WorldWideScience

Sample records for solid state surfaces

  1. Tritium contaminated surface monitoring with a solid - state device

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2004-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counters and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  2. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  3. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  4. Chemical imaging and solid state analysis at compact surfaces using UV imaging

    DEFF Research Database (Denmark)

    Wu, Jian X.; Rehder, Sönke; van den Berg, Frans

    2014-01-01

    and excipients in a non-invasive way, as well as mapping the glibenclamide solid state form. An exploratory data analysis supported the critical evaluation of the mapping results and the selection of model parameters for the chemical mapping. The present study demonstrated that the multi-wavelength UV imaging......Fast non-destructive multi-wavelength UV imaging together with multivariate image analysis was utilized to visualize distribution of chemical components and their solid state form at compact surfaces. Amorphous and crystalline solid forms of the antidiabetic compound glibenclamide...

  5. Surface acoustic wave solid-state rotational micromotor

    Science.gov (United States)

    Shilton, Richie J.; Langelier, Sean M.; Friend, James R.; Yeo, Leslie Y.

    2012-01-01

    Surface acoustic waves (SAWs) are used to drive a 1 mm diameter rotor at speeds exceeding 9000 rpm and torque of nearly 5 nNm. Unlike recent high-speed SAW rotary motors, however, the present design does not require a fluid coupling layer but interestingly exploits adhesive stiction as an internal preload, a force usually undesirable at these scales; with additional preloads, smaller rotors can be propelled to 15 000 rpm. This solid-state motor has no moving parts except for the rotor and is sufficiently simple to allow integration into miniaturized drive systems for potential use in microfluidic diagnostics, optical switching and microrobotics.

  6. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  7. Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations.

    Science.gov (United States)

    Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J

    2017-11-07

    Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.

  8. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

    Science.gov (United States)

    Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan

    2017-02-01

    We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.

  9. Rydberg-state reionization of multiply charged ions escaping from solid surfaces

    International Nuclear Information System (INIS)

    Nedeljkovic, Lj.D.; Nedeljkovic, N.N.

    2003-01-01

    Reionization rates of Rydberg states (n>>1 and l=0, 1, and 2) of multiply charged ionic projectiles escaping solid surfaces are calculated. These rates are obtained in an analytic form as a function of the ion-surface distance R. A phenomenological model of the reionization process, based on two-state quantum dynamics, is adopted for the vicinity of the potential barrier top. The results of calculations show that ionization rates for different Rydberg states are strictly localized and relatively separated. Universality of the reionization rate as a function of the scaling parameter α, describing the turning point configurations, is demonstrated. The reionization is discussed within the framework of a nonresonant population-reionization process at intermediate ionic velocities (v∼1 a.u.). The influence of reionization on the population of ionic Rydberg states is expressed in terms of a renormalized neutralization rate. It is demonstrated that the reionization effect significantly changes the population curves for all Rydberg states. The population curves obtained correlate with beam-foil experimental data concerning the S VI, Cl VII, and Ar VIII ions

  10. Solid state division progress report, period ending February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  11. Solid state division progress report, period ending February 29, 1980

    International Nuclear Information System (INIS)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials

  12. Surface-Induced Frustration in Solid State Polymorphic Transition of Native Cellulose Nanocrystals.

    Science.gov (United States)

    Salminen, Reeta; Baccile, Niki; Reza, Mehedi; Kontturi, Eero

    2017-06-12

    The presence of an interface generally influences crystallization of polymers from melt or from solution. Here, by contrast, we explore the effect of surface immobilization in a direct solid state polymorphic transition on individual cellulose nanocrystals (CNCs), extracted from a plant-based origin. The conversion from native cellulose I to cellulose III crystal occurred via a host-guest inclusion of ethylene diamine inside the crystal. A 60% reduction in CNC width (height) in atomic force microscopy images suggested that when immobilized on a flat modified silica surface, the stresses caused by the inclusion or the subsequent regeneration resulted in exfoliation, hypothetically, between the van der Waals bonded sheets within the crystal. Virtually no changes in dimensions were visible when the polymorphic transition was performed to nonimmobilized CNCs in bulk dispersion. With reservations and by acknowledging the obvious dissimilarities, the exfoliation of cellulose crystal sheets can be viewed as analogous to exfoliation of 2D structures like graphene from a van der Waals stacked solid. Here, the detachment is triggered by an inclusion of a guest molecule inside a host cellulose crystal and the stresses caused by the firm attachment of the CNC on a solid substrate, leading to detachment of molecular sheets or stacks of sheets.

  13. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  14. Solid State Division Progress Report for period ending March 31, 1986

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials

  15. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals.

    Science.gov (United States)

    Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C

    2017-01-27

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .

  16. Solid State Division Progress Report for period ending March 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials. (DLC)

  17. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  18. Solid State Division progress report, September 30, 1981

    International Nuclear Information System (INIS)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed

  19. Monitoring of multiple solid-state transformations at tablet surfaces using multi-series near-infrared hyperspectral imaging and multivariate curve resolution

    DEFF Research Database (Denmark)

    Alexandrino, Guilherme L; Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel

    2015-01-01

    The assessment of the solid-state stability of active pharmaceutical ingredient (API) and/or excipients in solid dosage forms during manufacturing and storage is mandatory for safeguarding quality of the final products. In this work, the solid-state transformations in tablets prepared as blends...... of piroxicam monohydrate (API), polyvinylpyrrolidone and the lactose forms monohydrate or anhydrate were studied when the tablets were exposed to the 23-120°C range. Multi-series near-infrared hyperspectral images were obtained from the surface of each sample for unveiling the local evolution of the solid......-state transformations. The preprocessed spectra from the images (dataset) were arranged in augmented matrices, according to the composition of the tablets, and the profile of the overlapped compounds (relative concentration) along the solid-state transformations in the pixels was resolved by using multivariate curve...

  20. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Tao, N [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hong, Y [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Lu, J [LASMIS, University of Technology of Troyes, 10000, Troyes (France); Lu, K [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2005-11-21

    Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

  1. Solid lubricants and surfaces

    CERN Document Server

    Braithwaite, E R

    1964-01-01

    Solid Lubricants and Surfaces deals with the theory and use of solid lubricants, particularly in colloidal form. Portions of this book are devoted to graphite and molybdenum disulfides, which are widely used solid lubricants in colloidal form. An extensive literature on the laboratory examination of hundreds of solids as potential lubricants is also provided in this text. Other topics discussed include the metals and solid lubricants; techniques for examining surfaces; other solid lubricants; metal shaping; and industrial uses of solid-lubricant dispersions. This publication is beneficial to e

  2. Energy-saving approaches to solid state street lighting

    Science.gov (United States)

    Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras

    2011-10-01

    We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.

  3. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  4. Solid-State Division progress report for period ending March 31, 1983

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials)

  5. Solid-State Division progress report for period ending March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

  6. Solid State Division: Progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

  7. Solid State Division: Progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies

  8. Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.; Wheeler, Lance M.; Anderson, Nicholas C.

    2017-01-01

    The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1 H– 29 Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1 H– 29 Si HETCOR and dipolar 2D 1 H– 1 H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Instead the 2D NMR spectra illustrate that there is large distribution of 1 H and 29 Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1 H– 29 Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29 Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3 ), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1 H and 29 Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.

  9. Solid State Division progress report for period ending September 30, 1984

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials

  10. Solid State Division progress report for period ending September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  11. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  12. Effect of Equal Channel Angular Pressing on the Surface Roughness of Solid State Recycled Aluminum Alloy 6061 Chips

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2017-01-01

    Full Text Available Solid state recycling through hot extrusion is a promising technique to recycle machining chips without remelting. Furthermore, equal channel angular pressing (ECAP technique coupled with the extruded recycled billet is introduced to enhance the mechanical properties of recycled samples. In this paper, the surface roughness of solid state recycled aluminum alloy 6061 turning chips was investigated. Aluminum chips were cold compacted and hot extruded under an extrusion ratio (ER of 5.2 at an extrusion temperature (ET of 425°C. In order to improve the properties of the extruded samples, they were subjected to ECAP up to three passes at room temperature using an ECAP die with a channel die angle (Φ of 90°. Surface roughness (Ra and Rz of the processed recycled billets machined by turning was investigated. Box-Behnken experimental design was used to investigate the effect of three machining parameters (cutting speed, feed rate, and depth of cut on the surface roughness of the machined specimens for four materials conditions, namely, extruded billet and postextrusion ECAP processed billets to one, two, and three passes. Quadratic models were developed to relate the machining parameters to surface roughness, and a multiobjective optimization scheme was conducted to maximize material removal rate while maintaining the roughness below a preset practical value.

  13. Porous Organic Nanolayers for Coating of Solid-state Devices

    Science.gov (United States)

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  14. Porous Organic Nanolayers for Coating of Solid-state Devices

    Directory of Open Access Journals (Sweden)

    Asghar Waseem

    2011-05-01

    Full Text Available Abstract Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.

  15. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  16. Probing molecular dynamics of metal borohydrides on the surface of mesoporous scaffolds by multinuclear high resolution solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Son-Jong, E-mail: Sonjong@cheme.caltech.edu [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Hyun-Sook [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); To, Magnus [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Young-Su; Cho, Young Whan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, Hyungkeun; Kim, Chul [Department of Chemistry, Hannam University, Daejeon 305-811 (Korea, Republic of)

    2015-10-05

    Graphical abstract: In situ variable temperature multinuclear solid state NMR allows to probe surface wetting, diffusivity, and confinement of metal borohydrides into nanopores. - Abstract: Understanding of surface interactions between borohydride molecules and the surfaces of porous supports have gained growing attention for successful development of nano-confinement engineering. By use of in situ variable temperature (VT) magic angle spinning (MAS) NMR, molecular mobility changes of LiBH{sub 4} crystalline solid has been investigated in the presence of silica based and carbonaceous surfaces. Spin–spin J-coupling of {sup 1}H–{sup 11}B in LiBH{sub 4} was monitored in series of VT NMR spectra to probe translational mobility of LiBH{sub 4} that appeared to be greatly enhanced upon surface contact. Such enhanced diffusivity was found to be effective in the formation of solid solution and co-confinement with other metal borohydrides. Co-confinement of LiBH{sub 4}–Ca(BH{sub 4}){sub 2} mixture was demonstrated at temperature as low as 100 °C, much lower than the reported bulk eutectic melting temperature. The discovery adds a novel property of LiBH{sub 4} that has been proven to be highly versatile in many energy related applications.

  17. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  18. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  19. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  20. Proceedings of the DAE solid state physics symposium. V. 51

    International Nuclear Information System (INIS)

    Bhushan, K.G.; Gupta, S.K.

    2006-01-01

    DAE Solid State Physics Symposium, sponsored by the Board of Research in Nuclear Sciences, Department of Atomic Energy, is organized annually. The topics covered are phase transitions, soft condensed matter, nano-materials, experimental techniques, instrumentation and solid state devices, superconductivity, magnetism, electronic structure and phonons, semiconductor physics, transport properties, surface - interface and thin films, liquids, glasses and amorphous systems, etc. Papers relevant to INIS are indexed separately

  1. Spring meeting of the DPG Working Group 'Solid state physics'

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains abstracts of the contributions to the Spring Meeting of the Solid State Physics Section with the topics dielectric solids, thin films, dynamics and statistical physics, semiconductor physics, magnetism, metal physics, surface physics, low temperature physics, vacuum physics and engineering, chemical physics. (MM)

  2. A Solid-State Deuterium NMR and SFG Study of the Side Chain Dynamics of Peptides Adsorbed onto Surfaces

    Science.gov (United States)

    Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.

    2011-01-01

    The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755

  3. How drops start sliding over solid surfaces

    Science.gov (United States)

    Gao, Nan; Geyer, Florian; Pilat, Dominik W.; Wooh, Sanghyuk; Vollmer, Doris; Butt, Hans-Jürgen; Berger, Rüdiger

    2018-02-01

    It has been known for more than 200 years that the maximum static friction force between two solid surfaces is usually greater than the kinetic friction force--the force that is required to maintain the relative motion of the surfaces once the static force has been overcome. But the forces that impede the lateral motion of a drop of liquid on a solid surface are not as well characterized, and there is a lack of understanding about liquid-solid friction in general. Here, we report that the lateral adhesion force between a liquid drop and a solid can also be divided into a static and a kinetic regime. This striking analogy with solid-solid friction is a generic phenomenon that holds for liquids of different polarities and surface tensions on smooth, rough and structured surfaces.

  4. Unveiling multiple solid-state transitions in pharmaceutical solid dosage forms using multi-series hyperspectral imaging and different curve resolution approaches

    DEFF Research Database (Denmark)

    Alexandrino, Guilherme L; Amigo Rubio, Jose Manuel; Khorasani, Milad Rouhi

    2017-01-01

    Solid-state transitions at the surface of pharmaceutical solid dosage forms (SDF) were monitored using multi-series hyperspectral imaging (HSI) along with Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) and Parallel Factor Analysis (PARAFAC and PARAFAC2). First, the solid-stat...

  5. Study of gadolinia-doped ceria solid electrolyte surface by XPS

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2009-01-01

    Gadolinia-doped ceria (CGO) is an important material to be used as electrolyte for solid oxide fuel cell for intermediate temperature operation. Ceria doped with 10 mol% gadolinia (Ce 0.9 Gd 0.1 O 1.95 ) was prepared by conventional solid state synthesis and found to be single phase by room temperature X-ray diffraction (XRD). The chemical states of the surface of the prepared sample were analyzed by X-ray photoelectron spectroscopy (XPS). Though Gd was present in its characteristic chemical state, Ce was found in both Ce 4+ and Ce 3+ states. Presence of Ce 3+ state was ascribed to the differential yield of oxygen atoms in the sputtering process

  6. Photochemistry on solid surfaces

    CERN Document Server

    Matsuura, T

    1989-01-01

    The latest developments in photochemistry on solid surfaces, i.e. photochemistry in heterogeneous systems, including liquid crystallines, are brought together for the first time in a single volume. Distinguished photochemists from various fields have contributed to the book which covers a number of important applications: molecular photo-devices for super-memory, photochemical vapor deposition to produce thin-layered electronic semiconducting materials, sensitive optical media, the control of photochemical reactions pathways, etc. Photochemistry on solid surfaces is now a major field and this

  7. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  8. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  9. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR.

    Science.gov (United States)

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J

    2015-12-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  11. Solid and liquid Equation of state for initially porous aluminum where specific heat is constant

    Science.gov (United States)

    Forbes, Jerry W.; Lemar, E. R.; Brown, Mary

    2011-06-01

    A porous solid's initial state is off the thermodynamic surface of the non-porous solid to start with but when pressure is high enough to cause total pore collapse or crush up, then the final states are on the condensed matter thermodynamic surfaces. The Hugoniot for the fully compacted solid is above the Principle Hugoniot with pressure, temperature and internal energy increased at a given v. There are a number of ways to define this hotter Hugoniot, which can be referenced to other thermodynamic paths on this thermodynamic surface. The choice here was to use the Vinet isotherm to define a consistent thermodynamic surface for the solid and melt phase of 6061 aluminum where specific heat is constant for the P-v-T space of interest. Analytical equations are developed for PH and TH.

  12. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  13. A facile method to prepare "green" nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters.

    Science.gov (United States)

    Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T

    2017-12-15

    Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit

    Science.gov (United States)

    Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas

    2018-04-01

    Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

  15. Drug-Excipient Interactions in the Solid State: The Role of Different Stress Factors.

    Science.gov (United States)

    Gressl, Corinna; Brunsteiner, Michael; Davis, Adrian; Landis, Margaret; Pencheva, Klimentina; Scrivens, Garry; Sluggett, Gregory W; Wood, Geoffrey P F; Gruber-Woelfler, Heidrun; Khinast, Johannes G; Paudel, Amrit

    2017-12-04

    Understanding properties and mechanisms that govern drug degradation in the solid state is of high importance to ensure drug stability and safety of solid dosage forms. In this study, we attempt to understand drug-excipient interactions in the solid state using both theoretical and experimental approaches. The model active pharmaceutical ingredients (APIs) under study are carvedilol (CAR) and codeine phosphate (COP), which are known to undergo esterification with citric acid (CA) in the solid state. Starting from the crystal structures of two different polymorphs of each compound, we calculated the exposure and accessibility of reactive hydroxyl groups for a number of relevant crystal surfaces, as well as descriptors that could be associated with surface stabilities using molecular simulations. Accelerated degradation experiments at elevated temperature and controlled humidity were conducted to assess the propensity of different solid forms of the model APIs to undergo chemical reactions with anhydrous CA or CA monohydrate. In addition, for CAR, we studied the solid state degradation at varying humidity levels and also under mechano-activation. Regarding the relative degradation propensities, we found that variations in the exposure and accessibility of molecules on the crystal surface play a minor role compared to the impact of molecular mobility due to different levels of moisture. We further studied drug-excipient interactions under mechano-activation (comilling of API and CA) and found that the reaction proceeded even faster than in physical powder mixtures kept at accelerated storage conditions.

  16. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    Science.gov (United States)

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  17. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  18. Surface-electronic-state effects in electron emission from the Be(0001) surface

    International Nuclear Information System (INIS)

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-01-01

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  19. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C. D. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Silkin, V. M. [Donostia International Physics Center, E-20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, Apartado 1072, E-20080 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain)

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  20. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  1. Effects of QD surface coverage in solid-state PbS quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.; Brennan, Thomas P.; Trejo, Orlando; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Lead sulfide quantum dots (QDs) were grown in situ on nanoporous TiO 2 by successive ion layer adsorption and reaction (SILAR) and by atomic layer deposition (ALD), to fabricate solid-state quantum-dot sensitized solar cells (QDSSCs). With the ultimate goal of increasing QD surface coverage, this work compares the impact of these two synthetic routes on the light absorption and electrical properties of devices. A higher current density was observed in the SILAR-grown QD devices under reverse bias, as compared to ALD-grown QD devices, attributed to injection problems of the lower-band-gap QDs present in the SILAR-grown QD device. To understand the effects of QD surface coverage on device performance, particularly interfacial recombination, electron lifetimes were measured for varying QD deposition cycles. Electron lifetimes were found to decrease with increasing SILAR cycles, indicating that the expected decrease in recombination between electrons in the TiO2 and holes in the hole-transport material, due to increased QD surface coverage, is not the dominant effect of increased deposition cycles. © 2013 IEEE.

  2. Effects of QD surface coverage in solid-state PbS quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-06-01

    Lead sulfide quantum dots (QDs) were grown in situ on nanoporous TiO 2 by successive ion layer adsorption and reaction (SILAR) and by atomic layer deposition (ALD), to fabricate solid-state quantum-dot sensitized solar cells (QDSSCs). With the ultimate goal of increasing QD surface coverage, this work compares the impact of these two synthetic routes on the light absorption and electrical properties of devices. A higher current density was observed in the SILAR-grown QD devices under reverse bias, as compared to ALD-grown QD devices, attributed to injection problems of the lower-band-gap QDs present in the SILAR-grown QD device. To understand the effects of QD surface coverage on device performance, particularly interfacial recombination, electron lifetimes were measured for varying QD deposition cycles. Electron lifetimes were found to decrease with increasing SILAR cycles, indicating that the expected decrease in recombination between electrons in the TiO2 and holes in the hole-transport material, due to increased QD surface coverage, is not the dominant effect of increased deposition cycles. © 2013 IEEE.

  3. Templated Solid-State Dewetting of Thin Silicon Films.

    Science.gov (United States)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-11-01

    Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solid State Division progress report for period ending March 31, 1992

    International Nuclear Information System (INIS)

    Green, P.H.; Hinton, L.W.

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation

  5. Solid State Division progress report for period ending March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. (eds.)

    1992-09-01

    During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

  6. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    Science.gov (United States)

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  8. Dynamics at Solid State Surfaces and Interfaces, Volume 1 Current Developments

    CERN Document Server

    Bovensiepen, Uwe; Wolf, Martin

    2010-01-01

    This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

  9. Surface functionalization of solid state ultra-high molecular weight polyethylene through chemical grafting

    Science.gov (United States)

    Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir

    2015-12-01

    The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.

  10. Reactive solid surface morphology variation via ionic diffusion.

    Science.gov (United States)

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  11. Ion desorption from solid surfaces under slow (KeV) and fast (MeV) ion sputtering. Influence of the charge state and of the incidence angle on the input channel

    International Nuclear Information System (INIS)

    Joret, H.

    1990-06-01

    Solid surfaces of organic and inorganic materials have been bombarded by fast heavy ions (several MeV). It is shown that the charge state of the projectile has a strong influence on the atomic and molecular ion desorption yield. Experimental studies proved that molecular ions can be emitted intact from deep layers underneath the surface (volume emission) with the existence of a crater emission. On the other hand light ions like H(+), H(+)-2, H(+)-3 are emitted from the surface of the solid in a time around 10 -16 second. The H(+) depends on the incident charge state g-i. When using slow ions (keV) the same dependence was observed for the first time and compared to the fast ion results. The equilibrum charge state of fast ions passing through solids was measured. The influence of the angle of incidence was investigated. Langmuir-Blodgett films of fatty acid were used. A geometrical model is developed for the 50 angstroms layer [fr

  12. A simple one step solid state synthesis of nanocrystalline ferromagnetic α-Fe{sub 2}O{sub 3} with high surface area and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shete, Madhavi D.; Fernandes, J.B., E-mail: julio@unigoa.ac.in

    2015-09-01

    α-Fe{sub 2}O{sub 3} is obtained by a simple route involving solvent free solid state decomposition of ferric nitrate in presence of urea. The samples were characterized by X-ray diffraction, infra-red and UV–Vis spectral studies, TEM, BET surface area measurements and TG–DTA analysis. Magnetic measurements were done from M–H hysteresis profiles. By changing the ratio of ferric nitrate and urea, α-phase was obtained in all the synthesized samples and was accompanied with increase in ferromagnetic behavior. The samples showed good photocatalytic activity for decomposition of H{sub 2}O{sub 2} and could be correlated with surface area values. The results were interpreted in terms of activity for the heterogeneous photo-Fenton reaction. - Highlights: • α-Fe{sub 2}O{sub 3} were synthesized by a solid state method. • These oxides showed large surface area and ferromagnetic behavior. • The catalysts showed good heterogeneous photo-Fenton activity.

  13. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  14. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  15. Solid-phase equilibria on Pluto's surface

    Science.gov (United States)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  16. Study of strontium- and magnesium-doped lanthanum gallate solid electrolyte surface by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    The chemical states of the surface of the oxygen ion conducting solid electrolyte La 0.9 Sr 0.1 Ga 0.85 Mg 0.15 O 3-δ (LSGM 1015) as prepared by solid-state synthesis was analyzed by X-ray photoelectron spectroscopy. It was found that adventitious carbon did not interact with any of the constituent elements of LSGM 1015. Ga and La were found to exist in trivalent states. But, due to ionic bombardment presence of Mg could not be detected in the electrolyte surface

  17. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  18. Solid state physics advances in research and applications

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    The latest volume in the world renowned Solid State Physics series marks the fruition of Founding Editor David Turnbull''s outstanding tenure as series editor. Volume 47 presents five articles written by leadingexperts on areas including crystal-melt interfacial tension, order-disorder transformation in alloys, brittle matrix composites, surfaces and interfaces, and magnetoresistance.

  19. Electronically shielded solid state charged particle detector

    International Nuclear Information System (INIS)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-01-01

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig

  20. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  1. Solid-State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  2. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  3. Optimization of Saccharomyces boulardii production in solid-state fermentation with response surface methodology

    Directory of Open Access Journals (Sweden)

    Yuanliang Hu

    2016-01-01

    Full Text Available Saccharomyces boulardii preparations are promising probiotics and clinical agents for animals and humans. This work focused on optimizing the nutritional conditions for the production of S. boulardii in solid-state fermentation by using classical and statistical methods. In single-factor experiments, the S. boulardii production was significantly increased by the addition of glucoamylase and the optimal carbon and nitrogen sources were found to be soluble starch and NH4Cl, respectively. The effects of the glucoamylase, soluble starch and NH4Cl on S. boulardii production were evaluated by a three-level three-factor Box–Behnken design and response surface methodology (RSM. The maximal yeast count (4.50 ×109CFU/g was obtained under the optimized conditions (198 U/g glucoamylase, 2.37% soluble starch and 0.9% NH4Cl, which was in a good agreement with the predicted value of the model. This study has provided useful information on how to improve the accumulation of yeast cells by RSM.

  4. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  5. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  6. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  7. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  8. Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.

    Science.gov (United States)

    Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P

    2017-09-13

    The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.

  9. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  10. Characterising of solid state electrochemical cells under operation

    DEFF Research Database (Denmark)

    Holtappels, Peter

    2014-01-01

    Compared to significant progress in PEMFC especially regarding the utilization of complex fuels such as methanol significant progress has been made by applying spectroscopic / differential IR and spectrometric techniques to working fuel cells, the processes in solid state high temperature...... electrochemical cells are still a "black box". In order to identify local reaction sites, surface coverage and potential/current introduced materials and surface modifications, in situ techniques are needed to gain a better understanding of the elementary and performance limiting steps for these cells...

  11. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  12. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  13. Solid state synthesis, characterization, surface and catalytic properties of Pr2CoO4 and Pr2NiO4 catalyst

    International Nuclear Information System (INIS)

    Sinha, K.K.; Indu, N.K.; Sinha, S.K.; Pankaj, A.K.

    2008-01-01

    Full text: The most interesting non-stoichiometric oxides are found in transition metal and rare earth oxides at higher temperatures. The role of Solid State properties in the catalysis using mixed metal oxide as catalyst have wide applications in fertilizer, Petro-chemical, Pharmaceutical, cosmetic, paint detergents, plastics and food-stuff industries and these are also resistive towards acids and alkalies. The use of catalyst has opened up new process routes or revolutioned the existing process in terms of economics and efficiency and has radically changed the industrial scenario. The use of catalyst is so pervasive today that nearly 70 % of modern chemical processes are based on it at some stage or other and 90% new processes developed are catalytic nature. A series of non-stoichiometric spinel type of oxide catalyst of Praseodymium with cobalt and nickel were synthesized by their oxalates through Solid State reaction technique at different activation temperatures i.e. 600, 700, 800 and 900 deg C. The characterization of catalyst was done by XRD, FTIR and ESR methods. X-ray powder diffraction study shows that catalysts are made up of well grown crystallinities mostly in single phase crystal and system is of orthorhombic structure. FTIR is related to inadequate decomposition of oxalate ion from the Catalyst. The kinetic decomposition of Urea was employed as a model reaction to study the catalytic potentiality of different catalysts. Surface and Catalytic Properties of catalysts were measured. A relation between activation temperature and surface properties like excess surface oxygen (E.S.O.), surface acidity and surface area was observed. A linear relationship between the surface area of the catalyst and the amount of ammonia gas evolved per gm of the sample was observed also. Nickel containing catalysts were found a bit more catalytic active in comparison to cobalt oxide catalysts. Transition metal ions (i.e. Ni 2+ and Co 2+ ions) are mainly responsible for

  14. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  15. Proceedings of the solid state physics symposium. Vol. 34C

    International Nuclear Information System (INIS)

    1991-12-01

    This volume contains the proceedings of the Solid State Physics Symposium held at Varanasi during December 21 to 24, 1991. The topics discussed in the symposium were : (a) Phonon physics, (b) Electron states and electronic properties, (c) Magnetism and magnetic properties, (d) Semiconductor physics, (e) Physics of defects and disordered materials, (f) Transport properties, (g) Superconductivity and superfluidity, (h) Liquid crystals and plastic crystals, (i) Phase transitions and critical phenomena, (j) Surface and interface physics, (k) Non-linear dynamics, instabilities and chaos, (l) Resonance studies and relaxation phenomena, (m) Solid state devices, techniques and instrumentation. Three seminars on topics : (i) High T c superconductors, (ii) Soft matter, and (iii) Physics and technology of interfaces were also held during the symposium. (M.K.V.N.)

  16. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  17. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  18. Solid State Pathways towards Molecular Complexity in Space

    Science.gov (United States)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  19. Capillary adhesion between elastic solids with randomly rough surfaces

    International Nuclear Information System (INIS)

    Persson, B N J

    2008-01-01

    I study how the contact area and the work of adhesion between two elastic solids with randomly rough surfaces depend on the relative humidity. The surfaces are assumed to be hydrophilic, and capillary bridges form at the interface between the solids. For elastically hard solids with relatively smooth surfaces, the area of real contact and therefore also the sliding friction are maximal when there is just enough liquid to fill out the interfacial space between the solids, which typically occurs for d K ∼3h rms , where d K is the height of the capillary bridge and h rms the root-mean-square roughness of the (combined) surface roughness profile. For elastically soft solids, the area of real contact is maximal for very low humidity (i.e. small d K ), where the capillary bridges are able to pull the solids into nearly complete contact. In both cases, the work of adhesion is maximal (and equal to 2γcosθ, where γ is the liquid surface tension and θ the liquid-solid contact angle) when d K >> h rms , corresponding to high relative humidity

  20. Drops and bubbles in contact with solid surfaces

    CERN Document Server

    Ferrari, Michele

    2012-01-01

    The third volume in a series dedicated to colloids and interfaces, Drops and Bubbles in Contact with Solid Surfaces presents an up-to-date overview of the fundamentals and applications of drops and bubbles and their interaction with solid surfaces. The chapters cover the theoretical and experimental aspects of wetting and wettability, liquid-solid interfacial properties, and spreading dynamics on different surfaces, including a special section on polymers. The book examines issues related to interpretation of contact angle from nano to macro systems. Expert contributors discuss interesting pec

  1. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  2. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  3. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    Science.gov (United States)

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  4. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  5. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  6. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  7. Solid state radiative heat pump

    Science.gov (United States)

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  8. Investigation of the Effect of Small Hardening Spots Created on the Sample Surface by Laser Complex with Solid-State Laser

    Science.gov (United States)

    Nozdrina, O.; Zykov, I.; Melnikov, A.; Tsipilev, V.; Turanov, S.

    2018-03-01

    This paper describes the results of an investigation of the effect of small hardening spots (about 1 mm) created on the surface of a sample by laser complex with solid-state laser. The melted area of the steel sample is not exceed 5%. Steel microhardness change in the region subjected to laser treatment is studied. Also there is a graph of the deformation of samples dependence on the tension. As a result, the yield plateau and plastic properties changes were detected. The flow line was tracked in the series of speckle photographs. As a result we can see how mm surface inhomogeneity can influence on the deformation and strength properties of steel.

  9. Molecular tailoring of solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evenson, Simon Alan

    1997-07-01

    The overall performance of a material can be dramatically improved by tailoring its surface at the molecular level. The aim of this project was to develop a universal technique for attaching dendrimers (well-defined, nanoscale, functional polymers) and Jeffamines (high molecular weight polymer chains) to the surface of any shaped solid substrate. This desire for controlled functionalization is ultimately driven by the need to improve material compatibility in various biomedical applications. Atomic force microscopy (AFM) was used initially to study the packing and structure of Langmuir-Blodgett films on surfaces, and subsequently resulted in the first visualization of individual, spherically shaped, nanoscopic polyamidoamine dendrimers. The next goal was to develop a methodology for attaching such macromolecules to inert surfaces. Thin copolymer films were deposited onto solid substrates to produce materials with a fixed concentration of surface anhydride groups. Vapor-phase functionalization reactions were then carried out with trifluorinated amines to confirm the viability of this technique to bond molecules to surfaces. Finally, pulsed plasma polymerization of maleic anhydride took this approach one stage further, by forming well-adhered polymer films containing a predetermined concentration of reactive anhydride groups. Subsequent functionalization reactions led to the secure attachment of dendrimers and Jeffamines at any desired packing density. An alternative route to biocompatibilization used 1,2-ethanedithiol to yield thiolated surfaces containing very high polymeric sulfur : carbon ratios. (author)

  10. Molecular tailoring of solid surfaces

    International Nuclear Information System (INIS)

    Evenson, Simon Alan

    1997-01-01

    The overall performance of a material can be dramatically improved by tailoring its surface at the molecular level. The aim of this project was to develop a universal technique for attaching dendrimers (well-defined, nanoscale, functional polymers) and Jeffamines (high molecular weight polymer chains) to the surface of any shaped solid substrate. This desire for controlled functionalization is ultimately driven by the need to improve material compatibility in various biomedical applications. Atomic force microscopy (AFM) was used initially to study the packing and structure of Langmuir-Blodgett films on surfaces, and subsequently resulted in the first visualization of individual, spherically shaped, nanoscopic polyamidoamine dendrimers. The next goal was to develop a methodology for attaching such macromolecules to inert surfaces. Thin copolymer films were deposited onto solid substrates to produce materials with a fixed concentration of surface anhydride groups. Vapor-phase functionalization reactions were then carried out with trifluorinated amines to confirm the viability of this technique to bond molecules to surfaces. Finally, pulsed plasma polymerization of maleic anhydride took this approach one stage further, by forming well-adhered polymer films containing a predetermined concentration of reactive anhydride groups. Subsequent functionalization reactions led to the secure attachment of dendrimers and Jeffamines at any desired packing density. An alternative route to biocompatibilization used 1,2-ethanedithiol to yield thiolated surfaces containing very high polymeric sulfur : carbon ratios. (author)

  11. Surface study of liquid 3He using surface state electrons

    International Nuclear Information System (INIS)

    Shirahama, K.; Ito, S.; Suto, H.; Kono, K.

    1995-01-01

    We have measured the mobility of surface state electrons (SSE) on liquid 3 He, μ 3 , aiming to study the elementary surface excitations of the Fermi liquid. A gradual increase of μ 3 below 300 mK is attributed to the scattering of electrons by ripplons. Ripplons do exist in 3 He down to 100 mK. We observe an abrupt decrease of μ 3 , due to the transition to the Wigner solid (WS). The dependences of the WS conductivity and mobility on temperature and magnetic field differ from the SSE behavior on liquid 4 He

  12. One-step immobilization of tris(2,2'-bipyridyl)ruthenium(II) via vapor-surface sol-gel deposition towards solid-state electrochemiluminescence detection

    International Nuclear Information System (INIS)

    Qian Lei; Yang Xiurong

    2008-01-01

    A novel method for immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy) 3 Cl 2 ) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy) 3 Cl 2 immobilized sol-gel (Ru(bpy) 3 Cl 2 /sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy) 3 Cl 2 was successfully incorporated into the silica sol-gel film. It was found that many irregular Ru(bpy) 3 Cl 2 /sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition. Electrochemical properties and electrochemiluminescence (ECL) behaviors of Ru(bpy) 3 Cl 2 /sol-gel films could be easily adjusted by deposition numbers and time. At last, the Ru(bpy) 3 Cl 2 /sol-gel film modified electrode was used for solid-state ECL detection of tripropylamine. The linear range was from 5.8 x 10 -8 to 2.4 x 10 -4 M with the detection limit of 5 nM, which was three orders of magnitude lower than that from pure Nafion-modified electrodes. The ECL sensor also exhibited high stability, and still remained 92% response after being stored in air for 35 days. This method for immobilization of Ru(bpy) 3 Cl 2 is simple, convenient and low-cost relative to others, so it shows promising applications in solid-state ECL detection

  13. Solid-state lighting-a benevolent technology

    International Nuclear Information System (INIS)

    Schubert, E Fred; Kim, Jong Kyu; Luo Hong; Xi, J-Q

    2006-01-01

    Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting

  14. Solid State Division progress report for period ending March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  15. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  16. Chirality in adsorption on solid surfaces.

    Science.gov (United States)

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  17. Li insertion into Li4Ti5O12 spinel prepared by low temperature solid state route: Charge capability vs surface area

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Fabián, M.; Klusáčková, Monika; Klementová, Mariana; Pitňa Lásková, Barbora; Danková, Z.; Senna, M.; Kavan, Ladislav

    2018-01-01

    Roč. 265 (2018), s. 480-487 ISSN 0013-4686 R&D Projects: GA ČR GA15-06511S; GA MŠk LM2015087; GA MŠk 8F15003 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Li4Ti5O12 * Charge capacity * Solid state * Li insertion * Surface area Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  18. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  19. Study on the surface electronic properties of Li-containing solids

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Fumio; Suzuki, Atsushi; Yamaguchi, Kenji; Yamawaki, M [Tokyo Univ. (Japan)

    1998-03-01

    The electronic state of Li{sub 2}O surface will be modified by absorption and/or desorption of chemically-active species, such as H{sub 2} and H{sub 2}O. The reactions induced by these species will involve some point defects in the solid. Whereas the high temperature Kelvin probe has proven to be quite effective in obtaining information on the surface reactions between gas and solid, an attempt is being made to incorporate numerical calculation to obtain further information which may not be easily done by experiments. The code employed in the present study is `CRYSTAL`, which employs a self-consistent-field Hartree-Fock method. As a preliminary study, we tried to calculate the change of Fermi Energy as a function of the density of oxygen vacancy. The results revealed that the greater the density of oxygen vacancy, the larger the Fermi Energy of Li{sub 2}O, which was consistent with the experimental results obtained by high temperature Kelvin probe. (author)

  20. Solid State Division progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

  1. Solid State Division progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy

  2. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  3. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  4. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  5. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  6. KfK, Institute for Nuclear Solid-State Physics. Report of results on research and development work 1985

    International Nuclear Information System (INIS)

    1986-02-01

    The Institute for Nuclear Solid-State Physics pursues at time mainly basis-oriented work in the fields of superconductivity and the boundary-surface and microstructure research. The experimental and theoretical works aim to a better understanding of the microscopical and macroscopical properties of certain solids. At time superconductors with high transition point, highly correlated electron systems, conducting polymers, and amorphous substances are studied especially intensively. Technologically relevant materials have in the comparative case preference. Beside the experimental methods of nuclear solid-state physics (neutron scattering, Moessbauer spectroscopy, ion-implantation technology, irradiation and analysis with fast ions) the institute disposes of further highly specificated techniques, like electron-energy-loss-spectroscopy, special material preparation, X-ray diffractometry, and two UHV facilities for the study of the first surface respectively near-surface regions with thermal helium atoms as well as with fast ions. (orig./HSI) [de

  7. Drop Impact on a Solid Surface

    KAUST Repository

    Josserand, C.

    2015-09-22

    © Copyright 2016 by Annual Reviews. All rights reserved. A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

  8. Tribology of thin wetting films between bubble and moving solid surface.

    Science.gov (United States)

    Karakashev, Stoyan I; Stöckelhuber, Klaus W; Tsekov, Roumen; Phan, Chi M; Heinrich, Gert

    2014-08-01

    This work shows a successful example of coupling of theory and experiment to study the tribology of bubble rubbing on solid surface. Such kind of investigation is reported for the first time in the literature. A theory about wetting film intercalated between bubble and moving solid surface was developed, thus deriving the non-linear evolution differential equation which accounted for the friction slip coefficient at the solid surface. The stationary 3D film thickness profile, which appears to be a solution of the differential equation, for each particular speed of motion of the solid surface was derived by means of special procedure and unique interferometric experimental setup. This allowed us to determine the 3D map of the lift pressure within the wetting film, the friction force per unit area and the friction coefficient of rubbing at different speeds of motion of the solid surface. Thus, we observed interesting tribological details about the rubbing of the bubble on the solid surface like for example: 1. A regime of mixed friction between dry and lubricated friction exists in the range of 6-170 μm/s, beyond which the rubbing between the bubble and solid becomes completely lubricated and passes through the maximum; 2. The friction coefficient of rubbing has high values at very small speeds of solid's motion and reduces substantially with the increase of the speed of the solid motion until reaching small values, which change insignificantly with the further increase of the speed of the solid. Despite the numerous studies on the motion of bubble/droplet in close proximity to solid wall in the literature, the present investigation appears to be a step ahead in this area as far as we were able to derive 3D maps of the bubble close to the solid surface, which makes the investigation more profound. © 2013.

  9. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  10. Band mapping of surface states vs. adsorbate coverage

    International Nuclear Information System (INIS)

    Rotenberg, E.; Kevan, S.D.; Denlinger, J.D.; Chung, Jin-Wook

    1997-01-01

    The theory of electron bands, which arises from basic quantum mechanical principles, has been the cornerstone of solid state physics for over 60 years. Simply put, an energy band is an electron state in a solid whose energy varies with its momentum (similar to, but with a more complicated dependence than, how a free electron's energy is proportional to its momentum squared). Much attention over the last 15 years has been given to the study of band structure of surfaces and interfaces, especially as the applications of these two-dimensional systems have become increasingly important to industry and science. The ultraESCA endstation at beamline 7.01 at the Advanced Light Source was developed for very high-energy - (∼50 meV) and angular - ( 12 photons/sec) makes the detailed study of the evolution of bands possible. The authors are interested in learning how, when one forms a chemical bond between a metal and an overlaying atom or molecule, the resulting charge transfer to or from the adsorbate affects the surface bands. In some cases of interest, intermediate coverages lead to different band structure than at the extremes of clean and saturated surfaces. Surfaces of tungsten are particularly interesting, as their atomic geometry has been shown to be exquisitely sensitive to both the surface vibrational and electronic properties. In this study, the authors looked at the surface bands of tungsten ((110) surface), as a function both of coverage and mass of overlaying atoms. The adsorbed atoms were hydrogen and the alkali atoms lithium and cesium

  11. Photoemission from solids: the transition from solid-state to atomic physics

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1980-08-01

    As the photon energy is increased, photoemission from solids undergoes a slow transition from solid-state to atomic behavior. However, throughout the energy range hν = 10 to 1000 eV or higher both types of phenomena are present. Thus angle-resolved photoemission can only be understood quantitatively if each experimenter recognizes the presence of band-structure, photoelectron diffraction, and photoelectron asymmetry effects. The quest for this understanding will build some interesting bridges between solid-state and atomic physics and should also yield important new insights about the phenomena associated with photoemission

  12. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  13. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  14. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  15. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  16. Molecular dynamics simulation of uranium compound adsorption on solid surface

    International Nuclear Information System (INIS)

    Omori, Yuki; Takizawa, Yuji; Okamoto, Tsuyoshi

    2010-01-01

    Particles mixed in the UF6 gas have the property of accumulating on the inside of piping or units. This type of accumulation will cause material unaccounted for (MUF) in the UF6 gas processing facilities. Development of a calculation model for estimating the accumulation rate of uranium compounds has been expected. And predicting possible part of the units where uranium compounds adsorb will contribute to design an effective detection system. The purpose of this study is to take the basic knowledge of the particle's adsorption mechanism from the microscopic point of view. In simulation analysis, UF5 model particle is produced, then two types of solid surfaces are prepared; one is a solid surface at rest and the other is a moving solid surface. The result obtained by the code 'PABS' showed that when the solid surface moves at a lower velocity, the particle's adsorption process dominates over the particle's breakup one. Besides the velocity of the solid surface, other principal factors affecting an adsorption ratio were also discussed. (author)

  17. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  18. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  20. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  1. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  2. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2018-04-05

    Besides the Wenzel state, liquid droplets on micro/nanostructured surfaces can stay in the Cassie state and consequently exhibit intriguing characteristics such as a large contact angle, small contact angle hysteresis and exceptional mobility. Here we report molecular dynamics (MD) simulations of the wetting dynamics of Cassie-state water droplets on nanostructured ultrahydrophobic surfaces with an emphasis on the genesis of the contact line friction (CLF). From an ab initio perspective, CLF can be ascribed to the collective effect of solid-liquid retarding and viscous damping. Solid-liquid retarding is related to the work of adhesion, whereas viscous damping arises from the viscous force exerted on the liquid molecules within the three-phase (liquid/vapor/solid) contact zone. In this work, a universal scaling law is derived to generalize the CLF on nanostructured ultrahydrophobic surfaces. With the decreasing fraction of solid-liquid contact (i.e., the solid fraction), CLF for a Cassie-state droplet gets enhanced due to the fact that viscous damping is counter-intuitively intensified while solid-liquid retarding remains unchanged. Nevertheless, the overall friction between a Cassie-state droplet and the structured surface is indeed reduced since the air cushion formed in the interstices of the surface roughness underneath the Cassie-state droplet applies negligible resistance to the contact line. Our results have revealed the genesis of CLF from an ab initio perspective, demonstrated the effects of surface structures on a moving contact line and justified the critical role of CLF in the analysis of wetting-related situations.

  3. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  4. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)

    2015-11-15

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy

  5. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    International Nuclear Information System (INIS)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-01-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J ij of the nanosystem Ni 7 –Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni 7 -cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with

  6. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  7. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  8. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  9. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  10. Surface mobilities on solid materials

    International Nuclear Information System (INIS)

    Binh, V.T.

    1983-01-01

    This book constitutes the proceedings of the NATO Advanced Study Institute on Surface Mobilities on Solid Materials held in France in 1981. The goal of the two-week meeting was to review up-to-date knowledge on surface diffusion, both theoretical and experimental, and to highlight those areas in which much more knowledge needs to be accumulated. Topics include theoretical aspects of surface diffusion (e.g., microscopic theories of D at zero coverage; statistical mechanical models and surface diffusion); surface diffusion at the atomic level (e.g., FIM studies of surface migration of single adatoms and diatomic clusters; field emission studies of surface diffusion of adsorbates); foreign adsorbate mass transport; self-diffusion mass transport (e.g., different driving forces for the matter transport along surfaces; measurements of the morphological evolution of tips); the role of surface diffusion in some fundamental and applied sciences (e.g. adatomadatom pair interactions and adlayer superstructure formation; surface mobility in chemical reactions and catalysis); and recent works on surface diffusion (e.g., preliminary results on surface self-diffusion measurements on nickel and chromium tips)

  11. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  12. Solid state cesium ion guns for surface studies

    International Nuclear Information System (INIS)

    Souzis, A.E.; Carr, W.E.; Kim, S.I.; Seidl, M.

    1990-01-01

    Three cesium ion guns covering the energy range of 5--5000 V are described. These guns use a novel source of cesium ions that combine the advantages of porous metal ionizers with those of aluminosilicate emitters. Cesium ions are chemically stored in a solid electrolyte pellet and are thermionically emitted from a porous thin film of tungsten at the surface. Cesium supply to the emitting surface is controlled by applying a bias across the pellet. A total charge of 10.0 C can be extracted, corresponding to greater than 2000 h of lifetime with an extraction current of 1.0 μA. This source is compact, stable, and easy to use, and produces a beam with >99.5% purity. It requires none of the differential pumping or associated hardware necessary in designs using cesium vapor and porous tungsten ionizers. It has been used in ultrahigh-vacuum (UHV) experiments at pressures of -10 Torr with no significant gas load. Three different types of extraction optics are used depending on the energy range desired. For low-energy deposition, a simple space-charge-limited planar diode with a perveance of 1x10 -7 A/V 3/2 is used. Current densities of 10.0 μA/cm 2 at the exit aperture for energies ≤20 V are typical. This type of source provides an alternative to vapor deposition with the advantage of precise flux calibration by integration of the ion current. For energies from 50 to 500 V and typical beam radii of 0.5 to 0.2 mm, a high perveance Pierce-type ion gun is used. This gun was designed with a perveance of 1x10 -9 A/V 3/2 and produces a beam with an effective temperature of 0.35 eV. For the energy range of 0.5 to 5 keV, the Pierce gun is used in conjunction with two Einzel lenses, enabling a large range of imaging ratios to be obtained. Beam radii of 60 to 300 μm are typical for beam currents of 50 nA to 1.0 μA

  13. Solid surfaces : some theoretical aspects

    International Nuclear Information System (INIS)

    Das, M.P.

    1978-01-01

    An appraisal of the current situation concerning some of the theoretical aspects of solid surfaces is presented. First of all the characterization of the surfaces that involves the surface geometry and atomic composition for both the clean and adsorbed surfaces is discussed. Under this, the methods for determining the surface structure (such as low energy electron diffraction, field electron and field ion microscopy, photo emission spectroscopy and atomic scattering) and methods for determining the surface composition by the Auger electron spectroscopy are outlined. In the second part, emphasis is on the electronic structure of the clean and adsorbed surfaces. The measurements of ultra-violet and X-ray photo electron spectra are shown to yield the information about the surface electronic structure. In this context the many body effects such as, shake-up and relaxation energy etc. are discussed. Finally the status of the theory in relation to the experiments on angular resolved and polarization dependent photo emission are presented. (auth.)

  14. The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance

    Science.gov (United States)

    Visbal, Heidy; Fujiki, Satoshi; Aihara, Yuichi; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2014-12-01

    The influence of selected carbonate species on LiNi0.8Co0.15Al0.05O2 (NCA) surface for all-solid-state lithium-ion battery (ASSB) with a sulfide based solid electrolyte was studied for its electrochemical properties, structural stabilities, and surface characteristics. The rated discharge performance improved with the reduction of the carbonate concentration on the NCA surface due to the decrease of the interface resistance. The species and coordination of the adsorbed carbonates on the NCA surface were analyzed by diffuse reflectance Fourier transformed infrared (DRIFT) spectroscopy. The coordination of the adsorbed carbonate anion was determined based on the degree of splitting of the ν3(CO) stretching vibrations. It is found that the surface carbonate species exists in an unidentate coordination on the surface. They react with the sulfide electrolyte to form an irreversible passivation layer. This layer obstructs the charge transfer process at the cathode/electrolyte interface, and results in the rise of the interface resistance and drop of the rated discharge capability.

  15. Solid state laser technology - A NASA perspective

    Science.gov (United States)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  16. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  17. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  18. NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells

    Science.gov (United States)

    West, William; Whitacre, Jay; DelCastillo, Linda

    2009-01-01

    Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.

  19. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  20. SOLID-STATE STORAGE DEVICE FLASH TRANSLATION LAYER

    DEFF Research Database (Denmark)

    2017-01-01

    Embodiments of the present invention include a method for storing a data page d on a solid-state storage device, wherein the solid-state storage device is configured to maintain a mapping table in a Log-Structure Merge (LSM) tree having a C0 component which is a random access memory (RAM) device...

  1. optimisation of solid optimisation of solid state fermentation

    African Journals Online (AJOL)

    eobe

    from banana peels via solid state fermentation using Aspergillus niger. ermentation ... [7,8], apple pomace [9], banana peels [4], date palm. [10], carob ... powder, jams, juice, bar, biscuits, wine etc results in ... Yeast extract was taken as nitrogen.

  2. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  3. A Solid State Pyranometer

    Directory of Open Access Journals (Sweden)

    Dumitrescu Anca Laura

    2015-12-01

    Full Text Available The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black, is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03, indicates a good linearity.

  4. A Solid State Pyranometer

    Science.gov (United States)

    Dumitrescu, Anca Laura; Paulescu, Marius; Ercuta, Aurel

    2015-12-01

    The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black), is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03), indicates a good linearity.

  5. Solid state electrolytes for all-solid-state 3D lithium-ion batteries

    NARCIS (Netherlands)

    Kokal, I.

    2012-01-01

    The focus of this Ph.D. thesis is to understand the lithium ion motion and to enhance the Li-ionic conductivities in commonly known solid state lithium ion conductors by changing the structural properties and preparation methods. In addition, the feasibility for practical utilization of several

  6. A Highly Selective Sensor for Cyanide in Organic Media and on Solid Surfaces

    Directory of Open Access Journals (Sweden)

    Belygona Barare

    2016-02-01

    Full Text Available The application of IR 786 perchlorate (IR-786 as a selective optical sensor for cyanide anion in both organic solution (acetonitrile (MeCN, 100% and solvent-free solid surfaces was demonstrated. In MeCN, IR-786 was selective to two anions in the following order: CN− > OH−. A significant change in the characteristic dark green color of IR-786 in MeCN to yellow was observed as a result of nucleophilic addition of CN− to the fluorophore, i.e., formation of IR 786-(CN, which was also verified by a blue shift in the 775 nm absorbance peak to 430 nm. A distinct green fluorescence emission from the IR-786-(CN in MeCN was also observed, which demonstrated the selectivity of IR-786 towards CN− in MeCN. Fluorescence emission studies of IR-786 showed that the lower detection limit and the sensitivity of IR-786 for CN− in MeCN was 0.5 μM and 0.5 to 8 μM, respectively. The potential use of IR-786 as a solvent-free solid state sensor for the selective sensing and monitoring of CN− in the environment was also demonstrated. On solvent-free solid state surfaces, the sensitivity of the IR-786 to CN− in water samples was in the range of 50–300 μM with minimal interference by OH−.

  7. Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire

    International Nuclear Information System (INIS)

    Rabkin, E.; Amram, D.; Alster, E.

    2014-01-01

    In this study, we deposited a 80 nm thick single crystalline Ni film on a sapphire substrate. Heat treatment of this film at 1000 °C followed by slow cooling resulted in the formation of faceted holes, star-like channel instabilities and faceted microwires. The ridges at the rims of faceted holes and channels exhibited a twinning orientation relationship with the rest of the film. A sub-nanometer-high hexagonal topography pattern on the surface of the unperturbed film was observed by atomic force microscopy. No such pattern was observed on the top facets of isolated Ni particles and hole ridges. We discuss the observed dewetting patterns in terms of the effects of Ni surface anisotropy and faceting on solid state dewetting. The hexagonal pattern on the surface of the unperturbed film was attributed to thermal stress relaxation in the film via dislocations glide. This work demonstrates that solid state dewetting of single crystalline metal films can be utilized for film patterning and for producing hierarchical surface topographies

  8. Positron beam studies of solids and surfaces: A summary

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2006-01-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations

  9. Positron beam studies of solids and surfaces: A summary

    Science.gov (United States)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  10. Nanostructured TiO2 microspheres for dye-sensitized solar cells employing a solid state polymer electrolyte

    International Nuclear Information System (INIS)

    Jung, Hun-Gi; Nagarajan, Srinivasan; Kang, Yong Soo; Sun, Yang-Kook

    2013-01-01

    Bimodal mesoporous, anatase TiO 2 microspheres with particle sizes ranging from 0.3 to 2 μm were synthesized using a facile solvothermal method. The photovoltaic performance of TiO 2 microspheres in dye-sensitized solar cells (DSSCs) using a solid state electrolyte was investigated. The solid state electrolyte DSSC device based on the TiO 2 microspheres exhibits an energy conversion efficiency of 4.2%, which is greater than that of commercial P25 TiO 2 (3.6%). The higher photocurrent density was primarily achieved as a result of the greater specific surface area and pore size, which resulted in an increase in the dye uptake of the TiO 2 microspheres and easy transport of solid electrolyte through mesopores. In addition, the greater electron lifetime and superior light scattering ability also enhanced the photovoltaic performance of the TiO 2 microsphere-based, solid state DSSCs

  11. Gamma camera system with composite solid state detector

    International Nuclear Information System (INIS)

    Gerber, M.S.; Miller, D.W.

    1977-01-01

    A composite solid-state detector is described for utilization within gamma cameras. The detector's formed of an array of detector crystals, the opposed surfaces of each of which are formed incorporating an impedance-derived configuration for determining one coordinate of the location of discrete impinging photons upon the detector. A combined read-out for all detectors within the composite array is achieved through a row and column interconnection of the impedance configurations. Utilizing the read-outs for respective sides of the discrete crystals, a resultant time-constant characteristic for the composite detector crystal array remains essentially that of individual crystal detectors

  12. Passivation-free solid state battery

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  13. The Oxford solid state basics

    CERN Document Server

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  14. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers

    KAUST Repository

    Chu, Shidong

    2010-11-01

    A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T1) times of 31P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The 31P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τc, the r-6-weighted, time-averaged distances between the spin-labels and the 31P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth. © 2010 Elsevier Inc. All rights reserved.

  15. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  16. Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Akitoshi, E-mail: hayashi@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan); Sakuda, Atsushi [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan); Department of Energy and Environment, Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan); Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan)

    2016-07-15

    All-solid-state batteries with inorganic solid electrolytes (SEs) are recognized as an ultimate goal of rechargeable batteries because of their high safety, versatile geometry, and good cycle life. Compared with thin-film batteries, increasing the reversible capacity of bulk-type all-solid-state batteries using electrode active material particles is difficult because contact areas at solid–solid interfaces between the electrode and electrolyte particles are limited. Sulfide SEs have several advantages of high conductivity, wide electrochemical window, and appropriate mechanical properties, such as formability, processability, and elastic modulus. Sulfide electrolyte with Li{sub 7}P{sub 3}S{sub 11} crystal has a high Li{sup +} ion conductivity of 1.7 × 10{sup −2} S cm{sup −1} at 25°C. It is far beyond the Li{sup +} ion conductivity of conventional organic liquid electrolytes. The Na{sup +} ion conductivity of 7.4 × 10{sup −4} S cm{sup −1} is achieved for Na{sub 3.06}P{sub 0.94}Si{sub 0.06}S{sub 4} with cubic structure. Moreover, formation of favorable solid–solid interfaces between electrode and electrolyte is important for realizing solid-state batteries. Sulfide electrolytes have better formability than oxide electrolytes. Consequently, a dense electrolyte separator and closely attached interfaces with active material particles are achieved via “room-temperature sintering” of sulfides merely by cold pressing without heat treatment. Elastic moduli for sulfide electrolytes are smaller than that of oxide electrolytes, and Na{sub 2}S–P{sub 2}S{sub 5} glass electrolytes have smaller Young’s modulus than Li{sub 2}S–P{sub 2}S{sub 5} electrolytes. Cross-sectional SEM observations for a positive electrode layer reveal that sulfide electrolyte coating on active material particles increases interface areas even with a minimum volume of electrolyte, indicating that the energy density of bulk-type solid-state batteries is enhanced. Both surface coating

  17. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  18. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  19. An introduction to solid state diffusion

    CERN Document Server

    Borg, Richard J

    2012-01-01

    The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year under

  20. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Science.gov (United States)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the

  1. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparison between solid-state and powder-state alkali pretreatment on saccharification and fermentation for bioethanol production from rice straw.

    Science.gov (United States)

    Yeasmin, Shabina; Kim, Chul-Hwan; Islam, Shah Md Asraful; Lee, Ji-Young

    2016-01-01

    The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm(-1) due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g(-1) and 0.379 g g(-1), respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g(-1) and 0.358 g g(-1), respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.

  3. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  4. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  5. Solid State Theory An Introduction

    CERN Document Server

    Rössler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields.

  6. One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints

    Science.gov (United States)

    Li, Feng; Li, Hongren; Cui, Tianfang

    2017-11-01

    Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.

  7. Self-healing liquid/solid state battery

    Science.gov (United States)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.; Ning, Xiaohui; Sadoway, Donald R.

    2018-02-27

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrode includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.

  8. Solid state and materials research

    International Nuclear Information System (INIS)

    1988-01-01

    Surface and sub-surface regions of solids are modified by rapid melting and quenching, using a high-powered, pulsed (30 ns) ruby laser. The main emphasis of this work is on laser annealing, epitaxy and doping of silicon. Computer programs have been developed to calculate the heat-flow which takes place during pulsed laser irradiation. From such calculations, information can be obtained about temperature profiles, melt depths, recrystallization velocities and quench rates. 13 figs., 9 refs., 1 tab

  9. Harwell's atomic, molecular and solid state computer programs

    International Nuclear Information System (INIS)

    Harker, A.H.

    1976-02-01

    This document is intended to introduce the computational facilities available in the fields of atomic, molecular the solid state theory on the IBM370/165 at Harwell. The programs have all been implemented and thoroughly tested by the Theory of Solid State Materials Group. (author)

  10. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  11. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  12. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  13. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  14. Solid state nuclear magnetic resonance of fossil fuels

    International Nuclear Information System (INIS)

    Axelson, D.E.

    1985-01-01

    This book contains the following chapters: Principles of solid state NMR; Relaxation processes: Introduction to pulse sequences; Quantitative analysis; Removal of artifacts from CPMAS FT experiments; Line broadening mechanisms; Resolution enhancement of solid state NMR spectra; and /sup 13/C CPMAS NMR of fossil fuels--general applications

  15. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  16. Laser solid sampling for a solid-state-detector ICP emission spectrometer

    International Nuclear Information System (INIS)

    Noelte, J.; Moenke-Blankenburg, L.; Schumann, T.

    1994-01-01

    Solid sampling with laser vaporization has been coupled to an ICP emission spectrometer with an Echelle optical system and a solid-state-detector for the analysis of steel and soil samples. Pulsation of the vaporized material flow was compensated by real-time background correction and internal standardization, resulting in good accuracy and precision. (orig.)

  17. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  18. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  19. A software framework for analysing solid-state MAS NMR data

    International Nuclear Information System (INIS)

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne; Higman, Victoria A.; Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut; Laue, Ernest D.

    2011-01-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  20. Review on solid electrolytes for all-solid-state lithium-ion batteries

    Science.gov (United States)

    Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li

    2018-06-01

    All-solid-state (ASS) lithium-ion battery has attracted great attention due to its high safety and increased energy density. One of key components in the ASS battery (ASSB) is solid electrolyte that determines performance of the ASSB. Many types of solid electrolytes have been investigated in great detail in the past years, including NASICON-type, garnet-type, perovskite-type, LISICON-type, LiPON-type, Li3N-type, sulfide-type, argyrodite-type, anti-perovskite-type and many more. This paper aims to provide comprehensive reviews on some typical types of key solid electrolytes and some ASSBs, and on gaps that should be resolved.

  1. The mechanical problems on additive manufacturing of viscoelastic solids with integral conditions on a surface increasing in the growth process

    Science.gov (United States)

    Parshin, D. A.; Manzhirov, A. V.

    2018-04-01

    Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.

  2. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    Science.gov (United States)

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  3. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  4. High power diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  5. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  6. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  7. An effect of surface properties on detachment of adhered solid to cooling surface for formation of clathrate hydrate slurry

    Science.gov (United States)

    Daitoku, Tadafumi; Utaka, Yoshio

    In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.

  8. Solid-state resistor for pulsed power machines

    Science.gov (United States)

    Stoltzfus, Brian; Savage, Mark E.; Hutsel, Brian Thomas; Fowler, William E.; MacRunnels, Keven Alan; Justus, David; Stygar, William A.

    2016-12-06

    A flexible solid-state resistor comprises a string of ceramic resistors that can be used to charge the capacitors of a linear transformer driver (LTD) used in a pulsed power machine. The solid-state resistor is able to absorb the energy of a switch prefire, thereby limiting LTD cavity damage, yet has a sufficiently low RC charge time to allow the capacitor to be recharged without disrupting the operation of the pulsed power machine.

  9. Surface Acoustic Bloch Oscillations, the Wannier-Stark Ladder, and Landau-Zener Tunneling in a Solid

    Science.gov (United States)

    de Lima, M. M., Jr.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2010-04-01

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  10. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca, E-mail: f.iacopi@griffith.edu.au [Environmental Futures Research Institute, Griffith University, Nathan 4111 (Australia); Wood, Barry [Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia 4072 (Australia)

    2016-05-02

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm{sup −2} with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  11. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    International Nuclear Information System (INIS)

    Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca; Wood, Barry

    2016-01-01

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm"−"2 with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  12. Solid-state dependent dissolution and oral bioavailability of piroxicam in rats.

    Science.gov (United States)

    Lust, Andres; Laidmäe, Ivo; Palo, Mirja; Meos, Andres; Aaltonen, Jaakko; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-01-23

    The aim of this study was to gain understanding about the effects of different solid-state forms of a poorly water-soluble piroxicam on drug dissolution and oral bioavailability in rats. Three different solid-state forms of piroxicam were studied: anhydrate I (AH), monohydrate (MH), and amorphous form in solid dispersion (SD). In addition, the effect of a new polymeric excipient Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) on oral bioavailability of piroxicam was investigated. Significant differences in the dissolution and oral bioavailability were found between the solid-state forms of piroxicam. Amorphous piroxicam in SD showed the fastest dissolution in vitro and a solid-state transformation to MH in the dissolution medium. Despite the presence of solid-state transformation, SD exhibited the highest rate and extent of oral absorption in rats. Oral bioavailability of other two solid-state forms decreased in the order AH and MH. The use of Soluplus® was found to enhance the dissolution and oral bioavailability of piroxicam in rats. The present study shows the importance of solid-state form selection for oral bioavailability of a poorly water-soluble drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Physics of foam formation on a solid surface in carbonated liquids

    NARCIS (Netherlands)

    Zuidberg, A.F.

    1997-01-01

    The amount and size of bubbles in a foam layer that have originated from a solid surface in a gas supersaturated solution is largely determined by the physical properties of that solid and liquid surface and the supersaturation level of the gas in the liquid. The presence of pre-existent

  14. Solid-state dewetting and island morphologies in strongly anisotropic materials

    International Nuclear Information System (INIS)

    Jiang, Wei; Wang, Yan; Zhao, Quan; Srolovitz, David J.; Bao, Weizhu

    2016-01-01

    We propose a sharp-interface continuum model based on a thermodynamic variational approach to investigate the strong anisotropic effect on solid-state dewetting including contact line dynamics. For sufficiently strong surface energy anisotropy, we show that multiple equilibrium shapes may appear that cannot be described by the widely employed Winterbottom construction, i.e., the modified Wulff construction for an island on a substrate. We repair the Winterbottom construction to include multiple equilibrium shapes and employ our evolution model to demonstrate that all such shapes are dynamically accessible.

  15. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  16. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  17. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  18. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  19. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui; Grä tzel, Carole; Moon, Soo-Jin; Humphry-Baker, Robin; Rossier-Iten, Nathalie; Zakeeruddin, Shaik M.; Grä tzel, Michael

    2009-01-01

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents

  20. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  1. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Murray, D.W.

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. The results of these tests as well as a description of the test equipment, test sites, and procedures are presented in this report

  2. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    Science.gov (United States)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  3. Random Process Theory Approach to Geometric Heterogeneous Surfaces: Effective Fluid-Solid Interaction

    Science.gov (United States)

    Khlyupin, Aleksey; Aslyamov, Timur

    2017-06-01

    Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.

  4. Research on IGBT solid state switch

    CERN Document Server

    Gan Kong Yin; Wang Xiao Feng; Wang Lang Ping; Wang Song Yan; Chu, P K; Wu Hong Chen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 mu s waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  5. Research on IGBT solid state switch

    International Nuclear Information System (INIS)

    Gan Kongyin; Tang Baoyin; Wang Xiaofeng; Wang Langping; Wang Songyan; Wu Hongchen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 μs waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  6. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, B

    2006-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  7. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  8. Uses of solid state analogies in elementary particle theory

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1976-01-01

    The solid state background of some of the modern ideas of field theory is reviewed, and additional examples of model situations in solid state or many-body theory which may have relevance to fundamental theories of elementary particles are adduced

  9. Transire, a Program for Generating Solid-State Interface Structures

    Science.gov (United States)

    2017-09-14

    ARL-TR-8134 ● SEP 2017 US Army Research Laboratory Transire, a Program for Generating Solid-State Interface Structures by...Program for Generating Solid-State Interface Structures by Caleb M Carlin and Berend C Rinderspacher Weapons and Materials Research Directorate, ARL...

  10. Radiation-induced reactions of amino acids adsorbed on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esquivel Kranksith, L.; Negron-Mendoza, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico); Mosqueira, F.G. [Direcion General de Divulgacion de la Ciencia, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, AP. 70-487 Mexico D.F. (Mexico); Ramos-Bernal, Sergio, E-mail: ramos@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico)

    2010-07-21

    The purpose of this work is to study the adsorption of compounds such as amino acids on clays and carbon nanotubes (CNTs) as a possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments. We further study the behavior of amino acids adsorbed on these solid surfaces at different conditions of pH and levels of irradiation, simulating a high-radiation field at early Earth conditions. The relevance of this work is to explain the possible contribution of solids (clays and CNTs) as promoters of polymerization and as shields for the adsorbed organic compounds against external sources of energy. To this end, tryptophan, aspartic acid, and glutamic acid were adsorbed on fixed amounts of solid surfaces and were irradiated by a {sup 60}Co source for different periods of time at fixed dose rates. After irradiation, the amino acids were extracted from the solid and analyzed with UV and IR spectroscopes and high-performance liquid chromatography. The most efficient surface for adsorption of amino acids was clay, followed by CNTs. Studies of the gamma irradiation of amino acids adsorbed on clay (in the solid phase) show a low yield of recovery of the amino acid.

  11. High brightness diode-pumped organic solid-state laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  12. IFE Power Plant design principles. Drivers. Solid state laser drivers

    International Nuclear Information System (INIS)

    Nakai, S.; Andre, M.; Krupke, W.F.; Mak, A.A.; Soures, J.M.; Yamanaka, M.

    1995-01-01

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  13. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  14. Charge state analysis of heavy ions after penetration of uncleaned and sputter cleaned conducting surfaces

    International Nuclear Information System (INIS)

    Jung, M.; Schosnig, M.; Kroneberger, K.; Tobisch, M.; Maier, R.; Kuzel, M.; Fiedler, C.; Hofmann, D.; Groeneveld, K.O.

    1994-01-01

    The evolution of the charge state distribution of fast ions inside a solid is of basic interest in various research fields as stopping power measurements etc. The existing models for the charge state evolution differ in the treatment of the projectile-exit-surface interaction, which has a strong influence on the final charge state distributions. We measured the charge state distributions for C + , N + , and O + (30≤E/M≤130 keV/u) impact on thin C, Cu, and Au foils, where the surface properties were modified by sputter cleaning. The mesurements show a pronounced change of the mean projectile charge state to lower values in the case of sputter cleaned surfaces. This result underlines the importance of the projectile-surface interaction for the generation of the outcoming charge state distribution. (orig.)

  15. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  16. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  17. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  18. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  19. Solid-State Thyratron Replacement. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Ian [Diversified Technologies, Inc., Bedford, MA

    2017-12-12

    Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was built in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.

  20. Theory of quasiparticle surface states in semiconductor surfaces

    International Nuclear Information System (INIS)

    Hybertsen, M.S.; Louie, S.G.

    1988-01-01

    A first-principles theory of the quasiparticle surface-state energies on semiconductor surfaces is developed. The surface properties are calculated using a repeated-slab geometry. Many-body effects due to the electron-electron interaction are represented by the electron self-energy operator including the full surface Green's function and local fields and dynamical screening effects in the Coulomb interaction. Calculated surface-state energies for the prototypical Si(111):As and Ge(111):As surfaces are presented. The calculated energies and dispersions for the occupied surface states (resonances) are in excellent agreement with recent angle-resolved photoemission data. Predictions are made for the position of empty surface states on both surfaces which may be experimentally accessible. The resulting surface state gap at Gamma-bar for Si(111):As agrees with recent scanning-tunneling-spectroscopy measurements. Comparison of the present results to eigenvalues from the local-density-functional calculation reveals substantial corrections for the gaps between empty and occupied surface states. This correction is found to depend on the character of the surface states involved

  1. Space-time complexity in solid state models

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter

  2. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  3. State of the art of solid state dosimetry

    International Nuclear Information System (INIS)

    Souza, Susana O.; Yamamoto, Takayoshi; D'Errico, Francesco

    2014-01-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed

  4. Solid-state microwave annealing of ion-implanted 4H-SiC

    International Nuclear Information System (INIS)

    Sundaresan, Siddarth G.; Tian, Yong-lai; Ridgway, Mark C.; Mahadik, Nadeemullah A.; Qadri, Syed B.; Rao, Mulpuri V.

    2007-01-01

    Solid-state microwave annealing was performed at temperatures up to 2120 deg, C for 30 s on ion-implanted 4H-SiC in N 2 ambient. The surface roughness in the samples annealed without a surface cap at 1950 deg, C is 2.65 nm for 10 μm x 10 μm atomic force microscopy scans. The sheet resistances measured on Al + - and P + -implanted 4H-SiC, annealed by microwaves, are lower than the best conventional furnace annealing results reported in literature. X-ray diffraction spectra indicate alleviation of the lattice damage induced by the ion-implantation and also incorporation of most of the implanted species into substitutional lattice sites

  5. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  6. SOLID STATE BATTERIES WITH CONDUCTING POLYMERS

    OpenAIRE

    Bénière , F.; Boils , D.; Cánepa , H.; Franco , J.; Le Corre , A.; Louboutin , J.

    1983-01-01

    The conducting polymers like (CH)x are very interesting materials for electrodes in electrochemical cells. We have combined such electrodes with solid electrolytes to build "all solid-state" batteries. The first prototypes using a silver anode and a silver conducting electrolyte have been working satisfactorily since two years. The performances have been tested with many batteries to study the electrical properties as well as the thermodynamical parameters. A number of cycles of charge-discha...

  7. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Bardet, Michel; De Paepe, Gael; Hediger, Sabine; Ayala, Isabel; Simorre, Jean-Pierre

    2013-01-01

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  8. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    Science.gov (United States)

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  9. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients.

    Science.gov (United States)

    Zhao, Li; Pinon, Arthur C; Emsley, Lyndon; Rossini, Aaron J

    2017-11-28

    Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C- 13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  10. High-energy shadowing effect and its application to atomic and solid state physics

    International Nuclear Information System (INIS)

    Kudo, Hiroshi; Shima, Kunihiro; Ishihara, Toyoyuki; Takeshita, Hidefumi; Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi

    1994-01-01

    Ion-beam shadowing effects for projectiles in the MeV/u energy range have been studied with high-energy (keV) secondary electrons emitted from the surface of a target crystal. This article reviews and discusses applications of the high-energy shadowing effect to atomic and solid state physics, as well as physical and technical aspects of the electron spectroscopy under channeling incidence conditions. (orig.)

  11. High-density equation of state for helium and its application to bubbles in solids

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1980-06-01

    Helium, produced by transmutations or injected, causes bubble formation in solids at elevated temperatures. For small bubbles, the gas pressure required to balance the surface tension reaches values which far exceed those obtainable in experiments to measure the equation of state for helium gas. Therefore, empirical gas laws cannot be considered applicable to the fluid-like densities existing in small bubbles. In order to remedy this situation, an equation of state for helium was developed from the theory of the liquid state. At very low densities, this theoretically derived equation of state agrees with experimental results. For high densities, however, gas pressures are predicted which are significantly higher than those derived from the ideal gas law, but also significantly lower than pressures obtained with the van der Waals law. When applied to equilibrium bubbles in solids, it is found that the high-density equation of state leads to less bubble swelling than the van der Waals law, but more than the ideal gas law. Furthermore, the number of helium atoms in equilibrium bubbles is nearly independent of temperature

  12. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    Science.gov (United States)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  13. Guanidinium nonaflate as a solid-state proton conductor

    DEFF Research Database (Denmark)

    Chen, Xiaoli; Tang, Haolin; Putzeys, Tristan

    2016-01-01

    Protic organic ionic plastic crystals (POIPCs) are a type of novel solid-state proton conductors. In this work, guanidinium nonaflate ([Gdm-H][NfO]) is reported to be a model POIPC. Its structure-property relationship has been investigated comprehensively. Infrared analysis of [Gdm-H][NfO] and its....... In addition, POIPC-based solid-state proton conductors are also expected to find applications in sensors and other electrochemical devices....

  14. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  15. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  16. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. In general, all-solid-state cameras need to be improved in four areas before they can be used as wholesale replacements for tube cameras in exterior security applications: resolution, sensitivity, contrast, and smear. However, with careful design some of the higher performance cameras can be used for perimeter security systems, and all of the cameras have applications where they are uniquely qualified. Many of the cameras are well suited for interior assessment and surveillance uses, and several of the cameras are well designed as robotics and machine vision devices

  17. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  18. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  19. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  20. Facilitated ion transport in all-solid-state flexible supercapacitors.

    Science.gov (United States)

    Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok

    2011-09-27

    The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society

  1. Entanglement in Solid-State Nanostructures

    NARCIS (Netherlands)

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  2. All-optical quantum computing with a hybrid solid-state processing unit

    International Nuclear Information System (INIS)

    Pei Pei; Zhang Fengyang; Li Chong; Song Heshan

    2011-01-01

    We develop an architecture of a hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have a prominent advantage of the insensitivity to dissipation process benefiting from the virtual excitation of subsystems. Moreover, the quantum nondemolition measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid-state systems can merge and be integrated into one quantum processor afterward.

  3. Structural and dynamic properties of solid state ionics

    International Nuclear Information System (INIS)

    Sakuma, T.

    1995-01-01

    The structural and dynamic properties of solid state ionics are reviewed. The low temperature phase transition of the copper halide-chalcogen compounds by specific heat measurements, electrical conductivity measurements and x-ray diffraction measurements are explained. The structures of solid state ionics investigated by the usual x-ray diffraction method and the anomalous x-ray scattering (AXS) measurement are discussed. The expression of the diffuse scattering intensity including the correlations among the thermal displacements of atoms has been given and applied to α-AgI type solid state ionics and lithium sulphate. The presence of low-energy excitations in crystalline copper ion conductors and the superionic conducting glass is investigated by neutron inelastic scattering measurements. The relation between the excitation energy and the mass of the cations is discussed. (author). 141 refs., 21 figs., 7 tabs

  4. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  5. New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber.

    Science.gov (United States)

    Lee, Sangyool; Lee, Youngkwan; Cho, Mi-Suk; Nam, Jae-Do

    2008-09-01

    Solid state redox supercapacitors were fabricated using a solid polymer electrolyte, nitrile butadiene rubber (NBR)-KCI and chemically deposited polypyrrole (PPy) as the conducting polymer electrodes on both surfaces of a NBR film. The optimal conditions for the preparation of the PPy/NBR electrode were confirmed as functions of the uptake of pyrrole monomer into the NBR matrix as well as the immersion time in an oxidant solution. The morphology of the PPy-NBR-KCI capacitor was observed using scanning electron microscopy. The performance of the capacitors was characterized using a galvanostatic charge-discharge technique.

  6. Theory of the l-state population of Rydberg states formed in ion-solid collisions

    International Nuclear Information System (INIS)

    Kemmler, J.; Burgdoerfer, J.; Reinhold, C.O.

    1991-01-01

    The experimentally observed high-l-state population of ions excited in ion-solid interactions differs sharply from l-state populations produced in ion-atom collisions. We have studied the population dynamics of electronic excitation and transport within the framework of a classical transport theory for O 2+ (2-MeV/u) ions traversing C foils. The resulting delayed-photon-emission intensities are found to be in very good agreement with experiment. Initial phase-space conditions have been obtained from both classical-trajectory Monte Carlo calculations and random initial distributions. We find evidence that the very-high-l-state populations produced in ion-solid collisions are the result of a diffusion to high-l states under the influence of multiple scattering in the bulk of the solid

  7. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  8. Enhancement of dissolution of Telmisartan through use of solid dispersion technique surface solid dispersion

    Directory of Open Access Journals (Sweden)

    Bhumika Patel

    2012-01-01

    Full Text Available The present study was aimed to increase the solubility of the poorly water soluble drug Telmisartan by using Surface solid dispersion (SSD made of polymers like Poloxamer 407, PEG 6000 by Solvent evaporation method. The drug was solubilized by surfactants and/or polymers then adsorbed onto the surface of extremely fine carriers to increase its surface area and to form the SSD which give the more Surface area for absorption of the drug. A 2 2 full factorial design was used to investigate for each carrier the joint influence of formulation variables: Amount of carrier and adsorbent. Saturation solubility studies shows the improvement in solubility of drug batch SSD 8 give more solubility improvement than the other batch, in-vitro dissolution of pure drug, physical mixtures and SSDs were carried out in that SSDs were found to be effective in increasing the dissolution rate of Telmisartan in form of SSD when compared to pure drug. Also FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and Surface solid dispersion. Furthermore, both DSC and X-ray diffraction showed a decrease in the melting enthalpy and reduced drug crystallinity consequently in SSDs. However, infrared spectroscopy revealed no drug interactions with the carriers.

  9. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  10. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  11. Grain growth: The key to understand solid-state dewetting of silver thin films

    International Nuclear Information System (INIS)

    Jacquet, P.; Podor, R.; Ravaux, J.; Teisseire, J.; Gozhyk, I.; Jupille, J.; Lazzari, R.

    2016-01-01

    The dynamics of solid-state dewetting of polycrystalline silver thin films in oxygen atmosphere was investigated with in situ and real-time environmental Scanning Electron Microscopy at high temperature combined with Atomic Force Microscopy. Three steps were identified during dewetting: induction, hole propagation without specific rim and sintering. Moreover, it was observed that a very selective grain growth, promoted by surface diffusion, plays a key role all along the process.

  12. Solid state insurrection how the science of substance made American physics matter

    CERN Document Server

    Martin, Joseph D

    2018-01-01

    Solid state physics—the study of the physical properties of solid matter—was far and away the most populous subfield of Cold War American physics. But despite prolific contributions to consumer and medical technology, such as the transistor and magnetic resonance imaging, it garnered much less professional prestige and public attention than nuclear and particle physics. Solid State Insurrection argues that solid state physics was nonetheless essential to securing the vast social, political, and financial capital Cold War physics enjoyed. Solid state’s technological bent, and its challenge to the “pure science” ideal many physicists cherished, helped physics as a whole respond more readily to Cold War social, political, and economic pressures. Solid state research kept physics economically and technologically relevant, sustaining its lofty cultural standing and policy influence long after the sheen of the Manhattan Project had faded. By placing solid state at the center of the story of twentieth cent...

  13. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Department of Mechanical Engineering,. † ... A solid-state metathesis approach initiated by microwave energy has been successfully applied for ... and chemical properties of synthesized powders are determined by powder X-ray diffraction, ...

  14. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2016-08-11

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  15. Tungsten(VI) Carbyne/Bis(carbene) Tautomerization Enabled by N-Donor SBA15 Surface Ligands: A Solid-State NMR and DFT Study

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Minenkov, Yury; Abou-Hamad, Edy; Hamzaoui, Bilel; Werghi, Baraa; Anjum, Dalaver H.; Cavallo, Luigi; Huang, Kuo-Wei; Basset, Jean-Marie

    2016-01-01

    Designing supported well-defined bis(carbene) complexes remains a key challenge in heterogeneous catalysis. The reaction of W(CtBu)(CH(2)tBu)(3) with amine-modified mesoporous SBA15 silica, which has vicinal silanol/silylamine pairs [(SiOH)(SiNH2)], leads to [(SiNH2-)(SiO-)W(CHtBu)(CH(2)tBu)(2)] and [(SiNH2-)(SiO-)W(=CHtBu)(2)(CH(2)tBu). Variable temperature, H-1-H-1 2D double-quantum, H-1-C-13 HETCOR, and HETCOR with spin diffusion solid-state NMR spectroscopy demonstrate tautomerization between the alkyl alkylidyne and the bis(alkylidene) on the SBA15 surface. Such equilibrium is possible through the coordination of W to the surface [(Si-OH)(Si-NH2)] groups, which act as a [N,O] pincer ligand. DFT calculations provide a rationalization for the surface-complex tautomerization and support the experimental results. This direct observation of such a process shows the strong similarity between molecular mechanisms in homogeneous and heterogeneous catalysis. In propane metathesis (at 150 degrees C), the tungsten bis(carbene) tautomer is favorable, with a turnover number (TON) of 262. It is the highest TON among all the tungsten alkyl-supported catalysts.

  16. Solid state protein monolayers: Morphological, conformational, and functional properties

    Science.gov (United States)

    Pompa, P. P.; Biasco, A.; Frascerra, V.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; de Waal, E.; Canters, G. W.

    2004-12-01

    We have studied the morphological, conformational, and electron-transfer (ET) function of the metalloprotein azurin in the solid state, by a combination of physical investigation methods, namely atomic force microscopy, intrinsic fluorescence spectroscopy, and scanning tunneling microscopy. We demonstrate that a "solid state protein film" maintains its nativelike conformation and ET function, even after removal of the aqueous solvent.

  17. Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds

    Science.gov (United States)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-01-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  18. Topologically distinct classes of valence-bond solid states with their parent Hamiltonians

    International Nuclear Information System (INIS)

    Tu Honghao; Zhang Guangming; Xiang Tao; Liu Zhengxin; Ng Taikai

    2009-01-01

    We present a general method to construct one-dimensional translationally invariant valence-bond solid states with a built-in Lie group G and derive their matrix product representations. The general strategies to find their parent Hamiltonians are provided so that the valence-bond solid states are their unique ground states. For quantum integer-spin-S chains, we discuss two topologically distinct classes of valence-bond solid states: one consists of two virtual SU(2) spin-J variables in each site and another is formed by using two SO(2S+1) spinors. Among them, a spin-1 fermionic valence-bond solid state, its parent Hamiltonian, and its properties are discussed in detail. Moreover, two types of valence-bond solid states with SO(5) symmetries are further generalized and their respective properties are analyzed as well.

  19. Radiation-chemical aspects of solid state hot atom chemistry

    International Nuclear Information System (INIS)

    Matsuura, T.; Collins, K.E.; Collins, C.H.

    1984-01-01

    The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)

  20. Onset of solid state mantle convection and mixing during magma ocean solidification

    Science.gov (United States)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris

    2017-04-01

    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  1. Radiation-induced reactions in D, L-α-alanine adsorbed in solid surfaces

    International Nuclear Information System (INIS)

    Aguilar, E; Negrón-Mendoza, A.; Camargo, C.

    2013-01-01

    The aim of this work is to study the behavior under irradiation of D, L and D-L α-alanine adsorbed in solid surfaces, as possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments and to evaluate the contribution of solids (a clay mineral) as shields for the adsorbed amino acids against a external energy source. The results show that α-alanine is adsorbed in the surfaces as function of pH and its yield of decomposition in mineral suspension is lower than the system without the solid surface. These results show the importance of nuclear techniques in these types of studies. (author)

  2. A methodology for modeling surface effects on stiff and soft solids

    Science.gov (United States)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  3. Development of Solid-State Electrochemiluminescence (ECL Sensor Based on Ru(bpy32+-Encapsulated Silica Nanoparticles for the Detection of Biogenic Polyamines

    Directory of Open Access Journals (Sweden)

    Anna-Maria Spehar-Délèze

    2015-05-01

    Full Text Available A solid state electrochemiluminescence (ECL sensor based on Ru(bpy32+-encapsulated silica nanoparticles (RuNP covalently immobilised on a screen printed carbon electrode has been developed and characterised. RuNPs were synthesised using water-in-oil microemulsion method, amino groups were introduced on their surface, and they were characterised by transmission electron microscopy. Aminated RuNPs were covalently immobilised on activate screen-printed carbon electrodes to form a solid state ECL biosensor. The biosensor surfaces were characterised using electrochemistry and scanning electron microscopy, which showed that aminated nanoparticles formed dense 3D layers on the electrode surface thus allowing immobilisation of high amount of Ru(bpy32+. The developed sensor was used for ECL detection of biogenic polyamines, namely spermine, spermidine, cadaverine and putrescine. The sensor exhibited high sensitivity and stability.

  4. Study of the solid-solid surface adsorption of Eu2O3 on various Al2O3 supports

    International Nuclear Information System (INIS)

    Liu Rongchuan; Yu Zhi; Zhou Yuan; Yoshitake Yamazaki

    1997-12-01

    Solid-solid surface interactions of Eu 2 O 3 on various oxide substrates are investigated with X-ray and Moessbauer experiments. The results indicate that the interaction of Eu 2 O 3 on the complex support differs from that having simple support. An incorporation model is used to explain how Eu 2 O 3 disperses onto the surface of γ-alumina or η-alumina

  5. Toward an accurate description of solid-state properties of superheavy elements

    Directory of Open Access Journals (Sweden)

    Schwerdtfeger Peter

    2016-01-01

    Full Text Available In the last two decades cold and hot fusion experiments lead to the production of new elements for the Periodic Table up to nuclear charge 118. Recent developments in relativistic quantum theory have made it possible to obtain accurate electronic properties for the trans-actinide elements with the aim to predict their potential chemical and physical behaviour. Here we report on first results of solid-state calculations for Og (element 118 to support future atom-at-a-time gas-phase adsorption experiments on surfaces such as gold or quartz.

  6. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface

    NARCIS (Netherlands)

    Yu, C.; Ganapathy, S.; van Eck, Ernst R H; Wang, H.; Basak, S.; Li, Z.; Wagemaker, M.

    2017-01-01

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte

  7. Projectile- and charge-state-dependent electron yields from ion penetration of solids as a probe of preequilibrium stopping power

    DEFF Research Database (Denmark)

    Rothard, H.; Schou, Jørgen; Groeneveld, K.-O.

    1992-01-01

    Kinetic electron-emission yields gamma from swift ion penetration of solids are proportional to the (electronic) stopping power gamma approximately Beta-S*, if the preequilibrium evolution of the charge and excitation states of the positively charged ions is taken into account. We show...... by investigating the "transport factor" beta, the energy spectrum of directly ejected recoil electrons and the evolution of ionic charge state inside solids. Estimates of the energy-loss fraction leading to electron emission and the effective charges of the ions near the surface allow a quantitative description...

  8. Solid-State Spectroscopy An Introduction

    CERN Document Server

    Kuzmany, Hans

    2009-01-01

    Spectroscopic methods have opened up a new horizon in our knowledge of solid-state materials. Numerous techniques using electromagnetic radiation or charged and neutral particles have been invented and worked out to a high level in order to provide more detailed information on the solids. The text presented here is an updated description of such methods as they were originally presented in the first edition. It covers linear response of solids to electromagnetic radiation in a frequency range extending from megahertz or gigahertz as used in spin resonance spectroscopy, to infrared spectroscopy and various forms of spectroscopy in the visible and near visible spectral range. It extends to spectroscopy in the UV and x-ray spectral range and eventually several spectroscopic methods are addressed in the frequency range of g radiation. Likewise linear response to irradiation with particles such as electrons, positrons, muons, neutrons, and atoms is discussed. Instrumental and technical background is provided as we...

  9. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  10. High-power, solid-state rf source for accelerator cavities

    International Nuclear Information System (INIS)

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 μs and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures

  11. Observation of a new surface mode on a fluid-saturated permeable solid

    International Nuclear Information System (INIS)

    Nagy, P.B.

    1992-01-01

    Almost ten years ago, S. Feng and D. L. Johnson predicted the presence of a new surface mode on a fluid/fluid-saturated porous solid interface with closed surface pores [J. Acoust. Soc. Am. 74, 906 (1983)]. We found that, due to surface tension, practically closed-pore boundary conditions can prevail at an interface between a nonwetting fluid (e.g., air) and a porous solid saturated with a wetting fluid (e.g., water or alcohol). Surface wave velocity and attenuation measurements were made on alcohol-saturated porous sintered glass at 100 kHz. The experimental results show clear evidence of the new ''slow'' surface mode predicted by Feng and Johnson

  12. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  13. Quantum technologies for solid state physics using cold trapped ions

    International Nuclear Information System (INIS)

    Ferdinand Schmidt-Kaler

    2014-01-01

    The quantum states of ions are perfectly controlled, and may be used for fundamental research in quantum physics, as highlighted by the Nobel Prize given to Dave Wineland in 2012. Two directions of quantum technologies, followed by the Mainz group, have high impact on solid state physics: I) The delivery of single cold ions on demand for the deterministic doping of solid state materials with nm spatial precision to generate design-structures optimized for quantum processors. II) The simulation of solid state relevant Hamiltonians with AMO systems of one or two dimensional arrays of trapped ions. I will talk about the recent progress in both fields. http://www.quantenbit.de/#Number Sign#/publications/(author)

  14. Solid-state nanopores for scanning single molecules and mimicking biology

    NARCIS (Netherlands)

    Kowalczyk, S.W.

    2011-01-01

    Solid-state nanopores, nanometer-size holes in a thin synthetic membrane, are a versatile tool for the detection and manipulation of charged biomolecules. This thesis describes mostly experimental work on DNA translocation through solid-state nanopores, which we study at the single-molecule level.

  15. K. S. Krishnan Memorial Lecture: The role of crystallography in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Guinier, A [Paris-11 Univ., 91 - Orsay (France)

    1977-06-01

    The role of crystallography in solving problems in solid state physics, is explained. A few domains in solid state physics such as detection of localized defects, structure of metallic solid solutions, mechanism of phase transitions and the intermediate states between crystalline and amorphous states, have been investigated successfully by X-ray and neutron diffraction methods. The studies have helped a deeper understanding of solid state phenomena. Structures of CuBa, AlZn, ..beta..-alumina etc. are discussed.

  16. Solid state spectroscopy by using of far-infrared synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nanba, Takao [Kobe Univ. (Japan). Faculty of Science

    1996-07-01

    If the spectroscopic system corresponding to the wavelength region required for experiment is installed, the light source with continuous wavelength is to be obtainable by synchrotron radiation. This report is that of the research on solid state spectroscopy using the ordinary incoherent synchrotron radiation which is obtained from the deflection electromagnet parts of electron storage ring. At present in the world, the facilities which can be utilized in far-infrared spectroscopy region are five, including the UVSOR of Molecular Science Research Institute in Japan. The optical arrangement of the measuring system of the UVSOR is shown. The spectrum distribution of the light passing through the pinholes with different diameter in the place of setting samples was compared in case of the UVSOR and a high pressure mercury lamp, and it was shown that synchrotron radiation has high luminance. The researches on solid state spectroscopy carried out in the above mentioned five facilities are enumerated. In this paper, the high pressure spectroscopic experiment which has been carried out at the UVSOR is reported. The observation of the phase transition of fine particles and the surface phonons of fine particles are described. As fine particle size became smaller, the critical pressure at which phase transition occurred was high. (K.I.)

  17. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    Science.gov (United States)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  18. Surface-environment effects in spin crossover solids

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iu., E-mail: yugudyma@gmail.com; Maksymov, A.

    2017-06-15

    Highlights: • The spin-crossover nanocrystals were described by modified Ising-like model. • The ligand field on the surface is a function of external fluctuations. • The thermal hysteresis with surface and bulk interactions of the lattice was studied. • The system behavior with fluctuating ligand field on the surface was examined. • The fluctuations enlarge the hysteresis, but smaller surface interaction narrows it. - Abstract: The impact of surface effects on thermal induced spin crossover phenomenon is a subject of a broad and current interest. Using the modified Ising-like model of spin crossover solids with the ligand field as function of the molecule’ positions and random component on surface by means of Metropolis Monte Carlo algorithm the thermal spin transition curves were calculated. The analysis of spin configuration during transition gives a general idea about contribution of molecules from the surface and inside the lattice into resulting magnetization of the systems. The behavior of hysteresis loop for various surface coupling and fluctuations strength has been described.

  19. Fatty acids polymorphism and solid-state miscibility

    Energy Technology Data Exchange (ETDEWEB)

    Gbabode, Gabin [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France)], E-mail: ggbabode@ulb.ac.be; Negrier, Philippe; Mondieig, Denise [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France); Moreno, Evelyn; Calvet, Teresa; Cuevas-Diarte, Miquel Angel [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, 08028 Barcelona (Spain)

    2009-02-05

    The pentadecanoic acid-hexadecanoic acid (C{sub 15}H{sub 29}OOH-C{sub 16}H{sub 31}OOH) binary system is dealt with in this article. The polymorphism of 20 mixed materials has been investigated combining calorimetric measurements, isothermal and versus temperature X-ray powder diffraction and also FTIR spectroscopy. In particular, the cell parameters of the stable forms, temperatures and heats of phase changes for the two constituents and a proposal of phase diagram are given in this article. Three solid forms are created by mixing in addition with the four solid forms of the pure components. All these solid forms are stabilized on narrow domains of composition, implying a reduced solid-state miscibility of the pentadecanoic and hexadecanoic acids.

  20. Solid-state cultivation of Chaetomium cellulolyticum on alkali-pretreated sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Pamment, N; Robinson, C W; Hilton, J; Moo-Young, M

    1978-11-01

    Solid-state fermentations (78% initial moisture content) of alkali-pretreated Eastern Hard Maple sawdust were conducted in tray and tumble fermentors using Chaetomium cellulolyticum. Crude protein content of the solids rose from 0.9 to 11% in the tray fermentor and 8% in the tumble fermentor in 20 days. These levels were almost equal to those achieved in corresponding slurry-state fermentations (1 to 5% (w/v)) of the same substrate. Specific growth rates were two to four times lower in the solid-state fermentors but this was offset by their greater solids-handling capacity: the rate of protein production per unit volume of fermentation mixture was comparable to that of the 5% (w/v) slurry and two to three times higher than that of the 1% (w/v) slurry.

  1. Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    2016-05-15

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersive X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.

  2. Solid-State Modulators for RF And Fast Kickers

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E.G.; Akana, G.L.; Gower, E.J.; Hawkins, S.A.; Hickman, B.C.; /LLNL, Livermore; Brooksby, C.A.; /NONE - BECHTEL NEVADA LAS VEGAS; Cassel, R.L.; de Lamare, J.E.; Nguyen, M.N.; Pappas, G.C.; /SLAC

    2006-03-14

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  3. SOLID-STATE MODULATORS FOR RF AND FAST KICKERS

    International Nuclear Information System (INIS)

    Cook, E G; Akana, G; Gower, E J; Hawkins, S A; Hickman, B C; Brooksby, C A; Cassel, R L; De Lamare, J E; Nguyen, M N; Pappas, G C

    2005-01-01

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems

  4. SOLID-STATE MODULATORS FOR RF AND FAST KICKERS

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E G; Akana, G; Gower, E J; Hawkins, S A; Hickman, B C; Brooksby, C A; Cassel, R L; De Lamare, J E; Nguyen, M N; Pappas, G C

    2005-05-05

    As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  5. Solid-State Modulators for RF and Fast Kickers

    CERN Document Server

    Cook, Edward; Brooksby, Craig A; Cassel, Richard; De Lamare, Jeffrey E; Gower, Edward J; Hawkins, Steven; Hickman, Bradley C; Nguyen, Minh N; Pappas, Chris

    2005-01-01

    As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  6. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Science.gov (United States)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  7. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries

    Science.gov (United States)

    Liu, Qi; Geng, Zhen; Han, Cuiping; Fu, Yongzhu; Li, Song; He, Yan-bing; Kang, Feiyu; Li, Baohua

    2018-06-01

    Garnet Li7La3Zr2O12 (LLZO) solid electrolytes recently have attracted tremendous interest as they have the potential to enable all solid-state lithium batteries (ASSLBs) owing to high ionic conductivity (10-3 to 10-4 S cm-1), negligible electronic transport, wide potential window (up to 9 V), and good chemical stability. Here we present the key issues and challenges of LLZO in the aspects of ion conduction property, interfacial compatibility, and stability in air. First, different preparation methods of LLZO are reviewed. Then, recent progress about the improvement of ionic conductivity and interfacial property between LLZO and electrodes are presented. Finally, we list some emerging LLZO-based solid-state batteries and provide perspectives for further research. The aim of this review is to summarize the up-to-date developments of LLZO and lead the direction for future development which could enable LLZO-based ASSLBs.

  8. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    Science.gov (United States)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  9. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  10. Recent developments in automatic solid-phase extraction with renewable surfaces exploiting flow-based approaches

    DEFF Research Database (Denmark)

    Miró, Manuel; Hartwell, Supaporn Kradtap; Jakmunee, Jaroon

    2008-01-01

    ,on-line SPE assays performed in permanent mode lack sufficient reliability as a consequence of progressively tighter packing of the bead reactor, contamination of the solid surfaces and potential leakage of functional moieties. This article overviews the current state-of-the-art of an appealing tool...... chemical-derivatization reactions, and it pinpoints the most common instrumental detection techniques utilized. We present and discuss in detail relevant environmental and bioanalytical applications reported in the past few years....

  11. Assessment of all-solid-state lithium-ion batteries

    Science.gov (United States)

    Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.

    2018-07-01

    All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.

  12. Quantitative determination of micronization-induced changes in the solid state of lactose.

    Science.gov (United States)

    Della Bella, A; Müller, M; Soldati, L; Elviri, L; Bettini, R

    2016-05-30

    Lactose, in particular α-lactose monohydrate, is the most used carrier for inhalation. Its surface and solid-state properties play a key role in determining Dry Powder Inhalers (DPIs) performance. Techniques such as X-Ray Powder Diffraction (XRPD) and Differential Scanning Calorimetry (DSC), which are commonly used for the characterization of lactose, are not always capable of explaining the solid-state changes induced by processing, such as micronization. In the present work, the evaluation of the effect of the micronization process on the solid-state properties of lactose was carried out by XRPD and DSC and a satisfactory, although not unequivocal, interpretation of the thermal behaviour of lactose was obtained. Thus, a new gravimetric method correlating in a quantitative manner the weight change in specific sections of the Dynamic Vapour Sorption (DVS) profile and the amount of different forms of α-lactose (hygroscopic anhydrous, stable anhydrous and amorphous) simultaneously present in a given sample was developed and validated. The method is very simple and provides acceptable accuracy in phase quantitation (LOD=1.6, 2.4 and 2.7%, LOQ=5.4, 8.0 and 8.9% for hygroscopic anhydrous, stable anhydrous and amorphous α-lactose, respectively). The application of this method to a sample of micronized lactose led to results in agreement with those obtained by DSC and evidenced that hygroscopic anhydrous α-lactose, rather than amorphous lactose, can be generated in the micronization process. The proposed method may find a more general application for the quantification of polymorphs of compounds different than lactose, provided that the various solid phases afford different weight variations in specific regions of the DVS profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Properties of polymer foils used as solid-state track detectors

    International Nuclear Information System (INIS)

    Spurny, F.

    1973-05-01

    Polymer foils were studied with a view to their application as solid-state alpha track detectors. The detection efficiency was determined as was its alpha energy dependence and the quality of the surface and the natural background of the foils were evaluated. The kinetics of etching was studied in three selected type of foils. Characteristic constants for the selected foils and methods of etching were calculated. The possible applications of the foils as track detectors are discussed and the effect is dealt with of the selected foil and of the method of chemical etching on the foil applicability in nuclear sciences, especially in fast neutron dosimetry and in alpha spectrometry. (author)

  14. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  15. Renormalization methods in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Nozieres, P [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1976-01-01

    Renormalization methods in various solid state problems (e.g., the Kondo effect) are analyzed from a qualitative vantage point. Our goal is to show how the renormalization procedure works, and to uncover a few simple general ideas (universality, phenomenological descriptions, etc...).

  16. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  17. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    NARCIS (Netherlands)

    Panja, D.; Barkema, G.T.; Kolomeisky, A.B.

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface

  18. What would Edison do with solid state lighting?

    Science.gov (United States)

    Ferguson, Ian T.; Melton, Andrew; Xu, Tianming; Jamil, Muhammad; Fenwick, Will

    2010-08-01

    Thomas Edison is widely regarded as the greatest inventor in history and the most prominent individual behind the invention of the electric light. His impressive characteristics as an individual that led to his amazing success as an innovator continue to be an inspiration for researchers today. This paper considers how Edison might proceed in developing solid state lighting into a technology capable of displacing incumbent light sources, including his own incandescent lamps, then reviews some of the "Edison-like" contributions made to solid state lighting by the Next Generation Lighting research program at Georgia Tech.

  19. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  20. ''Solid-state fusion'' effects

    International Nuclear Information System (INIS)

    Thompson, D.T.

    1990-01-01

    The ''Solid-State Fusion'' or ''Cold Fusion'' phenomenon, including excess heat generation and the production of nuclear particles, was first reported by Professors Martin Fleischmann and B. Stanley Pons in March 1989. The phenomenon described (the anomalous effects observed when deuterium oxide (heavy water) is electrolysed using a palladium cathode and a platinum anode in the presence of lithium deuteroxide) has many fascinating facets, not least of which is the fact that investigators are unable to produce the effects ''on demand''. Many of the experimental variables which seem to be significant were described and discussed at the ''First Annual Conference on Cold Fusion'' which was held in Salt Lake City, Utah, USA, from 29th to 31st March 1990. The information presented at the conference is summarised here. Some papers addressed the excess heat effects observed, some the nuclear particles, and others the theoretical aspects. These are reviewed. At the end of the conference Fleischmann summarised all the areas where apparent evidence for solid state fusion had been obtained during the past year, namely: excess enthalpy, bursts in enthalpy; tritium, bursts in tritium; neutrons, bursts in neutrons; X-rays, gamma rays and bursts in these. He recommended that emphasis should now be concentrated on confirming reaction products, such as He 4 . New theories were emerging, but one year was too short a time in which to evaluate them fully. (author)

  1. Interim report on the state-of-the-art of solid-state motor controllers. Part 4. Failure-rate and failure-mode data

    International Nuclear Information System (INIS)

    Jaross, R.A.

    1983-09-01

    An assessment of the reliability of solid-state motor controllers for nuclear power plants is made. Available data on failure-rate and failure-mode data for solid-state motor controllers based on industrial operating experience is meager; the data are augmented by data on other solid-state power electronic devices that are shown to have components similar to those found in solid-state motor controllers. In addition to large nonnuclear solid-state adjustable-speed motor drives, the reliability of nuclear plant inverter systems and high-voltage solid-state dc transmission-line converters is assessed. Licensee Event Report analyses from several sources, the open literature, and personal communications are used to determine the realiability of solid-state devices typical of those expected to be used in nuclear power plants in terms of failures per hour

  2. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  3. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

    Science.gov (United States)

    Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto

    2017-10-01

    The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

  4. Water slip and friction at a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Brigo, L; Pierno, M; Mammano, F; Sada, C; Fois, G; Pozzato, A; Zilio, S dal; Mistura, G [Dipartimento di Fisica G Galilei, Universita degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy); Natali, M [Istituto di Chimica Inorganica e delle Superfici (ICIS), CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Tormen, M [TASC-INFM, CNR, S S 14 km 163.5 Area Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: mistura@padova.infm.it

    2008-09-03

    A versatile micro-particle imaging velocimetry ({mu}-PIV) recording system is described, which allows us to make fluid velocity measurements in a wide range of flow conditions both inside microchannels and at liquid-solid interfaces by using epifluorescence and total internal reflection fluorescence excitation. This set-up has been applied to study the slippage of water over flat surfaces characterized by different degrees of hydrophobicity and the effects that a grooved surface has on the fluid flow inside a microchannel. Preliminary measurements of the slip length of water past various flat surfaces show no significant dependence on the contact angle.

  5. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  6. Proceedings of 5. scientific conference on solid state physics. Vol. 2

    International Nuclear Information System (INIS)

    1999-01-01

    The 5. Kazakhstan scientific conference on solid state physics was held on 28-30 October, 1999 in Karaganda. Scientists and researchers from Russian Federation, Kazakhstan, Estonia present various reports on different problems of solid state physics

  7. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  8. PREFACE: XIX Latin American Symposium on Solid State Physics (SLAFES XIX)

    Science.gov (United States)

    Serquis, Adriana; Balseiro, Carlos; Bolcatto, Pablo

    2009-07-01

    This volume contains selected papers which have been presented at the XIX Latin American Symposium on Solid State Physics (SLAFES XIX) held at Puerto Iguazú, Argentina, from 5--10 October 2008. The conference, covering all areas of Solid State Physics, is one of the most important and traditional meetings in Physics in our region. The Latin American Symposium on Solid State Physics is a forum where researchers and students from Latin America as well as leading scientists from other parts of the world get together to exchange information, strengthen collaborations and identify new challenges in Solid State Physics. This successful series of meetings has been organised in eight different countries, the last three held in Mérida, Venezuela (2002), La Habana, Cuba (2004) and Puebla, México (2006). Following the trends of previous events, SLAFES XIX included seven plenary talks, eighteen invited talks and contributions, and 28 oral and 255 poster presentations, covering mostly the latest experimental and theoretical advances in Nanophysics, Nanomaterials and Nanotechnology, Spintronics, Magnetism, New Materials, Superconductivity, Surfaces and Interfaces, Low-Dimensional Systems, Materials Preparation and Characterization, Theory and Computing Simulations of Materials among other topics. The group of scientists participating had come from Argentina, Chile, Colombia, Cuba, Brazil, France, Spain, Switzerland and the USA We are indebted to all participants for their enthusiasm and contributions and to the members of the International Advisory Commitees. We also wish to thank to the rest of the Organizing Committee: Gustavo Lozano, Ana María Llois, Laura Steren and Edith Goldberg and very specially to Javier Schmidt, Gustavo Ruano, Marcelo Romero, Lucila Cristina and Juan Carlos Moreno for their invaluable assistance during the event. Finally we gratefully aknowledge the financial support the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET

  9. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    Science.gov (United States)

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  10. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  11. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  12. Solid-state fermentation: a continuous process for fungal tannase production.

    Science.gov (United States)

    van de Lagemaat, J; Pyle, D L

    2004-09-30

    Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. Copyright 2004 Wiley Periodicals, Inc.

  13. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  14. Solid-state NMR studies of form I of atorvastatin calcium.

    Science.gov (United States)

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  15. Microelectronics: Atoms diffusion in solid state. Part 1

    International Nuclear Information System (INIS)

    Lopez Higuera, J.M.

    1988-01-01

    The fundamentals on which the technology for the diffusion of impurities in solid state is based, is presented. This technology is widely used to produce controlled and localized concentrations of atoms of the mentioned impurities in base solids in order to obtain those characteristics which may lead to the implementation of electronic, optoelectronic and electrooptic devices. (Author)

  16. Advanced Solid State Lighting for Human Evaluation

    Data.gov (United States)

    National Aeronautics and Space Administration — Lighting intensity and color have a significant impact on human circadian rhythms.  Advanced solid state lighting was developed for the Advanced Exploration System...

  17. Monte Carlo prediction of crater formation by single ion impact on solid surface

    International Nuclear Information System (INIS)

    Perez-Martin, A.M.C.; Dominguez-Vazquez, J.; Jimenez-Rodriguez, J.J.; Collins, R.; Gras-Marti, A.

    1994-01-01

    A method is presented for predicting the topography changes following the impact of one energetic ion on the plane surface of a monatomic amorphous solid. This is done in two stages. The first is a Monte Carlo calculation of the sputter yield and interior distribution relocated atoms, with no compensation for local departures from equilibrium density. In the second stage there is a systematic relaxation of the solid, in which the density returns to its previous constant value and a crater develops in the surface. Two alternative methods of carrying out stage two are compared. In the first the solid is subdivided into cells within which relaxation is carried out normal to the surface, as in previous one-dimensional studies. The second method treats the solid as a 3-dimensional incompressible medium. Both seem to reproduce quite well the main features found experimentally. (orig.)

  18. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  19. COUPLING OF LIPOPOLYSACCHARIDE-DERIVED CARBOHYDRATES ONTO SOLID SURFACES

    DEFF Research Database (Denmark)

    2000-01-01

    The present invention provides a method for immobilising a polysaccharide (PS) to a solid surface, said polysaccharide having a keto-carboxy group (-C(=O)-COOH) or a ketal or hemiketal group corresponding thereto, e.g. derived from KDO (2-keto-3-deoxy-D-mannooctonic acid), the method comprising t...

  20. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.

    Science.gov (United States)

    Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji

    2012-02-13

    A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

  1. Solvay Conference on Surface Science

    CERN Document Server

    1988-01-01

    The articles collected in this volume give a broad overview of the current state of surface science. Pioneers in the field and researchers met together at this Solvay Conference to discuss important new developments in surface science, with an emphasis on the common area between solid state physics and physical chemistry. The contributions deal with the following subjects: structure of surfaces, surface science and catalysis, two-dimensional physics and phase transitions, scanning tunneling microscopy, surface scattering and surface dynamics, chemical reactions at surfaces, solid-solid interfaces and superlattices, and surface studies with synchrotron radiation. On each of these subjects an introductory review talk and a number of short research contributions are followed by extensive discussions, which appear in full in the text. This nineteenth Solvay Conference commemorates the 75th anniversary of the Solvay Institutes.

  2. Solid-state fermentation - A mini review

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M.; Rinzema, A.; Tramper, J.

    1998-01-01

    The increasing interests in biotechnology for the application of fungi on the one hand, and for cheap agricultural products on the other, can be combined in so-called solid-state fermentation (SSF). SSF resembles a close to natural habitat for filamentous microorganisms and can be applied to

  3. Laser generation of nanostructures on the surface and in the bulk of solids

    International Nuclear Information System (INIS)

    Bityurin, N M

    2010-01-01

    This paper considers nanostructuring of solid surfaces by nano-optical techniques, primarily by laser particle nanolithography. Threshold processes are examined that can be used for laser structuring of solid surfaces, with particular attention to laser swelling of materials. Fundamental spatial resolution issues in three-dimensional (3D) laser nanostructuring are analysed with application to laser nanopolymerisation and 3D optical information recording. The formation of nanostructures in the bulk of solids due to their structural instability under irradiation is exemplified by photoinduced formation of nanocomposites. (photonics and nanotechnology)

  4. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.

    Science.gov (United States)

    Luo, Long; Holden, Deric A; White, Henry S

    2014-03-25

    A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.

  5. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  6. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  7. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  8. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  9. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  10. Effect of cultural conditions on antrodin C production by basidiomycete Antrodia camphorata in solid-state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Wang, Yuanlong; Zhang, Bobo; Xu, Ganrong; Ai, Lianzhong

    2014-01-01

    Antrodia camphorata is a medicinal fungus and antrodin C is one of the main bioactive components of A. camphorata in the submerged fermentation (SmF). To optimize the culture conditions, the factors influencing the production of antrodin C by A. camphorata under solid-state fermentation (SSF) were investigated in this study. Different solid substrates and external nitrogen sources were tested for their efficiency in producing antrodin C. The response surface methodology was applied to evaluate the influence of several variables, namely, the concentrations of soybean meal, initial moisture content, and inoculum density on antrodin C production in solid-state fermentation. The experimental results show that the optimum fermentation medium for antrodin C production by A. camphorata was composed of 0.578 g soybean meal, 0.05 g Na2 HPO4 , 0.05 g MgSO4 for 100 g rice, with 51.83% initial moisture content, 22 day culture time, 28 °C culture temperature, and 35.54% inoculum density. At optimized conditions, 6,617.36 ± 92.71 mg kg(-1) yield of antrodin C was achieved. Solid-state fermentation is one good cultural method to improve the production of antrodin C by A. camphorata. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  11. Finite element evaluation of elasto-plastic accommodation energies during solid state transformations: Coherent, spherical precipitate in finite matrix

    International Nuclear Information System (INIS)

    Sen, S.; Balasubramaniam, R.; Sethuraman, R.

    1996-01-01

    The molar volume difference between the matrix and the precipitate phases in the case of solid state phase transformations results in the creation of stain energy in the system due to the misfit strains. A finite element model based on the initial strain approach is proposed to evaluate elasto-plastic accommodation energies during solid state transformation. The three-dimensional axisymmetric model has been used to evaluate energies as a function of transformation for α-β hydrogen transformations in the Nb-H system. The transformation has been analyzed for the cases of transformation progressing both from the center to surface and from the surface to center of the system. The effect of plastic deformation has been introduced to make the model realistic, specifically to the Nb-NbH phase transformation which involves a 4% linear misfit strain. It has been observed that plastic deformation reduces the strain energies compared to the linear elastic analysis

  12. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    Science.gov (United States)

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  13. Determination of the specific surface energy of oxides and glasses in the solid-state

    International Nuclear Information System (INIS)

    Andryushechkin, S.; Karpman, M.

    2000-01-01

    The production and application of coatings on glasses are used widely in technology. The coatings on glass are used for the regulation of optical, decorative, conducting and other technological and physical properties of glass. In particular, it is important to mention the application of glass fibres for the development of composite materials. However, the specific surface energy of glass and, consequently, its adhesion characteristics are relatively low. The values of these characteristics can be changed by the application of different metallic and nonmetallic coatings is characterised by high surface energy. To produce metallic coatings with the required adhesion strength of glass, it is necessary to have information on the specific surface energy of inorganic glass of different chemical composition. The determination of the relationships between the properties and composition of glass is one of the fundamental problems. At present, a large amount of investigations have been carried out into the investigations of the properties of glass in relation to its composition. However, the problem of establishment of relationships between the properties and composition of glass are especially difficult when examining multicomponent systems (technical glass). It is therefore, in to analyse in each case the properties of not the entire system has a whole but the variation of the properties with temperature of the individual components included in the system, the subsequent application of the additivity principle. The large majority of the glasses represent combinations of oxides of the elements of groups I-III and oxides of the transition metals, forming the mixtures, solid solutions of chemical compounds in the glass production process. Thus, analysis of the characteristics of oxides of the alkali, alkali-earth and transition metals makes it possible to obtain initial data for the evaluation of the surface energy, density, molecular mass of glass containing these oxides

  14. Molecular weight evaluation of poly-dimethylsiloxane on solid surfaces using silver deposition/TOF-SIMS

    Science.gov (United States)

    Inoue, Masae; Murase, Atsushi

    2004-06-01

    Molecular ions include information about end groups, functional groups and molecular weight. A method for directly detecting this in the high-mass region of the spectrum (>1000 amu) from poly-dimethylsiloxane (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Two methods for silver deposition, the diode sputtering method and the vacuum evaporation coating method, were tried. The former required the sample to be cooled so as to prevent the damage of the sample surface due to thermal oxidation; the latter caused no damage to sample surfaces at room temperature. Using silver deposition/TOF-SIMS analysis, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces and their images were observed without the interference of deposited silver. By applying to the analysis of paint defects, etc., it was confirmed that this technique is useful to analyze practical industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as some kinds of lubricant additives and fluorine oils on solid surfaces. Therefore, silver deposition/TOF-SIMS was proved to be useful for the analysis of thin substances on solid surfaces.

  15. 40 CFR 256.02 - Scope of the State solid waste management plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Scope of the State solid waste management plan. 256.02 Section 256.02 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements, Definitions § 256.0...

  16. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  17. Radioactive isotopes in solid-state physics

    CERN Document Server

    Deicher, M

    2002-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as M\\"ossbauer spectroscopy, perturbed angular correlation, $\\beta$-NMR, and emission channelling have used nuclear properties (via hyperfine interactions or emitted particles) to gain microscopical information on the structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as a clean ion beam at ISOL facilities such as ISOLDE at CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Extremely sensitive spectroscopic techniques like deep-level transient spectroscopy (DLTS), photoluminescence (PL), and Hall effect have gained a new quality by using radioactive isotopes. Because of their decay the chemical origin of an observed electronic and optical b...

  18. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Ma, Wen [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Yildiz, Bilge [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States)

    2016-08-21

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction rates of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.

  19. BOOK REVIEW: Solid State Physics: An Introduction

    Science.gov (United States)

    Jakoby, Bernhard

    2009-07-01

    There's a wealth of excellent textbooks on solid state physics. The author of the present book is well aware of this fact and does not attempt to write just another one. Rather, he has provided a very compact introduction to solid state physics for third-year students. As we are faced with the continuous appearance interdisciplinary fields and associated study curricula in natural and engineering sciences (biophysics, mechatronics, etc), a compact text in solid state physics would be appreciated by students of these disciplines as well. The book features 11 chapters where each is provided with supplementary discussion questions and problems. The first chapters deal with a review of chemical bonding mechanisms, crystal structures and mechanical properties of solids, which are brief but by no means superficial. The following, somewhat more detailed chapter on thermal properties of lattices includes a nice introduction to phonons. The foundations of solid state electronics are treated in the next three chapters. Here the author first discusses the classical treatment of electronic behaviour in metals (Drude model) and continues with a quantum-theoretical approach starting with the free-electron model and leading to the band structures in conductive solids. The next chapter is devoted to semiconductors and ends with a brief but, with respect to the topical scope, adequate discussion of semiconductor devices. The classical topics of magnetic and dielectric behaviour are treated in the sequel. The book closes with a chapter on superconductivity and a brief chapter covering the modern topics of quantum confinement and aspects of nanoscale physics. In my opinion, the author has succeeded in creating a very concise yet not superficial textbook. The account presented often probes subjects deep enough to lay the basis for a thorough understanding, preparing the reader for more specialized textbooks. For instance, I think that this book may serve as an excellent first

  20. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  1. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  2. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  3. Diode-pumped solid state laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness

  4. Synergies Connecting the Photovoltaics and Solid-State Lighting Industries

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2003-05-01

    Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

  5. Excited state populations and charge-exchange of fast ions in solids

    International Nuclear Information System (INIS)

    Miller, P.D.; Sofield, C.J.; Woods, C.J.

    1984-01-01

    Excited state populations and charge state fractions of 445 MeV Cl ions have been measured for a range of thicknesses of solid C targets. Cross sections for electron capture, loss, excitation and excited state quenching have been determined and these data are found to predict a quantitative difference between equilibrium charge state distributions from gases and solids for a special case of the Bohr-Lindhard density effect model. 8 references, 1 figure, 1 table

  6. A multi-phase equation of state for solid and liquid lead

    International Nuclear Information System (INIS)

    Robinson, C.M.

    2004-01-01

    This paper considers a multi-phase equation of state for solid and liquid lead. The thermodynamically consistent equation of state is constructed by calculating separate equations of state for the solid and liquid phases. The melt curve is the curve in the pressure, temperature plane where the Gibb's free energy of the solid and liquid phases are equal. In each phase a complete equation of state is obtained using the assumptions that the specific heat capacity is constant and that the Grueneisen parameter is proportional to the specific volume. The parameters for the equation of state are obtained from experimental data. In particular they are chosen to match melt curve and principal Hugoniot data. Predictions are made for the shock pressure required for melt to occur on shock and release

  7. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  8. Advances in solid-state NMR of cellulose.

    Science.gov (United States)

    Foston, Marcus

    2014-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical and enabling technology in biofuel research. Over the past few decades, lignocellulosic biomass and its conversion to supplement or displace non-renewable feedstocks has attracted increasing interest. The application of solid-state NMR spectroscopy has long been seen as an important tool in the study of cellulose and lignocellulose structure, biosynthesis, and deconstruction, especially considering the limited number of effective solvent systems and the significance of plant cell wall three-dimensional microstructure and component interaction to conversion yield and rate profiles. This article reviews common and recent applications of solid-state NMR spectroscopy methods that provide insight into the structural and dynamic processes of cellulose that control bulk properties and biofuel conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Solid state dye-sensitized solar cells. Current state of the art. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Olson, C.L.; Goris, M.J.A.A.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands)

    2008-09-15

    The first generation of dye-sensitized solar cell technology is based on a liquid electrolyte component. Today, this technology is on the verge of commercialization. The step towards the market and real applications is supported by the prospect of low manufacturing costs, good efficiency as well as the expectation that the current stability level of this technology is at least sufficient for applications in mobile electronics. These favorable developments may be reinforced and accelerated even further, if the corrosive liquid electrolyte could be replaced by a non-corrosive solid, since this would ease a number of stringent requirements in the production process. A successful exchange of the liquid electrolyte by a solid-state holeconductor requires to at least maintain, preferably improve, the most relevant technical parameters of the solar cell (efficiency, stability, cost). First pioneering work with solid-state hole conductors was carried out 10 years ago with an initial efficiency level below 1%. Until 2007, the record efficiency could be improved to 5%. This paper gives an overview of the solid-state concept as an early stage approach with good perspectives for the mid-term future (5-10 years)

  10. Solid-state surface luminescence of polycyclic aromatic hydrocarbons adsorbed on cellulose diacetate matrices

    Science.gov (United States)

    Rogacheva, Svetlana M.; Shipovskaya, Anna B.; Volkova, Elena V.; Khurshudyan, Grachia N.; Suska-Malawska, Malgorzata; Gubina, Tamara I.

    2018-04-01

    The spectral-kinetic characteristics of luminescence of 17 polycyclic aromatic hydrocarbons (PAH) sorbed from a "water-organic solvent" medium on cellulose diacetate (CDA) matrices were studied. A significant increase in the fluorescence signal on the CDA matrix was observed for 13 PAHs in comparison with aqueous solutions. The highest detection sensitivity was found for pyrene, benzo(a)pyrene, and benzo(k)fluoranthene. The fluorescence spectra of two PAH indicator pairs (anthracene-phenanthrene and pyrene-fluoranthene) used to control toxicant emission sources were studied with the simultaneous presence of isomers in the analyte, depending on the excitation wavelength. For both isomer pairs, it has been found that the spectra of their solid-state luminescence overlap insignificantly, the characteristic peaks do not coincide and do not overlap, the sensitivities of detection are close to each other, which makes it possible to consider this technique as promising to control PAH contamination sources.

  11. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  12. Durability and Mechanical Performance of PMMA/Stone Sludge Nanocomposites for Acrylic Solid Surface Applications

    Directory of Open Access Journals (Sweden)

    Samah EL-Bashir

    2017-11-01

    Full Text Available Acrylic solid surface sheets were prepared by mixing different kinds of stone sludge fillers (SSF in Poly (methyl methacrylate (PMMA nanocomposites. PMMA nanocomposite syrups were made using free radical polymerization of methylmethacrylate (MMA, then two kinds of nanofillers were added, namely, hydrophilic nanosilica and clay Halloysite nanotubules (HNTs. Acrylic solid surface sheets were manufactured by mixing the syrups with SSFs. The morphology of the produced sheets was studied using optical, and Scanning Electron Microscopy (SEM that revealed the uniform distribution of stone sludge in the polymeric matrix. The study of the physical properties showed promising mechanical performance and durability of PMMA/SSF nanocomposites for acrylic solid surface applications.

  13. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  14. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  15. RX J1856.5-3754: A Strange Star with Solid Quark Surface?

    Science.gov (United States)

    Zhang, Xiaoling; Xu, Renxin; Zhang, Shuangnan

    2003-01-01

    The featureless spectra of isolated 'neutron stars' may indicate that they are actually bare strange stars but a definitive conclusion on the nature of the compact objects cannot be reached until accurate and theoretically calculated spectra of the bare quark surface are known. However due to the complex nonlinearity of quantum chromodynamics it is almost impossible to present a definitive and accurate calculation of the density-dominated quark-gluon plasma from the first principles. Nevertheless it was suggested that cold quark matter with extremely high baryon density could be in a solid state. Within the realms of this possibility we have fitted the 500ks Chandra LETG/HRC data for the brightest isolated neutron star RX 51856.5-3754 with a phenomenological spectral model and found that electric conductivity of quark matter on the stellar surface is about 1.5 x 10(exp 16)/s.

  16. In-surface confinement of topological insulator nanowire surface states

    International Nuclear Information System (INIS)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-01-01

    The bandstructures of [110] and [001] Bi 2 Te 3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects

  17. In-surface confinement of topological insulator nanowire surface states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fan W., E-mail: fanchen@purdue.edu [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); Jauregui, Luis A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Tan, Yaohua [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, Michael [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Klimeck, Gerhard [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Chen, Yong P. [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States)

    2015-09-21

    The bandstructures of [110] and [001] Bi{sub 2}Te{sub 3} nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  18. In-surface confinement of topological insulator nanowire surface states

    Science.gov (United States)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-09-01

    The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  19. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    Science.gov (United States)

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Some remarks on the solid surface tension determination from contact angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zdziennicka, Anna; Szymczyk, Katarzyna; Krawczyk, Joanna; Jańczuk, Bronisław, E-mail: bronislaw.janczuk@poczta.umcs.lublin.pl

    2017-05-31

    Graphical abstract: Surface tension of PE, nylon 6 and quartz from different approaches to the interface tension. - Highlights: • New values of water and formamide surface tension components were established. • Quartz surface tension depends on its crystal face. • Usefulness of different approaches for solid surface tension determination was tested. - Abstract: The measurements of water, formamide and diiodomethane contact angle (θ) on polytetrafluoroethylene (PTFE), polyethylene (PE), polymethyl methacrylate (PMMA), nylon 6, quartz and silica were performed. Based on the θ values of these liquids obtained on PTFE, the Lifshitz-van der Waals and acid-base and/or dispersion and polar components of their surface tension (ST) were determined. In turn, the θ values for water, formamide and diiodomethane on PMMA were applied to calculate the electron-acceptor and electron-donor parameters of the Lewis acid-base component of the formamide ST. For this calculation the same values of the electron-acceptor and electron-donor parameters for water ST were used. Taking into account the values of components and parameters of water, formamide and diiodomethane ST obtained by us, van Oss et al. and from the water(formamide)-n-alkane and water-diiodomethane interface tension, the components and parameters of studied solids ST were calculated. To this end different approaches to the interface tension were considered. The obtained values were compared with those in the literature. It was concluded that for determination of solid ST components and parameters, those of water, formamide and diiodomethane ST obtained from the θ measurements on the model solids should be used.

  1. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  2. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  3. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  4. Solidification microstructures and solid-state parallels: Recent developments, future directions

    Energy Technology Data Exchange (ETDEWEB)

    Asta, M. [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Beckermann, C. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States); Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115 (United States); Kurz, W. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)], E-mail: wilfried.kurz@epfl.ch; Napolitano, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States); Plapp, M. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Purdy, G. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ont., L8S 4L7 (Canada); Rappaz, M. [Institute of Materials, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Trivedi, R. [Department of Materials Science and Engineering, Iowa State University, and Ames Laboratory USDOE, Ames, IA 50011 (United States)

    2009-02-15

    Rapid advances in atomistic and phase-field modeling techniques as well as new experiments have led to major progress in solidification science during the first years of this century. Here we review the most important findings in this technologically important area that impact our quantitative understanding of: (i) key anisotropic properties of the solid-liquid interface that govern solidification pattern evolution, including the solid-liquid interface free energy and the kinetic coefficient; (ii) dendritic solidification at small and large growth rates, with particular emphasis on orientation selection; (iii) regular and irregular eutectic and peritectic microstructures; (iv) effects of convection on microstructure formation; (v) solidification at a high volume fraction of solid and the related formation of pores and hot cracks; and (vi) solid-state transformations as far as they relate to solidification models and techniques. In light of this progress, critical issues that point to directions for future research in both solidification and solid-state transformations are identified.

  5. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  6. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Directory of Open Access Journals (Sweden)

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  7. Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, B; Persson, B N J [IFF, FZ-Juelich, D-52425 Juelich (Germany)

    2009-01-07

    We study the average separation between an elastic solid and a hard solid, with a nominally flat but randomly rough surface, as a function of the squeezing pressure. We present experimental results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road surface. The theory shows that an effective repulsive pressure acts between the surfaces of the form p{approx}exp(-u/u{sub 0}), where u is the average separation between the surfaces and u{sub 0} a constant of the order of the root-mean-square roughness, in good agreement with the experimental results.

  8. A nanostructured surface increases friction exponentially at the solid-gas interface.

    Science.gov (United States)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E; Prashanthi, Kovur; Thundat, Thomas

    2016-09-06

    According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  9. A nanostructured surface increases friction exponentially at the solid-gas interface

    Science.gov (United States)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  10. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  11. Introduction to solid state physics

    International Nuclear Information System (INIS)

    Hofmann, Philip

    2013-01-01

    A compact introduction to solid-state physics for students of physics, material,and engineering sciences - ideal for a one- to two-semestral course. In easily understable form the author introduces to phenomena and concepts. Thereby he avoids expensive mathematical derivations and refers to outgoing literature. The successful didactical preparation makes an easy access to the theme possible. Numerous illustrations clarify the connections and make the explained well understandable. With about 170 questions and exercise problems.

  12. Gate errors in solid-state quantum-computer architectures

    International Nuclear Information System (INIS)

    Hu Xuedong; Das Sarma, S.

    2002-01-01

    We theoretically consider possible errors in solid-state quantum computation due to the interplay of the complex solid-state environment and gate imperfections. In particular, we study two examples of gate operations in the opposite ends of the gate speed spectrum, an adiabatic gate operation in electron-spin-based quantum dot quantum computation and a sudden gate operation in Cooper-pair-box superconducting quantum computation. We evaluate quantitatively the nonadiabatic operation of a two-qubit gate in a two-electron double quantum dot. We also analyze the nonsudden pulse gate in a Cooper-pair-box-based quantum-computer model. In both cases our numerical results show strong influences of the higher excited states of the system on the gate operation, clearly demonstrating the importance of a detailed understanding of the relevant Hilbert-space structure on the quantum-computer operations

  13. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  14. Solid-State Ultracapacitor for Improved Energy Storage

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  15. Solid State Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.; Walker, Bryant

    2012-01-01

    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  16. Investigations in the field of solid-state polymerization Pt. 37

    International Nuclear Information System (INIS)

    Mahr, L.; Cser, F.; Kovacs, G.; Hardy, Gy.

    1978-01-01

    Chloranil (CA) and bromanil (BA) which have otherwise similar radiation-chemical properties affect the solid state polymerization of acenaphthylene (ACN) in different manner. CA decreases the rate of polymerization proportionally to its concentration and besides, it also decreases the conversion limit and the molecular weight of the product. BA does not influence the reaction up to a conversion of 20%, but soon afterwards the conversion limit of the polymerization is reached. This limit, above 8M% BA content, is independent of the BA concentration. The reason for the different behaviour is that while BA forms an ideal eutectics with ACN, CA forms a solid solution of limited miscibility at the temperature of the experiments. Both pairs of compounds give charge transfer complex in solid state. The charge transfer complex of BA exists merely at the boundary layer of the crystals, but that of CA is within the crystal lattice of ACN as in a solid solvent. In none of the studied cases could be detected the charge transfer complex with its own specific crystal structure. The effect of CA on the solid state polymerization of ACN is discussed on the basis of the results obtained by PPP and CNDO/2 calculations on ACN and CA. (author)

  17. A New All Solid State Approach to Gaseous Pollutant Detection

    Science.gov (United States)

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  18. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry

    NARCIS (Netherlands)

    Danov, Krassimir D.; Stanimirova, Rumyana D.; Kralchevsky, Peter A.; Marinova, Krastanka G.; Stoyanov, Simeon D.; Blijdenstein, Theodorus B.J.; Cox, Andrew R.; Pelan, Eddie G.

    2016-01-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are

  19. Unitary transformations in solid state physics

    International Nuclear Information System (INIS)

    Wagner, M.

    1986-01-01

    The main emphasis of this book is on the practical application of unitary transformations to problems in solid state physics. This is a method used in the field of nonadiabatic electron-phonon phenomena where the Born-Oppenheimer approximation is no longer applicable. The book is intended as a tool for those who want to apply unitary transformations quickly and on a more elementary level and also for those who want to use this method for more involved problems. The book is divided into 6 chapters. The first three chapters are concerned with presenting quick applications of unitary transformations and chapter 4 presents a more systematic procedure. The last two chapters contain the major known examples of the utilization of unitary transformations in solid state physics, including such highlights as the Froehlich and the Fulton-Gouterman transformations. The book is supplemented by extended tables of unitary transformations, whose properties and peculiarities are also listed. This tabulated material is unique and will be of great practical use to those applying the method of unitary transformations in their work. (Auth.)

  20. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  1. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  2. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  3. The solid-state terahertz spectrum of MDMA (Ecstasy) - A unique test for molecular modeling assignments

    Science.gov (United States)

    Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.

    2008-10-01

    The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.

  4. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    Science.gov (United States)

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  5. Eutectic and solid-state wafer bonding of silicon with gold

    International Nuclear Information System (INIS)

    Abouie, Maryam; Liu, Qi; Ivey, Douglas G.

    2012-01-01

    Highlights: ► Eutectic and solid-state Au-Si bonding are compared for both a-Si and c-Si samples. ► Exchange of a-Si and Au layer was observed in both types of bonded samples. ► Use of c-Si for bonding resulted in formation of craters at the Au/c-Si interface. ► Solid-state Au-Si bonding produces better bonds in terms of microstructure. - Abstract: The simple Au-Si eutectic, which melts at 363 °C, can be used to bond Si wafers. However, faceted craters can form at the Au/Si interface as a result of anisotropic and non-uniform reaction between Au and crystalline silicon (c-Si). These craters may adversely affect active devices on the wafers. Two possible solutions to this problem were investigated in this study. One solution was to use an amorphous silicon layer (a-Si) that was deposited on the c-Si substrate to bond with the Au. The other solution was to use solid-state bonding instead of eutectic bonding, and the wafers were bonded at a temperature (350 °C) below the Au-Si eutectic temperature. The results showed that the a-Si layer prevented the formation of craters and solid-state bonding not only required a lower bonding temperature than eutectic bonding, but also prevented spill out of the solder resulting in strong bonds with high shear strength in comparison with eutectic bonding. Using amorphous silicon, the maximum shear strength for the solid-state Au-Si bond reached 15.2 MPa, whereas for the eutectic Au-Si bond it was 13.2 MPa.

  6. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sakuda, Atsushi, E-mail: a.sakuda@aist.go.jp; Takeuchi, Tomonari, E-mail: a.sakuda@aist.go.jp; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori [Department of Energy and Environment, Research Institute for Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan)

    2016-05-10

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg{sup −1}) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li{sub 3}NbS{sub 4}, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g{sup −1} suggesting that the lithium niobium sulfide electrode charged and discharged without

  7. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    International Nuclear Information System (INIS)

    Sakuda, Atsushi; Takeuchi, Tomonari; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori

    2016-01-01

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg −1 ) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li 3 NbS 4 , have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g −1 suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  8. Solid state fermentation for foods and beverages

    NARCIS (Netherlands)

    Chen, J.; Zhu, Y.; Nout, M.J.R.; Sarkar, P.K.

    2013-01-01

    The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional

  9. Covalent attachment of proteins to solid supports and surfaces via Sortase-mediated ligation.

    Directory of Open Access Journals (Sweden)

    Lilyan Chan

    Full Text Available BACKGROUND: There is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein. METHODOLOGY: Solid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours. CONCLUSIONS: The Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays.

  10. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.

    Science.gov (United States)

    Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei

    2013-11-07

    Flexible all-solid-state supercapacitors based on graphene fibers are demonstrated in this study. Surface-deposited oxide nanoparticles are used as pseudo-capacitor electrodes to achieve high capacitance. This supercapacitor electrode has an areal capacitance of 42 mF cm(-2), which is comparable to the capacitance for fiber-based supercapacitors reported to date. During the bending and cycling of the fiber-based supercapacitor, the stability could be maintained without sacrificing the electrochemical performance, which provides a novel and simple way to develop flexible, lightweight and efficient graphene-based devices.

  11. Solar-pumped solid state Nd lasers

    Science.gov (United States)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  12. Modular compact solid-state modulators for particle accelerators

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  13. Experimental study on the EMP failure mode of DC solid state relay

    International Nuclear Information System (INIS)

    Sun Beiyun; Chen Xiangyue; Zhai Aibin; Mao Congguang

    2009-01-01

    DC solid state relay is a new type switch device without touch point, and is extensive used by aviation and spaceflight technique. In this paper, the EMP failure modes of solid state relays were obtained by current injection method. (authors)

  14. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  15. Solid state photosensitive devices which employ isolated photosynthetic complexes

    Science.gov (United States)

    Peumans, Peter; Forrest, Stephen R.

    2009-09-22

    Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.

  16. LOW-TEMPERATURE EQUATION OF STATE OF SOLID METHANE

    Directory of Open Access Journals (Sweden)

    L. N. Yakub

    2016-02-01

    Full Text Available The theoretical equation of state for solid methane, developed within the framework of perturbation theory, with the crystal consisting of spherical molecules as zero-order approximation, and octupole – octupole interaction of methane molecules as a perturbation, is proposed. Thermodynamic functions are computed on the sublimation line up to the triple point. The contribution of the octupole – octupole interaction to the thermodynamic properties of solid methane is estimated.

  17. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    OBJECTIVES: Solid-state transformations may occur during any stage of pharmaceutical processing and upon storage of a solid dosage form. Early detection and quantification of these transformations during the manufacture of solid dosage forms is important since the physical form of an active...... pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...... multivariate approaches where even overlapping spectral bands can be analysed. SUMMARY: This review discusses the applications of different vibrational spectroscopic techniques to detect and monitor solid-state transformations possible for crystalline polymorphs, hydrates and amorphous forms of pharmaceutical...

  18. Pseudopotentials for calculating the bulk and surface properties of solids

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1983-01-01

    A survey is presented describing research in condensed matter physics using pseudopotentials to calculate electronic, structural, and vibrational properties of solids. Semiconductors are emphasized, and both bulk and surface calculations are discussed. (author) [pt

  19. Estimating the Volumes of Solid Figures with Curved Surfaces.

    Science.gov (United States)

    Cohen, Donald

    1991-01-01

    Several examples of solid figures that calculus students can use to exercise their skills at estimating volume are presented. Although these figures are bounded by surfaces that are portions of regular cylinders, it is interesting to note that their volumes can be expressed as rational numbers. (JJK)

  20. Rheological behavior of semi-solid 7075 aluminum alloy at steady state

    Directory of Open Access Journals (Sweden)

    Li Yageng

    2014-03-01

    Full Text Available The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 篊 to 630 篊 at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted. The microstructure of quenched samples was examined to understand the alloy抯 rheological behavior.

  1. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  2. Solid-state interactions between trimethoprim and parabens

    DEFF Research Database (Denmark)

    Pedersen, S.; Kristensen, H. G.; Cornett, Claus

    1994-01-01

    by differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and solid-state C-13-NMR. Interactions between trimethoprim and 4-hydroxybenzoic acid and its ethyl,propyl and butyl esters were not observed. The nature of the trimethoprim and methyl parahydroxybenzoate...

  3. Study of solid/liquid and solid/gas interfaces in Cu–isoleucine complex by surface X-ray diffraction

    International Nuclear Information System (INIS)

    Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.

    2013-01-01

    The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal–amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu–isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal–amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu–isoleucine complex under different ambient conditions. Cu(Ile) 2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu–isoleucine crystal was measured under a protective dry N 2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.

  4. Comparisons of predicted steady-state levels in rooms with extended- and local-reaction bounding surfaces

    Science.gov (United States)

    Hodgson, Murray; Wareing, Andrew

    2008-01-01

    A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.

  5. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  6. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  7. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  8. Electron spectroscopy of nanodiamond surface states

    Energy Technology Data Exchange (ETDEWEB)

    Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P

    2003-06-15

    Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp{sup 3} hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of {sigma}{sub p} up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms {sigma}{sub s}{sup 1}{sigma}{sub p}{sup 2}{pi}{sup 1} surface states without overlapping of {pi}-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface.

  9. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø, Lasse Arnt

    2016-02-02

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  10. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø , Lasse Arnt; Saleem, Qasim; Hansen, Michael Ryan

    2016-01-01

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  11. The 1989 progress report: Solid-state Mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1989-01-01

    The 1989 progress report of the laboratory of Solid-state Mechanics of the Polytechnic School (France) is presented. The investigations are focused on the study of strain and failure of solids and structures. The results reported concern the fields of: stability and bifurcation of elastic or inelastic systems, damage and fatigue (resistance improvement, failure risks on pipe systems, crack propagation), the development of a computer code for soil strengthening by using linear inclusions, mechanical behavior of several rocks for the safety of underground works, expert systems. The published papers, the conferences and the Laboratory staff are listed [fr

  12. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  13. Solid State Ionics: from Michael Faraday to green energy-the European dimension.

    Science.gov (United States)

    Funke, Klaus

    2013-08-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  14. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    Science.gov (United States)

    Funke, Klaus

    2013-01-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585

  15. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    Directory of Open Access Journals (Sweden)

    Klaus Funke

    2013-01-01

    Full Text Available Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals, by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  16. Optimization of solid state fermentation of sugar cane by Aspergillus niger considering particles size effect

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, J.; Rodriguez, L.J.A.; Delgado, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba)); Espinosa, M.E. (Centro Nacional de Investigaciones Cientificas, La Habana (Cuba))

    1991-01-01

    The protein enrichment of sugar cane by solid state fermentation employing Aspergillus niger was optimized in a packed bed column using a two Factor Central Composit Design {alpha} = 2, considering as independent factors the particle diameter corresponding to different times of grinding for a sample and the air flow rate. It was significative for the air flow rate (optimum 4.34 VKgM) and the particle diameter (optimum 0.136 cm). The average particle size distribution, shape factor, specific surface, volume-surface mean diameter, number of particles, real and apparent density and holloweness for the different times of grinding were determined, in order to characterize the samples. (orig.).

  17. Inulinase production in a packed bed reactor by solid state fermentation.

    Science.gov (United States)

    Dilipkumar, M; Rajamohan, N; Rajasimman, M

    2013-07-01

    In this work, production of inulinase was carried out in a packed bed reactor (PBR) under solid state fermentation. Kluyveromyces marxianus var. marxianus was used to produce the inulinase using pressmud as substrate. The parameters like air flow rate, packing density and particle size were optimized using response surface methodology (RSM) to maximize the inulinase production. The optimum conditions for the maximum inulinase production were: air flow rate - 0.82 L/min, packing density - 40 g/L and particle size - 0.0044 mm (mesh - 14/20). At these optimized conditions, the production of inulinase was found to be 300.5 unit/gram of dry substrate (U/gds). Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Thermal management of solid state lighting module

    NARCIS (Netherlands)

    Ye, H.

    2014-01-01

    Solid-State Lighting (SSL), powered by Light-Emitting Diodes (LEDs), is an energy-efficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in

  19. Comparison of the half-value layer: ionization chambers vs solid-state meters

    International Nuclear Information System (INIS)

    Pereira, L.C.S.; Navarro, V.C.C.; Navarro, M.V.T.; Macedo, E.M.

    2015-01-01

    Generally, the half value layer (HVL) is determined by using ionization chambers and aluminum filters. However, some solid-state dosimeters allow simultaneous measurements of X-ray's parameters, among which the HVL. The main objective of this study was to compare the HVL's values indicated by four different solid-state dosimeters, whose values were measured by ionization chambers. The maximum difference found between the two methods was 11.42%, one the solid-state dosimeters, showing that the use these instruments to determine CSR in industrial X-ray should be subject to a more thorough evaluation. (author)

  20. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio

    2013-11-26

    In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

  1. Monolayer Nickel Cobalt Hydroxyl Carbonate for High Performance All-Solid-State Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhao, Yufeng; Ma, Hongnan; Huang, Shifei; Zhang, Xuejiao; Xia, Meirong; Tang, Yongfu; Ma, Zi-Feng

    2016-09-07

    The emergence of atomically thick nanolayer materials, which feature a short ion diffusion channel and provide more exposed atoms in the electrochemical reactions, offers a promising occasion to optimize the performance of supercapacitors on the atomic level. In this work, a novel monolayer Ni-Co hydroxyl carbonate with an average thickness of 1.07 nm is synthesized via an ordinary one-pot hydrothermal route for the first time. This unique monolayer structure can efficiently rise up the exposed electroactive sites and facilitate the surface dependent electrochemical reaction processes, and thus results in outstanding specific capacitance of 2266 F g(-1). Based on this material, an all-solid-state asymmetric supercapacitor is developed adopting alkaline PVA (poly(vinyl alcohol)) gel (PVA/KOH) as electrolyte, which performs remarkable cycling stability (no capacitance fade after 19 000 cycles) together with promising energy density of 50 Wh kg(-1) (202 μWh cm(-2)) and high power density of 8.69 kW kg(-1) (35.1 mW cm(-2)). This as-assembled all-solid-state asymmetric supercapacitor (AASC) holds great potential in the field of portable energy storage devices.

  2. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  3. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  4. Efficiency of a concentric matrix track detector surface scanning

    International Nuclear Information System (INIS)

    Bek-Uzarov, Dj.; Nikezic, D.; Kostic, D.; Krstic, D.; Cuknic, O.

    1995-01-01

    Heavy particle ionizing radiation track counting on the surface of a solid state round surface detector is made using the microscope and scanning step by step by a round field of vision. The whole solid state detector surface could not be fully or completely covered by round fields of visions. Therefore detector surface could be divided on the two parts, the larger surface, being under fields of vision, really scanned and no scanned missed or omitted surface. The ratio between omitted and scanned surfaces is so called track scanning efficiency. The knowledge of really counted, or scanned surface is a important value for evaluating the real surface track density an exposed solid state track detector. In the paper a matrix of a concentric field of vision made around the first microscope field of vision placed in center of the round disc of the scanned track detector is proposed. In a such scanning matrix the real scanned surface could be easy calculated and by the microscope scanning made as well. By this way scanned surface is very precisely obtained as well. Precise knowledge of scanned and omitted surface allows to obtain more precise scanning efficiency factor as well as real surface track density, the main parameter in solid state track detection measurements. (author)

  5. First-Principles Study of Charge Diffusion between Proximate Solid-State Qubits and Its Implications on Sensor Applications

    Science.gov (United States)

    Chou, Jyh-Pin; Bodrog, Zoltán; Gali, Adam

    2018-03-01

    Solid-state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make it possible to create proximate qubits in solids that might interact with each other, leading to electron spin or charge fluctuation. Here we develop a method to calculate the tunneling-mediated charge diffusion between point defects from first principles and apply it to nitrogen-vacancy (NV) qubits in diamond. The calculated tunneling rates are in quantitative agreement with previous experimental data. Our results suggest that proximate neutral and negatively charged NV defect pairs can form a NV-NV molecule. A tunneling-mediated model for the source of decoherence of the near-surface NV qubits is developed based on our findings on the interacting qubits in diamond.

  6. Solid state fermentation (SSF): diversity of applications to valorize waste and biomass.

    Science.gov (United States)

    Lizardi-Jiménez, M A; Hernández-Martínez, R

    2017-05-01

    Solid state fermentation is currently used in a range of applications including classical applications, such as enzyme or antibiotic production, recently developed products, such as bioactive compounds and organic acids, new trends regarding bioethanol and biodiesel as sources of alternative energy, and biosurfactant molecules with environmental purposes of valorising unexploited biomass. This work summarizes the diversity of applications of solid state fermentation to valorize biomass regarding alternative energy and environmental purposes. The success of applying solid state fermentation to a specific process is affected by the nature of specific microorganisms and substrates. An exhaustive number of microorganisms able to grow in a solid matrix are presented, including fungus such as Aspergillus or Penicillum for antibiotics, Rhizopus for bioactive compounds, Mortierella for biodiesel to bacteria, Bacillus for biosurfactant production, or yeast for bioethanol.

  7. Method and system for making integrated solid-state fire-sets and detonators

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  8. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    Science.gov (United States)

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  9. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  10. Atomic and solid state physics with the 14UD

    International Nuclear Information System (INIS)

    Newton, C.S.

    1975-02-01

    The use of energetic heavy ions in atomic and solid state physics is discussed. Topics that are discussed include: 1) Properties of excited ions, 2) radiation damage studies by channeling, 3) energy loss of ions and range measurements, 4) oscillating effects in channeling, 5) x-ray production in solids, 6) coherence effects in channeling and 7) formation of united atoms. (author)

  11. Modeling all-solid-state Li-ion batteries

    NARCIS (Netherlands)

    Danilov, D.; Niessen, R.A.H.; Notten, P.H.L.

    2011-01-01

    A mathematical model for all-solid-state Li-ion batteries is presented. The model includes the charge transfer kinetics at the electrode/electrolyte interface, diffusion of lithium in the intercalation electrode, and diffusion and migration of ions in the electrolyte. The model has been applied to

  12. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  13. A High Power Linear Solid State Pulser

    International Nuclear Information System (INIS)

    Boris Yen; Brent Davis; Rex Booth

    1999-01-01

    Particle Accelerators require high voltage and often high power. Typically the high voltage/power generation utilizes a topology with an extra energy store and a switching means to extract that stored energy. The switches may be active or passive devices. Active switches are hard or soft vacuum tubes, or semiconductors. When required voltages exceed tens of kilovolts, numerous semiconductors are stacked to withstand that potential. Such topologies can use large numbers of critical parts that, when in series, compromise the system reliability and performance. This paper describes a modular, linear, solid state amplifier which uses a parallel array of semiconductors, coupled with transmission line transformers. Such a design can provide output signals with voltages exceeding 10kV (into 50-ohms), and with rise and fall times (10-90 % amplitude) that are less than 1--ns. This compact solid state amplifier is modular, and has both hot-swap and soft fail capabilities

  14. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    Energy Technology Data Exchange (ETDEWEB)

    Oladeji, I. [Planar Energy Devices, Inc.; Wood, D. L. [ORNL; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this

  16. Structure of solid surfaces and of adsorbates by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1977-01-01

    LEED theory has developed to the point where the diffraction beam intensities can be computed using the locations of the surface atoms as the only adjustable parameters. The position of atoms in many clean monatomic solid surfaces and the surface structures of ordered monolayers of adsorbed atoms have been determined this way. Surface crystallography studies are now extended to small hydrocarbon molecules that are adsorbed on metal surfaces. These studies are reviewed

  17. Moisture-induced solid state instabilities in α-chymotrypsin and their reduction through chemical glycosylation

    Directory of Open Access Journals (Sweden)

    Solá Ricardo J

    2010-08-01

    aggregation, inactivation, and structural changes of α-CT as has been similarly shown to occur for many other proteins. These instabilities correlate with an increase in protein structural dynamics as a result of moisture exposure. In this work, we present a novel methodology to stabilize proteins against structural perturbations in the solid-state since chemical glycosylation was effective in decreasing and/or preventing the traditionally observed moisture-induced aggregation and inactivation. It is suggested that the stabilization provided by these chemically attached glycans comes from the steric hindrance that the sugars conveys on the protein surface therefore preventing the interaction of the protein internal electrostatics with that of the water molecules and thus reducing the protein structural dynamics upon moisture exposure.

  18. Adsorption of gas mixtures on heterogeneous solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jaroniec, M; Rudzinski, W

    1977-01-01

    A review of theoretical studies on the physical adsorption from gas mixtures on heterogeneous solid surfaces, mainly by Jaroniec and coworkers, covers the vector notation used in the calculations; adsorption isotherms for multicomponent gases; the generalized integral equation for adsorption of gas mixtures, its numerical and analytical solutions, applied, (e.g., to interpret the experimental adsorption isotherms of ethane/ethylene on Nuxit-AL); thermodynamic relations, applied, (e.g., to calculating isosteric adsorption heats from experimental parameters for the adsorption of propylene from propane/propylene mixtures on Nuxit-AL); and the derivation and use of a simplified integral equation for describing the adsorption from gas mixtures on heterogeneous surfaces. 75 references.

  19. Method and system for making integrated solid-state fire-sets and detonators

    Science.gov (United States)

    O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

    1998-03-24

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

  20. Rechargeable quasi-solid state lithium battery with organic crystalline cathode

    Science.gov (United States)

    Hanyu, Yuki; Honma, Itaru

    2012-01-01

    Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655

  1. Role of surface roughness in superlubricity

    International Nuclear Information System (INIS)

    Tartaglino, U; Samoilov, V N; Persson, B N J

    2006-01-01

    We study the sliding of elastic solids in adhesive contact with flat and rough interfaces. We consider the dependence of the sliding friction on the elastic modulus of the solids. For elastically hard solids with planar surfaces with incommensurate surface structures we observe extremely low friction (superlubricity), which very abruptly increases as the elastic modulus decreases. We show that even a relatively small surface roughness may completely kill the superlubricity state

  2. Single longitudinal mode operation of a solid-state dye laser oscillator

    CERN Document Server

    Lim, G; Kim, H S; Cha, B H; Lee, J M

    2000-01-01

    We have operated a single longitudinal mode of a solid-state dye laser oscillator in a Littman configuration. The host material of the solid-state gain medium was rhodamine dye-doped poly (methyl methacrylate). The pumping source was the second harmonic of a Nd:YAG laser with a repetition rate of 10 Hz. The measured linewidth of the laser output was about 1.5 GHz.

  3. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  4. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Science.gov (United States)

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  5. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Riaz

    2018-01-01

    Full Text Available Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.

  6. Radioactive ion beams and techniques for solid state research

    International Nuclear Information System (INIS)

    Correia, J.G.

    1998-01-01

    In this paper we review the most recent and new applications of solid state characterization techniques using radioactive ion beams. For such type ofresearch, high yields of chemically clean ion beams of radioactive isotopesare needed which are provided by the on-line coupling of high resolution isotope separators to particle accelerators, such as the isotope separator on-line (ISOLDE) facility at CERN. These new experiments are performed by an increasing number of solid state groups. They combine nuclear spectroscopic techniques such as Moessbauer, perturbed angular correlations (PAC) and emission channeling with the traditional non-radioactive techniques liked deep level transient spectroscopy (DLTS) and Hall effect measurements. Recently isotopes of elements, not available before, were successfully used in new PAC experiments, and the first photoluminescence (PL) measurements, where the element transmutation plays the essential role on the PL peak identification, have been performed. The scope of applications of radioactive ion beams for research in solid state physics will be enlarged in the near future, with the installation at ISOLDE of a post-accelerator device providing radioactive beams with energies ranging from a few keV up to a few MeV. (orig.)

  7. Thermoacoustics of solids: A pathway to solid state engines and refrigerators

    Science.gov (United States)

    Hao, Haitian; Scalo, Carlo; Sen, Mihir; Semperlotti, Fabio

    2018-01-01

    Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later found several practical applications to engineering devices. To date, all studies have concentrated on the thermoacoustics of fluid media where this fascinating mechanism was exclusively believed to exist. Our study shows theoretical and numerical evidence of the existence of thermoacoustic instabilities in solid media. Although the underlying physical mechanism exhibits some interesting similarities with its counterpart in fluids, the theoretical framework highlights relevant differences that have important implications on the ability to trigger and sustain the thermoacoustic response. This mechanism could pave the way to the development of highly robust and reliable solid-state thermoacoustic engines and refrigerators.

  8. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.

    Science.gov (United States)

    Singh, Satbir; Bajaj, Bijender Kumar

    2016-10-02

    Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728 U ml(-1)), which was followed by gram husk (714 U ml(-1)), mustard cake (680 U ml(-1)), and soybean meal (653 U ml(-1)). Plackett-Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020 U ml(-1)). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.

  9. Equation of state of solid hydrogen at 0 deg K. A bibliography

    International Nuclear Information System (INIS)

    Masse, J.-L.

    1976-02-01

    A bibliography on solid hydrogen at 0 deg K and its equation of state is presented. The isotopic derivatives of H 2 , such as D 2 , HD... have been also considered. Both phases of solid hydrogen have been studied: the molecular phase, stable at low pressure, and the hypothetical metallic phase which must be stable at high pressure. The study of the molecular phase is preceded by a study of the (H 2 ,H 2 ) system of two interacting H 2 , molecules, the knowledge of this interaction being necessary for the evaluation of the properties of the molecular solid phase. The three systems: (H 2 ,H 2 ) and molecular solid and metallic hydrogen have been considered from the experimental and theoretical points of view. The properties of these systems, the measurement or the calculation of which are described, have been chosen on account of their usefulness for the research of the equation of state of molecular or metallic solid hydrogen. Different interaction potentials of two hydrogen molecules and different equations of state of molecular solid hydrogen are given. Some theoretical studies are proposed [fr

  10. Majorana modes in solid state systems and its dynamics

    Science.gov (United States)

    Zhang, Qi; Wu, Biao

    2018-04-01

    We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.

  11. Peakr: simulating solid-state NMR spectra of proteins

    International Nuclear Information System (INIS)

    Schneider, Robert; Odronitz, Florian; Hammesfahr, Bjorn; Hellkamp, Marcel; Kollmar, Martin

    2013-01-01

    When analyzing solid-state nuclear magnetic resonance (NMR) spectra of proteins, assignment of resonances to nuclei and derivation of restraints for 3D structure calculations are challenging and time-consuming processes. Simulated spectra that have been calculated based on, for example, chemical shift predictions and structural models can be of considerable help. Existing solutions are typically limited in the type of experiment they can consider and difficult to adapt to different settings. Here, we present Peakr, a software to simulate solid-state NMR spectra of proteins. It can generate simulated spectra based on numerous common types of internuclear correlations relevant for assignment and structure elucidation, can compare simulated and experimental spectra and produces lists and visualizations useful for analyzing measured spectra. Compared with other solutions, it is fast, versatile and user friendly. (authors)

  12. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    Science.gov (United States)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  13. X-ray spectroscopy: An experimental technique to measure charge state distribution during ion–solid interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prashant, E-mail: prashant@iuac.res.in; Nandi, Tapan

    2016-01-08

    Charge state distributions of {sup 56}Fe and {sup 58}Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.65–2.69 MeV/u using a novel method involving the X-ray spectroscopy technique. Interestingly the charge state distribution in the bulk shows Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the X-ray measurement technique is appropriate to determine the mean charge state during the ion–solid interaction or in the bulk. Interestingly, empirical formalism predicts much lower mean charge states of the projectile ions compared to X-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for the present energy regime. - Highlights: • New method is proposed to determine charge state distribution using X-ray technique. • Charge state distribution parameters are calculated and compared with various theoretical predictions. • X-ray technique is found to be appropriate to segregate the charge state distribution in the bulk from the target surface. • ETACHA predictions are found satisfactory in the energy range of ≥1.65 MeV/u.

  14. A Model of the Effect of the Microbial Biomass on the Isotherm of the Fermenting Solids in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barbara Celuppi Marques

    2006-01-01

    Full Text Available We compare isotherms for soybeans and soybeans fermented with Rhizopus oryzae, showing that in solid-state fermentation the biomass affects the isotherm of the fermenting solids. Equations are developed to calculate, for a given overall water content of the fermenting solids, the water contents of the biomass and residual substrate, as well as the water activity. A case study, undertaken using a mathematical model of a well-mixed bioreactor, shows that if water additions are made on the basis of the assumption that fermenting solids have the same isotherm as the substrate itself, poor growth can result since the added water does not maintain the water activity at levels favorable for growth. We conclude that the effect of the microbial biomass on the isotherm of the fermenting solids must be taken into account in mathematical models of solid-state fermentation bioreactors.

  15. Topological surface states scattering in antimony

    KAUST Repository

    Narayan, Awadhesh

    2012-11-05

    In this work we study the topologically protected states of the Sb(111) surface by using ab initio transport theory. In the presence of a strong surface perturbation we obtain standing-wave states resulting from the superposition of spin-polarized surface states. By Fourier analysis, we identify the underlying two dimensional scattering processes and the spin texture. We find evidence of resonant transmission across surface barriers at quantum well state energies and evaluate their lifetimes. Our results are in excellent agreement with experimental findings. We also show that despite the presence of a step edge along a different high-symmetry direction, the surface states exhibit unperturbed transmission around the Fermi energy for states with near to normal incidence. © 2012 American Physical Society.

  16. Topological surface states scattering in antimony

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2012-01-01

    In this work we study the topologically protected states of the Sb(111) surface by using ab initio transport theory. In the presence of a strong surface perturbation we obtain standing-wave states resulting from the superposition of spin-polarized surface states. By Fourier analysis, we identify the underlying two dimensional scattering processes and the spin texture. We find evidence of resonant transmission across surface barriers at quantum well state energies and evaluate their lifetimes. Our results are in excellent agreement with experimental findings. We also show that despite the presence of a step edge along a different high-symmetry direction, the surface states exhibit unperturbed transmission around the Fermi energy for states with near to normal incidence. © 2012 American Physical Society.

  17. Surface Solid Dispersion and Solid Dispersion of Meloxicam: Comparison and Product Development.

    Science.gov (United States)

    Chaturvedi, Mayank; Kumar, Manish; Pathak, Kamla; Bhatt, Shailendra; Saini, Vipin

    2017-12-01

    Purpose: A comparative study was carried out between surface solid dispersion (SSD) and solid dispersion (SD) of meloxicam (MLX) to assess the solubility and dissolution enhancement approach and thereafter develop as patient friendly orodispersible tablet. Methods: Crospovidone (CPV), a hydrophilic carrier was selected for SSD preparation on the basis of 89% in- vitro MLX adsorption, 19% hydration capacity and high swelling index. SD on the other hand was made with PEG4000. Both were prepared by co-grinding and solvent evaporation method using drug: carrier ratios of 1:1, 1:4, and 1:8. Formulation SSDS3 (MLX: CPV in 1:8 ratio) made by solvent evaporation method showed t 50% of 28 min and 80.9% DE 50min which was higher in comparison to the corresponding solid dispersion, SDS3 (t 50% of 35min and 76.4% DE 50min ). Both SSDS3 and SDS3 were developed as orodispersible tablets and evaluated. Results: Tablet formulation F3 made with SSD3 with a disintegration time of 11 secs, by wetting time= 6 sec, high water absorption of 78%by wt and cumulative drug release of 97% proved to be superior than the tablet made with SD3. Conclusion: Conclusively, the SSD of meloxicam has the potential to be developed as fast acing formulation that can ensure almost complete release of drug.

  18. Surface Solid Dispersion and Solid Dispersion of Meloxicam: Comparison and Product Development

    Directory of Open Access Journals (Sweden)

    Mayank Chaturvedi

    2017-12-01

    Full Text Available Purpose: A comparative study was carried out between surface solid dispersion (SSD and solid dispersion (SD of meloxicam (MLX to assess the solubility and dissolution enhancement approach and thereafter develop as patient friendly orodispersible tablet. Methods: Crospovidone (CPV, a hydrophilic carrier was selected for SSD preparation on the basis of 89% in- vitro MLX adsorption, 19% hydration capacity and high swelling index. SD on the other hand was made with PEG4000. Both were prepared by co-grinding and solvent evaporation method using drug: carrier ratios of 1:1, 1:4, and 1:8. Formulation SSDS3 (MLX: CPV in 1:8 ratio made by solvent evaporation method showed t50% of 28 min and 80.9% DE50min which was higher in comparison to the corresponding solid dispersion, SDS3 (t50% of 35min and 76.4% DE50min. Both SSDS3 and SDS3 were developed as orodispersible tablets and evaluated. Results: Tablet formulation F3 made with SSD3 with a disintegration time of 11 secs, by wetting time= 6 sec, high water absorption of 78%by wt and cumulative drug release of 97% proved to be superior than the tablet made with SD3. Conclusion: Conclusively, the SSD of meloxicam has the potential to be developed as fast acing formulation that can ensure almost complete release of drug.

  19. Development of a dc low pressure D- surface-conversion source using a 10-cm-diameter solid barium converter

    International Nuclear Information System (INIS)

    Kwan, J.W.; Anderson, O.A.; Chan, C.F.; Cooper, W.S.; deVries, G.J.; Kunkel, W.B.; Leung, K.N.; Lietzke, A.F.; Steele, W.F.; van Os, C.F.A.; Wells, R.P.; Williams, M.D.

    1991-09-01

    A D - surface-conversion source using a solid barium converter is designed for steady-state operation to produce 200 mA of D - . A similar ion source of twice the size as the one discussed here will meet the requirements set by the present US-ITER neutral beam injector design. Among the possible types of ion sources being considered for the US-ITER neutral beam design, the barium converter surface-conversion source is the only kind that does not use cesium in the discharge. This absence of cesium will minimize the number of accelerator breakdowns. 15 refs., 4 figs

  20. Surface states in photonic crystals

    Directory of Open Access Journals (Sweden)

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  1. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel; Kermagoret, Anthony; Callens, Emmanuel; Florian, Pierre A.; Massiot, Dominique; Lesage, Anne; Copé ret, Christophe; Delbecq, Franç oise; Rozanska, Xavier; Sautet, Philippe

    2012-01-01

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  2. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel

    2012-04-18

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  3. Optimization of Laccase Production using White Rot Fungi and Agriculture Wastes in Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Hendro Risdianto

    2012-07-01

    Full Text Available Laccase has been produced in a solid state fermentation (SSF using white rot fungi and various lignocellulosic based substrates. White rot fungi used were Marasmius sp, Trametes hirsuta, Trametes versicolor and Phanerochaete crysosporium. The solid substrates employed in this research were collected from agriculture waste which were empty fruit bunches (EFB, rice straw, corn cob, and rice husk. The objective of this research was to determine the most promising fungus, the best solid substrate and the optimal conditions for the production of laccase. The results showed that Marasmius sp. on all solid substrates displayed higher laccase activity than that of any other strain of white rot fungi. Marasmius sp. and solid substrate of rice straw demonstrated the highest laccase activity of 1116.11 U/L on day 10. Three significant factors, i.e. pH, temperature and yeast extract concentration were studied by response surface method on laccase production using Marasmius sp and rice straw. The optimized conditions were pH, temperature and yeast extract concentration of 4.9, 31ºC and 0.36 g/L respectively. The fermentation of Marasmius sp. in SSF on agricultural waste shows a great potential for the production of laccase.

  4. Initial clinical experience with dedicated ultra fast solid state cardiac gamma camera

    International Nuclear Information System (INIS)

    Aland, Nusrat; Lele, V.

    2010-01-01

    Full text: To analyze the imaging and diagnostic performance of new dedicated ultra fast solid state detector gamma camera and compare it with standard dual detector gamma camera in myocardial perfusion imaging. Material and Methods: In total 900 patients underwent myocardial perfusion imaging between 1st February 2010 and 29th August 2010 either stress/rest or rest/stress protocol. There was no age or gender bias (there were 630 males and 270 females). 5 and 15 mCi of 99m Tc - Tetrofosmin/MIBI was injected for 1st and 2nd part of the study respectively. Waiting period after injection was 20 min for regular stress and 40 min for pharmacological stress and 40 min after rest injection. Acquisition was performed on solid state detector gamma camera for a duration of 5 min and 3 min for 1st and 2nd part respectively. Interpretation of myocardial perfusion was done and QGS/QPS protocol was used for EF analysis. Out of these, 20 random patients underwent back to back myocardial perfusion SPECT imaging on standard dual detector gamma camera on same day. There was no age or gender bias (there were 9 males, 11 females). Acquisition time was 20 min for each part of the study. Interpretation was done using Autocard and EF analyses with 4 DM SPECT. Images obtained were then compared with those of solid state detector gamma camera. Result: Good quality and high count myocardial perfusion images were obtained with lesser amount of tracer activity on solid state detector gamma camera. Obese patients also showed good quality images with less tracer activity. As compared to conventional dual detector gamma camera images were brighter and showed better contrast with solid state gamma camera. Right ventricular imaging was better seen. Analyses of diastolic dysfunction was possible with 16 frame gated studies with solid state gamma camera. Shorter acquisition time with comfortable position reduced possibility of patient motion. All cardiac views were obtained with no movement of the

  5. Interfacial Engineered Polyaniline/Sulfur-doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors.

    Science.gov (United States)

    Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin

    2018-05-04

    Fiber-shaped supercapacitors (FSCs) have great potential in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO2 nanotubes array (PANI/S-TiO2) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO2 electrodes deliver a high specific capacitance of 91.9 mF cm-2, a capacitance retention of 93.78% after 12,000 charge/discharge cycles, and an areal energy density of 3.2 µWh cm-2, respectively. Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, short ion diffusion path, high electrical conductivity and engineered interfacial interaction of the rationally designed electrodes.

  6. Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder

    Science.gov (United States)

    Chen, Y.-R.; Chiu, K.-F.; Lin, H. C.; Chen, C.-L.; Hsieh, C. Y.; Tsai, C. B.; Chu, B. T. T.

    2014-11-01

    Sulfonated polyetheretherketone (SPEEK) has been synthesised by sulphonation process and used as the solid-state electrolyte, binder and surfactant for supercapacitors. Reduced graphene dispersed by SPEEK is used as a high-efficiency conducting additive in solid-state supercapacitors. It is found that SPEEK can improve the stability of the reduced graphene dispersion significantly, and therefore, the solid-state supercapacitors show a large decrease in IR drop and charge-transfer resistance (Rct), resulting in a higher rate capability. The solid-state supercapacitors with the activated carbon/reduced graphene/SPEEK/electrode can be operated from 1 to 8 A/g and exhibit capacity retention of 93%. The noteworthy is more than twice higher value for capacity retention by comparison with the solid-state supercapacitors using activated carbon/reduced graphene/PVDF electrode (capacity retention is 36%). The cell of reduced graphene with SPEEK can be cycled over 5000 times at 5 A/g with no capacitance fading.

  7. Ion desorption phenomena induced by various types of multiply charged projectiles and by photons on solid surfaces

    International Nuclear Information System (INIS)

    Beyec, Y. Le.

    1991-01-01

    Ion desorption experiments are described in two regions of primary ion velocities corresponding to two distinct classes of interaction mechanism. At low speeds, atomic collisions take place, at higher speeds than the electron velocity, electronic collisions occur. Experiments with fast ions above 0.2 MeV/u are described, using 32 S and 235 U ions obtained in a cyclotron and a linear accelerator. Emission of H + ions from solid surfaces is measured and analyzed, and applied to the determination of the charge state of a fast ion in a solid. Experiments using single atomic and polyatomic, keV ions, and organic and CsI cluster ions as projectiles are also presented. Finally, laser desorption is discussed. (R.P.) 81 refs., 27 figs., 2 tabs

  8. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  9. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    Science.gov (United States)

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  10. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  11. Quantum theory of the solid state part B

    CERN Document Server

    Callaway, Joseph

    1974-01-01

    Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed

  12. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  13. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  14. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes.

    Science.gov (United States)

    Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping

    2018-04-20

    Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Non-affine deformation in microstructure selection in solids II: Elastoplastic theory for the dynamics of solid state transformations

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Arya; Bhattacharya, Jayee; Sengupta, Surajit [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700 098 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India)

    2008-09-10

    We study the nucleation dynamics of a model solid state transformation and the criterion for microstructure selection. Using a molecular dynamics (MD) simulation, we had shown that the dynamics of the solid is accompanied by the creation of transient non-affine zones (NAZ), which evolve with the rapidly moving transformation front. Guided by our MD results, we formulate a dynamical continuum theory of solid state transformation, which couples the elastic strain to the non-affine deformation. We demonstrate that our elastoplastic description recovers all qualitative features of the MD simulation. We construct a dynamical phase diagram for microstructure selection, including regimes where martensite or ferrite obtains, in addition to making several testable predictions.

  16. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces

    International Nuclear Information System (INIS)

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. -- Highlights: • Physico-chemical parameters investigated in build-up samples from 32 road surfaces. • Mineralogical composition primarily governs the physico-chemical characteristics. • High clay forming mineral content in fine solids increases SSA and ECEC. • Characteristics influenced by quartz and amorphous content with particle size. • High quartz content in coarse particles contributes reduced metal adsorption. -- The mineralogical composition of solids is the governing factor influencing metal adsorption to solids in pollutant build-up on urban surfaces

  17. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  18. Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.

    Science.gov (United States)

    Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-08-09

    High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.

  19. Molecular and solid-state properties of tris-(8-hydroxyquinolate)-aluminum

    International Nuclear Information System (INIS)

    Martin, Richard L.; Kress, Joel D.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    We use a hybrid density-functional-theory approach to calculate ground-state electronic properties and a time-dependent density-functional-theory approach to investigate the excited state electronic properties of molecular tris-(8-hydroxyquinolate)-aluminum, Alq. The calculated molecular results are compared with measurements on dense solid-state films of Alq. We specifically consider: the optical absorption spectrum near the fundamental absorption threshold, the ionization potential, the single-particle energy gap, the static dielectric constant, and the electric-field dependence of the electron mobility. We find that the molecular calculations can describe the optical absorption spectrum near the fundamental absorption threshold without significant corrections for solid-state effects. The energies of the triplet excited states are computed and the lowest triplet is found to lie 0.64 eV below the lowest excited singlet state. In contrast, large dielectric corrections must be included for the molecular calculations to describe the ionization potential and single-particle energy gap. When these dielectric corrections are made, using the calculated molecular polarizability, which accurately gives the measured static dielectric constant, both the ionization potential and single-particle energy gap are well described. The calculated molecular dipole moment can be used to interpret the electric-field dependence of the electron mobility. The solid-state properties, determined from the molecular calculations, are then used in a device model to describe the measured current-voltage characteristics in Alq diodes. (c) 2000 The American Physical Society

  20. Mineralization of CCl4 and CCl2F2 on solid surfaces

    International Nuclear Information System (INIS)

    Gaeb, S.; Schmitzer, J.; Turner, W.V.; Korte, F.; Technische Univ. Muenchen, Freising

    1980-01-01

    The mineralization of 14 CCl 4 and 14 CCl 2 F 2 in the dark is shown to be greatly dependent on the nature of the solid surfaces to which they are exposed, alumina being more effective than silica gel and a number of natural sands. Activation of the solids by drying or mechanically by tumbling leads to increased mineralization rates. (orig.)