in solid lipid microparticles

    OpenAIRE

    Juliana Gobbi de LIMA; Thais Carvalho BRITO-OLIVEIRA; PINHO,Samantha Cristina de

    2016-01-01

    Abstract The feasibility of incorporating beta-carotene-loaded solid lipid microparticles (BCSLM) into vanilla ice creams was investigated, through the physico-chemical characterization and evaluation of sensory acceptability of the products products. The BCSLM were produced with palm stearin as the lipid phase, hydrolyzed soy protein isolate as the surfactant, and xanthan gum as the thickener. The results showed similar values of proximate composition, total soluble solids, pH, and overrun f...

  15. Solid-phase-supported synthesis of morpholinoglycine oligonucleotide mimics

    Directory of Open Access Journals (Sweden)

    Tatyana V. Abramova

    2014-05-01

    Full Text Available An efficient solid-phase-supported peptide synthesis (SPPS of morpholinoglycine oligonucleotide (MorGly mimics has been developed. The proposed strategy includes a novel specially designed labile linker group containing the oxalyl residue and the 2-aminomethylmorpholino nucleoside analogues as first subunits.

  16. Using bicellar mixtures to form supported and suspended lipid bilayers on silicon chips.

    Science.gov (United States)

    Zeineldin, Reema; Last, Julie A; Slade, Andrea L; Ista, Linnea K; Bisong, Paul; O'Brien, Michael J; Brueck, S R J; Sasaki, Darryl Y; Lopez, Gabriel P

    2006-09-12

    Bicellar mixtures, planar lipid bilayer assemblies comprising long- and short-chain phosphatidylcholine lipids in suspension, were used to form supported lipid bilayers on flat silicon substrate and on nanotextured silicon substrates containing arrays of parallel troughs (170 nm wide, 380 nm deep, and 300 nm apart). Confocal fluorescence and atomic force microscopies were used to characterize the resulting lipid bilayer. Formation of a continuous biphasic undulating lipid bilayer membrane, where the crests and troughs corresponded to supported and suspended lipid bilayer regions, is demonstrated. The use of interferometric lithography to fabricate nanotexured substrates provides an advantage over other nanotextured substrates such as nanoporous alumina by offering flexibility in designing different geometries for suspending lipid bilayers.

  17. Quillaja saponin: A prospective emulsifier for the preparation of solid lipid nanoparticles.

    Science.gov (United States)

    Karthik, Siram; Raghavan, Chellan Vijaya; Marslin, Gregory; Rahman, Habibur; Selvaraj, Divakar; Balakumar, Krishnamoorthy; Franklin, Gregory

    2016-11-01

    Quillaja saponin (QS) is a non-ionic amphiphilic surfactant of natural origin. In the present study, we evaluated its potential to form solid lipid nanoparticles (SLNs) in the presence of stearic acid (SA) as a lipid carrier and imatinib mesylate (IM) as a model drug. IM loaded solid lipid nanoparticles (IMSLNs) were prepared using the hot homogenisation method. Characterisation of IMSLNs revealed that they were quasi-spherical in shape, neutrally charged and 143.5-641.9nm in size. Haemolysis, a toxicity issue of QS was not observed in SLNs. Comparative in vitro cytotoxicity analyses performed in human breast cancer cell line MCF7 revealed that IMSLNs were more toxic than IM. On the other hand, in vitro viability studies in the RAW264.7 cell line did not show any sign of toxicity by IMSLNs. Our results indicate that QS hold great potential in nano drug delivery as an emulsifier. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  19. Solid support resins and affinity purification mass spectrometry.

    Science.gov (United States)

    Havis, Spencer; Moree, Wilna J; Mali, Sujina; Bark, Steven J

    2017-02-28

    Co-affinity purification-mass spectrometry (CoAP-MS) is a primary technology for elucidating the protein-protein interactions that form the basis of all biological processes. A critical component of CoAP-MS is the affinity purification (AP) of the bait protein, usually by immobilization of an antibody to a solid-phase resin. This Minireview discusses common resins, reagents, tagging methods, and their consideration for successful AP of tagged proteins. We discuss our experiences with different solid supports, their impact in AP experiments, and propose areas where chemistry can advance this important technology.

  20. Enhanced Oral Bioavailability of Efavirenz by Solid Lipid Nanoparticles: In Vitro Drug Release and Pharmacokinetics Studies

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2014-01-01

    Full Text Available Solid lipid nanoparticle is an efficient lipid based drug delivery system which can enhance the bioavailability of poorly water soluble drugs. Efavirenz is a highly lipophilic drug from nonnucleoside inhibitor category for treatment of HIV. Present work illustrates development of an SLN formulation for Efavirenz with increased bioavailability. At first, suitable lipid component and surfactant were chosen. SLNs were prepared and analyzed for physical parameters, stability, and pharmacokinetic profile. Efavirenz loaded SLNs were formulated using Glyceryl monostearate as main lipid and Tween 80 as surfactant. ESLN-3 has shown mean particle size of 124.5±3.2 nm with a PDI value of 0.234, negative zeta potential, and 86% drug entrapment. In vitro drug release study has shown 60.6–98.22% drug release in 24 h by various SLN formulations. Optimized SLNs have shown good stability at 40°C ± 2°C and 75±5% relative humidity (RH for 180 days. ESLN-3 exhibited 5.32-fold increase in peak plasma concentration (Cmax⁡ and 10.98-fold increase in AUC in comparison to Efavirenz suspension (ES.

  1. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity

    Science.gov (United States)

    Oehlke, Kathleen; Behsnilian, Diana; Mayer-Miebach, Esther; Weidler, Peter G.; Greiner, Ralf

    2017-01-01

    Ferulic acid (FA) and tocopherol (Toc) loaded solid lipid nanoparticles (SLN) were prepared by a hot homogenisation method. The particle size distribution, zeta potential and melting behaviour of the SLN as well as the stability, encapsulation efficiency and radical scavenging activity of FA and Toc in the SLN were analysed. The different formulations containing up to 2.8 mg g−1 of FA or Toc were stable during at least 15 weeks of storage at room temperature. Despite partial degradation and / or release of FA and Toc during storage, significant radical scavenging activity was maintained. DSC measurements and radical scavenging tests after different time periods revealed that the re-structuring of the lipid matrix was connected to the enhanced antioxidant activity of Toc but did not affect the activity of FA. PMID:28192494

  2. Formulation of novel sustained release rifampicin-loaded solid lipid microparticles based on structured lipid matrices from Moringa oleifera.

    Science.gov (United States)

    Onyishi, Ikechukwu V; Chime, Salome A; Ogudiegwu, Echezona O

    2015-01-01

    To formulate sustained release rifampicin-loaded solid lipid microparticles (SLMs) using structured lipid matrices based on Moringa oil (MO) and Phospholipon 90G (P90G). Rifampicin-loaded and unloaded SLMs were formulated by melt homogenization and characterized in terms of particle morphology and size, percentage drug content (PDC), pH stability, stability in simulated gastric fluid (SGF, pH 1.2), minimum inhibitory concentration (MIC) and in vitro release. In vivo release was studied in Wistar rats. Rifampicin-loaded SLMs had particle size range of 32.50 ± 2.10 to 34.0 ± 8.40 μm, highest PDC of 87.6% and showed stable pH. SLMs had good sustained release properties with about 77.1% release at 12 h in phosphate buffer (pH 6.8) and 80.3% drug release at 12 h in simulated intestinal fluid (SIF, pH 7.4). SLMs exhibited 48.51% degradation of rifampicin in SGF at 3 h, while rifampicin pure sample had 95.5% degradation. Formulations exhibited MIC range of 0.781 to 1.562, 31.25 to 62.5 and 6.25 to 12.5 μg/ml against Salmonella typhi, Escherichia coli, and Bacillus subtilis respectively and had higher in vivo absorption than the reference rifampicin (p < 0.05). Rifampicin-loaded SLMs could be used once daily for the treatment tuberculosis.

  3. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    Science.gov (United States)

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.

    Science.gov (United States)

    Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo

    2014-08-01

    Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Biological voyage of solid lipid nanoparticles: a proficient carrier in nanomedicine.

    Science.gov (United States)

    Ali, Hasan; Singh, Sandeep Kumar

    2016-10-01

    This review projects the prospects and issues faced by solid lipid nanoparticles (SLNs) in current scenarios, specially related to its clinical implementation and effectiveness. We re-examine the basic concept of biobehavior and movement of SLNs as a nanomedicine carrier. The extensive survey of the uptake and absorption mechanism from different routes, distribution pattern, targeting efficiency, effect of surface functionalization on biodistribution, elimination pathways and toxic effects have been documented. In general, the objective of this review is to boost our knowledge about the interaction of SLNs with the bioenvironment, their movement in, and effect on, a living system and future prospects.

  6. Ivermection-loaded solid lipid nanoparticles: preparation, characterisation, stability and transdermal behaviour.

    Science.gov (United States)

    Guo, Dawei; Dou, Dandan; Li, Xinyu; Zhang, Qian; Bhutto, Zohaib Ahmed; Wang, Liping

    2017-04-03

    To avoid potential systematical toxicity, solid lipid nanoparticles (SLNs) were prepared as a vehicle for transdermal delivery of ivermectin (IVM) using hot homogenisation followed by ultrasonic method. The as-prepared SLNs were approximately spherical shape with good stability. IVM was encapsulated in amorphous form within SLNs and displayed prolonged release from SLNs without burst release due to high encapsulation efficiency (EE). The cumulative permeation of IVM across excised rat skin from SLNs was significantly increased compared to the ivermection suspension. These results indicated that the proposed SLNs can be considered as an efficient carrier for dermal delivery of IVM to effectively treat scabies.

  7. Strength of Anode‐Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Faes, A.; Frandsen, Henrik Lund; Kaiser, Andreas

    2011-01-01

    Nickel oxide and yttria doped zirconia composite strength is crucial for anode‐supported solid oxide fuel cells, especially during transient operation, but also for the initial stacking process, where cell curvature after sintering can cause problems. This work first compares tensile and ball......‐on‐ring strength measurements of as‐sintered anodes support. Secondly, the strength of anode support sintered alone is compared to the strength of a co‐sintered anode support with anode and electrolyte layers. Finally, the orientation of the specimens to the bending axis of a co‐sintered half‐cell is investigated....... Even though the electrolyte is to the tensile side, it is found that the anode support fails due to the thermo‐mechanical residual stresses....

  8. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy.

    Science.gov (United States)

    Saupe, Anne; Gordon, Keith C; Rades, Thomas

    2006-05-11

    Recently, colloidal dispersions based on solid lipids (solid lipid nanoparticles, SLN) and mixtures of solid and liquid lipids (nanostructured lipid carriers, NLC) were described as innovative carrier systems. A spherical particle shape is the basis of features such as a high loading capacity and controlled drug release characteristics due to smaller lipid-water interfaces and longer diffusion pathways when compared to thin platelets. The structures of SLN and the influence of oil load (NLC) on particle properties were investigated by photon correlation spectroscopy (PCS), laser diffractometry (LD), cryo-field emission scanning electron microscopy (cryo-FESEM), Raman spectroscopy and infrared spectroscopy (IR), and compared to a conventional nanoemulsion. PCS and LD data show similar size and size distribution for SLN and NLC (approximately 210 nm, polydispersity index approximately 0.15) and suggested a long term physical stability for the dispersions which had been stored for up to 12 months at different temperatures. Using cryo-FESEM droplets (for the nanoemulsion) and almost spherical particles for SLN and NLC were observed. Raman spectroscopy resulted in spectra for NLC that are weighted to the SLN spectra, suggesting an undisturbed crystal structure. Infrared spectra of the NLC are predominantly SLN in nature. Importantly the SLN bands are unshifted in the NLC spectrum indicating that the crystalline structure is unaffected by the presence of the oil.

  9. The use of solid supports to generate nucleic acid carriers.

    Science.gov (United States)

    Unciti-Broceta, Asier; Díaz-Mochón, Juan José; Sánchez-Martín, Rosario M; Bradley, Mark

    2012-07-17

    Nucleic acids are the foundation stone of all cellular processes. Consequently, the use of DNA or RNA to treat genetic and acquired disorders (so called gene therapy) offers enormous potential benefits. The restitution of defective genes or the suppression of malignant genes could target a range of diseases, including cancers, inherited diseases (cystic fibrosis, muscular dystrophy, etc.), and viral infections. However, this strategy has a major barrier: the size and charge of nucleic acids largely restricts their transit into eukaryotic cells. Potential strategies to solve this problem include the use of a variety of natural and synthetic nucleic acid carriers. Driven by the aim and ambition of translating this promising therapeutic approach into the clinic, researchers have been actively developing advanced delivery systems for nucleic acids for more than 20 years. A decade ago we began our investigations of solid-phase techniques to construct families of novel nucleic acid carriers for transfection. We envisaged that the solid-phase synthesis of polycationic dendrimers and derivatized polyamimes would offer distinct advantages over solution phase techniques. Notably in solid phase synthesis we could take advantage of mass action and streamlined purification procedures, while simplifying the handling of compounds with high polarities and plurality of functional groups. Parallel synthesis methods would also allow rapid access to libraries of compounds with improved purities and yields over comparable solution methodologies and facilitate the development of structure activity relationships. We also twisted the concept of the solid-phase support on its head: we devised miniaturized solid supports that provided an innovative cell delivery vehicle in their own right, carrying covalently conjugated cargos (biomolecules) into cells. In this Account, we summarize the main outcomes of this series of chemically related projects.

  10. Mixtures of Supported and Hybrid Lipid Membranes on Heterogeneously Modified Silica Nanoparticles

    OpenAIRE

    Piper-Feldkamp, Aundrea R.; Wegner, Maria; Brzezinski, Peter; Reed, Scott M.

    2013-01-01

    Simple supported lipid bilayers do not accurately reflect the complex heterogeneity of cellular membranes; however, surface modification makes it possible to tune membrane properties to better mimic biological systems. Here, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (DETAS), a silica modifier, facilitated formation of supported lipid bilayers on silica nanoparticles. Evidence for a stable supported bilayer came from the successful entrapment of a soluble fluorophore within an...

  11. AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration.

    Science.gov (United States)

    Patel, Pratikkumar A; Patravale, Vandana B

    2011-10-01

    Amphotericin B is the most effective gold standard drug against various fungal infections, especially in second line treatment of leishmaniasis. However, its usefulness is limited due to severe nephrotoxicity, which may lead to kidney failure. Due to its poor oral bioavailability, it is often administered parenterally to patients suffering from systemic fungal infection or visceral leishmaniasis (kala azar). In this investigation, solid lipid nanoparticles were formulated for oral administration of Amphotericin B. For this purpose, novel microemulsion based nanoprecipitation technique was employed. The influence of process variables such as sonication and dialysis time was studied. The optimized formulation was characterized for parameters such as particle size, polydispersity index, zeta potential, drug content and entrapment efficiency. The pH stability of the developed Amphotericin B solid lipid nanoparticles (AmbiOnp) at pH 1.2, 4, 6.8 values demonstrated enhanced protection of entrapped Amphotericin B. Further, single dose acute toxicity study established the safety of AmbiOnp for oral administration. In vivo pharmacokinetic studies revealed increase in % relative bioavailability of AmbiOnp in comparison to the plain drug. Additionally, the t1/2 of encapsulated Amphotericin B was significantly greater than that of plain drug, indicating the controlled release of Amphotericin B from AmbiOnp. Overall, the developed formulation; AmbiOnp was found to be successful in oral delivery of Amphotericin B.

  12. Optimization & design of isradipine loaded solid lipid nanobioparticles using rutin by Taguchi methodology.

    Science.gov (United States)

    Kumar, Vikash; Kharb, Rajeev; Chaudhary, Hema

    2016-11-01

    Our research objective was to optimize and design nano-biosystem of Isradipine (IDP) via novel bioenhancer (Rutin) loaded solid-lipid nanobioparticles (ANbp) using Taguchi design (TgD) methodology. Firstly, preliminary screening of solid lipid nanoparticles (SLNps) formulation core factors (A, B & C; Lipoid's, poly-acid, sonication time respectively at fixed dose of model drug were assessed on entrapment efficiency & particle size; R1 & R2) by performed experimentally of three factor three levels orthogonal L27 array. Consequently, signal to noise (S/N) ratio plot of responses were drawn to predict better quality fitted-levels of significant factor for eminence optimization. Further, optimized quality spaces composition was used via enhancer (Rutin) to design advanced bio-formulation (ANbp) and done its evaluation (entrapment efficiency, particle size, drug release & kinetics). As designed, ANbp results showed better sustained (86.54% as compared to control SLNps 94.48% in 24h) release, kinetics & stability behavior with good entrapment efficiency (97.58%) and desired smaller particle size (108nm). Therefore, statistically (TgD) optimization strategy would be considered to design nano-drug delivery system with bio-agent in-order to improve oral bioavailability of antihypertensive agents. Copyright © 2016. Published by Elsevier B.V.

  13. Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide.

    Science.gov (United States)

    Yang, Junsi; Ciftci, Ozan Nazim

    2017-09-15

    Fish oil was encapsulated in hollow solid lipid micro- and nanoparticles formed from fully hydrogenated soybean oil (FHSO) using a novel green method based on atomization of supercritical carbon dioxide (SC-CO2)-expanded lipid. The highest fish oil loading efficiency (97.5%, w/w) was achieved at 50%, w/w, initial fish oil concentration. All particles were spherical and in the dry free-flowing form; however, less smooth surface with wrinkles was observed when the initial fish oil concentration was increased up to 50%. With increasing initial fish oil concentration, melting point of the fish oil-loaded particles shifted to lower onset melting temperatures, and major polymorphic form transformed from α to β and/or β'. Oxidative stability of the loaded fish oil was significantly increased compared to the free fish oil (p<0.05). This innovative method forms free-flowing powder products that are easy-to-use solid fish oil formulation, which makes the handling and storage feasible and convenient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of oral bioavailability and anticancer potential of raloxifene solid lipid nanoparticles.

    Science.gov (United States)

    Battani, Somashekhar; Pawar, Harish; Suresh, Sarasija

    2014-08-01

    The objective of the present investigation was formulation of raloxifene loaded solid lipid nanoparticles (R-SLN) for oral administration and evaluation of its anticancer potential in 7,12- dimethylbenzanthracene (DMBA)-induced breast cancer in Sprague-Dawley rats. Optimized R-SLN formulation prepared by modified micro-emulsion method resulted in R-SLN of 288.0±28.5 nm size and 95.56% entrapment efficiency. R-SLN exhibited in vitro prolonged release of raloxifene for 72 h in phosphate buffered saline. R-SLN was stable in simulated gastro-intestinal (GIT) fluids consisting of pH 1.2, pH 7.4, simulated gastric fluid and simulated intestinal fluid. A two-fold increase was observed in raloxifene oral bioavailability from R-SLN. R-SLN exhibited enhanced efficacy and chemopreventive activity over pure raloxifene as indicated by evaluation of tumor burden (P raloxifene solid lipid nanoparticles in optimizing chemoprevention of breast cancer by R-SLN.

  15. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil.

    Science.gov (United States)

    Shi, Feng; Zhao, Ji-Hui; Liu, Ying; Wang, Zhi; Zhang, Yong-Tai; Feng, Nian-Ping

    2012-01-01

    The aim of the present study was to prepare solid lipid nanoparticles (SLNs) for the oral delivery of frankincense and myrrh essential oils (FMO). Aqueous dispersions of SLNs were successfully prepared by a high-pressure homogenization method using Compritol 888 ATO as the solid lipid and soybean lecithin and Tween 80 as the surfactants. The properties of the SLNs such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE) were investigated. The morphology of SLNs was observed by transmission electron microscopy (TEM). The crystallinity of the formulation was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). In addition, drug evaporation release and antitumor activity were also studied. Round SLNs with a mean size of 113.3 ± 3.6 nm, a ZP of -16.8 ± 0.4 mV, and an EE of 80.60% ± 1.11% were obtained. DSC and XRD measurements revealed that less ordered structures were formed in the inner cores of the SLN particles. Evaporation loss of the active components in FMO could be reduced in the SLNs. Furthermore, the SLN formulation increased the antitumor efficacy of FMO in H22-bearing Kunming mice. Hence, the presented SLNs can be used as drug carriers for hydrophobic oil drugs extracted from traditional Chinese medicines.

  16. Supported lipid bilayers with controlled curvature via colloidal lithography

    DEFF Research Database (Denmark)

    Sundh, Maria; Manandhar, Michal; Svedhem, Sofia

    2011-01-01

    , is presented, utilizing lipid vesicle rupture onto nanostructured sensor substrates. Heat treated colloidal particle masks were used as templates to produce silicon dioxide films with systematically varied radius of curvature (ROC, 70 to 170 nm are demonstrated) and quartz crystal microbalance with dissipation...

  17. Physical-Chemical Characterization and Formulation Considerations for Solid Lipid Nanoparticles.

    Science.gov (United States)

    Chauhan, Harsh; Mohapatra, Sarat; Munt, Daniel J; Chandratre, Shantanu; Dash, Alekha

    2016-06-01

    Pure glyceryl mono-oleate (GMO) (lipid) and different batches of GMO commonly used for the preparation of GMO-chitosan nanoparticles were characterized by modulated differential scanning calorimetry (MDSC), cryo-microscopy, and cryo-X-ray powder diffraction techniques. GMO-chitosan nanoparticles containing poloxamer 407 as a stabilizer in the absence and presence of polymers as crystallization inhibitors were prepared by ultrasonication. The effect of polymers (polyvinyl pyrrolidone (PVP), Eudragits, hydroxyl propyl methyl cellulose (HPMC), polyethylene glycol (PEG)), surfactants (poloxamer), and oils (mineral oil and olive oil) on the crystallization of GMO was investigated. GMO showed an exothermic peak at around -10°C while cooling and another exothermic peak at around -12°C while heating. It was followed by two endothermic peaks between 15 and 30 C, indicative of GMO melting. The results are corroborated by cryo-microscopy and cryo-X-ray. Significant differences in exothermic and endothermic transition were observed between different grades of GMO and pure GMO. GMO-chitosan nanoparticles resulted in a significant increase in particle size after lyophilization. MDSC confirmed that nanoparticles showed similar exothermic crystallization behavior of lipid GMO. MDSC experiments showed that PVP inhibits GMO crystallization and addition of PVP showed no significant increase in particle size of solid lipid nanoparticle (SLN) during lyophilization. The research highlights the importance of extensive physical-chemical characterization for successful formulation of SLN.

  18. Bixin loaded solid lipid nanoparticles for enhanced hepatoprotection--preparation, characterisation and in vivo evaluation.

    Science.gov (United States)

    Rao, Madipatla Prathyusha; Manjunath, Kopparam; Bhagawati, Siddalingappa Tippanna; Thippeswamy, Boreddy Shivanandappa

    2014-10-01

    In the present study, a natural antioxidant drug, bixin was loaded into solid lipid nanoparticles using trimyristin and glycerol monostearate as different lipid matrices and soya and egg lecithin as stabilizers. Developed bixin SLNs were characterized including in vitro drug release and in vivo evaluation of hepatoprotective activity using Wistar rats. Bixin SLNs were prepared by hot homogenisation followed by ultrasonication technique. The particle size ranged from 135.5-352.8 nm with PDI 0.185-0.572. Zeta potential of bixin SLNs was -17.9 to -36.5 mV. Bixin was successfully incorporated into SLNs with entrapment efficiency above 99% and loading efficiency maximum 17.96%. There was no interaction of bixin with selected lipids TM and GMS, confirmed by FTIR studies. DSC studies revealed that preparation method did not change crystallinity of bixin and TM whereas GMS crystallinity was reduced. In vitro drug release studies in Sorensen buffer, pH 7.7 exhibited initial burst effect followed by a sustained release of bixin. Drug release kinetic studies showed that the release was first order diffusion controlled and the n-values obtained from the Korsmeyer-Peppas model indicated the release mechanism was non-Fickian type. In vivo studies revealed better treatment of paracetamol induced hepatotoxicity by bixin SLNs indicating significant localisation of them in liver. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Amyloids of alpha-synuclein affect the structure and dynamics of supported lipid bilayers

    NARCIS (Netherlands)

    Iyer, A.; Petersen, N.O.; Claessens, M.M.B.; Subramaniam, V.

    2014-01-01

    Interactions of monomeric alpha-synuclein (alphaS) with lipid membranes have been suggested to play an important role in initiating aggregation of alphaS. We have systematically analyzed the distribution and self-assembly of monomeric alphaS on supported lipid bilayers. We observe that at

  20. Sesamol loaded solid lipid nanoparticles: a promising intervention for control of carbon tetrachloride induced hepatotoxicity.

    Science.gov (United States)

    Singh, Neha; Khullar, Neeraj; Kakkar, Vandita; Kaur, Indu Pal

    2015-05-03

    Sesamol, a component of sesame seed oil, exhibited significant antioxidant activity in a battery of in vitro and ex vivo tests including lipid peroxidation induced in rat liver homogenates. Latter established its potential for hepatoprotection. However, limited oral bioavailability, fast elimination (as conjugates) and tendency towards gastric irritation/toxicity (especially forestomach of rodents) may limit its usefulness. Presently, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its biopharmaceutical performance and compared the efficacy with that of free sesamol and silymarin, a well established hepatoprotectant, against carbon tetrachloride induced hepatic injury in rats, post induction. A self recovery group in which no treatment was given was used to observe the self-healing capacity of liver. S-SLNs prepared by microemulsification method were administered to rats post-treatment with CCl4 (1 ml/kg body weight (BW) twice weekly for 2 weeks, followed by 1.5 ml/kg BW twice weekly for the subsequent 2 weeks). Liver damage and recovery on treatment was assessed in terms of histopathology, serum injury markers (alanine aminotransferase, aspartate aminotransferase), oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and a pro-inflammatory response marker (tumor necrosis factor alpha). S-SLNs (120.30 nm) at a dose of 8 mg/kg BW showed significantly better hepatoprotection than corresponding dose of free sesamol (FS; p recovery group confirmed absence of regenerative capacity of hepatic tissue, post injury. Use of lipidic nanocarrier system for sesamol improved its efficiency to control hepatic injury. Enhanced effect is probably due to: a) improved oral bioavailability, b) controlled and prolonged effect of entrapped sesamol and iii) reduction in irritation and toxicity, if any, upon oral administration. S-SLNs may be considered as a therapeutic option for hepatic ailments as effectiveness post

  1. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  2. Topical Delivery of Withania somnifera Crude Extracts in Niosomes and Solid Lipid Nanoparticles.

    Science.gov (United States)

    Chinembiri, Tawona N; Gerber, Minja; du Plessis, Lissinda H; du Preez, Jan L; Hamman, Josias H; du Plessis, Jeanetta

    2017-10-01

    Withania somnifera is a medicinal plant native to India and is known to have anticancer properties. It has been investigated for its anti-melanoma properties, and since melanoma presents on the skin, it is prudent to probe the use of W. somnifera in topical formulations. To enhance topical drug delivery and to allow for controlled release, the use of niosomes and solid lipid nanoparticles (SLNs) as delivery vesicles were explored. The objective of this study is to determine the stability and topical delivery of W. somnifera crude extracts encapsulated in niosomes and SLNs. Water, ethanol, and 50% ethanol crude extracts of W. somnifera were prepared using 24 h soxhlet extraction which were each encapsulated in niosomes and SLNs. Franz cell diffusion studies were conducted with the encapsulated extracts to determine the release and skin penetration of the phytomolecules, withaferin A, and withanolide A. The niosome and SLN formulations had average sizes ranging from 165.9 ± 9.4 to 304.6 ± 52.4 nm with the 50% ethanol extract formulations having the largest size. A small particle size seemed to have correlated with a low encapsulation efficiency (EE) of withaferin A, but a high EE of withanolide A. There was a significant difference (P < 0.05) between the amount of withaferin A and withanolide A that were released from each of the formulations, but only the SLN formulations managed to deliver withaferin A to the stratum corneum-epidermis and epidermis-dermis layers of the skin. SLNs and niosomes were able to encapsulate crude extracts of W. somnifera and release the marker compounds, withaferin A, and withanolide A, for delivery to certain layers in the skin. Withania somnifera crude extracts were prepared using ethanol, water, and 50% ethanol as solvents. These three extracts were then incorporated into niosomes and solid lipid nanoparticles (SLNs) for use in skin diffusion studies, thus resulting in six formulations (ethanol niosome, water niosome, 50% ethanol

  3. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.; Hu, Dehong; Orr, Galya; Murphy, Catherine J.; Hamers, Robert J.; Pedersen, Joel A.

    2016-01-01

    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes contain a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.

  4. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration

    DEFF Research Database (Denmark)

    Martins, S. M.; Sarmento, B.; Nunes, C.

    2013-01-01

    This study intended to investigate the ability of solid lipid nanoparticles (SLN) to deliver camptothecin into the brain parenchyma after crossing the blood-brain barrier. For that purpose, camptothecin-loaded SLN with mean size below 200 nm, low polydispersity index (94%) were produced...... of intravenous camptothecin-loaded SLN performed in rats proved the positive role of SLN on the brain targeting since significant higher brain accumulation of camptothecin was observed, compared to non-encapsulated drug. Pharmacokinetic studies further demonstrated lower deposition of camptothecin in peripheral...... organs, when encapsulated into SLN, with consequent decrease in potential side toxicological effects. These results confirmed the potential of camptothecin-loaded SLN for antitumour brain treatments....

  5. Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac.

    Science.gov (United States)

    Chawla, Viney; Saraf, Shubhini A

    2012-04-01

    Solid lipid nanoparticles (SLN) of aceclofenac were prepared using Taguchi experimental design by Trotta method. The prepared SLN were formulated into a gel preparation, using carbopol 940. Gels were evaluated for drug content, bioadhesion and their stability against change of temperature and shear. The viscosity of prepared gels was found to be temperature independent. Rheological behavior of gels with changing shear was rather complex. Viscosity varied inversely with shear but remained almost constant during short spans of time when shear was kept constant. Viscosity of the gels did not change if shear was not varied. In vitro diffusion studies exhibited an immediate release followed by a sustained release. This could help in maintaining the concentration of bioactives such as aceclofenac in desirable levels at sites of inflammation and injury. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Development and characterization of solid lipid nanoparticles for enhancement of oral bioavailability of Raloxifene

    Directory of Open Access Journals (Sweden)

    B Divyakant Patel

    2012-01-01

    Full Text Available The objective of this study was to increase the oral bioavailability of Raloxifene having an absolute bioavailability only 2% due to extensive first pass hepatic metabolism by incorporating it in Solid Lipid Nanoparticles (SLNs. The optimized RSLNs prepared by Ultrasonic Emulsification and Low Temperature Solidification method showed the mean particle size, zeta potential and percentage drug entrapment of 101.4±3.5 nm, 19.4±0.279 mv, 97.67±1.02% respectively. The in-vitro intestinal permeability study indicated significantly higher permeation of the RSLNs than the marketed preparation. The in-vivo studies showed that pharmacokinetic parameters for the RSLNs were 3.5 times higher than the marketed preparation indicating significant increase in the oral bioavailability of the Raloxifene.

  7. Transport pathways of solid lipid nanoparticles across Madin-Darby canine kidney epithelial cell monolayer.

    Science.gov (United States)

    Chai, Gui-Hong; Hu, Fu-Qiang; Sun, Jihong; Du, Yong-Zhong; You, Jian; Yuan, Hong

    2014-10-06

    An understanding of drug delivery system transport across epithelial cell monolayer is very important for improving the absorption and bioavailability of the drug payload. The mechanisms of epithelial cell monolayer transport for various nanocarriers may differ significantly due to their variable components, surface properties, or diameter. Solid lipid nanoparticles (SLNs), conventionally formed by lipid materials, have gained increasing attention in recent years due to their excellent biocompatibility and high oral bioavailability. However, there have been few reports about the mechanisms of SLNs transport across epithelial cell monolayer. In this study, the molecular mechanisms utilized by SLNs of approximately 100 nm in diameter crossing intestinal epithelial monolayer were carefully studied using a simulative intestinal epithelial monolayer formed by Madin-Darby canine kidney (MDCK) epithelial cells. The results demonstrated that SLNs transportation did not induce a significant change on tight junction structure. We found that the endocytosis of SLNs into the epithelial cells was energy-dependent and was significantly greater than nanoparticle exocytosis. The endocytosis of SLNs was found to be rarely mediated via macropinocytosis, as confirmed by the addition of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) as an inhibitory agent, and mainly depended on lipid raft/caveolae- and clathrin-mediated pathways. After SLNs was internalized into MDCK cells, lysosome was one of the main destinations for these nanoparticles. The exocytosis study indicated that the endoplasmic reticulum, Golgi complex, and microtubules played important roles in the transport of SLNs out of MDCK cells. The transcytosis study indicated that only approximately 2.5% of the total SLNs was transported from the apical side to the basolateral side. For SLNs transportation in MDCK cell monolayer, greater transport (approximately 4-fold) was observed to the apical side than to the basolateral side. Our

  8. Preparation and in vivo evaluation of solid lipid nanoparticles of griseofulvin for dermal use.

    Science.gov (United States)

    Aggarwal, Nidhi; Goindi, Shishu

    2013-04-01

    Griseofulvin-loaded solid lipid nanoparticles (SLNs) were prepared by hot microemulsion technique and optimized for type and concentration of lipid and surfactant. The optimized SLN composition was characterized in terms of particle shape and size, drug entrapment efficiency, pH, stability, spreadability, ex-vivo skin permeation, dermatokinetics, skin sensitivity, in vitro antifungal assay and in vivo antifungal activity against Microsporum canis using guinea pig model for dermatophytosis. The cumulative amount of drug permeated through excised mice skin from SLNs was more than 5-folds as compared to permeation from conventional cream base. Fluorescent microscopy revealed presence of nanoparticles in the skin layers suggesting the penetration of nanoparticles into the skin owing to their nano-size and thence a controlled drug release. A complete mycological and clinical cure was observed in M. canis infected guinea pigs after twice daily application of SLN gel containing griseofulvin for 8 days. Also, the formulation was observed to be non-sensitizing, histopathologically safe, and SLN gel was stable at 5 +/- 3 degrees C, 25 +/- 2 degrees C and 40 +/- 2 degrees C for a period of six months. It can be concluded from our study that SLNs provide a good skin permeation effect and may be a promising carrier for topical delivery of griseofulvin.

  9. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.

    Science.gov (United States)

    Geetha, T; Kapila, Meenakshi; Prakash, Om; Deol, Parneet Kaur; Kakkar, Vandita; Kaur, Indu Pal

    2015-02-01

    Abstract Role of reactive oxygen species (ROS) in skin carcinogenesis is well documented. Natural molecules, like sesamol, with marked antioxidant potential can be useful in combating skin cancers. In vitro antiproliferative (using MTT assay) and DNA fragmentation studies in HL 60 cell lines, confirmed the apoptotic nature of sesamol. However, it showed a significant flux across the mice skin upon topical application, such that its local availability in skin is limited. Former is attributed mainly to its properties like small size, low molecular weight (138.28), and a sufficient lipid and water solubility (log P 1.29; solubility 38.8 mg/ml). To achieve its maximum epicutaneous delivery, packaging it into a suitable carrier system is thus indicated. Sesamol-loaded solid lipid nanoparticles (S-SLN) were thus prepared with particle size of 127.9 nm (PI: 0.256) and entrapment efficiency of 88.21%. Topical application of S-SLN in a cream base indicated significant retention in the skin with minimal flux across skin as confirmed by the in-vivo skin retention and ex-vivo skin permeation studies. In vivo anticancer studies performed on TPA-induced and benzo(a)pyrene initiated tumour production (ROS mediated) in mouse epidermis showed the normalization (in histology studies) of skin cancers post their induction, upon treatment with S-SLN.

  10. Assembly of RNA nanostructures on supported lipid bilayers

    Science.gov (United States)

    Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma

    2014-12-01

    The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of

  11. Comparative study of sustained-release lipid microparticles and solid dispersions containing ibuprofen

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2012-09-01

    Full Text Available Ibuprofen is one of the most important non-steroidal anti-inflammatory drugs used in the treatment of inflammatory diseases. In its pure state, ibuprofen presents poor physical and mechanical characteristics and its use in solid dosage forms needs the addition of excipients that improve these properties. The selection of the best excipients and the most suitable pharmaceutical dosage form to carry ibuprofen is very important for the industrial success of this drug. Given these factors, lipid microparticles and solid dispersions of ibuprofen with cetyl alcohol, stearic acid, and hydrogenated castor oil were prepared. These formulations were intended to improve the physical and mechanical characteristics and to sustain the release of this drug. Physical mixtures were also prepared with the same ingredients in similar proportions. The solid dispersions of ibuprofen/stearic acid and ibuprofen/hydrogenated castor oil showed the best flow characteristics compared with pure ibuprofen. Further, gelatin capsules filled with lipid microparticles and solid dispersions were submitted to dissolution tests in order to study the influence of the prepared systems in the release profiles of ibuprofen. Prolonged release of ibuprofen was achieved with the lipid microparticles and solid dispersions prepared with the different types of excipients.O ibuprofeno é um dos antiinflamatórios não esteróides mais utilizados no tratamento de patologias associadas a processos inflamatórios. Este fármaco, quando no seu estado puro, apresenta características físicas e mecânicas pouco satisfatórias e a sua utilização em formas sólidas só é possível se forem adicionados excipientes que permitam melhorar estas propriedades. A seleção dos excipientes ideais e da forma farmacêutica mais adequada para veicular o ibuprofeno é fundamental para o sucesso industrial deste fármaco. Tendo em conta estes fatores, prepararam-se micropartículas lipídicas e dispersões s

  12. Drug release from extruded solid lipid matrices: theoretical predictions and independent experiments.

    Science.gov (United States)

    Güres, Sinan; Siepmann, Florence; Siepmann, Juergen; Kleinebudde, Peter

    2012-01-01

    The aim of this study was to use a mechanistically realistic mathematical model based on Fick's second law to quantitatively predict the release profiles from solid lipid extrudates consisting of a ternary matrix. Diprophylline was studied as a freely water-soluble model drug, glycerol tristearate as a matrix former and polyethylene glycol or crospovidone as a pore former (blend ratio: 50:45:5%w/w/w). The choice of these ratios is based on former studies. Strains with a diameter of 0.6, 1, 1.5, 2.7 and 3.5mm were prepared using a twin-screw extruder at 65 °C and cut into cylinders of varying lengths. Drug release in demineralised water was measured using the USP 32 basket apparatus. Based on SEM pictures of extrudates before and after exposure to the release medium as well as on DSC measurements and visual observations, an analytical solution of Fick's second law of diffusion was identified in order to quantify the resulting diprophylline release kinetics from the systems. Fitting the model to one set of experimentally determined diprophylline release kinetics from PEG containing extrudates allowed determining the apparent diffusion coefficient of this drug (or water) in this lipid matrix. Knowing this value, the impact of the dimensions of the cylinders on drug release could be quantitatively predicted. Importantly, these theoretical predictions could be confirmed by independent experimental results. Thus, diffusion is the dominant mass transport mechanism controlling drug release in this type of advanced drug delivery systems. In contrast, theoretical predictions of the impact of the device dimensions in the case of crospovidone containing extrudates significantly underestimated the real diprophylline release rates. This could be attributed to the disintegration of this type of dosage forms when exceeding a specific minimal device diameter. Thus, mathematical modelling can potentially significantly speed up the development of solid lipid extrudates, but care has

  13. Solid-State Characterization of Novel Propylene Glycol Ester Solvates Isolated from Lipid Formulations.

    Science.gov (United States)

    Chakravarty, Paroma; Kothari, Sanjeev; Deese, Alan; Lubach, Joseph W

    2015-07-06

    The purpose of this study was to identify and characterize precipitates obtained from a liquid formulation of GNE068.HCl, a Genentech developmental compound, and lipophilic excipients, such as propylene glycol monocaprylate, and monolaurate. Precipitates were characterized using powder X-ray diffractometry (PXRD), differential scanning calorimetry, thermogravimetry, microscopy, nuclear magnetic resonance spectroscopy (NMR; solution and solid-state) and water sorption analysis. PXRD and NMR revealed the precipitates to be crystalline solvates of propylene glycol esters. The solvates (capryolate and lauroglycolate) were isomorphic and stable up to 70 °C, beyond which melting of the lattice occurred with subsequent dissolution of the active ingredient in the melt (microscopy and variable temperature PXRD). They were found to be mechanically stable (no change in PXRD pattern upon compression) and were nonhygroscopic up to ∼70% RH (25 °C). Our results highlight the outcome of inadvertent drug-excipient interactions in two separate lipid solution formulations with good solid-state properties and, thus, potential for further development.

  14. Preparation, characterization and evaluation of moisturizing and UV protecting effects of topical solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Shiva Golmohammadzadeh

    2012-12-01

    Full Text Available Solid lipid nanoparticles (SLN were recently proposed as carriers for various pharmaceutical and cosmetic actives. These lipid nanoparticles can act as moisturizers and physical sunscreens on their own. Therefore, the full potential of these carriers has yet to be determined. The present study was aimed to determine and compare moisturizing and UV-protecting effects of different solid lipid nanoparticles (SLN prepared by different solid lipids including Glyceryl monostearate (GMS, Precirol® (P and cetyl palmitate (CP as carrier systems of moisturizers and sunscreens. The influence of the size and matrix crystallinity of the solid lipids on the occlusive factor, skin hydration and UV-protection were evaluated by in vitro and in vivo methods. The SLN were prepared by high-shear homogenization and ultrasound methods. Size, zeta potential and morphological characteristics of the samples were assessed by transmission electron microscopy (TEM and thermotropic properties with differential scanning calorimetry (DSC technique. Results of the assessments showed that SLN-CP significantly increases skin hydration and UV-protection, compared to SLN-GMS and SLN-P. It was demonstrated that the size of SLN, crystallinity index of solid lipid in SLN and probably other mechanisms besides the occlusive factor can influence skin hydration and UV-protection indices. Furthermore, findings of the assessments demonstrated significant difference between in vitro and in vivo assessments regarding occlusive factor and moisturizing effects. Findings of the present study indicate that the SLN-CP could be a promising carrier for sunscreens and moisturizers.Nanopartículas lipídicas sólidas (NLS foram, recentemente, propostas como carreadores de vários ativos cosméticos e farmacêuticos. Essas nanopartículas lipídicas podem atuar como hidratantes e protetores solares físicos por si só. Assim sendo, determinou-se o potencial desses carreadores. Os objetivos do

  15. Modification of structure and pattern of lipid monolayer on water and solid surfaces in presence of globular protein

    Science.gov (United States)

    Sah, Bijay Kumar; Kundu, Sarathi

    2017-05-01

    Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.

  16. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  17. Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions.

    Science.gov (United States)

    Kolasinska-Sojka, Marta; Wlodek, Magdalena; Szuwarzynski, Michal; Kereiche, Sami; Kovacik, Lubomir; Warszynski, Piotr

    2017-10-01

    The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Silicon supported lipid-DNA thin film structures at varying temperature studied by energy dispersive X-ray diffraction and neutron reflectivity.

    Science.gov (United States)

    Domenici, F; Castellano, C; Dell'Unto, F; Albinati, A; Congiu, A

    2011-11-01

    Non-viral gene transfection by means of lipid-based nanosystems, such as solid supported lipid assemblies, is often limited due to their lack of stability and the consequent loss of efficiency. Therefore not only a detailed thermo-lyotropic study of these DNA-lipid complexes is necessary to understand their interaction mechanisms, but it can also be considered as a first step in conceiving and developing new transfection biosystems. The aim of our study is a structural characterization of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)-dimethyl-dioctadecyl-ammonium bromide (DDAB)-DNA complex at varying temperature using the energy dispersive X-ray diffraction (EDXD) and neutron reflectivity (NR) techniques. We have shown the formation of a novel thermo-lyotropic structure of DOPC/DDAB thin film self-organized in multi-lamellar planes on (100)-oriented silicon support by spin coating, thus enlightening its ability to include DNA strands. Our NR measurements indicate that the DOPC/DDAB/DNA complex forms temperature-dependent structures. At 65°C and relative humidity of 100% DNA fragments are buried between single lamellar leaflets constituting the hydrocarbon core of the lipid bilayers. This finding supports the consistency of the hydrophobic interaction model, which implies that the coupling between lipid tails and hypo-hydrated DNA single strands could be the driving force of DNA-lipid complexation. Upon cooling to 25°C, EDXD analysis points out that full-hydrated DOPC-DDAB-DNA can switch in a different metastable complex supposed to be driven by lipid heads-DNA electrostatic interaction. Thermotropic response analysis also clarifies that DOPC has a pivotal role in promoting the formation of our observed thermophylic silicon supported lipids-DNA assembly. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility-Mass Spectrometry-Based Lipidomics.

    Science.gov (United States)

    Zhou, Zhiwei; Tu, Jia; Xiong, Xin; Shen, Xiaotao; Zhu, Zheng-Jiang

    2017-09-05

    The use of collision cross-section (CCS) values derived from ion mobility-mass spectrometry (IM-MS) has been proven to facilitate lipid identifications. Its utility is restricted by the limited availability of CCS values. Recently, the machine-learning algorithm-based prediction (e.g., MetCCS) is reported to generate CCS values in a large-scale. However, the prediction precision is not sufficient to differentiate lipids due to their high structural similarities and subtle differences on CCS values. To address this challenge, we developed a new approach, namely, LipidCCS, to precisely predict lipid CCS values. In LipidCCS, a set of molecular descriptors were optimized using bioinformatic approaches to comprehensively describe the subtle structure differences for lipids. The use of optimized molecular descriptors together with a large set of standard CCS values for lipids (458 in total) to build the prediction model significantly improved the precision. The prediction precision of LipidCCS was externally validated with median relative errors (MRE) of ∼1% using independent data sets across different instruments (Agilent DTIM-MS and Waters TWIM-MS) and laboratories. We also demonstrated that the improved precision in the predicted LipidCCS database (15 646 lipids and 63 434 CCS values in total) could effectively reduce false-positive identifications of lipids. Common users can freely access our LipidCCS web server for the following: (1) the prediction of lipid CCS values directly from SMILES structure; (2) database search; and (3) lipid match and identification. We believe LipidCCS will be a valuable tool to support IM-MS-based lipidomics. The web server is freely available on the Internet ( http://www.metabolomics-shanghai.org/LipidCCS/ ).

  20. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ji P

    2016-03-01

    Full Text Available Peng Ji, Tong Yu, Ying Liu, Jie Jiang, Jie Xu, Ying Zhao, Yanna Hao, Yang Qiu, Wenming Zhao, Chao WuCollege of Pharmacy, Liaoning Medical University, Jinzhou, Liaoning Province, People’s Republic of ChinaAbstract: Naringenin (NRG, a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only ~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle

  1. Design and Evaluation of Voriconazole Loaded Solid Lipid Nanoparticles for Ophthalmic Application

    Directory of Open Access Journals (Sweden)

    Anubha Khare

    2016-01-01

    Full Text Available Voriconazole is a second-generation antifungal agent with excellent broad spectrum of antifungal activity commercially available for oral and intravenous administration. Systemic administration of voriconazole is associated with side effects including visual and hepatic abnormalities. This study assessed the feasibility of using solid lipid nanoparticles for ocular delivery of voriconazole adopting stearic acid as lipidic material, tween 80 as a stabilizer, and Carbopol 934 as controlled release agent and for increasing the precorneal residence time in eye. The systems were prepared using two different methods, that is, ultrasonication method and microemulsion technique. The results indicated that the larger particle size of SLNs was found with microemulsion technique (308±3.52 nm to 343±3.51 compared to SLN prepared with ultrasonication method (234±3.52 nm to 288±4.58 nm. The polydispersity index values were less than 0.3 for all formulations and zeta potential of the prepared formulations by these two methods varied from −22.71±0.63 mV to −28.86±0.58 mV. Powder X-ray diffraction and differential scanning calorimetry indicated decrease in crystallinity of drug. The in vitro release study and the SLN formulations prepared with ultrasonication method demonstrated sustained release up to 12 hours. This study demonstrated that SLN prepared by ultrasonication method is more suitable than microemulsion technique without causing any significant effect on corneal hydration level.

  2. Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite.

    Science.gov (United States)

    Hamishehkar, Hamed; Shokri, Javad; Fallahi, Shahoo; Jahangiri, Azin; Ghanbarzadeh, Saeed; Kouhsoltani, Maryam

    2015-01-01

    Cellulite refers to dimpled appearance of the skin, usually located in the thighs and buttocks regions of most adult women. The aim of this study was to formulate topically used caffeine-loaded solid lipid nanoparticle (SLN) for the treatment of cellulite. SLNs were prepared by hot homogenization technique using Precirol® as lipid phase. The physical characterization and stability studies of SLNs as well as in vitro skin permeation and histological studies in rat skin were conducted. The mean particle size, encapsulation efficiency and loading efficiency percentages for optimized SLN formulation were 94 nm, 86 and 28%, respectively. In vitro drug release demonstrated that caffeine-loaded SLN incorporated into carbopol made hydrogel (caffeine-SLN-hydrogel) exhibited a sustained drug release compared to the caffeine hydrogel over 24 h. Caffeine-loaded SLNs showed a good stability during 12 months of storage at room temperature. The DSC and XRD results showed that caffeine was dispersed in SLN in an amorphous state. In vitro permeation studies illustrated higher drug accumulation in the skin with caffeine-SLN-hydrogel compared to caffeine hydrogel. The flux value of caffeine through rat skin in caffeine-SLN-hydrogel was 3.3 times less than caffeine hydrogel, representing lower systemic absorption. In contrast with caffeine hydrogel, the histological studies showed the complete lysis of adipocytes by administration of caffeine-SLN-hydrogel in the deeper skin layers. Results of this study indicated that SLNs are promising carrier for improvement of caffeine efficiency in the treatment of cellulite following topical application on the skin.

  3. Preparation of calcium chloride-loaded solid lipid particles and heat-triggered calcium ion release

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huangying; Kim, Jin-Chul [Kangwon National University, Chunchon (Korea, Republic of)

    2015-08-15

    CaCl{sub 2}-loaded solid lipid particles (SLPs) were prepared by a melt/emulsification/solidification method. CaCl{sub 2} microparticles (1-5 μm) could be obtained in a mortar with aid of the dispersant (Tween 80/Span80 (35/65, w/w)) when the ratio of CaCl{sub 2} to dispersant was 2 : 0.1 (w/w). SLP was prepared by dispersing 0.42 g of micronized CaCl{sub 2} particles in 2 g of molten PBSA, emulsifying the mixture at 85 .deg. C in 40 ml of Tween 20 solution (0.5% w/v), and quenching the emulsion in an ice bath. The diameter of CaCl{sub 2}-loaded SLP was 10-150 μm. The unenveloped CaCl{sub 2} could be removed by dialysis and the specific loading of CaCl{sub 2} in SLP was 0.036mg/mg. An EDS spectrum of CaCl{sub 2}-loaded SLP, which was dialyzed, showed that the unenveloped CaCl{sub 2} was completely removed. Any excipients (dispersant, Tween 20, CaCl{sub 2}) had little effect on the melting point of SLPs. No appreciable amount of Ca2+ was released in 20-50 .deg. C for 22 h. But the release degree at 60 .deg. C was significant (about 2.3%) during the same period. The matrix of the lipid particle was in a liquid state at 60 .deg. C, so CaCl{sub 2} particles could move freely and contact the surrounding water, leading to the release. At 70 .deg. C, the release degree at a given time was a few times higher than that obtained at 60 .deg. C.

  4. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells.

    Science.gov (United States)

    Goto, Patrícia L; Siqueira-Moura, Marigilson P; Tedesco, Antonio C

    2017-02-25

    Cutaneous melanoma is the most aggressive skin cancer and is particularly resistant to current therapeutic approaches. Photodynamic therapy (PDT) is a well-established photoprocess that is employed to treat some cancers, including non-melanoma skin cancer. Aluminum chloride phthalocyanine (ClAlPc) is used as a photosensitizer in PDT; however, its high hydrophobicity hampers its photodynamic activity under physiological conditions. The aim of this study was to produce solid lipid nanoparticles (SLN) containing ClAlPc using the direct emulsification method. ClAlPc-loaded SLNs (ClAlPc/SLNs) were characterized according to their particle size and distribution, zeta potential, morphology, encapsulation efficiency, stability, and phototoxic action in vitro in B16-F10 melanoma cells. ClAlPc/SLN had a mean diameter between 100 and 200nm, homogeneous size distribution (polydispersity index <0.3), negative zeta potential, and spherical morphology. The encapsulation efficiency was approximately 100%. The lipid crystallinity was investigated using X-ray diffraction and differential scanning calorimetry and indicated that ClAlPc was integrated into the SLN matrix. The ClAlPc/SLN formulations maintained their physicochemical stability without expelling the drug over a 24-month period. Compared to free ClAlPc, ClAlPc/SLN exerted outstanding phototoxicity effects in vitro against melanoma cells. Therefore, our results demonstrated that the ClAlPc/SLN described in the current study has the potential for use in further preclinical and clinical trials in PDT for melanoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Transport Mechanisms of Solid Lipid Nanoparticles across Caco-2 Cell Monolayers and their Related Cytotoxicology.

    Science.gov (United States)

    Chai, Gui-Hong; Xu, Yingke; Chen, Shao-Qing; Cheng, Bolin; Hu, Fu-Qiang; You, Jian; Du, Yong-Zhong; Yuan, Hong

    2016-03-09

    Solid lipid nanoparticles (SLNs) have been extensively investigated and demonstrated to be a potential nanocarriers for improving oral bioavailability of many drugs. However, the molecular mechanisms related to this discovery are not yet understood. Here, the molecular transport mechanisms of the SLNs crossing simulative intestinal epithelial cell monolayers (Caco-2 cell monolayers) were studied. The cytotoxicology results of the SLNs in Caco-2 cells demonstrated that the nanoparticles had low cytotoxicity, had no effect on the integrity of the cell membrane, did not induce oxidative stress, and could significantly reduce cell membrane fluidity. The endocytosis of the SLNs was time-dependent, and their delivery was energy-dependent. For the first time, the transport of the SLNs was directly verified to be a vesicle-mediated process. The internalization of the SLNs was mediated by macropinocytosis pathway and clathrin- and caveolae (or lipid raft)-related routes. Transferrin-related endosomes, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus were confirmed to be the main destinations of the SLNs in Caco-2 cells. As for the transport of the SLNs in Caco-2 cell monolayers, the results demonstrated that the SLNs transported to the basolateral side were intact, and the transport of the nanoparticles did not destroy the structure of tight junctions. The transcytosis of the SLNs across the Caco-2 cell monolayer was demonstrated to be mediated by the same routes as that in the endocytosis study. The ER, Golgi apparatus, and microtubules were confirmed to be important for the transport of the SLNs to both the basolateral and apical membrane sides. This study provides a more thoroughly understand of SLNs transportation crossing intestinal epithelial cell monolayers and could be beneficial for the fabrication of SLNs.

  6. Amsacrine analog-loaded solid lipid nanoparticle to resolve insolubility for injection delivery: characterization and pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Fang YP

    2016-03-01

    Full Text Available Yi-Ping Fang,1 Chih-Hung Chuang,2 Pao-Chu Wu,1 Yaw-Bin Huang,1 Cherng-Chyi Tzeng,3 Yeh-Long Chen,3 Ya-Ting Liu,1 Yi-Hung Tsai,1 Ming-Jun Tsai4–6 1School of Pharmacy, College of Pharmacy, 2Department of Biomedical and Environment Biology, College of Life Science, 3School of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 4Department of Neurology, China Medical University Hospital, 5School of Medicine, Medical College, China Medical University, Taichung, 6Department of Neurology, China Medical University An-Nan Hospital, Tainan, Taiwan Abstract: Amsacrine analog is a novel chemotherapeutic agent that provides potentially broad antitumor activity when compared to traditional amsacrine. However, the major limitation of amsacrine analog is that it is highly lipophilic, making it nonconductive to intravenous administration. The aim of this study was to utilize solid lipid nanoparticles (SLN to resolve the delivery problem and to investigate the biodistribution of amsacrine analog-loaded SLN. Physicochemical characterizations of SLN, including particle size, zeta potential, entrapment efficiency, and stability, were evaluated. In vitro release behavior was also measured by the dialysis method. In vivo pharmacokinetics and biodistribution behavior of amsacrine analog were investigated and incorporated with a non invasion in vivo imaging system to confirm the localization of SLN. The results showed that amsacrine analog-loaded SLN was 36.7 nm in particle size, 0.37 in polydispersity index, and 34.5±0.047 mV in zeta potential. More than 99% of amsacrine analog was successfully entrapped in the SLN. There were no significant differences in the physicochemical properties after storage at room temperature (25°C for 1 month. Amsacrine analog-loaded SLN maintained good stability. An in vitro release study showed that amsacrine analog-loaded SLN sustained a release pattern and followed the zero equation. An

  7. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications.

    Science.gov (United States)

    Suter, Franz; Schmid, Daniel; Wandrey, Franziska; Zülli, Fred

    2016-11-01

    The cosmetic industry requires more and more expensive actives and ingredients such as retinol, coenzyme Q10, proteins, peptides and biotechnologically produced molecules. In this study, we demonstrate the development of a cost effective formulation of a nanostructured lipid carrier (NLC) or solid lipid nanoparticles (SLN) improving peptide delivery into skin. NLC or SLN are very suitable vehicles for the delivery of active ingredients into skin. The SLN, produced by using hot high pressure homogenization method combine advantages such as physical stability, protection of incorporated labile actives and controlled release. By the used method we dispersed the amorphous heptapeptide DEETGEF in shea butter and homogenized this pre-dispersion at 60°C together with the water phase using a Microfluidizer at 1000bar. The analysis of the obtained SLN-P7 showed a particle size of 173nm, incorporated peptide of 0.014%, entrapment efficiency of 90.8%, melting peak (DSC) of the core lipid of 27°C and a zeta potential of -54mV. By an ex vivo study with skin explants we could stimulate NQO1 (NAD(P)H quinone oxidoreductase), HMOX1 (Heme oxygenase-1) and PRDX1 (Peroxiredoxin-1) genes all of which are cell protecting enzymes. In a multicellular protection against UV induced stress study with skin explants we detected the formation of sun burn cells and the number and morphology of Langerhans cells. The application of our SLN-P7 formulation on skin explants led to a significant and dose dependent protection against UV irradiation. In the clinical suction blister study, irradiation with UVA light for two hours after final product application led to a statistically significant increase of the 8-OhdG (8-hydroxy-2'-deoxyguanosine) concentration in the human epidermis. The skin treated with our verum formulation showed a statistically significant 20% decrease in DNA damage compared to placebo. In conclusion, it was demonstrated that SLN technology enabled peptide delivery into skin

  8. Comparison of drug release from liquid crystalline monoolein dispersions and solid lipid nanoparticles using a flow cytometric technique

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Dawoud

    2016-03-01

    Full Text Available Colloidal lipid particles such as solid lipid nanoparticles and liquid crystalline nanoparticles have great opportunities as drug carriers especially for lipophilic drugs intended for intravenous administration. In order to evaluate drug release from these nanoparticles and determine their behavior after administration, emulsion droplets were used as a lipophilic compartment to which the transfer of a model drug was measured. The detection of the model drug transferred from monoolein cubic particles and trimyristin solid lipid nanoparticles into emulsion droplets was performed using a flow cytometric technique. A higher rate and amount of porphyrin transfer from the solid lipid nanoparticles compared to the monoolein cubic particles was observed. This difference might be attributed to the formation of a highly ordered particle which leads to the expulsion of drug to the surface of the crystalline particle. Furthermore, the sponge-like structure of the monoolein cubic particles decreases the rate and amount of drug transferred. In conclusion, the flow cytometric technique is a suitable technique to study drug transfer from these carriers to large lipophilic acceptors. Monoolein cubic particles with their unique structure can be used successfully as a drug carrier with slow drug release compared with trimyristin nanoparticles.

  9. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ruktanonchai, Uracha; Sakulkhu, Usawadee [National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Limpakdee, Surachai; Meejoo, Siwaporn [Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Bunyapraphatsara, Nuntavan [Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand); Junyaprasert, Varaporn [Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400 (Thailand)], E-mail: uracha@nanotec.or.th

    2008-03-05

    This present study was aimed at investigating the effect of the crystallinity of cetyl palmitate based solid lipid nanoparticles (SLNs) on the physical properties of {gamma}-oryzanol-loaded SLNs. SLNs consisting of varying ratios of cetyl palmitate and {gamma}-oryzanol were prepared. Their hydrodynamic diameters were in the range 210-280 nm and the zeta potentials were in the range -27 to -35 mV. The size of SLNs increased as the amount of cetyl palmitate decreased whereas no significant change of zeta potentials was found. Atomic force microscopy pictures indicated the presence of disc-like particles. The crystallinity of SLNs, determined by differential scanning calorimetry and powder x-ray diffraction, was directly dependent on the ratio of cetyl palmitate to {gamma}-oryzanol and decreased with decreasing cetyl palmitate content in the lipid matrix. Varying this ratio in the lipid mix resulted in a shift in the melting temperature and enthalpy, although the SLN structure remained unchanged as an orthorhombic lamellar lattice. This has been attributed to a potential inhibition by {gamma}-oryzanol during lipid crystal growth as well as a less ordered structure of the SLNs. The results revealed that the crystallinity of the SLNs was mainly dependent on the solid lipid, and that the crystallinity has an important impact on the physical characteristics of active-loaded SLNs.

  10. Solid-Phase Organic Chemistry: Synthesis of 2β-(HeterocyclylthiomethylPenam Derivatives on Solid Support

    Directory of Open Access Journals (Sweden)

    Ernesto G. Mata

    2000-03-01

    Full Text Available The synthesis of 2β-(heterocyclylthiomethylpenam derivatives on solid support has been developed. Compounds are obtained in good to high yields (based on loading of the original resin. The key step is the solid-phase double rearrangement of the corresponding penicillin sulfoxide.

  11. Orodispersible tablets containing taste-masked solid lipid pellets with metformin hydrochloride: Influence of process parameters on tablet properties.

    Science.gov (United States)

    Petrovick, Gustavo Freire; Kleinebudde, Peter; Breitkreutz, Jörg

    2018-01-01

    Compaction of multiparticulates into tablets, particularly into orodispersible tablets (ODTs), is challenging. The compression of pellets, made by solid lipid extrusion/spheronization processes, presents peculiar difficulties since solid lipids usually soften or melt at relatively low temperature ranges and due to applied mechanical forces. Until now, there are no reports in literature about the development of ODTs based on solid lipid pellets. To investigate the feasibility of producing such tablets, a design of experiment (DoE) approach was performed to elucidate the influence of compression force and amount of two co-processed excipients (Ludiflash® and Parteck® ODT) on properties of the tablets (friability, tensile strength, and disintegration time). ODTs (15 mm, flat-faced) with solid lipid pellets (250-1000 µm in diameter) containing 500 mg of metformin HCl, presenting immediate drug release profile and taste-masked properties, were targeted. During compression, a strong lamination of the tablets containing Parteck® ODT was observed. This phenomenon was prominently observed when high compression forces (≥5 kN) and high excipient amounts (≥40%; w/w) were used. On the other hand, the DoE focused on tablets with Ludiflash® showed better results regarding the production of ODTs. A positive influence of the compression force on the tensile strength and disintegration time of the tablets, regarding specifications of the Ph. Eur., was observed. The increase in the amount of this excipient resulted in fast disintegrating tablets, however, a negative influence on the tensile strength was noticed. After optimization of the parameters and formulation, based on the DoE results and considering the Ph. Eur. specifications for tablets, ODTs based on lipid pellets containing metformin HCl presenting immediate release profile (85% drug release in less than 30 min) and taste-masked properties (determined by an electronic tongue) were successfully obtained

  12. Recent progress in the application of atomic force microscopy for supported lipid bilayers.

    Science.gov (United States)

    Zhong, Jian; He, Dannong

    2012-04-02

    In the past two decades, atomic force microscopy has been widely used for studying supported lipid bilayer related research, including the structure and dynamics of membranes and membrane proteins, and the interaction of membranes with chemical and biological molecules. The focus of this minireview is on the recent progress in the application of atomic force microscopy for supported lipid bilayers. Such progress mainly includes the application in the following aspects: submolecular-resolution imaging, in situ observation, and nanomechanics measurement. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of oral solid self-emulsifying lipid formulations of risperidone with improved in vitro dissolution and digestion.

    Science.gov (United States)

    Kazi, Mohsin; Al-Qarni, Hassan; Alanazi, Fars K

    2017-05-01

    Liquid adsorption on solid adsorbent carriers is an emerging technique for oral lipid-based drug delivery systems. The purpose of the current study is to convert liquid into solid self-emulsifying lipid formulations (SELFs) using an inorganic adsorbent Neusilin® grade US2 (NUS2) and investigate in vitro dissolution and digestion performance of the model antipsychotic compound risperidone. The liquid SELFs were designed using various oils, nonionic surfactants and converted into solid at various SELF: NUS2 (%m/m) mixing ratios. The characterization of solid SELF powder was performed by using SEM, XRD, FT-IR & DSC to investigate the physical nature of the drug. The in vitro dissolution experiments were conducted to compare the representative formulations with marketed product risperdal®. In vitro digestion experiments were performed using a pH-stat at pH 6.8 for 30mins to predict the fate of risperidone in the GI tract after exposure of the solid SELF to pancreatic enzymes and bile. The results from the characterization studies showed that NUS2 with SELF at 1:1 (%m/m) yield superior flowability of the powder. The SEM revealed that pure risperidone was in irregular crystal shape whereas the drug loaded solid SELFs were in smooth regular shape. The XRD and DSC analyses of pure risperidone also confirmed the intense peaks due to the native crystalline form of the drug. However, the absence of sharp peaks in solid SELFs indicated the amorphous form of the drug. From the dissolution studies it was found that solid SELFs provided significant release profiles (>95%) compared to marketed product risperdal®. The digestion experiments suggested that risperidone was in a supersaturated state which could be maintained in the presence of mixed bile salt micelles. Solid SELF of risperidone with improved dissolution and digestion profile was successfully prepared using Neusilin® US2 as an adsorbent carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optimization of freeze-drying condition of amikacin solid lipid nanoparticles using D-optimal experimental design.

    Science.gov (United States)

    Varshosaz, Jaleh; Ghaffari, Solmaz; Khoshayand, Mohammad Reza; Atyabi, Fatemeh; Dehkordi, Abbas Jafarian; Kobarfard, Farzad

    2012-01-01

    Amikacin as an aminoglycoside antibiotic was chosen to be loaded in a cholesterol carrier with nanoparticle size and sustained release profile to increase the dose interval of amikacin and reduce side-effects. To support the stability of solid lipid nanoparticles (SLNs), freeze-drying was suggested. Factors affecting the freeze-drying process in the present study included the type and concentration of cryoprotectants. Pre-freezing temperature effects were also studied on particle size of SLNs of amikacin. In some preliminary experiments, important factors which influenced the particle size of SLNs after lyophilization were selected and a D-optimal design was applied to optimize the freeze-drying conditions in the production of SLNs with minimum particle size growth after freeze-drying. Zeta potential, DSC thermograms, release profiles and morphology of the optimized particles were studied before and after freeze-drying. Results showed sucrose changed the particle size of SLNs of amikacin from 149 ± 4 nm to 23.9 ± 16.7 nm; in that situation, the absolute value of zeta potential changed from 1 ± 0.7 mV to 13 ± 4 mV. The release profiles showed a sustained release behavior of the loaded drug that did not change significantly before and after freeze-drying, but a burst effect was seen after it in the first 2 h. DSC analysis showed chemical interaction between amikacin and cholesterol. © 2012 Informa Healthcare USA, Inc.

  15. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments.

    Science.gov (United States)

    Wang, Jing; Zhang, Zhengfeng; Zhao, Weijing; Wang, Liying; Yang, Jun

    2016-05-09

    The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using (1) H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical (1) H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l(-1) of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of (1) H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Coating Solid Lipid Nanoparticles with Hyaluronic Acid Enhances Antitumor Activity against Melanoma Stem-like Cells.

    Science.gov (United States)

    Shen, Hongxin; Shi, Sanjun; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2015-01-01

    Successful anticancer chemotherapy requires targeting tumors efficiently and further potential to eliminate cancer stem cell (CSC) subpopulations. Since CD44 is present on many types of CSCs, and it binds specially to hyaluronic acid (HA), we tested whether coating solid lipid nanoparticles with hyaluronan (HA-SLNs)would allow targeted delivery of paclitaxel (PTX) to CD44-overexpressing B16F10 melanoma cells. First, we developed a model system based on melanoma stem-like cells for experiments in vitro and in mouse xenografts, and we showed that cells expressing high levels of CD44 (CD44(+)) displayed a strong CSC phenotype while cells expressing low levels of CD44 (CD44(-)) did not. This phenotype included sphere and colony formation, higher proportion of side population cells, expression of CSC-related markers (ALDH, CD133, Oct-4) and tumorigenicity in vivo. Next we showed that administering PTX-loaded HA-SLNs led to efficient intracellular delivery of PTX and induced substantial apoptosis in CD44(+) cells in vitro. In the B16F10-CD44(+) lung metastasis model, PTX-loaded HA-SLNs targeted the tumor-bearing lung tissues well and subsequently exhibited significant antitumor effects with a relative low dose of PTX, which provided significant survival benefit without evidence of adverse events. These findings suggest that the HA-SLNs targeting system shows promise for enhancing cancer therapy.

  17. Synthesis of sub-10 nm solid lipid nanoparticles for topical and biomarker detection applications

    Science.gov (United States)

    Calderón-Colón, Xiomara; Patchan, Marcia W.; Theodore, Mellisa L.; Le, Huong T.; Sample, Jennifer L.; Benkoski, Jason J.; Patrone, Julia B.

    2014-02-01

    Solid lipid nanoparticles (SLNs) are a promising platform for sensing in vivo biomarkers due to their biocompatibility, stability, and their ability to carry a wide range of active ingredients. The skin is a prominent target organ for numerous inflammatory and stress-related biomarkers, making it an excellent site for early detection of physiological imbalance and application of sensory nanoparticles. Though smaller particle size has generally been correlated with increased penetration of skin models, there has been little attention paid to the significance of other nanoparticle synthesis parameters with respect to their physical properties. In this study, we demonstrate the synthesis of sub-10 nm SLNs by the phase inversion temperature (PIT) method. These particles were specifically designed for topical delivery of hydrogen peroxide-detecting chemiluminescent dyes. A systematic design of experiments approach was used to investigate the role of the processing variables on SLN form and properties. The processing variables were correlated with the SLN properties (e.g., dye solubility, phase inversion temperature, particle size, polydispersity, melting point, and latent heat of melting). Statistical analysis revealed that the PIT method, while allowing total control over the thermal properties, resulted in well-controlled synthesis of ultra-small particles, while allowing great flexibility in the processing conditions and incorporated compounds.

  18. Interaction of Solid Lipid Nanoparticles and Specific Proteins of the Corona Studied by Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Mauricio E. Di Ianni

    2017-01-01

    Full Text Available The applications of pharmaceutical and medical nanosystems are among the most intensively investigated fields in nanotechnology. A relevant point to be considered in the design and development of nanovehicles intended for medical use is the formation of the “protein corona” around the nanoparticle, that is, a complex biomolecular layer formed when the nanovehicle is exposed to biological fluids. The chemical nature of the protein corona determines the biological identity of the nanoparticle and influences, among others, the recognition of the nanocarrier by the mononuclear phagocytic system and, thus, its clearance from the blood. Recent works suggest that Surface Plasmon Resonance (SPR, extensively employed for the analysis of biomolecular interactions, can shed light on the formation of the protein corona and its interaction with the surroundings. The synthesis and characterization of solid lipid nanoparticles (SLN coated with polymers of different chemical nature (e.g., polyvinyl alcohol, chitosans are reported. The proof-of-concept for the use of SPR technique in characterizing protein-nanoparticle interactions of surface-immobilized proteins (immunoglobulin G and bovine serum albumin, both involved in the formation of the corona subjected to flowing SLN is demonstrated for non-chitosan-coated nanoparticles. All assayed nanosystems show more preference for IgG than for BSA, such preference being more pronounced in the case of polyvinyl-alcohol-coated SLN.

  19. Structure and orientation of dynorphin bound to lipid bilayers by 13C solid-state NMR

    Science.gov (United States)

    Uezono, Takiko; Toraya, Shuichi; Obata, Maki; Nishimura, Katsuyuki; Tuzi, Satoru; Saitô, Hazime; Naito, Akira

    2005-07-01

    Secondary structure and orientation of dynorphin bound to dimyristoylphosphatidylcholine (DMPC) bilayer were investigated by solid-state 13C NMR spectroscopy. For this purpose, 13C NMR spectra of the site-specifically 13C-labeled dynorphin were measured in the membrane-bound state under static, magic angle spinning (MAS), and slow MAS conditions. In the static experiment, magnetically oriented vesicle system (MOVS) induced by dynorphin was successfully used to investigate the orientation of dynorphin bound to the lipid bilayers. It was found that dynorphin adopts an α-helical structure in the N-terminus from Gly 2 to Leu 5 by analyses of the isotropic chemical shifts obtained from the MAS experiments. In contrast, it adopts disordered conformations from the center to the C-terminus and is located on the membrane surface. The static 13C NMR spectra indicated that MOVS-bound dynorphin was oriented to the magnetic field and rotated rapidly about the bilayer normal. Subsequently, we analyzed the 13C chemical shift tensors of carbonyl carbons in the peptide backbone by considering the rotational motion of the N-terminal α-helix. It was revealed that the N-terminal α-helix is inserted into the membrane with the tilt angle of 21° to the bilayer normal. This structure suggests a possibility that dynorphin interacts with the extracellular loop II of the κ-receptor through a helix-helix interaction.

  20. Solid Lipid Nanoparticles: A Potential Multifunctional Approach towards Rheumatoid Arthritis Theranostics.

    Science.gov (United States)

    Albuquerque, João; Moura, Catarina Costa; Sarmento, Bruno; Reis, Salette

    2015-06-16

    Rheumatoid arthritis (RA) is the most common joint-related autoimmune disease and one of the most severe. Despite intensive investigation, the RA inflammatory process remains largely unknown and finding effective and long lasting therapies that specifically target RA is a challenging task. This study proposes a different approach for RA therapy, taking advantage of the new emerging field of nanomedicine to develop a targeted theranostic system for intravenous administration, using solid lipid nanoparticles (SLN), a biocompatible and biodegradable colloidal delivery system, surface-functionalized with an anti-CD64 antibody that specifically targets macrophages in RA. Methotrexate (MTX) and superparamagnetic iron oxide nanoparticles (SPIONs) were co-encapsulated inside the SLNs to be used as therapeutic and imaging agents, respectively. All the formulations presented sizes under 250 nm and zeta potential values lower than -16 mV, suitable characteristics for intravenous administration. Transmission electron microscopy (TEM) photographs indicated that the SPIONs were encapsulated inside the SLN matrix and MTX association efficiency values were higher than 98%. In vitro studies, using THP-1 cells, demonstrated that all formulations presented low cytotoxicity at concentrations lower than 500 μg/mL. It was proven that the proposed NPs were not cytotoxic, that both a therapeutic and imaging agent could be co-encapsulated and that the SLN could be functionalized for a potential future application such as anti-body specific targeting. The proposed formulations are, therefore, promising candidates for future theranostic applications.

  1. In Vitro Antioxidant Activity of Idebenone Derivative-Loaded Solid Lipid Nanoparticles.

    Science.gov (United States)

    Montenegro, Lucia; Modica, Maria N; Salerno, Loredana; Panico, Anna Maria; Crascì, Lucia; Puglisi, Giovanni; Romeo, Giuseppe

    2017-05-27

    Idebenone (IDE) has been proposed for the treatment of neurodegenerative diseases involving mitochondria dysfunctions. Unfortunately, to date, IDE therapeutic treatments have not been as successful as expected. To improve IDE efficacy, in this work we describe a two-step approach: (1) synthesis of IDE ester derivatives by covalent linking IDE to other two antioxidants, trolox (IDETRL) and lipoic acid (IDELIP), to obtain a synergic effect; (2) loading of IDE, IDETRL, or IDELIP into solid lipid nanoparticles (SLN) to improve IDE and its esters' water solubility while increasing and prolonging their antioxidant activity. IDE and its derivatives loaded SLN showed good physico-chemical and technological properties (spherical shape, mean particle sizes 23-25 nm, single peak in the size distribution, ζ potential values -1.76/-2.89 mV, and good stability at room temperature). In vitro antioxidant activity of these SLN was evaluated in comparison with free drugs by means of oxygen radical absorbance capacity (ORAC) test. IDETRL and IDELIP showed a greater antioxidant activity than IDE and encapsulation of IDE and its derivatives into SLN was able to prolong their antioxidant activity. These results suggest that loading IDETRL and IDELIP into SLN could be a useful strategy to improve IDE efficacy.

  2. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics.

    Science.gov (United States)

    Garg, Neeraj K; Singh, Bhupinder; Jain, Ashay; Nirbhavane, Pradip; Sharma, Rajeev; Tyagi, Rajeev K; Kushwah, Varun; Jain, Sanyog; Katare, Om Prakash

    2016-10-01

    The present study is designed to engineer fucose anchored methotrexate loaded solid lipid nanoparticles (SLNs) to target breast cancer. The developed nano-carriers were characterized with respect to particle size, PDI, zeta potential, drug loading and entrapment, in-vitro release etc. The characterized formulations were used to comparatively assess cellular uptake, cell-viability, apoptosis, lysosomal membrane permeability, bioavailability, biodistribution, changes in tumor volume and animal survival. The ex-vivo results showed greater cellular uptake and better cytotoxicity at lower IC50 of methotrexate in breast cancer cells. Further, we observed increased programmed cell death (apoptosis) with altered lysosomal membrane permeability and better rate of degradation of lysosomal membrane in-vitro. On the other hand, in-vivo evaluation showed maximum bioavailability and tumor targeting efficiency with minimum secondary drug distribution in various organs with formulated and anchored nano-carrier when compared with free drug. Moreover, sizeable reduction in tumor burden was estimated with fucose decorated SLNs as compared to that seen with free MTX and SLNs-MTX. Fucose decorated SLNs showed promising results to develop therapeutic interventions for breast cancer, and paved a way to explore this promising and novel nano-carrier which enables to address breast cancer. Published by Elsevier B.V.

  3. Vitamin B12-loaded solid lipid nanoparticles as a drug carrier in cancer therapy.

    Science.gov (United States)

    Genç, Lütfi; Kutlu, H Mehtap; Güney, Gamze

    2015-05-01

    Nanostructure-mediated drug delivery, a key technology for the realization of nanomedicine, has the potential to improve drug bioavailability, ameliorate release deviation of drug molecules and enable precision drug targeting. Due to their multifunctional properties, solid lipid nanoparticles (SLNs) have received great attention of scientists to find a solution to cancer. Vitamin supplements may contribute to a reduction in the risk of cancer. Vitamin B12 has several characteristics that make it an attractive entity for cancer treatment and possible therapeutic applications. The aim of this study was to produce B12-loaded SLNs (B12-SLNs) and determine the cytotoxic effects of B12-SLNs on H-Ras 5RP7 and NIH/3T3 control cell line. Results obtained by MTT assay, transmission electron and confocal microscopy showed that B12-loaded SLNs are more effective than free vitamin B12 on cancer cells. In addition, characterization studies indicate that while the average diameter of the B12 was about 650 nm, B12-SLNs were about 200 nm and the drug release efficiency of vit. B12 by means of SLNs increased up to 3 h. These observations point to the fact that B12-SLNs could be used as carrier systems due to the therapeutic effects on cancer.

  4. Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-01-01

    Full Text Available Oridonin (ORI, a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs. ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.

  5. Preparation, characterisation and antibacterial activity of a florfenicol-loaded solid lipid nanoparticle suspension.

    Science.gov (United States)

    Wang, Ting; Chen, Xiaojin; Lu, Mengmeng; Li, Xihe; Zhou, WenZhong

    2015-12-01

    A florfenicol-loaded solid lipid nanoparticle (FFC-SLN) suspension was prepared by hot homogenisation and ultrasonic technique. The suspension was characterised for its release profile, stability, toxicity, and the physicochemical properties of the nanoparticles. Antibacterial activity of the suspension was evaluated in vitro and in vivo. The results showed that the mean diameter, polydispersity index and zeta potential of the nanoparticles were 253 ± 3 nm, 0.409 ± 0.022 and 47.5 ± 0.21 mV, respectively. In vitro release profile showed the FFC-SLN suspension had sustained release effect. The minimum inhibition concentration values of the FFC-SLN suspension were 6 and 3 µg/mL against Staphylococcus aureus and Escherichia coli respectively, compared with 3.5 and 2 µg/mL of native florfenicol. The suspension was relatively stable at 4°C and less stable at room temperature during 9 months storage. Although the nanoparticle carriers exhibited cytotoxicity in cell cultures, the LD50 of the lyophilised dry power of the suspension was higher than 5 g/kg body weight. Mortality protection against E. coli lethal infection in mice showed that the nanoparticle suspension had much better efficacy (6/10) than native drug (1/10). These results indicate that FFC-SLN suspension could be a promising formulation in veterinary medicine.

  6. Evaluating Cytotoxicity of Hyaluronate Targeted Solid Lipid Nanoparticles of Etoposide on SK-OV-3 Cells

    Science.gov (United States)

    Varshosaz, Jaleh; Sadeghi Aliabadi, Hojatollah

    2014-01-01

    The epithelial ovarian carcinoma is one of the most fatal gynecological cancers. Etoposide is used in treating platinum-resistant ovarian cancer. Sodium hyaluronate is a substance that binds to the CD44 receptors overexpressed in SK-OV-3 cells of epithelial ovarian carcinoma. The aim of the present work was to study the cytotoxicity effect of hyaluronate targeted solid lipid nanoparticles (SLNs) of etoposide on SK-OV-3 cells. The cytotoxicity of the targeted and nontargeted SLNs of etoposide was compared to free drug on the SK-OV-3 cells by MTT assay method. The cellular uptake of the targeted and nontargeted nanoparticles containing sodium fluorescein was also studied. The difference of cell vitality between nontargeted nanoparticles and also targeted nanoparticles with free drug was significant. Targeted nanoparticles also caused more toxicity than nontargeted nanoparticles (P Hyaluronate targeted SLNs containing etoposide increased the cytotoxicity of etoposide on SK-OV-3 cells which may be a worthwhile potential method for reducing the prescribed dose and systemic side effects of this drug in epithelial ovarian carcinoma. PMID:24868467

  7. Evaluating Cytotoxicity of Hyaluronate Targeted Solid Lipid Nanoparticles of Etoposide on SK-OV-3 Cells

    Directory of Open Access Journals (Sweden)

    Parviz Mohammadi Ghalaei

    2014-01-01

    Full Text Available The epithelial ovarian carcinoma is one of the most fatal gynecological cancers. Etoposide is used in treating platinum-resistant ovarian cancer. Sodium hyaluronate is a substance that binds to the CD44 receptors overexpressed in SK-OV-3 cells of epithelial ovarian carcinoma. The aim of the present work was to study the cytotoxicity effect of hyaluronate targeted solid lipid nanoparticles (SLNs of etoposide on SK-OV-3 cells. The cytotoxicity of the targeted and nontargeted SLNs of etoposide was compared to free drug on the SK-OV-3 cells by MTT assay method. The cellular uptake of the targeted and nontargeted nanoparticles containing sodium fluorescein was also studied. The difference of cell vitality between nontargeted nanoparticles and also targeted nanoparticles with free drug was significant. Targeted nanoparticles also caused more toxicity than nontargeted nanoparticles (P<0.05. After 4 hours of incubating, the fluorescence was remarkably higher in the cells treated by targeted SLNs rather than nontargeted ones, and there was no observable fluorescence in cells incubated with pure sodium fluorescein. Hyaluronate targeted SLNs containing etoposide increased the cytotoxicity of etoposide on SK-OV-3 cells which may be a worthwhile potential method for reducing the prescribed dose and systemic side effects of this drug in epithelial ovarian carcinoma.

  8. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications.

    Science.gov (United States)

    Nunes, Sara; Madureira, Ana Raquel; Campos, Débora; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Manuela; Reis, Flávio

    2017-06-13

    Drug delivery systems, accompanied by nanoparticle technology, have recently emerged as prominent solutions to improve the pharmacokinetic properties, namely bioavailability, of therapeutic and nutraceutical agents. Solid lipid nanoparticles (SLNs) have received much attention from researchers due to their potential to protect or improve drug properties. SLNs have been reported to be an alternative system to traditional carriers, such as emulsions, liposomes, and polymeric nanoparticles. Phenolic compounds are widespread in plant-derived foodstuffs and therefore abundant in our diet. Over the last decades, phenolic compounds have received considerable attention due to several health promoting properties, mostly related to their antioxidant activity, which can have important implications for health. However, most of these compounds have been associated with poor bioavailability being poorly absorbed, rapidly metabolized and eliminated, which compromises its biological and pharmacological benefits. This paper provides a systematic review of the use of SLNs as oral delivery systems of phenolic compounds, in order to overcome pharmacokinetic limitations of these compounds and improved nutraceutical potential. In vitro studies, as well as works describing topical and oral treatments will be revisited and discussed. The classification, synthesis, and clinical application of these nanomaterials will be also considered in this review article.

  9. Solid Lipid Nanoparticles: A Potential Multifunctional Approach towards Rheumatoid Arthritis Theranostics

    Directory of Open Access Journals (Sweden)

    João Albuquerque

    2015-06-01

    Full Text Available Rheumatoid arthritis (RA is the most common joint-related autoimmune disease and one of the most severe. Despite intensive investigation, the RA inflammatory process remains largely unknown and finding effective and long lasting therapies that specifically target RA is a challenging task. This study proposes a different approach for RA therapy, taking advantage of the new emerging field of nanomedicine to develop a targeted theranostic system for intravenous administration, using solid lipid nanoparticles (SLN, a biocompatible and biodegradable colloidal delivery system, surface-functionalized with an anti-CD64 antibody that specifically targets macrophages in RA. Methotrexate (MTX and superparamagnetic iron oxide nanoparticles (SPIONs were co-encapsulated inside the SLNs to be used as therapeutic and imaging agents, respectively. All the formulations presented sizes under 250 nm and zeta potential values lower than −16 mV, suitable characteristics for intravenous administration. Transmission electron microscopy (TEM photographs indicated that the SPIONs were encapsulated inside the SLN matrix and MTX association efficiency values were higher than 98%. In vitro studies, using THP-1 cells, demonstrated that all formulations presented low cytotoxicity at concentrations lower than 500 μg/mL. It was proven that the proposed NPs were not cytotoxic, that both a therapeutic and imaging agent could be co-encapsulated and that the SLN could be functionalized for a potential future application such as anti-body specific targeting. The proposed formulations are, therefore, promising candidates for future theranostic applications.

  10. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis.

    Science.gov (United States)

    Bhalekar, Mangesh R; Madgulkar, Ashwini R; Desale, Puja S; Marium, Gyce

    2017-06-01

    The purpose of this work was to formulate piperine solid lipid nanoparticle (SLN) dispersion to exploit its efficacy orally and topically. Piperine SLN were prepared by melt emulsification method and formula was optimized by the application of 3(2) factorial design. The nanoparticulate dispersion was evaluated for particle size, entrapment efficiency and zeta potential (ZP). Optimized batch (128.80 nm average size, 78.71% entrapment efficiency and -23.34 mV zeta potential) was characterized for differential scanning calorimetry (DSC), X-ray diffraction which revealed amorphous nature of piperine in SLN. The prepared SLN were administered orally and topically to CFA-induced arthritic rats. Ex vivo study using Franz diffusion cell indicate that piperine from SLN gel formulation accumulates in the skin. Pharmacodynamic study result indicates both the topical and oral piperine evoked a significant response compared to orally administered chloroquine suspension. The results of ELISA show significant reduction in TNFα in treated rat which might be the reason behind the DMARD action of piperine SLN.

  11. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongfei; Jiang Sunmin [Nanjing Medical University, School of Pharmacy (China); Shen Hong [Nanjing Brain Hospital Affiliated to Nanjing Medical University, Neuro-Psychiatric Institute (China); Qin Shan; Liu Juanjuan; Zhang Qing; Li Rui, E-mail: chongloutougao@gmail.com; Xu Qunwei, E-mail: qunweixu@163.com [Nanjing Medical University, School of Pharmacy (China)

    2011-06-15

    The preparation of solid lipid nanoparticles (SLNs) suffers from the drawback of poor incorporation of water-soluble drugs. The aim of this study was therefore to assess various formulation and process parameters to enhance the incorporation of a water-soluble drug (diclofenac sodium, DS) into SLNs prepared by the emulsion/solvent evaporation method. Results showed that the entrapment efficiency (EE) of DS was increased to approximately 100% by lowering the pH of dispersed phase. The EE of DS-loaded SLNs (DS-SLNs) had been improved by the existence of cosurfactants and increment of PVA concentration. Stabilizers and their combination with PEG 400 in the dispersed phase also resulted in higher EE and drug loading (DL). EE increased and DL decreased as the phospholipid/DS ratio became greater, while the amount of DS had an opposite effect. Ethanol turned out to be the ideal solvent making DS-SLNs. EE and DL of DS-SLNs were not affected by either the stirring speed or the viscosity of aqueous and dispersed phase. According to the investigations, drug solubility in dispersion medium played the most important role in improving EE.

  12. Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications

    Science.gov (United States)

    Campos, Estefânia Vangelie Ramos; Oliveira, Jhones Luiz De; da Silva, Camila Morais Gonçalves; Pascoli, Mônica; Pasquoto, Tatiane; Lima, Renata; Abhilash, P. C.; Fernandes Fraceto, Leonardo

    2015-09-01

    Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.

  13. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis.

    Science.gov (United States)

    Vieira, Alexandre C C; Chaves, Luíse L; Pinheiro, Sara; Pinto, Soraia; Pinheiro, Marina; Lima, Sofia Costa; Ferreira, Domingos; Sarmento, Bruno; Reis, Salette

    2017-12-01

    Taking into consideration the potential mucoadhesion properties of systems in lung delivery, this paper describes the preparation and characterization of chitosan-coated solid lipid nanoparticles (C-SLNs) loaded with rifampicin (RIF) as anti-tuberculosis (anti-TB) drug. The process of development and characterization of the NPs in terms of size, surface charge, encapsulation efficiency (EE), morphology, in vitro drug release, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), in vitro assessment of mucoadhesive property, cell viability and permeability studies are documented. Results showed that the SLNs had a smooth spherical shape with a size of ca. 245-344 nm and with a zeta potential around -30 mV for SLNs and +40 mV for C-SLNs. The surface charge variation from negative to positive charge and FTIR analysis demonstrated the successful process of coating the nanoparticles (NPs) surface with chitosan. The DSC thermograms were in agreement with the nanostructure of the SLNs. The EE of drug was found to be higher than 90% and the loading capacity (LC) around 4.5%. C-SLNs show higher in vitro muchoadesive properties and a higher permeability in alveolar epithelial cells A549 than uncoated SLNs, indicating that the developed C-SLNs can be used as a promising carrier for safer and efficient management of TB. Copyright © 2017. Published by Elsevier B.V.

  14. Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion.

    Science.gov (United States)

    Chang, Che-Wei; Chiang, Chung-Wei; Gaffaney, Jon D; Chapman, Edwin R; Jackson, Meyer B

    2016-02-05

    SNARE proteins catalyze many forms of biological membrane fusion, including Ca(2+)-triggered exocytosis. Although fusion mediated by SNAREs generally involves proteins anchored to each fusing membrane by a transmembrane domain (TMD), the role of TMDs remains unclear, and previous studies diverge on whether SNAREs can drive fusion without a TMD. This issue is important because it relates to the question of the structure and composition of the initial fusion pore, as well as the question of whether SNAREs mediate fusion solely by creating close proximity between two membranes versus a more active role in transmitting force to the membrane to deform and reorganize lipid bilayer structure. To test the role of membrane attachment, we generated four variants of the synaptic v-SNARE synaptobrevin-2 (syb2) anchored to the membrane by lipid instead of protein. These constructs were tested for functional efficacy in three different systems as follows: Ca(2+)-triggered dense core vesicle exocytosis, spontaneous synaptic vesicle exocytosis, and Ca(2+)-synaptotagmin-enhanced SNARE-mediated liposome fusion. Lipid-anchoring motifs harboring one or two lipid acylation sites completely failed to support fusion in any of these assays. Only the lipid-anchoring motif from cysteine string protein-α, which harbors many lipid acylation sites, provided support for fusion but at levels well below that achieved with wild type syb2. Thus, lipid-anchored syb2 provides little or no support for exocytosis, and anchoring syb2 to a membrane by a TMD greatly improves its function. The low activity seen with syb2-cysteine string protein-α may reflect a slower alternative mode of SNARE-mediated membrane fusion. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Development of metal supported Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Martinez, L. M.; Alava, I.; Antepara, I.; Castro, U.; Diez-Linaza, E.; Lecanda, N.; Montero, X.; Rivas, M.; Villarreal, I.; Laresgoiti, A.

    2005-07-01

    Metal supported solid oxide fuel cells have been developed by Ikerlan in collaboration with Lawrence Berkeley National Laboratory, as a promising way to reduce materials costs. This, in conjunction with cost-effective processing techniques, is vital for successful commercialisation of SOFC's. In this type of cells, the Ni/YSZ support anode has been replaced by a porous stainless steel support structure, and the Ni/YSZ anode is now limited to a thin catalytically active layer. The basic structure also includes a thin, 5-15 micron YSZ electrolyte and a cathode (LSF, LSCF or similar) of approximately 15-20 microns. This robust metal structure provides both high thermal and electronic conductivity, improves thermal shock resistance and allows for simple, cost effective sealing strategies. Metal supported SOFC technology, first patented in 1966 [1], has only recently received interest but the majority of current research is centred on relatively expensive fabrication techniques such as plasma spray [2] and metalorganic chemical vapour deposition [3]. Ceres Power [4,5] has, conversely, focused on the integration of low cost ceramic processes with metallic materials to develop doped ceria based electrolyte metal supported planar cells operating at 500-600C. Ikerlan, as part of Mondragon Corporacion Cooperativa (MCC), aims to develop metal supported SOFC tubular systems for small stationary applications based on natural gas, propane and similar fuels. The target temperature for operation is 700C, although studies are performed over a wider, 650-800C temperature range. Conventional low-cost processing and coating technologies, such as colloidal spray, dip coating and tape casting, are used to fabricate cofired ferritic supports, anodes and thin electrolytes under reducing atmospheres. The cathode is subsequently deposited and fired in air at temperatures below 1100C. The cofiring process adds several challenging requirements on the properties of the materials

  16. Kinetic Control of Histidine-Tagged Protein Surface Density on Supported Lipid Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Jeffrey A. [Univ. of California, Berkeley, CA (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2008-02-28

    Nickel-chelating lipids are general tools for anchoring polyhistidine-tagged proteins to supported lipid bilayers (SLBs), but controversy exists over the stability of the protein-lipid attachment. In this study, we show that chelator lipids are suitable anchors for building stable, biologically active surfaces but that a simple Langmuirian model is insufficient to describe their behavior. Desorption kinetics from chelator lipids are governed by the valency of surface binding: monovalently bound proteins desorb within minutes (t1/2 ≈ 6 min), whereas polyvalently bound species remain bound for hours (t1/2 ≈ 12 h). Evolution between surface states is slow, so equilibrium is unlikely to be reached on experimental timescales. However, by tuning incubation conditions, the populations of each species can be kinetically controlled, providing a wide range of protein densities on SLBs with a single concentration of chelator lipid. In conclusion, we propose guidelines for the assembly of SLB surfaces functionalized with specific protein densities and demonstrate their utility in the formation of hybrid immunological synapses.

  17. Towards better modelling of drug-loading in solid lipid nanoparticles: Molecular dynamics, docking experiments and Gaussian Processes machine learning.

    Science.gov (United States)

    Hathout, Rania M; Metwally, Abdelkader A

    2016-11-01

    This study represents one of the series applying computer-oriented processes and tools in digging for information, analysing data and finally extracting correlations and meaningful outcomes. In this context, binding energies could be used to model and predict the mass of loaded drugs in solid lipid nanoparticles after molecular docking of literature-gathered drugs using MOE® software package on molecularly simulated tripalmitin matrices using GROMACS®. Consequently, Gaussian processes as a supervised machine learning artificial intelligence technique were used to correlate the drugs' descriptors (e.g. M.W., xLogP, TPSA and fragment complexity) with their molecular docking binding energies. Lower percentage bias was obtained compared to previous studies which allows the accurate estimation of the loaded mass of any drug in the investigated solid lipid nanoparticles by just projecting its chemical structure to its main features (descriptors). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Thermal treatment effects imposed on solid DNA cationic lipid complex with hexadecyltrimethylammonium chloride, observed by variable angle spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nizioł, Jacek, E-mail: niziol@agh.edu.pl [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-12-21

    DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day)

  19. Glycosylation efficiencies on different solid supports using a hydrogenolysis-labile linker

    Directory of Open Access Journals (Sweden)

    Mayeul Collot

    2013-01-01

    Full Text Available Automated oligosaccharide assembly requires suitable linkers to connect the first monosaccharide to a solid support. A new hydrogenolysis-labile linker that is stable under both acidic and basic conditions was designed, synthesized and coupled to different resins. Glycosylation and cleavage efficiencies on these functionalized solid supports were investigated, and restrictions for the choice of solid support for oligosaccharide synthesis were found.

  20. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    DEFF Research Database (Denmark)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.

    2012-01-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...

  1. Formulation, Characterization and in vitro Evaluation of Entacapone Solid Dispersions with Lipid Carriers by Using Spray Drying Method

    OpenAIRE

    Ganesh. M; Ramesh. K; Madhusudan Rao. Y; Chandra Shekar. B

    2015-01-01

    In present study, immediate release solid dispersion formulation of Entacapone with various lipids was developed using spray drying method. Entacapone is indicated for the treatment of Parkinson’s disease (PD) as an adjunct to levodopa/carbidopa therapy. Based on the process feasibility and solubility of resulting spray dried powder, formulation ENSD10 was selected for characterization and analyzed for in vitro dissolution profiles in three different pH media. The particle size of Entacapone ...

  2. Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nanoparticles in mice after intravenous administration.

    Science.gov (United States)

    Ren, Jungang; Zou, Meijuan; Gao, Ping; Wang, Yue; Cheng, Gang

    2013-02-01

    The main purpose of this research was to prepare borneol-modified and non-borneol ganciclovir-loaded solid lipid nanoparticles (SLNs) to study whether borneol could enhance the transport of ganciclovir (GCV) incorporated in SLN to the brain in mice after their intravenous administration. Ganciclovir injection (GCV-inj) was selected as a control. The SLNs were prepared using a modified microemulsion method. Pharmacokinetic and biodistribution studies were conducted in kunming mice after intravenous administration of GCV-inj, GCV solid lipid nanoparticles without borneol (GCV-SLN), and three types of GCV solid lipid nanoparticles containing different ratios of borneol (GCVb-SLN). It was found that, in plasma, the area under the concentration-time curve (AUC 0 ∼ t) for GCVb-SLN and GCV-SLN was greater than that for the GCV-inj. In the brain, the AUC 0 ∼ t of GCVb-SLN was significantly increased compared with that of a GCV-inj and GCV-SLN. In the other mouse tissues, the peak concentration of GCV achieved was always lower after the injection of any of the four types of SLN than after the commercial injection. These results indicate that GCV-SLN modified with borneol enhances the transport of ganciclovir to the brain. Therefore, SLN modified with borneol is a potential delivery system for transporting drugs to the central nervous system (CNS). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae

    Directory of Open Access Journals (Sweden)

    Amber Broch

    2013-12-01

    Full Text Available Microalgae have tremendous potential as a feedstock for production of liquid biofuels, particularly biodiesel fuel via transesterification of algal lipids. However, biodiesel production results in significant amounts of algal residues, or “lipid extracted algae” (LEA. Suitable utilization of the LEA residue will improve the economics of algal biodiesel. In the present study, we evaluate the hydrothermal carbonization (HTC of whole and lipid extracted algal (Spirulina maxima feedstocks in order to produce a solid biofuel (hydrochar and value-added co-products in the aqueous phase. HTC experiments were performed using a 2-L Parr reactor (batch type at 175–215 °C with a 30-min holding time. Solid, aqueous and gaseous products were analyzed using various laboratory methods to evaluate the mass and carbon balances, and investigate the existence of high value chemicals in the aqueous phase. The HTC method is effective in creating an energy dense, solid hydrochar from both whole algae and LEA at lower temperatures as compared to lignocellulosic feedstocks, and is effective at reducing the ash content in the resulting hydrochar. However, under the treatment temperatures investigated, less than 1% of the starting dry algae mass was recovered as an identified high-value chemical in the aqueous phase.

  4. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles.

    Directory of Open Access Journals (Sweden)

    Patricia Losada-Pérez

    Full Text Available Despite the environmentally friendly reputation of ionic liquids (ILs, their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides.

  5. Solid lipid particles for oral delivery of peptide and protein drugs II--the digestion of trilaurin protects desmopressin from proteolytic degradation.

    Science.gov (United States)

    Christophersen, Philip Carsten; Zhang, Long; Müllertz, Anette; Nielsen, Hanne Mørck; Yang, Mingshi; Mu, Huiling

    2014-09-01

    To investigate the in vitro release and degradation of desmopressin from saturated triglyceride microparticles under both lipolytic and proteolytic conditions. The release of desmopressin from different solid lipid microparticles in the absence and presence of a microbial lipase and protease was determined. Trilaurin (TG12), trimyristin (TG14), tripalmitin (TG16), and tristearin (TG18) were used as lipid excipients to produce solid lipid microparticles. In the presence of lipase, the rate of drug release from different lipid particles was in the order of TG14 > TG16 > TG18, which is the same rank order as the lipid degradation rate. A reverse rank order was found for the protection of desmopressin from enzymatic degradation due to spatial separation of desmopressin from the protease. TG12 accelerated the release of desmopressin from all lipid particles when added as either drug-free microparticles to the lipolysis medium or incorporated in TG16 particles. Additionally, TG12 particles protected desmopressin from degradation when present in the lipolysis medium with the other lipid microparticles. TG12 is a very interesting lipid for oral lipid formulations containing peptides and proteins as it alters release and degradation of the incorporated desmopressin. The present study demonstrates the possibility of bio-relevant in vitro evaluation of lipid-based solid particles.

  6. Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin.

    Science.gov (United States)

    Garg, Anuj; Singh, Sanjay

    2014-01-01

    The purpose of this study was to formulate carbopol hydrogels containing eugenol-loaded solid lipid nanoparticles (EG-SLNs) for epidermal targeting to treat fungal infections in skin. EG-SLNs were incorporated into carbopol hydrogels and the physiochemical characteristics of EG-SLN in hydrogels were investigated by dynamic light scattering, transmission electron microscopy and atomic force microscopy. Rheological behavior and mechanical properties of hydrogels were also studied before and after incorporation of EG-SLNs. The epidermal-targeting ability of EG-SLN-enriched hydrogels was evaluated by estimation of eugenol in the epidermis of human cadaver skin. An occlusion (hydration) study was also performed to elucidate the mechanism of epidermal targeting of EG-SLN-enriched hydrogels. The particle size (d90) and morphology of EG-SLNs were not significantly changed after incorporation into the hydrogel. EG-SLN of stearic acid-enriched hydrogels follow the Carreau model that describes pseudoplastic flow. The hydrogel containing EG-SLN of stearic acid and of Compritol(®) (Gattefose, Mumbai, India) showed significantly greater accumulation of eugenol in the epidermis (62.65 ± 4.35 and 52.86 ± 3.76 µg/cm(2), respectively) than that of eugenol-hydroxypropyl-β-cyclodextrin complex in hydrogel (9.77 ± 1.16 µg/cm(2)) and almond oil solution of eugenol (3.45 ± 0.6 µg/cm(2)). The occlusion study demonstrated greater hydration of human cadaver skin treated with EG-SLN-enriched hydrogel compared with that of hydrogel and intact skin. Hydrogels containing EG-SLNs could be a promising formulation for epidermal targeting to treat fungal infections in skin.

  7. Redox-responsive solid lipid microparticles composed of octadecyl acrylate and allyl disulfide.

    Science.gov (United States)

    Kim, Tae Hoon; Kim, Jin-Chul

    2018-04-01

    Redox-responsive solid lipid microparticles were prepared by an emulsification photo-polymerization method. Octadecyl acrylate (ODA) and a cross-linker (i.e. allyl disulfide (ADS) and octadiene (ODE)) were dissolved in dichloromethane, it was emulsified in poly(vinyl alcohol) solution, and the resulting O/W emulsion was irradiated with UV light. On the scanning electron microscope micrographs, the microparticles were sphere-like and they were not markedly different from the oil droplets in size. Using the atomic compositions analyzed by energy dispersive X-ray spectroscopy, the ODA to cross-linker molar ratio of ODA/ADS microparticles and ODA/ODE ones were calculated to be 1:0.13 and 1:0.15, respectively. In the FT-IR spectra of the microparticles, the signal of the vinyl group was hardly detected, implying that the monomer and the cross-linkers participated in the photo-polymerization. In differential scanning calorimetry study, ODA/ADS microparticles and ODA/ODE ones exhibited their endothermic peaks around 42.9 and 41.3 °C, respectively, possibly due to the melting of polymeric ODA. Dithiothreitol (DTT, a reducing agent) concentration had little effect on the release degree of dye loaded in ODA/ODE microparticles. Whereas, DTT concentration had a significant effect on the release degree of dye loaded in ODA/ADS microparticles. The release degree at 26 °C was weakly affected by DTT concentration. When the temperature was 37 °C, DTT concentration had a strong effect on the release degree. The disulfide cross-linker (i.e. ADS) can be broken to thiol compounds by the reducing agent, resulting in an increase in the release degree.

  8. Voltage clamp studies on S-layer-supported tetraether lipid membranes.

    Science.gov (United States)

    Schuster, B; Pum, D; Sleytr, U B

    1998-02-02

    Isolated subunits from the cell surface proteins (S-layer) of Bacillus coagulans E38-66 have been recrystallized on a glycerol dialkyl nonitol tetraether lipid (GDNT)-monolayer and the electrophysical features of this biomimetic membrane have been investigated in comparison to unsupported GDNT-monolayers. The GDNT-monolayer, spread on a Langmuir-Blodgett trough, was clamped with the tip of a glass patch pipette. In order to investigate the barrier function and potential to incorporate functional molecules, voltage-clamp examinations on plain and S-layer-supported GDNT-monolayers were per-formed. Our results indicate the formation of a tight GDNT-monolayer sealing the tip of the glass pipette, and a decrease in conductance of the GDNT-monolayer upon recrystallization of the S-layer protein. Thus, the S-layer protein, apparently, did not penetrate or rupture the lipid monolayer. The valinomycin-mediated increase in conductance was less pronounced for the S-layer-supported than for the plain GDNT-monolayer, indicating differences in the accessibility and/or in the fluidity of the lipid membranes. Furthermore. in contrast to plain GDNT-monolayers. S-layer supported GDNT-monolayers with high valinomycin-mediated conductance persisted over long, periods of time, indicating enhanced stability. These composite S-layer/lipid films may constitute a new tool for electrophysical and electrophysiological studies on membrane-associated and membrane-integrated biomolecules.

  9. Structure of synthetic transmembrane lipid membranes at the solid/liquid interface studied by specular X-ray reflectivity.

    Science.gov (United States)

    Schubert, Thomas; Seitz, Peter C; Schneck, Emanuel; Nakamura, Makoto; Shibakami, Motonari; Funari, Sergio S; Konovalov, Oleg; Tanaka, Motomu

    2008-08-14

    We fabricated a new class of supported membranes based on monolayers of artificial bola (transmembrane) lipids. The lipids used in this study are symmetric bola lipids with two phosphocholine head groups, which resemble natural archaea lipids. To prevent bending of the hydrocarbon chains, stiff triple bonds are inserted in the middle of the hydrocarbon cores. The formation of homogeneous "monolayers" of transmembrane lipids over macroscopic areas can be monitored with fluorescence microscopy. Structures of such supported monolayers in bulk water were characterized with specular X-ray reflectivity using high energy X-ray radiation, which guarantees a high transmission through bulk water. Here, the vertical structure of single monolayers could be resolved from reconstructed electron density profiles. To verify the structural model suggested by the specular reflectivity, we also performed small- and wide-angle X-ray scattering of transmembrane lipid suspensions. The wide-angle patterns reflect a distorted chain-chain correlation, while the small-angle scattering allowed us to model an electron density profile which is consistent with the profile calculated from specular reflectivity.

  10. Probing Peptide and Protein Insertion in a Biomimetic S-Layer Supported Lipid Membrane Platform

    Directory of Open Access Journals (Sweden)

    Samar Damiati

    2015-01-01

    Full Text Available The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM, to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided.

  11. Targeting the Endocannabinoid/CB1 Receptor System For Treating Major Depression Through Antidepressant Activities of Curcumin and Dexanabinol-Loaded Solid Lipid Nanoparticles

    National Research Council Canada - National Science Library

    Xiaolie He; Li Yang; Mei Wang; Xizhen Zhuang; Ruiqi Huang; Rongrong Zhu; Shilong Wang

    2017-01-01

    Background/Aims: This study investigated the underlying mechanisms of the antidepressant effects of curcumin and dexanabinol-loaded solid lipid nanoparticles in corticosterone-induced cell and mice depression models. Methods...

  12. Solid-state ²H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation.

    Science.gov (United States)

    Mallikarjunaiah, K J; Leftin, Avigdor; Kinnun, Jacob J; Justice, Matthew J; Rogozea, Adriana L; Petrache, Horia I; Brown, Michael F

    2011-01-05

    Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state ²H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our ²H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (S(CD)) of DMPC approach very large values of ≈ 0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state ²H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10-100 atm or lower. This research demonstrates the applicability of solid-state ²H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy?

    OpenAIRE

    Ophélie Maurin; Pascal Verdié; Gilles Subra; Frédéric Lamaty; Jean Martinez; Thomas-Xavier Métro

    2017-01-01

    While presenting particularly interesting advantages, peptide synthesis by ball-milling was never compared to the two traditional strategies, namely peptide syntheses in solution and on solid support (solid-phase peptide synthesis, SPPS). In this study, the challenging VVIA tetrapeptide was synthesized by ball-milling, in solution, and on solid support. The three strategies were then compared in terms of yield, purity, reaction time and environmental impact. The results obtained enabled to dr...

  14. Mixtures of supported and hybrid lipid membranes on heterogeneously modified silica nanoparticles.

    Science.gov (United States)

    Piper-Feldkamp, Aundrea R; Wegner, Maria; Brzezinski, Peter; Reed, Scott M

    2013-02-21

    Simple supported lipid bilayers do not accurately reflect the complex heterogeneity of cellular membranes; however, surface modification makes it possible to tune membrane properties to better mimic biological systems. Here, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (DETAS), a silica modifier, facilitated formation of supported lipid bilayers on silica nanoparticles. Evidence for a stable supported bilayer came from the successful entrapment of a soluble fluorophore within an interstitial water layer. A fluorescence-quenching assay that utilized a pore-forming peptide was used to demonstrate the existence of two separate lipid leaflets. In this assay, fluorescence was quenched by dithionite in roughly equal proportions prior to and after addition of melittin. When a hydrophobic modifier, octadecyltriethoxysilane, was codeposited on the nanoparticles with DETAS, there was a decrease in the amount of supported bilayer on the nanoparticles and an increase in the quantity of hybrid membrane. This allowed for a controlled mixture of two distinct types of membranes on a single substrate, one separated by a water cushion and the other anchored directly on the surface, thereby providing a new mimic of cellular membranes.

  15. Mixtures of Supported and Hybrid Lipid Membranes on Heterogeneously Modified Silica Nanoparticles

    Science.gov (United States)

    Piper-Feldkamp, Aundrea R.; Wegner, Maria; Brzezinski, Peter; Reed, Scott M.

    2013-01-01

    Simple supported lipid bilayers do not accurately reflect the complex heterogeneity of cellular membranes; however, surface modification makes it possible to tune membrane properties to better mimic biological systems. Here, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (DETAS), a silica modifier, facilitated formation of supported lipid bilayers on silica nanoparticles. Evidence for a stable supported bilayer came from the successful entrapment of a soluble fluorophore within an interstitial water layer. A fluorescence-quenching assay that utilized a pore-forming peptide was used to demonstrate the existence of two separate lipid leaflets. In this assay, fluorescence was quenched by dithionite in roughly equal proportions prior to and after addition of melittin. When a hydrophobic modifier, octadecyltriethoxysilane, was co-deposited on the nanoparticles with DETAS, there was a decrease in the amount of supported bilayer on the nanoparticles and an increase in the quantity of hybrid membrane. This allowed for a controlled mixture of two distinct types of membranes on a single substrate, one separated by a water cushion and the other anchored directly on the surface, thereby providing a new mimic of cellular membranes. PMID:23387352

  16. Statistical optimization of dithranol-loaded solid lipid nanoparticles using factorial design

    Directory of Open Access Journals (Sweden)

    Makarand Suresh Gambhire

    2011-09-01

    Full Text Available This study describes a 3² full factorial experimental design to optimize the formulation of dithranol (DTH loaded solid lipid nanoparticles (SLN by the pre-emulsion ultrasonication method. The variables drug: lipid ratio and sonication time were studied at three levels and arranged in a 3² factorial design to study the influence on the response variables particle size and % entrapment efficiency (%EE. From the statistical analysis of data polynomial equations were generated. The particle size and %EE for the 9 batches (R1 to R9 showed a wide variation of 219-348 nm and 51.33- 71.80 %, respectively. The physical characteristics of DTH-loaded SLN were evaluated using a particle size analyzer, differential scanning calorimetry and X-ray diffraction. The results of the optimized formulation showed an average particle size of 219 nm and entrapment efficiency of 69.88 %. Ex-vivo drug penetration using rat skin showed about a 2-fold increase in localization of DTH in skin as compared to the marketed preparation of DTH.Este estudo descreve o planejamento factorial 3² para otimizar a formulação de nanopartículas lipídicas sólidas (SLN carregadas com ditranol (DTH pelo método da ultrassonificação pré-emulsão. As variáveis como proporção de fármaco:lipídio e o tempo de sonicação foram estudados em três níveis e arranjados em planejamento fatorial 3² para estudar a influência nas variáveis de resposta tamanho de partícula e eficiência percentual de retenção do fármaco (%EE. Pela análise estatística, geraram-se equações polinomiais. O tamanho da partícula e a %EE para os 9 lotes (R1 a R9 mostraram ampla variação, respectivamente, 219-348 nm e 51,33-71,80%. As características físicas das SLN carregadas com DTN foram avaliadas utilizando-se analisador de tamanho de partícula, calorimetria de varredura diferencial e difração de raios X. Os resultados da formulação otimizada mostraram tamanho médio de partícula de

  17. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lin

    2017-04-01

    Full Text Available Chemical and enzymatic barriers in the gastrointestinal (GI tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs.

  18. On-Demand Formation of Supported Lipid Membrane Arrays by Trehalose-Assisted Vesicle Delivery for SPR Imaging.

    Science.gov (United States)

    Hinman, Samuel S; Ruiz, Charles J; Drakakaki, Georgia; Wilkop, Thomas E; Cheng, Quan

    2015-08-12

    The fabrication of large-scale, solid-supported lipid bilayer (SLB) arrays has traditionally been an arduous and complex task, primarily due to the need to maintain SLBs within an aqueous environment. In this work, we demonstrate the use of trehalose vitrified phospholipid vesicles that facilitate on-demand generation of microarrays, allowing each element a unique composition, for the label-free and high-throughput analysis of biomolecular interactions by SPR imaging (SPRi). Small, unilamellar vesicles (SUVs) are suspended in trehalose, deposited in a spatially defined manner, with the trehalose vitrifying on either hydrophilic or hydrophobic SPR substrates. SLBs are subsequently spontaneously formed on-demand simply by in situ hydration of the array in the SPR instrument flow cell. The resulting SLBs exhibit high lateral mobility, characteristic of fluidic cellular lipid membranes, and preserve the biological function of embedded cell membrane receptors, as indicated by SPR affinity measurements. Independent fluorescence and SPR imaging studies show that the individual SLBs stay localized at the area of deposition, without any encapsulating matrix, confining coral, or boundaries. The introduced methodology allows individually addressable SLB arrays to be analyzed with excellent label-free sensitivity in a real-time, high-throughput manner. Various protein-ganglioside interactions have been selected as a model system to illustrate discrimination of strong and weak binding responses in SPRi sensorgrams. This methodology has been applied toward generating hybrid bilayer membranes on hydrophobic SPR substrates, demonstrating its versatility toward a range of surfaces and membrane geometries. The stability of the fabricated arrays, over medium to long storage periods, was evaluated and found to be good. The highly efficient and easily scalable nature of the method has the potential to be applied to a variety of label-free sensing platforms requiring lipid membranes for

  19. Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Xie Shuyu

    2011-11-01

    Full Text Available Abstract Background Our previous studies demonstrated that tilmicosin-loaded hydrogenated castor oil solid lipid nanoparticles (Til-HCO-SLN are a promising formulation for enhanced pharmacological activity and therapeutic efficacy in veterinary use. The purpose of this work was to evaluate the acute toxicity of Til-HCO-SLN. Methods Two nanoparticle doses were used for the study in ICR mice. The low dose (766 mg/kg.bw with tilmicosin 7.5 times of the clinic dosage and below the median lethal dose (LD50 was subcutaneously administered twice on the first and 7th day. The single high dose (5 g/kg.bw was the practical upper limit in an acute toxicity study and was administered subcutaneously on the first day. Blank HCO-SLN, native tilmicosin, and saline solution were included as controls. After medication, animals were monitored over 14 days, and then necropsied. Signs of toxicity were evaluated via mortality, symptoms of treatment effect, gross and microscopic pathology, and hematologic and biochemical parameters. Results After administration of native tilmicosin, all mice died within 2 h in the high dose group, in the low dose group 3 died after the first and 2 died after the second injections. The surviving mice in the tilmicosin low dose group showed hypoactivity, accelerated breath, gloomy spirit and lethargy. In contrast, all mice in Til-HCO-SLN and blank HCO-SLN groups survived at both low and high doses. The high nanoparticle dose induced transient clinical symptoms of treatment effect such as transient reversible action retardation, anorexy and gloomy spirit, increased spleen and liver coefficients and decreased heart coefficients, microscopic pathological changes of liver, spleen and heart, and minor changes in hematologic and biochemical parameters, but no adverse effects were observed in the nanoparticle low dose group. Conclusions The results revealed that the LD50 of Til-HCO-SLN and blank HCO-SLN exceeded 5 g/kg.bw and thus the

  20. Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bylayers

    Energy Technology Data Exchange (ETDEWEB)

    Troiano, Julianne; Olenick, Laura L.; Kuech, Thomas R.; Melby, Eric S.; Hu, Dehong; Lohse, Samuel E.; Mensch, Arielle C.; Dogangun, Merve; Vartanian, Arlane M.; Torelli, Marco; Ehimiaghe, Eseohi; Walter, Stephanie R.; Fu, Li; Anderton, Christopher R.; Zhu, Zihua; Wang, Hongfei; Orr, Galya; Murphy, Catherine; Hamers, Robert J.; Pedersen, Joel A.; Geiger, Franz M.

    2015-01-08

    Interfacial charge densities and potentials are determined for silica-supported phospholipid bilayers formed from lipids having zwitterionic, negatively charged, and positively charged headgroups. Quartz crystal microbalance with dissipation (QCM-D), fluorescence recovery after photobleaching (FRAP), and atomic force microscopy demonstrate the presence of well-formed supported lipid bilayers, which, as probed by vibrational sum frequency generation (SFG), undergo negligible structural changes along their alkyl chains when NaCl concentration is raised from 0.001 to 0.1 M. From second harmonic generation (SHG) measurements we estimate that each zwitterionic headgroup of the bilayer formed from pure DOPC is associated with an apparent charge of -0.028(+0.008/-0.007)×10-¹⁹C, corresponding to 1.8 ± 0.5 % of an elementary negative charge. Moreover, we show that a supported lipid bilayer carrying an apparent negative interfacial potential may interact with not just positively charged 4-nm diameter gold nanoparticles but also negatively charged gold nanoparticles. In this latter case, charge-charge repulsion does not appear to inhibit particle-bilayer interactions and is likely overcome by multivalent interactions that are estimated to involve 3-5 hydrogen-bond equivalents. FRAP, QCM-D, and SFG measurements indicate that the bilayers remain intact under the conditions of the experiments. SHG charge screening experiments are consistent with an apparent zero net charge density associated with the positively charged gold nanoparticles when they are attached to a supported lipid bilayer carrying an apparent negative potential. The results presented here serve to benchmark experimental and computational studies of the nano-bio interface.

  1. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs

    DEFF Research Database (Denmark)

    Potta, Sriharsha Gupta; Minemi, Sriharsha; Nukala, Ravi Kumar

    2010-01-01

    by varying lipid compositions, drug initial loading and applied homogenization pressure. The processing temperatures were above the lipid melting points for all formulations. The empty and CyA loaded SLN particles made were characterized for particle size stability over six months. Atomic force microscopy......, which was found to be amorphous, within the lipid cores of freeze-dried SLNs. The CyA metastable form showed a profound effect on the drug dissolution rates. SLNs were incubated in Caco-2 cells for 24 hr showing negligible cell cytotoxicity up to 15 mg/ml. Copyright © 2010 American Scientific Publishers...

  2. Calorie restricted diet induces alternative pathways of lipid metabolism for support of proliferative processes in regenerating liver.

    Science.gov (United States)

    Bozhkov, A I; Menzianova, N C

    2009-01-01

    This study deals with quality and quantity lipid composition of blood serum and liver, DNA synthesis activity (incorporation of H3-thymidine) in liver in 24 h after partial hepatectomy (PH) in 22-month-old Wistar rats, maintained for 21 months on calorie restricted diet (CRD) and on standard diet ad libitum (SD). The contain of lipids in blood serum and activity of RA-label incorporation (14C-Na-acetate) in serum lipids in 24 h after PH were the same in CRD-fed and SD-fed animals. Quantitative and qualitative composition of lipids in microsomes of regenerating liver also was the same for both groups of rats. In regenerating liver of CRD-fed animals lipid contain in cytosol was 1,8-fold more, but pool of lipid droplets (LD) was 1.5-fold less than in regenerating liver of SD-fed animals. Activity of RA-label incorporation in lipids of microsomes, cytosol and LD pool of regenerating liver of CRD-fed animals was significantly higher, than in SD-fed ones. Activity of RA-label incorporation in lipid fractions and its distribution among cytosol lipids and LD pool lipids differed significantly between SD- and CRD-fed animals. Activity of DNA synthesis in regenerating liver of 22-month-old animals on CRD and SD was the same. It is supposed that calorie restriction induces alternative pathways of lipid metabolism to support proliferation processes in liver after PH.

  3. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E

    Science.gov (United States)

    Rute Neves, Ana; Fontes Queiroz, Joana; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Reis, Salette

    2015-12-01

    Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml-1 over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.

  4. Localization and reactivity of a hydrophobic solute in lecithin and caseinate stabilized solid lipid nanoparticles and nanoemulsions.

    Science.gov (United States)

    Yucel, Umut; Elias, Ryan J; Coupland, John N

    2013-03-15

    The distribution and reactivity of the lipophilic spin probe 4-phenyl-2,2,5,5-tetramethyl-3-imidazoline-1-oxyl nitroxide (PTMIO) in tetradecane (C14)- and eicosane (C20)-in-water emulsions and solid lipid nanoparticles (SLN) respectively, were investigated by electron paramagnetic resonance (EPR) spectroscopy. The lipid phase (10 wt% C14 or C20) was emulsified into either caseinate solutions (1 wt%) or lecithin+bile salt dispersions (2.4 wt%+0.6 wt%) at 70-75 °C. In C14 emulsions stabilized with lecithin+bile salt, three populations of PTMIO were observed: a population in the lipid phase (~60%, a(N)~13.9 G), an aqueous phase population (~20%, a(N)~15.4 G) with high mobility, and an immobilized surface layer population (~20%, a(N)~14.2 G) with low mobility. However, in C14 emulsions stabilized by caseinate, only two distinct populations of PTMIO were seen: a lipid phase population (~70%, a(N)~13.8 G) and an aqueous phase population (~30%, a(N)~15.5 G) with high mobility. In C20 SLN stabilized with either lecithin+bile salt or caseinate, PTMIO was excluded from the lipid phase. In lecithin+bile salt-stabilized C20 SLN, the majority of the probe (~77%) was in the interfacial layer. For both surfactant systems the rate of PTMIO reduction by aqueous iron/ascorbate was greater for C20 SLN than C14 emulsions. Lecithin affects the properties of emulsions and SLN as delivery systems by providing a distinct environment for small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Micrometer-Scale Membrane Transition of Supported Lipid Bilayer Membrane Reconstituted with Cytosol of Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Kei Takahashi

    2017-03-01

    Full Text Available Background: The transformation of the supported lipid bilayer (SLB membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum, is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level, contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane.

  6. Improved coupling of bacterial polysaccharides to macromolecules and solid supports

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method of producing a polysaccharide-carrier conjugate comprising coupling a polysaccharide to a carrier, said polysaccharide comprising at least one monosaccharide unit comprising a keto-carboxy group according to the formula -C(=O)COOR, where R is either hydrogen or C1......-alkoxyamine group of the carrier with a keto-carboxy group of said polysaccharide to form a covalent amide bond between the carrier and the polysaccharide. Another aspect of the present invention relates to a compound or solid surface obtained when performing the method of the present invention. A third aspect...

  7. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions.

    Science.gov (United States)

    Madureira, Ana Raquel; Campos, Débora A; Oliveira, Ana; Sarmento, Bruno; Pintado, Maria Manuela; Gomes, Ana Maria

    2016-03-01

    The evaluation of the digestion effects on bioactive solid lipid nanoparticles (SLN) was performed. For this purpose, witepsol and carnauba SLN loaded with rosmarinic acid (RA) were exposed to the simulated gastrointestinal tract (GIT) conditions prevailing in stomach and small intestine. The simulation of intestinal epithelium was made with a dialysis bag and intestinal cell culture lines. Changes on SLN physical properties, RA release and absorption profiles were followed at each step. Combination of digestion pH and enzymes showed a significant effect upon SLN physical properties. Zeta potential values increased at stomach conditions and decreased at small intestine simulation. Also, at intestine, SLN increased their sizes and released 40-60% of RA, maintaining its initial antioxidant activity values. Sustained release of 40% of RA from SLN was also observed in dialysis tube. At CaCo-2 cell line, both types of SLN showed similar absorbed RA % (ca. 30%). Nevertheless, in CaCo-2/HT29x mix cell lines, for carnauba SLN a lower adsorption RA % was observed than for witepsol SLN. Solid lipid nanoparticles protected RA bioactivity (in terms of antioxidant activity) until reaching the intestine. A controlled release of RA from SLN was achieved and a significant absorption was observed at intestinal cells. Overall, SLN produced with witepsol showed a higher stability than carnauba SLN. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Brain delivery of camptothecin by means of solid lipid nanoparticles: Formulation design, in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Martins, S.; Tho, I.; Reimold, I.

    2012-01-01

    For the purpose of brain delivery upon intravenous injection, formulations of camptothecin-loaded solid lipid nanoparticles (SLN), prepared by hot high pressure homogenisation, were designed. Incorporation of camptothecin in the hydrophobic and acidic environment of SLN matrix was chosen to stabi......For the purpose of brain delivery upon intravenous injection, formulations of camptothecin-loaded solid lipid nanoparticles (SLN), prepared by hot high pressure homogenisation, were designed. Incorporation of camptothecin in the hydrophobic and acidic environment of SLN matrix was chosen...... to stabilise the lactone ring, which is essential for its antitumour activity, and for avoiding premature loss of drug on the way to target camptothecin to the brain. A multivariate approach was used to assess the influence of the qualitative and quantitative composition on the physicochemical properties...... affinity of the SLN to the porcine brain capillary endothelial cells (BCEC) was shown in comparison to macrophages. MTT studies in BCEC revealed a moderate decrease in the cell viability of camptothecin, when incorporated in SLN compared to free camptothecin in solution. In vivo studies in rats showed...

  10. Intestinal Lymphatic Delivery of Praziquantel by Solid Lipid Nanoparticles: Formulation Design, In Vitro and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Amit Mishra

    2014-01-01

    Full Text Available The aim of the present work was to design and develop Praziquantal (PZQ loaded solid lipid nanoparticles (PZQ-SLN to improve the oral bioavailability by targeting intestinal lymphatic system. PZQ is practically insoluble in water and exhibits extensive hepatic first-pass metabolism. PZQ SLN were composed of triglycerides, lecithin and various aqueous surfactants; were optimized using hot homogenization followed by ultrasonication method. The optimized SLN had particle size of 123±3.41 nm, EE of 86.6±5.72%. The drug release of PZQ-SLN showed initial burst release followed by the sustained release. Inspite of zeta potential being around −10 mV, the optimized SLN were stable at storage conditions (5±3°C and 25±2°C/60±5% RH for six months. TEM study confirmed the almost spherical shape similar to the control formulations. Solid state characterization using differential scanning calorimeter (DSC and powder X-ray diffraction (PXRD analysis confirmed the homogeneous distribution of PZQ within the lipid matrix. The 5.81-fold increase in AUC0→∞, after intraduodenal administration of PZQ-SLN in rats treated with saline in comparison to rats treated with cycloheximide (a blocker of intestinal lymphatic pathway, confirmed its intestinal lymphatic delivery. The experimental results indicate that SLN may offer a promising strategy for improving the therapeutic efficacy and reducing the dose.

  11. Characterization and evaluation of sensory acceptability of ice creams incorporated with beta-carotene encapsulated in solid lipid microparticles

    Directory of Open Access Journals (Sweden)

    Juliana Gobbi de LIMA

    Full Text Available Abstract The feasibility of incorporating beta-carotene-loaded solid lipid microparticles (BCSLM into vanilla ice creams was investigated, through the physico-chemical characterization and evaluation of sensory acceptability of the products products. The BCSLM were produced with palm stearin as the lipid phase, hydrolyzed soy protein isolate as the surfactant, and xanthan gum as the thickener. The results showed similar values of proximate composition, total soluble solids, pH, and overrun for all formulations. On the other hand, colorimetric evaluations showed that the ice cream produced with partial substitution of artificial additives by BCSLM containing alpha-tocopherol presented a more intense color, while in the product with non-encapsulated beta-carotene, a fast degradation of carotenoid was confirmed, highlighting the importance of the encapsulation techniques. The results of the sensorial analysis of the products were highly satisfactory and showed that the panelists preferred the ice creams produced with BCSLM containing alpha-tocopherol and with partial substitution of artificial additives by BCSLM containing alpha-tocopherol, confirming the feasibility of incorporating BCSLM into ice creams to reduce the application of artificial dyes to the product.

  12. Temperature-controlled continuous production of all-trans retinoic acid-loaded solid lipid nanoparticles using static mixers

    Science.gov (United States)

    Shao, Wenyao; Yan, Mengwen; Chen, Tingting; Chen, Yuqing; Xiao, Zongyuan

    2017-04-01

    This work aims to develop a temperature-controlled continuous solvent emulsification-diffusion process to synthesize all-trans retinoic acid (ATRA)-loaded solid lipid nanoparticles (SLNs) using static mixers. ATRA-loaded SLNs of around 200 nm were obtained when the flow rates of the organic and aqueous phases were 50 ml min-1 and 500 ml min-1, respectively. It was found that the lipid concentration played a dominant role in the size of the obtained SLNs, and higher drug concentration resulted in relatively low entrapment efficiency. The encapsulation of ATRA in the SLNs was effective in improving its stability according to the photo-degradation test. The in vitro release of SLN was slow without an initial burst. This study demonstrates that the solvent emulsification-diffusion technique with static mixing is an effective method of producing SLNs, and could easily be scaled up for industrial applications. Highlights Higher lipid concentration leads to larger SLNs. SLN transformation occurs due to Ostwald ripening. The ATRA-loaded SLNs around 200 nm were successfully produced with static mixers. ATRA-loaded SLNs show better stability towards sunlight. ATRA in SLNs exhibited a relatively slow release rate without a significant initial burst.

  13. Solid lipid nanoparticles with and without hydroxypropyl-β-cyclodextrin: a comparative study of nanoparticles designed for colonic drug delivery

    Science.gov (United States)

    Spada, Gianpiera; Gavini, Elisabetta; Cossu, Massimo; Rassu, Giovanna; Giunchedi, Paolo

    2012-03-01

    New solid lipid nanoparticles (SLN), composed of Compritol ATO888 (C) and hydroxypropyl-β-cyclodextrin (HP), were developed in order to study a new colon-specific formulation for diclofenac sodium (D) delivery. The prepared batches differ from each other by the molecular ratio between HP and D and by the composition of the matrix. Nanoparticles composed of an exclusively lipid matrix and nanoparticles with an oligomeric and lipid matrix were compared in order to establish the effect of both components on the drug delivery tests performed. The SLN preparation method was based on the oil/water hot homogenization process. Emulsions produced were cooled at room temperature and lyophilized in order to obtain dried nanoparticles; possible damage to nanoparticle shape and size was avoided by the addition of cryoprotectants to the aqueous dispersion of nanoparticles before exsiccation. An in vitro toxicity study was performed using CaCo2 cells to establish the safety of the prepared SLN. Data obtained showed that production method studied guarantees emulsions composed of nanosized drops which can be dried by lyophilization into SLN with a size range of 300-600 nm. In vitro and ex vivo tests demonstrated that dried SLN can be considered as colon delivery systems; however, the matrix composition as well as the presence of cryoprotectant on their surface influences the release and permeation rate of D. The in vitro toxicity studies indicated that the SLN are well tolerated.

  14. Numerical evaluation of micro-structural parameters of porous supports in metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Reiss, Georg; Frandsen, Henrik Lund; Brandstätter, Wilhelm

    2014-01-01

    Metallic supported Solid Oxide Fuel Cells (SOFCs) are considered as a durable and cost effective alternative to the state-of-the-art ceramic supported cell designs. In order to understand the mass and charge transport in the metal-support of this new type of cell a novel technique involving X-ray......-structure. Thirdly, that the calculation of the transport parameters depends on the correct application of boundary conditions. © 2014 Elsevier B.V. All rights reserved...

  15. Hypothesis: could the signalling function of membrane microdomains involve a localized transition of lipids from liquid to solid state?

    Directory of Open Access Journals (Sweden)

    Joly Etienne

    2004-01-01

    Full Text Available Abstract Background Over the past decade, it has become apparent that specialised membrane microdomains, commonly called rafts, where lipids like sphingolipids and cholesterol are arranged compactly in a liquid ordered phase are involved in cell signalling. Hypothesis The core of the hypothesis presented here is that resting cells may actively maintain their plasma membrane in liquid phase, corresponding to a metastable thermodynamic state. Following a physiological stimulus such as ligands binding to their membrane receptors, the tendency of membrane components to undergo a localised transition towards a gel state would increase, resulting in initial minute solid structures. These few membrane components having undergone a liquid to solid state transition, would then act as seeds for the specific recruitment of additional membrane components whose properties are compatible with the crystalline growth of these initial docks. Cells could therefore be using the propensity of lipids to assemble selectively to generate stable platforms of particular cellular components either for intra-cellular transport or for signal transduction. Testing the hypothesis could presumably be done via biophysical approaches such as EPR spin labelling, X-ray diffraction or FRET coupled to direct microscopic observation of cells to which very localized stimuli would be delivered. Implications Such a model of selective growth of membrane docks would provide an explanation for the existence of different types of microdomains, and for the fact that, depending on the state of the cells and on the procedures used to isolate them, membrane microdomains can vary greatly in their properties and composition. Ultimately, a thorough understanding of how and why lipid domains are assembled in biological membranes will be essential for many aspects of cell biology and medicine.

  16. Rapamycin Loaded Solid Lipid Nanoparticles as a New Tool to Deliver mTOR Inhibitors: Formulation and in Vitro Characterization.

    Science.gov (United States)

    Polchi, Alice; Magini, Alessandro; Mazuryk, Jarosław; Tancini, Brunella; Gapiński, Jacek; Patkowski, Adam; Giovagnoli, Stefano; Emiliani, Carla

    2016-05-09

    Recently, the use of mammalian target of rapamycin (mTOR) inhibitors, in particular rapamycin (Rp), has been suggested to improve the treatment of neurodegenerative diseases. However, as Rp is a strong immunosuppressant, specific delivery to the brain has been postulated to avoid systemic exposure. In this work, we fabricated new Rp loaded solid lipid nanoparticles (Rp-SLN) stabilized with polysorbate 80 (PS80), comparing two different methods and lipids. The formulations were characterized by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), wide angle X-ray scattering (WAXS), cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS) and particle tracking. In vitro release and short-term stability were assessed. Biological behavior of Rp-SLN was tested in SH-SY5Y neuroblastoma cells. The inhibition of mTOR complex 1 (mTORC1) was evaluated over time by a pulse-chase study compared to free Rp and Rp nanocrystals. Compritol Rp-SLN resulted more stable and possessing proper size and surface properties with respect to cetyl palmitate Rp-SLN. Rapamycin was entrapped in an amorphous form in the solid lipid matrix that showed partial crystallinity with stable Lβ, sub-Lα and Lβ' arrangements. PS80 was stably anchored on particle surface. No drug release was observed over 24 h and Rp-SLN had a higher cell uptake and a more sustained effect over a week. The mTORC1 inhibition was higher with Rp-SLN. Overall, compritol Rp-SLN show suitable characteristics and stability to be considered for further investigation as Rp brain delivery system.

  17. Rapamycin Loaded Solid Lipid Nanoparticles as a New Tool to Deliver mTOR Inhibitors: Formulation and in Vitro Characterization

    Directory of Open Access Journals (Sweden)

    Alice Polchi

    2016-05-01

    Full Text Available Recently, the use of mammalian target of rapamycin (mTOR inhibitors, in particular rapamycin (Rp, has been suggested to improve the treatment of neurodegenerative diseases. However, as Rp is a strong immunosuppressant, specific delivery to the brain has been postulated to avoid systemic exposure. In this work, we fabricated new Rp loaded solid lipid nanoparticles (Rp-SLN stabilized with polysorbate 80 (PS80, comparing two different methods and lipids. The formulations were characterized by differential scanning calorimetry (DSC, nuclear magnetic resonance (NMR, wide angle X-ray scattering (WAXS, cryo-transmission electron microscopy (cryo-TEM, dynamic light scattering (DLS and particle tracking. In vitro release and short-term stability were assessed. Biological behavior of Rp-SLN was tested in SH-SY5Y neuroblastoma cells. The inhibition of mTOR complex 1 (mTORC1 was evaluated over time by a pulse-chase study compared to free Rp and Rp nanocrystals. Compritol Rp-SLN resulted more stable and possessing proper size and surface properties with respect to cetyl palmitate Rp-SLN. Rapamycin was entrapped in an amorphous form in the solid lipid matrix that showed partial crystallinity with stable Lβ, sub-Lα and Lβ′ arrangements. PS80 was stably anchored on particle surface. No drug release was observed over 24 h and Rp-SLN had a higher cell uptake and a more sustained effect over a week. The mTORC1 inhibition was higher with Rp-SLN. Overall, compritol Rp-SLN show suitable characteristics and stability to be considered for further investigation as Rp brain delivery system.

  18. Operating System Support for High-Performance Solid State Drives

    DEFF Research Database (Denmark)

    Bjørling, Matias

    a form of application-SSD co-design? What are the impacts on operating system design? (v) What would it take to provide quality of service for applications requiring millions of I/O per second? The dissertation consists of six publications covering these issues. Two of the main contributions...... of the operating system in reducing the gap, and enabling new forms of communication and even co-design between applications and high-performance SSDs. More specifically, we studied the storage layers within the Linux kernel. We explore the following issues: (i) what are the limitations of the legacy block......The performance of Solid State Drives (SSD) has evolved from hundreds to millions of I/Os per second in the past three years. Such a radical evolution is transforming both the storage and the software industries. Indeed, software designed based on the assumption of slow IOs has become...

  19. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.

    Science.gov (United States)

    Bo, Zhang; Avsar, Saziye Yorulmaz; Corliss, Michael K; Chung, Minsub; Cho, Nam-Joon

    2017-10-05

    As the worldwide usage of nanoparticles in commercial products continues to increase, there is growing concern about the environmental risks that nanoparticles pose to biological systems, including potential damage to cellular membranes. A detailed understanding of how different types of nanoparticles behave in environmentally relevant conditions is imperative for predicting and mitigating potential membrane-associated toxicities. Herein, we investigated the adsorption of two popular nanoparticles (silver and buckminsterfullerene) onto biomimetic supported lipid bilayers of varying membrane charge (positive and negative). The quartz crystal microbalance-dissipation (QCM-D) measurement technique was employed to track the adsorption kinetics. Particular attention was focused on understanding how natural organic matter (NOM) coatings affect nanoparticle-bilayer interactions. Both types of nanoparticles preferentially adsorbed onto the positively charged bilayers, although NOM coatings on the nanoparticle and lipid bilayer surfaces could either inhibit or promote adsorption in certain electrolyte conditions. While past findings showed that NOM coatings inhibit membrane adhesion, our findings demonstrate that the effects of NOM coatings are more nuanced depending on the type of nanoparticle and electrolyte condition. Taken together, the results demonstrate that NOM coatings can modulate the lipid membrane interactions of various nanoparticles, suggesting a possible way to improve the environmental safety of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A reusable device for electrochemical applications of hydrogel supported black lipid membranes

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka; Heiskanen, Arto; Bäckström, Sania

    2015-01-01

    them, such as hydrogel supports. In this paper, we present a reusable device for studies on hydrogel supported (hs) BLMs. These are formed across an ethylene tetrafluoroethylene (ETFE) aperture array supported by the hydrogel, which is during in situ polymerization covalently "sandwiched" between...... the ETFE substrate and a gold electrode microchip, thus allowing direct electrochemical studies with the integrated working electrodes. Using electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy and contact angle measurements, we demonstrate the optimized chemical modifications...... of the gold electrode microchips and plasma modification of the ETFE aperture arrays facilitating covalent "sandwiching" of the hydrogel. Both fluorescence microscopy and EIS were used to demonstrate the induced spontaneous thinning of a deposited lipid solution, leading to formation of stabilized hs...

  1. Applications of lipid nanocarriers for solid tumors therapy: literature review; Aplicacoes das nanoparticulas lipidicas no tratamento de tumores solidos: revisao de literatura

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lidiane Correia de; Souza, Leonardo Gomes; Marreto, Ricardo Neves; Lima, Eliana Martins; Taveira, Stephania Fleury [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Farmacia; Taveira, Eliseu Jose Fleury, E-mail: stephaniafleury@gmail.com [Hospital Erasto Gaertner, Curitiba, PR (Brazil). Oncologia Clinica

    2012-07-01

    Introduction: Lipid nanocarriers are systems used to target drugs to its site of action and have attracted attention of the scientific community because they are biocompatible and biodegradable. These systems can target drugs to solid tumors, providing sustained drug release in the site of action, thus increasing the utility of the antineoplastic chemotherapy. Objective: To review the available literature on in vivo experiments with lipid nanocarriers containing cytotoxic drugs for solid tumors treatment. Method: A search study was carried out in Pubmed{sup R} database from 2007 to 2011, with subject descriptors: liposomes, lipid nanoparticles, cancer and in vivo, with the boolean operator 'and' among them, in English. Results: 1,595 papers related to the use of liposomes and 77 related to lipid nanoparticles were found. Few studies reported in vivo experiments with lipid nanoparticles (28 papers) compared to liposomes (472 papers), since liposomes were developed two decades before lipid nanoparticles. Four liposomal medicines have already been approved and are used in the clinic while only one medicine containing lipid nanoparticles is in phase I of clinical studies. Conclusion: The number of papers related to the use of nanotechnology for cancer treatment is increasing rapidly, making important to know the different kinds of nanocarriers and, especially, those which are already used in the clinic. There are only few clinical studies on lipid nanocarriers; however, these systems present an enormous potential to improve the clinical practice in oncology. (author)

  2. Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy?

    Directory of Open Access Journals (Sweden)

    Ophélie Maurin

    2017-10-01

    Full Text Available While presenting particularly interesting advantages, peptide synthesis by ball-milling was never compared to the two traditional strategies, namely peptide syntheses in solution and on solid support (solid-phase peptide synthesis, SPPS. In this study, the challenging VVIA tetrapeptide was synthesized by ball-milling, in solution, and on solid support. The three strategies were then compared in terms of yield, purity, reaction time and environmental impact. The results obtained enabled to draw some strengths and weaknesses of each strategy, and to foresee what will have to be implemented to build more efficient and sustainable peptide syntheses in the near future.

  3. Data supporting the physico-chemical characterization, cellular uptake and cytotoxicity of lipid nanocapsules

    Directory of Open Access Journals (Sweden)

    P. Sánchez-Moreno

    2015-09-01

    Full Text Available The aim of this data article is to provide data for a basic knowledge of the properties of lipid nanocapsules, a new colloidal system with very promising applications in drug delivery. Firstly, we pay attention on how it is possible to determine their surface composition by means of electrokinetics measurements. On the other hand, we provide experimental evidences for a better understanding of the factors that determine the interactions of these nanoparticles with cells as a necessary step to guide the design of the most effective formulations. Additionally, we supply information about encapsulation efficiency of docetaxel, a potent chemotherapy drug, inside nanocapsules supporting the experimental cytotoxicity results of these nanosystems.

  4. Adipose tissue supports normalization of macrophage and liver lipid handling in obesity reversal.

    Science.gov (United States)

    Vatarescu, Maayan; Bechor, Sapir; Haim, Yulia; Pecht, Tal; Tarnovscki, Tanya; Slutsky, Noa; Nov, Ori; Shapiro, Hagit; Shemesh, Avishai; Porgador, Angel; Bashan, Nava; Rudich, Assaf

    2017-06-01

    Adipose tissue inflammation and dysfunction are considered central in the pathogenesis of obesity-related dysmetabolism, but their role in the rapid metabolic recovery upon obesity reversal is less well defined. We hypothesized that changes in adipose tissue endocrine and paracrine mechanisms may support the rapid improvement of obesity-induced impairment in cellular lipid handling. C57Bl-6J mice were fed ad libitum either normal chow (NC) or high-fat diet (HFF) for 10 weeks. A dietary obesity reversal group was fed HFF for 8 weeks and then switched to NC for 2 weeks (HFF→NC). Whole-body glucose homeostasis rapidly nearly normalized in the HFF→NC mice (fasting glucose and insulin fully normalized, glucose and insulin tolerance tests reversed 82% to the NC group levels). During 2 weeks of the dietary reversal, the liver was significantly cleared from ectopic fat, and functionally, glucose production from pyruvate, alanine or fructose was normalized. In contrast, adipose tissue inflammation (macrophage infiltration and polarization) largely remained as in HFF, though obesity-induced adipose tissue macrophage lipid accumulation decreased by ~50%, and adipose tissue MAP kinase hyperactivation was reversed. Ex vivo, mild changes in adipose tissue adipocytokine secretion profile were noted. These corresponded to partial or full reversal of the excess cellular lipid droplet accumulation induced by HFF adipose tissue conditioned media in hepatoma or macrophage cells, respectively. We propose that early after initiating reversal of nutritional obesity, rapid metabolic normalization largely precedes resolution of adipose tissue inflammation. Nevertheless, we demonstrate a hitherto unrecognized contribution of adipose tissue to the rapid improvement in lipid handling by the liver and by macrophages. © 2017 The authors.

  5. Solid lipid particles for oral delivery of peptide and protein drugs III - the effect of fed state conditions on the in vitro release and degradation of desmopressin

    DEFF Research Database (Denmark)

    Christophersen, Philip C; Vaghela, Dimple; Müllertz, Anette

    2014-01-01

    The effect of food intake on the release and degradation of peptide drugs from solid lipid particles is unknown and was therefore investigated in vitro using different fed state media in a lipolysis model. Desmopressin was used as a model peptide and incorporated into solid lipid particles...... and the protease or desmopressin. Addition of a medium chain triglyceride, trilaurin, in combination with drug-loaded lipid particles diminished the food effect on the TG18 particles, and trilaurin is therefore proposed to be a suitable excipient for reduction of the food effect. Overall, the present study shows...... that strategies to reduce food effect, such as adding trilaurin, for lipid particle formulations should be considered as drug release from such formulations might be influenced by the presence of food in the gastrointestinal tract....

  6. Solid supported reagents for effecting selective transformation in natural products

    Directory of Open Access Journals (Sweden)

    V.P. Santhanakrishnan

    2016-11-01

    Full Text Available Polymer supported N-bromoacetamide resin can be easily prepared by the bromination of the acetamide resin and can be used for the transformation of furan ring in tetranortriterpenoids to butryolactone with excellent selectivity and in good yield in shorter time under microwave irradiation condition.

  7. Strength of an electrolyte supported solid oxide fuel cell

    Science.gov (United States)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-11-01

    For the proper function of solid oxide fuel cells (SOFC) their structural integrity must be maintained during their whole lifetime. Any cell fracture would cause leakage and partial oxidization of the anode, leading to a reduced performance, if not catastrophic failure of the whole stack. In this study, the mechanical strength of a state of the art SOFC, developed and produced by Hexis AG/Switzerland, was investigated with respect to the influence of temperature and ageing, whilst for the anode side of the cell the strength was measured under reducing and oxidizing atmospheres. Ball-on-3-Ball bending strength tests and fractography conducted on anode and cathode half-cells revealed the underlying mechanisms, which lead to cell fracture. They were found to be different for the cathode and the anode side and that they change with temperature and ageing. Both anode and cathode sides exhibit the lowest strength at T = 850 °C, which is greatly reduced to the initial strength of the bare electrolyte. This reduction is the consequence of the formation of cracks in the electrode layer which either directly penetrate into the electrolyte (anode side) or locally increase the stress intensity level of pre-existing flaws of the electrolytes at the interface (cathode side).

  8. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.

    Science.gov (United States)

    Phung, Thai; Zhang, Yanli; Dunlop, James; Dalziel, Julie

    2011-03-15

    Many ion channel proteins have binding sites for toxins and pharmaceutical drugs and therefore have much promise as the sensing entity in high throughput technologies and biosensor devices. Measurement of ionic conductance changes through ion channels requires a robust biological membrane with sufficient longevity for practical applications. The conventional planar BLM is 100-300 μm in diameter and typically contains fewer than a dozen channels whereas pharmaceutical screening methods in cells use current recordings for many ion channels. We present a new, simple method for the fabrication of a disposable porous-supported bilayer lipid membrane (BLM) ion channel biosensor using hydrated Teflon (polytetrafluoroethylene, PTFE) filter material (pore size 5 μm, filter diameter=1 mm). The lipid layer was monitored for its thickness and mechanical stability by electrical impedance spectroscopy. The results showed membrane capacitances of 1.8±0.2 nF and membrane resistances of 25.9±4.1 GΩ, indicating the formation of lipid bilayers. The current level increased upon addition of the pore-forming peptide gramicidin. Following addition of liposomes containing voltage-gated sodium channels, small macroscopic sodium currents (1-80 pA) could be recorded. By preloading the porous Teflon with sodium channel proteoliposomes, prior to BLM formation, currents of 1-10 nA could be recorded in the presence of the activator veratridine that increased with time, and were inhibited by tetrodotoxin. A lack of rectification suggests that the channels incorporated in both orientations. This work demonstrates that PTFE filters can support BLMs that provide an environment in which ion channels can maintain their functional activity relevant for applications in drug discovery, toxin detection, and odour sensing. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir

    Science.gov (United States)

    Bhalekar, Mangesh; Upadhaya, Prashant; Madgulkar, Ashwini

    2017-02-01

    Darunavir, an anti-HIV drug having poor solubility in aqueous and lipid medium, illustrates degradation above its melting point, i.e. 74 °C, thus, posing a challenge to dosage formulation. Despite, the drug suffers from poor oral bioavailability (37%) owing to less permeability and being poly-glycoprotein and cyp3A metabolism substrate. The study aimed formulating a SLN system to overcome the formulation and bioavailability associated problems of the drug. Based on the drug solubility and stable dispersion findings, lipid and surfactant were chosen and nanoparticles were prepared using hot-homogenization technique. Optimization of variables such as lipid concentration, oil-surfactant and homogenization cycle was carried and their effect on particle size and entrapment efficiency was studied. Freeze-dried SLN further characterized using SEM, DSC and PXRD analysis revealed complete entrapment of the drug and amorphous nature of the SLN. In vitro pH release studies in 0.1 N HCl and 6.8 pH buffer demonstrated 84 and 80% release at the end of 12th h. The apparent permeability of the SLN across rat intestine was found to be 24 × 10-6 at 37 °C at the end of 30 min while at 4 °C the same was found to be 5.6 × 10-6 prompting involvement of endocytic processes in the uptake of SLN. Accelerated stability studies revealed no prominent changes upon storage.

  10. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design

    Science.gov (United States)

    Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J.

    2015-01-01

    Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7® software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the

  11. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers

    Science.gov (United States)

    Unsay, Joseph D.; Cosentino, Katia; García-Sáez, Ana J.

    2015-01-01

    Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force. The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes. PMID:26273958

  12. Covalent attachment of proteins to solid supports and surfaces via Sortase-mediated ligation.

    Directory of Open Access Journals (Sweden)

    Lilyan Chan

    Full Text Available BACKGROUND: There is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein. METHODOLOGY: Solid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours. CONCLUSIONS: The Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays.

  13. A Long Chain Alcohol as Support in Solid Phase Organic Synthesis

    NARCIS (Netherlands)

    Nurlela, Yeni; Minnaard, Adrian J.; Achmad, Sadijah; Wahyuningrum, Deana

    The solid phase synthesis is a method by which organic compound synthesis are performed on a support. With this method, the purification can be carried out easily by simple filtration and washing procedures. Long-chain alcohol (C-100 alcohol) can be used as a support because of its insolubility in

  14. Solid Lipid Nanoparticle-Based Calix[n]arenes and Calix-Resorcinarenes as Building Blocks: Synthesis, Formulation and Characterization

    Directory of Open Access Journals (Sweden)

    Anthony W. Coleman

    2013-11-01

    Full Text Available Solid lipid nanoparticles (SLNs have attracted increasing attention during recent years. This paper presents an overview about the use of calix[n]arenes and calix-resorcinarenes in the formulation of SLNs. Because of their specific inclusion capability both in the intraparticle spaces and in the host cavities as well as their capacity for functionalization, these colloidal nanostructures represent excellent tools for the encapsulation of different active pharmaceutical ingredients (APIs in the area of drug targeting, cosmetic additives, contrast agents, etc. Various synthetic routes to the supramolecular structures will be given. These various routes lead to the formulation of the corresponding SLNs. Characterization, properties, toxicological considerations as well as numerous corresponding experimental studies and analytical methods will be also exposed and discussed.

  15. Isolation of fucoxanthin from Sargassum thunbergii and preparation of microcapsules based on palm stearin solid lipid core

    Science.gov (United States)

    Wang, Xuanxuan; Li, Hongyan; Wang, Fangqin; Xia, Guixue; Liu, Hongjun; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xiguang; Wang, Ying

    2017-03-01

    The objective of this study was to isolate fucoxanthin from Sargassum thunbergii and develop microcapsules with palm stearin as the solid lipid core for stability and efficient oral delivery of fucoxanthin. The microcapsules had smooth surfaces with the volume weighted mean diameter ( d 4.3) of 19.19 μm. Encapsulation efficiency and loading capacity of microcapsules with fucoxanthin were 98.3% and 0.04%, respectively. Moreover, the fucoxanthin in microcapsules presented higher stability than free fucoxanthin against light, humidity and temperature. Especially, the retention rates of fucoxanthin encapsulated in microcapsules reached 97.20% at 4°C, 92.60% at 25°C, 92.32% with the relative humidity of 33% and 92.60% in the dark. The cumulative amount of fucoxanthin released from microcapsules was 22.92% in simulated gastric fluid (SGF) and 56.55% in simulated intestinal fluid (SIF).

  16. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology.

    Science.gov (United States)

    Gidwani, Bina; Vyas, Amber

    2016-01-01

    The objective of the present study was to prepare solid lipid nanoparticles (SLNs) of altretamine (ALT) by the hot homogenization and ultrasonication method. The study was conducted using the Box-Behnken design (BBD), with a 3(3) design and a total of 17 experimental runs, performed in combination with response surface methodology (RSM). The SLNs were evaluated for mean particle size, entrapment efficiency, and drug-loading. The optimized formulation, with a desirability factor of 0.92, was selected and characterized. In vitro release studies showed a biphasic release pattern from the SLNs for up to 24 h. The results of % EE (93.21 ± 1.5), %DL (1.15 ± 0.6), and mean diameter of (100.6 ± 2.1) nm, were very close to the predicted values.

  17. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yong; Dutta, Samit Kumar [Sanford Burnham Prebys Medical Discovery Institute (United States); Park, Sang Ho; Rai, Ratan [University of California San Diego, Department of Chemistry and Biochemistry (United States); Fujimoto, L. Miya; Bobkov, Andrey A. [Sanford Burnham Prebys Medical Discovery Institute (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbp.edu [Sanford Burnham Prebys Medical Discovery Institute (United States)

    2017-03-15

    The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with {sup 13}C or {sup 1}H detection, have very narrow line widths (0.40–0.60 ppm for {sup 13}C, 0.11–0.15 ppm for {sup 1}H, and 0.46–0.64 ppm for {sup 15}N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The {sup 1}H-detected solid-state NMR {sup 1}H/{sup 15}N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR {sup 1}H/{sup 15}N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.

  18. Electrochemically Triggered Release of Reagent to the Proximal Leaflet of a Microcavity Supported Lipid Bilayer.

    Science.gov (United States)

    Basit, H; Maher, S; Forster, R J; Keyes, T E

    2017-07-11

    A novel and versatile approach to electrichemically triggering the release of a reagent, β-cyclodextrin (β-CD), selectively to the proximal leaflet of a supported lipid bilayer is described. Selective delivery is achieved by creating a spanning lipid bilayer across a microcavity array and exploiting the irreversible redox disassembly of the host-guest complex formed between thiolated ferrocene (Fc) and β-cyclodextrin (β-CD) in the presence of chloride. Self-assembled monolayers of the ferrocene-alkanethiols were formed regioselectively on the interior surface of highly ordered 2.8 μm cavities while the exterior top surface of the array was blocked with a monolayer of mercaptoethanol. The Fc monolayers were complexed with β-CD or β-CD-conjugated to streptavidin (β-CD-SA). Phospholipid bilayers were then assembled across the array via combined Langmuir-Blodgett/vesicle fusion leading to a spanning bilayer suspended across the aqueous filled microcavities. Upon application of a positive potential, ferrocene is oxidized to ferrocinium cation, disrupting the inclusion complex and leading to the release of the β-CD into the microcavity solution where it diffuses to the lower leaflet of the suspended bilayer. Disassembly of the supramolecular complex within the cavities and binding of the β-CD-SA to a biotinylated bilayer was followed by voltammetry and impedance spectroscopy where it caused a large increase in membrane resistance. For unmodified β-CD, the extraction of cholesterol from a cholesterol containing bilayer was evident in a decrease in the bilayer resistance. For the first time, this direct approach to targeted delivery of a reagent to the proximal layer of a lipid bilayer offers the potential to build models of bidirectional signaling (inside-out vs outside-in) in cell membrane model systems.

  19. Preparation, optimization, characterization and in vivo pharmacokinetic study of asiatic acid tromethamine salt-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Lingling, Gu; Yuan, Zhao; Weigen, Lu

    2016-08-01

    To enhance the oral bioavailability of asiatic acid tromethamine salt (AAS) by encapsulation in solid lipid nanoparticles (SLN). The AAS-loaded SLN (AASLN) was prepared by the modified solvent injection method with glycerin monostearate (GMS) as lipid and poloxamer 188 as surfactant. A Box-Behnken design was used to optimize the formulations. Physicochemical characterization was carried out by using dynamic light scattering, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Stabilities at 4 °C and pH 1.2 were investigated by particle size or/and entrapment efficiency (EE%). The in vivo pharmacokinetics was evaluated by HPLC-MS/MS. The optimal formulation of AASLN had an average size of 237 nm with zeta potential of -35.9 mV, and EE% of 64.4%. SEM showed that the AASLN had spherical shape with smooth surface. Furthermore, DSC and X-ray analyses indicated that AAS was amorphous state and the crystal degree of GMS was significantly decreased in the formulation. AASLN showed excellent stability at 4 °C for 1 month and no coacervation at pH 1.2. The bioavailability of AAS in SLN was found to be 2.5-fold higher than that of AAS alone after a single oral administration in rats. This study reveals that SLN is developed as a promising oral delivery system of AAS with significantly enhanced bioavailability and good storage stability.

  20. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake.

    Science.gov (United States)

    Luo, Yangchao; Teng, Zi; Li, Ying; Wang, Qin

    2015-05-20

    The poor stability of solid lipid nanoparticles (SLN) under acidic condition resulted in large aggregation in gastric environment, limiting their application as oral delivery systems. In this study, a series of SLN was prepared to investigate the effects of surfactant/cosurfactant and chitosan coating on their physicochemical properties as well as cellular uptake. SLN was prepared from Compritol 888 ATO using a low-energy method combining the solvent-diffusion and hot homogenization technique. Poloxamer 188 and polyethylene glycol (PEG) were effective emulsifiers to produce SLN with better physicochemical properties than SLN control. Chitosan-coated SLN exhibited the best stability under acidic condition by forming a thick layer around the lipid core, as clearly observed by transmission electron microscope. The intermolecular interactions in different formulations were monitored by Fourier transform infrared spectroscopy. Chitosan coating also significantly improved the mucoadhesive property of SLN as determined by Quartz Crystal Microbalance. In vitro drug delivery assays, cytotoxicity, and cellular uptake of SLN were studied by incorporating coumarin 6 as a fluorescence probe. Overall, chitosan-coated SLN was superior to other formulations and held promising features for its application as a potential oral drug delivery system for hydrophobic drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Solid Lipid Nanoparticles of Albendazole for Enhancing Cellular Uptake and Cytotoxicity against U-87 MG Glioma Cell Lines

    Directory of Open Access Journals (Sweden)

    Gregory Marslin

    2017-11-01

    Full Text Available Albendazole (ABZ is an antihelminthic drug used for the treatment of several parasitic infestations. In addition to this, there are reports on the anticancer activity of ABZ against a wide range of cancer types. However, its effect on glioma has not yet been reported. In the present study, cytotoxicity of ABZ and ABZ loaded solid lipid nanoparticles (ASLNs was tested in human glioma/astrocytoma cell line (U-87 MG. Using glyceryl trimyristate as lipid carrier and tween 80 as surfactant spherical ASLNs with an average size of 218.4 ± 5.1 nm were prepared by a combination of high shear homogenization and probe sonication methods. A biphasic in vitro release pattern of ABZ from ASLNs was observed, where 82% of ABZ was released in 24 h. In vitro cell line studies have shown that ABZ in the form of ASLNs was more cytotoxic (IC50 = 4.90 µg/mL to U-87 MG cells compared to ABZ in the free form (IC50 = 13.30 µg/mL due to the efficient uptake of the former by these cells.

  2. Solid Lipid Nanoparticle Formulations of Docetaxel Prepared with High Melting Point Triglycerides: In Vitro and in Vivo Evaluation

    Science.gov (United States)

    2015-01-01

    Docetaxel (DCX) is a second generation taxane. It is approved by the U.S. Food and Drug Administration for the treatment of various types of cancer, including breast, non-small cell lung, and head and neck cancers. However, side effects, including those related to Tween 80, an excipient in current DCX formulations, can be severe. In the present study, we developed a novel solid lipid nanoparticle (SLN) composition of DCX. Trimyristin was selected from a list of high melting point triglycerides as the core lipid component of the SLNs, based on the rate at which the DCX was released from the SLNs and the stability of the SLNs. The trimyristin-based, PEGylated DCX-incorporated SLNs (DCX-SLNs) showed significantly higher cytotoxicity against various human and murine cancer cells in culture, as compared to DCX solubilized in a Tween 80/ethanol solution. Moreover, in a mouse model with pre-established tumors, the new DCX-SLNs were significantly more effective than DCX solubilized in a Tween 80/ethanol solution in inhibiting tumor growth without toxicity, likely because the DCX-SLNs increased the concentration of DCX in tumor tissues, but decreased the levels of DCX in major organs such as liver, spleen, heart, lung, and kidney. DCX-incorporated SLNs prepared with one or more high-melting point triglycerides may represent an improved DCX formulation. PMID:24621456

  3. Solid Phase Extraction as an Innovative Separation Method for Measuring Free and Entrapped Drug in Lipid Nanoparticles.

    Science.gov (United States)

    Guillot, Alexis; Couffin, Anne-Claude; Sejean, Xavier; Navarro, Fabrice; Limberger, Markus; Lehr, Claus-Michael

    2015-12-01

    Contrary to physical characterization techniques for nanopharmaceuticals (shape, size and zeta-potential), the techniques to quantify the free and the entrapped drug remain very few and difficult to transpose in routine analytical laboratories. The application of Solid Phase Extraction (SPE) technique was investigated to overcome this challenge. The separation of free and entrapped drug by SPE was quantitatively validated by High Performance Liquid Chromatography. The developed protocol was implemented to characterize cyclosporine A-loaded 120 nm-sized lipid nanoparticles (LNPs, Lipidot®) dispersed in aqueous buffer. The colloidal stability was assessed by Dynamic Light Scattering (DLS). Validation experiments demonstrated suitable linearity, repeatability, accuracy and specificity to quantify residual free, entrapped and total drug. For the investigated LNPs, the method revealed a very limited shelflife of the formulation when stored in an aqueous buffer at 5°C and even more at elevated temperature. Nevertheless, the DLS measurements confirmed the stability of nanoparticles during SPE in a suitable concentration range. SPE, when successfully validated, represents a valuable tool for drug development and quality control purposes of lipid-based nanopharmaceuticals in an industrial environment.

  4. Expanding the Scope of Biocatalysis: Oxidative Biotransformations on Solid-Supported Substrates

    OpenAIRE

    Brooks, Sarah J; Coulombel, Lydie; Ahuja, Disha; Clark, Douglas S.; Dordick, Jonathan S.

    2008-01-01

    Oxidative biocatalytic reactions were performed on solid-supported substrates, thus expanding the repertoire of biotransformations that can be carried out on the solid phase. Various phenylacetic and benzoic acid analogs were attached to controlled pore glass beads via an enzyme-cleavable linker. Reactions catalyzed by peroxidases (soybean and chloro), tyrosinase, and alcohol oxidase/dehydrogenase gave a range of products, including oligophenols, halogenated aromatics, catechols, and aryl ald...

  5. Solid State NMR Structure Analysis of the Antimicrobial Peptide Gramicidin S in Lipid Membranes: Concentration-Dependent Re-alignment and Self-Assembly as a β-Barrel

    Science.gov (United States)

    Afonin, Sergii; Dürr, Ulrich H. N.; Wadhwani, Parvesh; Salgado, Jesus; Ulrich, Anne S.

    Antimicrobial peptides can kill bacteria by permeabilizing their cell membrane, as these amphiphilic molecules interact favourably with lipid bilayers. This mechanism of action is attributed either to the formation of a peptide “carpet” on the membrane surface, or to a transmembrane pore. However, the structure of such a pore has not yet been resolved under relevant conditions. Gramicidin S is a symmetrical cyclic β-sheet decapeptide, which has been previously shown by solid state NMR to lie flat on the membrane surface at low peptide:lipid ratios (≤ 1:80). Using highly sensitive 19F-NMR, supported by 15N-labelling, we found that gramicidin S can flip into an upright transmembrane alignment at high peptide:lipid ratios (≥ 1:40). Orientational NMR constraints suggest that the peptide may self-assemble as an oligomeric β-barrel pore, which is stabilized by intermolecular hydrogen bonds. Comparison of different model membranes shows that the observed re-alignment is favoured in thin bilayers with short-chain lipids, especially near the chain melting temperature, whereas long-chain lipids suppress pore formation. Based on the oligomeric structural model and the conditions of pore formation, guidelines may now be derived for rationally designing peptide analogues as antibiotics with improved selectivity and reduced side effects.

  6. Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach

    Energy Technology Data Exchange (ETDEWEB)

    Duran-Lobato, Matilde, E-mail: mduran@us.es [Universidad de Sevilla, Dpto. Farmacia y Tecnologia Farmaceutica, Facultad de Farmacia (Espana) (Spain); Enguix-Gonzalez, Alicia [Universidad de Sevilla, Dpto. Estadistica e Investigacion Operativa, Facultad de Matematicas (Espana) (Spain); Fernandez-Arevalo, Mercedes; Martin-Banderas, Lucia [Universidad de Sevilla, Dpto. Farmacia y Tecnologia Farmaceutica, Facultad de Farmacia (Espana) (Spain)

    2013-02-15

    Lipid nanoparticles (LNPs) are a promising carrier for all administration routes due to their safety, small size, and high loading of lipophilic compounds. Among the LNP production techniques, the easy scale-up, lack of organic solvents, and short production times of the high-pressure homogenization technique (HPH) make this method stand out. In this study, a statistical analysis was applied to the production of LNP by HPH. Spherical LNPs with mean size ranging from 65 nm to 11.623 {mu}m, negative zeta potential under -30 mV, and smooth surface were produced. Manageable equations based on commonly used parameters in the pharmaceutical field were obtained. The lipid to emulsifier ratio (R{sub L/S}) was proved to statistically explain the influence of oil phase and surfactant concentration on final nanoparticles size. Besides, the homogenization pressure was found to ultimately determine LNP size for a given R{sub L/S}, while the number of passes applied mainly determined polydispersion. {alpha}-Tocopherol was used as a model drug to illustrate release properties of LNP as a function of particle size, which was optimized by the regression models. This study is intended as a first step to optimize production conditions prior to LNP production at both laboratory and industrial scale from an eminently practical approach, based on parameters extensively used in formulation.

  7. Enhanced anti-hyperproliferative activity of human thymidylate synthase inhibitor peptide by solid lipid nanoparticle delivery.

    Science.gov (United States)

    Sacchetti, Francesca; Marraccini, Chiara; D'Arca, Domenico; Pelà, Michela; Pinetti, Diego; Maretti, Eleonora; Hanuskova, Miriam; Iannuccelli, Valentina; Costi, Maria Paola; Leo, Eliana

    2015-12-01

    Recently, octapeptide LSCQLYQR (LRp), reducing growth of cis-platinum (cDDP) resistant ovarian carcinoma cells by inhibiting the monomer-monomer interface of the human enzyme thymidylate synthase, has been identified. As the peptide is not able to cross the cell membrane it requires an appropriate delivery system. In this work the application of SLNs, biocompatible and efficient tools for the intracellular drug transport, applied especially for lipophilic drugs, was exploited for the delivery of the hydrophilic peptide LRp. SLNs formulated in the absence/presence of small amount of squalene showed dimensions below 150 nm, negative zeta potential and good stability to the freeze-drying process. Even though the particles formulated with squalene exhibited a less ordered crystal lattice and a lower surface hydrophobicity, a rapid drug release from these nanocarriers occurred as a result of the relevant expulsion of the drug from the lipid core during lipid crystallization. On the contrary, SLNs formulated in the absence of squalene were able to incorporate more stably the peptide showing considerable cytotoxic effect on cDDP resistant C13* ovarian carcinoma cell line at concentration 50 times lower than that used previously with a marketed delivery system. From the cell cycle analysis by the propidium iodide test in SLNs-peptide treated cancer cells an increase of apoptosis percentage was observed, indicating that SLNs were able to carry efficiently the peptide until its enzymatic target. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Formation and fluidity measurement of supported lipid bilayer on polyvinyl chloride membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Takuji, E-mail: kobayashi-t@int.ee.tut.ac.jp; Kono, Akiteru, E-mail: kobayashi-t@int.ee.tut.ac.jp; Sawada, Kazuaki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580 (Japan); Futagawa, Masato [Department of Electrical and Electronic Information Engineering and Head Office for the Tailor-Made and Baton-Zone Graduate Course, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580 (Japan); Tero, Ryugo, E-mail: tero@tut.jp [Electronics-Inspired Interdisciplinary Research Institute and Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580 (Japan)

    2014-02-20

    We prepared an artificial lipid bilayer on a plasticized poly(vinyl chloride) (PVC) membrane on a Si3N4 layer deposited on a Si wafer. We optimized the experimental condition for the fabrication of the PVC membrane, and obtained a PVC membrane with a flat and uniform surface on the scale of several hundreds of micrometer suitable for a substrate for supported lipid bilayers (SLBs). The SLB of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was formed on the PVC membrane by the vesicle fusion method. The observation with a conventional epi-fluorescence microscope and a confocal laser scanning microscope gave geometrically uniform images of the SLB on the PVC membrane. The fluidity and the mobile fraction of the SLB was evaluated by the fluorescence recovery after photobleaching method, and compared with that on a thermally oxidized SiO{sub 2}/Si substrate. The SLB on the PVC membrane contained immobile fraction ∼30%, but the diffusion in the mobile fraction was two times faster than that in the SLB on SiO{sub 2}/Si, which had little immobile fraction.

  9. Single-component supported lipid bilayers probed using broadband nonlinear optics.

    Science.gov (United States)

    Olenick, Laura L; Chase, Hilary M; Fu, Li; Zhang, Yun; McGeachy, Alicia C; Dogangun, Merve; Walter, Stephanie R; Wang, Hong-Fei; Geiger, Franz M

    2017-07-19

    Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm(-1), which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm(-1) and another at ∼2880 cm(-1). The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H2O-D2O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.

  10. Characterization of Articaine-Loaded Poly(ε-caprolactone) Nanocapsules and Solid Lipid Nanoparticles in Hydrogels for Topical Formulations.

    Science.gov (United States)

    Melo, Nathalie Ferreira Silva de; Campos, Estefânia Vangelie Ramos; Franz-Montan, Michelle; Paula, Eneida de; Silva, Camila Morais Gonçalves da; Maruyama, Cíntia Rodrigues; Stigliani, Tatiane Pasquoto; Lima, Renata de; Araújo, Daniele Ribeiro de; Fraceto, Leonardo Fernandes

    2018-06-01

    This work describes the development of poly-ε-caprolactone nanocapsules (PCL-NC) and solid lipid nanoparticles (SLN) aiming delivery for articaine (ATC), in order to improve its chemical stability in semi-solid preparations looking forward their use for skin delivery. The nanoparticles were characterized by size, polydispersity index, and pH. Cellular viability was evaluated using the MTT test and the in vitro release kinetics was determined using a two-compartment model. The hydrogels with nanoparticle suspensions were characterized considering their rheological aspects and in vitro permeation across artificial membranes. Colloidal stability was satisfactory, since the formulations did not present major alterations during 120 days. High ATC encapsulation was achieved (78% for PCL-NC and 65% for SLN). The release profile of PCL-NC-ATC was slower, compared to the free molecule and SLN-ATC. MTT experiments showed the nanosystems were capable to increase cellular viability compared with free ATC. The hydrogels showed good consistency, homogeneity, and stability and presented pseudoplastic behavior with thixotropy, improving drug efficacy in clinical applications. The gel based on PCL-NC showed faster onset of activity and flux of 35.68 ± 1.98 μg/cm2/h, which then continued for up to 8 h. This study opens up prospects for employment of nanoparticulate systems for modified release of ATC.

  11. Decision support models for solid waste management: Review and game-theoretic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece); Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence (Greece); Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece)

    2013-05-15

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  12. Multi criteria decision making to select the best method for the preparation of solid lipid nanoparticles of rasagiline mesylate using analytic hierarchy process

    Directory of Open Access Journals (Sweden)

    Viveksarathi Kunasekaran

    2014-01-01

    Full Text Available The objective of this study was to select best method for the development of rasagiline mesylate (RM loaded nanoscale solid lipid particles using analytic hierarchy process (AHP. Improper method selection may lead to waste of time, loss of material and financial resources. One of the possibilities to overcome these difficulties, AHP was employed to find the suitable method. In the AHP, a decision of hierarchy was constructed with a goal, criteria, sub-criteria, and alternatives. After constructing the AHP, the expert choice software was used to compute the overall priority of criteria, sub-criteria and alternatives. The best alternative selected was based on the highest priority. Nanoscale solid lipid particles of RM was formulated by the selected microemulsion method (M4 and it shows the particle size, polydispersity index and zeta potential were within acceptable limits. Drug content and entrapment efficiency of the RM-solid lipid nanoparticles were 97.26% and 86.57%, respectively. This study concludes that the AHP was viable and effective tool for selecting a most suitable method for the fabrication of RM loaded nanoscale solid lipid particles.

  13. Nanoscale science and engineering forum (706c) design of solid lipid particles with iron oxide quantum dots for the delivery of therapeutic agents

    Science.gov (United States)

    Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...

  14. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery.

    Science.gov (United States)

    Jose, S; Anju, S S; Cinu, T A; Aleykutty, N A; Thomas, S; Souto, E B

    2014-10-20

    Resveratrol is a potent anticancer. However, because of its low half-life (particle size and zeta potential of the optimized formulation (drug-lipid ratio of 1:10) were 248.30 ± 3.80nm and -25.49 ± 0.49mV, respectively. The particle size and the encapsulation efficiency (EE) increased when varying the drug-lipid ratio from 1:5 to 1:15. Scanning electron microscopic (SEM) analysis showed that SLN were spherical in shape and had a smooth surface. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses revealed that the matrix of drug-loaded SLN was in disordered crystalline phase. The in vitro release study in phosphate buffer pH 7.4 followed a sustained release pattern. The drug release data was found to fit best into Higuchi kinetic model suggesting the diffusion controlled mechanism of drug release. The cytotoxicity assay (MAT) showed that SLN were equally effective (P<0.5) as free resveratrol, as an anti-tumor agent. The in vivo biodistribution study using Wistar rats demonstrated that SLN could significantly (P<0.001) increase the brain concentration of resveratrol (17.28 ± 0.6344 μg/g) as compared to free resveratrol (3.45 ± 0.3961 μg/g). The results showed that our resveratrol-loaded SLN serve as promising therapeutic systems to treat neoplastic diseases located in the brain tissue. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Supported Lipid Bilayers for the Generation of Dynamic Cell-Material Interfaces.

    Science.gov (United States)

    van Weerd, Jasper; Karperien, Marcel; Jonkheijm, Pascal

    2015-12-30

    Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Physical understanding of pore formation on supported lipid bilayer by bacterial toxins

    Science.gov (United States)

    Bhattacharya, R.; Agrawal, A.; Ayappa, K. G.; Visweswariah, S. S.; Basu, J. K.

    2013-02-01

    Pore forming toxins are being classified in the protein community based on their ability of forming pores in living cell membranes. Some initial study has apparently pointed out the crystallographic pathway rather can be viewed as a structural as well as morphological changes of proteins in terms of self assembly before and during the pore formation process in surfactant medium. Being a water soluble compound, it changes its conformation and originates some pre-pore complex, which later partially goes inside the cell membrane causing a pore. The physical mechanism for this whole process is still unknown. In this study we have tried to understand these types of biological processes from physical point of view by using supported lipid bilayer as a model system.

  17. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  18. Temperature-controlled structure and kinetics of ripple phases in one- and two-component supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Crowe, J.H.

    2003-01-01

    ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating......Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphaticlylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers....... The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable...

  19. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device.

    Science.gov (United States)

    Capretto, Lorenzo; Mazzitelli, Stefania; Nastruzzi, Claudio

    2012-06-28

    This paper describes a method for the production of lipid microparticles (SLM) based on microfluidics using a newly designed modular device constituted of three main parts: a temperature control, a co-flow dripping element and a congealing element. The presented data demonstrated that the microfluidic approach resulted in the production of SLM with narrow size distribution and optimal morphological characteristics in term of sphericity, surface smoothness and absence of defects (i.e. partial coalescence or irregular shape). The optimization of SLM production was performed by screening the effect of different experimental parameters and device configurations by a classical intuitive approach COST (Changing One Separate factor a Time). This process allowed selecting the proper value for a number of parameters including, (i) the congealing element geometry, (ii) the presence and concentration of a stabilizer, (iii) the temperature of water and oil phases and (iv) the water and oil flow rates. In addition, the interplay between oil phase and water phase flow rates, in controlling the size and morphology of SLM, was investigated by a statistical "Design of the Experiments" approach (DoE). The combined use of COST and DoE studies allowed the production of optimized SLM for the encapsulation of dye/drugs. The obtained results demonstrated that the guest molecules did not affect the general characteristics of SLM, confirming the robustness of the microfluidic procedure in view of the production of SLM for biopharmaceutical and biotech protocols. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian

    2011-01-01

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate−lipid links or indirectly on substrate-supported cushions......, provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE...

  2. Serogroup-specific interactions of lipopolysaccharides with supported lipid bilayer assemblies

    Science.gov (United States)

    Mendez, Heather M.; Stromberg, Loreen R.; Swingle, Kirstie; Graves, Steven W.; Montano, Gabriel; Mukundan, Harshini

    2017-02-01

    Lipopolysaccharide (LPS) is an amphiphilic lipoglycan that is the primary component of the outer membrane of Gramnegative bacteria. Classified as a pathogen associated molecular pattern (PAMPs), LPS is an essential biomarker for identifying pathogen serogroups. Structurally, LPS is comprised of a hydrophobic lipophilic domain that partitions into the outer membrane of Gram-negative bacteria. Previous work by our team explored biophysical interactions of LPS in supported lipid bilayer assemblies (sLBAs), and demonstrated LPS-induced hole formation in DOPC lipid bilayers. Here, we have incorporated cholesterol and sphingomyelin into sLBAs to evaluate the interaction of LPS in a more physiologically relevant system. The goal of this work was to determine whether increasing membrane complexity of sLBAs, and changing physiological parameters such as temperature, affects LPS-induced hole formation. Integrating cholesterol and sphingomyelin into sLBAs decreased LPS-induced hole formation at lower concentrations of LPS, and bacterial serotype contributed to differences in hole formation as a response to changes in temperature. We also investigated the possibility of LPS-induced hole formation in cellular systems using the cytokine response in both TLR4 (+)/(-) murine macrophages. LPS was presented to each cell line in murine serum, delipidated serum, and buffer (i.e. no serum), and the resulting cytokine levels were measured. Results indicate that the method of LPS presentation directly affects cellular cytokine expression. The two model systems presented in this study provide preliminary insight into the interactions of LPS in the host, and suggest the significance of amphiphile-carrier interactions in regulating host-pathogen biology during infection.

  3. The efficacy of Isotretinoin-loaded solid lipid nanoparticles in comparison to Isotrex® on acne treatment

    Directory of Open Access Journals (Sweden)

    Shiva Golmohammadzadeh

    2013-01-01

    Full Text Available Abstract: Topical retinoids are considered as the first line therapy in the treatment of acne vulgaris, but they are associated with cutaneous irritation. In this study, isotretinoin-loaded solid lipid nanoparticles(IT-SLN were prepared to treat the mild to moderate acne. Also using IT-SLN would minimize IT adverse effects in comparison to commercial product, Isotrex®. This study was conducted to prepare and characterize IT-SLN and assessing the efficiency of IT-SLN comparing to Isotrex® acne. IT-SLN was prepared using hot high pressure homogenization method.  IT-SLN contained 0.05% IT in 5% of lipid phase (Glyceryl monostearate- GMS and tween 80 (2.5 % w/v was used as surfactant in the aqueous phase. IT-SLN was characterized by particle size analyzing, differential scanning calorimetry and transmission electron microscopy. Encapsulation efficacy was also obtained using spectrophotometry. The efficacy of IT-SLN was evaluated in a randomized, single-blind, parallel-group study and compared with Isotrex®. Forty patients encountered in the study and divided in two groups. Treatment regimen was once-nightly topical administration accompanied with topical administration of clindamycin 2% solution twice a day for 8 weeks. The particle size of IT-SLN was around 60 nm with PDI of 0.4 and zeta potential was about -40 mV. Encapsulation efficacy of IT in SLN in crystalline form was 84±0.21%. IT-SLN produced significantly better treatment than Isotrex® in both non-inflammatory and inflammatory lesions according to its recovery percent after 8 weeks. Also IT-SLN gained better global assessment scores. Our results showed that IT-SLN had higher efficacy than Isotrex® to clear non-inflammatory and inflammatory lesions.

  4. Smectite clays as solid supports for immobilization of beta-glucosidase : Synthesis, characterization, and biochemical properties

    NARCIS (Netherlands)

    Serefoglou, Evangelia; Litina, Kiriaki; Gournis, Dimitrios; Kalogeris, Emmanuel; Tzialla, Aikaterini A.; Pavlidis, Ioannis V.; Stamatis, Haralambos; Maccallini, Enrico; Lubomska, Monika; Rudolf, Petra

    2008-01-01

    Nanomaterials as solid supports can improve the efficiency of immobilized enzymes by reducing diffusional limitation as well as by increasing the surface area per mass unit and therefore improving enzyme loading. In this work, beta-glucosidase from almonds was immobilized on two smectite nanoclays.

  5. Peptide Synthesis Method and Solid Support for Use in the Method

    DEFF Research Database (Denmark)

    1994-01-01

    or proteins in a parallel and substantially simultaneous fashion. Preferred embodiments of a solid support for performing the synthesis are prepared from thin polyethylene sheet or film which has been grafted with polystyrene chains in a radical-initiated process in which the polyethylene sheet or film...

  6. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been stu...... of the stress field in a stack based on anode supported SOFCs. (C) 2016 Elsevier B.V. All rights reserved....

  7. Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs.

    Science.gov (United States)

    Kumar, Raj; Singh, Ashutosh; Garg, Neha; Siril, Prem Felix

    2018-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBP) are among the most prescribed drugs across the globe. However, most NSAIDs are insoluble in water leading them to have poor bioavailability and erratic absorption. Moreover, NSAIDs such as IBP and ketoprofen (KP) have to be administered very frequently due to their short plasma half-life leading to side effects. Controlled release formulations of IBP, KP and nabumetone (NBT) based on solid lipid nanoparticles (SLNs) were successfully synthesised in the present study to solve the above-mentioned challenges that are associated with NSAIDs. SLNs were prepared in two steps; hot-melt homogenization followed by sonication to formulate SLNs with spherical morphology. While capmul® GMS-50K (capmul) was used as the lipid due to the high solubility of the studied drugs in it, gelucire® 50/13 (gelucire) was used as the surfactant. It was found that particle size was directly proportional to drug concentration and inversely proportional to surfactant concentration, volume of water added and temperature of water. Ultrasonication in a pulse mode with optimum duration of 15min was essential to obtain smaller nanoparticles through the formation of a nanoemulsion. Drug loaded SLNs with small particle size and narrow size distribution with good solid loading, encapsulation efficiency and drug loading percentage could be prepared using the optimised conditions. SLNs prepared at the optimised condition were characterized thoroughly by using different techniques such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The cytotoxicity results showed that the prepared SLNs are non-toxic to Raw cell line. The drugs IBP, KP and NBT showed 53, 74 and 69% of percentage entrapment efficiency with

  8. Attitudes and Beliefs Toward Supportive and Palliative Care Referral Among Hematologic and Solid Tumor Oncology Specialists

    Science.gov (United States)

    Park, Minjeong; Liu, Diane; Reddy, Akhila; Dalal, Shalini; Bruera, Eduardo

    2015-01-01

    Background. Palliative care (PC) referrals are often delayed for patients with hematologic malignancies. We examined the differences in attitudes and beliefs toward PC referral between hematologic and solid tumor specialists and how their perception changed with use of the service name “supportive care” (SC). Materials and Methods. We randomly surveyed 120 hematologic and 120 solid tumor oncology specialists at our tertiary care cancer center to examine their attitudes and beliefs toward PC and SC referral. Results. Of the 240 specialists, 182 (76%) responded. Compared with solid tumor specialists, hematologic specialists were less likely to report that they would refer symptomatic patients with newly diagnosed cancer to PC (solid tumor, 43% vs. hematology, 21%; p = .002). A significantly greater proportion of specialists expressed that they would refer a patient with newly diagnosed cancer to SC than PC (solid tumor specialists: SC, 81% vs. PC, 43%; p palliative care. However, both groups were significantly more willing to refer patients early in the disease trajectory if the service name “supportive care” were used instead of “palliative care.” These findings suggest that rebranding might help to overcome the stigma associated with palliative care and improve patient access to palliative care services. PMID:26417037

  9. Support for the shape concept of lipid structure based on a headgroup volume approach.

    OpenAIRE

    Lee, Y. C.; Taraschi, T F; Janes, N

    1993-01-01

    Headgroup volumes of seven dioleoyl lipid species, calculated from covalent radii, are shown to correlate linearly (r = 0.95) with the ability of those lipids to alter the midpoint temperature of the lamellar to inverted hexagonal phase transition (L alpha-->HII) of a 95 mole fraction percent phosphatidylethanolamine matrix. The results illustrate the utility of the shape concept and basic considerations of headgroup volume as a predictive tool for the determination of lipid structure.

  10. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells.

    Science.gov (United States)

    Chen, Hsin-Hung; Huang, Wen-Chia; Chiang, Wen-Hsuan; Liu, Te-I; Shen, Ming-Yin; Hsu, Yuan-Hung; Lin, Sung-Chyr; Chiu, Hsin-Cheng

    2015-01-01

    In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs) carrying doxorubicin (DOX) capable of overcoming multidrug resistance (MDR) breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20) with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 μM, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm(3) in volume as compared with the free DOX treatment group, 1,140 mm(3), and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] solid lipid nanoparticles, 820 mm(3). Analysis of the body weight of nude mice and the histology of organs and tumor after the

  11. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  12. Arrangement of Annexin A2 tetramer and its impact on the structure and diffusivity of supported lipid bilayers

    DEFF Research Database (Denmark)

    Fritz, K.; Fritz, G.; Windschiegl, Barbara

    2010-01-01

    +-dependent exocytosis and cell-cell adhesion of metastatic cells. Here, we employ X-ray reflectivity measurements to resolve the conformation of Anx A2t upon Ca2+-dependent binding to single supported lipid bilayers (SLBs) composed of different mixtures of anionic (POPS) and neutral (POPC) phospholipids...... implications for the biochemical mechanism of Anx A2t-induced endo- and exocytosis....

  13. Transferrin-tailored solid lipid nanoparticles as vectors for site-specific delivery of temozolomide to brain

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Aviral, E-mail: draviraljain@gmail.com; Singhai, Priyanka; Gurnany, Ekta; Updhayay, Satish; Mody, Nishi [Adina Institute of Pharmaceutical Sciences, Pharmaceutics Research Laboratory, Department of Pharmaceutics (India)

    2013-03-15

    Blood-brain barrier restricts the uptake of many important hydrophilic drugs and limits their efficacy in the treatment of brain diseases because of the presence of tight junctions, high metabolic capacity, low pinocytic vesicular traffic, and efficient efflux mechanisms. In the present project, transferrin (Tf)-conjugated solid lipid nanoparticles (Tf-SLNs) were investigated for their ability to deliver temozolomide (TMZ) to the brain. SLNs were prepared by an ethanol injection method using hydrogenated soya phosphatidylcholine, triolein, cholesterol and distearoylphosphatidylethanolamine. Conjugation of SLNs with Tf was achieved by incubation of Tf with TMZ-loaded SLNs in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride in phosphate buffered saline (pH 7.4) as a cross linker. SLNs preparation were characterized for particle size, polydispersity index, zeta potential, surface morphology, percent drug entrapment efficiency, in vitro drug release, and hemolytic toxicity studies. In vitro cytotoxicity studies were performed on human cancer cell lines. The average size was found to be 221 {+-} 3.22 nm with entrapment efficiency of 69.83 {+-} 2.52 and 249 {+-} 2.61 nm with entrapment efficiency decreased to 64.21 {+-} 2.27 % for unconjugated SLNs and Tf-SLNs, respectively. Fluorescence studies revealed the enhanced uptake of Tf-SLNs in brain tissue compared with unconjugated SLNs.

  14. Development of Houttuynia cordata Extract-Loaded Solid Lipid Nanoparticles for Oral Delivery: High Drug Loading Efficiency and Controlled Release

    Directory of Open Access Journals (Sweden)

    Ju-Heon Kim

    2017-12-01

    Full Text Available Houttuynia cordata (H. cordata has been used for diuresis and detoxification in folk medicine as well as a herbal medicine with antiviral and antibacterial activities. H. cordata extract-loaded solid lipid nanoparticles (H-SLNs were prepared with various concentration of poloxamer 188 or poloxamer 407 by a hot homogenization and ultrasonication method. H-SLNs dispersion was freeze-dried with or without trehalose as a cryoprotectant. The physicochemical characteristics of H-SLNs were evaluated by dynamic laser scattering (DLS, differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FT-IR, and scanning electron microscopy (SEM. Additionally, the in vitro release and in vitro cytotoxicity of H-SLNs were measured. Encapsulation efficiencies of H-SLNs (as quercitrin were 92.9–95.9%. The SEM images of H-SLNs showed that H-SLNs have a spherical morphology. DSC and FT-IR showed that there were no interactions between ingredients. The increased extent of particle size of freeze-dried H-SLNs with trehalose was significantly lower than that of H-SLNs without trehalose. H-SLNs provided sustained release of quercitrin from H. cordata extracts. Cell viability of Caco-2 cells was over 70% according to the concentration of various formulation. Therefore, it was suggested that SLNs could be good carrier for administering H. cordata extracts.

  15. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches.

    Science.gov (United States)

    Madureira, Ana Raquel; Nunes, Sara; Campos, Débora A; Fernandes, João C; Marques, Cláudia; Zuzarte, Monica; Gullón, Beatriz; Rodríguez-Alcalá, Luís M; Calhau, Conceição; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Maria Manuela; Reis, Flávio

    2016-01-01

    Rosmarinic acid (RA) possesses several protective bioactivities that have attracted increasing interest by nutraceutical/pharmaceutical industries. Considering the reduced bioavailability after oral use, effective (and safe) delivery systems are crucial to protect RA from gastrointestinal degradation. This study aims to characterize the safety profile of solid lipid nanoparticles produced with Witepsol and Carnauba waxes and loaded with RA, using in vitro and in vivo approaches, focused on genotoxicity and cytotoxicity assays, redox status markers, hematological and biochemical profile, liver and kidney function, gut bacterial microbiota, and fecal fatty acids composition. Free RA and sage extract, empty nanoparticles, or nanoparticles loaded with RA or sage extract (0.15 and 1.5 mg/mL) were evaluated for cell (lymphocytes) viability, necrosis and apoptosis, and antioxidant/prooxidant effects upon DNA. Wistar rats were orally treated for 14 days with vehicle (control) and with Witepsol or Carnauba nanoparticles loaded with RA at 1 and 10 mg/kg body weight/d. Blood, urine, feces, and several tissues were collected for analysis. Free and loaded RA, at 0.15 mg/mL, presented a safe profile, while genotoxic potential was found for the higher dose (1.5 mg/mL), mainly by necrosis. Our data suggest that both types of nanoparticles are safe when loaded with moderate concentrations of RA, without in vitro genotoxicity and cytotoxicity and with an in vivo safety profile in rats orally treated, thus opening new avenues for use in nutraceutical applications.

  16. Time to overcome fluconazole resistant Candida isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system.

    Science.gov (United States)

    Moazeni, Maryam; Kelidari, Hamid Reza; Saeedi, Majid; Morteza-Semnani, Ketayoun; Nabili, Mojtaba; Gohar, Atefeh Abdollahi; Akbari, Jafar; Lotfali, Ensieh; Nokhodchi, Ali

    2016-06-01

    Antifungal therapy results in complications in management due to changes in the patterns of epidemiology and drug susceptibility of invasive fungal infections. In this study, we prepared fluconazole-loaded solid lipid nanoparticles (FLZ-SLNs) and investigated the efficacy of the optimal formulation on fluconazole (FLZ)-resistant strains of several Candida species. FLZ-SLN was produced using probe ultrasonication techniques. The morphology of the obtained SLNs was characterized by field emission scanning electron microscopy. The minimum inhibitory concentrations for the new formulations against fluconazole-resistant strains of Candida were investigated using CLSI document M27-A3. The FLZ-SLNs presented a spherical shape with a mean diameter, zeta potential and entrapment efficiency of 84.8nm, -25mV and 89.6%, respectively. The drug release from FLZ-SLNs exhibited burst release behaviour at the initial stage (the first 30min) followed by a sustained release over 24h FLZ-resistant yeast strains behaved as susceptible strains after treatment with FLZ-SLNs (≤8μg/ml). The MIC50 drug concentrations were 2μg/ml, 1μg/ml and 2μg/ml for FLZ-resistant strains of Candida albicans, Candida parapsilosis and Candida glabrata, respectively. In this study, we evaluated novel delivery systems for combating Candida strains that exhibit low susceptibility against the conventional formulation of FLZ as a first-line treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Preparation of oridonin-loaded solid lipid nanoparticles and studies on them in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Dianrui [College of Life Science and Technology, Beijing University of Chemical Technology, 15 Bei Sanhuan Donglu, Beijing 100029 (China); Tan Tianwei [College of Life Science and Technology, Beijing University of Chemical Technology, 15 Bei Sanhuan Donglu, Beijing 100029 (China); Gao Lei [Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012 (China)

    2006-12-14

    Oridonin, a lipophilic Chinese medicine, has very low oral bioavailability due to its poor solubility. Solid lipid nanoparticle (SLN) delivery systems of oridonin have been formed using stearic acid, soybean lecithin and pluronic F{sub 68} in our studies to overcome this problem. Emulsion evaporation-solidification at low temperature was used to prepare SLN dispersions. The particle size and morphology were examined by transmission electron microscopy (TEM), and the zeta potential was measured by a television micro-electrophoresis apparatus. Process and formulation variables have been studied and optimized on the basis of entrapment efficiency. Differential scanning calorimetry (DSC) and powder x-ray diffraction (PXRD) studies were performed to characterize the state of the drug. In vitro release studies were performed in phosphate-buffer solution (PBS) (pH 7.4). The tissue distribution in mice and the pharmacokinetics in rabbits were studied to evaluate the tissue targeted property of SLNs. Stable SLN formulations of oridonin having a mean size range of 15-35 nm and mean zeta potential -45.07 mV were developed. More than 40% oridonin was entrapped in SLNs. DSC and PXRD analysis showed that oridonin is dispersed in SLNs in an amorphous state. The release pattern of the drug was analysed and found to follow the Higuchi equations. In vivo studies demonstrated that oridonin-loaded SLNs obviously increased the concentration of oridonin in liver, lung and spleen, while its distribution in heart and kidney decreased.

  18. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice.

    Science.gov (United States)

    Saljoughian, N; Zahedifard, F; Doroud, D; Doustdari, F; Vasei, M; Papadopoulou, B; Rafati, S

    2013-12-01

    The use of an appropriate delivery system has recently emerged as a promising approach for the development of effective vaccination against visceral leishmaniasis (VL). Here, we compare two vaccine delivery systems, namely electroporation and cationic solid-lipid nanoparticle (cSLN) formulation, to administer a DNA vaccine harbouring the L. donovani A2 antigen along with L. infantum cysteine proteinases [CPA and CPB without its unusual C-terminal extension (CPB(-CTE) )] and evaluate their potential against L. infantum challenge. Prime-boost administration of the pcDNA-A2-CPA-CPB(-CTE) delivered by either electroporation or cSLN formulation protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ and lower levels of IL-10 production, leading to a strong Th1 immune response. At all time points, the ratio of IFN-γ: IL-10 induced upon restimulation with rA2-rCPA-rCPB and F/T antigens was significantly higher in vaccinated animals. Moreover, Th2-efficient protection was elicited through a high humoral immune response. Nitric oxide production, parasite burden and histopathological analysis were also in concordance with other findings. Overall, these data indicate that similar to the electroporation delivery system, cSLNs as a nanoscale vehicle of Leishmania antigens could improve immune response, hence indicating the promise of these strategies against visceral leishmaniasis. © 2013 John Wiley & Sons Ltd.

  19. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate.

    Science.gov (United States)

    Liu, Wei; Hu, Meiling; Liu, Wenshuang; Xue, Chengbin; Xu, Huibi; Yang, XiangLiang

    2008-11-19

    The purpose of this study was to investigate solid lipid nanoparticles (SLN) hydrogel for transdermal iontophoretic drug delivery. Triamcinolone acetonide acetate (TAA), a glucocorticoids compound, was employed as the model drug. SLN containing the drug triamcinolone acetonide acetate (TAA-SLN) and their carbopol gel with stable physicochemical properties were prepared. The use of TAA-SLN carbopol gel as a vehicle for the transdermal iontophoretic delivery of TAA was evaluated in vitro using horizontal diffusion cells fitted with porcine ear skin. We found that the TAA-SLN gel possessed good stability, rheological properties, and high electric conductance. Transdermal penetration of TAA from TAA-SLN gel cross the skin tissue was significantly enhanced by iontophoresis. The enhancement of the cumulative penetration amount and the steady-state penetration flux of the penetrated drug were related to the particle size of TAA-SLN and the characteristics of the applied pulse electric current, such as density, frequency, and on/off interval ratio. These results indicated that SLN carbopol gel could be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.

  20. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population.

    Science.gov (United States)

    Cox, Katherine H M; Pipingas, Andrew; Scholey, Andrew B

    2015-05-01

    Curcumin possesses many properties which may prevent or ameliorate pathological processes underlying age-related cognitive decline, dementia or mood disorders. These benefits in preclinical studies have not been established in humans. This randomized, double-blind, placebo-controlled trial examined the acute (1 and 3 h after a single dose), chronic (4 weeks) and acute-on-chronic (1 and 3 h after single dose following chronic treatment) effects of solid lipid curcumin formulation (400 mg as Longvida®) on cognitive function, mood and blood biomarkers in 60 healthy adults aged 60-85. One hour after administration curcumin significantly improved performance on sustained attention and working memory tasks, compared with placebo. Working memory and mood (general fatigue and change in state calmness, contentedness and fatigue induced by psychological stress) were significantly better following chronic treatment. A significant acute-on-chronic treatment effect on alertness and contentedness was also observed. Curcumin was associated with significantly reduced total and LDL cholesterol and had no effect on hematological safety measures. To our knowledge this is the first study to examine the effects of curcumin on cognition and mood in a healthy older population or to examine any acute behavioral effects in humans. Results highlight the need for further investigation of the potential psychological and cognitive benefits of curcumin in an older population. © The Author(s) 2014.

  1. A novel and organic solvent-free preparation of solid lipid nanoparticles using natural biopolymers as emulsifier and stabilizer.

    Science.gov (United States)

    Xue, Jingyi; Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Luo, Yangchao

    2017-10-05

    In this work, a new and novel organic solvent-free and synthetic surfactant-free method was reported to fabricate stable solid lipid nanoparticles (SLNs) from stearic acid, sodium caseinate (NaCas) and pectin, as well as water. Melted stearic acid was directly emulsified into an aqueous phase containing NaCas and pectin, followed by pH adjustment and thermal treatment to induce the formation of a compact and dense polymeric coating which stabilized SLNs. The preparation procedures and formulations were comprehensively optimized. The inter- and intra-molecular interactions among three ingredients were characterized by fluorescence and Fourier transform infrared spectroscopies. The stability of as-prepared SLNs was evaluated under simulated gastrointestinal conditions, and compared with traditional SLNs prepared with organic solvents. Our results revealed that the SLNs prepared from this organic solvent-free method had superior physicochemical properties over the traditional SLNs, including smaller size and better stability. Furthermore, redispersible SLNs powders were obtained by nano spray drying, but only the SLNs prepared by organic solvent-free method had sub-micron scale, uniform and spherical morphology. The organic solvent-free preparation method was proved to be a promising approach to prepare stable and uniform SLNs for potential oral delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Correlating gastric emptying of amphotericin B and paracetamol solid lipid nanoparticles with changes in particle surface chemistry.

    Science.gov (United States)

    Amekyeh, Hilda; Billa, Nashiru; Roberts, Clive

    2017-01-30

    Oral delivery of pharmaceuticals requires that they retain their physical and chemical attributes during transit within the gastrointestinal (GI) tract, for the manifestation of desired therapeutic profiles. Solid lipid nanoparticles (SLNs) are used as carriers to improve the absorption of hydrophobic drugs. In this study, we examine the stability of amphotericin B (AmB) and paracetamol (PAR) SLNs in simulated GI fluids during gastric emptying. On contact with the simulated fluids, the particles increased in size due to ingress of the dissolution media into the particles. Simulated gastric emptying revealed that the formulations had mean sizes <350nm and neutral surface charges, both of which are optimal for intestinal absorption of SLNs. There was ingress of the fluids into the SLNs, followed by diffusion of the dissolved drug, whose rate depended on the solubility of the loaded-drug in the particular medium. Time-of-flight secondary ion mass spectrometry analyses indicated that drug loading followed the core-shell model and that the AmB SLNs have a more drug-enriched core than the PAR SLNs do. The AmB SLNs are therefore a very suitable carrier of AmB for oral delivery. The stability of the SLNs in the simulated GI media indicates their suitability for oral delivery. Copyright © 2016. Published by Elsevier B.V.

  3. Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy

    Czech Academy of Sciences Publication Activity Database

    Brezaniova, I.; Hrubý, Martin; Králová, Jarmila; Král, V.; Černochová, Zulfiya; Černoch, Peter; Šlouf, Miroslav; Kredatusová, Jana; Štěpánek, Petr

    2016-01-01

    Roč. 241, 10 November (2016), s. 34-44 ISSN 0168-3659 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507; GA MŠk(CZ) 7F14009 Institutional support: RVO:61389013 ; RVO:68378050 Keywords : photodynamic therapy * nanomedicine * drug delivery Subject RIV: CD - Macromolecular Chemistry; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 7.786, year: 2016

  4. Stereoselective Reduction of Imines with Trichlorosilane Using Solid-Supported Chiral Picolinamides

    Directory of Open Access Journals (Sweden)

    Sílvia D. Fernandes

    2016-09-01

    Full Text Available The stereoselective reduction of imines with trichlorosilane catalyzed by chiral Lewis bases is a well-established procedure for the synthesis of enantio-enriched amines. Five supported cinchona-based picolinamides have been prepared and their activity tested in a model reaction. The comparison of different supporting materials revealed that polystyrene gave better results than silica in terms of stereoselectivity. The applicability of the solid-supported catalyst of choice to the reduction of different imines was also demonstrated. Additionally, for the first time, a catalytic reactor containing a polymer-immobilized chiral picolinamide has been employed for the stereoselective reduction of imines with trichlorosilane under continuous flow conditions.

  5. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  6. Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality.

    Science.gov (United States)

    Zafeiri, I; Smith, P; Norton, I T; Spyropoulos, F

    2017-07-19

    The quest to identify and use bio-based particles with a Pickering stabilisation potential for food applications has lately been particularly substantial and includes, among other candidates, lipid-based particles. The present study investigates the ability of solid lipid particles to stabilise oil-in-water (o/w) emulsions against coalescence. Results obtained showed that emulsion stability could be achieved when low amounts (0.8 wt/wt%) of a surface active species (e.g. Tween 80 or NaCas) were used in particles' fabrication. Triple staining of the o/w emulsions enabled the visualisation of emulsion droplets' surface via confocal microscopy. This revealed an interfacial location of the lipid particles, hence confirming stabilisation via a Pickering mechanism. Emulsion droplet size was controlled by varying several formulation parameters, such as the type of the lipid and surface active component, the processing route and the polarity of the dispersed phase. Differential scanning calorimetry (DSC) was employed as the analytical tool to quantify the amount of crystalline material available to stabilise the emulsion droplets at different intervals during the experimental timeframe. Dissolution of lipid particles in the oil phase was observed and evolved distinctly between a wax and a triglyceride, and in the presence of a non-ionic surfactant and a protein. Yet, this behaviour did not result in emulsion destabilisation. Moreover, emulsion's thermal stability was found to be determined by the behaviour of lipid particles under temperature effects.

  7. Formulation development and evaluation of the anti-malaria properties of sustained release artesunate-loaded solid lipid microparticles based on phytolipids.

    Science.gov (United States)

    Chinaeke, E E; Chime, S A; Onyishi, V I; Attama, A A; Okore, V C

    2015-01-01

    CONTEXTS: Artemisinins and its derivatives are considered the basis in the treatment of Plasmodium falciparum malaria due to their high potency and rapid action. However, they have short half life, low solubility, and poor oral bioavailability, hence the need to formulate sustained release lipid particulate dosage form of these drugs. To formulate and evaluate artesunate-loaded solid lipid microparticles (SLMs) based on structured lipid matrices consisting of soybean oil and dika wax. The lipid matrices were characterized by differential scanning calorimetry (DSC), small-angle X-ray diffraction (SAXD), and wide-angle X-ray diffraction (WAXD). The SLMs were prepared by hot melt-homogenization. Time-dependent particle size analysis, time-dependent pH stability studies, encapsulation efficiency (EE%), and in vitro drug release were carried out on the SLMs. In vivo anti-malarial studies were performed using a modified Peter's 4-day suppressive protocol using Plasmodium berghei infected mice. Thermograms of the lipid matrices showed modifications in the microstructure of dika wax as a result of inclusion of soybean oil. SAXD and WAXD diffractograms showed that the lipid matrices were found to be non-lamellar. Particle size of SLM increased with time, while the pH was almost constant. The SLMs had maximum EE% of 80.6% and sustained the release of artesunate more than the reference tablet. In vivo pharmacodynamic studies showed that the SLMs had significant (p daily in the treatment of malaria.

  8. "Bligh and Dyer" and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents.

    Science.gov (United States)

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-03-27

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  9. Solid-supported reagents for multi-step organic synthesis: preparation and application.

    Science.gov (United States)

    Ley, S V; Baxendale, Ian R; Brusotti, G; Caldarelli, M; Massi, A; Nesi, M

    2002-04-01

    Since the early days of combinatorial chemistry solid-phase organic synthesis has been the method of choice for the production of large libraries. Solution-phase synthesis is again gaining importance especially for the synthesis of parallel arrays of smaller, focussed libraries containing single compounds with high degrees of purity. In the field of solution-phase library generation, the use of solid-supported reagents, catalysts and scavengers is emerging as a leading strategy, combining the advantages of both solid-phase organic synthesis (e.g. allowing the employment of an excess of reagent without the need for additional purification steps) and solution-phase chemistry (e.g. the ease of monitoring the progress of the reactions by applying LC-MS, TLC or standard NMR techniques). An account of some of the most recent advances in this area of research will be presented.

  10. Expanding the Scope of Biocatalysis: Oxidative Biotransformations on Solid-Supported Substrates.

    Science.gov (United States)

    Brooks, Sarah J; Coulombel, Lydie; Ahuja, Disha; Clark, Douglas S; Dordick, Jonathan S

    2008-07-07

    Oxidative biocatalytic reactions were performed on solid-supported substrates, thus expanding the repertoire of biotransformations that can be carried out on the solid phase. Various phenylacetic and benzoic acid analogs were attached to controlled pore glass beads via an enzyme-cleavable linker. Reactions catalyzed by peroxidases (soybean and chloro), tyrosinase, and alcohol oxidase/dehydrogenase gave a range of products, including oligophenols, halogenated aromatics, catechols, and aryl aldehydes. The resulting products were recovered following cleavage from the beads using α-chymotrypsin to selectively hydrolyze a chemically non-labile amide linkage. Controlled pore glass (CPG) modified with a polyethylene glycol (PEG) linker afforded substantially higher product yields than non-PEGylated CPG or non-swellable polymeric resins. This work represents the first attempt to combine solid-phase oxidative biotransformations with subsequent protease-catalyzed cleavage, and serves to further expand the use of biocatalysis in synthetic and medicinal chemistry.

  11. Stochastic adhesion of hydroxylated atomic force microscopy tips to supported lipid bilayers.

    Science.gov (United States)

    Apetrei, Aurelia; Sirghi, Lucel

    2013-12-31

    This work reports results of an atomic force microscopy (AFM) study of adhesion force between hydroxylated AFM tips and supported lipid bilayers (SLBs) of phosphatidylcholine in phosphate buffer saline solution at neutral pH. Silicon nitride AFM probes were hydroxylated by treatment in water vapor plasma and used in force spectroscopy measurements of adhesion force on SLBs with control of contact loading force and residence time. The measurements showed a stochastic behavior of adhesion force that was attributed to stochastic formation of hydrogen bonds between the hydroxyl groups on the AFM tip and oxygen atoms from the phosphate groups of the phosphatidylcholine molecules. Analysis of a large number of force curves revealed a very low probability of hydrogen bond formation, a probability that increased with the increase of contact loading force and residence time. The variance and mean values of adhesion force showed a linear dependence on each other, which indicated that hydrogen bond formation obeyed the Poisson distribution of probability. This allowed for the quantitative determination of the rupture force per hydrogen bond of about 40 pN and showed the absence of other nonspecific interaction forces.

  12. Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Carnes, Eric C.; Ashley, Carlee Erin; Willman, Cheryl L.

    2017-02-28

    The present invention is directed to protocells for specific targeting of hepatocellular and other cancer cells which comprise a nanoporous silica core with a supported lipid bilayer; at least one agent which facilitates cancer cell death (such as a traditional small molecule, a macromolecular cargo (e.g. siRNA or a protein toxin such as ricin toxin A-chain or diphtheria toxin A-chain) and/or a histone-packaged plasmid DNA disposed within the nanoporous silica core (preferably supercoiled in order to more efficiently package the DNA into protocells) which is optionally modified with a nuclear localization sequence to assist in localizing protocells within the nucleus of the cancer cell and the ability to express peptides involved in therapy (apoptosis/cell death) of the cancer cell or as a reporter, a targeting peptide which targets cancer cells in tissue to be treated such that binding of the protocell to the targeted cells is specific and enhanced and a fusogenic peptide that promotes endosomal escape of protocells and encapsulated DNA. Protocells according to the present invention may be used to treat cancer, especially including hepatocellular (liver) cancer using novel binding peptides (c-MET peptides) which selectively bind to hepatocellular tissue or to function in diagnosis of cancer, including cancer treatment and drug discovery.

  13. Formation Mechanism and Properties of Polyelectrolyte Multilayer-Supported Lipid Bilayers: A Coarse-Grained Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Caixia Wen

    2017-03-01

    Full Text Available Polyelectrolyte multilayer (PEM-supported lipid bilayers (SLBs that connect with functional proteins are popular models for cell membranes and are usually obtained via vesicle adsorption and spreading. However, the exact mechanism by which SLBs are formed is not fully understood. In this study, we employ coarse-grained molecular dynamics simulations to investigate the pathways by which vesicles undergo spreading upon the deposition on PEM-cushioned substrates. The substrates consist of positive chitosan (CHI/negative alginate (ALG multilayers. We find that an isolated vesicle tends to completely disintegrate upon deposition, forming a well-ordered lipid bilayer at appropriate polymer ionic strengths by a mechanism described as “parachute” model. Lipids from the vesicle’s outer leaflet are predominantly oriented toward the bulk after the formation of the SLB. The PEM cushion provides adsorption energy of 26.9 kJ mol–1 per lipid for the SLBs. The process by which SLBs are formed is almost independent of the number of layers of CHI/ALG in the PEM cushion. Additional simulations on vesicle clusters also demonstrate that the formation of SLBs can be catalyzed by either neighboring vesicles or preexisting bilayer edges on the support. Moreover, our simulations show that SLBs created on PEM supports preserve the lateral mobility and the symmetric density profile of the phospholipids, as in a freestanding bilayer.

  14. Creep Behavior of Porous Supports in Metal-support Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Blennow Tullmar, Peter

    2013-01-01

    Creep is the inelastic deformation of a material at high temperatures over long periods of time. It can be defined as timedependent deformation at absolute temperatures greater than one half the absolute melting. Creep resistance is a key parameter for high temperature steel components, e.g. SOFC...... metal supports, where high corrosion resistance is a major design requirement. The four variables affecting creep rate are strain, time, temperature, and stress level and make creep difficult to quantify. In this work, the creep parameters of a SOFC metal support have been determined for the first time...... by means of a thermo mechanical analyzer (TMA) for stresses in the range of 1-17 MPa and temperatures between 650-750 °C. The creep parameters of Crofer® 22 APU were also acquired and compared with values obtained from literature to validate the technique....

  15. Investigation on Secondary Structure Perturbations of Proteins Embedded in Solid Lipid Matrices as a Novel Indicator of their Biological Activity upon In Vitro Release

    DEFF Research Database (Denmark)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene

    2018-01-01

    Protein biologics are prone to conformational changes during formulation development. Limited methods are available for conformational analysis of proteins in solid state and in the presences of formulation excipients. The aim of this study was to investigate the secondary structures of proteins...... encased in solid lipid matrices as a novel indicator of their stability upon in vitro release. Model proteins namely catalase and lysozyme were incorporated into lipid namely Precirol® AT05 (glycerol palmitostearate, melting point 58°C) at 30% w/w loading using melting and mixing and wet granulation...... methods. Attenuated total reflectance (ATR-FTIR) spectroscopy, size-exclusion chromatography (SEC) and biological activity analyses were performed. The information about secondary structure was acquired using second derivative analysis of amide-I band (1600-1700 cm(-1)). ATR analysis demonstrated...

  16. Evidence in Support of Potential Applications of Lipid Peroxidation Products in Cancer Treatment

    Science.gov (United States)

    Erejuwa, Omotayo O.; Sulaiman, Siti A.; Ab Wahab, Mohd S.

    2013-01-01

    Cancer cells generate reactive oxygen species (ROS) resulting from mitochondrial dysfunction, stimulation of oncogenes, abnormal metabolism, and aggravated inflammatory activities. Available evidence also suggests that cancer cells depend on intrinsic ROS level for proliferation and survival. Both physiological and pathophysiological roles have been ascribed to ROS which cause lipid peroxidation. In spite of their injurious effects, the ROS and the resulting lipid peroxidation products could be beneficial in cancer treatment. This review presents research findings suggesting that ROS and the resulting lipid peroxidation products could be utilized to inhibit cancer growth or induce cancer cell death. It also underscores the potential of lipid peroxidation products to potentiate the antitumor effect of other anticancer agents. The review also highlights evidence demonstrating other potential applications of lipid peroxidation products in cancer treatment. These include the prospect of lipid peroxidation products as a diagnostic tool to predict the chances of cancer recurrence, to monitor treatment progress or how well cancer patients respond to therapy. Further and detailed research is required on how best to successfully, effectively, and selectively target cancer cells in humans using lipid peroxidation products. This may prove to be an important strategy to complement current treatment regimens for cancer patients. PMID:24369491

  17. Unravelling the olefin cross metathesis on solid support. Factors affecting the reaction outcome.

    Science.gov (United States)

    Poeylaut-Palena, Andrés A; Mata, Ernesto G

    2010-09-07

    Olefin cross metathesis on solid support under a variety of conditions is described. A comprehensive analysis considering diverse factors governing the reaction outcome gives a series of patterns for the application of this useful methodology in organic synthesis. If the intrasite reaction is not possible, homodimerization of the soluble olefin is crucial. When the homodimer is less reactive than its monomer, reaction outcome depends on the homodimerization rate, which, in turn, depends on the precatalyst used and the reaction conditions. If the site-site interaction is a feasible process, the cross metathesis product is obtained exclusively when the newly-formed double bond is resilient to further metathetic events. Taking into account these considerations, we have demonstrated that excellent results in terms of cross metathesis coupling can be obtained under the optimized conditions, and that microwave irradiation is also an interesting alternative for the development of a practical and energy-efficient cross metathesis on solid support.

  18. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  19. ACCOUNTING-INFORMATION SUPPORT MANAGEMENT OF WOODWORKING ENTERPRISES FOR THE PRODUCTION OF SOLID BIOFUELS

    Directory of Open Access Journals (Sweden)

    Nadiia Pylypiv

    2016-06-01

    Full Text Available In the article the issue of formation of the basic principles of accounting and information support of wood-processing enterprises for the production of solid biofuels for their sustainable development and competitiveness, defined requirements management, provided the relationship between the stages of your process and information flows in terms of resource and energy saving was investigated. A result of investigation it was found that for a more complete and efficient accounting and information support of enterprises required building management accounting by implementing these steps in your process as technology together: preliminary (preparatory, primary, current, analytical and outcome to ensure implementation of management objectives for reliable information as retrospective and prospective nature of the efficient use of resources in manufacturing products. Key words: accounting process, organization, management accounting, management objectives, woodworking enterprises, solid biofuels. JEL: M41  

  20. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques.

    Science.gov (United States)

    Behbahani, Elham Sadati; Ghaedi, Mehrorang; Abbaspour, Mohammadreza; Rostamizadeh, Kobra

    2017-09-01

    This study is devoted to preparation of novel solid lipid nanoparticles (SLNs) for the encapsulation of curcumin which is produced by micro-emulsion and ultrasonication using stearic acid and tripalmitin as solid lipids, tween80 and span80 as surfactants. The relation between particle size and entrapment efficiency of the produced SLNs was operated by central composite design (CCD) under response likes surface method (RSM). The variables including the ratio of lipids (X1), the ratio of surfactants (X2), drug/lipid ratio (X3), time of sonication (X4) and time of homogenization (X5). Particle size and entrapment efficiency of the loaded curcumin was justified according to the minimum particle size and maximum entrapment efficiency. The curcumin loaded SLNs presented fairly spherical shape with the mean diameter and entrapment efficiency of 112.0±2.6nm and 98.7±0.3%, respectively. The optimized SLNs were characterized by X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), photon correlation spectroscopy (PCS) and field emission scanning electron microscopy (FESEM). The drug release profile of the optimal formulated material was examined in aqueous media and almost 30% of the curcumin loaded in SLNs was gradually released during 48h, which reveals efficient prolonged release of the drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Optimization of Solid-Supported Glaser-Hay Reactions in the Microwave

    Directory of Open Access Journals (Sweden)

    Jessica S. Lampkowski

    2015-03-01

    Full Text Available The translation of organometallic reactions into a microwave reactor has numerous advantages. Herein, we describe the application of a previously developed solid-supported Glaser-Hay reaction to microwave conditions. Overall, an array of diynes has been prepared demonstrating the ability to conduct chemoselective reactions in the microwave within 20 min compared to the 16 h thermal conditions. Moreover, non-microwave transparent alkynes have been found to react more quickly, preventing catalyst quenching, and resulting in higher yields.

  2. Typical Mexican agroindustrial residues as supports for solid-state fermentation

    DEFF Research Database (Denmark)

    Flores-Maltos, Dulce A.; Mussatto, Solange Ines; Contreras Esquivel, Juan Carlos

    2014-01-01

    . These biological wastes can be used as support-substrates in Solid-State Fermentation (SSF) to produce industrially relevant metabolites with great economical advantage. In addition, it is an environment friendly method of waste management. In this study were analyzed six different Mexican agro industrial residues...... process. The results provided important knowledge about the characteristics of these materials revealing their potential for use in fermentation processes....

  3. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    Energy Technology Data Exchange (ETDEWEB)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  4. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Jain, Vineet; Gupta, Annie; Pawar, Vivek K; Asthana, Shalini; Jaiswal, Anil K; Dube, Anuradha; Chourasia, Manish K

    2014-10-01

    Solid lipid nanoparticles (SLNs) have emerged as an excellent substitute over polymeric nanoparticles and, when incorporated with chitosan which activates the macrophage to impart an immune response, produce excellent results to fight against deleterious diseases like leishmaniasis where its parasite diminishes the immunity of the host to induce resistance. Based upon this hypothesis, chitosan-coated SLNs were developed and loaded with amphotericin B (AmB) for immunoadjuvant chemotherapy of Leishmania infection. Both uncoated and chitosan-coated AmB-loaded SLNs (AmB-SLNs) were fabricated using solvent emulsification and evaporation method. The various processes and formulation parameters involved in AmB-SLN preparation were optimized with respect to particle size and stability of the particles. In vitro hemolytic test credited the formulations to be safe when injected in the veins. The cellular uptake analysis demonstrated that the chitosan-coated AmB-SLN was more efficiently internalized into the J774A.1 cells. The in vitro antileishmanial activity revealed their high potency against Leishmania-infected cells in which chitosan-coated AmB-SLNs were distinguishedly efficacious over commercial formulations (AmBisome and Fungizone). An in vitro cytokine estimation study revealed that chitosan-coated AmB-SLNs activated the macrophages to impart a specific immune response through enhanced production of TNF-α and IL-12 with respect to normal control. Furthermore, cytotoxic studies in macrophages and acute toxicity studies in mice evidenced the better safety profile of developed formulation in comparison to marketed formulations. This study indicates that the AmB-SLNs are a safe and efficacious drug delivery system which promises strong competence in antileishmanial chemotherapy and immunotherapy.

  5. Development and characterization of new and scalable topical formulations containing N-acetyl-d-glucosamine-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Marto, Joana; Sangalli, Cecilia; Capra, Priscilla; Perugini, Paola; Ascenso, Andreia; Gonçalves, Lídia; Ribeiro, Helena

    2017-11-01

    N-Acetyl-d-glucosamine (NAG) has been recently considered for topical treatment of hyperpigmentation disorders due to its inhibitory effect on thyrosinase enzymes in melanocytes. NAG is a precursor of hyaluronic acid, increasing its amount in skin, and consequently, preserving the skin hydration and elasticity. It may also act as an emulsion stabilizer. Solid lipid nanoparticles (SLN) are advanced delivery systems successfully used in pharmaceutical and cosmetic formulations for the improvement of active molecules penetration into the skin. Therefore, this work aimed to develop and characterize stable and scalable topical formulations containing NAG-loaded SLN. NAG was incorporated in SLN which were prepared by two high shear homogenizers and characterized regarding its morphology and particle size by transmission electron microscopy and photon correlation spectroscopy, respectively. Oil emulgel and hydrogel were used as carriers of NAG-loaded SLN. Several parameters were evaluated, including the droplet size distribution, rheology, pH and topical delivery by different techniques. It was observed that SLN size was significantly dependent on NAG incorporation and homogenization process. Most tested SLN parameters appeared to be quite suitable, that is, spherical and well-defined SLN with approximately 258 nm and -30 mV. Hereafter, both gels containing SLN presented a pseudoplastic flow. Emulgel formulation containing NAG-loaded SLN allowed a higher NAG permeation through the SC compared to the respective control (about 0.8 μgcm -2  h -1 ). According to the results obtained, it can be suggested that NAG acts as an emulsion stabilizer. This stabilization was also particularly dependent on the homogenizer type which is quite important for scale-up process. This study demonstrated the potential of scalable SLN formulations to improve NAG topical delivery contributing to the improvement of skin properties on several skin disorders.

  6. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers

    DEFF Research Database (Denmark)

    Klemensø, Trine; Nielsen, Jimmi; Blennow Tullmar, Peter

    2011-01-01

    Metal-supported solid oxide fuel cells are believed to have commercial advantages compared to conventional anode (Ni–YSZ) supported cells, with the metal-supported cells having lower material costs, increased tolerance to mechanical and thermal stresses, and lower operational temperatures......, and an electrochemical performance beyond the state-of-the-art anode-supported SOFC is demonstrated possible, by introducing a CGO barrier layer in combination with Sr-doped lanthanum cobalt oxide (LSC) cathode. Area specific resistances (ASR) down to 0.27 Ω cm2, corresponding to a maximum power density of 1.14 W cm−2...... at 650 °C and 0.6 V, were obtained on cells with barrier layers fabricated by magnetron sputtering. The performance is dependent on the density of the barrier layer, indicating Sr2+ diffusion is occurring at the intermediate SOFC temperatures. The optimized design further demonstrate improved durability...

  8. Application of solid-phase extraction to agar-supported fermentation.

    Science.gov (United States)

    Le Goff, Géraldine; Adelin, Emilie; Cortial, Sylvie; Servy, Claudine; Ouazzani, Jamal

    2013-09-01

    Agar-supported fermentation (Ag-SF), a variant of solid-state fermentation, has recently been improved by the development of a dedicated 2 m(2) scale pilot facility, Platotex. We investigated the application of solid-phase extraction (SPE) to Ag-SF in order to increase yields and minimize the contamination of the extracts with agar constituents. The selection of the appropriate resin was conducted on liquid-state fermentation and Diaion HP-20 exhibited the highest recovery yield and selectivity for the metabolites of the model fungal strains Phomopsis sp. and Fusarium sp. SPE applied to Ag-SF resulted in a particular compartmentalization of the culture. The mycelium that requires oxygen to grow migrates to the top layer and formed a thick biofilm. The resin beads intercalate between the agar surface and the mycelium layer, and trap directly the compounds secreted by the mycelium through a "solid-solid extraction" (SSE) process. The resin/mycelium layer is easily recovered by scraping the surface and the target metabolites extracted by methanol. Ag-SF associated to SSE represents an ideal compromise for the production of bioactive secondary metabolites with limited economic and environmental impact.

  9. Technologies and decision support systems to aid solid-waste management: a systematic review.

    Science.gov (United States)

    Vitorino de Souza Melaré, Angelina; Montenegro González, Sahudy; Faceli, Katti; Casadei, Vitor

    2017-01-01

    Population growth associated with population migration to urban areas and industrial development have led to a consumption relation that results in environmental, social, and economic problems. With respect to the environment, a critical concern is the lack of control and the inadequate management of the solid waste generated in urban centers. Among the challenges are proper waste-collection management, treatment, and disposal, with an emphasis on sustainable management. This paper presents a systematic review on scientific publications concerning decision support systems applied to Solid Waste Management (SWM) using ICTs and OR in the period of 2010-2013. A statistical analysis of the eighty-seven most relevant publications is presented, encompassing the ICTs and OR methods adopted in SWM, the processes of solid-waste management where they were adopted, and which countries are investigating solutions for the management of solid waste. A detailed discussion on how the ICTs and OR methods have been combined in the solutions was also presented. The analysis and discussion provided aims to help researchers and managers to gather insights on technologies/methods suitable the SWM challenges they have at hand, and on gaps that can be explored regarding technologies/methods that could be useful as well as the processes in SWM that currently do not benefit from using ICTs and OR methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Preliminary formulation and characterization of solid lipid nanoparticles containing chloroquine and a P-glycoprotein inhibitor: Influences of lipid-surfactant ratios

    CSIR Research Space (South Africa)

    Nzekwe, IT

    2015-02-01

    Full Text Available . In this work, the inclusion of a P-gp inhibitor, chlorpheniramine, and chloroquine in a lipid-based nanoparticle carrier is proposed, with the aim of ensuring that adequate drug levels are attained, so as to overcome drug resistance. Methods: The nanoparticles...

  11. Protein production by Arthrospira (Spirulina) platensis in solid state cultivation using sugarcane bagasse as support.

    Science.gov (United States)

    Pelizer, Lúcia Helena; de Carvalho, João Carlos Monteiro; de Oliveira Moraes, Iracema

    2015-03-01

    The genus Arthrospira comprises a group of filamentous multicellular cyanobacteria and can be used for animal feed and human food. Solid state fermentation or cultivation (SSF) involves the use of a culture medium composed of solid material with given moisture content. No studies have been published about the cultivation of microalgae or cyanobacteria on solid medium. Furthermore, although sugar-cane bagasse is used as source of energy in alcohol distilleries in Brazil, the excess could be a support to photosynthetic microorganism growth. The experimental design methodology was used to evaluate the protein production by Arthrospira platensis under SSF using sugarcane bagasse as support, taking into account the moisture content of the medium, light intensity and inoculum concentration. Moisture was found to have a strong influence on the performance of the process. The best conditions were: moisture of 98.8%; inoculum concentration of 0.15 g biomass·kg wet culture medium(-1) and light intensity of 6.0 klx.

  12. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    Science.gov (United States)

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Protein production by Arthrospira (Spirulina platensis in solid state cultivation using sugarcane bagasse as support

    Directory of Open Access Journals (Sweden)

    Lúcia Helena Pelizer

    2015-03-01

    Full Text Available The genus Arthrospira comprises a group of filamentous multicellular cyanobacteria and can be used for animal feed and human food. Solid state fermentation or cultivation (SSF involves the use of a culture medium composed of solid material with given moisture content. No studies have been published about the cultivation of microalgae or cyanobacteria on solid medium. Furthermore, although sugar-cane bagasse is used as source of energy in alcohol distilleries in Brazil, the excess could be a support to photosynthetic microorganism growth. The experimental design methodology was used to evaluate the protein production by Arthrospira platensis under SSF using sugarcane bagasse as support, taking into account the moisture content of the medium, light intensity and inoculum concentration. Moisture was found to have a strong influence on the performance of the process. The best conditions were: moisture of 98.8%; inoculum concentration of 0.15 g biomass·kg wet culture medium−1 and light intensity of 6.0 klx.

  14. The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications.

    Science.gov (United States)

    Serra, M; Ferraro, D; Pereiro, I; Viovy, J-L; Descroix, S

    2017-11-21

    Multiphase and droplet microfluidic systems are growing in relevance in bioanalytical-related fields, especially due to the increased sensitivity, faster reaction times and lower sample/reagent consumption of many of its derived bioassays. Often applied to homogeneous (liquid/liquid) reactions, innovative strategies for the implementation of heterogeneous (typically solid/liquid) processes have recently been proposed. These involve, for example, the extraction and purification of target analytes from complex matrices or the implementation of multi-step protocols requiring efficient washing steps. To achieve this, solid supports such as functionalized particles (micro or nanometric) presenting different physical properties (e.g. magnetic, optical or others) are used for the binding of specific entities. The manipulation of such supports with different microfluidic principles has both led to the miniaturization of existing biomedical protocols and the development of completely new strategies for diagnostics and research. In this review, multiphase and droplet-based microfluidic systems using solid suspensions are presented and discussed with a particular focus on: i) working principles and technological developments of the manipulation strategies and ii) applications, critically discussing the level of maturity of these systems, which can range from initial proofs of concept to real clinical validations.

  15. Neutron reflectivity studies of single lipid bilayers supported on planar substrates

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, S.; Orts, W.J.; Berk, N.F.; Majkrzak, C.F. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Koenig, B.W. [National Inst. of Health, Bethesda, MD (United States)

    1994-12-31

    Neutron reflectivity was used to probe the structure of single phosphatidylcholine (PC) lipid bilayers adsorbed onto a planar silicon surface in an aqueous environment. Fluctuations in the neutron scattering length density profiles perpendicular to the silicon/water interface were determined for different lipids as a function of the hydrocarbon chain length. The lipids were studied in both the gel and liquid crystalline phases by monitoring changes in the specularly-reflected neutron intensity as a function of temperature. Contrast variation of the neutron scattering length density was applied to both the lipid and the solvent. Scattering length density profiles were determined using both model-independent and model-dependent fitting methods. During the reflectivity measurements, a novel experimental set-up was implemented to decrease the incoherent background scattering due to the solvent. Thus, the reflectivity was measured to Q {approx} 0.3{Angstrom}{sup -1}, covering up to seven orders of magnitude in reflected intensity, for PC bilayers in D{sub 2}O and silicon-matched (38% D{sub 2}O/62% H{sub 2}O) water. The kinetics of lipid adsorption at the silicon/water interface were also explored by observing changes in the reflectivity at low Q values under silicon-matched water conditions.

  16. Supportive Care Needs and Association With Quality of Life of Mexican Adults With Solid Cancers.

    Science.gov (United States)

    Doubova, Svetlana V; Casales-Hernández, Maria Guadalupe; Perez-Cuevas, Ricardo

    2017-04-20

    Patients with cancer have supportive care needs. Studies that analyze the relationship between supportive care needs and health-related quality of life (HRQoL) are scarce. Cultural differences in supportive care needs and perceived QoL are also worth analyzing. The aim of this study was to assess the association between supportive care needs and HRQoL of Mexican adults given a diagnosis of solid cancers. We performed a secondary data analysis of a cross-sectional survey of 825 adult patients with cancer treated at the Oncology Hospital of the Mexican Institute of Social Security. The QLQ-30 from the European Organization for Research and Treatment of Cancer served to measure HRQoL, and the Supportive Care Needs Questionnaire was used to ascertain the needs. The analysis included multiple linear regression models for each HRQoL domain controlled for demographic, clinical, and social support covariates. There was an association between psychological needs with low scores in the HRQoL domains of global health, emotional functioning, and increased fatigue. Physical and daily living needs were associated with most HRQoL domains except the emotional domain. Patient care needs were related to low scores in the emotional and social functioning domains. Health systems and information needs were associated with low scores on cognitive functioning. Physical, psychological, patient care, and informational needs were associated with decreased HRQoL of Mexican patients with cancer. Healthcare providers, including nurses, are encouraged to perform routine, comprehensive evaluations of the supportive care needs and HRQoL of patients with solid cancers to respond in a timely manner to their needs.

  17. Covalent attachment of bacteriorhodopsin monolayer to bromo-terminated solid supports: preparation, characterization, and protein stability.

    Science.gov (United States)

    Jin, Yongdong; Girshevitz, Olga; Friedman, Noga; Ron, Izhar; Cahen, David; Sheves, Mordechai

    2008-07-07

    The interfacing of functional proteins with solid supports and the study of related protein-adsorption behavior are promising and important for potential device applications. In this study, we describe the preparation of bacteriorhodopsin (bR) monolayers on Br-terminated solid supports through covalent attachment. The bonding, by chemical reaction of the exposed free amine groups of bR with the pendant Br group of the chemically modified solid surface, was confirmed both by negative AFM results obtained when acetylated bR (instead of native bR) was used as a control and by weak bands observed at around 1610 cm(-1) in the FTIR spectrum. The coverage of the resultant bR monolayer was significantly increased by changing the pH of the purple-membrane suspension from 9.2 to 6.8. Although bR, which is an exceptionally stable protein, showed a pronounced loss of its photoactivity in these bR monolayers, it retained full photoactivity after covalent binding to Br-terminated alkyls in solution. Several characterization methods, including atomic force microscopy (AFM), contact potential difference (CPD) measurements, and UV/Vis and Fourier transform infrared (FTIR) spectroscopy, verified that these bR monolayers behaved significantly different from native bR. Current-voltage (I-V) measurements (and optical absorption spectroscopy) suggest that the retinal chromophore is probably still present in the protein, whereas the UV/Vis spectrum suggests that it lacks the characteristic covalent protonated Schiff base linkage. This finding sheds light on the unique interactions of biomolecules with solid surfaces and may be significant for the design of protein-containing device structures.

  18. Asymmetric Structural Features in Single Supported Lipid Bilayers Containing Cholesterol and GM1 Resolved with Synchrotron X-Ray Reflectivity

    Science.gov (United States)

    Reich, Christian; Horton, Margaret R.; Krause, Bärbel; Gast, Alice P.; Rädler, Joachim O.; Nickel, Bert

    2008-01-01

    The cell membrane comprises numerous protein and lipid molecules capable of asymmetric organization between leaflets and liquid-liquid phase separation. We use single supported lipid bilayers (SLBs) to model cell membranes, and study how cholesterol and asymmetrically oriented ganglioside receptor GM1 affect membrane structure using synchrotron x-ray reflectivity. Using mixtures of cholesterol, sphingomyelin, and 1,2-dioleoyl-sn-glycero-3-phosphocholine, we characterize the structure of liquid-ordered and liquid-disordered SLBs in terms of acyl-chain density, headgroup size, and leaflet thickness. SLBs modeling the liquid-ordered phase are 10 Å thicker and have a higher acyl-chain electron density (〈ρchain〉 = 0.33 e−/Å3) compared to SLBs modeling the liquid-disordered phase, or pure phosphatidylcholine SLBs (〈ρchain〉 = 0.28 e−/Å3). Incorporating GM1 into the distal bilayer leaflet results in membrane asymmetry and thickening of the leaflet of 4–9 Å. The structural effect of GM1 is more complex in SLBs of cholesterol/sphingomyelin/1,2-dioleoyl-sn-glycero-3-phosphocholine, where the distal chains show a high electron density (〈ρchain〉 = 0.33 e−/Å3) and the lipid diffusion constant is reduced by ∼50%, as measured by fluorescence microscopy. These results give quantitative information about the leaflet asymmetry and electron density changes induced by receptor molecules that penetrate a single lipid bilayer. PMID:18375517

  19. Decision support models for solid waste management: review and game-theoretic approaches.

    Science.gov (United States)

    Karmperis, Athanasios C; Aravossis, Konstantinos; Tatsiopoulos, Ilias P; Sotirchos, Anastasios

    2013-05-01

    This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost-benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Supported imidazolium ionic liquid phases: a new material for solid-phase extraction.

    Science.gov (United States)

    Fontanals, Núria; Ronka, Sylwia; Borrull, Francesc; Trochimczuk, Andrzej W; Marcé, Rosa M

    2009-11-15

    This study reports a material that is based on the concept of ionic liquid analogue: a slightly crosslinked polymer-supported imidazolium trifluoroacetate salt (IL-CF(3)COO(-)) that favorably combines the properties of ionic liquids (ILs) and the advantages of a solid support. The ionic liquid-supported material was evaluated for the first time as a solid-phase extraction (SPE) sorbent for selectively and quantitatively extracting pharmaceuticals from aqueous samples. The novel IL-CF(3)COO(-) was evaluated under reversed-phase (RP), weak anion exchange (WAX), strong anion exchange (SAX) and strong cation exchange (SCX) SPE procedures, and we found that SAX conditions are the most suitable for investigating the behaviour of the IL-CF(3)COO(-) material. Under SAX conditions, the IL-CF(3)COO(-) material was capable of selectively and quantitatively extracting a group of acidic compounds from aqueous samples, while washing basic analytes that were also present in the sample. The SPE method using IL-CF(3)COO(-) material was used to analyse 1000 ml of different aqueous samples (ultrapure, tap and river) with complete recovery of the acidic compounds studied. Moreover, the method provided clean chromatogram and high recoveries when percolating complex real samples, such as 1000 ml of river water and 250 ml of effluent wastewater from a sewage treatment plant spiked at low levels with the analytes studied.

  1. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers

    Science.gov (United States)

    Gokce, Evren H; Korkmaz, Emrah; Tuncay-Tanrıverdi, Sakine; Dellera, Eleonora; Sandri, Giuseppina; Bonferoni, M Cristina; Ozer, Ozgen

    2012-01-01

    Background The effective delivery of coenzyme Q10 (Q10) to the skin has several benefits in therapy for different skin pathologies. However, the delivery of Q10 to deeper layers of skin is challenging due to low aqueous solubility of Q10. Liposomes and solid lipid nanoparticles (SLN) have many advantages to accomplish the requirements in topical drug delivery. This study aims to evaluate the influence of these nanosystems on the effective delivery of Q10 into the skin. Methods Q10-loaded liposomes (LIPO-Q10) and SLNs (SLN-Q10) were prepared by thin film hydration and high shear homogenization methods, respectively. Particle size (PS), polydispersity index (PI), zeta potential (ZP), and drug entrapment efficiency were determined. Differential scanning calorimetry analysis and morphological transmission electron microscopy (TEM) examination were conducted. Biocompatibility/cytotoxicity studies of Q10-loaded nanosystems were performed by means of cell culture (human fibroblasts) under oxidative conditions. The protective effect of formulations against production of reactive oxygen species were comparatively evaluated by cytofluorometry studies. Results PS of uniform SLN-Q10 and LIPO-Q10 were determined as 152.4 ± 7.9 nm and 301.1 ± 8.2 nm, respectively. ZPs were −13.67 ± 1.32 mV and −36.6 ± 0.85 mV in the same order. The drug entrapment efficiency was 15% higher in SLN systems. TEM studies confirmed the colloidal size. SLN-Q10 and LIPO-Q10 showed biocompatibility towards fibroblasts up to 50 μM of Q10, which was determined as suitable for cell proliferation. The mean fluorescence intensity % depending on ROS production determined in cytofluorometric studies could be listed as Q10 ≥ SLN-Q10 > LIPO-Q10. Conclusion The LIPO-Q10 system was able to enhance cell proliferation. On the contrary, SLN-Q10 did not show protective effects against ROS accumulation. As a conclusion, liposomes seem to have advantages over SLN in terms of effective delivery of Q10 to skin

  2. Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles.

    Science.gov (United States)

    Kalhapure, Rahul S; Mocktar, Chunderika; Sikwal, Dhiraj R; Sonawane, Sandeep J; Kathiravan, Muthu K; Skelton, Adam; Govender, Thirumala

    2014-05-01

    Ion pairing of a fatty acid with an antibiotic may be an effective strategy for formulation optimization of a nanoantibiotic system. The aim of this study was therefore to explore the potential of linoleic acid (LA) as an ion pairing agent to simultaneously enhance encapsulation efficiency and antibacterial activity of triethylamine neutralized vancomycin (VCM) in solid lipid nanoparticles (SLNs). The prepared VCM-LA2 conjugate was characterized by Fourier transform-infrared (FT-IR) spectroscopy, logP and binding energy calculations. The shifts in the FT-IR frequencies of COOH, NH2 and CO functionalities, an increase in logP value (1.37) and a lower interaction energy between LA and VCM (-125.54 kcal/mol) confirmed the formation of the conjugate. SLNs were prepared by a hot homogenization and ultrasonication method, and characterized for size, polydispersity index (PI), zeta potential (ZP), entrapment efficiency (%EE), surface morphology and physical stability. In vitro antibacterial activity studies against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) were conducted. Size, PI and ZP for VCM-LA2_SLNs were 102.7±1.01, 0.225±0.02 and -38.8±2.1 (mV) respectively. SLNs were also stable at 4 °C for 3 months. %EE for VCM-HCl_SLNs and VCM-LA2_SLNs were 16.81±3.64 and 70.73±5.96 respectively, indicating a significant improvement in encapsulation of the drug through ion pairing with LA. Transmission electron microscopy images showed spherical nanoparticles with sizes in the range of 95-100 nm. After 36 h, VCM-HCl showed no activity against MRSA. However, the minimum inhibitory concentration for VCM-HCl_SLNs and VCM-LA2_SLNs were 250 and 31.25 μg/ml respectively against S. aureus, while against MRSA it was 500 and 15.62 μg/ml respectively. This confirms the enhanced antibacterial activity of VCM-LA2_SLNs over VCM-HCl_SLNs. These findings therefore suggest that VCM-LA2_SLNs is a promising nanoantibiotic system for effective treatment against both

  3. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating......Investigation of fuels containing sulfur impurities is important regarding durability of solid oxide fuel cells (SOFC) because they are present in various potential fuels for SOFC applications. The effect of H2S in the ppm range on the performance of state-of-the-art anode supported SOFC at 850...

  4. Application of solid-phase extraction coupled with freezing-lipid filtration clean-up for the determination of endocrine-disrupting phenols in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yun Gyong [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Shin, Jeoung Hwa; Kim, Hye-Young [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Khim, Jeehyeong [Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Mi-Kyoung [College of Pharmacy, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Hong, Jongki [College of Pharmacy, Kyung Hee University, Seoul 130-701 (Korea, Republic of)], E-mail: jhong@khu.ac.kr

    2007-11-05

    An analytical method has been developed for the determination of endocrine-disrupting phenols (eight alkylphenols and bisphenol A) in fish samples. The extraction of nine phenols from fish samples was carried out by ultrasonification. After the extraction, high levels of lipids were removed by freezing-lipid filtration instead of the traditional methods of column chromatography or saponification. During freezing-lipid filtration, about 90% of the lipids were eliminated without any significant loss of phenolic compounds. For further purification, hydrophilic-lipophilic balanced copolymer (HLB) sorbent with a poly(divinylbenzene-co-N-vinylpyrrolidone) phase and Florisil-solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. Silyl-derivatization, with N,N'-methyl-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA), was applied to enhance the sensitivity of detection of phenolic compounds. Quantification was performed by gas chromatography/mass spectrometry (GC/MS)-selected ion monitoring (SIM) mode, using deuterium-labeled internal standards. Spiking experiments were carried out to determine the recovery, precision and detection limit of the method. The overall recoveries ranged between 70 and 120%, with relative standard deviations of 3-17% for the entire procedure. The detection limits of the method for the nine phenols ranged from 0.02 to 0.41 ng g{sup -1}. The method provided simultaneous screening and accurate confirmation of each phenol when applied to biological samples.

  5. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Zhu, Xiaohua; Wang, Zhao; Zhao, Ansha; Huang, Nan; Chen, Huadong; Zhou, Shuo; Xie, Xiao

    2014-04-01

    Supported lipid bilayer (SLB) is one of the most widely used structures to mimic cell membranes. To study the cell-cell, cell-matrix and cell-material interactions, supported lipid bilayers (SLBs) functionalized with RGD peptides (SLBs-RGD) were prepared by vesicle fusion on a SiO2 quartz crystal, and subsequently bone mesenchymal stem cells (BMSCs) adhesion was analyzed. A quartz crystal microbalance with dissipation (QCM-D) was utilized to detect the dynamic adsorption behavior of lipid vesicles and BMSCs in real time. Observations obtained by QCM-D signals are confirmed by conducting fluorescence microscopy. QCM-D measurements showed the SLB formation starts at the critical concentration of the vesicles. More BMSCs adhered on SLBs-RGD than on SLBs. With the presence of SLBs, the adhesion cells on SLBs surfaces had a rounded morphology, and cells on SLBs-RGD will take long time to rearrange their cytoskeleton, which led to incomplete spreading compared with SiO2. Differences in adhesion density and adhesion properties of the cells on the different substrates could be traced at the dissipation versus frequency (ΔD/Δf) plots. These results indicate that RGD in/on SLBs could provide anchorage sites for more cells adhesion. QCM-D is demonstrated to be a useful tool for evaluating the interactions between various biological and non-biological systems in situ and in real-time. Copyright © 2014. Published by Elsevier B.V.

  6. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts.

    Science.gov (United States)

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin

    2016-04-11

    Metal-organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal-organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin (StockholmU); (UC); (Xiamen)

    2016-03-08

    Metal–organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal–organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

  8. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes.

    Science.gov (United States)

    Stone, Matthew B; Shelby, Sarah A; Núñez, Marcos F; Wisser, Kathleen; Veatch, Sarah L

    2017-02-01

    Diverse cellular signaling events, including B cell receptor (BCR) activation, are hypothesized to be facilitated by domains enriched in specific plasma membrane lipids and proteins that resemble liquid-ordered phase-separated domains in model membranes. This concept remains controversial and lacks direct experimental support in intact cells. Here, we visualize ordered and disordered domains in mouse B lymphoma cell membranes using super-resolution fluorescence localization microscopy, demonstrate that clustered BCR resides within ordered phase-like domains capable of sorting key regulators of BCR activation, and present a minimal, predictive model where clustering receptors leads to their collective activation by stabilizing an extended ordered domain. These results provide evidence for the role of membrane domains in BCR signaling and a plausible mechanism of BCR activation via receptor clustering that could be generalized to other signaling pathways. Overall, these studies demonstrate that lipid mediated forces can bias biochemical networks in ways that broadly impact signal transduction.

  9. Separation of triacylglycerols and free fatty acids in microalgal lipids by solid-phase extraction for separate fatty acid profiling analysis by gas chromatography.

    Science.gov (United States)

    Paik, Man-Jeong; Kim, Hoon; Lee, Jinwoo; Brand, Jerry; Kim, Kyoung-Rae

    2009-07-31

    Microalgal lipids were separated into two fractions, triacylglycerols (TAGs) and free fatty acids (FFAs), by solid-phase extraction employing sodium carbonate as the sorbent and dichloromethane (20% by volume) in n-hexane as the extracting solvent. The TAG fraction was then saponified, followed by acidification, extraction and tert-butyldimethylsilyl esterification. The FFA fraction was directly acidified, extracted and derivatized. From the lipid extracts of eight microalgal species examined, a total of 13 fatty acids were detected in the TAG fractions and nine were found in the FFA fractions, with at much higher total TAG content in all microalgae. Oleic acid was the most prominent fatty acid in three species, alpha-linolenic acid was more abundant in two others, and palmitic acid was present in highest concentration in the remaining three species.

  10. Performance of a novel type of electrolyte-supported solid oxide fuel cell with honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Juan Carlos; Savvin, Stanislav N.; Nunez, Pedro [Departmento de Quimica Inorganica, Universidad de La Laguna, 38200 Tenerife (Spain); Marrero-Lopez, David [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, Juan; Canales-Vazquez, Jesus [Instituto de Energias Renovables-Universidad de Castilla la Mancha, 02006 Albacete (Spain); Roa, Joan Josep; Segarra, Merce [DIOPMA, Departamento de Ciencia de los Materiales e Ing. Metalurgica, 08028 Barcelona (Spain)

    2010-01-15

    A novel design, alternative to the conventional electrolyte-supported solid oxide fuel cell (SOFC) is presented. In this new design, a honeycomb-electrolyte is fabricated from hexagonal cells, providing high mechanical strength to the whole structure and supporting the thin layer used as electrolyte of a SOFC. This new design allows a reduction of {proportional_to}70% of the electrolyte material and it renders modest performances over 320 mW cm{sup -2} but high volumetric power densities, i.e. 1.22 W cm{sup -3} under pure CH{sub 4} at 900 C, with a high OCV of 1.13 V, using the standard Ni-YSZ cermet as anode, Pt as cathode material and air as the oxidant gas. (author)

  11. Microbial production of extra-cellular phytase using polystyrene as inert solid support.

    Science.gov (United States)

    Gautam, Pinky; Sabu, A; Pandey, Ashok; Szakacs, George; Soccol, Carlos R

    2002-07-01

    Aspergillus ficuum TUB F-1165 and Rhizopus oligosporus TUB F-1166 produced extra-cellular phytase during solid-state fermentation (SSF) using polystyrene as inert support. Maximal enzyme production (10.07 U/g dry substrate (U/gds) for A. ficuum and 4.52 U/gds for R. oligosporus) was observed when SSF was carried out with substrate pH 6.0 and moisture 58.3%, incubation temperature 30 degrees C, inoculum size of 1.3 x 10(7) spores/5 g substrate, for 72 h for A. ficuum and with substrate pH 7.0 and moisture 58.3%, incubation temperature 30 degrees C, inoculum size of 1 x 10(6) spores/5 g substrate for 96 h for R. oligosporus. Results indicated scope for production of phytase using polystyrene as inert support.

  12. Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach

    DEFF Research Database (Denmark)

    Esposito, L.; Boccaccini, D. N.; Pucillo, G. P.

    2017-01-01

    The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled...... as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram...... by a continuum damage mechanics (CDM) approach. The behaviour of the porous metal support, in the range from 1 to 17MPa and temperatures between 650 and 700°C, was combined and compared with data from literature of Crofer® 22 APU, taken as zero porosity reference material. The variation of the elastic modulus...

  13. Development and application of the decision support system for municipal solid waste management in central Taiwan.

    Science.gov (United States)

    Chang, Yao-Jen; Lin, Min-Der

    2013-05-01

    Municipal solid waste management (MSWM) is an important, practical and challenging environmental subject. The processes of a MSWM system include household collection, transportation, treatment, material recycling, compost and disposal. A regional program of MSWM is more complicated owing to the involvement of multi-municipality and multi-facility issues. Therefore, an effective decision support system capable of solving regional MSWM problems is necessary for decision-makers. This article employs linear programming techniques to establish a MSWM decision support system (MSWM-DSS) that is able to determine the least costs of regional MSWM strategies. The results of investigating a real-world case in central Taiwan indicate that a regional program is more economical and efficient. For the redeployment of MSW streams, the relatively least cost of operation for the MSWM system can still be achieved through the re-estimation of the MSWM-DSS. This tool and results are useful for MSWM policy-making in central Taiwan.

  14. Bioinspired manganese(II) complexes with a clickable ligand for immobilisation on a solid support.

    Science.gov (United States)

    Chaignon, Jérémy; Stiriba, Salah-Eddine; Lloret, Francisco; Yuste, Consuelo; Pilet, Guillaume; Bonneviot, Laurent; Albela, Belén; Castro, Isabel

    2014-07-07

    Clickable ligands like N,N'-bis((pyridin-2-yl)methyl)prop-2-yn-1-amine (L(1)) and N-((1-methyl-1H-imidazol-2-yl)methyl)-N-(pyridin-2-ylmethyl)prop-2-yn-1-amine (L(2)) have been used to synthesise a series of manganese(ii) complexes for grafting onto appropriate solid supports. These ligands mimic the 2-His-1-carboxylate facial chelation present in the active site of the manganese-dependent dioxygenase (MndD), while the alkyne side function allows grafting of the ligand onto an azido-functionalised support using "click chemistry" methodologies. Such synthetic analogues of the MndD crystallise in the solid state as double halide or pseudohalide-bridged dinuclear manganese(ii) complexes of the general formula [Mn2(μ-X)2X2L2] [L = L(1) with X = Cl (), Br (), and N3 (); L = L(2) with X = N3 ()]. Complexes are characterised by a weak magnetic exchange interaction between the two high-spin Mn(II) ions through the two X(-) bridges (J in the range of -0.059 to +5.30 cm(-1), H = -J·SMn1·SMn2 with SMn1 = SMn2 = 5/2). A new magneto-structural correlation of superexchange bis(μ1,1-azido)dimanganese(ii) complexes has been proposed using both structural parameters, the Mn-N-Mn bridging angle and the Mn-Nazido distance. In MeOH-EtOH solution the dimeric species are present together with few percents of mononuclear manganese(ii) complexes as evidenced by electron paramagnetic resonance (EPR) spectroscopy. Grafting the complexes onto mesoporous silica of MCM-41 type stabilises both dimers and monomers in the nanopores of the solid.

  15. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support.

    Directory of Open Access Journals (Sweden)

    Natalie Di Bartolo

    Full Text Available The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs. Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40-70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes.

  16. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  17. Fabrication and Characterization of Plasmonic Nanopores with Cavities in the Solid Support

    Directory of Open Access Journals (Sweden)

    Bita Malekian

    2017-06-01

    Full Text Available Plasmonic nanostructures are widely used for various sensing applications by monitoring changes in refractive index through optical spectroscopy or as substrates for surface enhanced Raman spectroscopy. However, in most practical situations conventional surface plasmon resonance is preferred for biomolecular interaction analysis because of its high resolution in surface coverage and the simple single-material planar interface. Still, plasmonic nanostructures may find unique sensing applications, for instance when the nanoscale geometry itself is of interest. This calls for new methods to prepare nanoscale particles and cavities with controllable dimensions and curvature. In this work, we present two types of plasmonic nanopores where the solid support underneath a nanohole array has been etched, thereby creating cavities denoted as ‘nanowells’ or ‘nanocaves’ depending on the degree of anisotropy (dry or wet etch. The refractometric sensitivity is shown to be enhanced upon removing the solid support because of an increased probing volume and a shift of the asymmetric plasmonic field towards the liquid side of the finite gold film. Furthermore, the structures exhibit different spectral changes upon binding inside the cavities compared to the gold surface, which means that the structures can be used for location-specific detection. Other sensing applications are also suggested.

  18. Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support

    Energy Technology Data Exchange (ETDEWEB)

    Saiyed, Z M; Ramchand, C N [Kemin Nutritional Technologies (India) Pvt Ltd, Trapezium, Nelson Manickam Road, Chennai 600 029 (India); Telang, S D [Department of Biochemistry, Faculty of Science, M S University of Baroda, Sayajigunj, Vadodara 390 002 (India)], E-mail: cnramchand@yahoo.com, E-mail: ramchand.cn@kemin.com

    2008-05-21

    In recent years, techniques employing magnetizable solid-phase supports (MSPS) have found application in numerous biological fields. This magnetic separation procedure offers several advantages in terms of subjecting the analyte to very little mechanical stress compared to other methods. Secondly, these methods are non-laborious, cheap, and often highly scalable. The current paper details a genomic DNA isolation method optimized in our laboratory using magnetic nanoparticles as a solid-phase support. The quality and yields of the isolated DNA from all the samples using magnetic nanoparticles were higher or equivalent to the traditional DNA extraction procedures. Additionally, the magnetic method takes less than 15 min to extract polymerase chain reaction (PCR) ready genomic DNA as against several hours taken by traditional phenol-chloroform extraction protocols. Moreover, the isolated DNA was found to be compatible in PCR amplification and restriction endonuclease digestion. The developed procedure is quick, inexpensive, robust, and it does not require the use of organic solvents or sophisticated instruments, which makes it more amenable to automation and miniaturization.

  19. Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support

    Science.gov (United States)

    Saiyed, Z. M.; Ramchand, C. N.; Telang, S. D.

    2008-05-01

    In recent years, techniques employing magnetizable solid-phase supports (MSPS) have found application in numerous biological fields. This magnetic separation procedure offers several advantages in terms of subjecting the analyte to very little mechanical stress compared to other methods. Secondly, these methods are non-laborious, cheap, and often highly scalable. The current paper details a genomic DNA isolation method optimized in our laboratory using magnetic nanoparticles as a solid-phase support. The quality and yields of the isolated DNA from all the samples using magnetic nanoparticles were higher or equivalent to the traditional DNA extraction procedures. Additionally, the magnetic method takes less than 15 min to extract polymerase chain reaction (PCR) ready genomic DNA as against several hours taken by traditional phenol-chloroform extraction protocols. Moreover, the isolated DNA was found to be compatible in PCR amplification and restriction endonuclease digestion. The developed procedure is quick, inexpensive, robust, and it does not require the use of organic solvents or sophisticated instruments, which makes it more amenable to automation and miniaturization.

  20. Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports.

    Science.gov (United States)

    Barig, Susann; Funke, Andreas; Merseburg, Andrea; Schnitzlein, Klaus; Stahmann, K-Peter

    2014-06-10

    Embedding of enzymes was performed with epoxy or polyester resin by mixing in a dried enzyme preparation before polymerization was started. This fast and low-cost immobilization method produced enzymatically active layers on different solid supports. As model enzymes the well-characterized Thermomyces lanuginosus lipase and a new threonine aldolase from Ashbya gossypii were used. It was shown that T. lanuginosus lipase recombinantly expressed in Aspergillus oryzae is a monomeric enzyme with a molecular mass of 34kDa, while A. gossypii threonine aldolase expressed in Escherichia coli is a pyridoxal-5'-phosphate binding homotetramer with a mass of 180kDa. The enzymes were used freeze dried, in four different preparations: freely diffusing, adsorbed on octyl sepharose, as well as cross-linked enzyme aggregates or as suspensions in organic solvent. They were mixed with standard two-component resins and prepared as layers on solid supports made of different materials e.g. metal, glass, polyester. Polymerization led to encapsulated enzyme preparations showing activities comparable to literature values. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Effect of Variable Solvents on Particle Size of Geranium Oil-Loaded Solid Lipid Nanoparticle (Ge-SLN) For Mosquito Repellent Applications

    Science.gov (United States)

    Asnawi, Syalwati; Aziz, Azila A.; Aziz, Ramlan A.

    2009-06-01

    A new delivery system for insect repellent is proposed by the incorporation of geranium oil into solid lipid nanoparticle (SLN). A variety of solvents which act as co-surfactants, were introduced to increase the particle size of GE-SLN. Ethanol, which has a high boiling point and a long chain alcohol produced larger particle than dichloromethane. The structure of SLN was not stable when methanol and acetone were used as co-solvents. Concentration of solvents can also influence the size of SLN. In vitro release experiments showed that SLN was able to reduce the rapid evaporation of geranium oil.

  2. Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers.

    Science.gov (United States)

    Harb, Frédéric; Prunetti, Laurence; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne; Tinland, Bernard

    2015-10-01

    Monotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer. The insertion of SQR is more efficient when the bilayer is in the fluid phase than in the gel phase. We observed diffusion of the protein, with no immobile fraction, and deduced from the diffusion coefficient measurements that the resulting inserted object is the same whatever the incubation conditions, i.e. homogeneous in terms of oligomerization state. As expected, the diffusion coefficient of the SQR is smaller in the gel phase than in the fluid phase. In the supported lipid bilayer, the diffusion coefficient of the SQR is smaller than the diffusion coefficient of phospholipids in both gel and fluid phase. SQR shows a diffusion behavior different from the transmembrane protein α-hemolysin, and consistent with its monotopic character. Preliminary experiments in the presence of the substrate of SQR, DecylUbiquinone, an analogue of quinone, component of transmembrane electrons transport systems of eukaryotic and prokaryotic organisms, have been carried out. Finally, we studied the behavior of SQR, in terms of insertion and diffusion, in bilayers formed with lipids from Aquifex aeolicus. All the conclusions that we have found in the biomimetic systems applied to the biological system.

  3. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  4. Towards supported bolaamphiphile membranes for water filtration: Roles of lipid and substrate

    NARCIS (Netherlands)

    Kaufman, Y.; Grinberg, S.; Linder, C..; Heldman, E.; Gilron, J.; Shen, Yue-xiao; Kumar, M.; Lammertink, Rob G.H.; Freger, V.

    2014-01-01

    Supported biomimetic membranes hold potential for applications such as biosensors and water purification by filtration. The current paper reports on the preparation of a supported bolaamphiphile membrane on two polymeric nanofiltration membranes: NF-270 made of polyamide with carboxylic surface

  5. Targeting the Endocannabinoid/CB1 Receptor System For Treating Major Depression Through Antidepressant Activities of Curcumin and Dexanabinol-Loaded Solid Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiaolie He

    2017-08-01

    Full Text Available Background/Aims: This study investigated the underlying mechanisms of the antidepressant effects of curcumin and dexanabinol-loaded solid lipid nanoparticles in corticosterone-induced cell and mice depression models. Methods: Curcumin and dexanabinol-loaded solid lipid nanoparticles (Cur/SLNs-HU-211 were synthesized via an emulsifcation and low-temperature solidification method. Antidepressant activities of nanoparticles in a corticosterone-induced major depression model were investigated by MTT assay, cellular uptake by flow cytometry, behaviour by Forced Swimming Test and rotarod test, neurotransmitters by High Performance Liquid Chromatography, Western blotting, qPCR and immunofluorescence. Results: Treatment with Cur/SLNs-HU-211 induced greater dopamine (DA/5-hydroxytryptamine (5-HT release with reduced corticosterone-induced apoptotic cell death in PC12 cells. Additionally, in vivo Cur/SLNs-HU-211 significantly induced recovery from depressive behaviour with increased DA/5-HT levels, CB1 mRNA levels and CB1, p-MEK1 and p-ERK1/2 protein expression levels in the hippocampus and striatum. Cur/SLNs-HU-211 improved CB1 expression and inspired the proliferation of astrocytes in the hippocampus and striatum, exerted neuroprotective effects by preventing corticosterone -induced BDNF/NeuN expression reduction. Conclusion: Our study implies that Cur/SLNs-HU-211 may be a useful approach for treatment of major depression.

  6. Targeting the Endocannabinoid/CB1 Receptor System For Treating Major Depression Through Antidepressant Activities of Curcumin and Dexanabinol-Loaded Solid Lipid Nanoparticles.

    Science.gov (United States)

    He, Xiaolie; Yang, Li; Wang, Mei; Zhuang, Xizhen; Huang, Ruiqi; Zhu, Rongrong; Wang, Shilong

    2017-01-01

    This study investigated the underlying mechanisms of the antidepressant effects of curcumin and dexanabinol-loaded solid lipid nanoparticles in corticosterone-induced cell and mice depression models. Curcumin and dexanabinol-loaded solid lipid nanoparticles (Cur/SLNs-HU-211) were synthesized via an emulsifcation and low-temperature solidification method. Antidepressant activities of nanoparticles in a corticosterone-induced major depression model were investigated by MTT assay, cellular uptake by flow cytometry, behaviour by Forced Swimming Test and rotarod test, neurotransmitters by High Performance Liquid Chromatography, Western blotting, qPCR and immunofluorescence. Treatment with Cur/SLNs-HU-211 induced greater dopamine (DA)/5-hydroxytryptamine (5-HT) release with reduced corticosterone-induced apoptotic cell death in PC12 cells. Additionally, in vivo Cur/SLNs-HU-211 significantly induced recovery from depressive behaviour with increased DA/5-HT levels, CB1 mRNA levels and CB1, p-MEK1 and p-ERK1/2 protein expression levels in the hippocampus and striatum. Cur/SLNs-HU-211 improved CB1 expression and inspired the proliferation of astrocytes in the hippocampus and striatum, exerted neuroprotective effects by preventing corticosterone -induced BDNF/NeuN expression reduction. Our study implies that Cur/SLNs-HU-211 may be a useful approach for treatment of major depression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Chitosan-Coated Cinnamon/Oregano-Loaded Solid Lipid Nanoparticles to Augment 5-Fluorouracil Cytotoxicity for Colorectal Cancer: Extract Standardization, Nanoparticle Optimization, and Cytotoxicity Evaluation.

    Science.gov (United States)

    Kamel, Kamel M; Khalil, Islam A; Rateb, Mostafa E; Elgendy, Hosieny; Elhawary, Seham

    2017-09-13

    This study aimed to coat lipid-based nanocarriers with chitosan to encapsulate nutraceuticals, minimize opsonization, and facilitate passive-targeting. Phase one was concerned with standardization according to the World Health Organization. Qualitative analysis using liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS) investigated the active constituents, especially reported cytotoxic agents. Cinnamaldehyde and rosmarinic acid were selected to be quantified using high-performance liquid chromatography. Phase two was aimed to encapsulate both extracts in solid lipid nanoparticles (core) and chitosan (shell) to gain the advantages of both materials properties. The developed experimental model suggested an optimum formulation with 2% lipid, 2.3% surfactant, and 0.4% chitosan to achieve a particle size of 254.77 nm, polydispersity index of 0.28, zeta potential of +15.26, and entrapment efficiency percentage of 77.3% and 69.1% for cinnamon and oregano, respectively. Phase three was focused on the evaluation of cytotoxic activity unencapsulated/encapsulated cinnamon and oregano extracts with/without 5-fluorouracil on HCT-116 cells. This study confirmed the success of the suggested combination with 5-fluorouracil for treating human colon carcinoma with a low dose leading to decreasing side effects and allowing uninterrupted therapy.

  8. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    Science.gov (United States)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  9. Synthesis of dopamine and serotonin derivatives for immobilization on a solid support.

    Science.gov (United States)

    Funder, Erik Daa; Jensen, Anne Bjørnskov; Tørring, Thomas; Kodal, Anne Louise Bank; Azcargorta, Ane Rebolledo; Gothelf, Kurt Vesterager

    2012-04-06

    The two important neurotransmitters dopamine and serotonin are synthesized with short PEG tethers and immobilized on a magnetic solid support. The tether is attached to the aromatic moiety of the neurotransmitters to conserve their original functional groups. This approach causes minimal alteration of the original structure with the aim of optimizing the immobilized neurotransmitters for aptamer selection by SELEX. For the dopamine derivative, the tether is attached to the aromatic core of a dopamine precursor by the Sonogashira reaction. For serotonin, a link to the indole core is introduced by a Claisen rearrangement from the allylated phenol moiety of serotonin. The tethers are azide-functionalized, which enables coupling to alkyne-modified magnetic beads. The coupling to the magnetic beads is quantified by UV spectroscopy using Fmoc-monitoring of the immobilized dopamine and serotonin derivatives.

  10. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunhua; Liu, Renzhu; Wang, Shaorong; Wang, Zhenrong; Qian, Jiqin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2009-07-15

    A cathode-supported tubular solid oxide fuel cell (CTSOFC) with the length of 6.0 cm and outside diameter of 1.0 cm has been successfully fabricated via dip-coating and co-sintering techniques. A crack-free electrolyte film with a thickness of {proportional_to}14 {mu}m was obtained by co-firing of cathode/cathode active layer/electrolyte/anode at 1250 C. The relative low densifying temperature for electrolyte was attributed to the large shrinkage of the green tubular which assisted the densification of electrolyte. The assembled cell was electrochemically characterized with humidified H{sub 2} as fuel and O{sub 2} as oxidant. The open circuit voltages (OCV) were 1.1, 1.08 and 1.06 V at 750, 800 and 850 C, respectively, with the maximum power densities of 157, 272 and 358 mW cm{sup -2} at corresponding temperatures. (author)

  11. Recent Developments in the Site-Specific Immobilization of Proteins onto Solid Supports

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2007-02-21

    Immobilization of proteins onto surfaces is of great importance in numerous applications, including protein analysis, drug screening, and medical diagnostics, among others. The success of all these technologies relies on the immobilization technique employed to attach a protein to the corresponding surface. Non-specific physical adsorption or chemical cross-linking with appropriate surfaces results in the immobilization of the protein in random orientations. Site-specific covalent attachment, on the other hand, leads to molecules being arranged in a definite, orderly fashion and allows the use of spacers and linkers to help minimize steric hindrances between the protein and the surface. The present work reviews the latest chemical and biochemical developments for the site-specific covalent attachment of proteins onto solid supports.

  12. Specular and off-specular neutron scattering from solid-supported glycolipid membrane multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, Emanuel; Tanaka, Motomu [Physikalisch-Chemisches Institut, Universitaet Heidelberg (Germany); Rehfeldt, Florian [Lehrstuhl fuer Biophysik E22, Technische Universitaet Muenchen (Germany); Deme, Bruno [Institut Laue-Langevin, Grenoble (France); Gege, Christian; Schmidt, Richard [Fachbereich Chemie, Universitaet Konstanz (Germany)

    2008-07-01

    Solid-supported glycolipid membrane multilayers, acting as well-defined model systems for the study of saccharide-mediated inter-membrane interactions, were studied by specular and off-specular neutron scattering. Experiments were carried out at controlled temperatures and humidities, as well as under bulk water using a self-developed liquid cell. Force-distance relationships were recorded by measuring at various osmotic pressures. Mechanical properties of the studied membranes (i.e. bending moduli and inter-membrane compression moduli) were extracted by comparing scattering signals to reciprocal space maps simulated in the framework of smectic crystal theory. The results demonstrate that distinct variations in the oligosaccharide headgroup structures of the glycolipid molecules can result in significant changes in bending modulus and inter-membrane interactions.

  13. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  14. Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.; Xue, X.

    2011-01-01

    Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply system is utilized as a physical base for the model development and the optimization design. The optimization results are presented, which are difficult to obtain for parametric study method.

  15. Optimization of total vaporization solid-phase microextraction (TV-SPME) for the determination of lipid profiles of Phormia regina, a forensically important blow fly species.

    Science.gov (United States)

    Kranz, William; Carroll, Clinton; Dixon, Darren; Picard, Christine; Goodpaster, John

    2017-11-01

    A new method has been developed for the determination of fatty acids, sterols, and other lipids which naturally occur within pupae of the blow fly Phormia regina. The method relies upon liquid extraction in non-polar solvent, followed by derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) w/ 1% trimethylchlorsilane (TMCS) carried out inside the sample vial. The analysis is facilitated by total vaporization solid-phase microextraction (TV-SPME), with gas chromatography-mass spectrometry (GC-MS) serving as the instrumentation for analysis. The TV-SPME delivery technique is approximately a factor of five more sensitive than traditional liquid injection, which may alleviate the need for rotary evaporation, reconstitution, collection of high performance liquid chromatography fractions, and many of the other pre-concentration steps that are commonplace in the current literature. Furthermore, the ability to derivatize the liquid extract in a single easy step while increasing sensitivity represents an improvement over current derivatization methods. The most common lipids identified in fly pupae were various saturated and unsaturated fatty acids ranging from lauric acid (12:0) to arachinoic acid (20:4), as well as cholesterol. The concentrations of myristic acid (14:0), palmitelaidic acid (16:2), and palmitoleic acid (16:1) were the most reliable indicators of the age of the pupae. Graphical abstract Blow fly pupae were extracted prior to emerging as adults. The extracts were analyzed via total vaporization solid-phase microextraction (TV-SPME), revealing a complex mixture of lipids that could be associated with the age of the insect. This information may assist in determining a post-mortum interval (PMI) in a death investigation.

  16. A modified method for COD determination of solid waste, using a commercial COD kit and an adapted disposable weighing support.

    Science.gov (United States)

    André, L; Pauss, A; Ribeiro, T

    2017-03-01

    The chemical oxygen demand (COD) is an essential parameter in waste management, particularly when monitoring wet anaerobic digestion processes. An adapted method to determine COD was developed for solid waste (total solids >15%). This method used commercial COD tubes and did not require sample dilution. A homemade plastic weighing support was used to transfer the solid sample into COD tubes. Potassium hydrogen phthalate and glucose used as standards showed an excellent repeatability. A small underestimation of the theoretical COD value (standard values around 5% lower than theoretical values) was also observed, mainly due to the intrinsic COD of the weighing support and to measurement uncertainties. The adapted COD method was tested using various solid wastes in the range of 1-8 mg COD , determining the COD of dried and ground cellulose, cattle manure, straw and a mixed-substrate sample. This new adapted method could be used to monitor and design dry anaerobic digestion processes.

  17. ITO/Poly(Aniline/Sol-Gel Glass: An Optically Transparent, pH-Responsive Substrate for Supported Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Obeidi

    2013-01-01

    Full Text Available Described here is fabrication of a pH-sensitive, optically transparent transducer composed of a planar indium-tin oxide (ITO electrode overcoated with a poly(aniline (PANI thin film and a porous sol-gel layer. Adsorption of the PANI film renders the ITO electrode sensitive to pH, whereas the sol-gel spin-coated layer makes the upper surface compatible with fusion of phospholipid vesicles to form a planar supported lipid bilayer (PSLB. The response to changes in the pH of the buffer contacting the sol-gel/PANI/ITO electrode is pseudo-Nernstian with a slope of 52 mV/pH over a pH range of 4–9. Vesicle fusion forms a laterally continuous PSLB on the upper sol-gel surface that is fluid with a lateral lipid diffusion coefficient of 2.2 μm2/s measured by fluorescence recovery after photobleaching. Due to its lateral continuity and lack of defects, the PSLB blocks the pH response of the underlying electrode to changes in the pH of the overlying buffer. This architecture is simpler to fabricate than previously reported ITO electrodes derivatized for PSLB formation and should be useful for optical monitoring of proton transport across supported membranes derivatized with ionophores and ion channels.

  18. Simultaneous determination of multi-class veterinary drugs in chicken processed foods and muscle using solid-supported liquid extraction clean-up.

    Science.gov (United States)

    Yoshikawa, Souichi; Nagano, Chieko; Kanda, Maki; Hayashi, Hiroshi; Matsushima, Yoko; Nakajima, Takayuki; Tsuruoka, Yumi; Nagata, Marie; Koike, Hiroshi; Sekimura, Kotaro; Hashimoto, Tsuneo; Takano, Ichiro; Shindo, Tetsuya

    2017-07-01

    We developed a simultaneous determination method for 37 veterinary drugs in two chicken processed foods (deep-fried chicken and non-fried chicken cutlet) and muscle via liquid chromatography-mass spectrometry. The veterinary drugs belong to 7 different classes, including 4 antifolics, 4 benzimidazoles, 5 macrolides, 7 polyethers, 2 quinolones, 7 sulfonamides, and 8 other classes. The samples were extracted with ethyl acetate followed by acetonitrile with salt and buffers extraction. The two-step extraction enabled analyte extraction from highly lipid samples. The clean-up procedure, a solid-supported liquid extraction clean-up using a diatomaceous earth mini-cartridge, eliminated lipid co-extraction. The prepared sample matrix did not have an effect on the 36 analytes. The method was validated in accordance with the requirements of Japanese validation guidelines. Almost all targeted veterinary drugs successfully satisfied the guideline criteria in the three types of food matrices. The method exhibited recoveries of 70-105%, and the precision of repeatability and within-laboratory reproducibility ranged from 1 to 11% and 1 to 15%, respectively. The limits of quantification were estimated to range from 0.2 to 1.0μg/kg. Applying this method to samples commercially available in Tokyo, residues were detected in 3 out of 26 deep-fried chickens, 5 out of 20 non-fried chicken cutlets, and 17 out of 39 chicken muscles. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Preparation and characterization of loperamide-loaded Dynasan 114 solid lipid nanoparticles for increased oral absorption in the treatment of diarrhea

    Directory of Open Access Journals (Sweden)

    Lili Wei

    2016-09-01

    Full Text Available The aim of the project was to assemble two optimum solid lipid nanoparticle (SLN formulations for oral delivery of loperamide (LPM to treat different types of diarrhea, and to evaluate their release profiles in vitro and pharmacokinetic properties in vivo. In this work, glyceryl trimyristate (Dynasan 114 nanoparticles containing the drug LPM and sodium cholate as a stabilizer were prepared using a modified solvent evaporation technique. Two LPM-loaded SLNs, namely LPM-SLN-1 (LPM-SLN with a high ratio rate of lipid to drug and LPM-SLN-2 (LPM-SLN with a low ratio rate of lipid to drug, were prepared by the solvent evaporation method. A change in the lipid concentration affects the characteristics of LPM-SLNs. The average sizes of the LPM-SLNs were 303 ± 18 nm and 519 ± 36 nm, separately, as analyzed by dynamic light scattering (DLS. The LPM-SLNs were found to be round with a smooth surface, as observed using a transmission electron microscope (TEM and a scanning electron microscope (SEM. The average encapsulation efficiencies were 87 ± 3.78% w/w and 84 ± 5.17%, accordingly. In the in vitro release experiments, LPM-SLNs showed a continuous release profile of LPM without any burst release. The oral bioavailability of LPM-SLNs was analyzed using Wistar rats. The relative bioavailabilities of LPM-SLNs were 227% and 153%, respectively, as compared that of the LPM tablet. There was no difference in the Tmax between LPM-SLN-2 and the LPM tablet. In conclusion, LPM-SLN-1 significantly improved the oral bioavailability of LPM, while LPM-SLN-2 having the same swift action as the LPM tablet. These results demonstrate the potential of LPM-SLNs in the oral delivery of LPM to treat different types of diarrhea.

  20. Some methods for human liquid and solid waste utilization in bioregenerative life-support systems.

    Science.gov (United States)

    Ushakova, S A; Zolotukhin, I G; Tikhomirov, A A; Tikhomirova, N A; Kudenko, Yu A; Gribovskaya, I V; Balnokin, Yu; Gros, J B

    2008-12-01

    Bioregenerative life-support systems (BLSS) are studied for developing the technology for a future biological life-support system for long-term manned space missions. Ways to utilize human liquid and solid wastes to increase the closure degree of BLSS were investigated. First, urine and faeces underwent oxidation by Kudenko's physicochemical method. The products were then used for root nutrition of wheat grown by the soil-like substrate culture method. Two means of eliminating sodium chloride, introduced into the irrigation solution together with the products of urine oxidation, were investigated. The first was based on routine electrodialysis of irrigation water at the end of wheat vegetation. Dialysis eliminated about 50% of Na from the solution. This desalinization was performed for nine vegetations. The second method was new: after wheat cultivation, the irrigation solution and the solution obtained by washing the substrate containing mineral elements not absorbed by the plants were used to grow salt-tolerant Salicornia europaea L. plants (saltwort). The above-ground biomass of this plant can be used as a food, and roots can be added to the soil-like substrate. Four consecutive wheat and Salicornia vegetations were cultivated. As a result of this wheat and Salicornia cultivation process, the soil-like substrate salinization by NaCl were considerably decreased.

  1. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    Energy Technology Data Exchange (ETDEWEB)

    X. Zhang; J. E. O' Brien; R. C. O' Brien; N. Petigny

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.

  2. Durability of symmetric-structured metal-supported solid oxide fuel cells

    Science.gov (United States)

    Tucker, Michael C.

    2017-11-01

    Symmetric-structure metal-supported solid oxide fuel cells (MS-SOFC) with YSZ electrolyte are fabricated with porous YSZ backbone electrodes, stainless steel supports, and infiltrated catalysts on both anode and cathode side. Durability towards aggressive thermal and redox cycling, and long-term operation is assessed. Many sealing material candidates are screened for compatibility with the cell materials and operating conditions, and a commercial sealing glass, GM31107, is selected. LSM/SDCN cells are then subjected to 200 very fast thermal cycles and 20 complete redox cycles, with minimal impact to cell performance. LSM/SDCN and SDCN/SDCN cells are operated for more than 1200 h at 700 °C. The seal and cell hermeticity is maintained, and cell ohmic impedance does not change significantly during operation. Electrode polarization increases during operation, leading to significant degradation of the cell performance. In-operando EIS and post-mortem SEM/EDS analysis suggest that catalyst coarsening and cathode Cr deposition are the dominant degradation modes.

  3. Thermal Cyclability of Reactive Air Braze Seals in Anode Supported Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, John S.; Darsell, Jens T.; Coyle, Christopher A.; Birnbaum, Jerome C.; Weil, K. Scott

    2004-12-31

    The popularity of anode-supported solid oxide fuel cells (SOFC) has increased in tandem with the ability to fabricate thinner gas-tight yttrium-stabilized zirconia (YSZ) electrolyte layers, which can now be routinely produced on the order of 7 to 10 μm thick. While this has significantly improved power output and decreased the required fuel cell operating temperatures, the ability to reliably seal fuel cells remains a concern. The seals must be hermetic and be robust enough to retain their hermeticity even under the extreme operating conditions of SOFCs. Perhaps the largest contributor to stresses experienced by the seal is the fact that the SOFC is an assembly of many different materials with different thermal expansion properties. Although every effort is made to minimize thermal expansion mismatches across the seals, the stresses developed during thermal cycling still jeopardize seal integrity. Reactive air brazing (RAB), a method of joining that employs a metallic, and therefore non-brittle, seal material has been used to seal electrolyte/anode bilayers, such as those in anode-supported SOFCs, to Crofer-22 alloy. The results of rupture strength testing will be reported for as-brazed and thermally cycled samples and the effect of thermal cycling on the RAB seal microstructure will be shown

  4. Optimization of the Interconnect Ribs for a Cathode-Supported Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2014-01-01

    Full Text Available A comprehensive mathematical model of the performance of the cathode-supported solid oxide fuel cell (SOFC with syngas fuel is presented. The model couples the intricate interdependency between the ionic conduction, electronic conduction, gas transport, the electrochemical reaction processes in the functional layers and on the electrode/electrolyte interfaces, methane steam reforming (MSR and the water gas shift reaction (WGSR. The validity of the mathematical model is demonstrated by the excellent agreement between the numerical and experimental I-V curves. The effect of anode rib width and cathode rib width on gas diffusion and cell performance is examined. The results show conclusively that the cell performance is strongly influenced by the rib width. Furthermore, the anode optimal rib width is smaller than that for cathode, which is contrary to anode-supported SOFC. Finally, the formulae for the anode and cathode optimal rib width are given, which provide an easy to use guidance for the broad SOFC engineering community.

  5. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  6. Reconstitution of Homomeric GluA2flop Receptors in Supported Lipid Membranes

    Science.gov (United States)

    Baranovic, Jelena; Ramanujan, Chandra S.; Kasai, Nahoko; Midgett, Charles R.; Madden, Dean R.; Torimitsu, Keiichi; Ryan, John F.

    2013-01-01

    AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain. PMID:23382380

  7. Efficient synthesis of sulfonamide derivatives on solid supports catalyzed using solvent-free and microwave-assisted methods

    Energy Technology Data Exchange (ETDEWEB)

    Camargo-Ordonez, Argelia; Moreno-Reyes, Christian; Olazaran-Santibanez, Fabian; Martinez-Hernandez, Sheila; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dep. de Farmacia y Quimica Medicinal

    2011-07-01

    In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4A molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield. (author)

  8. Synthesis of diverse indole libraries on polystyrene resin – Scope and limitations of an organometallic reaction on solid supports

    Directory of Open Access Journals (Sweden)

    Kerstin Knepper

    2012-07-01

    Full Text Available The synthesis of diverse substituted indole structures on solid supports is described. The immobilization of nitrobenzoic acid onto Merrifield resin and the subsequent treatment with alkenyl Grignard reagents delivered indole carboxylates bound to solid supports. In contrast to results in the liquid phase, ortho,ortho-unsubstituted nitroarenes also delivered indole moieties in good yields. Subsequent palladium-catalyzed reactions (Suzuki, Heck, Sonogashira, Stille delivered, after cleavage, the desired molecules in moderate to good yields over four steps. The scope and limitations are presented.

  9. Particle/fluid interface replication as a means of producing topographically patterned surfaces: Substrates for supported lipid bilayers

    Science.gov (United States)

    Subramaniam, Anand; Lecuyer, Sigolene; Ramamurthi, Kumaran; Losick, Richard; Stone, Howard

    2010-03-01

    There is intense interest in the role of geometry in the thermodynamics and dynamics of such systems as lipid bilayers, membrane proteins and block copolymers. Topographically patterned surfaces that impose well-defined gradients of curvature on surface adsorbed layers are a potential model to study these geometrical effects. Here we report a method for producing topographically patterned surfaces by replicating a fluid-fluid interface studded with colloidal particles. With this method we have fabricated geometrically simple surfaces, such as arrays of spherical features on planar surfaces and also surfaces with complex geometries such as replicas of whole bacterial cells, tubular nanoclays, and even multi-walled carbon nanotubes. Furthermore, chemically heterogeneous surfaces composed of silica, polystyrene, epoxy or poly(dimethyl)siloxane (PDMS), and chemically homogeneous surfaces composed of PDMS or epoxy can be made. As an example of the potential applications of these surfaces, we show that lipid bilayers that are supported on all-PDMS topographically patterned substrates undergo curvature-modulated phase separation.

  10. Supporting Data Stewardship Throughout the Data Life Cycle in the Solid Earth Sciences

    Science.gov (United States)

    Ferrini, V.; Lehnert, K. A.; Carbotte, S. M.; Hsu, L.

    2013-12-01

    Stewardship of scientific data is fundamental to enabling new data-driven research, and ensures preservation, accessibility, and quality of the data, yet researchers, especially in disciplines that typically generate and use small, but complex, heterogeneous, and unstructured datasets are challenged to fulfill increasing demands of properly managing their data. The IEDA Data Facility (www.iedadata.org) provides tools and services that support data stewardship throughout the full life cycle of observational data in the solid earth sciences, with a focus on the data management needs of individual researchers. IEDA builds upon and brings together over a decade of development and experiences of its component data systems, the Marine Geoscience Data System (MGDS, www.marine-geo.org) and EarthChem (www.earthchem.org). IEDA services include domain-focused data curation and synthesis, tools for data discovery, access, visualization and analysis, as well as investigator support services that include tools for data contribution, data publication services, and data compliance support. IEDA data synthesis efforts (e.g. PetDB and Global Multi-Resolution Topography (GMRT) Synthesis) focus on data integration and analysis while emphasizing provenance and attribution. IEDA's domain-focused data catalogs (e.g. MGDS and EarthChem Library) provide access to metadata-rich long-tail data complemented by extensive metadata including attribution information and links to related publications. IEDA's visualization and analysis tools (e.g. GeoMapApp) broaden access to earth science data for domain specialist and non-specialists alike, facilitating both interdisciplinary research and education and outreach efforts. As a disciplinary data repository, a key role IEDA plays is to coordinate with its user community and to bridge the requirements and standards for data curation with both the evolving needs of its science community and emerging technologies. Development of IEDA tools and services

  11. Physico-chemical characterisation, cytotoxic activity, and biocompatibility studies of tamoxifen-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification method.

    Science.gov (United States)

    Lakkadwala, Sushant; Nguyen, Sanko; Lawrence, Joseph; Nauli, Surya M; Nesamony, Jerry

    2014-01-01

    Solid lipid nanoparticles (SLNs) can efficiently and efficaciously incorporate anti-cancer agents. To prepare and characterise tamoxifen (TAM)-loaded SLNs. Glyceryl monostearate, Tween-80, and trehalose were used in SLNs. SLNs were tested via dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Characterisation studies revealed SLNs of about 540 nm with a negative surface charge and confirmed the entrapment of TAM in the SLNs. The entrapment efficiency was estimated to be 60%. The in vitro drug release profile demonstrated a gradual increase followed by a release plateau for several days. A drug concentration-dependent increase in cytotoxic activity was observed when the SLNs were evaluated in cell cultures. Biocompatible and stable lyophilised SLNs were successfully prepared and found to possess properties that may be utilised in an anti-cancer drug delivery system.

  12. Lipid somersaults

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground...

  13. Glass Microsphere-Supported Giant Vesicles for the Observation of Self-Reproduction of Lipid Boundaries

    DEFF Research Database (Denmark)

    Fiore, Michele; Maniti, Ofelia; Girard-Egrot, Agnes

    2018-01-01

    Growth and division experiments on phospholipid boundaries were carried out using glass microsphere-supported phospholipid (DOPC) giant vesicles (GVs) fed with a fatty acid solution (oleic acid) at two distinct feeding rates. Both fast and slow feeding methods produced daughter GVs. Under slow fe...

  14. Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum.

    Science.gov (United States)

    Nakasato, Daniele Y; Pereira, Anderson E S; Oliveira, Jhones L; Oliveira, Halley C; Fraceto, Leonardo F

    2017-08-01

    Although the potential toxicity of many metallic and carbon nanoparticles to plants has been reported, few studies have evaluated the phytotoxic effects of polymeric and solid lipid nanoparticles. The present work described the preparation and characterization of chitosan/tripolyphosphate (CS/TPP) nanoparticles and solid lipid nanoparticles (SLN) and evaluated the effects of different concentrations of these nanoparticles on germination of Zea mays, Brassica rapa, and Pisum sativum. CS/TPP nanoparticles presented an average size of 233.6±12.1nm, polydispersity index (PDI) of 0.30±0.02, and zeta potential of +21.4±1.7mV. SLN showed an average size of 323.25±41.4nm, PDI of 0.23±0.103, and zeta potential of -13.25±3.2mV. Nanotracking analysis enabled determination of concentrations of 1.33×10 10 (CS/TPP) and 3.64×10 12 (SLN) nanoparticles per mL. At high concentrations, CS/TPP nanoparticles caused complete inhibition of germination, and thus negatively affected the initial growth of all tested species. Differently, SLN presented no phytotoxic effects. The different size and composition and the opposite charges of SLN and CS/TPP nanoparticles could be associated with the differential phytotoxicity of these nanomaterials. The present study reports the phytotoxic potential of polymeric CS/TPP nanoparticles towards plants, indicating that further investigation is needed on the effects of such formulations intended for future use in agricultural systems, in order to avoid damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13 C- 13 C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  16. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Total phenolic contents, antioxidant activities, and lipid fractions from berry pomaces obtained by solid-state fermentation of two Sambucus species with Aspergillus niger.

    Science.gov (United States)

    Dulf, Francisc Vasile; Vodnar, Dan Cristian; Dulf, Eva-Henrietta; Toşa, Monica Ioana

    2015-04-08

    The aim of this study was to investigate the effect of solid-state fermentation (SSF) by Aspergillus niger on phenolic contents and antioxidant activity in Sambucus nigra L. and Sambucus ebulus L. berry pomaces. The effect of fermentation time on the total fats and major lipid classes (neutral and polar) was also investigated. During the SSF, the extractable phenolics increased with 18.82% for S. ebulus L. and 11.11% for S. nigra L. The levels of antioxidant activity of methanolic extracts were also significantly enhanced. The HPLC-MS analysis indicated that the cyanidin 3-sambubioside-5-glucoside is the major phenolic compound in both fermented Sambucus fruit residues. In the early stages of fungal growth, the extracted oils (with TAGs as major lipid fraction) increased with 12% for S. nigra L. and 10.50% for S. ebulus L. The GC-MS analysis showed that the SSF resulted in a slight increase of the linoleic and oleic acids level.

  18. A framework for a decision support system for municipal solid waste landfill design.

    Science.gov (United States)

    Verge, Ashley; Rowe, R Kerry

    2013-12-01

    A decision support system (Landfill Advisor or LFAdvisor) was developed to integrate current knowledge of barrier systems into a computer application to assist in landfill design. The program was developed in Visual Basic and includes an integrated database to store information. LFAdvisor presents the choices available for each liner component (e.g. leachate collection system, geomembrane liner, clay liners) and provides advice on their suitability for different situations related to municipal solid waste landfills (e.g. final cover, base liner, lagoon liner). Unique to LFAdvisor, the service life of each engineered component is estimated based on results from the latest research. LFAdvisor considers the interactions between liner components, operating conditions, and the existing site environment. LFAdvisor can be used in the initial stage of design to give designers a good idea of what liner components will likely be required, while alerting them to issues that are likely to arise. A systems approach is taken to landfill design with the ultimate goal of maximising long-term performance and service life.

  19. Durability of high performance Ni-yttria stabilized zirconia supported solid oxide electrolysis cells at high current density

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin

    2014-01-01

    We report the durability of a solid oxide electrolysis cell (SOEC) with a record low initial area specific resistance (ASR) and a record low degradation rate. The cell consists of a Ni-yttria stabilized zirconia (YSZ) cermet as support and active fuel electrode, a YSZ electrolyte, a gadolinia doped...

  20. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  1. How Assessment Methods Can Support Solid Waste Management in Developing Countries—A Critical Review

    Directory of Open Access Journals (Sweden)

    Christian Zurbrügg

    2014-01-01

    Full Text Available Selecting actions for improvement of solid waste management in low and middle income countries and understanding how a specific decision choice will fit and impact on a local context is key to identifying sustainable solutions. Assessment of the choice (be it technical or managerial and assessment of the local enabling or disabling conditions are both important steps in the decision making process. Various assessment tools and methods are currently available to support decision-making in solid waste management. Assessment can be used to identify weaknesses or strengths of existing systems in a structured way and hereby highlight factors of success and failure. Assessment methods can also evaluate and compare different possible choices as in project scenarios. This overview describes established and innovative assessment methods serving both these purposes. A range of assessment tools are often designed to assess a specific sustainability domain (technical, environmental and health, economic and financial, social and institutional, organizational aspects, others attempt to provide a more holistic picture by integrating different sustainability domains into the same tool. This paper reviews a number of methods describing and discussing each of them, and referring to their use in low and middle-income countries if published in scientific literature. The overview concludes that in low- and middle-income countries the use of comprehensive assessment methods is yet very limited. We hypothesize that most formal methods of assessment are still too complex and generally overburden the weak local capacities intended for their usage. The few applications identified, were conducted by academia for scientific purposes. Lack of resources to collect the vast data required for some assessment methods is a further restriction to their practical application. Future development is suggested to improve user friendliness of existing tools or to simplify certain

  2. Ionic and electronic transport across interfaces in thin electrolyte film, anode supported solid oxide fuel cells

    Science.gov (United States)

    Lim, Hyung-Tae

    In transport studies in oxygen ion conductors, oxygen chemical potential (muO2) has been usually assumed to be equilibrated across gas/solid electrolyte interfaces. However, since the interfaces exhibit different properties from the bulk, they must have their own ionic and electronic properties. In this study, Pt reference electrodes were embedded within the electrolyte (gadolinia-doped ceria; GDC) in an anode-supported solid oxide fuel cell to measure the electrochemical potential of electrons (ϕ) through the bulk electrolyte and its interfaces under fuel cell operating condition. Based on local equilibrium assumption, which leads to relations between electrochemical potentials of charged species and chemical potential of neutral species, the corresponding mu O2 was estimated. When the GDC is protected by a thin layer of a predominantly ionic conductor from reducing atmosphere, the muO2 varied monotonically through the GDC layer, exhibiting a relatively small change across the cathode interface region. By contrast, when the GDC was exposed to hydrogen, it was significantly reduced, resulting in higher electron concentration. The corresponding mu O2 was small through the GDC layer, exhibiting an abrupt change across the cathode interface region. This difference in the muO2 variation depending upon the relative electronic conduction in the electrolyte resulted in a large difference in the cathode overpotential. The direction of ionic/electronic current and the corresponding internal muO2 through the electrolyte can have a profound effect on its stability. If cell imbalance exists in a series-connected fuel cell stack, a "bad" cell characterized by a higher resistance can be operated under a negative voltage. To investigate the SOFC stack failure by simulating abnormal behavior in a single cell test, yttira stabilized zirconia (YSZ) electrolyte cells were tested with an applied DC bias. When operating under a negative voltage, rapid degradation occurred

  3. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core.

    Science.gov (United States)

    Ziemba, Brian P; Falke, Joseph J

    2013-01-01

    Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1-3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both (1) individual bound lipids and (2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2D diffusion constant. An empirical formula is developed that accurately estimates the diffusion

  4. Development of solid SEDDS, VII: Effect of pore size of silica on drug release from adsorbed self-emulsifying lipid-based formulations.

    Science.gov (United States)

    Gumaste, Suhas G; Serajuddin, Abu T M

    2017-12-15

    Lipid-based self-emulsifying drug delivery systems (SEDDS) are usually liquids, and they can be converted into solid dosage forms by adsorbing onto silicates. However, most commercially available silicates are mesoporous with small pore sizes of 1 to 50nm that lead to incomplete emulsification of SEDDS inside the pores and thus incomplete drug release. The objective of this study was to investigate the impact of silica pore size on the extent of drug release from SEDDS solidified by adsorbing onto macroporous silicas with different pore sizes. Silicas with average pore sizes of approx. 150nm, 500nm and 5μm were synthesized using the colloidal crystal templating method. A model poorly water-soluble drug, probucol, was dissolved in liquid SEDDS containing different lipid to surfactant ratios, and the formulations were then adsorbed onto equal weights of silicas (1:1 w/w ratio). Drug release from freshly prepared formulations and after storing at 40°C/60% RH for up to 6months was studied using a modified USP type 2 method with mini paddles and 50mL of 0.01M HCl (pH~2) at 37°C. Drug release was also studied similarly from silicas that were precoated with PVP K-30 at 5, 10, 20 and 30% w/w levels before adsorption of SEDDS. Freshly prepared formulations containing relatively higher lipid:surfactant ratio of 7:3% w/w exhibited 17, 40 and 60% drug release from uncoated (neat) silicas with pore sizes of 150nm, 500nm and 5μm, respectively, while the more hydrophilic formulations containing 3:7 w/w lipid:surfactant ratio had, respectively, 50, 65 and 85% drug release. No decrease in drug release was observed when the formulations were exposed to 40°C/60% RH for up to 6months. When the silicas were precoated with 20% PVP, the drug release was almost complete (>80%), which remained unchanged even after 6months of storage irrespective of the composition of adsorbed liquid SEDDS. Both pore size and composition of SEDDS had major impacts on drug release from silicas

  5. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations

    Science.gov (United States)

    La Rosa, Carmelo; Scalisi, Silvia; Lolicato, Fabio; Pannuzzo, Martina; Raudino, Antonio

    2016-05-01

    The protein transport inside a cell is a complex phenomenon that goes through several difficult steps. The facilitated transport requires sophisticated machineries involving protein assemblies. In this work, we developed a diffusion-reaction model to simulate co-transport kinetics of proteins and lipids. We assume the following: (a) there is always a small lipid concentration of order of the Critical Micellar Concentration (CMC) in equilibrium with the membrane; (b) the binding of lipids to proteins modulates the hydrophobicity of the complexes and, therefore, their ability to interact and merge with the bilayer; and (c) some lipids leave the bilayer to replenish those bound to proteins. The model leads to a pair of integral equations for the time-evolution of the adsorbed proteins in the lipid bilayer. Relationships between transport kinetics, CMC, and lipid-protein binding constants were found. Under particular conditions, a perturbation analysis suggests the onset of kinks in the protein adsorption kinetics. To validate our model, we performed leakage measurements of vesicles composed by either high or low CMC lipids interacting with Islet Amyloid PolyPeptide (IAPP) and Aβ (1-40) used as sample proteins. Since the lipid-protein complex stoichiometry is not easily accessible, molecular dynamics simulations were performed using monomeric IAPP interacting with an increasing number of phospholipids. Main results are the following: (a) 1:1 lipid-protein complexes generally show a faster insertion rate proportional to the complex hydrophobicity and inversely related to lipid CMC; (b) on increasing the number of bound lipids, the protein insertion rate decreases; and (c) at slow lipids desorption rate, the lipid-assisted proteins transport might exhibit a discontinuous behavior and does non-linearly depend on protein concentration.

  6. Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; X. Zhang; G. K. Housley; K. DeWall; L. Moore-McAteer; G. Tao

    2012-06-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.

  7. Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Neha; Kumar, Sanjukta A.; Wagh, D.N. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Das, Sadananda; Pandey, Ashok K. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Sangita D., E-mail: sangdk@barc.gov.in [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Reddy, A.V.R. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Th complexed with poly (bis[2-(methacryloyloxy)-ethyl]phosphate) as tailored polymer membranes. Black-Right-Pointing-Pointer Membranes offered high capacity and selectivity for fluoride in aqueous media. Black-Right-Pointing-Pointer Quantitative uptake (80 {+-} 5%) of fluoride. Black-Right-Pointing-Pointer Fast sorption kinetics. Black-Right-Pointing-Pointer Reusability of polymer membranes. - Abstract: Fluoride related health hazards (fluorosis) are a major environmental problem in many regions of the world. It affects teeth; skeleton and its accumulation over a long period can lead to changes in the DNA structure. It is thus absolutely essential to bring down the fluoride levels to acceptable limits. Here, we present a new inorganic-organic hybrid polymer sorbent having tailored fixed-sites for fluoride sorption. The matrix supported poly (bis[2-(methacryloyloxy)-ethyl]phosphate) was prepared by photo-initiator induced graft-polymerization in fibrous and microporous (sheet) host poly(propylene) substrates. These substrates were conditioned for selective fluoride sorption by forming thorium complex with phosphate groups on bis[2-methacryloyloxy)-ethyl] phosphate (MEP). These tailored sorbents were studied for their selectivity towards fluoride in aqueous media having different chemical conditions. The fibrous sorbent was found to take up fluoride with a faster rate (15 min for Almost-Equal-To 76% sorption) than the sheet sorbent. But, the fluoride loading capacity of sheet sorbent (4320 mg kg{sup -1}), was higher than fibrous and any other sorbent reported in the literature so far. The sorbent developed in the present work was found to be reusable after desorption of fluoride using NaOH solution. It was tested for solid phase extraction of fluoride from natural water samples.

  8. Solid state NMR studies of oligourea foldamers: interaction of 15N-labelled amphiphilic helices with oriented lipid membranes.

    Science.gov (United States)

    Aisenbrey, Christopher; Pendem, Nagendar; Guichard, Gilles; Bechinger, Burkhard

    2012-02-21

    Synthetic oligomers that are derived from natural polypeptide sequences, albeit with unnatural building blocks, have attracted considerable interest in mimicking bioactive peptides and proteins. Many of those compounds adopt stable folds in aqueous environments that resemble protein structural elements. Here we have chemically prepared aliphatic oligoureas and labeled them at selected positions with (15)N for structural investigations using solid-state NMR spectroscopy. In the first step, the main tensor elements and the molecular alignment of the (15)N chemical shift tensor were analyzed. This was possible by using a two-dimensional heteronuclear chemical shift/dipolar coupling correlation experiment on a model compound that represents the chemical, and thereby also the chemical shift characteristics, of the urea bond. In the next step (15)N labeled versions of an amphipathic oligourea, that exert potent antimicrobial activities and that adopt stable helical structures in aqueous environments, were prepared. These compounds were reconstituted into oriented phospholipid bilayers and the (15)N chemical shift and (1)H-(15)N dipolar couplings of two labeled sites were determined by solid-state NMR spectroscopy. The data are indicative of an alignment of this helix parallel to the membrane surface in excellent agreement with the amphipathic character of the foldamer and consistent with previous models explaining the antimicrobial activities of α-peptides.

  9. Evaluation of alternative environmentally friendly matrix solid phase dispersion solid supports for the simultaneous extraction of 15 pesticides of different chemical classes from drinking water treatment sludge.

    Science.gov (United States)

    Soares, Karina Lotz; Cerqueira, Maristela Barnes Rodrigues; Caldas, Sergiane Souza; Primel, Ednei Gilberto

    2017-09-01

    This study describes the development, optimization and validation of a method for the extraction of 15 pesticides of different chemical classes in drinking water treatment sludge (DWTS) by vortex-assisted Matrix Solid Phase Dispersion (MSPD) with determination by gas chromatography coupled to mass spectrometry. It focused on the application of alternative and different solid supports to the extraction step of the MSPD. The main parameters that influenced the extraction were studied in order to obtain better recovery responses. Recoveries ranged from 70 to 120% with RSD below 20% for all analytes. Limits of quantification (LOQ) of the method ranged from 5 to 500 μg kg-1 whereas the analytical curves showed correlation coefficients above 0.997. The method under investigation used low volume of solvent (5 mL), low sample mass (1.5 g) and low mass of chitin (0.5 g), an environmentally friendly support. It has advantages, such as speed, simplicity and low cost material, over other methods. When the method was applied, 4 out of 15 pesticides were detected in the DWTS samples in concentrations below the LOQ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    Science.gov (United States)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  11. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Anil V. Virkar

    2003-05-23

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid

  12. Human life support during interplanetary travel and domicile. V - Mars expedition technology trade study for solid waste management

    Science.gov (United States)

    Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.

    1992-01-01

    A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.

  13. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and laminat......Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...... and homogeneous distribution of nickel, zirconia, and pores. The laminated samples showed a total porosity of 18.7%(in vol%) and a bimodal pore size distribution centered in 20 and 150 nm, and the measured electrical resistivity of this sample was 120±12 μΩ cm. The novelty of the present work is the lamination...

  14. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    Science.gov (United States)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  15. Simple automated system for simultaneous production of {sup 11}C-labeled tracers by solid supported methylation

    Energy Technology Data Exchange (ETDEWEB)

    Quincoces, Gemma [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain); Penuelas, Ivan [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain)]. E-mail: ipenuelas@unav.es; Valero, Marta [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain); Serra, Patricia [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain); Collantes, Maria [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain); Marti-Climent, Josep [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain); Arbizu, Javier [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain); Jose Garcia-Velloso, Maria [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain); Angel Richter, Jose [Department of Nuclear Medicine, University Hospital, University of Navarra School of Medicine, Av. Pio XII 36, 31008 Pamplona (Spain)

    2006-07-15

    We herein describe a simple setup for the automated simultaneous synthesis of L-[methyl-{sup 11}C]methionine and N-[methyl-{sup 11}C]choline by solid-supported methylation . The setup is extremely simple and easy to adapt to other automated systems and due to its versatility, the method can be utilized for the production of other radiopharmaceuticals requiring a simple [{sup 11}C]methylation step. Furthermore, it can be used for multiple simultaneous synthesis.

  16. Behaviour of Silica and Florisil as Solid Supports in the Removal Process of As(V from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Andreea Gabor

    2015-01-01

    Full Text Available In this study two solid supports, silica and florisil, were impregnated with crown ether (dibenzo-18-crown-6 and Fe(III ions and their efficiency was compared in the adsorption process of As(V from aqueous solutions. The solid supports were impregnated with crown ether due to their ability to build complexes with positives ions. Fe(III was used because of As(V affinity for it. The impregnated solid supports were characterized by energy dispersive X-ray analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and the specific surface area. The influence of the solid : liquid ratio on the adsorption process, kinetic studies for the pseudo-first-order and pseudo-second-order, and activation energy were studied. Thermodynamic studies as well as equilibrium studies were carried out. The obtained results showed that, from the two considered materials, impregnated silica presents a higher efficiency with a good selectivity, able to remove As(V from aqueous solutions containing trace concentrations.

  17. In vitro antitumor efficacy of berberine: solid lipid nanoparticles against human HepG2, Huh7 and EC9706 cancer cell lines

    Science.gov (United States)

    Meng, Xiang-Ping; Wang, Xiao; Wang, Huai-ling; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded solid lipid nanoparticles (Ber-SLN) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-SLN relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-SLN were 154.3 ± 4.1 nm and -11.7 ± 1.8 mV, respectively. MTT assay showed that Ber-SLN effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 10.6 μg/ml, 5.1 μg/ml, and 7.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-SLN is a promising approach for treating tumors.

  18. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Tan, Mei-E; He, Cheng-Hui; Jiang, Wen; Zeng, Cheng; Yu, Ning; Huang, Wei; Gao, Zhong-Gao; Xing, Jian-Guo

    2017-01-01

    Total flavonoid extract from Dracocephalum moldavica L. (TFDM) contains effective components of D. moldavica L. that have myocardial protective function. However, the cardioprotection function of TFDM is undesirable due to its poor solubility. In order to improve the solubility and efficacy of TFDM, we developed TFDM-loaded solid lipid nanoparticles (TFDM-SLNs) and optimized the formulation of TFDM-SLNs using central composite design and response surface methodology. The physicochemical properties of TFDM-SLNs were characterized, and the pharmacodynamics was investigated using the myocardial ischemia-reperfusion injury model in rats. The nanoparticles of optimal formulation for TFDM-SLNs were spherical in shape with the average particle size of 104.83 nm and had a uniform size distribution with the polydispersity index value of 0.201. TFDM-SLNs also had a negative zeta potential of -28.7 mV to ensure the stability of the TFDM-SLNs emulsion system. The results of pharmacodynamics demonstrated that both TFDM and TFDM-SLN groups afforded myocardial protection, and the protective effect of TFDM-SLNs was significantly superior to that of TFDM alone, based on the infarct area, histopathological examination, cardiac enzyme levels and inflammatory factors in serum. Due to the optimal quality and the better myocardial protective effect, TFDM-SLNs are expected to become a safe and effective nanocarrier for the oral delivery of TFDM.

  19. Antidepressant effects of curcumin and HU-211 coencapsulated solid lipid nanoparticles against corticosterone-induced cellular and animal models of major depression.

    Science.gov (United States)

    He, Xiaolie; Zhu, Yanjing; Wang, Mei; Jing, Guoxin; Zhu, Rongrong; Wang, Shilong

    Major depression is a complex neuropsychiatric disorder with few treatment approaches. The use of nontargeted antidepressants induced many side effects with their low efficacy. A more precise targeting strategy is to develop nanotechnology-based drug delivery systems; hence, we employed solid lipid nanoparticles (SLNs) to encapsulate HU-211 and curcumin (Cur). The antidepressant effects of the dual-drug nanoparticles (Cur/SLNs-HU-211) for major depression treatment were investigated in corticosterone-induced cellular and animal models of major depression. Cur/SLNs-HU-211 can effectively protect PC12 cells from corticosterone-induced apoptosis and can release more dopamine, which may be associated with the higher uptake of Cur/SLNs-HU-211 shown by cellular uptake behavior analysis. Additionally, Cur/SLNs-HU-211 significantly reduced the immobility time in forced swim test, enhanced fall latency in rotarod test, and improved the level of dopamine in mice blood. Cur/SLNs-HU-211 can deliver more Cur to the brain and thus produce a significant increase in neurotransmitters level in brain tissue, especially in the hippocampus and striatum. The results of Western blot and immunofluorescence revealed that Cur/SLNs-HU-211 can significantly enhance the expression of CB1, p-MEK1, and p-ERK1/2. Our study suggests that Cur/SLNs-HU-211 may have great potential for major depression treatment.

  20. Oral Delivery of Bovine Lactoferrin Using Pectin- and Chitosan-Modified Liposomes and Solid Lipid Particles: Improvement of Stability of Lactoferrin.

    Science.gov (United States)

    Yao, Xudong; Bunt, Craig; Cornish, Jillian; Quek, Siew-Young; Wen, Jingyuan

    2015-10-01

    A critical problem associated with delivery of bovine lactoferrin (bLf) by the oral route is low bioavailability, which is derived from the enzymatic degradation in the gastrointestinal tract and poor permeation across the intestinal epitheliums. Particulate carrier systems have been identified to protect bLf against proteolysis via encapsulation. This study aimed to evaluate the physico-chemical stability of bLf-loaded liposomes and solid lipid particles (SLPs) modified by pectin and chitosan when exposed to various stress conditions. Transmission electron microscopy results showed liposomes and SLPs had a classic shell-core structure with polymer layers surrounded on surface, but the structure appeared to be partially broken after digestion in simulated intestinal fluid (SIF). Although HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis methods qualitatively and quantitatively described either liposomes or SLPs could retain intact bLf against proteolysis in SIF to some extent, all liposome formulations showed rapid rate of lipolysis mediated by pancreatic enzymes. On the other hand, all SLP formulations showed higher heat resistance and greater electrolyte tolerance compared to liposome formulations. After 180 days storage time, liposome-loaded bLf was completely degraded, whereas almost 30% of intact bLf still remained in SLP formulations. Overall, SLPs are considered as primary choice for oral bLf delivery. © 2015 John Wiley & Sons A/S.

  1. X-ray Reflectivity Study of the Interaction of an Imidazolium-Based Ionic Liquid with a Soft Supported Lipid Membrane.

    Science.gov (United States)

    Bhattacharya, G; Giri, R P; Saxena, H; Agrawal, V V; Gupta, A; Mukhopadhyay, M K; Ghosh, S K

    2017-02-07

    Ionic liquids (ILs) are important for their antimicrobial activity and are found to be toxic to some microorganisms. To shed light on the mechanism of their activities, the interaction of an imidazolium-based IL 1-butyl-3-methylimidazolium tetrfluoroborate ([BMIM][BF4]) with E. coli bacteria and cell-membrane-mimicking lipid mono- and bilayers has been studied. The survival of the bacteria and corresponding growth inhibition are observed to be functions of the concentration of the IL. The IL alters the pressure-area isotherm of the monolayer formed at an air-water interface by the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid. The in-plane elasticity of the lipid layer is reduced as a consequence of the insertion of this IL. The X-ray reflectivity study from a polymer-supported lipid bilayer shows strong perturbation in the self-assembled structure of the bilayer due to the interaction. As a consequence, there is a considerable decrease in bilayer thickness and a corresponding increase in electron density. These results, however, depend on the chain configurations of the lipid molecules.

  2. Numerical evaluation of oxide growth in metallic support microstructures of Solid Oxide Fuel Cells and its influence on mass transport

    DEFF Research Database (Denmark)

    Reiss, Georg; Frandsen, Henrik Lund; Persson, Åsa Helen

    2015-01-01

    is evaluated by determining an effective diffusion coefficient and the equivalent electrical area specific resistance (ASR) due to diffusion over time. It is thus possible to assess the applicability (in terms of corrosion behaviour) of potential metallic supports without costly long-term experiments......Metal-supported Solid Oxide Fuel Cells (SOFCs) are developed as a durable and cost-effective alternative to the state-of-the-art cermet SOFCs. This novel technology offers new opportunities but also new challenges. One of them is corrosion of the metallic support, which will decrease the long......-term performance of the SOFCs. In order to understand the implications of the corrosion on the mass-transport through the metallic support, a corrosion model is developed that is capable of determining the change of the porous microstructure due to oxide scale growth. The model is based on high...

  3. Lamellar crystalline self-assembly behaviour and solid lipid nanoparticles of a palmityl prodrug analogue of Capecitabine—A chemotherapy agent

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J. [CSIRO/MSE

    2014-09-24

    An amphiphile prodrug, 5'-deoxy-5-fluoro-N4-(palmityloxycarbonyl) cytidine or 5'-deoxy-5-fluoro-N4-(hexadecanaloxycarbonyl) cytidine (5-FCPal), consisting of the same head group as the commercially available chemotherapeutic agent Capecitabine, linked to a palmityl hydrocarbon chain via a carbamate bond is reported. Thermal analysis of this prodrug indicates that it melts at ~115 °C followed quickly by degradation beginning at ~120 °C. The neat solid 5-FCPal amphiphile acquires a lamellar crystalline arrangement with a d-spacing of 28.6 ± 0.3 Å, indicating interdigitation of the hydrocarbon chains. Under aqueous conditions, solid 5-FCPal is non-swelling and no lyotropic liquid crystalline phase formation is observed. In order to assess the in vitro toxicity and in vivo efficacy in colloidal form, solid lipid nanoparticles (SLNs) with an average size of ~700 nm were produced via high pressure homogenization. The in vitro toxicity of the 5-FCPal SLNs against several different cancer and normal cell types was assessed over a 48 h period, and IC50 values were comparable to those observed for Capecitabine. The in vivo efficacy of the 5-FCPal SLNs was then assessed against the highly aggressive mouse 4T1 breast cancer model. To do so, the prodrug SLNs were administered orally at 3 different dosages (0.1, 0.25, 0.5 mmol/mouse/day) and compared to Capecitabine delivered at the same dosages. After 21 days of receiving the treatments, the 0.5 mmol dose of 5-FCPal exhibited the smallest average tumour volume. Since 5-FCPal is activated in a similar manner to Capecitabine via a 3 step enzymatic pathway with the final step occurring preferentially at the tumour site, formulation of the prodrug into SLNs combines the advantage of selective, localized activation with the sustained release properties of nanostructured amphiphile self-assembly and multiple payload materials thereby potentially creating a more effective anticancer agent.

  4. Effect of lipid/polysaccharide ratio on surface activity of model root mucilage in its solid and liquid states

    Science.gov (United States)

    Chen, Fengxian; Arye, Gilboa

    2016-04-01

    The rhizosphere can be defined as the volume of soil around living roots, which is influenced by root activity. The biological, chemical and physical conditions that prevail in the rhizosphere are significantly different from those of the bulk soil. Plant roots can release diverse organic materials in the rhizosphere which may have different effects on its bio-chemo-physical activity. Among these exudates is the root mucilage which can play a role on the maintenance of root-soil contact, lubrication of the root tip, protection of roots from desiccation and disease, stabilization of soil micro-aggregates and the selective absorption and storage of ions. The surface activity of the root mucilage at the liquid-air interface deduced from its surface tension depression relative to water, implying on its amphiphilic nature. Consequently as the rhizosphere dry out, hydrophobic functional groups may exhibit orientation at the solid-air interface and thus, the wettability of the rhizosphere may temporarily decrease. The major fraction of the root mucilage comprise of polysaccharides and to a much lesser extent, amino acids, organic acids, and phospholipids. The most frequent polysaccharide and phospholipids detected in root mucilage are polygalacturonic acid (PGA) and Phosphatidylcholine (PC), respectively. The latter, is thought to be main cause for the surface active nature of root mucilage. Nevertheless, the role and function of root mucilage in the rhizosphere is commonly studied based on model root mucilage that comprise of only one component, where the most frequent ones are PGA or PC (or lecithin). The main objective of this study was to quantify the effect of concentration and PGA/PC ratios on the wettability of a model rhizosphere soil and the surface tension of the model root mucilage at the liquid-air interface. The PGA/PC mixtures were measured for their equilibrium and dynamic surface tension using the Wilhelmy-Plate method. Quartz sand or glass slides were

  5. The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell

    Science.gov (United States)

    Lin, Jie; Chen, Long; Liu, Tong; Xia, Changrong; Chen, Chusheng; Zhan, Zhongliang

    2018-01-01

    This study is aimed at improving the electrochemical performance of electrode-supported solid oxide electrolysis cells (SOECs) by optimizing the pore structure of the supports. Two planar NiO-8 mol% yttria-stabilized zirconia supports are prepared, one by the phase-inversion tape casting, and the other by conventional tape casting method using graphite as the pore former. The former contains finger-like straight open large pores, while the latter contains randomly distributed and tortuous pores. The steam electrolysis of the cells with different microstructure cathode supports is measured. The cell supported on the cathode with straight pores shows a high current density of 1.42 A cm-2 and a H2 production rate of 9.89 mL (STP) cm-2 min-1 at 1.3 V and 50 vol % humidity and 750 °C, while the cell supported on the cathode with tortuous pores shows a current density of only 0.91 A cm-2 and a H2 production rate of 6.34 mL cm-2min-1. It is concluded that the introduction of large straight open pores into the cathode support allows fast gas phase transport and thus minimizes the concentration polarization. Furthermore, the straight pores could provide better access to the reaction site (the electrode functional layer), thereby reducing the activation polarization as well.

  6. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2017-01-01

    Full Text Available Thin anodic porous alumina (tAPA was fabricated from a 500 nm thick aluminum (Al layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm gold (Au layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA and aminothiol (AT, and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB. At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×. The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

  7. A DNP-supported solid-state NMR study of carbon species in fluid catalytic cracking catalysts.

    Science.gov (United States)

    Mance, Deni; van der Zwan, Johan; Velthoen, Marjolein E Z; Meirer, Florian; Weckhuysen, Bert M; Baldus, Marc; Vogt, Eelco T C

    2017-04-04

    A combination of solid-state NMR techniques supported by EPR and SEM-EDX experiments was used to localize different carbon species (coke) in commercial fluid catalytic cracking catalysts. Aliphatic coke species formed during the catalytic process and aromatic coke species deposited directly from the feedstock respond differently to dynamic nuclear polarization signal enhancement in integral and crushed FCC particles, indicating that aromatic species are mostly concentrated on the outside of the catalyst particles, whereas aliphatic species are also located on the inside of the FCC particles. The comparison of solid-state NMR data with and without the DNP radical at low and ambient temperature suggests the proximity between aromatic carbon deposits and metals (mostly iron) on the catalyst surface. These findings potentially indicate that coke and iron deposit together, or that iron has a role in the formation of aromatic coke.

  8. Solution or suspension - Does it matter for lipid based systems?

    DEFF Research Database (Denmark)

    Larsen, A T; Holm, R; Müllertz, A

    2017-01-01

    In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS...... or a lower solubility in the colloidal structures formed during digestion, but other mechanisms may also be involved. The study thereby supported the potential of chase dosing as a potential dosing regimen in situations where it is beneficial to have a drug in the solid state, e.g. due to chemical stability...

  9. Investigation of Novel Electrocatalysts for Metal Supported Solid Oxide Fuel Cells - Ru:GDC

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Nielsen, Jimmi; Thydén, Karl Tor Sune

    2015-01-01

    ]. In the present study, MS-SOFCs infiltrated with Ru:GDC electrocatalyst are investigated. The Ru:GDC precursor solution was infiltrated into the anode backbone and heat treated in air at different temperatures to remove the organic materials while preventing the corrosion of the metal particles. The morphology...... the development of metal supported SOFCs (MS-SOFCs) by using the cheaper support materials such as stainless steel. Furthermore, MS-SOFCs offer some advantages compared to conventional electrode and electrolyte supported SOFCs such as higher thermal conductivity, ductility in support, which are advantageous...

  10. Solid-supported synthesis: From pharmacologically relevant heterocycles to biologically active surfaces

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.

    nucleophiles bring about a second cyclization and the formation of a fused , bicyclic ring system. The second part of the thesis deals with the topical problem of bacterial biofilm-related infections in manufacturing and use of indwelling medical devices, such as catheters and imp lants. . In Chapter 2.1, new...... for solid-phase synthesis, methods for on - and off-bead screening of combinatorial libraries and their applic ation to various biological targets. The first part of the thesis is dedicated to the development of methodology for the synthesis of structurally diverse heterocyclic scaffolds via N...

  11. Metronomic Chemotherapy vs Best Supportive Care in Progressive Pediatric Solid Malignant Tumors: A Randomized Clinical Trial.

    Science.gov (United States)

    Pramanik, Raja; Agarwala, Sandeep; Gupta, Yogendra Kumar; Thulkar, Sanjay; Vishnubhatla, Sreenivas; Batra, Atul; Dhawan, Deepa; Bakhshi, Sameer

    2017-09-01

    Although oral metronomic chemotherapy is often used in progressive pediatric solid malignant tumors, a literature review reveals that only small single-arm retrospective or phase 1 and 2 studies have been performed. Skepticism abounds because of the lack of level 1 evidence. To compare the effect of metronomic chemotherapy on progression-free survival (PFS) with that of placebo in pediatric patients with primary extracranial, nonhematopoietic solid malignant tumors that progress after at least 2 lines of chemotherapy. A double-blinded, placebo-controlled randomized clinical trial was conducted from October 1, 2013, through December 31, 2015, at the cancer center at All India Institute of Medical Sciences in children aged 5 to 18 years with primary extracranial, nonhematopoietic solid malignant tumors that progressed after at least 2 lines of chemotherapy and had no further curative options. One arm received a 4-drug oral metronomic regimen of daily celecoxib and thalidomide with alternating periods of etoposide and cyclophosphamide, whereas the other arm received placebo. Disease status was assessed at baseline, 9 weeks, 18 weeks, and 27 weeks or at clinical progression. The primary end point was PFS as defined by the proportion of patients without disease progression at 6 months, and PFS duration and overall survival (OS) were secondary end points. A total of 108 of the 123 patients screened were enrolled, with 52 randomized to the placebo group (median age, 15 years; 40 male [76.9%]) and 56 to the metronomic chemotherapy group (median age, 13 years; 42 male [75.0%]). At a median follow-up of 2.9 months, 100% of the patients had disease progression by 6 months in the placebo group vs 96.4% in the metronomic chemotherapy group (P = .24). Median PFS and OS in the 2 groups was similar (hazard ratio [HR], 0.69; 95% CI, 0.47-1.03 [P = .07] for PFS; and HR, 0.74; 95% CI, 0.50-1.09 [P = .13] for OS). In post hoc subgroup analysis, cohorts receiving more than

  12. Preparation of tri(ethylene glycol) grafted core-shell type polymer support for solid-phase peptide synthesis.

    Science.gov (United States)

    Kim, Jaehi; Kim, Seojung; Shin, Dong-Sik; Lee, Yoon-Sik

    2017-12-13

    A core-shell type polymer support for solid-phase peptide synthesis has been developed for high coupling efficiency of peptides and versatile applications such as on-bead bioassays. Although various kinds of polymer supports have been developed, they have their own drawbacks including poor accessibility of reagents and incompatibility in aqueous solution. In this paper, we prepared hydrophilic tri(ethylene glycol) (TEG) grafted core-shell type polymer supports (TEG SURE) for efficient solid-phase peptide synthesis and on-bead bioassays. TEG SURE was prepared by grafting TEG derivative on the surface of AM PS resin via biphasic diffusion control method and subsequent acetylation of amine groups which are located at the core region of AM PS resin. The performance of TEG SURE was evaluated by synthesizing several peptides. Three points can be highlighted: (1) easy control of loading level of TEG, (2) improved efficiency of peptide synthesis compared with the conventional resins, and (3) applicability of on-bead bioassays. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  13. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  14. Towards High Power Density Metal Supported Solid Oxide Fuel Cell for Mobile Applications

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Persson, Åsa Helen; Muhl, Thuy

    2017-01-01

    For use of metal supported SOFC in mobile applications it is important to reduce the thermal mass to enable fast start up, increase stack power density in terms of weight and volume and reduce costs. In the present study, we report on the effect of reducing the support layer thickness of 313 μm...

  15. Development of a Novel Ceramic Support Layer for Planar Solid Oxide Cells

    DEFF Research Database (Denmark)

    Klemensø, Trine; Boccaccini, Dino; Brodersen, Karen

    2014-01-01

    of the support can be done simultaneously with forming the oxygen electrode, since some of the best performing oxygen electrodes are based on infiltrated LSC. The potential of the proposed structure was investigated by testing the mechanical and electrical properties of the support layer. Comparable strength...

  16. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    Directory of Open Access Journals (Sweden)

    Krzysztof Skowerski

    2016-01-01

    Full Text Available An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot.

  17. Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations.

    Science.gov (United States)

    Doroud, Delaram; Vatanara, Alireza; Zahedifard, Farnaz; Gholami, Elham; Vahabpour, Rouhollah; Rouholamini Najafabadi, Abdolhossein; Rafati, Sima

    2010-01-01

    Leishmaniasis is a major health problem in many tropical and sub-tropical countries and development of a safe and easily-available vaccine has high priority. Although several antigens potentially capable of inducing protective immunity have been studied, in the absence of pharmaceutical industry interest they have remained as fine publications only. Amongst them, Cathepsin L-like cysteine proteinases (CPs) have received considerable attention and type I and II CPs have been used in a heterologous prime-boost vaccination regime for experimental visceral leishmaniasis in dogs. Due to the promising results of the mentioned vaccination regime, we aimed to evaluate cationic solid lipid nanoparticles (cSLNs) for in vitro delivery of cpa, cpb and cpb(CTE) intended to be used as a cocktail DNA vaccine in our forthcoming studies. cSLNs were formulated of cetyl palmitate, cholesterol, DOTAP and Tween 80 via melt emulsification method followed by high shear homogenization. Different formulations were prepared by anchoring pDNAs on the surface of cSLNs via charge interaction. The formulations were characterized according to their size and zeta potential as well as pDNA integrity and stability against DNase I treatment. Lipoplexes' cytotoxicity was investigated on COS-7 cells by MTT test. The effect of the DOTAP:pDNA ratio on protection ability and cytotoxicity was also studied. In vitro transfection efficiency was qualified by fluorescent microscopy and quantified using flow cytometry technique. cSLN-pDNA complexes were formulated with suitable size and zeta potential. Efficiency/cytotoxicity ratio of cSLN-pDNAs formulations was comparable to linear PEI-25KD-pDNAs polyplexes while exhibiting significantly lower cytotoxicity. Tested formulations were able to deliver immunogenic CP genes efficiently. This data proves the ability of this system as a promising DNA vaccine carrier for leishmaniasis to cover the main drawback of naked pDNA delivery that is rapid elimination from the

  18. Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module.

    Science.gov (United States)

    Chaudhari, Manisha B; Desai, Preshita P; Patel, Pratikkumar A; Patravale, Vandana B

    2016-08-01

    Amphotericin B, a gold standard broad spectrum antibiotic used in treatment of systemic fungal infections and visceral leishmaniasis, though is effective parenterally offers severe nephrotoxicity whereas the oral delivery is reported to give very meager oral bioavailability. Thus, to alleviate the toxicity and to improve oral bioavailability, an effective oral delivery approach in the form of solid lipid nanoparticles of amphotericin B (AmbiOnp) was reported earlier by our group. In this investigation, we report the predominant formation of nontoxic superaggregated form of amphotericin B, resulting from the probe sonication-assisted nanoprecipitation technique. The developed formulation was further confirmed to retain this nontoxic form and was found to be stable over the varied gastrointestinal conditions. Further, in vitro antifungal activity of AmbiOnp against Candida albicans showed minimum inhibitory concentration value of 7.812 μg/mL attributed to controlled release of drug from nanoparticulate matrix. In vivo pharmacokinetic studies revealed a relative bioavailability of AmbiOnp to be 1.05-fold with a Cmax of 1109.31 ± 104.79 ng/mL at the end of 24 h which was comparable to Cmax of 1417.49 ± 85.52 ng/mL achieved with that of marketed formulation (Fungizone®) given intravenously establishing efficacy of AmbiOnp. In vivo biodistribution studies indicated very low levels of Amphotericin B in kidneys when given as AmbiOnp as compared to that of marketed formulation proving its safety and was further corroborated by renal toxicity studies. Further, the formulations were found to be stable under refrigeration condition over a period of 3 months.

  19. Development of layered anode structures supported over Apatite-type Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Pandis P.

    2016-01-01

    Full Text Available Apatite-type lanthanum silicates (ATLS materials have attracted interest in recent literature as solid electrolytes for SOFCs. The fabrication of an ATLS based fuel cell with the state-of-art electrodes (NiO/YSZ as anode and LSCF or LSM as cathode can show degradation after long operation hours due to Si diffusion mainly towards the anode. In this work, we report a “layer-by-layer anodic electrodes” fabrication by means of spin coating and physical spraying. The overall aim of this work is the successful fabrication of such a layered structure including suitable blocking layers towards the inhibition of Si interdiffusion from the apatite electrolyte to the anode. The results showed that the deposition of 3 layers of LFSO/GDC (3μm, NiO/GDC (4μm and the final NiO/YSZ anode layer provided a stable half-cell, with no solid state reaction occurring among the electrodes and no Si diffusion observed towards the anode after thermal treatment at 800°C for 120h.

  20. Synthesis of lipidated eNOS peptides by combining enzymatic, noble metal- and acid-mediated protecting group techniques with solid phase peptide synthesis and fragment condensation in solution.

    Science.gov (United States)

    Machauer, R; Waldmann, H

    2001-07-02

    Lipid-modified proteins play decisive roles in important biological processes such as signal transduction, organization of the cytoskeleton, and vesicular transport. Lipidated peptides embodying the characteristic partial structures of their parent lipidated proteins and semisynthetic proteins synthesized from such peptides are valuable tools for the study of these biological phenomena. We have developed an efficient synthesis strategy that allows for the synthesis of long multiply lipidated peptides embodying various side chain functional groups. The strategy was successfully applied in the synthesis of the N-terminal undetrigintapeptide of endothelial NO-synthase and related lipopeptides. Key elements of the synthesis strategy are the combined use of the enzyme-labile para-phenylacetoxybenzyloxycarbonyl (PhAcOZ) urethane as N-terminal blocking group, the Pd0-sensitive allyl ester as C-terminal protecting function and acid-labile side chain protecting groups for solution-phase synthesis of labile S-palmitoylated building blocks under the mildest conditions with solid-phase techniques and solution-phase fragment condensations. The successful synthesis of the triply lipidated 29-mer eNOS peptide convincingly demonstrates the full capacity of the protecting group methods.

  1. Spinel-based coatings for metal supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Stefan, Elena; Neagu, Dragos; Blennow Tullmar, Peter

    2017-01-01

    Metal supports and metal supported half cells developed at DTU are used for the study of a solution infiltration approach to form protective coatings on porous metal scaffolds. The metal particles in the anode layer, and sometimes even in the support may undergo oxidation in realistic operating...... conditions leading to severe cell degradation. Here, a controlled oxidation of the porous metal substrate and infiltration of Mn and/or Ce nitrate solutions are applied for in situ formation of protective coatings. Our approach consists of scavenging the FeCr oxides formed during the controlled oxidation...

  2. Preliminary Electrochemical Characterization of Anode Supported Solid Oxide Cell (AS-SOC) Produced in the Institute of Power Engineering Operated in Electrolysis Mode (SOEC)

    Science.gov (United States)

    Kupecki, Jakub; Motyliński, Konrad; Skrzypkiewicz, Marek; Wierzbicki, Michał; Naumovich, Yevgeniy

    2017-12-01

    The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC - solid oxide fuel cells) and electrolysers (SOEC - solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.

  3. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  4. Identifying a compound modifying a cellular response, comprises attaching cells having a reporter system onto solid supports, releasing a library member, screening and identifying target cells

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to methods for identifying compounds capable of modulating a cellular response. The methods involve attaching living cells to solid supports comprising a library of test compounds. Test compounds modulating a cellular response, for example via a cell surface molecule...... may be identified by selecting solid supports comprising cells, wherein the cellular response of interest has been modulated. The cellular response may for example be changes in signal transduction pathways modulated by a cell surface molecule....

  5. Supporting Innovation in Organic Agriculture: A European Perspective Using Experience from the SOLID Project

    DEFF Research Database (Denmark)

    Padel, Susanne; Vaarst, Mette; Zaralis, K.

    2015-01-01

    the alternative framework of innovation systems describing innovation as the outcome of stakeholder interaction and examples from the SOLID (Sustainable Organic Low-Input Dairying) project to discuss the role of farmers, researchers and knowledge exchange for innovation. We used a farmer-led participatory...... approach to identify problems of organic and low-input dairy farming in Europe and develop and evaluate innovative practices. Experience so far shows that improvements of sustainability can be made through better exploitation of knowledge. For example, it is recognized that optimal utilization of good...... quality forage is vitally important, but farmers showed a lack of confidence in the reliability of forage production both in quantity and quality. We conclude that the systems framework improves the understanding of innovation processes in organic agriculture. Farmer-led research is an effective way...

  6. New methodology of preparation support for solid oxide fuel cells using different pore forming agent

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da P.; Guedes, Bruna C.F.; Silva, Marcos A. da; Carvalho, Luiz F.V. de; Boaventura, Jaime S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Pontes, Luiz A.M. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica

    2008-07-01

    The development of environment-friendly energy sources has been of the most important scientific and technological area. Solid oxide fuel cells (SOFC) are very promising alternative for their ability to handle renewable fuels with low emissions and high efficiency. However, this device requires massive improvement before commercial application. This work studies the pore formation in the cell anode and cathode with NaHCO{sub 3} or citric acid, comparing to graphite. The three agents make pore with similar features, but the use of NaHCO{sub 3} and citric acid considerably improves the adhesion of the electrode-electrolyte interface, critical characteristic for good cell efficiency. The prepared anode-electrolyte-cathode structure was studied by SEM technique. The SOFC prepared using citric acid was tested with gaseous ethanol, natural gas and hydrogen. For all these three fuels the SOFC shows virtually no overpotential, indicating the good ionic conductance of the electrodes-electrolyte interface.. (author)

  7. Lipids, lysosomes, and autophagy.

    Science.gov (United States)

    Jaishy, Bharat; Abel, E Dale

    2016-09-01

    Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke

    2016-01-01

    Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, possessing different anode and support microstructures were studied in respect to sulfur tolerance at an operating temperature of 650°C. The studied MS-SOFCs are based on ferretic...... galvanostatic operation at a current load of 0.25 Acm−2. The results were compared with literature on the sulfur tolerance of conventional SOFC Ni/YSZ cermet anode. The comparison in terms of absolute cell resistance increase and relative anode polarization resistance increase indicates, that the nanostructured...... Ni:GDC MS-SOFC based anode is significantly more sulfur tolerant than the conventional Ni/YSZ cermet anode. Furthermore, it was shown that the believed extension of the electrochemical three-phase-boundary reaction zone in the presence of GDC must be very limited and cannot account for the higher...

  9. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke

    2015-01-01

    Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, but different anode and support microstructures were studied in respect to sulfur tolerance at the aimed operating temperature of 650ºC. The studied MS-SOFCs are based on ferretic...... at a current load of 0.25Acm-2. The results were compared with literature on the sulfur tolerance of the conventional SOFC Ni/YSZ cermet anode. The comparison in terms of absolute cell resistance increase and relative anode polarization resistance increase indicate, that the nanostructured Ni:GDC MS-SOFC based...... anode is significantly more sulfur tolerant than the conventional Ni/YSZ cermet anode. © 2015 ECS - The Electrochemical Society...

  10. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 C. The single cell with the painted cathode generates a maximum power density of 405 mW cm{sup -2} at 850 C, when operating with humidified hydrogen. (author)

  11. Modified fly ash from municipal solid waste incineration as catalyst support for Mn-Ce composite oxides

    Science.gov (United States)

    Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping

    2017-08-01

    Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.

  12. Supporting Indicators for the Successful Solid Waste Management Based on Community at Rawajati, South Jakarta

    Directory of Open Access Journals (Sweden)

    Muhammad Furqan

    2013-12-01

    Full Text Available Community-based waste management is one of the strategies that can be used to overcome the problems of garbage that exist today. However, community-based waste management system could not be implemented as a whole in Indonesia and sometimes some areas are trying to do community-based waste management do not work well and is not sustainable. The purpose of this study was to determine the indicators of success in supporting community-based waste management in Urban Rawajati RW III, South Jakarta. The method of analysis used in this study using quantitative descriptive analysis, and discriminant analysis are useful for describing indicators supporting the success and sustainability of community-based waste management in RW III. Supporting indicators of success in community-based waste RW III, Sub Rawajati divided into 2 main indicators and supporting indicators. The main indicator of success is the use of RW III inorganic waste, the amount of participation, ownership and use of grinding machine home composter are classified into two major variables, namely the participation of society and shape the technology, while the supporting indicators are classified into three variables, namely institutional agreements, operational management and management financially.

  13. Lipid membranes on nanostructured silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Slade, Andrea Lynn; Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Ista, Linnea K. (University of New Mexico, Albuquerque, NM); O' Brien, Michael J. (University of New Mexico, Albuquerque, NM); Sasaki, Darryl Yoshio; Bisong, Paul (University of New Mexico, Albuquerque, NM); Zeineldin, Reema R. (University of New Mexico, Albuquerque, NM); Last, Julie A.; Brueck, Stephen R. J. (University of New Mexico, Albuquerque, NM)

    2004-12-01

    A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

  14. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles.

    Science.gov (United States)

    Lee, Young Kwang; Kim, Sungi; Nam, Jwa-Min

    2015-01-12

    Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solid Lipid Particles for Oral Delivery of Peptide and Protein Drugs II - The Digestion of Trilaurin Protects Desmopressin from Proteolytic Degradation

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Zhang, Long; Müllertz, Anette

    2014-01-01

    , which is the same rank order as the lipid degradation rate. A reverse rank order was found for the protection of desmopressin from enzymatic degradation due to spatial separation of desmopressin from the protease. TG12 accelerated the release of desmopressin from all lipid particles when added as either...

  16. Calcium Oxide Supported on Monoclinic Zirconia as a Highly Active Solid Base Catalyst

    NARCIS (Netherlands)

    Frey, A.M.; Haasterecht, van T.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Calcium oxide supported on ZrO2 is a highly active catalyst for base-catalyzed reactions such as aldol-type reactions and transesterification reactions. The role of key parameters during preparation, that is, impregnation versus precipitation, heat treatment, and metal oxide loading on the basicity

  17. Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Kromp, Alexander; Nielsen, Jimmi; Blennow Tullmar, Peter

    2012-01-01

    , the ohmic and polarization losses related to the gas diffusion in the metal support, the electrooxidation in the anode functional layer and the oxygen reduction in the mixed ionic electronic conducting cathode were determined. An additional process with a rather high relaxation frequency could be attributed...... present the results of performance and stability improvements for a metal supported cell developed within the European project METSOFC and the Danish National Advanced Technology Foundation. The cells consist of a porous metal backbone, a metal / zirconia cermet anode and a 10ScYSZ electrolyte, cofired...... in between cathode and electrolyte. The detailed electrochemical characterization by means of impedance spectroscopy and a subsequent data analysis by the distribution of relaxation times enabled us to separate the different loss contributions in the cell. Based on an appropriate equivalent circuit model...

  18. Thin tubular self-supporting electrode for solid oxide electrolyte electrochemical cells

    Science.gov (United States)

    Carlson, William G.; Ruka, Roswell J.

    1992-01-01

    A self-supporting, gas-permeable air electrode tube (16) is made having a sintered structure of calcium-doped LaMnO.sub.3, a density of from 60% to 85% of theoretical density, and a Coefficient of Thermal Expansion of from 10.2.times.10.sup.-6 /.degree.C. to 10.8.times.10.sup.-6 /.degree.C., where one end is open and the other end is sealed with a plug (30).

  19. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    of the cathode were strongly dependent on the pO(2). Microstructural analysis of the cathode/electrolyte interface carried out after removal of the cathode showed craters on the electrolyte surface where the lanthanum strontium manganite (LSM) particles had been located. The changes of shape and size......The degradation of anode-supported cells was studied over 1500 h as a function of cell polarization either in air or oxygen on the cathode side. Based on impedance analysis, contributions of the anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...

  20. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley

    2013-01-01

    high fuel utilization and redox cycling have been performed to identify the performance limiting parameters in this new type of full ceramic SOFCs. Measured performances and stability have been further tentatively linked to modifications of the nano-sized infiltrates within the anode.......In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests under...

  1. Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2014-01-01

    need to be accurately known. Since the mechanical properties are heavily dependent on the microstructures of the materials, it is highly advantageous to understand the impact of microstructures and to be able to determine accurate effective mechanical properties for cell or stack scale analyses...... Ni-3YSZ in the operating temperature through numerical micromechanical modeling. Three-dimensional microstructures of Ni-3YSZ anode supports are reconstructed from a two-dimensional image stack obtained via focused ion beam tomography. Time-dependent stress distributions in the microscopic scale...

  2. DMAP-assisted sulfonylation as an efficient step for the methylation of primary amine motifs on solid support

    Directory of Open Access Journals (Sweden)

    Johnny N. Naoum

    2017-05-01

    Full Text Available Several multistep strategies were developed to ensure single methylation of amines on solid support. These strategies rely on the introduction of the o-NBS protecting/activating group as a key step. We found that the state-of-the-art strategies fail for the methylation of several primary amine motifs, largely due to inefficient sulfonylation. Here we show that using the superior nucleophilic base DMAP instead of the commonly used base collidine as a sulfonylation additive is essential for the introduction of the o-NBS group to these amine motifs. DFT calculations provide an explanation by showing that the energy barrier of the DMAP intermediate is significantly lower than the one of the collidine. We demonstrate that using DMAP as a sole additive in the sulfonylation step results in an overall effective and regioselective N-methylation. The method presented herein proved highly efficient in solid-phase synthesis of a somatostatin analogue bearing three Nα-methylation sites that could not be synthesized using the previously described state-of-the-art methods.

  3. Monitoring of N-methyl carbamate pesticide residues in water using hollow fibre supported liquid membrane and solid phase extraction

    Science.gov (United States)

    Msagati, Titus A. M.; Mamba, Bhekie B.

    The aim of this work was to develop a method for the determination of N-methyl carbamates in water involving hollow fibre supported liquid membrane (HFSLM) and solid phase extraction (SPE) as sample preparation methods. Four N-methyl carbamate pesticides, aldicarb, carbaryl, carbofuran and methiocarb sulfoxide, were simultaneously extracted and analysed by a liquid chromatograph with a diode array detector (LC-UV/DAD) and a liquid chromatograph coupled to a ion trap quadrupole mass spectrometer (LC-ESI-MS). The high performance liquid chromatography (HPLC) separation of carabamate extracts was performed on a C18 column with water-acetonitrile as the mobile phase. The mass spectrometry analyses were carried out in the positive mode, operating under both the selected ion monitoring (SIM) and full scan modes. The solid phase recoveries of the extracts ranged between 8% and 98%, with aldicarb having the highest recoveries, followed by carbaryl, carbofuran and methiocarb had the lowest recovery. The HFSLM recovery ranged between 8% and 58% and the order of recovery was similar to the SPE trend. Factors controlling the efficiency of the HFSLM extraction such as sample pH, stripping phase pH, enrichment time, stirring speed as well as organic solvent used for entrapment of analytes, were optimised to achieve the highest enrichment factors.

  4. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    Science.gov (United States)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  5. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  6. Supported liquid extraction as an alternative to solid phase extraction for LC-MS/MS aldosterone analysis?

    Science.gov (United States)

    Owen, Laura J; Keevil, Brian G

    2013-09-01

    Supported liquid extraction (SLE) techniques are relatively new compared to other sample preparation approaches such as solid phase extraction (SPE), liquid-liquid extraction (LLE) and protein precipitation (PPE). We investigated the use of SLE as an alternative to SPE for the liquid chromatography tandem mass spectrometry (LC-MS/MS) measurement of aldosterone. Samples (n = 83) were analysed by the routine method using SPE. The same samples were subsequently analysed using two different SLE 96-well plate devices (Thermo and Biotage) with methyl-tertiary butyl ether extraction. A direct comparison of the three extraction techniques on two different mass spectrometers was also performed. Both results using SLE plates gave excellent agreement with the results from the SPE analysis. The area counts obtained with the Biotage plates were considerably higher than those obtained using the Thermo plate. SLE is an acceptable alternative to SPE for the LC-MS/MS analysis of aldosterone. Using SLE reduces the time required for sample preparation.

  7. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Ni, De Wei; Charlas, Benoit; Kwok, Kawai

    2016-01-01

    Solid Oxide Fuel Cells are subjected to significant stresses during production and operation. The various stress-generating conditions impose strength requirements on the cell components, and thus the mechanical properties of the critical load bearing materials at relevant operational conditions...... need to be characterized to ensure reliable operation. In this study, the effect of reduction temperature on microstructural stability, high temperature strength and elastic modulus of Ni-YSZ anode supports were investigated. The statistical distribution of strength was determined from a large number...... of samples (∼30) at each condition to ensure high statistical validity. It is revealed that the microstructure and mechanical properties of the Ni-YSZ strongly depend on the reduction temperature. Further studies were conducted to investigate the temperature dependence of the strength and elastic modulus...

  8. Creep behaviour of porous metal supports for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Sudireddy, Bhaskar Reddy

    2014-01-01

    a significant role affecting the creep behaviour of the metal supports, in particular the stress exponent. The variation of the elastic modulus as function of temperature and oxidation conditions was also determined by a high temperature impulse excitation technique. Additionally nano-indentation testing......-mechanical analyser with applied stresses in the range from 1 to 15 MPa and temperatures between 650 and 800 _C. The GibsoneAshby and Mueller models developed for uniaxial creep of open-cell foams were used to analyse the results. The influence of scale formation on creep behaviour was assessed by comparing the creep...... data for the samples tested in reducing and oxidising atmospheres. The influence of preoxidation on creep behaviour was also investigated. In-situ oxidation during creep experiments increases the strain rate while pre-oxidation of samples reduces it. Debonding of scales at high stress regime plays...

  9. Biodiesel production in a membrane reactor using MCM-41 supported solid acid catalyst.

    Science.gov (United States)

    Xu, Wei; Gao, Lijing; Wang, Songcheng; Xiao, Guomin

    2014-05-01

    Production of biodiesel from the transesterification between soybean oil and methanol was conducted in this study by a membrane reactor, in which ceramic membrane was packed with MCM-41 supported p-toluenesulfonic acid (PTSA). Box-Behnken design and response surface methodology (RSM) were used to investigate the effects of reaction temperature, catalyst amount and circulation velocity on the yield of biodiesel. A reduced cubic model was developed to navigate the design space. Reaction temperature was found to have most significant effect on the biodiesel yield while the interaction of catalyst amount and circulation velocity have minor effect on it. 80°C of reaction temperature, 0.27 g/cm(3) of catalyst amount and 4.15 mL/min of circulation velocity were proved to be the optimum conditions to achieve the highest biodiesel yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...... the LSM particles had been located. After testing in air, these craters flattened out and decreased in size, indicating the decrease of three phase boundary length. In contrast, they remained almost unchanged after testing in oxygen giving an explanation for the observed smaller - mainly anode related...

  11. Feasible way of Human Solid and Liquid Wastes' Inclusion Into Intersystem Mass Exchange of Biological-Technical Life Support Systems

    Science.gov (United States)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Kudenko, Yurii; Griboskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The basic objective arising at use of mineralized human solid and liquid wastes serving as the source of mineral elements for plants cultivation in biological-technical life support systems appears to be NaCl presence in them. The given work is aimed at feasibility study of mineralized human metabolites' utilization for nutrient solutions' preparation for their further employment at a long-term cultivation of uneven-aged wheat and Salicornia europaea L. cenosis in a conveyer regime. Human solid and liquid wastes were mineralized by the "wet incineration" method developed by Yu. Kudenko. On their base the solutions were prepared which were used for cultivation of 5-aged wheat conveyer with the time step-interval of 14 days. Wheat was cultivated by hydroponics method on expanded clay aggregate. For partial demineralization of nutrient solution every two weeks after regular wheat harvesting 12 L of solution was withdrawn from the wheat irrigation tank and used for Salicornia europaea cultivation by the water culture method in a conveyer regime. The Salicornia europaea conveyer was represented by 2 ages with the time step-interval of 14 days. Resulting from repeating withdrawal of the solution used for wheat cultivation, sodium concentration in the wheat irrigation solution did not exceed 400 mg/l, and mineral elements contained in the taken solution were used for Salicornia europaea cultivation. The experiment lasted 7 months. Total wheat biomass productivity averaged 30.1 g*m-2*day-1 at harvest index equal to 36.8The work was carried out under support of SB RAS grant 132 and INTAS 05-1000008-8010

  12. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides.

    Science.gov (United States)

    Pellizzoni, Elena; Ravalico, Fabio; Scaini, Denis; Delneri, Ambra; Rizzo, Roberto; Cescutti, Paola

    2016-02-01

    Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.

  13. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports.

    Science.gov (United States)

    Chen, Hsiu-Mei; Lin, Chi-Jung; Jheng, Kai-Ru; Kosasih, Aline; Chang, Jia-Yaw

    2014-04-01

    The effect of graphene oxide (GO) on the surface fabrication of purple membranes (PM) containing photosensitive bacteriorhodopsin is first reported in this study. GO was initially modified with biotin and then coupled with oxidized avidin to generate a GO-avidin complex, which was subsequently used as a linker to immobilize biotinylated PM (b-PM) onto amine-functionalized supports. Indium-tin-oxide glass coated with the GO-avidin complex was more hydrophilic than the electrode coated only with oxidized avidin, and the successive b-PM adsorption yielded a 1.4-fold higher (410 nA/cm(2)) photoelectric activity. AFM analysis on mica revealed that the GO-avidin complex layer had less surface roughness and dissipation energy than the pure oxidized avidin linker layer. For subsequent b-PM fabrication, GO addition not only reduced the stacking of immobilized b-PM patches but also improved their interior compactness and surface smoothness. This study demonstrates a convenient way to introduce GO into PM fabrication technology to provide enhanced surface morphology and photoelectric activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Lipid domains in bicelles containing unsaturated lipids and cholesterol.

    Science.gov (United States)

    Cho, Hyo Soon; Dominick, Johnna L; Spence, Megan M

    2010-07-22

    We have created a stable bicelle system capable of forming micrometer-scale lipid domains that orient in a magnetic field, suitable for structural biology determination in solid-state NMR. The bicelles consisted of a mixture of cholesterol, saturated lipid (DMPC), and unsaturated lipid (POPC), a mixture commonly used to create domains in model membranes, along with a short chain lipid (DHPC) that allows formation of the bicelle phase. While maintaining a constant molar ratio of long to short chain lipids, q = ([POPC]+[DMPC])/[DHPC] = 3, we varied the concentrations of the unsaturated lipid, POPC, and cholesterol to observe the effects of the components on bicelle stability. Using (31)P solid-state NMR, we observed that unsaturated lipids (POPC) greatly destabilized the alignment of the membranes in the magnetic field, while cholesterol stabilized their alignment. By combining cholesterol and unsaturated lipids in the bicelles, we created membranes aligning uniformly in the magnetic field, despite very high concentrations of unsaturated lipids. These bicelles, with high concentrations of both cholesterol and unsaturated lipid, showed similar phase behavior to bicelles commonly used in structural biology, but aligned over a wider temperature range (291-314 K). Domains were observed by measuring time-dependent diffusion constants reflecting restricted diffusion of the lipids within micrometer-scale regions of the bicelles. Micron-scale domains have never been observed in POPC/DMPC/cholesterol vesicles, implying that bilayers in bicelles show different phase behavior than their counterparts in vesicles, and that bilayers in bicelles favor domain formation.

  15. Solid phase microextraction devices prepared on plastic support as potential single-use samplers for bioanalytical applications.

    Science.gov (United States)

    Reyes-Garcés, Nathaly; Bojko, Barbara; Hein, Dietmar; Pawliszyn, Janusz

    2015-10-06

    This study presents new thin-film solid phase microextraction (SPME) devices prepared on plastic as potential single-use samplers for bioanalysis. Polybutylene terephthalate (PBT) was selected as a support due to its well-known chemical resistance, low cost, and suitability as a material for different medical grade components. The herein proposed samplers were prepared by applying a hydrophilic-lipophilic balanced (HLB)-polyacrylonitrile (PAN) coating on rounded and flat PBT pieces previously sanded with regular sandpaper. SPME devices prepared on PBT were evaluated in terms of robustness, chemical stability, and possible interferences upon exposure to different solvents and matrixes. Rewarding results were found when these samplers were employed for the quantitative analysis of multiple doping substances in common biological matrixes such as urine, plasma, and whole blood. Finally, the proposed thin-film SPME devices made on a PBT were evaluated by conducting multiple extractions from whole blood and plasma using the Concept 96 system. Results showed that more than 20 extractions from plasma and whole blood can be performed without observed decreases in coating performance or peeling of the extraction phase from the plastic surface. These findings demonstrate the robustness of PAN-based coatings applied on such polymeric substrate and open up the possibility of introducing new alternatives and cost-effective materials as support to manufacture SPME biocompatible devices for a wide range of applications, particularly in the clinical field.

  16. Transesterification of used cooking oil over alkali metal (Li, Na, K supported rice husk silica as potential solid base catalyst

    Directory of Open Access Journals (Sweden)

    Noor Hindryawati

    2014-06-01

    Full Text Available Investigation was conducted on three alkali metals (Li, Na, and K supported by rice husk silica as catalysts for methyl esters production. A simple pseudo-heterogeneous transesterification process of used cooking oil with methanol was conducted to produce methyl esters using calcined alkali metal supported rice husk silica as a solid catalyst. Alkali metal silicate catalysts showed longer lasting activity than the traditional alkali catalysts. The optimum conditions for the process were: alkali metals silicate calcination temperature 500 °C, time 3 h; catalyst amount 3%; methanol to oil molar ratio 9:1; and a reaction temperature of 65 °C. The process was able to transesterify oil to methyl esters in the range of 96.5–98.2% in 1 h for all series. The catalyst is able to tolerant free fatty acid and moisture up to 1.25% and 1.75%, respectively. The catalyst was easily separated from the reaction mixture by filtration and able to reuse six times. The final product met the selected biodiesel fuel properties in accordance with European Standard (EN 14214.

  17. Chemistry by nanocatalysis: First example of a solid-supported RAPTA complex for organic reactions in aqueous medium

    KAUST Repository

    García-Garrido, Sergio E.

    2010-11-18

    A ruthenium-arene-PTA (RAPTA) complex has been supported for the first time on an inorganic solid, that is, silica-coated ferrite nanoparticles. The resulting magnetic material proved to be a general, very efficient and easily reusable catalyst for three synthetically useful organic transformations; selective nitrile hydration, redox isomerization of allylic alcohols, and heteroannulation of (Z)-enynols. The use of low metal concentration, environmentally friendly water as a reaction medium, with no use at all of organic solvent during or after the reactions, and microwaves as an alternative energy source renders the synthetic processes reported herein "truly" green and sustainable. RAPTA\\'s delight: A nano-RAPTA complex supported on silica-coated ferrite nanoparticles proved to be a general, very efficient and easily reusable catalyst for three synthetically useful organic transformations; selective nitrile hydration, redox isomerization of allylic alcohols, and heteroannulation of (Z)-enynols. The use of low metal concentrations, water as a reaction medium, and microwaves as an energy source renders these processes green and sustainable. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling and Predicting the Electrical Conductivity of Composite Cathode for Solid Oxide Fuel Cell by Using Support Vector Regression

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.

  19. Construction of supported lipid membrane modified piezoelectric biosensor for sensitive assay of cholera toxin based on surface-agglutination of ganglioside-bearing liposomes.

    Science.gov (United States)

    Chen, Huan; Hu, Qing-Yuan; Yue-Zheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2010-01-11

    A novel piezoelelctric biosensor has been developed for cholera toxin (CT) detection based on the analyte-mediated surface-agglutination of ganglioside (GM1)-functionalized liposomes. To achieve a CT-specific agglutination at the surface, the gold electrode is modified by a GM1-functionalized supported lipid membrane via spontaneous spread of the liposomes on a self-assembled monolayer of a long-chain alkanethiol. In the presence of CT, the GM1-incorporated liposomes in assay medium will rapidly specifically agglutinate at the electrode surface through the binding of CT to GM1 on the electrode surface and the liposome interface. This results in an enormous mass loading on the piezoelelctric crystal as well as a significant increase of density and viscosity at the interface, thereby generating a decrease in frequency of the piezoelelctric crystal. The combination of mass loading with interfacial change in the surface-agglutination reaction allows the developed piezoelelctric biosensor to show substantial signal amplification in response to the analyte CT. The detection limit can be achieved as low as 25 ng mL(-1) CT. This is the first demonstration on CT detection based on specific surface-agglutination of GM1-modified liposomes. The supported lipid layer based sensing interface can be prepared readily and renewably, making the developed technique especially useful for simple, reusable and sensitive determination of proteins.

  20. High-soluble-fiber foods in conjunction with a telephone-based, personalized behavior change support service result in favorable changes in lipids and lifestyles after 7 weeks.

    Science.gov (United States)

    Kris-Etherton, Penny M; Taylor, Denise Shaffer; Smiciklas-Wright, Helen; Mitchell, Diane C; Bekhuis, Tanja C; Olson, Beth H; Slonim, Amy B

    2002-04-01

    To evaluate whether an intervention of foods high in soluble fiber from psyllium and/or oats plus a telephone-based, personalized behavior change support service improves serum lipids and elicits cholesterol-managing lifestyle changes vs usual care. 7-week randomized, controlled intervention. 150 moderately hypercholesterolemic men and women, age range 25 to 70 years. The intervention group consumed 4 servings/day of high-fiber foods and had weekly telephone conversations with a personal coach who offered support and guidance in making lifestyle changes consistent with the National Cholesterol Education Program's (NCEP) cholesterol-lowering guidelines. The usual care group received a handout describing the NCEP Step-1 diet. Serum lipids and lipoproteins and self-reported lifestyle changes. For physiologic and dietary changes, mixed linear models for repeated measures were applied. Models were simplified using analysis of covariance where age in years was the covariate. Traditional general linear models were used to assess lifestyle changes. In the intervention group total cholesterol (TC) decreased 5.6%, low-density lipoprotein (LDL) cholesterol 7.1%, LDL/high-density lipoprotein (HDL) cholesterol ratio 5.6%, and triglycerides (TG) 14.2% (Pfiber intake (7.3%) than the usual care group (PCVD, pending results of long-term studies.

  1. Partition chromatography separation using trilaurylamine adsorbed on a solid support. Behaviour of the uranyl ion; Separations par chromatographie de partage au moyen de trilaurylamine adsorbee sur support solide comportement de l'ion uranyle

    Energy Technology Data Exchange (ETDEWEB)

    Petit-Bromet, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    The extractive phase is made up of a TLA solution in cyclohexanol adsorbed on a solid poly-trifluorochloroethylene support (sold commercially as voltalef or KEL-F). The mixture obtained is homogeneous and can be used for partition chromatography. For a solution of hydrochloric acid stronger than 1 M, the amine is quantitatively in the form of the chlorohydrate. The partition curve for U(VI) between the 2 N hydrochloric acid aqueous phase and the organic TLA phase has two steps which can be explained by assuming that two complexes exist in the organic phase. The equilibrium constants for extraction have been determined. The homogeneity of the voltalef-amine mixture has made it possible to build up a column with reproducible characteristics. Under the operational conditions adopted, the height of the equivalent theoretical plate is about 3 mm. A plot of all the curves giving the variations in the partition function of U(VI), Fe(III), Cu(II), Sr(II) and Cs(I) as a function of the hydrochloric acid concentration makes it possible to predict the conditions under which these elements may be separated. [French] La phase extractive est constituee d'une solution de TLA dans le cyclohexanol adsorbe sur un support solide de polytrifluorochloroethylene (commercialise sous le nom de voltalef ou KEL-F). Le melange obtenu est homogene et peut etre utilise en chromatographie de partage. Pour une concentration d'acide chlorhydrique en solution superieure a 1 M, l'amine est quantitativement sous forme de chlorhydrate. La courbe de partage de U(VI) entre la phase aqueuse d'acide chlorhydrique 2 N et la phase organique de TLA presente deux paliers que l'on peut interpreter en admettant l'existence de deux complexes en phase organique. Les constantes des equilibres d'extraction ont ete determinees. L'homogeneite du melange voltalef-amine a permis de constituer une colonne.dont les caracteristiques sont reproductibles. Dans les conditions de

  2. Preparation of magnetic solid lipid nanoparticles loaded with ibuprofen%布洛芬磁性固体脂质纳米粒的制备

    Institute of Scientific and Technical Information of China (English)

    吴冬冬

    2011-01-01

    背景:布洛芬因溶解度和溶血问题,目前仍无注射给药剂型上市.目的:将自制的磁流体载入固体脂质纳米粒中,制备布洛芬磁性固体脂质纳米粒.方法:以包封率为指标,用正交设计确定布洛芬固体脂质纳米粒的最优处方.以共沉淀法制备Fe3O4磁流体作为磁性材料,采用乳化分散-超声法,按照最优处方制备布洛芬磁性固体脂质纳米粒.观察其表面形态、粒径大小、分布和Zeta电位、饱和磁化强度、包封率及体外释放特征.结果与结论:通过正交实验得最优处方为布洛芬0.05 g、F-68 0.2 g、吐温80 0.05 g、卵磷脂0.1 g、单硬脂酸甘油酯0.05 g、磁流体2.5 mL.用该工艺和处方制备的布洛芬磁性固体脂质纳米粒粒子呈均匀球形;平均粒径、zeta电位为(122±16) nm和(-13.3±6.94) mV;药物包封率和Fe3O4铁包封率分别为84.15%和83.19%;布洛芬在给定介质中36 h释放较完全,符合制剂学性质要求.%BACKGROUND: There is no injected drug dosage form listing because of solubility and hemolysis problem of ibuprofen.OBJECTIVE: To put ferrofluid into magnetic solid lipid nanoparticles (MSLN) so as to prepare ibuprofen-MSLN.METHODS: The optimal formulation was obtained by orthogonal experiment design, based on the encapsulate efficiency (EE%).Fe3O4 magnetic fluid was perpared with co-precipitation method as magnetic materials. Ibuprofen-MSLN was finally acquired withthe method of emulsification dispersion-ultrasound. The appearance, the size distribution, Zeta potential, saturationmagnetization, EE% and in vitro release characteristics were observed.RESULTS AND CONCLUSION: The optimal formulation was ibuprofen 0.05 g, F-68 0.2 g, Tween 800.05 g, lecithin 0.1 g,glyceryl monostearate 0.05 g, ferrofluid 2.5 mL. The ibuprofen-MSLN was uniformly spherical; the average size and Zeta potentialwere (122±16) nm and (-13.3±6.94) mV, respectively; the EE% of ibuprofen and ferroso-ferric oxide were 84.15

  3. Greenhouse Gases Life Cycle Assessment (GHGLCA) as a decision support tool for municipal solid waste management in Iran.

    Science.gov (United States)

    Mahmoudkhani, Rouhallah; Valizadeh, Behzad; Khastoo, Hamidreza

    2014-01-01

    One of the most problems in developing countries is the integrated waste management and the effects on Greenhouse Gases (GHG) emission, Life Cycle Assessment (LCA) is used in this paper as a decision supporting tool in planning Municipal Solid Waste (MSW) managements. In this paper the EPA's Waste Reduction Model (WARM) that provide GHG emission factors for waste stream components that are based on life Cycle Inventory (LCI) framework were used and The MSW management methods comprised in seven scenarios. The amount of GHG which was generated from Iran's waste sector estimated about 17836079 Metric Tons of Carbon dioxide Equivalents (MT CO2e) in this study. The lowest amount of GHG was generated by LFG capture system with energy recovery (557635 MT CO2e), while Incineration of materials being sent to landfill (1756823 MT CO2e), Landfill Gas (LFG) capture system with flaring (2929150 MT CO2e) and Improved source reduction and recycling (4780278 MT CO2e) emitted fewer GHG than the other scenarios. Lowest levels of gross energy consumption occur in source reduction with recycling and composting (-89356240 Mega British Thermal Unit, M BTU), recycling and composting (-86772060 M BTU) as well as Improved source reduction with recycling and composting (-54794888 M BTU). It appears that recycling and composting each offer significant GHG emissions and energy consumption reductions (scenarios 4, 5 and 6). Upon of the GHG emission and energy consumption results concluded that improved source reduction and recycling scenario has been the Balanced and appropriate technology for handling the solid waste streams in municipalities.

  4. α-Synuclein insertion into supported lipid bilayers as seen by in situ X-ray reflectivity.

    Science.gov (United States)

    Hähl, Hendrik; Möller, Isabelle; Kiesel, Irena; Campioni, Silvia; Riek, Roland; Verdes, Dorinel; Seeger, Stefan

    2015-03-18

    Large aggregates of misfolded α-synuclein inside neuronal cells are the hallmarks of Parkinson's disease. The protein's natural function and its supposed toxicity, however, are believed to be closely related to its interaction with cell and vesicle membranes. Upon this interaction, the protein folds into an α-helical structure and intercalates into the membrane. In this study, we focus on the changes in the lipid bilayer caused by this intrusion. In situ X-ray reflectivity was applied to determine the vertical density structure of the bilayer before and after exposure to α-synuclein. It was found that the α-synuclein insertion, wild type and E57K variant, caused a reduction in bilayer thickness. This effect may be one factor in the membrane pore formation ability of α-synuclein.

  5. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dept. de Farmacia y Quimica Medicinal; Monge, Antonio [Universidad de Navarra, Pamplona (Spain). Centro de Investigacion en Farmacobiologia Aplicada. Unidad de Investigacion y Desarrollo de Medicamentos

    2011-07-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  6. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products.

    Science.gov (United States)

    Dulf, Francisc Vasile; Vodnar, Dan Cristian; Socaciu, Carmen

    2016-10-15

    Evolutions of phenolic contents and antioxidant activities during solid-state fermentation (SSF) of plum pomaces (from the juice industry) and brandy distillery wastes with Aspergillus niger and Rhizopus oligosporus were investigated. The effect of fermentation time on the oil content and major lipid classes in the plum kernels was also studied. Results showed that total phenolic (TP) amounts increased by over 30% for SSF with Rhizopus oligosporus and by >21% for SSF with A. niger. The total flavonoid contents presented similar tendencies to those of the TPs. The free radical scavenging activities of methanolic extracts were also significantly enhanced. The HPLC-MS analysis showed that quercetin-3-glucoside was the major phenolic compound in both fermented plum by-products. The results also demonstrated that SSF not only helped to achieve higher lipid recovery from plum kernels, but also resulted in oils with better quality attributes (high sterol ester and n-3 PUFA-rich polar lipid contents). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    2016-05-15

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersive X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.

  8. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  9. Reconstitution of homomeric GluA2(flop) receptors in supported lipid membranes: functional and structural properties.

    Science.gov (United States)

    Baranovic, Jelena; Ramanujan, Chandra S; Kasai, Nahoko; Midgett, Charles R; Madden, Dean R; Torimitsu, Keiichi; Ryan, John F

    2013-03-22

    AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2(flop) receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain.

  10. Using magnetic levitation to distinguish atomic-level differences in chemical composition of polymers, and to monitor chemical reactions on solid supports.

    Science.gov (United States)

    Mirica, Katherine A; Phillips, Scott T; Shevkoplyas, Sergey S; Whitesides, George M

    2008-12-31

    This communication describes a density-based method that uses magnetic levitation for monitoring solid-supported reactions and for distinguishing differences in chemical composition of polymers. The method is simple, rapid, and inexpensive and is similar to thin-layer chromatography (TLC; for solution-phase chemistry) in its potential for monitoring reactions in solid-phase chemistry. The technique involves levitating a sample of beads (taken from a reaction mixture) in a cuvette containing a paramagnetic solution (e.g., GdCl(3) dissolved in H(2)O) positioned between two NdFeB magnets. The vertical position at which the beads levitate corresponds to the density of the beads and correlates with the progress of a chemical reaction on a solid support. The method is particularly useful for monitoring the kinetics of reactions occurring on polymer beads.

  11. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction

    Science.gov (United States)

    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Wang, W. J.; Yang, T. Z.; Liu, J.; Zhang, R.; Fan, D. Y.; Wang, Y. G.; Lei, M.

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon. PMID:26381266

  12. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; R. C. O' Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  13. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  14. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; Ghellinck, Alexis de; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of grape and accordingly in red wine, has significant health effects such as cardiovascular protection and anti-oxidation. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. Most probably, the working...... mechanism is unspecific. However, there are only few biophysical studies regarding the impact of resveratrol on lipid membranes. Here, results from a neutron reflectometry investigation on solid supported di-palmitoyl-phosphatidyl-choline (DPPC) bilayers with incorporated resveratrol are presented. The data...

  15. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; Ghellinck, Alexis de; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of red grape and accordingly in their wines, is hold liable for health impacts such as cardiovascular protection and anti-oxidative effect. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. However, basic...... knowledge on its probable working mechanism is rare. In this biophysical study, neutron reflectometry was used to investigate the direct impact of resveratrol on lipid membranes with solid supported bilayers. When interacting with di- palmitoyl-phosphatidyl-choline (DPPC) bilayers, resveratrol accumulates...

  16. A study of tin dioxide and antimony tetroxide supported vanadium oxide catalysts by solid-state 51V and 1H NMR techniques.

    Science.gov (United States)

    Reddy, B M; Mastikhin, V M

    1992-12-01

    A series of vanadia catalysts with various V2O5 loadings supported on SnO2 and alpha-Sb2O4 are investigated by the application of X-ray diffraction and solid-state 51V and 1H NMR techniques. XRD results show no evidence for the formation of a crystalline vanadia phase on both supports. However, the 51V NMR spectra of the catalysts reveal the existence of two types of vanadia species on the surface of the support: one due to a dispersed vanadia phase at lower vanadia loadings and the other due to a crystalline vanadia phase at higher vanadium content. The quantity of the dispersed vanadia phase, however, depends on the nature of the support material. The 1H NMR results provide evidence for the existence or non-existence of a metal oxide support interaction through the support surface hydroxyl groups.

  17. Consumption of a solid fat rich in lauric acid results in a more favorable serum lipid profile in healthy men and women than consumption of a solid fat rich in trans-fatty acids

    NARCIS (Netherlands)

    Roos, de N.M.; Schouten, E.G.; Katan, M.B.

    2001-01-01

    Solid fats are used in food manufacturing to provide texture and firmness to foods. Such fats are rich in either saturated or trans-fatty acids, both of which increase the risk of coronary heart disease. Epidemiological and experimental studies suggest that trans-fatty acids increase risk more than

  18. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  19. Engineering Lipid Bilayer Membranes for Protein Studies

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton

    2013-01-01

    Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908

  20. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries.

    Science.gov (United States)

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-09-03

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10(-4) S cm(-1)) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety.

  1. Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds in Dermestes maculatus and Dermestes ater lipids.

    Science.gov (United States)

    Cerkowniak, Magdalena; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek

    2017-07-19

    A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family. Copyright © 2017 John Wiley & Sons, Ltd.

  2. A New Nano Silica Gel Supported by Thionyl Chloride as a Solid Acid for the Efficient Diazotization of Aniline Derivatives: Application and Synthesis of Azo Dyes

    Directory of Open Access Journals (Sweden)

    Mohammad Mirjalili

    2012-01-01

    Full Text Available A new nano silicagel supported by thionyl chloride as a solid acid was synthesized and used as a increasing the production yield of dye to affect the efficient diazotization of arylamines. The diazonium salts thus obtained were coupled, using standard experimental procedures, to anilines and naphthols to afford the requisite azo dyes in good yield. The diazotization and subsequent azo-coupling generated the related azo dyes at low temperature in short reaction times with a simple experimental procedure.

  3. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Ni, De Wei; Charlas, Benoit; Kwok, Kawai

    2016-01-01

    Solid Oxide Fuel Cells are subjected to significant stresses during production and operation. The various stress-generating conditions impose strength requirements on the cell components, and thus the mechanical properties of the critical load bearing materials at relevant operational conditions ...

  4. Solid-supported enzymatic synthesis of pectic oligogalacturonides and their analysis by MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Guillaumie, Fanny; Sterling, J.D.; Jensen, K.J.

    2003-01-01

    a disulfide-containing cleavable linker, were prepared. The OGAs (degrees of polymerization of 13 and 14) were efficiently immobilized through the reducing end via formation of an oxime linkage. These OGA-derivatized matrices were subsequently employed in novel solid-phase enzymatic reactions, with the pectin...

  5. TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers.

    Science.gov (United States)

    Matysik, Artur; Kraut, Rachel S

    2014-05-01

    Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results

  6. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar, E-mail: p.saha@iitg.ac.in

    2015-12-15

    Highlights: • Simultaneous removal of two heavy metals lead and cadmium. • Conversion of liquid waste to solid precipitation. • Precipitation facilitates the metals transportation through LM. • Solidification of liquid waste minimizes the final removal of waste. - Abstract: Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of “sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil” was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na{sub 2}CO{sub 3}) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals.

  7. Hormones regulating lipid metabolism and plasma lipids in childhood obesity.

    Science.gov (United States)

    Gil-Campos, M; Cañete, R; Gil, A

    2004-11-01

    To review the mechanisms by which leptin, insulin and adiponectin influence lipid metabolism and plasma lipids in obesity, as well as to describe the associations between these hormones in prepubertal children. Revision of relevant papers published in the last 5 y related to the interactions of leptin, insulin and adiponectin, with special emphasis on those reporting potential mechanisms by which these hormones regulate lipid metabolism and plasma lipids. We also provide original results concerning the relationships found between plasma lipids and leptin, and insulin and adiponectin in prepubertal obese children. Recent data in the literature shed new light to explain the effects of both leptin and adiponectin in the regulation of lipid metabolism in peripheral tissues. Activation of the AMP-dependent kinase pathway and subsequent increased fatty acid oxidation seems to be the main mechanism of action of these hormones in the regulation of lipid metabolism. In addition, we have found that insulin plasma levels are positively associated to leptin but negatively correlated with adiponectin in obese children. Adiponectin is negatively associated to plasma lipid markers of metabolic syndrome but positively related to HDL-cholesterol, whereas insulin and leptin show opposite patterns. These results support the effect of adiponectin in increasing insulin sensitivity and decreasing plasma triglycerides. Leptin, insulin and adiponectin are associated hormones that regulate lipid metabolism in childhood. Adiponectin appears to be the missing link to explain the alterations in lipid metabolism and plasma lipids seen in obesity.

  8. Solid-State NMR and DFT Studies on the Formation of Well-Defined Silica-Supported Tantallaaziridines: From Synthesis to Catalytic Application

    KAUST Repository

    Hamzaoui, Bilel

    2016-01-27

    Single-site, well-defined, silica-supported tantallaaziridine intermediates [≡Si-O-Ta(η2-NRCH2)(NMe2)2] [R=Me (2), Ph (3)] were prepared from silica-supported tetrakis(dimethylamido)tantalum [≡Si-O-Ta(NMe2)4] (1) and fully characterized by FTIR spectroscopy, elemental analysis, and 1H,13C HETCOR and DQ TQ solid-state (SS) NMR spectroscopy. The formation mechanism, by β-H abstraction, was investigated by SS NMR spectroscopy and supported by DFT calculations. The C-H activation of the dimethylamide ligand is favored for R=Ph. The results from catalytic testing in the hydroaminoalkylation of alkenes were consistent with the N-alkyl aryl amine substrates being more efficient than N-dialkyl amines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Bozorgmehri, S. [School of Mechanical Engineering, College of Engineering, University of Tehran, North Kargar at Jalal-Exp Way, Tehran (Iran, Islamic Republic of); Renewable Energy Department, Niroo Research Institute (NRI), End of Dadman Blvd., Shahrak Ghodes, Tehran (Iran, Islamic Republic of); Hamedi, M. [School of Mechanical Engineering, College of Engineering, University of Tehran, North Kargar at Jalal-Exp Way, Tehran (Iran, Islamic Republic of)

    2012-02-15

    An artificial neural network (ANN) and a genetic algorithm (GA) are employed to model and optimize cell parameters to improve the performance of singular, intermediate-temperature, solid oxide fuel cells (IT-SOFCs). The ANN model uses a feed-forward neural network with an error back-propagation algorithm. The ANN is trained using experimental data as a black-box without using physical models. The developed model is able to predict the performance of the SOFC. An optimization algorithm is utilized to select the optimal SOFC parameters. The optimal values of four cell parameters (anode support thickness, anode support porosity, electrolyte thickness, and functional layer cathode thickness) are determined by using the GA under different conditions. The results show that these optimum cell parameters deliver the highest maximum power density under different constraints on the anode support thickness, porosity, and electrolyte thickness. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Reduction in lateral lipid mobility of lipid bilayer membrane by atmospheric pressure plasma irradiation

    Science.gov (United States)

    Suda, Yoshiyuki; Tero, Ryugo; Yamashita, Ryuma; Yusa, Kota; Takikawa, Hirofumi

    2016-03-01

    Plasma medicine is an emerging research field in which various applications of electrical discharge, especially in the form of nonequilibrium plasma at atmospheric pressure, are examined, for example, the application of plasma to biological targets for various purposes such as selective killing of tumor cells and blood stanching. We have focused on the behavior of an artificial cell membrane system at the solid-liquid interface. To evaluate the lateral lipid mobility, we measured the diffusion coefficient of the supported lipid bilayer (SLB) composed of dioleoylphosphatidylcholine with fluorescence recovery after photobleaching by confocal laser scanning microscopy. It was found that the diffusion coefficient was decreased by plasma irradiation and that the diffusion coefficient decreasing rate proceeded with increasing plasma power. We investigated the effects of stimulation with an equilibrium chemical, H2O2, on the SLB and confirmed that the diffusion coefficient did not change at least up to a H2O2 concentration of 5 mM. These results indicate that transient active species generated by plasma play critical roles in the reduct