WorldWideScience

Sample records for solid state applications

  1. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  2. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  3. Nanographite Films for Solid State Electronic Applications

    Directory of Open Access Journals (Sweden)

    Sergey G. Lebedev

    2013-01-01

    Full Text Available The structure and properties of nanographite films useful for applications in solid state devices are described. The possibility to use low conducting state of nanographite film for detecting radiation in the segmented solid state detectors is considered. Other interesting phenomena include the field effect conductivity switching which can be used in contactless current limiters and circuit breakers, the rf-to-dc conversion which can be utilized in microwave and photo detectors, and light emitting subsequent to the conductivity switching with possible application as light sources. The possible underlying gears of the mentioned effects are discussed.

  4. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  5. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  6. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  7. Solid state neutron dosimeter for space applications

    Science.gov (United States)

    Nagarkar, V.; Entine, G.; Stoppel, P.; Cirignano, L.; Swinehart, P.

    1992-01-01

    One of the most important contributions to the radiation exposure of astronauts engaged in space flight is the significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Under NASA sponsorship, we are developing a solid state neutron sensor capable of being incorporated into a very compact, flight instrument to provide high quality real time measurement of this important radiation flux. The dosimeter uses a special, high neutron sensitivity, PIN diode that is insensitive to the other forms of ionizing radiation. The dosimeter will have the ability to measure and record neutron dose over a range of 50 microgray to tens of milligrays (5 millirads to several rads) over a flight of up to 30 days. The performance characteristics of the PIN diode with a detailed description of the overall dosimeter is presented.

  8. Solid state neutron dosimeter for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Nagarkar, V.; Entine, G.; Stoppel, P.; Cirignano, L. (Radiation Monitoring Devices, Inc., Watertown, MA (United States)); Swinehart, P. (Lake Shore Cryotronics, Inc., Westerville, OH (United States))

    1992-08-01

    One of the most important contributions to the radiation exposure of astronauts engaged in space flight is the significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Under NASA sponsorship, the authors are developing a solid state neutron sensor capable of being incorporated into a very compact, flight instrument to provide high quality real time measurement of this important radiation flux. The dosimeter uses a special, high neutron sensitivity, PIN diode that is insensitive t the other forms of ionizing radiation. The dosimeter will have the ability to measure and record neutron dose over a range of 50 microgray to tens of milligrays (5 millirads to several rads) over a flight of up to 30 days. the performance characteristics of the PIN diode with a detailed description of the overall dosimeter is presented. in this paper.

  9. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Murray, D.W.

    1987-01-01

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. The results of these tests as well as a description of the test equipment, test sites, and procedures are presented in this report

  10. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  11. Solid state laser systems for space application

    Science.gov (United States)

    Kay, Richard B.

    1994-01-01

    Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.

  12. Diode-pumped all-solid-state lasers and applications

    CERN Document Server

    Parsons-Karavassilis, D

    2002-01-01

    This thesis describes research carried out by the within the Physics Department at Imperial College that was aimed at developing novel all-solid-state laser sources and investigating potential applications of this technology. A description of the development, characterisation and application of a microjoule energy level, diode-pumped all-solid-state Cr:LiSGAF femtosecond oscillator and regenerative amplifier system is presented. The femtosecond oscillator was pumped by two commercially available laser diodes and produced an approx 80 MHz pulse train of variable pulse duration with approx 30 mW average output power and a tuning range of over approx 60 nm. This laser oscillator was used to seed a regenerative amplifier, resulting in adjustable repetition rate (single pulse to 20 kHz) approx 1 mu J picosecond pulses. These pulses were compressed to approx 150 fs using a double-pass twin-grating compressor. The amplifier's performance was investigated with respect to two different laser crystals and different pul...

  13. Solid state physics advances in research and applications

    CERN Document Server

    Turnbull, David

    1991-01-01

    The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.

  14. Application of Smart Solid State Sensor Technology in Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Dungan, L.K.; Makel, D.; Ward, B.; Androjna, D.

    2008-01-01

    Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology.

  15. Solder joint reliability in solid-state lighting applications

    NARCIS (Netherlands)

    Kloosterman, J.; Kregting, R.; Erinc, M.; Driel, W.D. van

    2013-01-01

    Lighting is an advancing phenomenon both on the technology and on the market level due to the rapid development of the solid-state lighting technology. The interest in solder joint reliability has increased by the introduction of the so-called high brightness leadless type of packages. Solder joint

  16. Organic Materials Degradation in Solid State Lighting Applications

    NARCIS (Netherlands)

    Yazdan Mehr, M.

    2015-01-01

    In this thesis the degradation and failure mechanisms of organic materials in the optical part of LED-based products are studied. The main causes of discoloration of substrate/lens in remote phosphor of LED-based products are also comprehensively investigated. Solid State Lighting (SSL) technology

  17. Solid state physics advances in research and applications

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    The latest volume in the world renowned Solid State Physics series marks the fruition of Founding Editor David Turnbull''s outstanding tenure as series editor. Volume 47 presents five articles written by leadingexperts on areas including crystal-melt interfacial tension, order-disorder transformation in alloys, brittle matrix composites, surfaces and interfaces, and magnetoresistance.

  18. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  19. Application of Solid State Static Var Compensation and Stability Enhancements.

    Science.gov (United States)

    Hussain, Badruzzaman

    Since the development of large scale electric power system interconnection, power engineering has gone through enormous changes and many new power system dynamic problems have emerged. Among them, the low frequency power oscillations between intersystem have been a major concern and is the issue in this research. In this research an effective and efficient method of controlling reactive power is presented. This research shows that spontaneous introduction of small power oscillations in the interconnected network system can be effectively suppressed by an unique method of solid state reactive power compensation. The capability of power electronics is discussed in reasonable detail to justify the feasibility of solid state reactive power generation. Mathematical formulation is carried out to control the reactive power which in turn controls the dynamics of the interconnected power system by improving the damping of interties in the system. The presently installed power system stabilizers are compared with this approach for a single machine infinite bus system. In this research, the formulation is shown to be effective for centralized multi-mode, multimachine systems. The study of the system for small power oscillations is based upon the analysis of eigenvalues of the electromechanical modes of the system. Transient stability problem is also emphasized in this research. It is shown that the system undergoing a large disturbance or severe fault can be stabilized by utilizing a discrete voltage rise in the system. This is achieved by operating the SSSVC with its maximum capacity leading mode, immediately after the inception of a fault or disturbance in the system. It is demonstrated that using this control scheme, the critical clearing time of the system can be increased significantly, which enables the operator to incorporate various corrective actions to minimize the system power imbalance.

  20. Computer language Mathsy and applications to solid state physics

    International Nuclear Information System (INIS)

    Peterson, G.; Budgor, A.B.

    1980-01-01

    The high-level interactive mathematics and graphics computer language, Mathsy, is discussed and demonstrated with sample applications. Mathsy is an interpretive, interactive, mathematical, array processing, and graphics system. Among its diverse uses in the laser fusion project at the Lawrence Livermore Laboratory, it has enabled the conceptualization of a new algorithm to compute the density of electron or phonon states spectra which requires no root solving

  1. Solid-state graft copolymer electrolytes for lithium battery applications.

    Science.gov (United States)

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-08-12

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

  2. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  3. Applicability of three-parameter equation of state of solids: compatibility with first principles approaches and application to solids

    CERN Document Server

    Roy, P B

    2003-01-01

    In a recent paper we have proposed a three-parameter equation of state (EOS) of solids, and applied it to a few isotherms and shown that the fits are uniformly excellent. In this paper a comprehensive comparison of the applicability of our model is made with seven existing three-parameter EOSs. We have applied our model along with seven existing three-parameter EOSs, with no constraint on the parameters, to accurate and model-independent isotherms of nine solids and studied the fitting accuracy and agreement of the fit parameters with experiment. Further, each of these nine isotherms is divided into three subsets, and the resulting subsets fitted with all the eight EOSs. The stability of the fitted stress-free bulk modulus B sub 0 and its pressure derivatives B' sub 0 and B'' sub 0 with variation in the compression range is compared. Furthermore, our EOS is applied to a large number of inorganic as well as organic solids, including alloy, glasses, rubbers and plastics; of widely divergent bonding and structur...

  4. Solid state nuclear track detectors and their application in industrial health, radiological and environmental protection

    International Nuclear Information System (INIS)

    Urban, M.

    1993-09-01

    Passive Solid State Nuclear Track Detectors are electrically non conductive solids, mainly used for the registration of α-particles and neutron induced recoils. The stability of the particle tracks in the solid allow longer integration periods, what is essential for the measurement of small, time variant radiation exposures. This report gives an overview on non-photographic track detectors, their processing, dosimetric properties and examples for their application in industrial health, radiological and environmental protection. (orig.) [de

  5. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  6. Solid State Radiation Dosimeters for Space and Medical Applications

    Science.gov (United States)

    Buehler, Martin G. (Editor)

    1996-01-01

    This report describes the development of two radiation monitors (RADMON's) for use in detecting total radiation dose and high-energy particles. These radiation detectors are chip-size devices fabricated in 1.2 micrometer CMOS and have flown in space on both experimental and commercial spacecraft. They have been used to characterize protons and electrons in the Earth's radiation belts, particles from the Sun, and protons used for medical therapy. Having proven useful in a variety of applications, the detector is now being readied for commercialization.

  7. Solid-State Photoinduced Luminescence Switch for Advanced Anticounterfeiting and Super-Resolution Imaging Applications.

    Science.gov (United States)

    Qi, Qingkai; Li, Chong; Liu, Xiaogang; Jiang, Shan; Xu, Zhaochao; Lee, Richmond; Zhu, Mingqiang; Xu, Bin; Tian, Wenjing

    2017-11-15

    Solid-state organic photoswitches with reversible luminescence modulation property are highly attractive because of their wide prospects in advanced photonic applications, such as optical data storage, anticounterfeiting and bioimaging. Yet, developing such materials has long been a significant challenge. In this work, we construct an efficient solid-state photoswitch based on a spiropyran-functionalized distyrylanthracene derivative (DSA-2SP) that exhibits exceptional reversible absorption/luminescence modulation ability. Efficient photoswitching between DSA-2SP and its photoisomer DSA-2MC are facilitated by large free volumes induced by nonplanar molecular structures of DSA moieties, as well as the intramolecular hydrogen bonds between the DSA and MC moieties. Consequently, the excellent solid-state photochromic property of DSA-2SP is highly applicable as both anticounterfeiting inks and super-resolution imaging agents.

  8. Emanation thermal analysis. Application in solid state chemistry, analytical chemistry and engineering

    International Nuclear Information System (INIS)

    Balek, V.; Tel'deshi, Yu.

    1986-01-01

    Voluminous material on application of emenation thermal analysis for investigation of solids is systematized. General concepts and historical review of development of the method are given. Methods of introduction of inert gases into solids are considered. Theoretical aspects of inert gas evolution from solids labelled by radioactive gas or its maternal isotope are stated. The methods for measuring inert gases are considered. The possibilities, limitations and perspectives of development of radiometric emanation methods for the solution of various problems of analytical chemistry and thechnology are discussed

  9. Application of solid state nuclear track detectors in radiation protection

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.; Mishra, U.C.

    1989-01-01

    This article reviews the current status of the application of nuclear track detectors with emphasis on recent developments in the field of radiation protection. Track etch detectors have been used for the measurements of low level radiation in the environment, fast neutron and radon daughter inhalation dose. Recent developments in the field of dosimetry seem to be promising. In fast neutron dosimetry, track etch detectors can be used without inclusion of fissile materials by using the electrochemical etching technique. These detectors can provide important information in the energy range upto 250 keV. Survey of this range of energy with TLD is difficult because they are extremely energy dependent and over-respond to low energy neutrons. Measurement of radon using track detectors can help to lower the cost of the radon dosimeters. Certain detectors are sensitive to alpha particles from radon and their progeny. Higher sensitivity permits their use in a passive type of personnel dosimeter, which does not require the troublesome aspects of air sampling for the collection of radon daughter samples. (author), 38 refs., 8 tabs., 12 figs

  10. On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: emananga@gradcenter.cuny.edu [Harvard Medical School and Massachusetts General Hospital, Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging Physics, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Charpentier, Thibault, E-mail: thibault.charpentier@cea.fr [Commissariat à l’Energie Atomique, IRAMIS, Service interdisciplinaire sur les systèmes moléculaires et matériaux, CEA/CNRS UMR 3299, 91191, Gif-sur-Yvette (France)

    2016-01-22

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Floquet–Magnus expansion that is helpful to describe the time evolution of the spin system at all times in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics, based on promising and useful theory of Floquet–Magnus expansion. This theory provides procedures to control and describe the spin dynamics in solid-state NMR. Major applications of the Floquet–Magnus expansion are illustrated by simple solid-state NMR and physical applications such as in nuclear, atomic, molecular physics, and quantum mechanics, NMR, quantum field theory and high energy physics, electromagnetism, optics, general relativity, search of periodic orbits, and geometric control of mechanical systems. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics. This review article also discusses future potential theoretical directions in solid-state NMR.

  11. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  12. Broadly tunable metal halide perovskites for solid-state light-emission applications

    NARCIS (Netherlands)

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as

  13. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    International Nuclear Information System (INIS)

    Gaspar, M.; Pedrozzi, M.; Ferreira, L.F.R.; Garvey, T.

    2011-01-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  14. Solid-State Nanopore

    Directory of Open Access Journals (Sweden)

    Zhishan Yuan

    2018-02-01

    Full Text Available Abstract Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  15. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  16. Application of Vibrational Spectroscopy to Study Solid-state Transformations of Pharmaceuticals.

    Science.gov (United States)

    Erxleben, Andrea

    2016-01-01

    Understanding the properties, stability and transformations of the solid-state forms of an active pharmaceutical ingredient (API) in the development pipeline is of crucial importance for process-development, formulation development and FDA approval. Investigation of the polymorphism and polymorphic stability is a routine part of the preformulation studies. Vibrational spectroscopy allows the real-time in situ monitoring of phase transformations and probes intermolecular interactions between API molecules, between API and polymer in amorphous solid dispersions or between API and coformer in cocrystals or coamorphous systems and thus plays a major role in efforts to gain a predictive understanding of the relative stability of solid-state forms and formulations. Infrared (IR), near-infrared (NIR) and Raman spectroscopies, alone or in combination with other analytical methods, are important tools for studying transformations between different crystalline forms, between the crystalline and amorphous form, between hydrate and anhydrous form and for investigating solid-state cocrystal formation. The development of simple-to-use and cost-effective instruments on the one hand and recent technological advances such as access to the low-frequency Raman range down to 5 cm-1, on the other, have led to an exponential growth of the literature in the field. This review discusses the application of IR, NIR and Raman spectroscopies in the study of solid-state transformations with a focus on the literature published over the last eight years.

  17. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  18. APPLICATION OF SOLID-STATE FERMENTATION FOR CELLULASE ENZYME PRODUCTION USING TRICHODERMA VIRIDE

    OpenAIRE

    KIRO MOJSOV

    2010-01-01

    The Solid-state fermentation (SSF) is alternative to submerged fermentation for production antibiotics, single cell protein, enzymes, organic acids, biofuel, etc. However, the advantages of SSF in various processes are found to be greater than in submerged fermentation. This technique not only decreases the cost of the process but also makes product cheaper for consumers. The paper describes experimental application of SSF on wheat straw for production of mycelia protein and cellulase enzym...

  19. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  20. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  1. The future of diode pumped solid state lasers and their applicability to the automotive industry

    Science.gov (United States)

    Solarz, R.; Beach, R.; Hackel, L.

    1994-03-01

    The largest commercial application of high power lasers is for cutting and welding. Their ability to increase productivity by introducing processing flexibility and integrated automation into the fabrication process is well demonstrated. This paper addresses the potential importance of recent developments in laser technology to further impact their use within the automotive industry. The laser technology we will concentrate upon is diode laser technology and diode-pumped solid-state laser technology. We will review present device performance and cost and make projections for the future in these areas. Semiconductor laser arrays have matured dramatically over the last several years. They are lasers of unparalleled efficiency (greater than 50%), reliability (greater than 10,000 hours of continuous operation), and offer the potential of dramatic cost reductions (less than a dollar per watt). They can be used directly in many applications or can be used to pump solid-state lasers. When used as solid-state laser pump arrays, they simultaneously improve overall laser efficiency, reduce size, and improve reliability.

  2. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  3. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  4. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  5. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  6. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  7. Solid state field-cycling NMR relaxometry: instrumental improvements and new applications.

    Science.gov (United States)

    Fujara, Franz; Kruk, Danuta; Privalov, Alexei F

    2014-10-01

    The paper reviews recent progress in field cycling (FC) NMR instrumentation and its application to solid state physics. Special emphasis is put on our own work during the last 15years on instrumentation, theory and applications. As far as instrumentation is concerned we report on our development of two types of electronical FC relaxometers, a mechanical FC relaxometer and a combination of FC and one-dimensional microimaging. Progress has been achieved with respect to several parameters such as the accessible field and temperature range as well as the incorporation of sample spinning. Since an appropriate analysis of FC data requires a careful consideration of relaxation theory, we include a theory section discussing the most relevant aspects of relaxation in solids which are related to residual dipolar and quadrupolar interactions. The most important limitations of relaxation theory are also discussed. With improved instrumentation and with the help of relaxation theory we get access to interesting new applications such as ionic motion in solid electrolytes, structure determination in molecular crystals, ultraslow polymer dynamics and rotational resonance phenomena. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: esm041@mail.harvard.edu

    2016-01-18

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  9. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  10. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    Penning, Julie [Navigant Consulting Inc., Washington, DC (United States); Stober, Kelsey [Navigant Consulting Inc., Washington, DC (United States); Taylor, Victor [Navigant Consulting Inc., Washington, DC (United States); Yamada, Mary [Navigant Consulting Inc., Washington, DC (United States)

    2016-09-01

    The DOE report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, is a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. This version of the report uses an updated 2016 U.S. lighting-market model that is more finely calibrated and granular than previous models, and extends the forecast period to 2035 from the 2030 limit that was used in previous editions.

  11. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  12. Application of solid state catalytic hydrogen isotope exchange to the tritium labeling of lyoszyme

    International Nuclear Information System (INIS)

    Filikov, A.V.; Jones, J.R.

    1995-01-01

    Solid state catalytic hydrogen isotope exchange has been employed to label hen egg lysozyme with tritium. Optimization of reaction conditions so that amino acids and peptide bonds remained intact led to a tritiated products with 97% of the original enzymatic activity and 94% radiochemical purity. The specific activity when using a T 2 :H 2 mixture of 1:1000, was 16 mCi·mmol -1 . It is suggested that the currently adopted approach may have wide applications for other proteins able to tolerate lyophilization conditions without loss of activity. (Author)

  13. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  14. Novel solid state lasers for Lidar applications at 2 μm

    Science.gov (United States)

    Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2005-09-01

    A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.

  15. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    within 1 °С. Optical schematic diagram of the laser resonator keeps the laser beam divergence not exceeding a diffraction limit more than twice under a light pump power of 100 W. We have also shown that to increase the lasing efficiency, slab multilayer dielectric coatings made of SiO2 и ZrO2 should be used. Practical Relevance. We have proposed original design of the diode pumped solid-state laser module optimizing the generation and pump modes of solid-state lasers by the temperature stabilization technique for laser diode array and by compensation of the slab aberrations. The techniques are also applicable under space conditions; that is an important factor at developing the space-based lasers.

  16. Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications

    Science.gov (United States)

    Kay, Richard B.

    1997-01-01

    This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.

  17. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei.

    Science.gov (United States)

    Ashbrook, Sharon E; Sneddon, Scott

    2014-11-05

    Solid-state nuclear magnetic resonance (NMR) spectroscopy has long been established as offering unique atomic-scale and element-specific insight into the structure, disorder, and dynamics of materials. NMR spectra of quadrupolar nuclei (I > (1)/2) are often perceived as being challenging to acquire and to interpret because of the presence of anisotropic broadening arising from the interaction of the electric field gradient and the nuclear electric quadrupole moment, which broadens the spectral lines, often over several megahertz. Despite the vast amount of information contained in the spectral line shapes, the problems with sensitivity and resolution have, until very recently, limited the application of NMR spectroscopy of quadrupolar nuclei in the solid state. In this Perspective, we provide a brief overview of the quadrupolar interaction, describe some of the basic experimental approaches used for acquiring high-resolution NMR spectra, and discuss the information that these spectra can provide. We then describe some interesting recent examples to showcase some of the more exciting and challenging new applications of NMR spectra of quadrupolar nuclei in the fields of energy materials, microporous materials, Earth sciences, and biomaterials. Finally, we consider the possible directions that this highly informative technique may take in the future.

  18. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  19. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  20. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    Science.gov (United States)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  1. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  2. Solid state phenomena

    CERN Document Server

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  3. Application and Reliability of Solid-State NMR in Environmental Sciences

    Science.gov (United States)

    Knicker, Heike

    2010-05-01

    technique increases the sensitivity of 13C by magnetization transfer from the 1H to the 13C spin system during a contact time tc. However, one has to bear in mind that some molecular properties may obscure quantification. Thus, for carbons with large C-H internuclear distances (bigger than four bonds, i.e in graphite structures) and for C in groups with high molecular mobility (i.e. gas) the proton-dipolar interactions are weakened and the polarization transfer may be incomplete. The observed intensity can also be affected by interactions of the protons with paramagnetic compounds. To circumvent this problem, the samples are often demineralized with hydrofluoric acid. Alternatively, the Bloch decay, a technique in which the 13C is directly excited is used. Here, on the other hand, one has to consider long relaxation times which may lead to saturation effects. Nevertheless, as it will be discussed within the presentation those quantification problems can be solved for most soil samples and then solid-state NMR spectroscopy represents a powerful tool for qualitative and quantitative analysis. Special techniques, such as dipolar dephasing or the proton spin relaxation editing can be used to extract additional information about chemical properties or mobility. A more detailed examination of the cross polarization behavior can be used to analyze the interaction of organic matter and paramagnetics but also for obtaining revealing properties on a molecular level. Applications involving isotopic labeling combined with both 13C and/or 15N NMR allows to follow the fate of a specific compound i.e. in a natural matrix and- if the enrichment is high enough - the use of 2D solid-state NMR techniques. In particular with respect to environmental chemistry, this combination of isotopic labeling with the use of corresponding NMR spectroscopy shows great potential for a better understanding of the kind of interaction between pollutants and natural organic matter.

  4. Bioreactors in solid state fermentation technology: Design, applications and engineering aspects.

    Science.gov (United States)

    Arora, Sidharth; Rani, Richa; Ghosh, Sanjoy

    2018-03-10

    In recent years, substantial credibility in employing Solid-State Fermentation (SSF) technique has been witnessed owing to its numerous advantages over submerged fermentation (SmF). In spite of enormous advantages, true potential of SSF technology has not been fully realized at industrial scale. The lack of rational and scalable bioreactor designs backed by mathematical models and automated control system that could successfully address heterogeneity with respect to heat and mass, and also operate aseptically, remains the prime reason for it. As a result, there still exists vast scope in SSF bioreactor research and development to facilitate broad spectrum of biotechnological applications. The present article reviews state-of-the-art in SSF technology with focus on bioreactors that have been employed for bioprocess applications, in particular, enzyme production. Based on the mode of operation, bioreactors are divided into four categories with emphasis on design features, effect of operating conditions on productivity, applications and limitations. Selected modeling studies developed over the years, have been revised and presented in problem specific manner in order to address the limitations. Some interesting designs including few recent ones that have been proposed and/or employed at pilot and industrial levels are discussed in more detail. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Fluorine-19 CRAMPS and its application to the solid-state spectrum of perfluoronaphthalene

    Science.gov (United States)

    Harris, Robin K.; Jackson, Peter; Nesbitt, Geoffrey J.

    The value of the CRAMPS technique for observation of 19F NMR spectra of solids in high resolution is discussed and experimental methods are detailed. Spectra of perfluoronaphthalene show crystallographic splittings and other information specific to the solid state. Spinning sideband analysis also yields values for the shielding tensor components.

  6. CR-39 polymer, a promising new solid state track recorder for high energy neutron applications

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Preston, C.C.; Gold, R.; Benton, E.V.; Roberts, J.H.

    1980-01-01

    CR-39 Polymer, a new solid state track recorder with unprecedented sensitivity to lightly ionizing particles (such as protons) is being developed for eventual neutron dosimetry applications in the Fusion Materials Irradiation Test Facility and elsewhere. The diameters of proton tracks have been found to vary smoothly and reproducibly as a function of energy from 0.20 to 18.0 MeV. Preliminary results on the response of CR-39 polymer to proton tracks as a function of angle show a rapid decrease of the registration efficiency from 100% to 0 for angles of incidence less than 75 0 . Proton recoil track size distributions in CR-39 polymer irradiated with monoenergetic neutrons of varying energy are presented. Some proposed high energy neutron dosimetry and radiography systems using CR-39 polymer are discussed

  7. Solid State Grid Modulator

    National Research Council Canada - National Science Library

    Jones, Franklin

    2001-01-01

    This program was for the design, construction and test of two Solid State Grid Modulators to provide enhanced performance and improved reliability in existing S-band radar transmitters at the Rome Research Site...

  8. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  9. Development of Solid State Thermal Sensors for Aeroshell TPS Flight Applications

    Science.gov (United States)

    Martinez, Ed; Oishi, Tomo; Gorbonov, Sergey

    2005-01-01

    In-situ Thermal Protection System (TPS) sensors are required to provide verification by traceability of TPS performance and sizing tools. Traceability will lead to higher fidelity design tools, which in turn will lead to lower design safety margins, and decreased heatshield mass. Decreasing TPS mass will enable certain missions that are not otherwise feasible, and directly increase science payload. NASA Ames is currently developing two flight measurements as essential to advancing the state of TPS traceability for material modeling and aerothermal simulation: heat flux and surface recession (for ablators). The heat flux gage is applicable to both ablators and non-ablators and is therefore the more generalized sensor concept of the two with wider applicability to mission scenarios. This paper describes the continuing development of a thermal microsensor capable of surface and in-depth temperature and heat flux measurements for TPS materials appropriate to Titan, Neptune, and Mars aerocapture, and direct entry. The thermal sensor is a monolithic solid state device composed of thick film platinum RTD on an alumina substrate. Choice of materials and critical dimensions are used to tailor gage response, determined during calibration activities, to specific (forebody vs. aftbody) heating environments. Current design has maximum operating temperature of 1500K, and allowable constant heat flux of q=28.7 W/cm(sup 2), and time constants between 0.05 and 0.2 seconds. The catalytic and radiative response of these heat flux gages can also be changed through the use of appropriate coatings. By using several co-located gages with various surface coatings, data can be obtained to isolate surface heat flux components due to radiation, catalycity and convection. Selectivity to radiative heat flux is a useful feature even for an in-depth gage, as radiative transport may be a significant heat transport mechanism for porous TPS materials in Titan aerocapture.

  10. Chitinase production in solid-state fermentation from Oerskovia xanthineolytica NCIM 2839 and its application in fungal protoplasts formation.

    Science.gov (United States)

    Waghmare, Shailesh R; Kulkarni, Swaroop S; Ghosh, Jai S

    2011-09-01

    The present study reports the economic production of thermostable chitinase production from Oerskovia xanthineolytica NCIM 2839 by solid-state fermentation (SSF) technique and its application in fungal protoplasts formation. The Oerskovia xanthineolytica NCIM 2839 was found to produce thermostable chitinase 148 U g(-1) of solid substrate in SSF using wheat bran with colloidal chitin as base. Protoplasts of A. niger were formed by using crude chitinase produced in SSF and formed protoplasts were confirmed by using scanning electron microscopy. This is the simple and economical method for protoplast formation which makes it possible applications in strain improvement of various fungi by protoplasts fusion in Biotechnological industries.

  11. Production of tannase under solid-state fermentation and its application in detannification of guava juice.

    Science.gov (United States)

    Sharma, Naresh Kumar; Beniwal, Vikas; Kumar, Naveen; Kumar, Surender; Pathera, Ashok Kumar; Ray, Aradhita

    2014-01-01

    Guava juice is known to be rich in antioxidant activity due a high level of vitamins A and C. However, tannins present in the guava juice form tannin-protein complexes that affect the utilization of vitamins and minerals and inhibit digestive enzymes. Beside this, bitterness and cloudiness are the other major problems of juice industries. The present study aimed to utilize a low-cost substrate (tea residue) for the production of tannase and its application in detannification of guava juice. Solid-state fermentation (SSF) was evaluated to produce tannase from Aspergillus niger. Maximum tannase (1.86 U/g dry substrate) production was observed at 30°C after 96 hr of the incubation period. The optimum pH of the moistening agent was found to be 5.0. Partially purified enzyme using ammonium sulfate precipitation was subjected to guava juice treatment at a level of 0.5, 1.0, and 2.0% for 30 and 60 min. Decrease in tannic acid content of guava juice was found to be 17.60, 29.04, and 44.38% after 30 min and 40.59, 53.69, and 59.23% after 60 min, respectively.

  12. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  13. High power, high beam quality solid state lasers for materials processing applications

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L.A.; Dane, C.B.; Hermann, M.R. [and others

    1994-08-01

    The Laser Science and Technology Department at Lawrence Livermore National Laboratory is developing solid state lasers with high average power and high beam quality. Specific systems include a laser to generate 10 to 14 {angstrom} x-rays for proximity print lithography, a 400 mJ, 500 Hz laser for 130 {angstrom} projection lithography and unique systems for speckle imaging, laser radars and medical treatments.

  14. Response of microchip solid-state laser to external frequency-shifted feedback and its applications

    OpenAIRE

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-01-01

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without p...

  15. Solid State Research.

    Science.gov (United States)

    1996-05-15

    15, 324 (1993). 3. L . Wallman , J. Drott, J. Nilsson, and T. Laurell, 8th International Conference on Solid-State Sensors and Actuators and...unlimited. BTIG QUA1ETY IHSESCTBH) l This report is based on studies performed at Lincoln Laboratory, a center for research operated by Massachusetts...analyzer. 34 7-1 Fully depleted transistor results for 50-nm silicon-on-insulator thickness and W/ L = 7/0.25 fjm: (a) n-channel characteristic curves, (b

  16. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  17. Fundamentals of solid-state lighting LEDs, OLEDs, and their applications in illumination and displays

    CERN Document Server

    Khanna, Vinod Kumar

    2014-01-01

    History and Basics of LightingChronological History of LightingLearning Objectives How Early Man Looked at the ""Sun"" The Need for Artificial Light Sources First Steps in the Evolution of Artificial Lighting The First Solid-State Lighting Device The First Practical Electrical Lighting Device The Incandescent Filament Lamp Mercury and Sodium Vapor Lamps The Fluorescent Lamp The Compact Fluorescent Lamp Revolution in the World of Lighting: Advent of Light-Emitting Diodes Birth of the First LED and the Initial Stages of LED Development The Father of the LED: Holonyak Jr. The Post-1962 Developmen

  18. Networked Lighting Power and Control Platform for Solid State Lighting in Commercial Office Applications

    Energy Technology Data Exchange (ETDEWEB)

    Covaro, Mark [Redwood Systems, Inc., Fremont, CA (United States)

    2012-08-15

    Redwood Systems' objective is to further accelerate the acceptance of solid state lighting (SSL) with fine grain and easy-to-use control. In addition, increased and improved sensor capability allows the building owner or user to gather data on the environment within the building. All of this at a cost equal to or less than that of code-compliant fluorescent lighting. The grant we requested and received has been used to further enhance the system with power conversion efficiency improvements and additional features. Some of these features, such as building management system (BMS) control, allow additional energy savings in non-lighting building systems.

  19. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing.

    Science.gov (United States)

    de Vrije, T; Antoine, N; Buitelaar, R M; Bruckner, S; Dissevelt, M; Durand, A; Gerlagh, M; Jones, E E; Lüth, P; Oostra, J; Ravensberg, W J; Renaud, R; Rinzema, A; Weber, F J; Whipps, J M

    2001-07-01

    Biological control agents (BCAs) are potential alternatives for the chemical fungicides presently used in agriculture to fight plant diseases. Coniothyrium minitans is an example of a promising fungal BCA. It is a naturally occurring parasite of the fungus Sclerotinia sclerotiorum, a wide-spread pathogen which substantially reduces the yield of many crops. This review describes, exemplified by C. minitans, the studies that need to be carried out before a fungal BCA is successfully introduced into the market. The main aspects considered are the biology of C. minitans, the development of a product by mass production of spores using solid-state fermentation technology, its biocontrol activity and marketing of the final product.

  20. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    Directory of Open Access Journals (Sweden)

    Robert J. Lovelett

    2016-04-01

    Full Text Available Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa(SeS2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa(SeS2 thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.

  1. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  2. Applications in solid mechanics

    DEFF Research Database (Denmark)

    Ølgaard, Kristian Breum; Wells, Garth N.

    2012-01-01

    Problems in solid mechanics constitute perhaps the largest field of application of finite element methods. The vast majority of solid mechanics problems involve the standard momentum balance equation, posed in a Lagrangian setting, with different models distinguished by the choice of nonlinear...... or linearized kinematics, and the constitutive model for determining the stress. For some common models, the constitutive relationships are rather complex. This chapter addresses a number of canonical solid mechanics models in the context of automated modeling, and focuses on some pertinent issues that arise...

  3. Einstein and solid-state physics

    International Nuclear Information System (INIS)

    Aut, I.

    1982-01-01

    A connection between the development of solid-state physics and the works and activity of Albert Einstein is traced. A tremendous Einstein contribution to solid state physics is marked. A strict establishment of particle-wave dualism; a conclusion about the applicability of the Plank radiation law not only to black body radiation; finding out particles indistinguishability - all three discoveries have a principle significance for solid state physics too

  4. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications.

    Science.gov (United States)

    Wang, Song; Cottrill, Anton L; Kunai, Yuichiro; Toland, Aubrey R; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S

    2017-05-24

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young's moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell-Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences - analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  5. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  6. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  7. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  8. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  9. The electrochemical characteristics and applicability of an amorphous sulfide based solid ion conductor for the next generation solid-state lithium secondary batteries.

    Directory of Open Access Journals (Sweden)

    Yuichi eAihara

    2016-05-01

    Full Text Available Sulfide based solid electrolytes are of considerable practical interest for all solid-state batteries due to their high ionic conductivity and softness at room temperature. In particular, iodine containing lithium thiophosphate is known to exhibit high ionic conductivity but its applicability in solid-state battery remains to be examined. To demonstrate the possibility of the iodine doped solid electrolyte (SE, LiI-Li3PS4 was used to construct two different types of test cells were prepared, Li/SE/S and Li/SE/LiNi0.80Co0.15Al0.05 cells. The solid electrolyte, LiI-Li3PS4 showed a high ionic conductivity approximately 1.2 mScm-1 at 25 ℃. Within 100 cycles, the capacity retention was better in Li/SE/S cell, and the red-ox shuttle was not observed due to physical blockage of SE layer. The capacity fade was approximately 4% from the maximum capacity observed at 10th cycle, after 100 cycles in Li/SE/S cell. On the contrary, the capacity fade was much larger in Li/SE/LiNi0.80Co0.15Al0.05 cell, probably due to the decomposition of the electrolyte at the operating potential range. Nevertheless, both the Li/SE/LiNi0.80Co0.15Al0.05 and Li/SE/S cells exhibited the high coulombic efficiencies above 99.6% and 99.9% during charge-discharge cycle test, respectively. This fact indicates that a high energy density can be possible without an excess lithium metal anode. In addition, it was particularly interesting that the SE showed a reversible capacity about 260 mAhg-1-SE. This electrolyte may have not only as a role of the ion conduction, but also as a catholite.

  10. Application of solid-state tritium NMR in determining the bioactive conformation of paclitaxel

    International Nuclear Information System (INIS)

    Lin, T.

    2012-01-01

    The determination of the conformation of small molecule bound to its biological target would facilitate people to design improved drugs. This determination can be difficult due to technical limitations, as exemplified by the long standing debate on the microtubule-binding conformation of a natural anticancer drug - paclitaxel. Previous studies using X-ray crystallography and solution-state NMR failed to furnish direct information on the expected conformation. Solid-state NMR may help in this task by providing precise interatomic distances, and the selective labeling on different sites with tritium atoms enables accurate measurement of long-range distances (up to 14.4 Angstroms) owing to the high gyromagnetic ratio of this nucleus, without any structural modification of the molecule. So our project aiming at illustrating the bioactive conformation of paclitaxel consists the syntheses of 6 different paclitaxel isotopomers bearing a pair of tritium at specified positions, flowing by the preparations of corresponding microtubule-labeled paclitaxel complexes. The solid-state tritium NMR analyses of these complexes would provide key distances for determining the expected conformation. Up to now, 2 paclitaxel isotopomers have been prepared from labelling the di-brominated paclitaxel precursor and from coupling the tritiated taxane rings and the tritiated side chains, respectively. The synthetic strategy allowed us to realize the syntheses in generally high yield and good stereoselectivity. Different tritiation methods have been used, from which an isotopic enrichment of higher than 92% was obtained. The syntheses of other 4 isotopomers, together with the microtubule complexes are currently underway in our lab. (author) [fr

  11. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-01-01

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0x10 -20 cm 2 . Up to 1.7 J/cm 3 of stored energy density was achieved in a 6x6x44 mm 3 Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse from a 3x3x30 mm 3 rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 μs pulses

  12. Application of impulsive methods to the study of diffusion in solid state alloys

    International Nuclear Information System (INIS)

    Belaidouni, Said

    1979-01-01

    This research thesis deals with the field of high temperature melt environments, and more particularly with the determination of the contribution of different steps of the electrochemical reaction (charge transfer, transport of electro-active species, variation of the electrode surface condition). The use of metal electrodes highlighted the importance of phenomena of diffusion in the metal. This leaded to the use of impulsive methods to determine solid-state transport properties. After a presentation of the theoretical processing of impulsive methods (cell potential, transport equations, double-layer charge), and a discussion of the diffusion in metal alloys (diffusion flow, diffusion coefficients, grain boundary diffusion), the author reports an experimental investigation (installation and measurement equipment) and discusses the obtained results (alloy thermodynamics, diffusion studied by the deposition method, impulsive methods with potentiostatic or galvano-static pulses) [fr

  13. From dark to bright: novel daylighting applications in solid state lighting

    Science.gov (United States)

    Adler, Helmar G.

    2011-10-01

    The term "daylighting" is used in various ways, on one hand in a more architectural sense, i.e. using existing daylight to illuminate spaces, and on the other, more recently, for using light sources to replicate daylight. The emergence of solid state lighting (SSL) opens up a large number of new avenues for daylighting. SSL allows innovative controllability of intensity and color for artificial light sources that can be advantageously applied to daylighting. With the assistance of these new technologies the combination of natural and artificial lighting could lead to improvements in energy savings and comfort of living beings. Thus it is imperative to revisit or even improve daylighting research so that building networks of the future with their sensor, energy (e.g. HVAC) and lighting requirements can benefit from the emerging capabilities. This paper will briefly review existing daylighting concepts and technology and discuss new ideas. An example of a tunable multi-color SSL system will be shown.

  14. Response of microchip solid-state laser to external frequency-shifted feedback and its applications.

    Science.gov (United States)

    Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning

    2013-10-09

    The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening.

  15. Graphene oxide reduction by solid-state laser irradiation for bolometric applications

    Science.gov (United States)

    Kondrashov, Vladislav A.; Struchkov, Nikolay S.; Rozanov, Roman Yu; Nevolin, Vladimir K.; Kopylova, Daria S.; Nasibulin, Albert G.

    2018-01-01

    We present a method for reduced graphene oxide (GO) patterning on the surface of GO film by a 445 nm solid-state laser with the adjustable fluence from 0.2–20 kJ cm‑2. We demonstrate that the optimal argon concentration in air to obtain good quality reduced GO films is 90%. Varying the laser irradiation energy density allows controlling the resistance and I G /I D and I G /I 2D ratios of Raman peak intensities. As a result, we demonstrate the possibility of forming of conductive patterns with a sheet resistance of 189 Ohm/□ and ∼1 μm film thickness by a local reduction of the GO. The fabricated structures reveal excellent bolometric response with a high speed and sensitivity to the radiation in the visible wavelength region.

  16. Formulation studies on stability of solid-state proteases for detergent applications

    DEFF Research Database (Denmark)

    Ay, Suzan Biran; Jensen, Anker Degn; Kiil, Søren

    2012-01-01

    Enzymes are one of the most important components in the laundry detergents. They effectively contribute to the washing process by decreasing energy and water consumption, reducing environmental load of detergent products, leaving non-toxic water effluents and providing fabric care. Ensuring proper...... storage stability of enzyme granulates in the chemically hostile detergent matrix is a major challenge. It is believed that the main factors responsible for activity loss are humidity and H2O2 released from the bleaching agents. In this study, the mechanism and inactivation kinetics of freeze......-dried detergent protease, Savinase, were determined in a newly developed experimental setup, providing rapid assessment of solid-state enzyme stability under oxidizing conditions. The method was based on exposure of an enzyme column to known concentrations of H2O2 (g) and humidity in a thermally stabilized...

  17. Application of solid state fermentation on the cocoa bran (Theobroma Cacao L.: producing ligninases

    Directory of Open Access Journals (Sweden)

    Tamires Carvalho dos Santos

    2011-06-01

    Full Text Available The aim of this study was to analyze and quantify the kinetic activity of enzymes ligninases laccase, lignin peroxidase and manganese peroxidase, produced by Solid State Fermentation. We used the fungus Aspergillus niger as inoculum and the waste from the processing of cocoa (Theobroma Cacao L. as raw material at different water concentrations. The agro-industrial residue, after generated, you need to target appropriate because, in addition to creating potential environmental problems, represents losses of raw materials and energy, requiring significant investments in treatments to control pollution. We evaluated the potential of kinetic activity of enzymes depending on weather conditions (24, 72, and 120 hours and water content (40%, 50% and 60%. The fermentation was conducted at 30 0C in a bacteriological incubator. The results indicate the maximization of enzyme activity occurred within 72 hours of fermentation and 50% water content, for all the enzymes.

  18. Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application

    Science.gov (United States)

    Adu, Kofi; Ma, Danhao; Wang, Yuxiang; Spencer, Michael; Rajagopalan, Ramakrishnan; Wang, C.-Yu; Randall, Clive

    2018-01-01

    We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm–3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ∼1.11 g cm–3 ± 0.03 g cm–3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ∼32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g–1 and increased to 100 F g–1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ∼100 nA cm‑2 at 2.5 V when held for 72 h.

  19. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  20. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  1. Solid-state electrochemical properties of oxygen-ion conducting ceramic materials and their applications

    Science.gov (United States)

    Park, Jun-Young

    One of the primary objectives of this work was to develop a highly conductive and stable bilayer electrolyte for intermediate temperature solid oxide fuel cell (SOFC) operation, and for reduction of carbon dioxide to oxygen and carbon monoxide in lower-temperature ceramic oxygen generators (COGS). Bilayer electrolytes were formed by depositing a thin and thick layer of erbia-stabilized bismuth oxide (ESB) on samaria-doped ceria (SDC) substrates, via pulsed laser deposition and dip-coating techniques. Measurements of the conductivity of SDC coated with ESB exhibited slightly higher total conductance than SDC. The electro-motive force (EMF) measurements also showed a significant increase in open-circuit potential (OCP) and transference number (ti) with the bilayer structure, as compared to the cells with a single SDC electrolyte layer. Further, improvement in the OCP and ti of bilayer SOFCs was observed with increasing relative thickness of the ESB layers. The COGS with a novel bilayer ESB/SDC design were characterized to produce pure oxygen from CO2 at 400--700°C for potential use in NASA's manned Mars exploration mission. Major factors that influence oxygen generation include oxygen-ion conductivity of the solid-oxide electrolyte, applied electric potential, operating temperatures, and CO/CO2 ratios. Higher temperatures resulted in higher oxygen generation rates due to the reduced resistance of the electrolytes. However, oxygen production per watt power (power efficiency) decreased with increasing COG operating temperature. Hence, the bilayer ESB/SDC electrolytes showed promise for SOFCs and COGS at operation below 700°C, significantly reducing the power requirement, expanding ancillary material selection, and decreasing fabrication cost. The other objective of this study was to develop simple, cheap, and highly sensitive and selective electrochemical solid-state sensors for CO. Miniature yttria-stabilized zirconia potentiometric sensors, with various n-type, p

  2. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  3. Progress in the application of solid-state track recorders to reactor physics experiments

    International Nuclear Information System (INIS)

    Besant, C.B.; Ipson, S.S.

    1969-03-01

    Heavily ionising particles passing through insulating materials cause tracks due to damage. These strain energy fields may be observed directly with an electron microscope or, after etching, the tracks may be seen with an optical microscope. The etching solution penetrates the damaged portion of the material and enlarges the hole if the etching is continued. This technique has been applied to detecting fission fragments from fissions taking place in a thin source of fissile material. The source, together with the insulating material is called a Solid-State Track Recorder and has been applied to the measurement of fission ratios in the fast critical assembly ZEBRA at Winfrith. The main disadvantage of the technique has been in counting tracks by eye which is laborious and subject to the human element. This has been overcome by counting tracks with a 'Quantimet' Computer Image Analyser. Absolute fission rate measurements are also discussed and it has been shown that measurements to an accuracy of better than ± 1% should be possible with this technique. (author)

  4. Solid State Switch Application for the LHC Extraction Kicker Pulse Generator

    CERN Document Server

    Carlier, E; Jansson, U; Schlaug, M; Schröder, G; Vossenberg, Eugène B

    1996-01-01

    A semiconductor solid state switch has been constructed and tested in the prototype extraction kicker pulse generator of CERN's Large Hadron Collider (LHC) [1]. The switch is made of 10 modified 4.5 kV, 66 mm symmetric GTO's (also called FHCT-Fast High Current Thyristor), connected in series. It holds off a d.c. voltage of 30 kV and conducts a 5 µs half-sine wave current of 20 kA with an initial di/dt of 10 kA/µs. Major advantages of the switch are the extremely low self-firing hazard, no power consumption during the ready-to-go status, instantaneous availability, simple condition control, very low noise emission during soft turn-on switching and easy maintenance. However, the inherent soft, relatively slow turn-on time is a non negligible part of the required rise time and this involves adaptation of generator components. A dynamic current range of 16 is achieved with variations in rise time, which stay within acceptable limits. Important generator improvements have been made with the series diodes and fre...

  5. Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application.

    Science.gov (United States)

    Pandya, Jagruti J; Gupte, Akshaya

    2012-06-01

    The production of extracellular xylanase by a locally isolated strain of Aspergillus tubingensis JP-1 was studied under solid-state fermentation. Among the various agro residues used wheat straw was found to be the best for high yield of xylanase with poor cellulase production. The influence of various parameters such as initial pH, moisture, moistening agents, nitrogen sources, additives, surfactants and pretreatment of substrates were investigated. The production of the xylanase reached a peak in 8 days using untreated wheat straw with modified MS medium, pH 6.0 at 1:5 moisture level at 30 °C. Under optimized conditions yield as high as 6,887 ± 16 U/g of untreated wheat straw was achieved. Crude xylanase was used for enzymatic saccharification of agro-residues like wheat straw, rice bran, wheat bran, sugarcane bagasse and industrial paper pulp. Dilute alkali (1 N NaOH) and acid (1 N H(2)SO(4)) pretreatment were found to be beneficial for the efficient enzymatic hydrolysis of wheat straw. Dilute alkali and acid-pretreated wheat straw yielded 688 and 543 mg/g reducing sugar, respectively. Yield of 726 mg/g reducing sugar was obtained from paper pulp after 48 h of incubation.

  6. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  7. Inside Solid State Drives (SSDs)

    CERN Document Server

    Micheloni, Rino; Eshghi, Kam

    2013-01-01

    Solid State Drives (SSDs) are gaining momentum in enterprise and client applications, replacing Hard Disk Drives (HDDs) by offering higher performance and lower power. In the enterprise, developers of data center server and storage systems have seen CPU performance growing exponentially for the past two decades, while HDD performance has improved linearly for the same period. Additionally, multi-core CPU designs and virtualization have increased randomness of storage I/Os. These trends have shifted performance bottlenecks to enterprise storage systems. Business critical applications such as online transaction processing, financial data processing and database mining are increasingly limited by storage performance. In client applications, small mobile platforms are leaving little room for batteries while demanding long life out of them. Therefore, reducing both idle and active power consumption has become critical. Additionally, client storage systems are in need of significant performance improvement as well ...

  8. Raman spectroscopy in solid state physics and material science. Theory, techniques and applications

    International Nuclear Information System (INIS)

    Lucazeau, G.; Abello, L.

    1995-01-01

    After a brief survey of the basic concepts of Raman scattering, we shall underline the specificities of the Raman spectroscopy as a characterization tool of solid materials. Most of the examples presented here have been selected among results which have been obtained recently in our laboratory. The micro-Raman technique provides a convenient way for investigating heterogeneities in ceramics and thin films. As a first example we show how the electric properties of the pure an doped BaCeO 3 perovskites are strongly dominated by the different phase transitions which take place in these compounds. We show in particular the advantage of the coupling of impedance and Raman spectroscopy when studying the influence of the chemical composition of the atmospheres and of the temperature on the electric properties of the ceramic. Unexpectedly, new concepts for explaining the phase transition mechanism in this structural family are provided by this study. A second example is borrowed from the characterization of a film made of a protonic conductor-doped polymer. A second kind of structural information which can be delivered by micro-Raman spectroscopy is related to the characterization of thermo-mechanical stresses in thin films of semi-conducting compounds in the Si-Ge system. It is well known that the gap and thus the electric properties are strongly dependent on the stress state of the material. The stress field induced either by an indenter, by a controlled flexion or by laser heating has been studied by Raman spectroscopy and is presented here. The pulsed Raman spectroscopy offers the possibility to characterize samples in strongly emissive atmospheres or submitted to strong perturbations of a short duration. The in situ characterization of diamond films in a plasma-assisted CVD reactor is briefly mentioned, another example is provided by a crystal of LaF 3 in which on a nanosecond scale different fluorescence processes are time-resolved and separated from the Raman

  9. Solid state synthesis and sintering of monazite-type ceramics: application to minor actinides conditioning

    International Nuclear Information System (INIS)

    Bregiroux, D.

    2005-11-01

    In the framework of the French law of 1991 concerning the nuclear waste management, several studies are undertaken to develop specific crystalline conditioning matrices. Monazite, a rare earth (TR 3+ ) orthophosphate with a general formula TR 3+ PO 4 , is a natural mineral containing significant amount of thorium and uranium. Monazite has been proposed as a host matrix for the minor actinides (Np, Am and Cm) specific conditioning, thanks to its high resistance to self irradiation and its low solubility. Its is now of prime importance to check the conservation of these properties on synthesized materials, which implies to master all the stages of the elaboration process, from the powder synthesis to the sintering of controlled microstructure pellets. This work can be divided into two main parts: The first part deals with the synthesis by high temperature solid state route of TR 3+ PO 4 powders (with TR 3+ = La 3+ to Gd 3+ , Pu 3+ and Am 3+ ). The chemical reactions occurring during the firing of starting reagents are described in the case of monazite with only one or several cations. From these results, a protocol of synthesis is described. The incorporation of tetravalent cations (Ce 4+ , U 4+ , Pu 4+ ) in the monazite structure was also studied. The second part of the present work deals with the elaboration of controlled density and microstructure monazite pellets and their related mechanical and thermal properties. The study of crushing and sintering is presented. For the first time, experimental results are confronted with theoretical models in order to deduce the densification and grain growth mechanisms. By the comprehension of the various physicochemical phenomena occurring during the various stages of the monazite pellets elaboration process (powder synthesis, crushing, sintering...), this work allowed the development of a protocol of elaboration of controlled microstructure monazite TR 3+ PO 4 pellets. The determination of some mechanical and thermal

  10. Efficient all solid-state UV source for satellite-based lidar applications.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2003-07-01

    A satellite-based UV-DIAL measurement system would allow continuous global monitoring of ozone concentration in the upper atmosphere. However such systems remain difficult to implement because aerosol-scattering return signals for satellite-based lidars are very weak. A suitable system must produce high-energy UV pulses at multiple wavelengths with very high efficiency. For example, a nanosecond system operating at 10 Hz must generate approximately 1 J per pulse at 308-320 nm. An efficient space-qualified wavelength-agile system based on a single UV source that can meet this requirement is probably not available using current laser technology. As an alternative, we're pursuing a multi-source approach employing all-solid-state modules that individually generate 300-320 nm light with pulse energies in the range of 50-200 mJ, with transform-limited bandwidths and good beam quality. Pulses from the individual sources can be incoherently summed to obtain the required single-pulse energy. These sources use sum-frequency mixing of the 532 nm second harmonic of an Nd:YAG pump laser with 731-803 nm light derived from a recently-developed, state-of-the-art, nanosecond optical parametric oscillator. Two source configurations are under development, one using extra-cavity sum-frequency mixing, and the other intra-cavity sum-frequency mixing. In either configuration, we hope to obtain sum-frequency mixing efficiency approaching 60% by carefully matching the spatial and temporal properties of the laser and OPO pulses. This ideal balance of green and near-IR photons requires an injection-seeded Nd:YAG pump-laser with very high beam quality, and an OPO exhibiting unusually high conversion efficiency and exceptional signal beam quality. The OPO employs a singly-resonant high-Fresnel-number image-rotating self-injection-seeded nonplanar-ring cavity that achieves pump depletion > 65% and produces signal beams with M{sup 2} {approx} 3 at pulse energies exceeding 50 mJ. Pump beam

  11. Solid-state Memory on Flexible Silicon for Future Electronic Applications

    KAUST Repository

    Ghoneim, Mohamed

    2016-11-01

    Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of our lives. This vision has been fueled by electronic giants showcasing flexible displays for the first time in consumer electronics symposiums. Since then, the scientific and research communities partook on exploring possibilities for making flexible electronics. Decades of research have revealed many routes to flexible electronics, lots of opportunities and challenges. In this work, we focus on our contributions towards realizing a complimentary approach to flexible inorganic high performance electronic memories on silicon. This approach provides a straight forward method for capitalizing on the existing well-established semiconductor infrastructure, standard processes and procedures, and collective knowledge. Ultimately, we focus on understanding the reliability and functionality anomalies in flexible electronics and flexible solid state memory built using the flexible silicon platform. The results of the presented studies show that: (i) flexible devices fabricated using etch-protect-release approach (with trenches included in the active area) exhibit ~19% lower safe operating voltage compared to their bulk counterparts, (ii) they can withstand prolonged bending duration (static stress) but are prone to failure under dynamic stress as in repeated bending and re-flattening, (iii) flexible 3D FinFETs exhibit ~10% variation in key properties when exposed to out-of-plane bending stress and out-of-plane stress does not resemble the well-studied in-plane stress used in strain engineering, (iv) resistive memories can be achieved on flexible silicon and their basic resistive property is preserved but other memory functionalities (retention, endurance, speed, memory window) requires further investigations, (v) flexible silicon based PZT ferroelectric capacitors exhibit record polarization, capacitance, and endurance (1 billion

  12. A new method to study complex materials in solid state chemistry: application to chalcogenide materials

    International Nuclear Information System (INIS)

    Lippens, P.E.; Olivier-Fourcade, J.; Jumas, J.C.

    1998-01-01

    We show that a combined application of Moessbauer spectroscopy and other experimental tools such as X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and nuclear magnetic resonance provides a coherent picture of the local electronic structure in chalcogenide materials. In order to develop this idea we propose an analysis of the Sn, Sb and Te local electronic structures for three different systems of materials. The first example concerns the In-Sn-S system. We show that Li insertion in In 16 Sn 4 S 32 leads to changes of the Sn oxidation states from Sn(IV) to Sn(II). The second example concerns materials of the Tl-Sb-S system. We show that variations of the 121 Sb Moessbauer isomer shift and surface of the first peak of the X-ray absorption spectra at the Sb L III edge can be linearly correlated because of the main influence of the Sb 5s electrons. This is explained by changes in the local environment of the Sb atoms. The last example concerns the crystalline phases of the Tl-Sn-Te system. The formal oxidation numbers of the Te atoms are determined from 125 Te Moessbauer spectroscopy and X-ray photoelectron spectroscopy. They are related to the different types of bonds involving the Te atoms in the Tl-Sn-Te compounds

  13. Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance, E706(IIIB)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method describes the use of solid-state track recorders (SSTRs) for neutron dosimetry in light-water reactor (LWR) applications. These applications extend from low neutron fluence to high neutron fluence, including high power pressure vessel surveillance and test reactor irradiations as well as low power benchmark field measurement. (1) This test method replaces Method E 418. This test method is more detailed and special attention is given to the use of state-of-the-art manual and automated track counting methods to attain high absolute accuracies. In-situ dosimetry in actual high fluence-high temperature LWR applications is emphasized. 1.2 This test method includes SSTR analysis by both manual and automated methods. To attain a desired accuracy, the track scanning method selected places limits on the allowable track density. Typically good results are obtained in the range of 5 to 800 000 tracks/cm2 and accurate results at higher track densities have been demonstrated for some cases. (2) Trac...

  14. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  15. Anti-Reflective Fluoride Coatings for Widely Tunable Deep-Ultraviolet Diode-Pumped Solid-State Laser Applications

    International Nuclear Information System (INIS)

    Bin-Cheng, Li; Da-Wei, Lin; Yan-Ling, Han; Chun, Guo; Yun-Dong, Zhang; Hong-Xiang, Liu

    2010-01-01

    An anti-reflective (AR) fluoride coating in the 170–230 nm spectral range is prepared by the thermal evaporation method for the applications of widely tunable deep-ultraviolet diode-pumped solid-state lasers. The transmittance of an AR coated calcium fluoride (CaF 2 ) window in thickness 3 mm is measured to be in the range of 95.8% at 170 nm to 97.1% at 230 nm, with the maximum transmittance 99.2% and the minimum residual reflectance 0.04% appeared at 195 nm. The experimental results indicate that treating the AR coated window and the bare substrate with ultraviolet irradiation can significantly improve their optical performance

  16. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states

    Science.gov (United States)

    Xu, Minghan; He, Guili; Li, Zhaohui; He, Fengjiao; Gao, Feng; Su, Yanjie; Zhang, Liying; Yang, Zhi; Zhang, Yafei

    2014-08-01

    Compared with traditional semiconductor quantum dots (QDs) and organic dyes, photoluminescent carbon dots (CDs) are superior because of their high aqueous solubility, robust chemical inertness, facile functionalization, high resistance to photobleaching, low toxicity and good biocompatibility. Herein, a green, large-scale and high-output heterogeneous synthesis of N-doped CDs was developed by reacting calcium citrate and urea under microwave irradiation without the use of any capping agents. The obtained N-doped CDs with a uniform size distribution exhibit good aqueous solubility and yellowish-green fluorescence in the solid and aqueous states. These unique luminescence properties of N-doped CDs inspire new thoughts for applications as fluorescent powders, fluorescent inks, the growth of fluorescent bean sprouts, and fingerprint detection tools.Compared with traditional semiconductor quantum dots (QDs) and organic dyes, photoluminescent carbon dots (CDs) are superior because of their high aqueous solubility, robust chemical inertness, facile functionalization, high resistance to photobleaching, low toxicity and good biocompatibility. Herein, a green, large-scale and high-output heterogeneous synthesis of N-doped CDs was developed by reacting calcium citrate and urea under microwave irradiation without the use of any capping agents. The obtained N-doped CDs with a uniform size distribution exhibit good aqueous solubility and yellowish-green fluorescence in the solid and aqueous states. These unique luminescence properties of N-doped CDs inspire new thoughts for applications as fluorescent powders, fluorescent inks, the growth of fluorescent bean sprouts, and fingerprint detection tools. Electronic supplementary information (ESI) available: The photos of different precursors under daylight and 365 nm UV beam; 1H-NMR and Raman spectrum of N-doped CDs; toxicity study of bean sprouts; the correlation between length of bean sprouts and the concentration of N-doped CDs

  17. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  18. Solid State Air Purification System

    Data.gov (United States)

    National Aeronautics and Space Administration — The solid state air purification project will explore feasibility of a new air purification system based on a liquid membrane, capable of purifying carbon dioxide...

  19. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  20. Applications of the Moessbauer effect in chemistry and solid-state physics

    International Nuclear Information System (INIS)

    1966-01-01

    Applications of the Moessbauer effect presented by the panel members include structural and kinetic investigations, recoil studies, magnetism, analytical measurements and standards. A description of apparatus and techniques is also included. Refs, figs and tabs

  1. International Summer School on Solid State Microbatteries

    Science.gov (United States)

    Some of the courses taught at the school are listed: Optical Characterization of Semiconductor Materials and Structures; High Resolution Electron Microscopy of Defects in Silicon; Crystalline Silicon Solar Cells, Heavy Doping Effects and Their Influence on Silicon Bipolar Transistors; Silicon Molecular Beam Epitaxy (Status, Devices, Trends); Rechargeable Solid State Cells; Thin Film Technology and Characterization (Their Use In Microionic Devices); Modeling, Fabrication, and Development of Miniature Sensors; Simulation of Silicon Processing-I; 4M Technology; Theory of Defects in Crystalline Silicon; Amorphous Room Temperature Polymer Solid Electrolytes; Advanced Silicon on Insulator Materials (Processing, Characterization and Devices); Diamond Lattice, Structure and Possible Applications for Porfluorinated Ionomers in Solution; Theory and Applications of Amorphous Solid for Electrochemical Cells; The Physical Formation Processes of Thin Films; Their Characterization by XPS, AES and SIMS and Their Applications in Micro batteries; Chemistry, Physics and Applications of Polymeric Solid Electrolytes to Micro batteries; Space Radiation Effects in MOS Devices; and Fundamentals of Low Temperature Silicon Epitaxy.

  2. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1988-01-01

    Solid-State Laser Engineering is written from an industrial perspective and discusses in detail the characteristics, design, construction and practical problems of solid-state lasers. Emphasis is placed on engineering and practical considerations, with a phenomenological treatment using modelsbeing preferred to abstract mathematical derivations. This new edition has been updated and revised to include important developments, concepts and technologies that have emerged since the publication of the first edition.

  3. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  4. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems

    Science.gov (United States)

    Baranowski, M.; Woźniak-Braszak, A.; Jurga, K.

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins 1H are polarized in the magnetic field B0 while fluorine spins 19F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal.

  5. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  6. Deformation and fracture of solid-state materials field theoretical approach and engineering applications

    CERN Document Server

    Yoshida, Sanichiro

    2015-01-01

    This book introduces a comprehensive theory of deformation and fracture to engineers and applied scientists. The author explains the gist of local symmetry (gauge invariance) intuitively so that engineers and applied physicists can digest it easily, rather than describing physical or mathematical details of the principle. Applications of the theory to practical engineering are also described, such as nondestructive testing, in particular, with the use of an optical interferometric technique called ESPI (Electronic Speckle-Pattern Interferometry). The book provides information on how to apply physical concepts to engineering applications. This book also: ·         Describes a highly original way to reveal loading hysteresis of a given specimen ·         Presents a fundamentally new approach to deformation and fracture, which offers potential for new applications ·         Introduces the unique application of Electric Speckle-Pattern Interferometry—reading fringe patterns to connect...

  7. Application of machine-learning methods to solid-state chemistry: ferromagnetism in transition metal alloys

    International Nuclear Information System (INIS)

    Landrum, G.A.Gregory A.; Genin, Hugh

    2003-01-01

    Machine-learning methods are a collection of techniques for building predictive models from experimental data. The algorithms are problem-independent: the chemistry and physics of the problem being studied are contained in the descriptors used to represent the known data. The application of a variety of machine-learning methods to the prediction of ferromagnetism in ordered and disordered transition metal alloys is presented. Applying a decision tree algorithm to build a predictive model for ordered phases results in a model that is 100% accurate. The same algorithm achieves 99% accuracy when trained on a data set containing both ordered and disordered phases. Details of the descriptor sets for both applications are also presented

  8. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1993-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the collaborating engineering enters at Rice University, UT-Austin, Texas A&M Univ. In addition, this collective is collaborating with the naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  9. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. [Texas Univ., Houston, TX (United States). Cancer Center; Welch, A.J. [Texas Univ., Austin, TX (United States); Motamedi, M. [Texas Univ., Galveston, TX (United States). Medical Branch; Rastegar, S. [Texas A and M Univ., College Station, TX (United States); Tittel, F. [Rice Univ., Houston, TX (United States); Esterowitz, L. [Naval Research Lab., Washington, DC (United States)

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A&M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  10. Diagnostic and therapeutic applications of diode lasers and solid state lasers in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L. (Texas Univ., Houston, TX (United States). Cancer Center); Welch, A.J. (Texas Univ., Austin, TX (United States)); Motamedi, M. (Texas Univ., Galveston, TX (United States). Medical Branch); Rastegar, S. (Texas A and M Univ., College Station, TX (United States)); Tittel, F. (Rice Univ., Houston, TX (United States)); Esterowitz, L. (Naval Research Lab., Washington, DC (United States))

    1992-05-01

    The Texas Medical Center in Houston and the nearby UT Medical Branch at Galveston together constitute a major center of medical research activities. Laser applications in medicine are under development with the engineering assistance of the colloborating engineering centers at Rice University, UT-Austin, and Texas A M Univ. In addition, this collective is collaborating with the Naval Research Laboratory, where new developments in laser design are underway, in order to transfer promising new laser technology rapidly into the medical environment.

  11. Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications

    OpenAIRE

    Qureshi, Anjum; Kang , Weng P.; Davidson, Jimmy L.; Gürbüz, Yaşar; Gurbuz, Yasar

    2009-01-01

    The aim of this review is to summarize the most relevant contributions in the development of electrochemical sensors based on carbon materials in the recent years. There have been increasing numbers of reports on the first application of carbon derived materials for the preparation of an electrochemical sensor. These include carbon nanotubes, diamond like carbon films and diamond film-based sensors demonstrating that the particular structure of these carbon material and their unique propertie...

  12. Application of low magnetic field on inulinase production by Geotrichum candidum under solid state fermentation using leek as substrate.

    Science.gov (United States)

    Canli, Ozden; Kurbanoglu, Esabi Basaran

    2012-11-01

    This study evaluates the application of low magnetic field (LMF) on inulinase enzyme production by Geotrichum candidum under solid state fermentation (SSF) using leek as potential carbon source. First, the fermentation conditions were optimized using normal magnetic field grown microorganism. Among eight G. candidum isolates, the most effective strain called G. candidum OC-7 was selected to use in further experiments. In the second part of the study, SSF was carried out under different LMFs (4 and 7 mT). The results showed that inulinase activity was strongly affected by LMF application. The highest enzyme activity was obtained as 535.2 U/g of dry substrate (gds) by 7 mT magnetic field grown G. candidum OC-7. On the contrary, the control had only 412.1 U/gds. Consequently, the use of leek presents a great potential as an alternative carbon source for inulinase production and magnetic field treatment could effectively be used in order to enhance the enzyme production.

  13. Prediction of stress-strain state of municipal solid waste with application of soft soil creep model

    Directory of Open Access Journals (Sweden)

    Ofrikhter Vadim Grigor'evich

    Full Text Available The deformation of municipal solid waste is a complex process caused by the nature of MSW, the properties of which differ from the properties of common soils. The mass of municipal solid waste shows the mixed behaviour partially similar to granular soils, and partially - to cohesive. So, one of mechanical characteristics of MSW is the cohesion typical to cohesive soils, but at the same time the filtration coefficient of MSW has an order of 1 m/day that is characteristic for granular soils. It has been established that MSW massif can be simulated like the soil reinforced by randomly oriented fibers. Today a significant amount of the verified and well proved software products are available for numerical modelling of soils. The majority of them use finite element method (FEM. The soft soil creep model (SSC-model seems to be the most suitable for modelling of municipal solid waste, as it allows estimating the development of settlements in time with separation of primary and secondary consolidation. Unlike the soft soil, one of the factors of secondary consolidation of MSW is biological degradation, the influence of which is possible to consider at the definition of the modified parameters essential for soft soil model. Application of soft soil creep model allows carrying out the calculation of stress-strain state of waste from the beginning of landfill filling up to any moment of time both during the period of operation and in postclosure period. The comparative calculation presented in the paper is executed in Plaxis software using the soft-soil creep model in contrast to the calculation using the composite model of MSW. All the characteristics for SSC-model were derived from the composite model. The comparative results demonstrate the advantage of SSC-model for prediction of the development of MSW stress-strain state. As far as after the completion of the biodegradation processes MSW behaviour is similar to cohesion-like soils, the demonstrated

  14. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  15. Physics of Nanostructured Solid State Devices

    CERN Document Server

    Bandyopadhyay, Supriyo

    2012-01-01

    Physics of Nanostructured Solid State Devices introduces readers to theories and concepts such as semi-classical and quantum mechanical descriptions of electron transport, methods for calculations of band structures in solids with applications in calculation of optical constants, and other advanced concepts.  The information presented here will equip readers with the necessary tools to carry out cutting edge research in modern solid state nanodevices. This book also: Covers sophisticated models of charge transport including the drift-diffusion model, Boltzmann transport model and various quantum transport models Discusses the essential elements of quantum mechanics necessary for an understanding of nanostructured solid state devices Presents band structure calculation methods based on time-independent perturbation theory Discusses theory of optical transitions and optical devices employing quantum-confined structures such as quantum wells,wires and dots Elucidates quantum mechanics of electrons in a magneti...

  16. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  17. The Oxford solid state basics

    CERN Document Server

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  18. Solid State Theory An Introduction

    CERN Document Server

    Rössler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields.

  19. Solid state bonding of beryllium-copper for an ITER first wall application

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C.H.

    1998-02-01

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. A diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 microm thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency

  20. Solid state bonding of beryllium-copper for an ITER first wall application

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, B.C. Jr.; Cadden, C.H. [Sandia National Labs., Livermore, CA (United States)

    1998-01-01

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. All diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 {mu}m thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency. (author)

  1. Solid-State Laser Engineering

    CERN Document Server

    Koechner, Walter

    2006-01-01

    Written from an industrial perspective, Solid-State Laser Engineering discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. Since its first edition almost 30 years ago this book has become the standard in the field of solid-state lasers for scientists,engineers and graduate students. This new edition has been extensively revised and updated to account for recent developments in the areas of diode-laser pumping, laser materials and nonlinear crystals. Completely new sections have been added dealing with frequency control, the theory of mode-locking, femto second lasers, high efficiency harmonic generation, passive and acousto-optic Q-switching, semiconductor saturable absorber mirrors (SESAM) and peridically poled nonlinear crystals.

  2. Solid Lubrication Fundamentals and Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2001-01-01

    Solid Lubrication Fundamentals and Applications description of the adhesion, friction, abrasion, and wear behavior of solid film lubricants and related tribological materials, including diamond and diamond-like solid films. The book details the properties of solid surfaces, clean surfaces, and contaminated surfaces as well as discussing the structures and mechanical properties of natural and synthetic diamonds; chemical-vapor-deposited diamond film; surface design and engineering toward wear-resistant, self-lubricating diamond films and coatings. The author provides selection and design criteria as well as applications for synthetic and natural coatings in the commercial, industrial and aerospace industries..

  3. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  4. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  5. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  6. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna [Univ. of South Carolina, Columbia, SC (United States)

    2017-09-29

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron (10B) and enriched lithium (6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (tg ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10-24 cm2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  7. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena Sensory Rhodopsin.

    Science.gov (United States)

    Ward, Meaghan E; Brown, Leonid S; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Application of Optimal Control Theory in Solid-State NMR. Time-Suspension Multiple-Pulse Sequences

    Science.gov (United States)

    Iwamiya, J. H.; Callahan, J.; Sinton, S. W.; Drobny, G. P.

    Optimal control theory (computer-aided design and optimization) is applied in a search for new time-suspension pulse sequences which scale both linear and bilinear spin interactions to zero. This computer-aided approach allows one to rapidly examine and assess the characteristics of different time-suspension pulse sequences. The objective of our search is to find a sequence which operates effectively at modest RF field strengths. The initial result of this search is a simple semiwindowless, four-pulse sequence. The basic structure of this sequence is similar to that of a semiwindowless WAHUHA sequence, but with different pulse tip angles and delays resulting from the requirements for maximum overall scaling of the homonuclear dipole-dipole and chemical-shift Hamiltonians. Theoretical results are presented on how this sequence behaves with regard to resonance offsets and spin system parameters (couplings and chemical shifts). The experimental line-narrowing performance of this sequence as a function of RF field strength and resonance offset is examined and its performance is compared to those of two other time-suspension pulse sequences as well as the theoretical predictions. At moderate RF field strengths and small resonance offsets, this new sequence is found to perform reasonably well, but line-narrowing performance improves at higher RF field strengths or large resonance offsets. The experimental results corroborate the theoretical expectations. Possible applications for the use of this sequence, in particular solid-state imaging, are discussed.

  9. Design and control of a three-phase four-leg inverter for solid-state transformer applications

    NARCIS (Netherlands)

    Shri, A.; Popovic, J.; Ferreira, J.A.; Gerber, M.B.

    2013-01-01

    This paper proposes the use of a three-phase four-leg (3P4L) converter in combination with an LCL filter for the inverter stage of a solid state transformer (SST). This configuration gives full control over the line-to-line, as well as the line-to-neutral voltage and currents, while providing

  10. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen

    2007-01-01

    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...

  11. A General Solid-State Synthesis of Chemically-Doped Fluorescent Graphene Quantum Dots for Bioimaging and Optoelectronic Applications

    KAUST Repository

    Ma, Chong-Bo

    2015-05-05

    Graphene quantum dots (GQDs) have attracted increasing interest because of their excellent properties such as strong photoluminescence, excellent biocompatibility and low cost. Herein, we develop a general method for the synthesis of doped and undoped GQDs, which relies on direct carbonization of organic precursors at solid state.

  12. The application of state machine based on labview for solid target transfer control system at BATAN’s cyclotron

    International Nuclear Information System (INIS)

    Heranudin; Rajiman; Parwanto; Edy Slamet R

    2015-01-01

    Software programming for the new solid target transfer control system referred to the working principle of the whole each sub system. System modeling with state machine diagram was chosen because this simplified a complex design of the control system. State machine implementation of this system was performed by creating basic state drawn from the working system of each sub system. All states with their described inputs, outputs and algorithms were compiled in the sequential state machine diagram. In order to ease the operation, three modes namely automatic, major states and micro states were created. Testing of the system has been conducted and as a result, the system worked properly. The implementation of State machine based on LabView has several advantages such as faster, easier programming and the capability for further developments. (author)

  13. Solid-state fermentation - A mini review

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M.; Rinzema, A.; Tramper, J.

    1998-01-01

    The increasing interests in biotechnology for the application of fungi on the one hand, and for cheap agricultural products on the other, can be combined in so-called solid-state fermentation (SSF). SSF resembles a close to natural habitat for filamentous microorganisms and can be applied to

  14. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  15. Solid State and Materials Chemistry

    Indian Academy of Sciences (India)

    Unknown

    It gives us immense pleasure to present this Special Issue of the Proceedings of the Indian. Academy of Sciences (Chemical Sciences) to mark the Silver Jubilee of the Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bangalore. This Unit was created by Professor C N R Rao, FRS, at the Institute ...

  16. Solid State and Materials Chemistry

    Indian Academy of Sciences (India)

    Unknown

    and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bangalore. This Unit was created by Professor C N R Rao, FRS, at the Institute in 1976, to give a major thrust to the then emerging discipline of solid state and structural chemistry. Over the years, the Unit has grown from strength to strength under the dynamic.

  17. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  18. First-Principles Study of Charge Diffusion between Proximate Solid-State Qubits and Its Implications on Sensor Applications

    Science.gov (United States)

    Chou, Jyh-Pin; Bodrog, Zoltán; Gali, Adam

    2018-03-01

    Solid-state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make it possible to create proximate qubits in solids that might interact with each other, leading to electron spin or charge fluctuation. Here we develop a method to calculate the tunneling-mediated charge diffusion between point defects from first principles and apply it to nitrogen-vacancy (NV) qubits in diamond. The calculated tunneling rates are in quantitative agreement with previous experimental data. Our results suggest that proximate neutral and negatively charged NV defect pairs can form a NV-NV molecule. A tunneling-mediated model for the source of decoherence of the near-surface NV qubits is developed based on our findings on the interacting qubits in diamond.

  19. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  20. AIE-active organoboron complexes with highly efficient solid-state luminescence and their application as gas sensitive materials.

    Science.gov (United States)

    Gong, Shuwen; Liu, Qingsong; Wang, Xiaoqing; Xia, Bo; Liu, Zhipeng; He, Weijiang

    2015-08-21

    Complexation of a boron atom with two of benzothiazole-enolate-based bidentate ligands successfully gave rise to the corresponding BF2-/BPh2-chelated complexes (), which could be considered as novel AIE-active organoboron luminophores. These new luminophores exhibited aggregation-induced emission, and a large Stokes shift in solution. In the solid-state, compounds exhibited intense emission with high quantum yields of 0.14-0.43. The photophysical properties and AIE characteristics of these compounds were rationalized through X-ray crystal analysis and theoretical calculations. In addition, compounds and were capable of sensing acidic gas by reversible changes of emission, which may potentially serve as solid-state luminescent sensors for acidic vapors.

  1. Revealing defects in crystalline lithium-ion battery electrodes by solid state NMR: applications to LiVPO4F

    OpenAIRE

    Messinger, Robert J.; Ménétrier, Michel; Salager, Elodie; Boulineau, Adrien; Duttine, Mathieu; Carlier, Dany; Ateba Mba, Jean-Marcel; Croguennec, Laurence; Masquelier, Christian; Massiot, Dominique; Deschamps, Michaël

    2015-01-01

    International audience; Identifying and characterizing defects in crystalline solids is a challenging problem, particularly for lithium-ion intercalation materials, which often exhibit multiple stable oxidation and spin states as well as local ordering of lithium and charges. Here, we reveal the existence of characteristic lithium defect environments in the crystalline lithium-ion battery electrode LiVPO4F and establish the relative subnanometer-scale proximities between them. Well-crystalliz...

  2. Development of Lithium Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

    Directory of Open Access Journals (Sweden)

    Ryoji Inada

    2016-07-01

    Full Text Available All-solid-state lithium-ion battery (LiB is expected as one of the next generation energy storage devices because of their high energy density, high safety and excellent cycle stability. Although oxide-based solid electrolyte materials have rather lower conductivity and poor deformability than sulfide-based one, they have other advantages such as their chemical stability and easiness for handling. Among the various oxide-based SEs, lithium stuffed garnet-type oxide with the formula of Li7La3Zr2O12 (LLZ have been widely studied because of their high conductivity above 10-4 Scm-1 at room temperature, excellent thermal performance and stability against Li metal anode.Here, we present our recent progress for the development of garnet-type solid electrolytes with high conductivity by simultaneous substitution of Ta5+ into Zr4+ site and Ba2+ into La3+ site in LLZ. Li+ concentration was fixed to 6.5 per chemical formulae, so that the formulae of our Li garnet-type oxide is expressed as Li6.5La3-xBaxZr1.5-xTa0.5+xO12 (LLBZT and Ba contents x are changed from 0 to 0.3. As results, all LLBZT samples have cubic garnet structure without containing any secondary phases. The lattice parameters of LLBZT decrease with increasing Ba2+ contents x < 0.10 while increase with x from 0.10 to 0.30, possibly due to the simultaneous change of Ba2+ and Ta5+ substitution levels. Relative densities of LLBZT are in the range between 89% and 93% and not influenced so much by the compositions. From AC impedance spectroscopy measurements, the total (bulk + grain conductivity at 27ºC of LLBZT shows its maximum value of 8.34 x 10-4 S cm-1 at x = 0.10, which is slightly higher than the conductivity (= 7.94 x 10-4 S cm-1 of LLZT without substituting Ba (x = 0. Activation energy of the conductivity tends to become lower by Ba substation, while excess Ba substitution degrades the conductivity in LLBZT. LLBZT has wide electrochemical potential window of 0-6 V vs. Li+/Li and

  3. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  4. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  5. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  6. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art.

    Science.gov (United States)

    Weber, S; Zimmer, A; Pardeike, J

    2014-01-01

    Drug delivery by inhalation is a noninvasive means of administration that has following advantages for local treatment for airway diseases: reaching the epithelium directly, circumventing first pass metabolism and avoiding systemic toxicity. Moreover, from the physiological point of view, the lung provides advantages for systemic delivery of drugs including its large surface area, a thin alveolar epithelium and extensive vasculature which allow rapid and effective drug absorption. Therefore, pulmonary application is considered frequently for both, the local and the systemic delivery of drugs. Lipid nanoparticles - Solid Lipid Nanoparticles and Nanostructured Lipid Carriers - are nanosized carrier systems in which solid particles consisting of a lipid matrix are stabilized by surfactants in an aqueous phase. Advantages of lipid nanoparticles for the pulmonary application are the possibility of a deep lung deposition as they can be incorporated into respirables carriers due to their small size, prolonged release and low toxicity. This paper will give an overview of the existing literature about lipid nanoparticles for pulmonary application. Moreover, it will provide the reader with some background information for pulmonary drug delivery, i.e., anatomy and physiology of the respiratory system, formulation requirements, application forms, clearance from the lung, pharmacological benefits and nanotoxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Solid Waste Land Applications with Permits by the Iowa DNR

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — All types of facilities that handle solid waste, including: sanitary landfills, appliance demanufacturing facilities, transfer stations, land application sites,...

  8. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  9. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  10. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  11. Production of α-Galactosidase by Aspergillus oryzae through solid-state fermentation and its application in soymilk Galactooligosaccharide hydrolysis

    OpenAIRE

    Kapnoor,Shankar; Mulimani,Veerappa Hanumanth

    2010-01-01

    α-Galactosidase was produced by Aspergillus oryzae on red gram plant waste-wheat bran based media in solid-state fermentation (SSF). Optimum temperature for α-galactosidase production was 35 0C and upto 4 cm of bed height of substrate had no inhibitory effect on enzyme production. Hydrolysis of galactooligosaccharides in soymilk was carried out by α-galactosidase. Optimum temperature and pH for the hydrolysis of raffinose and stachyose of soymilk were 55(0)C and 5.2-6.2, respec...

  12. Downstream processing of pectinase produced by Aspergillus niger in solid state cultivation and its application to fruit juices clarification

    Directory of Open Access Journals (Sweden)

    Patrícia Poletto

    2015-06-01

    Full Text Available In this work, a protocol for the formulation of an enzyme concentrated product to be applied in fruit juice treatment is described. Downstream processing conditions for the recovery and concentration of pectinases produced by the new strain Aspergillus niger LB-02-SF in solid state cultivation were assessed. The solid-liquid ratio in the extraction step of pectinases recovery from the cultivated media was evaluated and the highest activity was obtained with a solid-liquid ratio of 1:10. The crude extract was concentrated by ultrafiltration and the total pectinase (TP activity was 73.6-fold concentrated in relation to the crude extract, and a final TP titer of 663 U mL–1 was obtained with 73.7% of recovery yield. KCl and different glycerol concentrations were added to the concentrated extract and the stability of pectinases during the storage at 5°C for 59 weeks was tested. The formulation with 50% w/w glycerol was applied to the treatment of apple and grape juices and the results of these tests were statistically comparable to those obtained with two high-quality commercial preparations.

  13. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

    Science.gov (United States)

    Saratale, Ganesh D; Kshirsagar, Siddheshwar D; Sampange, Vilas T; Saratale, Rijuta G; Oh, Sang-Eun; Govindwar, Sanjay P; Oh, Min-Kyu

    2014-12-01

    Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.

  14. Effect of bulky substituents on thiopyrylium polymethine aggregation in the solid state: A theoretical evaluation of the implications for all-optical switching applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-11-25

    Polymethine dyes in dilute solutions display many of the optical properties required for all-optical switching applications. However, in thin films, aggregation and polymethine-counterion interactions can substantially modify their properties and limit their utility. Here, we examine the impact of a series of bulky substituents on the solid-state molecular packing of thiopyrylium polymethines by using a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations. Importantly, it is found that the positions of the substituents near the center and/or ends of the dye determine the extent to which aggregation is reduced; in particular, substituents near the polymethine center primarily modify the type of aggregation that is observed, while substituents near the polymethine ends reduce aggregation and aid in maintaining solution-like properties in the solid state. Our theoretical study elucidates relationships between molecular structure and bulk optical properties and provides design guidelines for all-optical switching materials.

  15. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  16. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  17. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    Science.gov (United States)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  18. Solution of the Bethe-Salpeter equation without empty electronic states: Applications to solids, nanostructures and molecules

    Science.gov (United States)

    Rocca, Dario; Ping, Yuan; Lu, Deyu; Galli, Giulia

    2012-02-01

    A method to solve the Bethe-Salpeter equation that avoids the explicit calculation of empty electronic states and the storage and inversion of dielectric matrices has been recently introduced [1-3]. This approach is suitable to compute the absorption spectra of large systems in a wide energy range and without relying on the Tamm-Dancoff approximation. We show the accuracy and scalability of this method by presenting calculations of absorption spectra of solids, molecules and nanostructures, including Si quantum dots and nanowires. In the case of nanowires, we discuss the influence of size and surface reconstruction on the optical properties.[4pt] [1] D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109 (2010)[0pt] [2] D. Rocca, Y. Ping, R. Gebauer, and G. Galli, submitted to PRB [0pt] [3] Y. Ping, D. Rocca, D. Lu, and G. Galli, submitted to PRB

  19. Production of α-Galactosidase by Aspergillus oryzae through solid-state fermentation and its application in soymilk Galactooligosaccharide hydrolysis

    Directory of Open Access Journals (Sweden)

    Shankar Kapnoor

    2010-02-01

    Full Text Available α-Galactosidase was produced by Aspergillus oryzae on red gram plant waste-wheat bran based media in solid-state fermentation (SSF. Optimum temperature for α-galactosidase production was 35 0C and upto 4 cm of bed height of substrate had no inhibitory effect on enzyme production. Hydrolysis of galactooligosaccharides in soymilk was carried out by α-galactosidase. Optimum temperature and pH for the hydrolysis of raffinose and stachyose of soymilk were 55(0C and 5.2-6.2, respectively. The enzymatic treatment for 3 h completely removed the raffinose oligosaccharides in soymilk. Crude extract also showed considerable amount of invertase activity.

  20. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure.

    Science.gov (United States)

    Zarkevich, N A; Johnson, D D

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron-from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  1. Solid State Lighting Program (Falcon)

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated

  2. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  3. Automatic image analysis methods for the determination of stereological parameters - application to the analysis of densification during solid state sintering of WC-Co compacts

    Science.gov (United States)

    Missiaen; Roure

    2000-08-01

    Automatic image analysis methods which were used to determine microstructural parameters of sintered materials are presented. Estimation of stereological parameters at interfaces, when the system contains more than two phases, is particularly detailed. It is shown that the specific surface areas and mean curvatures of the various interfaces can be estimated in the numerical space of the images. The methods are applied to the analysis of densification during solid state sintering of WC-Co compacts. The microstructural evolution is commented on. Application of microstructural measurements to the analysis of densification kinetics is also discussed.

  4. DNP-enhanced ultrawideline 207Pb solid-state NMR spectroscopy: an application to cultural heritage science.

    Science.gov (United States)

    Kobayashi, Takeshi; Perras, Frédéric A; Murphy, Anna; Yao, Yao; Catalano, Jaclyn; Centeno, Silvia A; Dybowski, Cecil; Zumbulyadis, Nicholas; Pruski, Marek

    2017-03-14

    Dynamic nuclear polarization (DNP) is used to enhance the (ultra)wideline 207 Pb solid-state NMR spectra of lead compounds of relevance in the preservation of cultural heritage objects. The DNP SSNMR experiments enabled, for the first time, the detection of the basic lead carbonate phase of the lead white pigment by 207 Pb SSNMR spectroscopy. Variable-temperature experiments revealed that the short T' 2 relaxation time of the basic lead carbonate phase hinders the acquisition of the NMR signal at room temperature. We additionally observe that the DNP enhancement is twice as large for lead palmitate (a lead soap, which is a degradation product implicated in the visible deterioration of lead-based oil paintings), than it is for the basic lead carbonate. This enhancement has allowed us to detect the formation of a lead soap in an aged paint film by 207 Pb SSNMR spectroscopy; which may aid in the detection of deterioration products in smaller samples removed from works of art.

  5. Di-ureasil xerogels containing lithium bis(trifluoromethanesulfonyl)imide for application in solid-state electrochromic devices

    International Nuclear Information System (INIS)

    Barbosa, Paula C.; Silva, M. Manuela; Smith, Michael J.; Goncalves, Alexandra; Fortunato, Elvira; Nunes, Silvia C.; Zea Bermudez, V. de

    2009-01-01

    In this study we report the characterization of a prototype solid-state electrochromic device based on poly(ethylene oxide) (PEO)/siloxane hybrid networks doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The polymer networks prepared, designated as di-ureasils and represented as d-U(2000), were produced by a sol-gel procedure and are composed of a siliceous framework to which both ends of polyether chains containing about 40 -CH 2 CH 2 O- units are covalently bonded through urea linkages. Samples with compositions of 200 ≥ n ≥ 0.5 (where n is the molar ratio of -CH 2 CH 2 O- to Li + ) were characterized by thermal analysis, complex impedance measurements and cyclic voltammetry at a gold microelectrode. Electrolyte samples were obtained as self-supporting, transparent, amorphous films and at room temperature the highest conductivity was observed with the d-U(2000) 35 LiTFSI composition (3.2 x 10 -5 Ω -1 cm -1 ). We report the results of preliminary evaluation of these polymer electrolytes as multi-functional components in prototype electrochromic displays. Device performance parameters such as coloration efficiency, optical contrast and image stability were also evaluated. The electrolytes with n > 8 presented an optical density above 0.56 and display assemblies exhibited good open-circuit memory and stable electrochromic performances

  6. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors

    Science.gov (United States)

    Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2017-12-01

    We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.

  7. Production of α-galactosidase from Aspergillus foetidus MTCC 6322 by solid state fermentation and its application in soymilk hydrolysis.

    Science.gov (United States)

    Boopathy, Naidu Ramachandra; Gupta, Rishikesh Kumar; Ramudu, Kamini Numbi

    2016-01-01

    The production of α-galactosidase from the wild fungal strain Aspergillus foetidus MTCC 6322 using solid state fermentation (SSF), its characterization, and its efficacy in the hydrolysis of soymilk using response surface methodology were studied. The optimum conditions for production of α-galactosidase by SSF were: wheat bran (10 g), moisture content (64%), inoculum volume (1.0 mL; 6 x 10(7) spores/mL) with a yield of 4.1 x 10(3) units per gram dry substrate (U/gds) at 96 h. The enzyme showed optimum activity at 6.0, temperature 40 degrees C, pH stability between 5.0-8.0, and temperature stability between 30-40 degrees C. The enzyme was stable in the presence of trypsin, lipase, and collagenase and it showed susceptibility of the substrates such as raffinose, melibiose, guar gum and soymilk to hydrolysis in varying degrees. The optimized conditions for soymilk hydrolysis were: soymilk (10 mL) from defatted soybean meal (1.5%), α-galactosidase (0.15 UmL(-1) at 30 degrees C, pH 6.0 and duration of 1 h.

  8. Solid-state rechargeable magnesium battery

    Science.gov (United States)

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  9. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  10. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  11. Radioactive ion beams for solid state research

    CERN Document Server

    Correia, J G

    1996-01-01

    Radioactive isotopes are widely used in many research fields. In some applications they are used as tracers after diffusion or after activation in the material itself through nuclear reactions. For research in solid state physics, the ion implantation technique is the most flexible and convenient method to introduce the radioactive isotopes in the materials to be studied, since it allows the control of the ion dose, the implantation depth and the isotopic purity. The on-line coupling of isotope separators to particle accelerators, as is the case of the ISOLDE facility at CERN, allows the obtention of a wide range of high purity short lived isotopes. Currently, the most stringent limitation for some applications is the low acceleration energy of 60 keV of the ISOLDE beam. In this communication a short review of the current applications of the radioactive beams for research in solid state physics at ISOLDE is done. The development of a post-accelerator facility for MeV radioactive ions is introduced and the adv...

  12. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  13. Equation of state for inert gas solids

    Indian Academy of Sciences (India)

    Srimath

    Keywords. Equation of state; inert gas solids; thermal expansion; bulk modulus. PACS Nos 64.10.+h; 64.30.+t. 1. Introduction. Much of the physical world around us and a large part of modern technology are based on solid materials. So it is interesting to study the behavior and thermophys- ical properties of different solids.

  14. High temperature solid state storage cell

    Science.gov (United States)

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  15. Synthesis, characterization and quantitative analysis of porous metal microstructures: Application to microporous copper produced by solid state foaming

    Directory of Open Access Journals (Sweden)

    Mark A. Atwater

    2016-05-01

    Full Text Available Porous metals can be created through a wide variety of processing techniques, and the pore morphology resulting from these processes is equally diverse. The structural and functional properties of metal foams are directly dependent on the size, shape, interconnectedness and volume fraction of pores, so accurately quantifying the pore characteristics is of great importance. Methods for analyzing porous materials are presented here and applied to a copper-based metallic foam generated through solid state foaming via oxide reduction and expansion. This process results in large voids (10s of microns between sintered particles and small pores (10 microns to less than 50 nm within particles. Optical and electron microscopy were used to image the porosity over this wide range, and the pore characteristics were quantified using image segmentation and statistical analysis. Two-dimensional pore analysis was performed using the Chan-Vese method, and two-point correlation and lineal path functions were used to assess three-dimensional reconstructions from FIB tomography. Two-dimensional analysis reveals distinct size and morphological differences in porosity between particles and within them. Three-dimensional analysis adds further information on the high level interconnectedness of the porosity and irregular shape it takes, forming tortuous pathways rather than spherical cells. Mechanical polishing and optical microscopy allow large areas to be created and analyzed quickly, but methods such as focused ion beam (FIB sectioning can provide additional insight about microstructural features. In particular, after FIB milling is used to create a flat surface, that surface can be analyzed for structural and compositional information.

  16. Solid state fermentation of carinata (Brassica carinata) meal using various fungal strains to produce a protein-rich product for feed application

    Science.gov (United States)

    In this study, the efficacy of several fungal strains to reduce GLS (GLS) content and enhance protein content during solid state fermentation (SSF) of carinata meal was evaluated. Solid state fermentation of hexane extracted (HE) and cold pressed (CP) carinata meals were performed at 50% moisture co...

  17. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  18. Nylon 6 polymerization in the solid state

    NARCIS (Netherlands)

    Gaymans, R.J.; Amirtharaj, John; Kamp, Henk

    1982-01-01

    The postcondensation of nylon 6 in the solid state was studied. The reactions were carried out on fine powder in a fluidized bed reactor in a stream of dry nitrogen in the temperature range 110-205°C and during 1-24 h. The solid-state polymerization (SSP) did not follow melt kinetics, but was found

  19. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  20. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  1. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  2. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  3. Nanoengineering for solid-state lighting.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  4. Bonding, structure and solid-state chemistry

    CERN Document Server

    Ladd, Mark

    2016-01-01

    This book is aimed at undergraduate students in both chemistry and those degree subjects in which chemistry forms a significant part. It does not reflect any particular academic year, and so finds a place during the normal span of degree studies in the physical sciences. An A-level standard in science and mathematics is presumed; additional mathematical treatments are discussed in Appendices. An introductory first chapter leads into the main subject matter, which is treated through four chapters in terms of the principle bonding forces of cohesion in the solid state; a further chapter discusses nanosize materials. Important applications of the study topics are interspersed at appropriate points within the text. Each chapter is provided with a set of problems of varying degrees of difficulty, so as to assist the reader in gaining a facility with the subject matter and its applications. The problems are supplemented by detailed tutorial solutions, some of which present additional relevant material that indicate...

  5. Parallelizing acquisitions of solid-state NMR spectra with multi-channel probe and multi-receivers: applications to nanoporous solids.

    Science.gov (United States)

    Martineau, Charlotte; Decker, Frank; Engelke, Frank; Taulelle, Francis

    2013-01-01

    A five-channel ((1)H, (19)F, (31)P, (27)Al, (13)C) 2.5 mm magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is used in combination with three separate receivers for the parallel acquisitions of one (1D) and two-dimensional (2D) NMR spectra in model fluorinated aluminophosphate and porous Al-based metal-organic framework (MOF). Possible combinations to record simultaneously spectra using this set-up are presented, including (i) parallel acquisitions of quantitative 1D NMR spectra of solids containing nuclei with contrasted T1 relaxation rates and (ii) parallel acquisitions of 2D heteronuclear NMR spectra. In solids containing numerous different NMR-accessible nuclei, the number of NMR experiments that have to be acquired to get accurate structural information is high. The strategy we present here, i.e. the multiplication of both the number of irradiation channels in the probe and the number of parallel receivers, offers one possibility to optimize this measurement time. © 2013 Elsevier Inc. All rights reserved.

  6. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  7. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  8. Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling.

    Science.gov (United States)

    Asha Poorna, C; Prema, P

    2007-02-01

    The present study aimed at optimization of culture condition for the enhanced production of extra cellular thermostable cellulase-free xylanase from Bacillus pumilus by solid-state fermentation. Batch studies were carried out to evaluate various agro-industrial residues such as rice bran, rice husk, rice straw, sawdust, coconut pith, sugarcane bagasse and wheat bran for enzyme production by the bacterial culture. The endoxylanase production was highest on wheat bran media (5582 U/gds), which was enhanced 3.8-fold (21,431 U/gds) by optimization of cultivation conditions. The enzymatic extracts was used in mixed wastepaper recycling, which resulted in a considerable improvement of the paper strength with high drainage and easy drying up. The results of enzyme application with recycled paper clearly indicated that the effective use of enzymes in fiber separation could reduce the cost of carton paper production.

  9. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  10. Recent Advances In Efficient Long-Life, Eye-Safe Solid-State And CO2 Lasers For Laser Radar Applications

    Science.gov (United States)

    Hess, R. V.; Buoncristiani, A. M.; Brockman, P.; Bair, C. H.; Schryer, D. R.; Upchurch, B. T.; Wood, G. M.

    There is increasing interest in the comparative roles of CO2 and the more recently developed eye-safe solid-state lasers for long-life efficient laser radar applications. This paper assesses recent technology advances in each area and their roles in laser radar and especially Doppler lidar and DIAL development. The key problems in eye-safe solid-state lasers are discussed relating to the energy transfer mechanisms between the complicated energy level manifolds of the Tm,Ho,Er ion dopants in hosts with decreasing crystal fields such as YAG or YLF. One concerns optimization of energy transfer for efficient lasing through choice of dopant concentration, power density, crystal field and temperature, with the highly practical goal of minimal cooling needs. Another key problem, specific to laser radar and lidar, involves tailoring of energy transfer times to provide efficient energy extraction for short, e.g., Q-switched pulses used in DIAL and Dopper lidar. Special emphasis is given to eye-safe lasers in the 2 μm range because of the high efficiency applications to DIAL and (windshear) Doppler lidar and because they are well suited for Optical Parametric Oscillator frequency conversion into the important ≍ 4 to 5 μm DIAL range. The discussion of CO2 lasers concerns recent advances in Pt/Sn02 oxide catalysts and other noble metal/metal oxide combinations. Emphasis is given to the dramatic effects of small quantities of H20 vapor for increasing the activity and lifetime of Pt/Sn02 catalysts and to increased lifetime operation with rare isotope 12C18O2 lasing mixtures; iL-the 12C18O2 laser wavelengths in the 9.1 μm range are of special interest for space-based Doppler lidar such as the proposed Laser Atmospheric Wind Sounder.

  11. Equation of state for inert gas solids

    Indian Academy of Sciences (India)

    Srimath

    Abstract. The equation of state is a fundamental relation to analyse the thermophysical properties of different class of solids and it plays a key role in basic and applied condensed matter physics research. A lot of work has been done in the field of ionic solids, minerals and metals but a very little work is done in the field of ...

  12. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Unknown

    Ionic conduction; solid state; atomistic computer simulations; NASICON structure. 1. Introduction. There exist many solids with .... The other skeleton structures examined in- cludes that of the high-pressure-stabilized cubic Im3 ..... volves solution of the coupled differential equations. (11) and (12). This gives the time evolution ...

  13. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these solids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of ...

  14. Equation of state for inert gas solids

    Indian Academy of Sciences (India)

    The equation of state is a fundamental relation to analyse the thermophysical properties of different class of solids and it plays a key role in basic and applied condensed matter physics research. A lot of work has been done in the field of ionic solids, minerals and metals but a very little work is done in the field of inert gas ...

  15. Fungal mats in solid-state fermentation

    NARCIS (Netherlands)

    Rahardjo, Y.S.P.

    2005-01-01

    Since over 2000 years man has cultivated fungi on grains, beans or other (by)products from agriculture or agro-industries, in order to produce tastier and healthier foods. Nowadays, cultivation on solid substrates (solid-state fermentation, SSF) is also used to produce industrial enzymes, drugs and

  16. Solid state and materials research

    International Nuclear Information System (INIS)

    1988-01-01

    Surface and sub-surface regions of solids are modified by rapid melting and quenching, using a high-powered, pulsed (30 ns) ruby laser. The main emphasis of this work is on laser annealing, epitaxy and doping of silicon. Computer programs have been developed to calculate the heat-flow which takes place during pulsed laser irradiation. From such calculations, information can be obtained about temperature profiles, melt depths, recrystallization velocities and quench rates. 13 figs., 9 refs., 1 tab

  17. Solid state properties from bulk to nano

    CERN Document Server

    Dresselhaus, Mildred; Cronin, Stephen; Gomes Souza Filho, Antonio

    2018-01-01

    This book fills a gap between many of the basic solid state physics and materials science books that are currently available. It is written for a mixed audience of electrical engineering and applied physics students who have some knowledge of elementary undergraduate quantum mechanics and statistical mechanics. This book, based on a successful course taught at MIT, is divided pedagogically into three parts: (I) Electronic Structure, (II) Transport Properties, and (III) Optical Properties. Each topic is explained in the context of bulk materials and then extended to low-dimensional materials where applicable. Problem sets review the content of each chapter to help students to understand the material described in each of the chapters more deeply and to prepare them to master the next chapters.

  18. Solid-state lighting technology perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  19. International survey on solid state nuclear track detection

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Wernli, C.

    1992-04-01

    The results of the 1990 international survey on solid state nuclear track detection are presented. The survey was performed in collaboration with the International Nuclear Track Society (INTS). These results include the data on principal investigator(s), collaborator(s), institution, field of application(s), material(s), and method(s) of track observation from 28 countries. (author)

  20. Bending crystals. Solid state photomechanical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    semiquinonate ligand, form as long thin needles that are observed to bend reversibly upon irradiation with NIR light. Crystallographic characterization reveals a stacked solid state lattice with planar molecules aligned with metal atoms atop one another.

  1. Developments in Solid-State NMR

    Indian Academy of Sciences (India)

    reso/020/11/1040-1052. Keywords. NMR; solid state; anisotropy; magic angle spinning dipolar coupling; quadrupolar coupling; chemical shift. Author Affiliations. K V Ramanathan1. NMR Research Center, Indian Institute of Science, Bengaluru ...

  2. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  3. Advanced Solid State Lighting for Human Evaluation

    Data.gov (United States)

    National Aeronautics and Space Administration — Lighting intensity and color have a significant impact on human circadian rhythms.  Advanced solid state lighting was developed for the Advanced Exploration System...

  4. Microfluidic multiplexing of solid-state nanopores

    Science.gov (United States)

    Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit

    2017-12-01

    Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.

  5. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  6. Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: application on BABA and C7 radiofrequency pulse sequences.

    Science.gov (United States)

    Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault

    2012-02-01

    This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Solid-state NMR studies of supercapacitors.

    Science.gov (United States)

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2008-01-01

    Written by the 2011 Gaede Award Winner Filling a gap in the literature for a brief course in solid sate physics, this is a clear and concise introduction that not only describes all the basic phenomena and concepts, but also discusses such advanced issues as magnetism and superconductivity. This textbook assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems with solutions as well as further supplementary material available for free to lecturers from the Wiley-VCH website. From the Contents:Chemical Bonding in So

  9. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  10. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  11. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    Science.gov (United States)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  12. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations.

    Science.gov (United States)

    Gopinath, T; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Investigation of the applicability of solid state detectors for the determination of reactor fuel burn-up, development and making of a jumping spark counter

    International Nuclear Information System (INIS)

    Csikai, J.

    1979-04-01

    A method was investigated for the determination of reactor fuel burn-up by measuring the spontaneous fission cross sections ratio 235 U/ 238 U. The method was adopted for the determination of uranium in powdered solid samples. The angular distribution of fission fragments of 239 Pu has been measured by means of a polycarbonate solid state nuclear track detector, using a 252 Cf neutron source

  14. High-level production of β-1,3-1,4-glucanase by Rhizomucor miehei under solid-state fermentation and its potential application in the brewing industry.

    Science.gov (United States)

    Yang, S Q; Xiong, H; Yang, H Y; Yan, Q J; Jiang, Z Q

    2015-01-01

    To improve the β-1,3-1,4-glucanase production by Rhizomucor miehei under solid-state fermentation (SSF) for industrial application. The fermentation conditions for β-1,3-1,4-glucanase production by R. miehei CAU432 under SSF were optimized using a 'one-factor-at-a-time' method. Under the optimized fermentation conditions, viz. oatmeal (0·45-0·9 mm) as sole carbon source, 5% (w/w) peptone as sole nitrogen source, initial moisture of 80% (w/w), initial culture pH of 5·0, incubation temperature of 50°C and incubation time of 6 days, the highest β-1,3-1,4-glucanase activity of 20,025 U g(-1) dry substrate was achieved, which represents the highest yield for β-1,3-1,4-glucanase production ever reported. The crude enzyme was extracted and purified to homogeneity with a purification fold of 4·6 and a recovery yield of 9·0%. The addition of the purified β-1,3-1,4-glucanase in mash obviously reduced its filtration time (24·6%) and viscosity (2·61%). The optimal fermentation conditions for maximal β-1,3-1,4-glucanase production under SSF was obtained, and the enzyme was suitable for application in the malting process. The high production yield and excellent capability of the enzyme may enable it great potential in industries, especially in brewing industry. © 2014 The Society for Applied Microbiology.

  15. Solid-state NMR of polymers

    International Nuclear Information System (INIS)

    Mirau, P.

    2001-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as one of the most important methods for the solid-state characterisation of polymers. The popularity of NMR is due to the fact that many molecular level features can be measured from the NMR spectra, including the polymer chain conformation, the morphology and the dynamics. The spectral features and relaxation times are affected by local interactions, so they provide information about the structure of polymers on a length scale (2-200 A) that is difficult to measure by other methods. In favourable cases, the NMR experiments provide a molecular-level explanation for the transitions observed by differential scanning calorimetry (DSC) and other methods, and the NMR properties can often be related to the bulk properties. Solid-state NMR has long been of interest in polymer science, and the first solid-state NMR studies of polymers were reported approximately a year after the discovery of nuclear resonance in bulk matter. It was reported in this initial study that the proton line width for natural rubber at room temperature is more like that of a mobile liquid than of a solid, but that the resonance broadens near the glass transition temperature (T g ). This was recognised as being related to a change in chain dynamics above and below the T g . NMR methods developed rapidly after these initial observations, first for polymers in solution and, more recently, for polymers in the solid-state. Solid-state NMR studies of polymers were developed more slowly than their solution-state counterparts because solid-state NMR requires more specialised equipment. Solid-state NMR is now such an important tool that most modern spectrometers are capable of performing these studies. The interest in the NMR of solid polymers is due in part to the fact that most polymers are used in the solid state, and in many cases the NMR properties can be directly related to the macroscopic properties. Polymers have restricted mobility in

  16. Solid state division progress report, period ending February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  17. Solid state division progress report, period ending February 29, 1980

    International Nuclear Information System (INIS)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials

  18. Passivation-free solid state battery

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  19. SOLID STATE BATTERIES WITH CONDUCTING POLYMERS

    OpenAIRE

    Bénière , F.; Boils , D.; Cánepa , H.; Franco , J.; Le Corre , A.; Louboutin , J.

    1983-01-01

    The conducting polymers like (CH)x are very interesting materials for electrodes in electrochemical cells. We have combined such electrodes with solid electrolytes to build "all solid-state" batteries. The first prototypes using a silver anode and a silver conducting electrolyte have been working satisfactorily since two years. The performances have been tested with many batteries to study the electrical properties as well as the thermodynamical parameters. A number of cycles of charge-discha...

  20. Solid-state dynamics of uranyl polyoxometalates

    International Nuclear Information System (INIS)

    Alam, Todd M.; Liao, Zuolei; Zakharov, Lev N.; Nyman, May

    2014-01-01

    Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid-state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self-assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule-like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li + and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f-block element materials and vesicle-like POMs. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Theoretical and experimental study of two-frequency solid-state lasers in the GHz to THz ranges. Opto-microwave applications waves

    International Nuclear Information System (INIS)

    Lai, N.D.

    2003-07-01

    We explored some new features of single- and dual-frequency solid-state lasers oscillating in continuous-wave or pulsed regimes. First, we have developed some techniques to optimise the characteristics of pulsed lasers. A weak modulation of the pump power made it possible to obtain a stable repetition rate with a relative stability of 10 -6 . The pulse duration was continuously controlled from ten nanoseconds to a few hundreds nanoseconds by three different methods: adjustment of the laser beam diameter in the absorber, adjustment of the pump beam diameter in the active medium, and, in particular, the use of forked eigenstates in a two-axis laser. Moreover, the forked eigenstates allows to increase the pulse energy by coherent addition of the pulses. A compact two-frequency Nd:YAG-Cr:YAG laser with a beat note frequency continuously adjustable up to 2,7 GHz was demonstrated. The two-frequency pulses are ideal sources to meet various needs of applications such as the Doppler lidar-radar. Moreover, we show that two-frequency pulses at 1,55 μm can be obtained by using a new c-cut Co:ASL saturable absorber in an Er-Yb:glass laser. These pulses are perfectly adapted to free-space detection systems requiring eye safety. The coherence time of the beat note in these lasers was also studied: it is limited by the pulse duration. A new technique of modulating the pump power of a solid-state laser at frequencies close to its relaxation oscillation frequency was studied and made it possible to generate a beat note coherence from pulse to pulse. Frequency conversion techniques using the nonlinear optical effects make it possible to obtain tunable two-frequency sources in the visible spectrum. Green and red two-frequency pulses were obtained by using different conversion techniques, intra-cavity or extra-cavity. A two-frequency THz source in the red spectrum was also obtained by doubling the frequencies of a two-frequency THz Er-Yb:glass laser using a mixed fan-out PPLN crystal

  2. Development of Solid State NMR Methods for the Structural Characterization of Membrane Proteins: Applications to Understand Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Cosman, M; Tran, A T; Ulloa, J; Maxwell, R S

    2003-03-04

    Multiple sclerosis (MS) is a relapsing-remitting disorder of the central nervous system that results in the loss of the myelin sheaths insulating nerve fibers (axons). Strong evidence suggests that MS is an autoimmune disease mediated by T-cell and antibody responses against myelin antigens. Myelin oligodendrocyte glycoprotein (MOG) is a 26 kD to 28 kD an integral membrane protein of the central nervous system implicated as a target for autoaggressive antibodies in MS. To date, the conformation of MOG in association with the myelin membrane is unknown and the exact nature of the interactions between this protein and disease-inducing immune responses have not been determined. Since membrane associated proteins are typically characterized by decreased correlation times, solution state NMR methodologies are often impracticable. Membrane proteins are also often difficult to crystallize for X-ray diffraction studies, Consequently, there is an urgent need to develop new structure characterization tools for this important class of biomolecules. The research described here overviews the initial stages of our effort to develop an integrated, NMR based approach to structural studies of MOG over the many structural domains it is postulated to posses. The structural knowledge gained about this important MS antigen in its native environment will contribute significantly to our understanding of its function in vivo. This project will also aid in the development of therapeutics to inhibit the antigedantibody interaction and thus prevent demyelination in MS patients.

  3. Driver circuit for solid state light sources

    Science.gov (United States)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  4. SOLID-STATE CERAMIC LIGHTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Brown

    2003-06-01

    Meadow River Enterprises, Inc. (MRE) and the New York State College of Ceramics at Alfred University (NYSCC) received a DOE cooperative agreement award in September 1999 to develop an energy-efficient Solid-State Ceramic Lamp (SSCL). The program spanned a nominal two(2) year period ending in February of 2002. The federal contribution to the program totaled $1.6 million supporting approximately 78% of the program costs. The SSCL is a rugged electroluminescent lamp designed for outdoor applications. MRE has filed a provisional patent for this ''second generation'' technology and currently produces and markets blue-green phosphor SSCL devices. White phosphor SSCL devices are also available in prototype quantities. In addition to reducing energy consumption, the ceramic EL lamp offers several economic and societal advantages including lower lifecycle costs and reduced ''light pollution''. Significant further performance improvements are possible but will require a dramatic change in device physical construction related to the use of micro-powder materials and processes. The subject ''second-generation'' program spans a 27 month period and combines the materials and processing expertise of NYSCC, the manufacturing expertise of Meadow River Enterprises, and the phosphor development expertise of OSRAM Sylvania to develop an improved SSCL system. The development plan also includes important contributions by Marshall University (a part of the West Virginia University system). All primary development objectives have been achieved with the exception of improved phosphor powders. The performance characteristics of the first generation SSCL devices were carefully analyzed in year 1 and a second generation lamp was defined and optimized in year 2. The provisional patent was ''perfected'' through a comprehensive patent application filed in November 2002. Lamp efficiency was improved more than 2:1.

  5. An introduction to solid state diffusion

    CERN Document Server

    Borg, Richard J

    2012-01-01

    The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year under

  6. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    Science.gov (United States)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  7. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent.

    Science.gov (United States)

    Nalini, S; Parthasarathi, R

    2014-12-01

    The present study aimed at exploring mahua (Madhuca indica) oil cake as a novel substrate for the production of biosurfactant by Serratia rubidaea SNAU02 under solid-state fermentation (SSF). Response surface methodology showed followings as the optimal conditions for the production of biosurfactant: mahua oil cake 7.48 g, 2.5 ml inoculum size (1×10(8) cells/ml), and pH 7.22 and 31 °C temperature. The characterization of the biosurfactant by TLC, FT-IR and GC-MS revealed the presence of rhamnolipid. The presence of rhamnosyl transferase gene responsible for biosynthesis of rhamnolipid was identified. The strain SNAU02 exhibited antifungal activity and demonstrated no toxicity against the seeds of Brassica oleracea and Artemia salina employed as a bio-indicator. The present findings indicated the potential of mahua oil cake as suitable substrate for the production of rhamnolipids in SSF by S. rubidaea SNAU02 and application potential of the biosurfactant produced as biocontrol agent against plant pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors

    Science.gov (United States)

    Zhao, Jian; Chen, Yu; Yao, Ying; Tong, Zong-Rui; Li, Pu-Wang; Yang, Zi-Ming; Jin, Shao-Hua

    2018-02-01

    Hydrogels have drawn many attentions as the solid-state electrolytes in flexible solid-state supercapacitors (SCs) recently. Among them, the polyelectrolyte complex hydrogel (PECH) electrolytes of natural polymers are more competitive because of their environmentally friendly property and low cost. However, while mixing two biopolymer solutions with opposite charges, the strong electrostatic interactions between the cationic and anionic biopolymers may result in precipitates instead of hydrogels. Here we report a novel method, semi-dissolution acidification sol-gel transition (SD-A-SGT), for the preparation of the PECH of chitosan (CTS) and sodium alginate (SA), with the controllable sol-gel transition and uniform composition and successfully apply it as the hydrogel electrolyte of solid-state supercapacitors (SCs). The CTS-SA PECH exhibits an extremely high ionic conductivity of 0.051 S·cm-1 and reasonable mechanical properties with a tensile strength of 0.29 MPa and elongation at break of 109.5%. The solid-state SC fabricated with the CTS-SA PECH and conventional polyaniline (PANI) nanowire electrodes provided a high specific capacitance of 234.6 F·g-1 at 5 mV·s-1 and exhibited excellent cycling stability with 95.3% capacitance retention after 1000 cycles. Our work may pave a novel avenue to the preparation of biodegradable PECHs of full natural polymers, and promote the development of environmentally friendly electronic devices.

  9. Optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    ... 3.20–3.70eV with a direct band gap transition. These properties make ZnS thin films find useful applications as cover plates for solar energy panels and materials in the fabrication of semiconductor devices. In addition, the films were found to exhibit switching potentials. Keywords: Electrical, Optical, Solid state properties, ...

  10. An introduction to system reliability for solid-state lighting

    NARCIS (Netherlands)

    Driel, W.D. van; Evertz, F.E.; Zaal, J.J.M.; Morales Nápoles, O.; Yuan, C.A.

    2013-01-01

    Solid-State Lighting (SSL) applications are slowly but gradually pervading into our daily life. An SSL system is composed of an light-emitting diode (LED) engine with a microelectronic driver(s) in a housing that also supplies the optic design. Knowledge of system-level reliability is crucial for

  11. Solid-state lighting-a benevolent technology

    International Nuclear Information System (INIS)

    Schubert, E Fred; Kim, Jong Kyu; Luo Hong; Xi, J-Q

    2006-01-01

    Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting

  12. One-Step Partially Purified Lipases (ScLipA and ScLipB from Schizophyllum commune UTARA1 Obtained via Solid State Fermentation and Their Applications

    Directory of Open Access Journals (Sweden)

    Yew Chee Kam

    2017-12-01

    Full Text Available Lipases with unique characteristics are of value in industrial applications, especially those targeting cost-effectiveness and less downstream processes. The aims of this research were to: (i optimize the fermentation parameters via solid state fermentation (SSF; and (ii study the performance in hydrolysis and esterification processes of the one-step partially purified Schizophyllum commune UTARA1 lipases. Lipase was produced by cultivating S. commune UTARA1 on sugarcane bagasse (SB with used cooking oil (UCO via SSF and its production was optimized using Design-Expert® 7.0.0. Fractions 30% (ScLipA and 70% (ScLipB which contained high lipase activity were obtained by stepwise (NH42SO4 precipitation. Crude fish oil, coconut oil and butter were used to investigate the lipase hydrolysis capabilities by a free glycerol assay. Results showed that ScLipA has affinities for long, medium and short chain triglycerides, as all the oils investigated were degraded, whereas ScLipB has affinities for long chain triglycerides as it only degrades crude fish oil. During esterification, ScLipA was able to synthesize trilaurin and triacetin. Conversely, ScLipB was specific towards the formation of 2-mono-olein and triacetin. From the results obtained, it was determined that ScLipA and ScLipB are sn-2 regioselective lipases. Hence, the one-step partial purification strategy proved to be feasible for partial purification of S. commune UTARA1 lipases that has potential use in industrial applications.

  13. One-Step Partially Purified Lipases (ScLipA and ScLipB) from Schizophyllum commune UTARA1 Obtained via Solid State Fermentation and Their Applications.

    Science.gov (United States)

    Kam, Yew Chee; Woo, Kwan Kit; Ong, Lisa Gaik Ai

    2017-12-08

    Lipases with unique characteristics are of value in industrial applications, especially those targeting cost-effectiveness and less downstream processes. The aims of this research were to: (i) optimize the fermentation parameters via solid state fermentation (SSF); and (ii) study the performance in hydrolysis and esterification processes of the one-step partially purified Schizophyllum commune UTARA1 lipases. Lipase was produced by cultivating S. commune UTARA1 on sugarcane bagasse (SB) with used cooking oil (UCO) via SSF and its production was optimized using Design-Expert ® 7.0.0. Fractions 30% ( Sc LipA) and 70% ( Sc LipB) which contained high lipase activity were obtained by stepwise (NH₄)₂SO₄ precipitation. Crude fish oil, coconut oil and butter were used to investigate the lipase hydrolysis capabilities by a free glycerol assay. Results showed that Sc LipA has affinities for long, medium and short chain triglycerides, as all the oils investigated were degraded, whereas Sc LipB has affinities for long chain triglycerides as it only degrades crude fish oil. During esterification, Sc LipA was able to synthesize trilaurin and triacetin. Conversely, Sc LipB was specific towards the formation of 2-mono-olein and triacetin. From the results obtained, it was determined that Sc LipA and Sc LipB are sn -2 regioselective lipases. Hence, the one-step partial purification strategy proved to be feasible for partial purification of S. commune UTARA1 lipases that has potential use in industrial applications.

  14. NiCo2S4nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    Science.gov (United States)

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  15. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  16. Solid state crystallisation of oligosaccharide ester derivatives

    CERN Document Server

    Wright, E A

    2002-01-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-(beta-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2 sub 1 2 sub 1 2 sub 1 with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20...

  17. Solid-State Modulators for RF and Fast Kickers

    CERN Document Server

    Cook, Edward; Brooksby, Craig A; Cassel, Richard; De Lamare, Jeffrey E; Gower, Edward J; Hawkins, Steven; Hickman, Bradley C; Nguyen, Minh N; Pappas, Chris

    2005-01-01

    As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  18. Mechanochemically assisted room temperature solid state ...

    Indian Academy of Sciences (India)

    Unknown

    also known to induce nucleation leading to new products. (Stojanovic et al 2005). However, solid state reactions occurring under mechanochemical influence taking place at room temperature are rare (Xian et al 1991). In this communication, we report the formation of divalent molyb- dates through mechanochemically ...

  19. Thermal management of solid state lighting module

    NARCIS (Netherlands)

    Ye, H.

    2014-01-01

    Solid-State Lighting (SSL), powered by Light-Emitting Diodes (LEDs), is an energy-efficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in

  20. Solid state aspects of oxidation catalysis

    NARCIS (Netherlands)

    Gellings, P.J.; Bouwmeester, Henricus J.M.

    2000-01-01

    The main subject of this review is the consideration of catalytic oxidation reactions, which are greatly influenced by solid state effects in the catalyst material. Emphasis is laid upon the correlation between the presence of mobile ionic defects, together with the associated ionic conductivity,

  1. Electrochemical investigations related to solid state magnesium ...

    Indian Academy of Sciences (India)

    Administrator

    Investigations leading to the understanding and development of solid state magnesium batteries are considered important, as Mg is free from hazards and is also highly stable and abundant. A gel polymer electrolyte (GPE) of about 100 mm thickness is investigated for electrochemical reversibility of the Mg/Mg2+ couple and ...

  2. Energy balance in solid state fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L.J.A.; Torres, A.; Echevarria, J.; Saura, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba))

    1991-01-01

    It was applied a macroscopic energy balance to a solid state fermentation process and an electron balance in order to estimate the temperature and the heat evolved in the process. There were employed several equations that describe the development of the system and offer the possibility to design or control such fermentations. (orig.).

  3. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Abstract. A solid-state metathesis approach initiated by microwave energy has been successfully applied for the synthesis of orthovanadates, M3V2O8 (M = Ca, Sr, and Ba). The structural, vibrational, thermal, optical and chemical properties of synthesized powders are determined by powder X-ray diffraction, scanning ...

  4. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  5. Bending crystals. Solid state photomechanical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    properties of quinone complexes in the solid state. 2. Photomechanical property of Rh(CO)2(3,6-DBSQ). Many of the important features of quinone complexes are derived from a similarity in energy between metal-valence and quinone π* orbitals. This property is responsible for intense, low-energy charge transfer transitions ...

  6. Nanoscale solid-state cooling: a review

    Science.gov (United States)

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  7. Entanglement in Solid-State Nanostructures

    NARCIS (Netherlands)

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  8. Solid state fermentation for foods and beverages

    NARCIS (Netherlands)

    Chen, J.; Zhu, Y.; Nout, M.J.R.; Sarkar, P.K.

    2013-01-01

    The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional

  9. Application and future of solid foams

    Science.gov (United States)

    Bienvenu, Yves

    2014-10-01

    To conclude this series of chapters on solid foam materials, a review of industrial current applications and of mid-term market perspectives centred on manmade foams is given, making reference to natural cellular materials. Although the polymeric foam industrial development overwhelms the rest and finds applications on many market segments, more attention will be paid to the emerging market of inorganic-especially metallic-foams (and cellular materials) and their applications, present or upcoming. It is shown that the final applications of solid foams are primarily linked to transport and the present-day development of the different classes of solid foams is contrasted between functional applications and structural applications. xml:lang="fr"

  10. Coordinated garbage collection for raid array of solid state disks

    Science.gov (United States)

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  11. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  12. Advances in Solid State Joining of High Temperature Alloys

    Science.gov (United States)

    Ding, Jeff; Schneider, Judy

    2011-01-01

    Many of the metals used in the oil and gas industry are difficult to fusion weld including Titanium and its alloys. Solid state joining processes are being pursued as an alternative process to produce robust structures more amenable to high pressure applications. Various solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature to avoid detrimental changes to the microstructure. The work presented in this presentation investigates the feasibility of joining various titanium alloys using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set ]up and welding techniques will be discussed leading to the challenges experienced. Mechanical property data will also be presented.

  13. Characterization of Sputter-Deposited LiCoO2Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery.

    Science.gov (United States)

    Kim, Hee-Soo; Oh, Yoong; Kang, Ki Hoon; Kim, Ju Hwan; Kim, Joosun; Yoon, Chong Seung

    2017-05-17

    All-solid-state Li-rechargeable batteries using a 500 nm-thick LiCoO 2 (LCO) film deposited on two NASICON-type solid electrolyte substrates, LICGC (OHARA Inc.) and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP), are constructed. The postdeposition annealing temperature prior to the cell assembly is critical to produce a stable sharp LCO/electrolyte interface and to develop a strong crystallographic texture in the LCO film, conducive to migration of Li ions. Although the cells deliver a limited discharge capacity, the cells cycled stably for 50 cycles. The analysis of the LCO/electrolyte interfaces after cycling demonstrates that the sharp interface, once formed by proper thermal annealing, will remain stable without any evidence for contamination and with minimal intermixing of the constituent elements during cycling. Hence, although ionic conductivity of the NASICON-type solid electrolyte is lower than that of the sulfide electrolytes, the NACSICON-type electrolytes will maintain a stable interface in contact with a LCO cathode, which should be beneficial to improving the capacity retention as well as the rate capability of the all-solid state cell.

  14. Solid-State Spectroscopy An Introduction

    CERN Document Server

    Kuzmany, Hans

    2009-01-01

    Spectroscopic methods have opened up a new horizon in our knowledge of solid-state materials. Numerous techniques using electromagnetic radiation or charged and neutral particles have been invented and worked out to a high level in order to provide more detailed information on the solids. The text presented here is an updated description of such methods as they were originally presented in the first edition. It covers linear response of solids to electromagnetic radiation in a frequency range extending from megahertz or gigahertz as used in spin resonance spectroscopy, to infrared spectroscopy and various forms of spectroscopy in the visible and near visible spectral range. It extends to spectroscopy in the UV and x-ray spectral range and eventually several spectroscopic methods are addressed in the frequency range of g radiation. Likewise linear response to irradiation with particles such as electrons, positrons, muons, neutrons, and atoms is discussed. Instrumental and technical background is provided as we...

  15. Facile synthesis of PbTiO3 truncated octahedra via solid-state reaction and their application in low-temperature CO oxidation by loading Pt nanoparticles

    KAUST Repository

    Yin, Simin

    2014-01-01

    Perovskite PbTiO3 (PTO) nanocrystals with a truncated octahedral morphology have been prepared by a facile solid-state reaction. Pt nanoparticles preferentially nucleated on the {111} facet of PTO nanocrystals exhibit a remarkable low-temperature catalytic activity towards CO oxidation from a temperature as low as 30 °C and achieve 100% conversion at ∼50 °C. © 2014 the Partner Organisations.

  16. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  17. Kinetics of accelerated solid-state fermentation of organic-rich municipal solid waste.

    Science.gov (United States)

    Viéitez, E R; Mosquera, J; Ghosh, S

    2000-01-01

    Biotransformation of landfill solid wastes is a slow process requiring decades for completion. Accelerated anaerobic fermentation in modulated landfill environments may alleviate or eliminate pollution of land, water and air. This research was undertaken to demonstrate the application of biphasic fermentation to a simulated laboratory-scale landfill to effect rapid biomethanation of biodegradable solids. The biphasic process consisted of solid-state, acidogenic fermentation of the organic fraction of MSW followed by biomethanation of acidic hydrolysates in a separate methane fermenter. Solid-state fermentation of the MSW with effluent recirculation resulted in rapid hydrolysis, acidification and denitrification, with soluble COD and VFA concentrations accumulating to inhibitory levels of 60,000 mg/l and 13,000 mg/l, respectively, at a pH of 4.5. The landfill gas methane concentration reached a maximum of 55 mol.%. By comparison, the methanogenic reactor produced high methane-content (70-85 mol.%) gases. The biphasic process effected carbohydrate, lipid, and protein conversion efficiencies of 90%, 49%, and 37%, respectively. Development of a Monod-type product-formation model was undertaken to predict methane formation and to determine kinetic parameters for the methanogenic processes in the simulated landfill and separate methane reactors. A first-order solids hydrolysis rate constant of 0.017 day-1 was evaluated to show that landfill solids hydrolysis was slower than the inhibited methanogenesis rate.

  18. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  19. Solid state synthesis and sintering of monazite-type ceramics: application to minor actinides conditioning; Synthese par voie solide et frittage de ceramiques a structure monazite. Application au conditionnement des actinides mineurs

    Energy Technology Data Exchange (ETDEWEB)

    Bregiroux, D

    2005-11-15

    In the framework of the French law of 1991 concerning the nuclear waste management, several studies are undertaken to develop specific crystalline conditioning matrices. Monazite, a rare earth (TR{sup 3+}) orthophosphate with a general formula TR{sup 3+}PO{sub 4}, is a natural mineral containing significant amount of thorium and uranium. Monazite has been proposed as a host matrix for the minor actinides (Np, Am and Cm) specific conditioning, thanks to its high resistance to self irradiation and its low solubility. Its is now of prime importance to check the conservation of these properties on synthesized materials, which implies to master all the stages of the elaboration process, from the powder synthesis to the sintering of controlled microstructure pellets. This work can be divided into two main parts: The first part deals with the synthesis by high temperature solid state route of TR{sup 3+}PO{sub 4} powders (with TR{sup 3+} = La{sup 3+} to Gd{sup 3+}, Pu{sup 3+} and Am{sup 3+}). The chemical reactions occurring during the firing of starting reagents are described in the case of monazite with only one or several cations. From these results, a protocol of synthesis is described. The incorporation of tetravalent cations (Ce{sup 4+}, U{sup 4+}, Pu{sup 4+}) in the monazite structure was also studied. The second part of the present work deals with the elaboration of controlled density and microstructure monazite pellets and their related mechanical and thermal properties. The study of crushing and sintering is presented. For the first time, experimental results are confronted with theoretical models in order to deduce the densification and grain growth mechanisms. By the comprehension of the various physicochemical phenomena occurring during the various stages of the monazite pellets elaboration process (powder synthesis, crushing, sintering...), this work allowed the development of a protocol of elaboration of controlled microstructure monazite TR{sup 3+}PO{sub 4

  20. Ultimate gradient in solid-state accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.

  1. Ultimate gradient in solid-state accelerators

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams

  2. Solid-state-laser-rod holder

    Science.gov (United States)

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  3. Rechargeable Sodium All-Solid-State Battery.

    Science.gov (United States)

    Zhou, Weidong; Li, Yutao; Xin, Sen; Goodenough, John B

    2017-01-25

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. All-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  4. Current state-of-the-art industrial and research applications using room-temperature CdTe and CdZnTe solid state detectors

    International Nuclear Information System (INIS)

    Eisen, Y.

    1996-01-01

    Improvements of CdTe crystal quality and significant progress in the growth of large ingots of high resistivity CdZnTe material enable the fabrication of larger area detectors in single element form or monolithic arrays. These advances allow for the development of imaging devices of improved spatial resolution for industrial, research and medical applications. CdTe and CdZnTe detectors operate in single photon counting mode or in current mode (charge integrating mode). The paper presents advantages of CdTe and CdZnTe over common scintillator type detectors, but also presents the shortcomings of the former detectors with respect to charge collection which limit the yields of good spectrometers. The paper reviews industrial and research applications utilizing these detectors and in particular describes in detail two imaging systems for security screening and custom inspection. These systems are characterized by large dynamic range and good spatial resolution and are composed of large arrays of CdTe spectrometers and discriminator grade detectors. A wide energy range detector assembly, for astrophysical research of gamma ray bursts composed of CdTe, HgI 2 and CdZnTe spectrometers in two dimensional arrays is also presented. (orig.)

  5. Solid-State Thyratron Replacement. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Ian [Diversified Technologies, Inc., Bedford, MA

    2017-12-12

    Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was built in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.

  6. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  7. Study of solid state kinetics using voltammetry of immobilized particles. Application to tetragonal to monoclinic transition in nanoparticulate zirconia and praseodymia-doped zirconia

    International Nuclear Information System (INIS)

    Doménech, Antonio; Montoya, Noemí; Alarcón, Javier

    2012-01-01

    Highlights: ► The voltammetry of immobilized particles methodology is applied to study solid state reaction kinetics using electrocatalysis. ► The kinetics of the formation of monoclinic zirconia and praseodymia-doped zirconia plus pyrochlore phase from tetragonal precursors is described. ► Competing and consecutive reaction pathways are discerned from electrocatalytic data on oxygen evolution reaction and dissolved oxygen reduction. - Abstract: The voltammetry of immobilized particles methodology is applied to study solid state reaction kinetics on the basis of the electrocatalytic ability of solids toward selected electrochemical processes. Measurement of the time variation of catalytic current for oxygen evolution reaction in aqueous alkaline media provides a direct estimate of fractional conversion of the reactant in the course of the reaction for testing different reaction kinetic models. This methodology is applied to analyze the formation of monoclinic zirconia and praseodymia-doped zirconia from tetragonal precursors. Discrimination between competing and successive reactions mechanisms is obtained for reactions involving specimens with high praseodymium loadings, where a secondary pyrochlore phase is formed, combining the above data with those for the electrochemical reduction of dissolved oxygen.

  8. Quantum theory of the solid state part B

    CERN Document Server

    Callaway, Joseph

    1974-01-01

    Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed

  9. BOOK REVIEW: Solid State Physics: An Introduction

    Science.gov (United States)

    Jakoby, Bernhard

    2009-07-01

    There's a wealth of excellent textbooks on solid state physics. The author of the present book is well aware of this fact and does not attempt to write just another one. Rather, he has provided a very compact introduction to solid state physics for third-year students. As we are faced with the continuous appearance interdisciplinary fields and associated study curricula in natural and engineering sciences (biophysics, mechatronics, etc), a compact text in solid state physics would be appreciated by students of these disciplines as well. The book features 11 chapters where each is provided with supplementary discussion questions and problems. The first chapters deal with a review of chemical bonding mechanisms, crystal structures and mechanical properties of solids, which are brief but by no means superficial. The following, somewhat more detailed chapter on thermal properties of lattices includes a nice introduction to phonons. The foundations of solid state electronics are treated in the next three chapters. Here the author first discusses the classical treatment of electronic behaviour in metals (Drude model) and continues with a quantum-theoretical approach starting with the free-electron model and leading to the band structures in conductive solids. The next chapter is devoted to semiconductors and ends with a brief but, with respect to the topical scope, adequate discussion of semiconductor devices. The classical topics of magnetic and dielectric behaviour are treated in the sequel. The book closes with a chapter on superconductivity and a brief chapter covering the modern topics of quantum confinement and aspects of nanoscale physics. In my opinion, the author has succeeded in creating a very concise yet not superficial textbook. The account presented often probes subjects deep enough to lay the basis for a thorough understanding, preparing the reader for more specialized textbooks. For instance, I think that this book may serve as an excellent first

  10. Solid Polarized Targets and Applications

    International Nuclear Information System (INIS)

    Crabb, D. G.

    2008-01-01

    Examples are given of dynamically polarized targets in use today and how the subsystems have changed to meet the needs of todays experiments. Particular emphasis is placed on target materials such as ammonia and lithium deuteride. Recent polarization studies of irradiated materials such as butanol, deuterated butanol, polyethylene, and deuterated polyethylene are presented. The operation of two non-DNP target systems as well as applications of traditional DNP targets are briefly discussed

  11. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  12. Results of solid state nuclear track detector technique application in radon detection, by alpha particles tracks, for uranium prospecting in Caetite (BA-Brazil)

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1988-11-01

    The solid state nuclear track detector technique has been used in radon detection, by alpha particles tracks for uranium prospecting on the ground in Caetite city (Bahia-Brazil). The sensitive film to alpha particles used were CA 8015 exposed during 15 days and the results of three anomalies of this region are showed in a form of maps, made with the density of tracks obtained, and were compared with scintillation counter measurements. The technique showed to be simple and an effective auxiliary for the prospection of uranium ore bodies. The initial uranium exploration costs can be reduced by using this technique. (author) [pt

  13. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  14. Enhanced Electrochemical Stability of Quasi-Solid-State Electrolyte Containing SiO2 Nanoparticles for Li-O2 Battery Applications.

    Science.gov (United States)

    Kim, Hyunjin; Kim, Tae Young; Roev, Victor; Lee, Heung Chan; Kwon, Hyuk Jae; Lee, Hyunpyo; Kwon, Soonchul; Im, Dongmin

    2016-01-20

    A stable electrolyte is required for use in the open-packing environment of a Li-O2 battery system. Herein, a gelled quasi-solid-state electrolyte containing SiO2 nanoparticles was designed, in order to obtain a solidified electrolyte with a high discharge capacity and long cyclability. We successfully fabricated an organic-inorganic hybrid matrix with a gelled structure, which exhibited high ionic conductivity, thereby enhancing the discharge capacity of the Li-O2 battery. In particular, the improved electrochemical stability of the gelled cathode led to long-term cyclability. The organic-inorganic hybrid matrix with the gelled structure played a beneficial role in improving the ionic conductivity and long-term cyclability and diminished electrolyte evaporation. The experimental and theoretical findings both suggest that the preferential binding between amorphous SiO2 and polyethylene glycol dimethyl ether (PEGDME) solvent led to the formation of the solidified gelled electrolyte and improved electrochemical stability during cycling, while enhancing the stability of the quasi-solid state Li-O2 battery.

  15. Fast-neutron solid-state dosimeter

    International Nuclear Information System (INIS)

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-01-01

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300 0 C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO 4 :Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot-pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150 0 C prior to first use dosimeters

  16. Programmable solid state atom sources for nanofabrication

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  17. Fast solid state high voltage pulse generator

    Science.gov (United States)

    Christiansen, Jens; Frank, Klaus; Hartmann, Werner

    1987-05-01

    A fast solid state pulse generator is described which is used to trigger high voltage, high current switches. It consists of a 7-stage marx generator bank switched by avalanche transistors and delivers a negative pulse with a rise time of less than 2 ns and an amplitude of 2.4 kV into a load of 200 ω. The delay between the trigger pulse of TTL level and the output pulse is 16 ns. The jitter is well below 100 ps.

  18. Modular solid-state detector cell

    International Nuclear Information System (INIS)

    Hoffman, D.M.; Ehlert, R.C.; Loomis, N.W.; Shelley, P.S.

    1983-01-01

    A modular solid-state detector cell is disclosed which intimately associates a scintillator body with a pair of photoresponsive semiconductors so as to present on a single collimator plate all of the elements necessary for transforming incident X-radiation into a measurable electrical signal. The detector is provided with a precision slotted mounting arrangement for receiving the unit cells, and the cells when positioned within the detector assembly have the photoresponsive semiconductors enclosed within the light tight cell. The unit is adaptable to off-line testing of the separate cells for screening before assembly

  19. Theoretical solid state physics, v.2

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 2 deals with the electron-lattice interaction and the effect of lattice imperfections. Conductivity, semiconductors, and luminescence are discussed, with emphasis on the basic physical problems and the various phenomena derived from them. The theoretical basis of interaction between electrons and lattices is considered, along with basic concepts of conduction theory, scattering of electrons by imperfections, and radiationless transitions. This volume is comprised of 19 chapters and begins with an overview of the coupling of electrons and the crystal latt

  20. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications

    Science.gov (United States)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    + concentrations under 350 and 395 nm excitations. Following the analyzed optical data, the singly Dy3+ or Tb3+-doped and Dy3+/Tb3+-codoped glasses could be suggested as promising materials for their applications in solid state light emitting diodes and luminescent display devices.

  1. Solid state fermentation of lipopeptide antibiotic iturin A by using a novel solid state fermentation reactor system.

    Science.gov (United States)

    Ano, Takashi; Jin, Guang Yuan; Mizumoto, Shinji; Rahman, Mohammad Shahedur; Okuno, Kasumasa; Shoda, Makoto

    2009-01-01

    A new solid state fermentation reactor (SSFR) for solid substrate was used for the production of lipopeptide antibiotic iturin A using Bacillus subtilis RB14-CS. Solid state fermentation (SSF) is the technique of cultivation of microorganisms on solid and moist substrates in the absence of free water. SSF has shown much promise in the development of several bioprocesses and products because of their several advantages like absence of free water that allows simplified downstream processing and low cost. SSFR allows agitation of the SSF culture with improved temperature control and air supply. Interestingly, when okara, the widely available waste product from the tofu industries, was used as the solid substrate for the SSFR, no iturin A production was observed. However, without agitation, production of iturin A was observed in the SSFR but the production level remained low. The low production of iturin A was found to be due to the heat generation and excess temperature rise inside the reactor system during the fermentation process. Maintaining the temperature within a range of 25-30°C, production of iturin A was significantly improved in the SSFR. This was comparable to the laboratory scale production, and signifies the potential application of the SSFR for SSF.

  2. Topological Surface States in Dense Solid Hydrogen.

    Science.gov (United States)

    Naumov, Ivan I; Hemley, Russell J

    2016-11-11

    Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (∼300  GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.

  3. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques.

    Science.gov (United States)

    Meléndez, Peter A; Kane, Kevin M; Ashvar, Claudine S; Albrecht, Mary; Smith, Pamela A

    2008-07-01

    The utility of thermal inkjet (TIJ) technology for preparing solid dosage forms of drugs was examined. Solutions of prednisolone in a solvent mixture of ethanol, water, and glycerol (80/17/3 by volume) were dispensed onto poly(tetrafluoroethylene)-coated fiberglass films using TIJ cartridges and a personal printer and using a micropipette for comparison. The post-dried, TIJ-dispensed samples were shown to contain a mixture of prednisolone Forms I and III based on PXRD analyses that were confirmed by Raman analyses. The starting commercial material was determined to be Form I. Samples prepared by dispensing the solution from a micropipette initially showed only Form I; subsequent Raman mapping of these samples revealed the presence of two polymorphs. Raman mapping of the TIJ-dispensed samples also showed both polymorphs. The results indicate that the solvent mixture used in the dispensing solution combined with the thermal treatment of the samples after dispensing were likely the primary reason for the generation of the two polymorphs. The advantages of using a multidisciplinary approach to characterize drug delivery systems are demonstrated using solid state mapping techniques. Both PXRD and Raman spectroscopy were needed to fully characterize the samples. Finally, this report clarifies prednisolone's polymorphic nomenclature existent in the scientific literature.

  4. Fungal biosynthesis of endochitinase and chitobiase in solid state fermentation and their application for the production of N-acetyl-D-glucosamine from colloidal chitin.

    Science.gov (United States)

    Binod, Parameswaran; Sandhya, Chandran; Suma, Pradeep; Szakacs, George; Pandey, Ashok

    2007-10-01

    The present study was directed to the production of N-acetyl-D-glucosamine using endochitinase and chitobiase from fungal cultures in solid culturing. Fifteen fungal strains were evaluated for endochitinase and chitobiase production under solid-state fermentation using agro-industrial residues, of which Penicillium aculeatum NRRL 2129 showed maximum endochitinase activity whereas Trichoderma harzianum TUBF 927 showed maximum chitobiase activity. Eleven substrates, alone and in combination with chitin, were evaluated for the enzyme production. Optimization of physico-chemical parameters such as incubation period and initial moisture content, and nutritional parameters such as chitin source, inorganic and organic nitrogen sources, were carried out. Optimization resulted in more than 3-fold increase in endochitinase production (from 3.5 to 12.53 U/g dry weight of substrate) and about 1.5-fold increase in chitobiase production (from 1.6 to 2.25 U/g dry weight of substrate). Studies on the degradation of colloidal chitin to N-acetyl-D-glucosamine showed improved efficiency when endochitinase and chitobiase were used in combination.

  5. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Mohamed Neifar

    2011-01-01

    Full Text Available Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2533//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl2 concentration, CuSO4 concentration, and incubation time were selected for further optimization studies using a Hoke design. The application of the response surface methodology allows us to determine a set of optimal conditions (CaCl2, 5.5 mg/gs, CuSO4, 2.5 mg/gs, inoculum size, 3 fungal discs (6 mm Ø, and 13 days of static cultivation. Experiments carried out under these conditions led to a laccase production yield of 150 U/g dry substrate.

  6. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation.

    Science.gov (United States)

    Neifar, Mohamed; Kamoun, Amel; Jaouani, Atef; Ellouze-Ghorbel, Raoudha; Ellouze-Chaabouni, Semia

    2011-01-01

    Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2(5)3(3)//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl(2) concentration, CuSO(4) concentration, and incubation time were selected for further optimization studies using a Hoke design. The application of the response surface methodology allows us to determine a set of optimal conditions (CaCl(2), 5.5 mg/gs, CuSO(4), 2.5 mg/gs, inoculum size, 3 fungal discs (6 mm Ø), and 13 days of static cultivation). Experiments carried out under these conditions led to a laccase production yield of 150 U/g dry substrate.

  7. SDS-assisted protein transport through solid-state nanopores.

    Science.gov (United States)

    Restrepo-Pérez, Laura; John, Shalini; Aksimentiev, Aleksei; Joo, Chirlmin; Dekker, Cees

    2017-08-17

    Using nanopores for single-molecule sequencing of proteins - similar to nanopore-based sequencing of DNA - faces multiple challenges, including unfolding of the complex tertiary structure of the proteins and enforcing their unidirectional translocation through nanopores. Here, we combine molecular dynamics (MD) simulations with single-molecule experiments to investigate the utility of SDS (Sodium Dodecyl Sulfate) to unfold proteins for solid-state nanopore translocation, while simultaneously endowing them with a stronger electrical charge. Our simulations and experiments prove that SDS-treated proteins show a considerable loss of the protein structure during the nanopore translocation. Moreover, SDS-treated proteins translocate through the nanopore in the direction prescribed by the electrophoretic force due to the negative charge impaired by SDS. In summary, our results suggest that SDS causes protein unfolding while facilitating protein translocation in the direction of the electrophoretic force; both characteristics being advantageous for future protein sequencing applications using solid-state nanopores.

  8. Constant sensitivity circuit for solid state nuclear radiation counters

    International Nuclear Information System (INIS)

    Kronenberg, S.; Erkkila, B.

    1985-01-01

    The utilization of solid state counters in tactical radiological instruments for measuring intensities and doses of fallout gamma rays offers advantages over Geiger-Mueller (GM) counters such as a much wider dynamic range and low operating voltages. Their very small size is suitable for use in miniaturized equipment. However, these devices have a serious problem if used in a mixed, fast neutron/gamma environment such as is encountered e.g. in a battlefield where tactical nuclear weapons are used and neutrons, prompt, initial gammas and fallout gammas are killing factors of comparable importance. Exposure to fast neutrons reduces seriously their sensitivity. This makes the solid state counters at this time unacceptable for use in Army tactical surveillance equipment and in other applications where according to requirements the performance must not be impaired by exposure to fast neutrons. It seems to be possible to reduce to some extent this neutron generated damage by improving the crystal counters

  9. Solid-State Ultracapacitor for Improved Energy Storage

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  10. Introduction to solid state physics and crystalline nanostructures

    CERN Document Server

    Iadonisi, Giuseppe; Chiofalo, Maria Luisa

    2014-01-01

    This textbook provides conceptual, procedural, and factual knowledge on solid state and nanostructure physics. It is designed to acquaint readers with key concepts and their connections, to stimulate intuition and curiosity, and to enable the acquisition of competences in general strategies and specific procedures for problem solving and their use in specific applications. To these ends, a multidisciplinary approach is adopted, integrating physics, chemistry, and engineering and reflecting how these disciplines are converging towards common tools and languages in the field. Each chapter discusses essential ideas before the introduction of formalisms and the stepwise addition of complications. Questions on everyday manifestations of the concepts are included, with reasoned linking of ideas from different chapters and sections and further detail in the appendices. The final section of each chapter describes experimental methods and strategies that can be used to probe the phenomena under discussion. Solid state...

  11. Solid-State NMR and DFT Studies on the Formation of Well-Defined Silica-Supported Tantallaaziridines: From Synthesis to Catalytic Application

    KAUST Repository

    Hamzaoui, Bilel

    2016-01-27

    Single-site, well-defined, silica-supported tantallaaziridine intermediates [≡Si-O-Ta(η2-NRCH2)(NMe2)2] [R=Me (2), Ph (3)] were prepared from silica-supported tetrakis(dimethylamido)tantalum [≡Si-O-Ta(NMe2)4] (1) and fully characterized by FTIR spectroscopy, elemental analysis, and 1H,13C HETCOR and DQ TQ solid-state (SS) NMR spectroscopy. The formation mechanism, by β-H abstraction, was investigated by SS NMR spectroscopy and supported by DFT calculations. The C-H activation of the dimethylamide ligand is favored for R=Ph. The results from catalytic testing in the hydroaminoalkylation of alkenes were consistent with the N-alkyl aryl amine substrates being more efficient than N-dialkyl amines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  13. Validation and application of the methodology for analysis of radon concentration in the air through the technique of solid state nuclear track detectors (SSNTD)

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Caroline de [Pontificia Universidade Catolica de Minas Gerais (PUC-Pocos), Pocos de Caldas, MG (Brazil); Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas; Silva, Nivaldo Carlos da, E-mail: ncsilva@cnen.gov.b [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    Radon is a radioactive noble gas that occurs naturally in soil and could enter into residential. The decay products of radon are radioactive metals which, when inhaled, can be retained in the respiratory system, leading to an internal dose of radiation. The monitoring of radon levels in residences and workplaces is extremely important, since high concentrations of this gas can cause serious public health problems. This study analyzed the concentration of radon in the air in 94 work environments at the Laboratory of Pocos de Caldas - LAPOC/CNEN, including laboratories, administrative rooms, workshop, warehouse and guardhouse. The method employed in the monitoring was the technique of solid state nuclear track detectors, known as SSNTD. For calibration and validation of this method, controlled experiments were conducted in laboratory with specific instrumentation. The monitoring results indicated that most environments present radon concentrations above 100 Bq m{sup -3}, which is the reference level recommended by the World Health Organization. (author)

  14. Validation and application of the methodology for analysis of radon concentration in the air through the technique of solid state nuclear track detectors (SSNTD)

    International Nuclear Information System (INIS)

    Carvalho, Caroline de; Comissao Nacional de Energia Nuclear; Silva, Nivaldo Carlos da

    2011-01-01

    Radon is a radioactive noble gas that occurs naturally in soil and could enter into residential. The decay products of radon are radioactive metals which, when inhaled, can be retained in the respiratory system, leading to an internal dose of radiation. The monitoring of radon levels in residences and workplaces is extremely important, since high concentrations of this gas can cause serious public health problems. This study analyzed the concentration of radon in the air in 94 work environments at the Laboratory of Pocos de Caldas - LAPOC/CNEN, including laboratories, administrative rooms, workshop, warehouse and guardhouse. The method employed in the monitoring was the technique of solid state nuclear track detectors, known as SSNTD. For calibration and validation of this method, controlled experiments were conducted in laboratory with specific instrumentation. The monitoring results indicated that most environments present radon concentrations above 100 Bq m -3 , which is the reference level recommended by the World Health Organization. (author)

  15. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications.

    Science.gov (United States)

    Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo

    2018-01-10

    The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.

  16. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching.

    Science.gov (United States)

    Betini, J H A; Michelin, M; Peixoto-Nogueira, S C; Jorge, J A; Terenzi, H F; Polizeli, M L T M

    2009-10-01

    This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 degrees C at 70-80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 degrees C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.

  17. Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake.

    Science.gov (United States)

    Singh, Bijender; Satyanarayana, T

    2006-06-01

    The phytase production by Sporotrichum thermophile TLR50 was recorded on all the commonly used animal feed ingredients tested to varying degrees in solid-state fermentation. Enzyme production increased to 180 U/g of dry moldy residue (DMR) in sesame oil cake at 120 h and 45 degrees C at the initial substrate-to-moisture ratio of 1:2.5 and aw of 0.95. Supplementation of sesame oil cake with glucose and ammonium sulfate further enhanced phytase titer (282 U/g of DMR). An overall 76% enhancement in phytase production was achieved owing to optimization. The mold secreted acid phosphatase, amylase, xylanase, and lipase along with phytase. By the action of phytase, inorganic phosphate was liberated efficiently, leading to dephytinization of sesame oil cake.

  18. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis.

    Science.gov (United States)

    Sadaf, Ayesha; Khare, S K

    2014-02-01

    De-oiled Jatropha curcas seed cake, a plentiful by-product of biodiesel industry was used as substrate for the production of a useful xylanase from Sporotrichum thermophile in solid state fermentation. Under the optimized conditions, 1025U xylanase/g (deoiled seed cake) was produced. The xylanase exhibited half life of 4h at 45°C and 71.44min at 50°C respectively. It was stable in a broad pH range of 7.0-11.0. Km and Vmax were 12.54mg/ml and 454.5U/ml/min respectively. S. thermophile xylanase is an endoxylanase free of exoxylanase activity, hence advantageous for xylan hydrolysis to produce xylooligosachharides. Hydrolysis of oat spelt xylan by S. thermophile xylanase yielded 73% xylotetraose, 15.4% xylotriose and 10% xylobiose. The S. thermophile endoxylanase thus seem potentially useful in the food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Carbon doped lanthanum aluminate (LaAlO3:C) synthesized by solid state reaction for application in UV thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Alves, N.

    2015-01-01

    In this work we discuss the TL output for LaAlO 3 :C crystals grown by using three different combinations of Al 2 O 3 , La 2 O 3 and carbon atoms during the synthesis process. Recently, LaAlO 3 single crystals, co-doped with Ce 3+ and Dy 3+ rare earth trivalent ions and grown under hydrothermal conditions, have been reported to show high thermoluminescent response (TL) when exposed to low levels of ultraviolet radiation (UVR). However, undoped LaAlO 3 synthesized by solid state reaction method from the 1:1 mixture of aluminum and lanthanum oxide under reducing atmosphere revealed to have still higher thermoluminescent sensitivity to UV photon fields than the co-doped with Ce 3+ and Dy 3+ . It is well known that carbon doped aluminum oxide monocrystals have excellent TL and photoluminescent response properties for X-rays, UV and gamma radiation fields. Thus, we conducted three different syntheses of LaAlO 3 by this solid state reaction method, doping the mixture with carbon. The lanthanum aluminate polycrystals were synthesized from the 1:1 mixture of aluminum and lanthanum oxide, adding 0.1wt.% carbon and annealed at 1700°C for two hours in hydrogen atmosphere. The X-ray diffraction analysis revealed the formation of rhombohedral LaAlO 3 crystallographic phase, however a small percentage (15%) of Al 2 O 3 has been also identified. The UV-Vis absorbance spectra were obtained and F and F + - center were ascribed. The UV irradiations were carried out using a commercial 8W UV lamp. Thermoluminescence measurements were performed at a Harshaw 4500 TL reader. All compositions investigated have shown high TL sensitivity to UVR. (author)

  20. High Extraction Phosphors for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  1. A solid state lightning propagation speed sensor

    Science.gov (United States)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.

  2. Synchrotron radiation in solid state chemistry

    International Nuclear Information System (INIS)

    Ghigna, Paolo; Pin, Sonia; Spinolo, Giorgio; Newton, Mark A.; Chiara Tarantino, Serena; Zema, Michele

    2011-01-01

    An approach towards the reactivity in the solid state is proposed, primarily based on recognizing the crucial role played by the interfacial free energy and by the topotactical relationship between the two reactants, which in turn control formation of the new phase and its spatial and orientational relationships with respect to the parent phases. Using one of the reactants in the form of film, the ratio between bulk and interfacial free energy can be changed, and the effect of interfacial free energy is maximized. The role of Synchrotron Radiation in such an approach is exemplified by using a new developed technique for μ-XANES mapping with nanometric resolution for studying the reactivity of thin films of NiO onto differently oriented Al 2 O 3 single crystals. The result obtained allowed us to speculate about the rate determining step of the NiO+Al 2 O 3 →NiAl 2 O 4 interfacial reaction.

  3. Solid-state fermentation--are there any biotechnological advantages?

    Science.gov (United States)

    Hölker, Udo; Lenz, Jürgen

    2005-06-01

    Solid-state fermentation (SSF) has developed in eastern countries over many centuries, and has enjoyed broad application in these regions to date. By contrast, in western countries the technique had to compete with classical submerged fermentation and, because of the increasing pressure of rationalisation and standardisation, it has been widely superseded by classical submerged fermentation since the 1940s. This is mainly because of problems in engineering that appear when scaling up this technique. However, there are several advantages of SSF, for example high productivities, extended stability of products and low production costs, which say much about such an intensive biotechnological application. With increasing progress and application of rational methods in engineering, SSF will achieve higher levels in standardisation and reproducibility in the future. This can make SSF the preferred technique for special fields of application such as the production of enzymes and food.

  4. Solid state and aqueous behavior of uranyl peroxide cage clusters

    Science.gov (United States)

    Pellegrini, Kristi Lynn

    Uranyl peroxide cage clusters include a large family of more than 50 published clusters of a variety of sizes, which can incorporate various ligands including pyrophosphate and oxalate. Previous studies have reported that uranyl clusters can be used as a method to separate uranium from a solid matrix, with potential applications in reprocessing of irradiated nuclear fuel. Because of the potential applications of these novel structures in an advanced nuclear fuel cycle and their likely presence in areas of contamination, it is important to understand their behavior in both solid state and aqueous systems, including complex environments where other ions are present. In this thesis, I examine the aqueous behavior of U24Pp 12, as well as aqueous cluster systems with added mono-, di-, and trivalent cations. The resulting solutions were analyzed using dynamic light scattering and ultra-small angle X-ray scattering to evaluate the species in solution. Precipitates of these systems were analyzed using powder X-ray diffraction, X-ray fluorescence spectrometry, and Raman spectroscopy. The results of these analyses demonstrate the importance of cation size, charge, and concentration of added cations on the aqueous behavior of uranium macroions. Specifically, aggregates of various sizes and shapes form rapidly upon addition of cations, and in some cases these aggregates appear to precipitate into an X-ray amorphous material that still contains U24Pp12 clusters. In addition, I probe aggregation of U24Pp12 and U60, another uranyl peroxide cage cluster, in mixed solvent water-alcohol systems. The aggregation of uranyl clusters in water-alcohol systems is a result of hydrogen bonding with polar organic molecules and the reduction of the dielectric constant of the system. Studies of aggregation of uranyl clusters also allow for comparison between the newer uranyl polyoxometalate family and century-old transition metal polyoxometalates. To complement the solution studies of uranyl

  5. Heat pipes and solid sorption transformations fundamentals and practical applications

    CERN Document Server

    Vasiliev, LL

    2013-01-01

    Developing clean energy and utilizing waste energy has become increasingly vital. Research targeting the advancement of thermally powered adsorption cooling technologies has progressed in the past few decades, and the awareness of fuel cells and thermally activated (heat pipe heat exchangers) adsorption systems using natural refrigerants and/or alternatives to hydrofluorocarbon-based refrigerants is becoming ever more important. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications concentrates on state-of-the-art adsorption research and technologies for releva

  6. Thermoacoustics of solids: A pathway to solid state engines and refrigerators

    Science.gov (United States)

    Hao, Haitian; Scalo, Carlo; Sen, Mihir; Semperlotti, Fabio

    2018-01-01

    Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later found several practical applications to engineering devices. To date, all studies have concentrated on the thermoacoustics of fluid media where this fascinating mechanism was exclusively believed to exist. Our study shows theoretical and numerical evidence of the existence of thermoacoustic instabilities in solid media. Although the underlying physical mechanism exhibits some interesting similarities with its counterpart in fluids, the theoretical framework highlights relevant differences that have important implications on the ability to trigger and sustain the thermoacoustic response. This mechanism could pave the way to the development of highly robust and reliable solid-state thermoacoustic engines and refrigerators.

  7. Solid state sodium cells. Faststof natriumbatterier

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-15

    The report describes the results from the project: ''Secondary Sodium Cells with Intercalation Electrodes'' which was financed by the Danish Department of Energy. The work was carried out by the Solid State Electrochemistry Group at the Technical University of Denmark which is formed by collaborators from the Institute of Physical Chemistry and Physics Laboratory III. The use of sodium has several advantages in theory compared to lithium systems: Sodium is much more abundant and lower priced than lithium, it may be easier to find solid electrolytes of sufficiently high conductivity, sodium forms no alloy with aluminium thereby making it possible to use this metal for current collectors instead of the costlier and heavier nickel. The softness of sodium metal may make it easier to achieve and maintain contact to other components in the battery during repeated cycling. This might be of importance for room temperature operation especially. Results from the project have primarily been published in the form of articles in international scientific journals and as contributions to monographs. Copies of these articles form the backbone of the report together with a short commentary to each article. Also included in the report are some general observations, as well as results that are unsuited for publication (e.g. unsuccessful experiments) but which may still contain relevant information for other experimental workers. Lastly, the report includes results on several intercalation compounds that will be published at a later stage as well as some details about the experimental equipment. The report is divided into three main sections, Intercalation Cathode Materials, Polymer Electrolytes and Battery Cycling Equipment. (AB).

  8. Solid State Energy Conversion Energy Alliance (SECA)

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Daniel [Delphi Automotive Systems, LLC, Troy, MI (United States); Sibisan, Rodica [Delphi Automotive Systems, LLC, Troy, MI (United States); Rasmussen, Mike [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2011-09-12

    The overall objective is to develop a Solid Oxide Fuel Cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of ≥ 35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥ 40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥ 30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of ≥ 30 percent (DC/LHV) and a factory cost of ≤ $400/kW.

  9. Solid State Energy Conversion Energy Alliance (SECA)

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, Daniel [Delphi Automotive Systems, LLC, Troy, MI (United States); Sibisan, Rodica [Delphi Automotive Systems, LLC, Troy, MI (United States); Rasmussen, Mike [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2011-09-12

    The overall objective is to develop a solid oxide fuel cell (SOFC) stack that can be economically produced in high volumes and mass customized for different applications in transportation, stationary power generation, and military market sectors. In Phase I, work will be conducted on system design and integration, stack development, and development of reformers for natural gas and gasoline. Specifically, Delphi-Battelle will fabricate and test a 5 kW stationary power generation system consisting of a SOFC stack, a steam reformer for natural gas, and balance-of-plant (BOP) components, having an expected efficiency of 35 percent (AC/LHV). In Phase II and Phase III, the emphasis will be to improve the SOFC stack, reduce start-up time, improve thermal cyclability, demonstrate operation on diesel fuel, and substantially reduce materials and manufacturing cost by integrating several functions into one component and thus reducing the number of components in the system. In Phase II, Delphi-Battelle will fabricate and demonstrate two SOFC systems: an improved stationary power generation system consisting of an improved SOFC stack with integrated reformation of natural gas, and the BOP components, with an expected efficiency of ≥40 percent (AC/LHV), and a mobile 5 kW system for heavy-duty trucks and military power applications consisting of an SOFC stack, reformer utilizing anode tailgate recycle for diesel fuel, and BOP components, with an expected efficiency of ≥30 percent (DC/LHV). Finally, in Phase III, Delphi-Battelle will fabricate and test a 5 kW Auxiliary Power Unit (APU) for mass-market automotive application consisting of an optimized SOFC stack, an optimized catalytic partial oxidation (CPO) reformer for gasoline, and BOP components, having an expected efficiency of 30 percent (DC/LHV) and a factory cost of ≤$400/kW.

  10. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  11. Modeling solid-state boron carbide low energy neutron detectors

    International Nuclear Information System (INIS)

    Lundstedt, C.; Harken, A.; Day, E.; Robertson, B.W.; Adenwalla, S.

    2006-01-01

    Two independent techniques for modeling boron-based solid-state neutron detectors are presented-one using the GEANT4 Monte Carlo toolkit and the other one an analytical approach using a simplified physical model. Results of these techniques are compared for three different types of solid-state boron carbide detector. These results provide the basis for distinguishing between conversion layer and other solid-state detectors

  12. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  13. A parallel model for SQL astronomical databases based on solid state storage. Application to the Gaia Archive PostgreSQL database

    Science.gov (United States)

    González-Núñez, J.; Gutiérrez-Sánchez, R.; Salgado, J.; Segovia, J. C.; Merín, B.; Aguado-Agelet, F.

    2017-07-01

    Query planning and optimisation algorithms in most popular relational databases were developed at the times hard disk drives were the only storage technology available. The advent of higher parallel random access capacity devices, such as solid state disks, opens up the way for intra-machine parallel computing over large datasets. We describe a two phase parallel model for the implementation of heavy analytical processes in single instance PostgreSQL astronomical databases. This model is particularised to fulfil two frequent astronomical problems, density maps and crossmatch computation with Quad Tree Cube (Q3C) indexes. They are implemented as part of the relational databases infrastructure for the Gaia Archive and performance is assessed. Improvement of a factor 28.40 in comparison to sequential execution is observed in the reference implementation for a histogram computation. Speedup ratios of 3.7 and 4.0 are attained for the reference positional crossmatches considered. We observe large performance enhancements over sequential execution for both CPU and disk access intensive computations, suggesting these methods might be useful with the growing data volumes in Astronomy.

  14. Application of London-type dispersion corrections to the solid-state density functional theory simulation of the terahertz spectra of crystalline pharmaceuticals.

    Science.gov (United States)

    King, Matthew D; Buchanan, William D; Korter, Timothy M

    2011-03-14

    The effects of applying an empirical dispersion correction to solid-state density functional theory methods were evaluated in the simulation of the crystal structure and low-frequency (10 to 90 cm(-1)) terahertz spectrum of the non-steroidal anti-inflammatory drug, naproxen. The naproxen molecular crystal is bound largely by weak London force interactions, as well as by more prominent interactions such as hydrogen bonding, and thus serves as a good model for the assessment of the pair-wise dispersion correction term in systems influenced by intermolecular interactions of various strengths. Modifications to the dispersion parameters were tested in both fully optimized unit cell dimensions and those determined by X-ray crystallography, with subsequent simulations of the THz spectrum being performed. Use of the unmodified PBE density functional leads to an unrealistic expansion of the unit cell volume and the poor representation of the THz spectrum. Inclusion of a modified dispersion correction enabled a high-quality simulation of the THz spectrum and crystal structure of naproxen to be achieved without the need for artificially constraining the unit cell dimensions.

  15. Polycomplexes of Hyaluronic Acid and Borates in a Solid State and Solution: Synthesis, Characterization and Perspectives of Application in Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Alexander N. Zelenetskii

    2018-02-01

    Full Text Available In this report, we propose a new polyborate fragment synthesis strategy along the whole chain of the polysaccharide hyaluronic acid (HA to produce boron neutron capture therapy (BNCT compounds. Under high pressure and deformatory solid-state conditions, polymolecular system formation takes place due to association of phase-specific transition components into a more or less distinct microscopic organization. Fourier transform infrared (FTIR spectroscopy shows that HA and polyborates form a network of cyclic polychelate complexes. HA acts as a multidentate ligand using carboxylic and hydroxyl proton donor groups to link oxygen atoms in B–O–B bonds and borate-anions B–O(−: O–H···O, O–H···(−O. With free electron pairs in heteroatoms –O(:···B, –N(:···B, HA can act simultaneously as an electron donor. Nuclear magnetic resonance (NMR with 13C and 1H reveals a preserved complex interaction after both solubilizing and attenuating the HA-polyborate system. Stability of the product in water, low cost, ease of synthesis and scalability of manufacturing indicate that HA-polyborate complexes might have advantages over current chemotherapeutic approaches in creating therapeutic agents for BNCT.

  16. Study of gamma irradiation effects on the etching and optical properties of CR-39 solid state nuclear track detector and its application to uranium assay in soil samples

    International Nuclear Information System (INIS)

    Amol Mhatre; Kalsi, P.C.

    2011-01-01

    The gamma irradiation effects in the dose range of 2.5-43.0 Mrad on the etching and optical characteristics of CR-39 solid state nuclear track detector (SSNTD) have been studied by using etching and UV-Visible spectroscopic techniques. From the measured bulk etch rates at different temperatures, the activation energies for bulk etching at different doses have also been determined. It is seen that the bulk etch rates increase and the activation energies for bulk etching decrease with the increase in gamma dose. The optical band gaps of the unirradiated and the gamma -irradiated detectors determined from the UV-Visible spectra were found to decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation. The present studies can be used for the estimation of gamma dose in the range of 2.5-43.0 Mrad and can also be used for estimating track registration efficiency in the presence of gamma dose. The CR-39 detector has also been applied for the assay of uranium in some soil samples of Jammu city. (author)

  17. A multicomponent system based on a blend of agroindustrial wastes for the simultaneous production of industrially applicable enzymes by solid-state fermentation

    Directory of Open Access Journals (Sweden)

    Andre OHARA

    2018-01-01

    Full Text Available Abstract This study reports the use of statistical mixture design as a tool for the simultaneous production of lipase, CMCase, α-amylase, and β-glucosidase by Aspergillus niger under solid-state fermentation. Wheat bran, soybean meal, cottonseed meal, and orange peel were used as substrates, either individually or combined in different formulations, to study their synergistic or antagonistic effects on production of the enzymes. The highest lipase (323 U g-1 and CMCase (10 U g-1 activities were detected after 48 h, while the maximum activities of α-amylase (18 U g-1 and β-glucosidase (15 U g-1 occurred at 72 and 96 h, respectively. Considering the substrate formulation, the ternary mixture of wheat bran (1/3, soybean meal (1/3, and cottonseed meal (1/3 was the most versatile, showing production of CMCase (>5 U g-1 and α-amylase (>8 U g-1 at 24 h, lipase (>320 U g-1 at 72 h, and β-glucosidase (>10 U g-1 at 48 h.

  18. Alkaline Protease Production from Brevibacterium luteolum (MTCC 5982) Under Solid-State Fermentation and Its Application for Sulfide-Free Unhairing of Cowhides.

    Science.gov (United States)

    Renganath Rao, R; Vimudha, M; Kamini, N R; Gowthaman, M K; Chandrasekran, B; Saravanan, P

    2017-06-01

    Enzyme-based unhairing in replacement of conventional lime sulfide system has been attempted as an alternative for tackling pollution. The exorbitant cost of enzyme and the need for stringent process control need to be addressed yet. This study developed a mechanism for regulated release of protease from cheaper agro-wastes, which overcomes the necessity for stringent process control along with total cost reduction. The maximum protease activity of 1193.77 U/g was obtained after 96 h of incubation with 15% inoculum of the actinomycete strain Brevibacterium luteolum (MTCC 5982) under solid-state fermentation (SSF). The medium after SSF was used for unhairing without the downstream processing to avoid the cost involved in enzyme extraction. This also helped in the regulated release of enzyme from bran to the process liquor for controlled unhairing and avoided the problem of grain-pitting. Unhairing process parameters were standardized as 20% enzyme offer, 40% Hide-Float ratio at 5 ± 1 rpm, and process pH of 9.0. The cost of production of 1000 kU of the protease was calculated as 0.44 USD. The techno-economic feasibility studies for setting up an SSF enzyme production plant showed a high return on investment of 15.58% with a payback period of 6.4 years.

  19. Pendant chain engineering to fine-tune the nanomorphologies and solid state luminescence of naphthalimide AIEEgens: application to phenolic nitro-explosive detection in water.

    Science.gov (United States)

    Meher, Niranjan; Iyer, Parameswar Krishnan

    2017-06-08

    Strategically, a series of five angular "V" shaped naphthalimide AIEEgens with varying pendant chains (butyl, hexyl, octyl, cyclohexyl and methylcyclohexyl) have been synthesized to fine-tune their nanomorphological and photophysical properties. With similar aromatic cores and electronic states, unexpected tuning of the condensed state emission colors and nanomorphologies (reproducible on any kind of surface) of naphthalimides has been achieved for the first time simply by varying their side chains. Conclusive analysis by various spectroscopic techniques (SC-XRD, powder-XRD, DLS, FESEM) and DFT computational studies confirmed the full control of the pendant chain (in terms of bulkiness around the naphthalimide core, which restricts the ease of intermolecular π-π interactions) over the nanoaggregate morphology and solid state emissive properties of the AIEEgens; this can be rationalized to all aggregation-prone systems. These comprehensive studies establish a conceptually unique yet simple and effective method to precisely tune the nanomorphologies and the emission colors of aggregation-prone small organic molecules by judicious choice of the non-conjugated pendant chain. Thus, considering the prime role of the active layer nanomorphology in all organic optoelectronic devices, this methodology may emerge as a promising tool to improve device performance. Among all the congeners, the hexyl chain-containing congener (HNQ) forms well-defined nanoribbons with smaller diameters (as confirmed from DLS: 166 nm and FESEM: 150 nm) and provides a larger surface area. Consequently, the HNQ-nanoribbons were employed as a fluorescent sensor for the discriminative detection of trinitrophenol (TNP) in pure aqueous media. FE-SEM images revealed that, upon gradual addition of TNP (10 nM to 100 μM), these nanoribbons undergo an aggregation/disaggregation process, forming non-fluorescent co-aggregates with TNP, and provide highly enhanced sensitivity compared to existing state

  20. Electron correlations in solid state physics

    International Nuclear Information System (INIS)

    Freericks, J.K.

    1991-04-01

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t'-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t'-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a ''magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the ''magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of ''hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies

  1. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø, Lasse Arnt

    2016-02-02

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  2. Towards a solid-state ring laser gyroscope

    Science.gov (United States)

    El Badaoui, Noad; Morbieu, Bertrand; Martin, Philippe; Rouchon, Pierre; Pocholle, Jean-Paul; Gutty, François; Feugnet, Gilles; Schwartz, Sylvain

    2014-12-01

    In this paper, we report our recent progress towards a solid-state ring laser gyroscope (RLG), where mode competition is circumvented by active control of differential losses, and nonlinear effects are mitigated by longitudinal vibration of the gain medium. The resulting dynamics is significantly different from that of a classical helium-neon RLG, owing in particular to parametric resonances that occur when the Sagnac frequency is an integer multiple of the crystal vibration frequency. We describe the main experimental and theoretical results obtained so far, and the prospects of practical applications in the near future. xml:lang="fr"

  3. Exploring Magnetic Elastocaloric Materials for Solid-State Cooling

    Science.gov (United States)

    Liu, Jian; Zhao, Dewei; Li, Yang

    2017-09-01

    In the past decade, there has been an increased surge in the research on elastocaloric materials for solid-state refrigerators. The strong coupling between structure and magnetism inspires the discovery of new multi-field driven elastocaloric alloys. This work is devoted to magnetic shape memory alloys suitable for mechanical cooling applications. Some novel characteristics in magnetostructural transition materials other than conventional shape memory alloys are overviewed. From the physical and engineering points of view, we have put forward general strategies to maximize elastocaloric temperature change to increase performance reversibility and to improve mechanical properties. The barocaloric effect as a sister-cooling alternative is also discussed.

  4. Solid-State Lighting 2017 Suggested Research Topics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-09-29

    A 2017 update to the Solid-State Lighting R&D Plan that is divided into two documents. The first document describes a list of suggested SSL priority research topics and the second document provides context and background, including information drawn from technical, market, and economic studies. Widely referenced by industry and government both here and abroad, these documents reflect SSL stakeholder inputs on key R&D topics that will improve efficacy, reduce cost, remove barriers to adoption, and add value for LED and OLED lighting solutions over the next three to five years, and discuss those applications that drive and prioritize the specific R&D.

  5. Thermal Design and Flight Validation for Solid-state Transmitter

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2014-06-01

    Full Text Available Solid-state transmitter with large power and high heat flux is a key equipment of an HJ-1-C satellite; therefore, it has a great influence on satellite thermal design. Thermal design ensures that the solid-state transmitter works well within the allowable temperature limits of the equipment. The solid-state transmitter thermal design and solved key problems are provided in accordance with the HJ-1-C characteristics. Moreover, an analysis of satellites on orbit was performed. Based on the telemetry data, the thermal control design is shown to satisfy the temperature requirements of the solid-state transmitter.

  6. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  7. Solid-state physics for electronics

    National Research Council Canada - National Science Library

    Moliton, André

    2009-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. Quantum mechanics: some basics . . . . . . . . . . . . . . . . . . . . . . 1.2.1. The wave equation in solids: from Maxwell's to Schrödinger's equation via...

  8. Solid-state physics for electronics

    National Research Council Canada - National Science Library

    Moliton, André

    2009-01-01

    ...) . . . . . . . . . . . . . . . . . . . . . 1.2.3. Important properties of linear operators . . . . . . . . . . . . . . . . . 1.3. Bonds in solids: a free electron as the zero order approximation for a weak...

  9. NLC Hybrid Solid State Induction Modulator

    CERN Document Server

    Cassel, R L; Pappas, G C; Delamare, J E

    2004-01-01

    The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X-band klystrons. The original NLC envisions a solid state induction modulator design to drive up to 8 klystrons to 500 kV for 3 μs at 120 PPS with one modulator delivering greater than 1,000 MW pulse, at 500 kW average. A change in RF compression techniques resulted in only two klystrons needed pulsing per modulator at a reduced pulse width of 1.6 μsec or approximately 250 MW of the pulsed power and 80 kW of average powers. A prototype Design for Manufacturability (DFM) 8-pack modulator was under construction at the time of the change, so a redirection of modulator design was in order. To utilities the equipment which had already be fabricated, a hybrid modulator was designed and constructed using the DFM induction modulator parts and a conventional pulse transformer. The construction and performance of this hybrid two klystron Induction modul...

  10. Towards composite solid state laser materials

    International Nuclear Information System (INIS)

    Auzel, F.

    1998-01-01

    The largest recent advance in the field of solid state materials is the exponential development of the erbium doped fibre amplifiers, the so-called EDFAs, which are already implemented in many telecommunication systems. One is already interested in the evolution of such amplifiers towards more compact devices which could be obtained through erbium doped wave guide amplifiers. The conditions for wave guide amplifiers are first discussed showing that it will be difficult to limit the active length to less than a few tenths of a centimetre in usual glasses without having to increase the active ion concentration up to the point where self-quenching reduces prohibitively the quantum efficiency of the amplifying transition. This leads us to consider new glassy materials where the inhomogeneous linewidth of the active ions shall be reduced in order to correlatively increase the gain cross-sections. An historical review of such an approach will be presented. Then we show that composite materials of the vitroceramic type where the active rare earth ion stays only in the microcrystalline phase, provide materials with reduced inhomogeneous broadening and with crystal type optical spectra though obtained by glass technics. Evaluations of the gain cross-sections indicate increases of at least 100%. Such composite materials may so pave the way for wave guide amplifiers. (orig.)

  11. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  12. Composite Polymer-Garnet Solid State Electrolytes

    Science.gov (United States)

    Villa, Andres; Oduncu, Muhammed R.; Scofield, Gregory D.; Marinero, Ernesto E.; Forbey, Scott

    Solid-state electrolytes provide a potential solution to the safety and reliability issues of Li-ion batteries. We have synthesized cubic-phase Li7-xLa3Zr2-xBixO12 compounds utilizing inexpensive, scalable Sol-gel synthesis and obtained ionic conductivities 1.2 x 10-4 S/cm at RT in not-fully densified pellets. In this work we report on the fabrication of composite polymer-garnet ceramic particle electrolytes to produce flexible membranes that can be integrated with standard battery electrodes without the need for a separator. As a first step we incorporated the ceramic particles into polyethylene oxide polymers (PEO) to form flexible membranes. Early results are encouraging yielding ionic conductivity values 1.0 x 10-5 S/cm at RT. To increment the conductivity in the membranes, we are optimizing amongst other: the ceramic particle size distribution and weight load, the polymer molecular weight and chemical composition and the solvated Li-salt composition and content. Unhindered ion transport across interfaces between the composites and the battery electrode materials is paramount for battery performance. To this end, we are investigating the effect of interface morphology, its atomic composition and exploring novel electrode structures that facilitate ionic transport.

  13. DFT calculations of quadrupolar solid-state NMR properties: Some examples in solid-state inorganic chemistry.

    Science.gov (United States)

    Cuny, Jerome; Messaoudi, Sabri; Alonzo, Veronique; Furet, Eric; Halet, Jean-François; Le Fur, Eric; Ashbrook, Sharon E; Pickard, Chris J; Gautier, Regis; Le Polles, Laurent

    2008-10-01

    This article presents results of first-principles calculations of quadrupolar parameters measured by solid-state nuclear magnetic measurement (NMR) spectroscopy. Different computational methods based on density functional theory were used to calculate the quadrupolar parameters. Through a series of illustrations from different areas of solid state inorganic chemistry, it is shown how quadrupolar solid-state NMR properties can be tackled by a theoretical approach and can yield structural information. (c) 2008 Wiley Periodicals, Inc.

  14. Solid-State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  15. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    Science.gov (United States)

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  16. Combined discrete particle and continuum model predicting solid-state fermentation in a drum fermentor

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Schutyser, M.A.I.; Briels, Willem J.; Boom, R.M.; Boom, R.M.; Rinzema, A.

    2004-01-01

    The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model

  17. Development and Evaluation of Active Thermal Management System for Lithium-Ion Batteries using Solid-State Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications

    Science.gov (United States)

    Parekh, Bhaumik Kamlesh

    Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.

  18. Statistical optimization of cellulases production by Penicillium chrysogenum QML-2 under solid-state fermentation and primary application to chitosan hydrolysis.

    Science.gov (United States)

    Zhang, Hui; Sang, Qing

    2012-03-01

    Solid-state fermentation conditions for cellulases production by a newly isolated Penicillium chrysogenum QML-2 were investigated using statistical methods. At first, significant variables for cellulases production including (NH(4))(2)SO(4), initial pH and inoculum size were screened by using Plackett-Burman Design. Then the optimal regions of the significant variables were investigated by using the method of steepest ascent. Finally, central composite design and response surface analysis were adopted to determine the optimal values of the significant variables and investigate the combined effects of each variable's pair on cellulases production. The results showed that the optimal ranges of (NH(4))(2)SO(4) concentration, initial pH and inoculum size for three types of cellulases activities were 1.97-2.15 g, pH 4.32-4.41 and 13.3-13.7% (v/w), respectively. Using the mixture of corn stover powder and wheat bran (CSP/WB, 1/1) as carbon source, the optimization resulted in 370.15, 101.76 and 321.56 U/g for maximal endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. Compared with maximum values of cellulases activities (endoglucanase activity 85.21 U/g, filter paper activity 16.62 U/g and β-glucosidase activity 67.68 U/g) obtained under unoptimized conditions, the optimization resulted in 3.34, 5.12 and 3.75 folds improvement for endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. For chitosan hydrolysis, the crude cellulases had the optimal temperature of 55°C, pH of 4.4 and exhibited Michaelis constant (K (m)) value of 8.34 mg/ml and maximum velocity (V (max)) of 2.21 μmol glucosamine/min by 1 ml of the crude cellulases.

  19. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  20. Optofluidic devices with integrated solid-state nanopores

    Science.gov (United States)

    Hawkins, Aaron R.; Schmidt, Holger

    2016-01-01

    This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940

  1. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  2. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  3. Long chain branching on linear polypropylene by solid state reactions

    NARCIS (Netherlands)

    Borsig, E.; Gotsis, A. D.; Picchioni, F.

    A method was developed for the long chain branching (LCB) of isotactic polypropylene (iPP) via modification in the solid state. PP long chains have been linked as branches to the original linear iPP chains using solid state reactions in the presence of a free radical initiator and a multifunctional

  4. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  5. The 3rd International Conference on Solid State Chemistry. Preface

    International Nuclear Information System (INIS)

    The 3 rd International Conference on Solid State Chemistry took place on 6-12 July 1996 in Bratislava, Slovakia, under the auspices of the Presidium of the Slovak Academy of Sciences. In the conference participated 158 scientists from many countries of the world. The conference covered all aspects of modern solid state chemistry and the presentation of papers was divided into eight sections consisting of invited lectures and oral as well as poster presentations. The individual sections were devoted to the high-temperature ceramic superconductors, the layered compounds, clathrates and intercalates, the oxide and non-oxide glasses, the structure and properties of solids, the electron structure and chemical bonding in solids, the surface chemistry of solids, the solid state superionic, and to the local structure and bonding cementitious binding materials. (authors)

  6. Controls for Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, Francis

    2007-06-22

    This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to

  7. Exciton dynamics in solid-state green fluorescent protein

    Science.gov (United States)

    Dietrich, Christof P.; Siegert, Marie; Betzold, Simon; Ohmer, Jürgen; Fischer, Utz; Höfling, Sven

    2017-01-01

    We study the decay characteristics of Frenkel excitons in solid-state enhanced green fluorescent protein (eGFP) dried from solution. We further monitor the changes of the radiative exciton decay over time by crossing the phase transition from the solved to the solid state. Complex interactions between protonated and deprotonated states in solid-state eGFP can be identified from temperature-dependent and time-resolved fluorescence experiments that further allow the determination of activation energies for each identified process.

  8. Porous Organic Nanolayers for Coating of Solid-state Devices

    Directory of Open Access Journals (Sweden)

    Asghar Waseem

    2011-05-01

    Full Text Available Abstract Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.

  9. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan

    2016-03-14

    Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM(+) on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 ± 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.

  10. Rheological behavior of semi-solid 7075 aluminum alloy at steady state

    Directory of Open Access Journals (Sweden)

    Li Yageng

    2014-03-01

    Full Text Available The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 篊 to 630 篊 at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted. The microstructure of quenched samples was examined to understand the alloy抯 rheological behavior.

  11. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary...... with a cubic crystal structure. Its formation has an effect on the measured conductivity of the samples and increases the risk of an internal short-circuit. This reveals a more general issue that must receive attention in further research on solid electrolytes.......The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...

  12. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  13. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  14. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-04-30

    In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  15. Solid state frequency conversion technology for remote sensing

    International Nuclear Information System (INIS)

    Velsko, S.P.; Webb, M.S.; Cook, W.M.; Neuman, W.A.

    1994-07-01

    Long range remote sensing from airborne or other highly mobile platforms will require high average power tunable radiation from very compact and efficient laser systems. The solid state laser pumped optical parametric oscillator (OPO) has emerged as a leading candidate for such high average power, widely tunable sources. In contrast to laboratory systems, efficiency and simplicity can be the decisive issues which determine the practicality of a particular airborne remote sensing application. The recent advent of diode laser pumped solid state lasers has produced high average power OPO pump sources which are themselves both compact and efficient. However, parametric oscillator technology which can efficiently convert the average powers provided by these pump sources remains to be demonstrated. In addition to the average power requirement, many airborne long range sensing tasks will require a high degree of frequency multiplexing to disentangle data from multiple chemical species. A key advantage in system simplicity can be obtained, for example, if a single OPO can produce easily controlled multispectral output. In this paper the authors address several topics pertaining to the conversion efficiency, power handling, and multispectral capabilities of OPOs which they are currently investigating. In Section 2, single pulse conversion efficiency issues are addressed, while average power effects are treated in Section 3. Section 4 is concerned with multispectral performance of a single OPO. The last section contains a short summary and some concluding remarks

  16. Broadband rotational resonance in solid state NMR spectroscopy.

    Science.gov (United States)

    Chan, Jerry C C; Tycko, Robert

    2004-05-08

    A new technique for restoring nuclear magnetic dipole-dipole couplings under magic-angle spinning (MAS) in solid state nuclear magnetic resonance (NMR) spectroscopy is described and demonstrated. In this technique, called broadband rotational resonance (BroBaRR), the coupling between a pair of nuclear spins with NMR frequency difference close (but not necessarily equal) to the MAS frequency is restored by the application of a train of weak radio-frequency pulses at a carrier frequency close to the average of the two NMR frequencies. Phase or amplitude modulation of the pulse train at half the MAS frequency splits the carrier into sidebands close to the two NMR frequencies. The pulse train then removes offsets from the exact rotational resonance condition, leading to dipolar recoupling over a bandwidth controlled by the amplitude of the pulse train. (13)C NMR experiments on uniformly (15)N,(13)C-labeled L-valineHClH(2)O powder validate the theoretical analysis. BroBaRR will be useful in studies of molecular structures by solid state NMR, for example in the detection of long-range couplings between carbons in uniformly labeled organic and biological materials.

  17. Genomic Pathogen Typing Using Solid-State Nanopores.

    Directory of Open Access Journals (Sweden)

    Allison H Squires

    Full Text Available In clinical settings, rapid and accurate characterization of pathogens is essential for effective treatment of patients; however, subtle genetic changes in pathogens which elude traditional phenotypic typing may confer dangerous pathogenic properties such as toxicity, antibiotic resistance, or virulence. Existing options for molecular typing techniques characterize the critical genomic changes that distinguish harmful and benign strains, yet the well-established approaches, in particular those that rely on electrophoretic separation of nucleic acid fragments on a gel, have room for only incremental future improvements in speed, cost, and complexity. Solid-state nanopores are an emerging class of single-molecule sensors that can electrophoretically characterize charged biopolymers, and which offer significant advantages in terms of sample and reagent requirements, readout speed, parallelization, and automation. We present here the first application of nanopores for single-molecule molecular typing using length based "fingerprints" of critical sites in bacterial genomes. This technique is highly adaptable for detection of different types of genetic variation; as we illustrate using prototypical examples including Mycobacterium tuberculosis and methicillin-resistant Streptococcus aureus, the solid-state nanopore diagnostic platform may be used to detect large insertions or deletions, small insertions or deletions, and even single-nucleotide variations in bacterial DNA. We further show that Bayesian classification of test samples can provide highly confident pathogen typing results based on only a few tens of independent single-molecule events, making this method extremely sensitive and statistically robust.

  18. Heat Treatment to Shrink Solid-State Nanopores

    Science.gov (United States)

    Billo, Joseph; Asghar, Waseem; Iqbal, Samir M.

    2011-03-01

    Solid-state nanopores have a promising application in the area of selective sensing of DNA. Therefore, it is imperative to have a simple and repeatable method for nano-fabrication of pores. This paper focuses on solid-state nanopore fabrication in a silicon-dioxide membrane with heat treatment. A 375 μ m thick pre-oxidized silicon wafer with approximately 1 μ m oxide is used. Photolithography followed by BHF etching, with well-cured photo-resist covering the back-side to preserve its oxide layer, was performed on the wafer in order to open square windows in the front-side oxide layer. Using the front-side oxide layer as a mask and the back-side oxide layer as an etch-stop, the silicon substrate underwent anisotropic etching to create Si O2 membranes. The wafer was then cut into small squares approximately 1 cm on a side with each containing one membrane. A focused ion beam was used to open an initial pore in each membrane. Finally, a method for causing Si O2 membranes to diffuse was used to shrink the pores to the desired diameter. This work was supported by the Metroplex Research Consortium for Electronic Devices and Materials, Dallas, TX.

  19. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  20. Uses of pulsed electron beam to solid-states studies

    International Nuclear Information System (INIS)

    Itoh, Noriaki; Nakayama, Takeyoshi; Tanimura, Katsumi; Chong, Taisu; Saidoh, Masahiro

    1982-01-01

    A survey is given on the use of the pulsed electron beams to studies of solid states. Even though main emphasis is placed on the studies carried out at the Faculty of Engineering, Nagoya University, using the Pulsed Electron Facilities installed in 1970, the works carried out at other institutes are also included. Only the studies of crystalline solids with simple structures, such as alkali halides and aromatic hydrocarbons are covered. In the first place several instrumentations which have extended utilities of pulsed-electron beams are presented. Then we discuss the studies of the dynamic of excitons, emphasizing the advantages and disadvantages of the usage of the electron pulses. Then usages of the pulsed-electron beam for the studies of the excited states of the quasi-stable defects are described. Application of the electron pulse for studies of the excitation spectroscopy of the photochemistry is described. The dynamic studies of defects introduced by electron-pulse bombardment is discussed finally. A summary is given, which includes also the possible future experiments. (author)

  1. A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries.

    Science.gov (United States)

    Gao, Hongcai; Xue, Leigang; Xin, Sen; Park, Kyusung; Goodenough, John B

    2017-05-08

    The development of all-solid-state rechargeable batteries is plagued by a large interfacial resistance between a solid cathode and a solid electrolyte that increases with each charge-discharge cycle. The introduction of a plastic-crystal electrolyte interphase between a solid electrolyte and solid cathode particles reduces the interfacial resistance, increases the cycle life, and allows a high rate performance. Comparison of solid-state sodium cells with 1) solid electrolyte Na 3 Zr 2 (Si 2 PO 4 ) particles versus 2) plastic-crystal electrolyte in the cathode composites shows that the former suffers from a huge irreversible capacity loss on cycling whereas the latter exhibits a dramatically improved electrochemical performance with retention of capacity for over 100 cycles and cycling at 5 C rate. The application of a plastic-crystal electrolyte interphase between a solid electrolyte and a solid cathode may be extended to other all-solid-state battery cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation

    OpenAIRE

    Neifar, Mohamed; Kamoun, Amel; Jaouani, Atef; Ellouze-Ghorbel, Raoudha; Ellouze-Chaabouni, Semia

    2011-01-01

    Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2533//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl2 concentration, CuSO4 concentration, and incubation time were selected...

  3. A Two Photoelectrode Solid-State Photoelectrochemical Cell,

    Science.gov (United States)

    1984-09-14

    unique approach for the PEC conversion and storage of selected redox species incorporated within the proximity of the semiconductor /solid electrolyte... semiconductor and solid electrolyte materials are present at the junction. As a consequence, PEC cells fabricated to contain such interfaces...consequence of the high resistivity of the SPE material used. PEn had earlier been used in the solid-state PEC cell n-Si/PEO,KI, 2 / SnO 2 glass, whicre the n

  4. All-solid state lithium carbon monofluoride batteries

    Science.gov (United States)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan

    2017-10-10

    A solid state lithium carbon monofluoride battery includes an anode comprising Li, a solid electrolyte, and a cathode including CF.sub.x and LPS. The cathode can also include a carbon compound. The solid electrolyte can include LPS. The LPS can include .beta.-Li.sub.3PS.sub.4. The cathode LPS can include .beta.-Li.sub.3PS.sub.4. A method of making a battery is also disclosed.

  5. Reflections A Conversation About Solid State Physics

    Indian Academy of Sciences (India)

    equations of physics, and Schrodinger fitted right in. So we all were asked to take one section of Schrodinger and give a seminar on it. So that's how I learned some of. Schrodinger's perturbation theory, because that was the section I was to give in the seminar. MERMIN: But then, when he came to applying it to solids, .

  6. Picosecond Pulse Spectroscopy in Solid State Physics

    NARCIS (Netherlands)

    Duppen, Koos; Molenkamp, Laurens W.; Wiersma, Douwe A.

    1984-01-01

    It is shown that picosecond coherence experiments can be used to study optical dynamics in doped semiconductors and molecular solids. In the system GaP:N, picosecond photon echoes are used to study exciton relaxation and detrapping into the free exciton band. In the molecolar mixed crystal of

  7. Tris(2-(1 H -pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Burschka, Julian

    2011-11-16

    Chemical doping is an important strategy to alter the charge-transport properties of both molecular and polymeric organic semiconductors that find widespread application in organic electronic devices. We report on the use of a new class of Co(III) complexes as p-type dopants for triarylamine-based hole conductors such as spiro-MeOTAD and their application in solid-state dye-sensitized solar cells (ssDSCs). We show that the proposed compounds fulfill the requirements for this application and that the discussed strategy is promising for tuning the conductivity of spiro-MeOTAD in ssDSCs, without having to rely on the commonly employed photo-doping. By using a recently developed high molar extinction coefficient organic D-π-A sensitizer and p-doped spiro-MeOTAD as hole conductor, we achieved a record power conversion efficiency of 7.2%, measured under standard solar conditions (AM1.5G, 100 mW cm -2). We expect these promising new dopants to find widespread applications in organic electronics in general and photovoltaics in particular. © 2011 American Chemical Society.

  8. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    International Nuclear Information System (INIS)

    Kartini, Evvy; Manawan, Maykel

    2016-01-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  9. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Science.gov (United States)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  10. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  11. Solid state electro-optic color filter and iris

    Science.gov (United States)

    1975-01-01

    A pair of solid state electro-optic filters (SSEF) in a binocular holder were designed and fabricated for evaluation of field sequential stereo TV applications. The electronic circuitry for use with the stereo goggles was designed and fabricated, requiring only an external video input. A polarizing screen suitable for attachment to various size TV monitors for use in conjunction with the stereo goggles was designed and fabricated. An improved engineering model 2 filter was fabricated using the bonded holder technique developed previously and integrated to a GCTA color TV camera. An engineering model color filter was fabricated and assembled using PLZT control elements. In addition, a ruggedized holder assembly was designed, fabricated and tested. This assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and also permits mounting and optical alignment of the associated polarizers.

  12. Fast neutron detection using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Vilela, E.C.

    1990-01-01

    CR-39 and Makrofol-E solid state nuclear track detectors were studied aiming their application to fast neutron detection. Optimum etching conditions of those two kinds of materials were determined the followings - the Makrofol-E detector is electrochemically etched in a PEW solution (15% KOH, 40% ethilic alcohol and 45% water) for 2 h., with an applied electric field strength of 30 kV/cm (r/m/s/) and frequency of 2 kHz, at room temperature; - the CR-39 detector is chemically pre-etched during 1 h in a 20% (w/v) NaOH solution at 70 sup(0)C, followed by 13 h electrochemical etch using the same solution at room temperature and an electric field strength of 30 kV/cm (r.m.s.) and frequency of 2 kHz.(E.G.)

  13. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  14. Unravelling radiative energy transfer in solid-state lighting

    Science.gov (United States)

    Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat

    2018-01-01

    Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.

  15. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  16. Solid state conformational classification of eight-membered rings

    DEFF Research Database (Denmark)

    Pérez, J.; García, L.; Kessler, M.

    2005-01-01

    A statistical classification of the solid state conformation in the title complexes using data retrieved from the Cambridge Structural Database (CSD) has been made. Phosphate and phosphinate complexes show a chair conformation preferably. In phosphonate complexes, the most frequent conformations...

  17. Solid State Oxygen Concentrator and Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sustainable Innovations has developed a novel solid state technology for gas separation and will be applying it for the first time to meet a critical life support...

  18. A Low Power, Solid State, Method of Oxygen Supply

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation of the work prior to the start of this project is the planar monolith - allowing for solid state oxygen production at pressures up to 300 psig....

  19. Nanorod Array Solid State Neutron Detectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR project, Synkera proposes to develop and commercialize solid-state neutron detectors of a unique architecture that will enable sensor modules...

  20. Advanced Solid State Lighting for AES Deep Space Hab

    Data.gov (United States)

    National Aeronautics and Space Administration — The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in...

  1. W-band Solid State Transceiver for Cloud Radar

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed effort seeks to develop a solid state power amplifier (SSPA)-based W-band cloud radar transceiver and demonstrate it on the GSFC airborne Cloud Radar...

  2. Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet

    Science.gov (United States)

    Byun, T. D. S.; Vastava, R. B.

    1985-01-01

    Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.

  3. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  4. Solid State Division progress report, September 30, 1981

    International Nuclear Information System (INIS)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed

  5. Solid-state resistor for pulsed power machines

    Science.gov (United States)

    Stoltzfus, Brian; Savage, Mark E.; Hutsel, Brian Thomas; Fowler, William E.; MacRunnels, Keven Alan; Justus, David; Stygar, William A.

    2016-12-06

    A flexible solid-state resistor comprises a string of ceramic resistors that can be used to charge the capacitors of a linear transformer driver (LTD) used in a pulsed power machine. The solid-state resistor is able to absorb the energy of a switch prefire, thereby limiting LTD cavity damage, yet has a sufficiently low RC charge time to allow the capacitor to be recharged without disrupting the operation of the pulsed power machine.

  6. Friction regimes in the lubricants solid-state regime

    OpenAIRE

    Schipper, Dirk J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughness on this transition. The friction measurements showed that in the lubricants solid-state region three lubrication modes can be distinguished: A) full-film lubrication; separation is maintained b...

  7. Synergies Connecting the Photovoltaics and Solid-State Lighting Industries

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2003-05-01

    Recent increases in the efficiencies of phosphide, nitride, and organic light-emitting diodes (LEDs) inspire a vision of a revolution in lighting. If high efficiencies, long lifetimes, and low cost can be achieved, solid-state lighting could save our country many quads of electricity in the coming years. The solid-state lighting (SSL) and photovoltaic (PV) industries share many of the same challenges. This paper explores the similarities between the two industries and how they might benefit by sharing information.

  8. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-03-25

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solid state exchange reactions and thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Albarran, G.; Archundia, C.; Maddock, A.G.

    1982-01-01

    A further study of exchange of the cobalt atoms in solid Co(H/sub 2/O)/sub 6/(Co EDTA)/sub 2/ x 4H/sub 2/O has been made. The exchange is more easily measured when the compound has been ..gamma.. irradiated before heating. Without irradiation the exchange is complicated by substantial concurrent thermal decomposition. Vacuum dehydration to the tetrahydrate can be effected at 366 K without appreciable exchange. A relation between exchange, annealing of radiolytic decomposition and thermal decomposition in such compounds is suggested.

  10. Realization of reliable solid-state quantum memory for photonic polarization qubit.

    Science.gov (United States)

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-11

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  11. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  12. Composite Solid Electrolyte for Li Battery Applications

    Science.gov (United States)

    Nagasubramanian, G.; Attia, A. I.; Halpert, G.; Peled, E.

    1993-01-01

    The electrochemical, bulk and interfacial properties of the polyethylene oxide (PEO) based composite solid electrolyte (CSE) comprising LiI, PEO, and Al2O3 have been evaluated for Li battery applications. The bulk interfacial and transport properties of the CSEs seem to strongly depend on the alumina particle size. For the CSE films with 0.05 micron alumina while the bulk conductivity is around 10(exp -4) (mho/cm) at 103 C, the Li ion transport number seems to be close to unity at the same temperature. Compared to the PEO electrolyte this polymer composite electrolyte seems to exhibit robust mechanical and interfacial properties. We have studied three different films with three different alumina sizes in the range 0.01-0.3 micron. Effects of Al2O3 particle size on the electrochemical performance of polymer composite electrolyte is discussed. With TiS2 as cathode a 10 mAh small capacity cell was charged and discharged at C/40 and C/20 rates respectively.

  13. New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries.

    Science.gov (United States)

    Guo, Qingpeng; Han, Yu; Wang, Hui; Xiong, Shizhao; Li, Yujie; Liu, Shuangke; Xie, Kai

    2017-12-06

    Inorganic solid electrolytes (SEs) possess substantial safety and electrochemical stability, which make them as key components of safe rechargeable solid-state Li batteries with high energy density. However, complicated integrally molding process and poor wettability between SEs and active materials are the most challenging barriers for the application of SEs. In this regard, we explore composite SEs of the active ceramic Li 1+x Al x Ge 2-x (PO 4 ) 3 (LAGP) as the main medium for ion conduction and the polymer P(VDF-HFP) as a matrix. Meanwhile, for the first time, we choice high chemical, thermal, and electrochemical stability of ionic liquid swelled in polymer, which significantly ameliorate the interface in the cell. In addition, a reduced crystallinity degree of the polymer in the electrolyte can also be achieved. All of these lead to good ionic conductivity of the composite electrolyte (LPELCE), at the same time, good compatibility with the lithium electrode. Especially, high mechanical strength and stable solid electrolyte interphase which suppressed the growth of lithium dendrites and high thermal safety stability can also be observed. For further illustration, the solid-state lithium battery of LiFePO 4 /LPELCE/Li shows relatively satisfactory performance, indicating the promising potentials of using this type of electrolyte to develop high safety and high energy density solid-state lithium batteries.

  14. Solid Lubrication Fundamentals and Applications. Chapter 2

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter describes powerful analytical techniques capable of sampling tribological surfaces and solid-film lubricants. Some of these techniques may also be used to determine the locus of failure in a bonded structure or coated substrate; such information is important when seeking improved adhesion between a solid-film lubricant and a substrate and when seeking improved performance and long life expectancy of solid lubricants. Many examples are given here and through-out the book on the nature and character of solid surfaces and their significance in lubrication, friction, and wear. The analytical techniques used include the late spectroscopic methods.

  15. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity.

    Science.gov (United States)

    Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F

    2012-04-07

    Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.

  16. Mesoscopic Electronics in Solid State Nanostructures

    CERN Document Server

    Heinzel, Thomas

    2007-01-01

    This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of

  17. Investigating albendazole desmotropes by solid-state NMR spectroscopy.

    Science.gov (United States)

    Chattah, Ana K; Zhang, Rongchun; Mroue, Kamal H; Pfund, Laura Y; Longhi, Marcela R; Ramamoorthy, Ayyalusamy; Garnero, Claudia

    2015-03-02

    Characterization of the molecular structure and physicochemical solid-state properties of the solid forms of pharmaceutical compounds is a key requirement for successful commercialization as potential active ingredients in drug products. These properties can ultimately have a critical effect on the solubility and bioavailability of the final drug product. Here, the desmotropy of Albendazole forms I and II was investigated at the atomic level. Ultrafast magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, together with powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy, were performed on polycrystalline samples of the two solids in order to fully characterize and distinguish the two forms. High-resolution one-dimensional (1)H, (13)C, and (15)N together with two-dimensional (1)H/(1)H single quantum-single quantum, (1)H/(1)H single quantum-double quantum, and (1)H/(13)C chemical shift correlation solid-state NMR experiments under MAS conditions were extensively used to decipher the intramolecular and intermolecular hydrogen bonding interactions present in both solid forms. These experiments enabled the unequivocal identification of the tautomers of each desmotrope. Our results also revealed that both solid forms may be described as dimeric structures, with different intermolecular hydrogen bonds connecting the tautomers in each dimer.

  18. Colour-rendition properties of solid-state lamps

    International Nuclear Information System (INIS)

    Zukauskas, A; Vaicekauskas, R; Shur, M S

    2010-01-01

    The applicability of colour-quality metrics to solid-state light sources is validated and the results of the assessment of colour-rendition characteristics of various lamps are presented. The standard colour-rendering index metric or a refined colour-quality scale metric fails to distinguish between two principle colour-rendition properties of illumination: the ability to render object colours with high fidelity and the ability to increase chromatic contrast, especially when the spectra of light sources contain a few narrow-band electroluminescence components. Supplementing these metrics by the known figures of merit that measure the gamut area of a small number of test colour samples does not completely resolve this issue. In contrast, the statistical approach, which is based on sorting a very large number of test colour samples in respect of just-perceivable colour distortions of several kinds, offers a comprehensive assessment of colour-rendition properties of solid-state light sources. In particular, two statistical indices, colour-fidelity index (CFI) and colour-saturation index (CSI), which are the relative numbers of object colours rendered with high fidelity and increased saturation, respectively, are sufficient to reveal and assess three distinct types of solid-state light sources. These are (i) high-fidelity lamps, which cover the entire spectrum with the spectral components present in the wavelength ranges of both 530-610 nm and beyond 610 nm (e.g. trichromatic warm white phosphor-converted (pc) light-emitting diodes (LEDs), red-amber-green-blue LED clusters, complementary clusters of white and coloured LEDs); (ii) colour-saturating lamps, which lack power in the 530-610 nm wavelength range (e.g. red-green-blue or red-cyan-blue LED clusters) and (iii) colour-dulling lamps, which lack power for wavelengths longer than 610 nm (dichromatic daylight pc LEDs and amber-green-blue LED clusters). Owing to a single statistical format, CSI and CFI can be used for

  19. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    Science.gov (United States)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  20. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  1. Advanced dimming strategy for solid state luminaires

    DEFF Research Database (Denmark)

    Beczkowski, Szymon

    2010-01-01

    Increased luminaire gamut as well as increase in luminous efficiency is found when the LED based luminaire is driven by a hybrid PWM/AM dimming technique. This technique is applicable to any n-chromaticity luminaire but it is especially suitable for trichromatic RGB luminaires that do not have in...

  2. Solid State Research, 1977:3

    Science.gov (United States)

    1977-08-15

    166 JA No. UNPUBLISHED REPORTS Journal Articles 4710 Micro Fresnel Zone Plates for N. M. Ceglio" Coded Imaging Applications H. I. Smith...Chem. Phys. Lett. 45, 519 (1977). 17. See, for example, F. Gonzalez and G. Munuera, Revue de Chimie Minerale 7, 1021 (1971), and

  3. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    . Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance

  4. Pectinase production by Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical characterization and its application in olive-oil extraction.

    Science.gov (United States)

    Ortiz, Gastón E; Ponce-Mora, María C; Noseda, Diego G; Cazabat, Gabriela; Saravalli, Celina; López, María C; Gil, Guillermo P; Blasco, Martín; Albertó, Edgardo O

    2017-02-01

    The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl 2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min -1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.

  5. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  6. Solid State Division Progress Report for period ending March 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials. (DLC)

  7. Solid State Division Progress Report for period ending March 31, 1986

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials

  8. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  9. The search for solid state fusion lasers

    International Nuclear Information System (INIS)

    Weber, M.J.

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs

  10. Abstracts of the 7. workshop solid state chemistry and ceramics

    International Nuclear Information System (INIS)

    1988-11-01

    79 contributions have been presented as titles with abstracts. They deal with preparation, investigation, and properties of ceramic powders, sintered materials, metal oxides, oxide minerals, nitrides, solid electrolytes, glass ceramics, composite materials, and ceramic superconductors of the type Y-Ba-Cu-O. Phase studies of mixed oxide systems and different chemical processes of the solid state are included. 11 of them are in INIS scope and are processed individually

  11. Interfacial nanoarchitectonics for solid-state lithium batteries.

    Science.gov (United States)

    Takada, Kazunori

    2013-06-18

    Strong demand for solid-state lithium batteries has prompted intensive research for achieving fast ionic conduction in solids. Although the highest conductivity found among sulfides is higher than that of liquid electrolytes, it improves the battery performance only in combination with electrodes via a low-resistance interface. This Article reviews some interfacial structures that lower the interfacial resistance to enable high-power interfaces by controlling the carrier density.

  12. Development of a solid state laser of Nd:YLF

    Science.gov (United States)

    Doamaralneto, R.

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories. It initiates a broader project on laser development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc. Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations sigma (1,053 (MU)m) and (PI) (1.047 (MU)m) an active medium was prepared which was a crystalline plate with a convenient crystallographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mw, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials.

  13. Development of a solid state laser of Nd:YLF

    International Nuclear Information System (INIS)

    Amaral Neto, R. do.

    1984-01-01

    The CW laser action was obtained at room temperature of a Nd:YLF crystal in an astigmatically compensated cavity, pumped by an argon laser. This laser was completely projected, constructed and characterized in our laboratories, thus having a high degree of nationalization. It initiates a broader project on lasers development that will have several applications like nuclear fusion, industry, medicine, telemetry, etc.... Throught the study of the optical properties of the Nd:YLF crystal, laser operation was predicted using a small volume gain medium on the mentioned cavity, pumped by an Ar 514,5 nm laser line. To obtain the laser action at polarizations σ (1,053 μm) and π (1,047 μm) an active medium was prepared which was a cristalline plate with a convenient crystalographic orientation. The laser characterization is in reasonable agreement with the initial predictions. For a 3.5% output mirror transmission, the oscillation threshold is about 0.15 W incident on the crystal, depending upon the sample used. For 1 W of incident pump light, the output power is estimated to be 12 mW, which corresponds to almost 1.5% slope efficiency. The versatile arrangement is applicable to almost all optically pumped solid state laser materials. (Author) [pt

  14. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives.

    Science.gov (United States)

    David, Aditi; Singh Chauhan, Prakram; Kumar, Aditya; Angural, Steffy; Kumar, Deepak; Puri, Neena; Gupta, Naveen

    2018-03-01

    Bacillus nealsonii PN-11 produces thermo-alkalistable mannanase and protease active in wide temperature and pH range. Optimization of coproduction of protease and mannanase from this strain and application of cocktail of these enzymes as detergent additives were studied. On optimization mannanase yield of 834Ug -1 (11.12 fold increase) and protease yield of 70Ug -1 (4.7 fold increase) could be obtained in a single fermentation. Purification and characterization of mannanase have been done earlier and protease was done during this study and has a molecular mass of 48kDa. pH and temperature optima for protease were 10.0 and 65°C respectively. It was completely stable at 60°C for 3h and retained >80% of activity at pH 11.0 for 1h. Both the enzymes were compatible with detergents individually and in a combination. The wash performance of the detergent on different type of stains improved when protease or mannanase were used individually. However destaining was more efficient when a combination of mannanase and protease was used. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. CELLULASES PRODUCTION UNDER SOLID STATE FERMENTATION USING AGRO WASTE AS A SUBSTRATE AND ITS APPLICATION IN SACCHARIFICATION BY TRAMETES HIRSUTA NCIM

    Directory of Open Access Journals (Sweden)

    Bhaumik R. Dave

    2014-12-01

    Full Text Available Food and energy crisis are the biggest constraint all over the world which has focused lights on need of utilizing renewable resources to meet the future demand. A promising strategy is efficient utilization of lignocellulosic waste and fermentation of the resulting sugars for production of desired metabolites or biofuel. Production of all the cellulase enzymes on wheat bran and different parameters regulating it like pH, moisture ratio (substrate: liquid, temperature and inoculum size has been optimized which found to be 4.5, 1:3, 30°C and 108 spores respectively. Salient feature of partially purified enzyme with stability in the range of 30-50°C under acidic pH range was found to be prominent for industrial applications, moreover in this study, Trametes hirsuta, an efficient cellulase producer, was observed to be an effective species for saccharification of wheat straw to enhance the sugar yield. Enzymatic hydrolysis of wheat straw with 15 FPU of cellulase from the species showed 73% yield in 20 hrs. It may prove to be a suitable choice for the industrial saccharification of lignocellulosic biomasses.

  16. Solid state detectors in nuclear medicine.

    Science.gov (United States)

    Darambara, D G; Todd-Pokropek, A

    2002-03-01

    Since Nuclear Medicine diagnostic applications are growing fast, room temperature semiconductor detectors such CdTe and CdZnTe either in the form of single detectors or as segmented monolithic detectors have been investigated aiming to replace the NaI scintillator. These detectors have inherently better energy resolution that scintillators coupled to photodiodes or photomultiplier tubes leading to compact imaging systems with higher spatial resolution and enhanced contrast. Advantages and disadvantages of CdTe and CdZnTe detectors in imaging systems are discussed and efforts to develop semiconductor-based planar and tomographic cameras as well as nuclear probes are presented.

  17. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  18. Solid-state physics for electronics

    CERN Document Server

    Moliton, Andre

    2009-01-01

    Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered ma

  19. The possibility of clinical application of the solid state lasers: Nd:YAG, Ho:YAG, and Er:YAG in otolaryngology - head and neck surgery

    Science.gov (United States)

    Tomaszewska, M.; Kukwa, A.; Tulibacki, M.; Wójtowicz, P.; Olędzka, I.; Jeżewska, E.

    2007-02-01

    The purpose of this study was to summarize our experiences in clinical application of Nd:YAG, Ho:YAG and Er:YAG in otolaryngology- head and neck surgery. Choosing the laser type and parameters for the particular procedures was based on our previous research on tissue effects of those lasers. During the period of 1993-2006 we performed 3988 surgical procedures with the Nd:YAG laser. Over 87% of those were made for the nasal cavity pathologies as polyps, hyperplasia of inferior nasal turbinate, granulation tissue, postoperative adhesions, vascular malformations, under the local anesthesia conditions. In our experience Nd:YAG laser gives the possibility of good clinical control and low risk of side effects for disorders of high recurrence and frequent interventions necessity, as nasal polyps or respiratory papillomatosis. Nd:YAG assisted uvulopalatoplasty gives an interesting alternative for surgical procedures for snoring and slight/mild OSA-recognized patients. Due to its good hemostatic properties, it is a perfect tool for removal of the chemodectoma from meddle ear. During the period of 1995-2006 we performed 229 surgical procedures with the Ho:YAG laser, mostly for larynx pathologies (adhesion and scar tissue removal). In our experience Ho:YAG laser can serve as a precise laser knife for both soft and bony tissue. The ER:YAG laser still remain under clinical trial. Since 2001 year we performed 24 procedures of removing stone deposits from salivary glands. We believe it may become a promising method to cope with sialolithiasis which allows for glandule function preservation. All of the laser types mentioned above, can be easily coupled with endoscopes, what makes them available for all of the head and necklocalized disorders.

  20. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid

  1. Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review

    Directory of Open Access Journals (Sweden)

    Noraziah Abu Yazid

    2017-02-01

    Full Text Available The abundance of organic solid waste throughout the world has become a common issue that needs complete management at every level. Also, the scarcity of fuel and the competition between food and substance as an alternative to a petroleum-based product has become a major problem that needs to be properly handled. An urge to find renewable substances for sustainable development results in a strategy to valorize organic solid waste using solid state fermentation (SSF and to manage the issue of solid wastes in a green approach. This paper reviews management of solid wastes using SSF, with regard to its current application, advantages and challenges, downstream processing in SSF, economic viewpoint, and future perspectives.

  2. Interatomic bonding in solids fundamentals, simulation, applications

    CERN Document Server

    Levitin , Valim

    2013-01-01

    The connection between the quantum behavior of the structure elements of a substance and the parameters that determine the macroscopic behavior of materials has a major influence on the properties exhibited by different solids. Although quantum engineering and theory should complement each other, this is not always the case. This book aims to demonstrate how the properties of materials can be derived and predicted from the features of their structural elements, generally electrons. In a sense, electronic structure forms the glue holding solids together and it is central to determining struct

  3. Materials research for passive solar systems: solid-state phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Webb, J.D.; Burrows, R.W.; McFadden, J.D.O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C/sub 5/H/sub 12/O/sub 4/), pentaglycerinve (C/sub 5/H/sub 12/O/sub 3/), and neopentyl glycol (C/sub 5/H/sub 12/O/sub 2/). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature betweeen 25/sup 0/C and 188/sup 0/C, and have latent heats of transformation between 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier. Nevertheless, a higher cost of the phase-change materials (approx. =$0.70 per pound) is likely to limit their applicability in passive solar systems unless their performance can be significantly improved through further research.

  4. SOLID-STATE STORAGE DEVICE FLASH TRANSLATION LAYER

    DEFF Research Database (Denmark)

    2017-01-01

    Embodiments of the present invention include a method for storing a data page d on a solid-state storage device, wherein the solid-state storage device is configured to maintain a mapping table in a Log-Structure Merge (LSM) tree having a C0 component which is a random access memory (RAM) device...... and a C1 component which is a flash-based memory device. Methods comprise: writing the data page d at a physical storage page having physical storage page address P in the storage device in response to receiving a write request to store the data page d at a logical storage page having a logical storage...

  5. Solid State Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.; Walker, Bryant

    2012-01-01

    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  6. Solid-state interactions between trimethoprim and parabens

    DEFF Research Database (Denmark)

    Pedersen, S.; Kristensen, H. G.; Cornett, Claus

    1994-01-01

    Solid-state interactions between trimethoprim and the esters of 4-hydroxybenzoic acid (parahydroxybenzoates or parabens) used for anti-microbial preservation are investigated. The formation of a crystalline 1/1 molecular compound between trimethoprim and methyl parahydroxybenzoate is demonstrated...... by differential scanning calorimetry, X-ray powder diffraction, Fourier transform infrared spectroscopy, and solid-state C-13-NMR. Interactions between trimethoprim and 4-hydroxybenzoic acid and its ethyl,propyl and butyl esters were not observed. The nature of the trimethoprim and methyl parahydroxybenzoate...

  7. Majorana modes in solid state systems and its dynamics

    Science.gov (United States)

    Zhang, Qi; Wu, Biao

    2018-04-01

    We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.

  8. 13C solid state NMR investigation of natural resins components

    International Nuclear Information System (INIS)

    Tavares, Maria I.B.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Nogueira, Jose S.

    2001-01-01

    The objective of this work is to establish and analytical methodology as a routine using solid state nuclear magnetic resonance (NMR) techniques to investigate the mainly chemical components presented in natural resins in bulk. And also to evaluate the molecular behaviour of these resins. The routine solid state techniques allow us to assign the main compounds presented in the resins. Therefore, applying specialised techniques, like variable contact time, delayed contact time, dephasing time and proton spin lattice relaxation time in the rotating frame (T 1 H ρ), more information about chemical structure and molecular dynamic is available

  9. Solid state physics and physicists of the post war Latvia

    International Nuclear Information System (INIS)

    Zakis, J.

    2003-01-01

    In Latvia during the so-called post war period (1944-1991) fields that promoted the research activities were nuclear research and semiconductor electronics. Being considered as classified the researches in these fields were separated from the universities and transferred to the institutes of recently founded Latvian Academy of Sciences. The institutes related to the so-called sector management ministries performed the most of research in semiconductor physics. Research activities at the University of Latvia were mainly in the basic solid state physics (ionic crystals, Ferro ceramics). Despite of being controlled research activities in solid-state physics in Latvia were on relatively high level recognized both nationally and internationally

  10. What would Edison do with solid state lighting?

    Science.gov (United States)

    Ferguson, Ian T.; Melton, Andrew; Xu, Tianming; Jamil, Muhammad; Fenwick, Will

    2010-08-01

    Thomas Edison is widely regarded as the greatest inventor in history and the most prominent individual behind the invention of the electric light. His impressive characteristics as an individual that led to his amazing success as an innovator continue to be an inspiration for researchers today. This paper considers how Edison might proceed in developing solid state lighting into a technology capable of displacing incumbent light sources, including his own incandescent lamps, then reviews some of the "Edison-like" contributions made to solid state lighting by the Next Generation Lighting research program at Georgia Tech.

  11. PLGA and PHBV Microsphere Formulations and Solid-State Characterization

    DEFF Research Database (Denmark)

    Yang, Chiming; Plackett, David; Needham, David

    2009-01-01

    To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). The effects of FA loading and polymer composition on the mean...... diameter, encapsulation efficiency and FA released from the microspheres were determined. The solid-state and phase separation properties of the microspheres were characterized using DSC, XRPD, Raman spectroscopy, SEM, laser confocal and real time recording of single microspheres formation. Above a loading...

  12. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery.

    Science.gov (United States)

    Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2013-01-01

    All-solid-state secondary batteries that employ inorganic solid electrolytes are desirable because they are potentially safer than conventional batteries. The ionic conductivities of solid electrolytes are currently attracting great attention. In addition to the conductivity, the mechanical properties of solid electrolytes are important for improving the energy density and cycle performance. However, the mechanical properties of sulfide electrolytes have not been clarified in detail. Here, we demonstrate the unique mechanical properties of sulfide electrolytes. Sulfide electrolytes show room temperature pressure sintering. Ionic materials with low bond energies and a highly covalent character, which is promising for achieving a high ionic conductivity, tend to be suitable for room-temperature processing. The Young's moduli of sulfide electrolytes were measured to be about 20 GPa, which is an intermediate value between those of typical oxides and organic polymers.

  13. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    OBJECTIVES: Solid-state transformations may occur during any stage of pharmaceutical processing and upon storage of a solid dosage form. Early detection and quantification of these transformations during the manufacture of solid dosage forms is important since the physical form of an active...... pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...... multivariate approaches where even overlapping spectral bands can be analysed. SUMMARY: This review discusses the applications of different vibrational spectroscopic techniques to detect and monitor solid-state transformations possible for crystalline polymorphs, hydrates and amorphous forms of pharmaceutical...

  14. Fatty acids polymorphism and solid-state miscibility

    Energy Technology Data Exchange (ETDEWEB)

    Gbabode, Gabin [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France)], E-mail: ggbabode@ulb.ac.be; Negrier, Philippe; Mondieig, Denise [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France); Moreno, Evelyn; Calvet, Teresa; Cuevas-Diarte, Miquel Angel [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, 08028 Barcelona (Spain)

    2009-02-05

    The pentadecanoic acid-hexadecanoic acid (C{sub 15}H{sub 29}OOH-C{sub 16}H{sub 31}OOH) binary system is dealt with in this article. The polymorphism of 20 mixed materials has been investigated combining calorimetric measurements, isothermal and versus temperature X-ray powder diffraction and also FTIR spectroscopy. In particular, the cell parameters of the stable forms, temperatures and heats of phase changes for the two constituents and a proposal of phase diagram are given in this article. Three solid forms are created by mixing in addition with the four solid forms of the pure components. All these solid forms are stabilized on narrow domains of composition, implying a reduced solid-state miscibility of the pentadecanoic and hexadecanoic acids.

  15. Solid Lubrication Fundamentals and Applications. Chapter 6

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2000-01-01

    This chapter focuses attention on the friction and wear properties of selected solid lubricating films to aid users in choosing the best lubricant, deposition conditions, and operational variables. For simplicity, discussion of the tribological properties of concern is separated into two parts. The first part of the chapter discusses the different solid lubricating films selected for study including commercially developed solid film lubricants: (1) bonded molybdenum disulfide (MoS2), (2) magnetron-sputtered MoS2, (3) ion-plated silver, (4) ion-plated lead, (5) magnetron-sputtered diamondlike carbon (MS DLC), and (6) plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DEC) films. Marked differences in the friction and wear properties of the different films resulted from the different environmental conditions (ultrahigh vacuum, humid air, and dry nitrogen) and the solid film lubricant materials. The second part of the chapter discusses the physical and chemical characteristics, friction behavior, and endurance life of the magnetron-sputtered MoS2 films. The role of interface species and the effects of applied load, film thickness, oxygen pressure, environment, and temperature on the friction and wear properties are considered.

  16. Study of xCdI{sub 2}-(100-x)[2Ag{sub 2}O-(0.7V{sub 2}O{sub 5}-0.3B{sub 2}O{sub 3})] electrolyte system for application in solid-state primary cells

    Energy Technology Data Exchange (ETDEWEB)

    Padmasree, K.P.; Kanchan, D.K.; Panchal, H.R. [Department of Physics, M.S. University of Baroda, Vadodara-390002, Gujarat (India); Hariharan, K. [Physics Department, Indian Institute of Technology, Madras-600036 (India); Okram, G.S. [IUC-DAEF, Khandwa Road, Indore-452017, Madhya Pradesh (India)

    2006-09-13

    A new, glassy, solid electrolyte system CdI{sub 2}-Ag{sub 2}O-V{sub 2}O{sub 5}-B{sub 2}O{sub 3} has been synthesized and the composition with high ionic conductivity is used as an electrolyte in a solid-state cell. The silver ion transport number of this electrolyte is nearly unity. The thermoelectric power varies inversely with absolute temperature. The discharge and current-voltage characteristics are examined for different negative and positive electrodes to evaluate the applicability of these cells as power sources for low-energy applications. (author)

  17. The use of carbon black-TiO2 composite prepared using solid state method as counter electrode and E. conferta as sensitizer for dye-sensitized solar cell (DSSC) applications

    Science.gov (United States)

    Jaafar, Hidayani; Ahmad, Zainal Arifin; Ain, Mohd Fadzil

    2018-05-01

    In this paper, counter electrodes based on carbon black (CB)-TiO2 composite are proposed as a cost-effective alternative to conventional Pt counter electrodes used in dye-sensitized solar cell (DSSC) applications. CB-TiO2 composite counter electrodes with different weight percentages of CB were prepared using the solid state method and coated onto fluorine-doped tin oxide (FTO) glass using doctor blade method while Eleiodoxa conferta (E. conferta) and Nb-doped TiO2 were used as sensitizer and photoanode, respectively, with electrolyte containing I-/I-3 redox couple. The experimental results revealed that the CB-TiO2 composite influenced the photovoltaic performance by enhancing the electrocatalytic activity. As the amount of CB increased, the catalytic activity improved due to the increase in surface area which then led to low charge-transfer resistance (RCT) at the electrolyte/CB electrode interface. Due to the use of the modified photoanode together with natural dye sensitizers, the counter electrode based on 15 wt% CB-TiO2 composite was able to produce the highest energy conversion efficiency (2.5%) making it a viable alternative counter electrode.

  18. Determination of structure of oriented samples using two-dimensional solid state NMR techniques

    International Nuclear Information System (INIS)

    Jin Hong; Harbison, G.S.

    1990-01-01

    One dimensional and two-dimensional MAS techniques can give detailed information about the structure and dynamics of oriented systems. We describe the application of such techniques to the liquid-crystalline polymer poly(p-phenyleneterphtalimide) (PPTA), and thence deduce the solid-state structure of the material. (author). 9 refs.; 6 figs

  19. Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus

    Directory of Open Access Journals (Sweden)

    Padmavathi Tallapragada

    2017-06-01

    It can be concluded that the fungus M. sanguineus is a good source of amylase production under solid state fermentation. Application of amylase produced by M. sanguineus in detergent industry was also carried out and it was proven very effective in stain removal from the fabrics.

  20. Fast Qualification of Solder Reliability in Solid-state Lighting System

    NARCIS (Netherlands)

    Zhang, J.

    2015-01-01

    Solid-state lighting (SSL), which is based 0n semiconductor Lighting Emitting Diode (LED), is the most promising and reliable energy saving solution for future lighting applications. Since a bare LED die can hardly survive without a package, one of the most import function of the LED package is to

  1. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    Science.gov (United States)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  2. Electrical conduction in solid materials physicochemical bases and possible applications

    CERN Document Server

    Suchet, J P

    2013-01-01

    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  3. Solid-state lighting life prediction using extended Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep [Auburn Univ., AL (United States); Wei, Junchao [Auburn Univ., AL (United States); Davis, Lynn [RTI International, Durham, NC (United States)

    2013-07-16

    Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. The U.S. Department of Energy has made a long term commitment to advance the efficiency, understanding and development of solid-state lighting (SSL) and is making a strong push for the acceptance and use of SSL products to reduce overall energy consumption attributable to lighting. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of SSL Luminaires from LM-80 test data. The TM-21 model uses an Arrhenius Equation with an Activation Energy, Pre-decay factor and Decay Rates. Several failure mechanisms may be active in a luminaire at a single time causing lumen depreciation. The underlying TM-21 Arrhenius Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, a Kalman Filter and Extended Kalman Filters have been used to develop a 70% Lumen Maintenance Life Prediction Model for a LEDs used in SSL luminaires. This model can be used to calculate acceleration factors, evaluate failure-probability and identify ALT methodologies for reducing test time. Ten-thousand hour LM

  4. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  5. Methodology to evaluate the energy associated to the industrial solid wastes: application in a metropolitan region of Campinas, Sao Paulo state, Brazil; Metodologia para avaliacao da energia associada ao residuo solido industrial: aplicacao a regiao metropolitada de Campinas

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Tereza Rosana Orrico [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Curso de Pos-graduacao em Planejamento de Sistemas Energeticos; Teixeira, Egle Novaes [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Civil, Arquitetura e Urbanismo; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Lab. de Hidrogenio

    2004-07-01

    The aim of this work is to the application of a methodology to evaluate the energy associated to the industrial solid wastes in the metropolitan region of Campinas. The methodological route proposed is: the characterization of the research area and the production/management of the industrial solid wastes; the energetic classification and the qualitative/quantitative research of the energy associated to the industrial solid wastes; and, the valuation of the applicability of the energetic utilization mechanisms proposed to the region. This methodology when applied at the Campinas metropolitan region proved to be valid and it resulted in a synthetically presentation of the social and environmental reality of the industrial sector and the destination of the wastes, as well as it indicated the potentialities related to the energetic utilization of the industrial solid waste in the region. With the obtained results it was shown the importance of the the production and the destination of the industrial solid wastes in the Campinas metropolitan region , and the meaning, in terms of electric potency, of the values of the energy associated to the wastes with a known factor of energetic conversion shown in the researched sample. (author)

  6. Self-healing liquid/solid state battery

    Science.gov (United States)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.; Ning, Xiaohui; Sadoway, Donald R.

    2018-02-27

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrode includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.

  7. PEO nanocomposite polymer electrolyte for solid state symmetric

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  8. PEO nanocomposite polymer electrolyte for solid state symmetric ...

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  9. Complete solid state lighting (SSL) line at CEA LETI

    Science.gov (United States)

    Robin, I. C.; Ferret, P.; Dussaigne, A.; Bougerol, C.; Salomon, D.; Chen, X. J.; Charles, M.; Tchoulfian, P.; Gasse, A.; Lagrange, A.; Consonni, M.; Bono, H.; Levy, F.; Desieres, Y.; Aitmani, A.; Makram-Matta, S.; Bialic, E.; Gorrochategui, P.; Mendizabal, L.

    2014-09-01

    With a long experience in optoelectronics, CEA-LETI has focused on Light Emitting Diode (LED) lighting since 2006. Today, all the technical challenges in the implementation of GaN LED based solid state lighting (SSL) are addressed at CEA-LETI who is now an RandD player throughout the entire value chain of LED lighting. The SSL Line at CEA-LETI first deals with the simulation of the active structures and LED devices. Then the growth is addressed in particular 2D growth on 200 mm silicon substrates. Then, technological steps are developed for the fabrication of LED dies with innovative architectures. For instance, Versatile LED Array Devices are currently being developed with a dedicated μLED technology. The objective in this case is to achieve monolithical LED arrays reported and interconnected through a silicon submount. In addition to the required bonding and 3D integration technologies, new solutions for LED chip packaging, thermal management of LED lamps and luminaires are also addressed. LETI is also active in Smart Lighting concepts which offer the possibility of new application fields for SSL technologies. An example is the recent development at CEA LETI of Visible Light Communication Technology also called LiFi. With this technology, we demonstrated a transmission rate up to 10 Mb/s and real time HD-Video transmission.

  10. Characterisation and Radiation Modification of Carrageenan in the Solid State

    International Nuclear Information System (INIS)

    Gulrez, S.; Al-Assaf, S.; Phillips, G.O.

    2010-01-01

    This study reports the modification of kappa-carrageenan in the solid state using gamma radiation (in the dose range of 1-25kGy) in the presence of unsaturated alkyne gas. The results showed maximum production of hydrogel at 5kGy with nearly 80% of starting material being converted to hydrogel form in the absence of a gellin agent. Higher irradiation doses at 25kGy resulted in reducing the hydrogel proportion to ~40% due to degradation. The molecular weight and distribution was determined by GPC-MALLS and the results showed a decrease in the mass recovery and molecular weight of the soluble fraction at 60C. The molecular weight results were in agreement with hydrogel data determined from the filtration method. There was an optimum increase in the viscosity, elasticity and mechanical strength at 5kGy which was followed by a decrease in the gel strength at higher doses (25kGy). Our study demonstrates the potential production of novel hydrogel based carrageenan obtained by irradiation in the absence of metal ions with possible new applications. A mechanism for the radiation induced cross-linking to produce superhelical aggregates in the absence of a gelling agent is proposed. (author)

  11. Design of a miniaturized solid state laser for automated assembly

    Science.gov (United States)

    Funck, Max C.; Dolkemeyer, Jan; Morasch, Valentin; Loosen, Peter

    2010-05-01

    A miniaturized solid state laser for marking applications has been developed featuring novel assembly strategies to reduce size, cost and assembly effort. Design and setup have been laid out with future automation of the assembly in mind. Using a high precision robot the optical components composing the laser system are directly placed on a planar substrate providing accurate positioning and alignment within a few microns. No adjustable mounts for mirrors and lenses are necessary, greatly simplifying the setup. Consisting of either a ND:YAG or a Nd:YVO4 crystal pumped with a fiber coupled diode laser, a q-switch for pulse generation and a beam expander the entire assembly is confined in a 100ml space and delivers 4 W of continuous output power at 1.064 μm with an efficiency greater than 40%. Pulse lengths of 10-20 ns and repetition rates of up to 150 kHz have been obtained with an acousto-optic modulator. In addition, a custom designed electro-optic modulator with integrated high voltage switch has been realized. A supply unit for the entire system, including scanner and water cooling, is integrated in a 19" industrial chassis and can be operated via a graphical user interface on a standard personal computer.

  12. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  13. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  14. A compact, all solid-state LC high voltage generator.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  15. Formability of aluminium sheets manufactured by solid state recycling

    Science.gov (United States)

    Kore, A. S.; Nayak, K. C.; Date, P. P.

    2017-09-01

    Conventional recycling practices for non-ferrous metallic scrap involves melting followed by purification. This practice is suitable for recycling when the large volume of scrap is available. Though such recycling reduces consumption of diminishing metallic resources, high energy requirement and material loss during melting and purification limit its applicability. In the present work, manufacturing of solid state recycled aluminium sheet by hot rolling is explored and its formability characterized. Aluminium chips were divided into smaller particles (1~2mm) by crushing. After stress relief annealing, chips were cold compacted into square slabs (75*75mm section) of different thicknesses. Another similar set of slabs was made by hot compaction. The compacted slabs were hot rolled over a number of passes at 400°C. Each slab was reduced to approximately 90% thickness to get the sheet thickness in the range of 0.6 to 1.5 mm. Microstructure revealed good interface bonding between the chip particles. Mechanical properties of the sheet from room temperature up to 200°C and at different strain rates were characterized by a number of tensile tests. Circular blanks from sheet were drawn into cylindrical cups and strain distribution was observed along different directions of rolling using circle grid analysis.

  16. Potential of high-average-power solid state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-09-25

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels.

  17. 2010 Ceramics, Solid State Studies in Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    John Halloran

    2010-08-20

    The 2010 Gordon Conference on Solid State Studies in Ceramics will present forefront research on ceramic materials in energy conversion, storage, and environmental sustainability. Oxide materials in advanced Li-ion batteries will be featured, including first principles computational methods, new experimental methods, novel synthesis, and the design of batteries that exploit nanoscale cathode materials. Several speakers address advances in oxides for solar applications, including photo-catalysts for solar hydrogen production and dye sensitized solar cells, along with thin film photovoltaics. Fast ionic conducting ceramics in electrochemical energy conversion and storage will be addressed for fuel cells and electrochemical storage. New concepts for electrochemical capacitor materials will be addressed, as will thermoelectric, geopolymers, and ceramics in nuclear energy. The Conference will bring together investigators at the forefront of their field as well as junior scientists in a collegial atmosphere, with programmed discussion sessions and informal gatherings in the afternoons and evenings. Poster presentations provide opportunities for junior scientists and graduate students to present their work and exchange ideas with leaders in the field. This Conference provides an avenue for scientists from different disciplines to explore new ideas and promotes cross-disciplinary collaborations in the various research areas represented.

  18. Solid State Synthesis and Characterization of Carbo-Nitride Materials

    National Research Council Canada - National Science Library

    Khabashesku, Valery

    2000-01-01

    The preparation of stoichiometric sp(sup 2)-bonded amorphous carbon nitride a-C3N4 in gram quantities was successfully achieved by performing a solid-state reaction of cyanuric halides C3N3X3 (X=Cl, F...

  19. Solid State NMR Characterization and Adsorption Properties of ...

    African Journals Online (AJOL)

    ... agents and clinoptilolite at 140 °C inDMFunder nitrogen atmosphere. The light in weight and fluffy composites obtained were characterized by FT-IR, XRD, TGA, SEM and Solid State NMR. Results depicted possible chemical interactions between the two materials (lignocellulose and clinoptilolite). Used as adsorbents, the ...

  20. Solid-state Photochemical [2+ 2] Cycloaddition Reaction of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 2. Solid-state Photochemical [2+2] Cycloaddition Reaction of Hydrogen-Bonded Zn(II) Metal Complex Containing Several Parallel C=C Bonds. ABDUL MALIK P PEEDIKAKKAL. Regular Article Volume 129 Issue 2 February 2017 pp 239-247 ...

  1. SOLID-STATE CONTROLLED FIRE HAZARD DETECTION AND ...

    African Journals Online (AJOL)

    Shared data and instmction paths. •. Mostly computer embedded systems use micro controllers. In view of the superior features of microcontroller the fire fighting system is further updated by using microcontroller chip in place of microprocessor chip. Use of solid-state relllY unit: nle electromechanical relay is one of the most.

  2. Radon exhalation studies in building materials using solid-state ...

    Indian Academy of Sciences (India)

    Building materials constitute the second most important source of radon in dwellings. The common building materials used in the construction of dwellings are studied for radon exhalation rate. The 'Can' technique using LR-115 type-II solid-state nuclear track detector has been used for these measurements. The radon ...

  3. Characterization and analysis of medical solid waste in Osun State ...

    African Journals Online (AJOL)

    This paper reports the study of quantum and characterization of medica solid wastes generated by healthcare facilities in Osun State. The work involved administration of a questionnaire and detailed studies conducted on facilities selected on the basis of a combination of purposive and random sampling methods.

  4. Friction regimes in the lubricants solid-state regime

    NARCIS (Netherlands)

    Schipper, Dirk J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and

  5. Biodegradation of agro-industrial orange waste under solid state ...

    African Journals Online (AJOL)

    ... agro-industrial orange peel and pulp wastes under solid state fermentation and natural environmental condition as a source of enzymes production [α & β amylase, cellulase, pectinase(s), lipase(s), esterase(s) and peroxidase(s)] the physiological enzymes of lysis and total protein. Different microorganisms such as fungi, ...

  6. Study of Optical, Solid State and Structural Properties of Nickel ...

    African Journals Online (AJOL)

    Thin films of Nickel sulphide (NiS) were successfully grown by using the solution growth technique which is cost effective and efficient. Nickel chloride (NiCl2), Sodium sulphate (Na2S2O3) and Ammonia NH3 were used. The optical and solid state properties were obtained from the characterisation done at University of ...

  7. Solid state reactions of monovalent sulphates with UO2

    International Nuclear Information System (INIS)

    Khandakar, R.R.; Krishnan, K.; Singh Mudher, K.D.; Jayadevan, N.C.

    1986-01-01

    Solid state reactions of sulphates of Na + , K + , Rb + , Cs + and Tl + with UO 2 in presence of (NH 4 ) 2 SO 4 lead to the formation of double sulphates at 400degC. The double sulphates decompose at higher temperatures to give metal uranates. Thermogravimetric, x-ray diffraction and chemical analysis have been used to characterise the compounds. (author). 5 refs

  8. Production of Citric Acid from Solid State Fermentation of Sugarcane ...

    African Journals Online (AJOL)

    Aspergillus niger is the leading microorganism of choice for citric acid production. Sugarcane waste was used as substrate under solid state fermentation to comparatively evaluate the citric acid production capacity of Aspergillus niger isolates and the indigenous microflora in the sugarcane waste. Known optimal cultural ...

  9. Solid-state interactions between trimethoprim and parabens

    DEFF Research Database (Denmark)

    Pedersen, S.; Kristensen, H. G.; Cornett, Claus

    1994-01-01

    Solid-state interactions between trimethoprim and the esters of 4-hydroxybenzoic acid (parahydroxybenzoates or parabens) used for anti-microbial preservation are investigated. The formation of a crystalline 1/1 molecular compound between trimethoprim and methyl parahydroxybenzoate is demonstrated...

  10. Advanced Solid-state Lasers - to Ignition and Beyond

    International Nuclear Information System (INIS)

    Marshall, C.; Bibeau, C.; Orth, C; Meier, W.R.; Payne, S.; Sutton, S.

    1998-01-01

    This brochure concentrates on the diode-pumped solid-state laser. Surrounding it on the cover are some of the primary technological developments that make it a candidate for the means by which inertial confinement fusion will create inertial fusion energy as an inexhaustible source of electric power

  11. Solid-state fermentation : modelling fungal growth and activity

    NARCIS (Netherlands)

    Smits, J.P.

    1998-01-01

    In solid-state fermentation (SSF) research, it is not possible to separate biomass quantitatively from the substrate. The evolution of biomass dry weight in time can therefore not be measured. Of the aiternatives to dry weight available, glucosamine content is most

  12. Promises and challenges in solid-state lighting

    Science.gov (United States)

    Schubert, Fred

    2010-03-01

    Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.

  13. Solid-state Distributed Temperature Control for International Space Station

    Science.gov (United States)

    Holladay, Jon B.; Reagan, Shawn E.; Day, Greg

    2004-01-01

    A newly developed solid-state temperature controller will offer greater flexibility in the thermal control of aerospace vehicle structures. A status of the hardware development along with its implementation on the Multi- Purpose Logistics Module will be provided. Numerous advantages of the device will also be discussed with regards to current and future flight vehicle implementations.

  14. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  15. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  16. Reflections on the 34th Midwest Solid State Conference

    International Nuclear Information System (INIS)

    Feldman, B.J.

    1987-01-01

    The 34th Midwest Solid State Conference was held October 24 and 25, 1986 in St. Louis, Missouri. The topics covered included quantum wells, superlattices, tunneling current, periodicities in liquid crystals, nonlinear patterns in dendritic crystal growth, and current fluctuations in disordered metals

  17. Automatic diagnosis and control of distributed solid state lighting systems

    NARCIS (Netherlands)

    Dong, J.; Van Driel, W.; Zhnag, G.

    2011-01-01

    This paper describes a new design concept of automatically diagnosing and compensating LED degradations in distributed solid state lighting (SSL) systems. A failed LED may significantly reduce the overall illumination level, and destroy the uniform illumination distribution achieved by a nominal

  18. Kinetics of solid state phase transformations: Measurement and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 1. Kinetics of solid state phase transformations: Measurement and modelling of some basic issues. S Raju E ... are enumerated. A simple and general modelling methodology for understanding the kinetics of non-isothermal transformations is outlined.

  19. Bethe's Contributions to Solid State Theory· A Tribute

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Bethe's Contributions to Solid State Theory: A Tribute. H R Krishnamurthy. General Article Volume 10 Issue 11 November 2005 pp 55-69. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. A new solid-state passive switch for neodymium lasers

    Science.gov (United States)

    Ziul'Kov, V. A.; Kazachenko, A. E.; Kotov, S. G.; Kovalev, D. V.; Stavrov, A. A.

    1992-07-01

    A new passive modulator based on CuInS2(1-x)Se2x-doped glass is proposed for Q-switching in neodymium lasers. It is noted that these solid-state passive switches can operate in a wide spectral range and do not require the use of semiconductor compounds of high optical quality.