WorldWideScience

Sample records for solid spherical source

  1. Finite size melting of spherical solid-liquid aluminium interfaces

    DEFF Research Database (Denmark)

    Chang, J.; Johnson, Erik; Sakai, T.

    2009-01-01

    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...

  2. From Spheric to Aspheric Solid Polymer Lenses: A Review

    Directory of Open Access Journals (Sweden)

    Kuo-Yung Hung

    2011-01-01

    Full Text Available This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2 mm, and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA, and cyclic olefin copolymer (COC. Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed.

  3. Weyl curvature tensor in static spherical sources

    International Nuclear Information System (INIS)

    Ponce de Leon, J.

    1988-01-01

    The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed

  4. On the Field of a Stationary Charged Spherical Source

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2009-04-01

    Full Text Available The equations of gravitation related to the field of a spherical charged source imply the existence of an interdependence between gravitation and electricity [5]. The present paper deals with the joint action of gravitation and electricity in the case of a stationary charged spherical source. Let m and " be respectively the mass and the charge of the source, and let k be the gravitational constant. Then the equations of gravitation need specific discussion according as j " j m p k (source strongly charged. In any case the curvature radius of the sphere bounding the matter possesses a strictly positive greatest lower hound, so that the source is necessarily an extended object. Pointwise sources do not exist. In particular, charged black holes do not exist.

  5. Gravitational settling of a highly concentrated system of solid spherical particles

    Science.gov (United States)

    Arkhipov, V. A.; Usanina, A. S.

    2017-09-01

    In the present paper, we report on the results of an experimental study of the process of gravity sedimentation of a cloud of monodispersed solid spherical particles with initial volume concentration C > 0.03, which was performed in a wide range of Reynolds numbers. An analytical estimate of the settling regimes of spherical particle clouds is presented. A new method for creating a spherical particle cloud with a high concentration of particles is proposed. A qualitative picture of the settling process of a highly concentrated particle cloud under gravity is revealed. A criterial dependence for the drag coefficient of a sedimenting spherical particle cloud as an entity is obtained.

  6. Gravitational sedimentation of cloud of solid spherical particles at small Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The experimental results of study of gravitational sedimentation of highly-concentrated systems of solid spherical particles at small Reynolds numbers Re<1 are presented. Empirical equation for drag coefficient of the particle assembly has been obtained. The influence of initial particle concentration in the cloud on its dynamics and velocity has been analysed.

  7. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  8. Solid waste as an energy source

    International Nuclear Information System (INIS)

    Armenski, Slave

    2004-01-01

    The solid wastes as sources of heat and electrical energy were analysed. Typical structure of solid waste and organic products from: municipal solid wastes, industrial wastes and agricultural wastes for some developed countries are presented. Some dates of agricultural wastes for R. Macedonia are presented. The structure and percentage of organic products and energy content of solid wastes are estimated. The quantity of heat from solid wastes depending of the waste mass is presented. The heat quantity of some solid wastes component and the mixed municipal waste is presented. (Original)

  9. Solid sources of krypton-85

    International Nuclear Information System (INIS)

    Puig, J.R.; Sandier, J.

    1962-01-01

    Krypton-85, a β-emitter with a long half-life and low biological hazard, has considerable industrial potentialities. It is difficult, however, to manufacture sources since the element occurs in gaseous form and cannot be chemically fixed. The authors describe a method of krypton-fixation in a macromolecular matrix formed by mass polymerization of a liquid monomer containing krypton; they also give an account of the preparation of two types of source produced in this way-one enclosed in polystyrene, the other in polyvinyl acetate. Such sources lose krypton; the activity of the first decreases by 8 % daily, that of the second by 3 % daily. These apparent decays enable the diffusion coefficients of krypton in these polymers to be calculated. Diffusion appears to be prevented by the cross-linkages which exist in the polymers. (author) [fr

  10. Solvothermal synthesis and characterization of ceria with solid and hollow spherical and multilayered morphologies

    International Nuclear Information System (INIS)

    He, Lei; Li, Junping; Feng, Zhihai; Sun, Dongfeng; Wang, Tingyu; Li, Ruixing; Xu, Yaohui

    2014-01-01

    Highlights: • Various morphologies of CeO 2 are gotten by controlling the solvothermal conditions. • The various morphologies are synthesized without any template or surfactant. • The chemical mechanisms for the formation of the products in the solvothermal process are discussed. • The morphology evolution from solid spheres to multilayered structures is supposed. • The as-synthesized CeO 2 samples possess excellent adsorption capacities. - Abstract: Ceria powders with different morphologies were synthesized using a facile template-free solvothermal process combined with calcination. The influence of solvothermal temperature and time on the powder was studied. Solid spheres, hollow spheres, and multilayered structures were controlled by adjusting the solvothermal conditions. The possible mechanisms for the formation of the precursors under the solvothermal conditions employed and the evolution of the powder from solid spherical to multilayered structures were discussed. Ethylene glycol played a key role in the morphology evolution of the powder. Cerium catalyzed the Guerbet-like reaction and reacted with ethylene glycol to produce ceria (CeO 2 ), Ce(HCOO) 3 , and Ce(OH)CO 3 . The redox-assisted dissolution–recrystallization process significantly contributed to the morphology transformation from solid spheres to multilayered structures. Moreover, the samples synthesized at different temperatures for 24 h possessed excellent adsorption capacities towards the removal of acid orange 7 when compared with commercial ceria

  11. Optics of relativistic sources in a spherically symmetric gravitational field

    International Nuclear Information System (INIS)

    Campbell, G.A.

    1975-01-01

    The effects of spectral shifts and gravitational focussing on radiation from sources moving geodesically in the Schwarzschild gravitational field is analyzed using the general-relativistic equations for geodesic motion and for the propagation of radiation along null geodesics in the geometrical optics approximation. The exact solutions of the Schwarzschild geodesic equations are briefly discussed for the null and time-like cases, and the method of classifying the orbital types of motion based on the effective radial potential is presented. A method of finding the stability of these orbits using this technique is discussed. The geometrical optics approximation for the propagation of radiation is discussed, and the area-intensity law for the Schwarzschild field is derived. The particularly interesting region near R = 3m is investigated by means of expansions of the exact equations. Numerical techniques for calculating radiation patterns from the propagation equations are discussed, including techniques for obtaining the time variation along geodesics and differences in propagation time along different null geodesics. Finally, the implications of these calculations for the apparent contradiction in energy requirements set by Joseph Weber's observations of galactic gravitational radiation and by astronomical observation are discussed. (Diss. Abstr. Int., B)

  12. Directivity of Spherical Polyhedron Sound Source Used in Near-Field HRTF Measurements

    International Nuclear Information System (INIS)

    Yu Guang-Zheng; Xie Bo-Sun; Rao Dan

    2010-01-01

    The omnidirectional character is one of important requirements for the sound source used in near-field head-related transfer function (HRTF) measurements. Based on the analysis on the radiation sound pressure and directivity character of various spherical polyhedron sound sources, a spherical dodecahedral sound source with radius of 0.035m is proposed and manufactured. Theoretical and measured results indicate that the sound source is approximately omnidirectional below the frequency of 8 kHz. In addition, the sound source has reasonable magnitude response from 350Hz to 20kHz and linear phase characteristics. Therefore, it is suitable for the near-field HRTF measurements. (fundamental areas of phenomenology(including applications))

  13. Neutron leakage from Pb and Bc spherical shells with 14 MeV central neutron source

    International Nuclear Information System (INIS)

    Antonov, S.; Daskalov, G.; Ilieva, K.; Jordanova, J.; Prodanova, R.; Zagryadskij, V.A.; Novikov, V.M.; Chuvilin, D.Yu.

    1988-01-01

    Results of measuring neutron leakage from spherical shells of different thickness, made of Pb and Be with a point neutron source in the sphere centrum are presented. The experiment results are compared to calculations according to different programs using data of various nuclear data libraies. The comparison has shown that all the calculations understate the neutron leakage from Pb assmebly. 9 refs.; 2 tabs

  14. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  15. Ion sources for solids isotopic analysis

    International Nuclear Information System (INIS)

    Tyrrell, A.C.

    Of the dozen or so methods of producing ions from solid samples only the surface or thermal ionisation method has found general application for precise measurement of isotopic ratios. The author discusses the principal variables affecting the performance of the thermal source; sample preparation, loading onto the filament, sample pre-treatment, filament material. (Auth.)

  16. Ion sources for solids isotopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, A. C. [Ministry of Defence, Foulness (UK). Atomic Weapons Research Establishment

    1978-12-15

    Of the dozen or so methods of producing ions from solid samples only the surface or thermal ionisation method has found general application for precise measurement of isotopic ratios. The author discusses the principal variables affecting the performance of the thermal source; sample preparation, loading onto the filament, sample pre-treatment, filament material.

  17. A calculation of dose distribution around 32P spherical sources and its clinical application

    International Nuclear Information System (INIS)

    Ohara, Ken; Tanaka, Yoshiaki; Nishizawa, Kunihide; Maekoshi, Hisashi

    1977-01-01

    In order to avoid the radiation hazard in radiation therapy of craniopharyngioma by using 32 P, it is helpful to prepare a detailed dose distribution in the vicinity of the source in the tissue. Valley's method is used for calculations. A problem of the method is pointed out and the method itself is refined numerically: it extends a region of xi where an approximate polynomial is available, and it determines an optimum degree of the polynomial as 9. Usefulness of the polynomial is examined by comparing with Berger's scaled absorbed dose distribution F(xi) and the Valley's result. The dose and dose rate distributions around uniformly distributed spherical sources are computed from the termwise integration of our polynomial of degree 9 over the range of xi from 0 to 1.7. The dose distributions calculated from the spherical surface to a point at 0.5 cm outside the source, are given, when the radii of sources are 0.5, 0.6, 0.7, 1.0, and 1.5 cm respectively. The therapeutic dose for a craniopharyngioma which has a spherically shaped cyst, and the absorbed dose to the normal tissue, (oculomotor nerve), are obtained from these dose rate distributions. (auth.)

  18. Calculated Absolute Detection Efficiencies of Cylindrical Nal (Tl) Scintillation Crystals for Aqueous Spherical Sources

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O; Tollander, B

    1968-08-15

    Calculated values of the absolute total detection efficiencies of cylindrical scintillation crystals viewing spherical sources of various sizes are presented. The calculation is carried out for 2 x 2 inch and 3 x 3 inch Nal(Tl) crystals and for sources which have the radii 1/4, 1/2, 3/4 and 1 times the crystal radius. Source-detector distances of 5-20 cm and gamma energies in the range 0.1 - 5 MeV are considered. The correction factor for absorption in the sample container wall and in the detector housing is derived and calculated for a practical case.

  19. FDTD verification of deep-set brain tumor hyperthermia using a spherical microwave source distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, D. [20th Intelligence Squadron, Offutt AFB, NE (United States); Rappaport, C.M. [Northeastern Univ., Boston, MA (United States). Center for Electromagnetics Research; Terzuoli, A.J. Jr. [Air Force Inst. of Tech., Dayton, OH (United States). Graduate School of Engineering

    1996-10-01

    Although use of noninvasive microwave hyperthermia to treat cancer is problematic in many human body structures, careful selection of the source electric field distribution around the entire surface of the head can generate a tightly focused global power density maximum at the deepest point within the brain. An analytic prediction of the optimum volume field distribution in a layered concentric head model based on summing spherical harmonic modes is derived and presented. This ideal distribution is then verified using a three-dimensional finite difference time domain (TDTD) simulation with a discretized, MRI-based head model excited by the spherical source. The numerical computation gives a very similar dissipated power pattern as the analytic prediction. This study demonstrates that microwave hyperthermia can theoretically be a feasible cancer treatment modality for tumors in the head, providing a well-resolved hot-spot at depth without overheating any other healthy tissue.

  20. A new expression for determination of fluences from a spherical moderator neutron source for the calibration of spherical neutron measuring devices

    International Nuclear Information System (INIS)

    Khoshnoodi, M.; Sohrabi, M.

    1997-01-01

    A new expression modifying the inverse square law for determination of neutron fluences from spherical moderator neutron sources is reported. The formalism is based on the neutron fluence at a point outside the moderator as the summation of fluxes of two groups of neutrons: direct neutrons from the central region of the moderator, and moderated neutrons which, to a first approximation, are scattered from the outermost layers of the spherical moderator. The expression has been further developed for spherical neutron measuring devices with an appropriate geometry factor which corrects the reading of the device for non-uniform irradiation of the detector. The combination of the new fluence function and those of the air and room scattered components introduce a calibration model. The fluence relationship obtained for moderated sources may conveniently be used for calculating the more rapid change of neutron dose at close distances than that which is based on the inverse square dependence. (author)

  1. Translational and rotational diffusion of dilute solid amorphous spherical nanocolloids by molecular dynamics simulation

    Science.gov (United States)

    Heyes, D. M.; Nuevo, M. J.; Morales, J. J.

    Following on from our previous study (Heyes, D. M., Nuevo, M. J, and Morales, J. J., 1996, Molec. Phys., 88, 1503), molecular dynamics simulations have been carried out of translational and rotational diffusion of atomistically rough near-spherical solid Lennard-Jones (LJ) clusters immersed in a Weeks-Chandler-Andersen liquid solvent. A single cluster consisting of up to about 100LJ particles as part of an 8000 atom fluid system was considered in each case. The translational and rotational diffusion coefficients decrease with increasing cluster size and solvent density (roughly in proportion to the molar volume of the solvent). The simulations reveal that for clusters in excess of about 30LJ atoms there is a clear separation of timescales between angular velocity and orientation relaxation which adhere well to the small-step diffusion model encapsulated in Hubbard's relationship. For 100 atom clusters both the StokesEinstein (translation) and Stokes-Einstein-Debye (rotation) equations apply approximately. The small departures from these reference solutions indicate that the translational relaxation experiences a local viscosity in excess of the bulk value (typically by ~ 30%), whereas rotational relaxation experiences a smaller viscosity than the bulk (typically by ~ 30%) reasonably in accord with the Gierer-Wirtz model. Both of these observations are consistent with an observed layering of the liquid molecules next to the cluster observed in our previous study.

  2. A quasi-Bohmian approach for a homogeneous spherical solid body based on its geometric structure

    International Nuclear Information System (INIS)

    Koupaei, Jalaledin Yousefi; Golshani, Mehdi

    2013-01-01

    In this paper we express the space of rotation as a Riemannian space and try to generalize the classical equations of motion of a homogeneous spherical solid body in the domain of quantum mechanics. This is done within Bohm's view of quantum mechanics, but we do not use the Schrödinger equation. Instead, we assume that in addition to the classical potential there is an extra potential and try to obtain it. In doing this, we start from a classical picture based on Hamilton-Jacobi formalism and statistical mechanics but we use an interpretation which is different from the classical one. Then, we introduce a proper action and extremize it. This procedure gives us a mathematical identity for the extra potential that limits its form. The classical mechanics is a trivial solution of this method. In the simplest cases where the extra potential is not a constant, a mathematical identity determines it uniquely. In fact the first nontrivial potential, apart from some constant coefficients which are determined by experiment, is the usual Bohmian quantum potential

  3. The spherical pinch as a soft x-ray source for microlithography and other industrial applications

    International Nuclear Information System (INIS)

    Aithal, S.; Lamari, M.; Panarella, E.

    1992-01-01

    In the course of the past several years, an R and D program has been carried out at ALFT in order to exploit the Spherical Pinch concept of plasma heating to create a hot plasma of radiation emission characteristics of interest for industrial X-ray microlithography. The program has been successful and a prototype machine has now been built. The plasma is generated by inductively discharging 30 kJ of electrical energy from a condenser bank in a spherically shaped coil. Since the energy transfer efficiency is ∼ 25%, in excess of 7 kJ of energy is deposited into the plasma. The strong implosion thus generated, on compressing a preformed central plasma, creates a source of soft X-rays having the following characteristics: X-ray energy, 1--3, keV; X-ray energy per pulse, ∼ 50, J; Source size, ∼ 1, mm; X-ray flux at--20 cm from source, ∼10, mJ/cm 2 /shot; position reproducibility, 0.1, Hz. These characteristics are very close to what is required by the semiconductor industries for microlithography. For this reason, a commercial unit is now being designed and manufactured and will be available for marketing by the end of 1992. This source of soft X-rays has recently found another industrial application, paper radiography for quality evaluation and control in the paper industry. The possibility of imaging by means of soft X-rays the microstructure of paper on production line enables the operator to adjust the paper manufacturing configuration through variations of the relative speed of the jet compared to that of the wire. A compact X-ray source for paper radiography is now being designed and manufactured, and a prototype machine will be ready by the beginning of 1993. The Spherical Pinch plasma source is a good radiation emitter also in the UV and the deep UV range of the spectrum

  4. Coarse-mesh rebalance methods compatible with the spherical harmonic fictitious source in neutron transport calculations

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.

    1975-10-01

    The coarse-mesh rebalance method, based on neutron conservation, is used in discrete ordinates neutron transport codes to accelerate convergence of the within-group scattering source. Though very powerful for this application, the method is ineffective in accelerating the iteration on the discrete-ordinates-to-spherical-harmonics fictitious sources used for ray-effect elimination. This is largely because this source makes a minimum contribution to the neutron balance equation. The traditional rebalance approach is derived in a variational framework and compared with new rebalance approaches tailored to be compatible with the fictitious source. The new approaches are compared numerically to determine their relative advantages. It is concluded that there is little incentive to use the new methods. (3 tables, 5 figures)

  5. Development of solid radioactive sources in acrylamide

    International Nuclear Information System (INIS)

    Yamazaki, I.M.; Koskinas, M.F.; Dias, M.S.; Andrade e Silva, L.G.; Vieira, J.M.

    2004-01-01

    The development of water-equivalent solid sources of 133 Ba prepared from an aqueous solution of acrylamide by polymerization by a high dose 60 Co irradiation is described. The main resin characteristics were measured, such as: density, effective atomic number and uniformity. The variation of these parameters was in the range of 1,08 to 1,16 g.cm -3 for density, 3.7 to 4.0 for effective atomic number and 2.8 to 7.2% for the uniformity. These values are in agreement with the literature. (author)

  6. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  7. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  8. Statistical multifragmentation of non-spherical expanding sources in central heavy-ion collisions

    International Nuclear Information System (INIS)

    Le Fevre, A.; Ploszajczak, M.; Toneev, V.D.

    2003-10-01

    We study the anisotropy effects measured with INDRA at GSI in central collisions of 129 Xe+ nat Sn at 50 A MeV and 197 Au+ 197 Au at 60, 80, 100 A MeV incident energy. The microcanonical multifragmentation model with non-spherical sources is used to simulate an incomplete shape relaxation of the multifragmenting system. This model is employed to interpret observed anisotropic distributions in the fragment size and mean kinetic energy. The data can be well reproduced if an expanding prolate source aligned along the beam direction is assumed. In the model, the anisotropy is the result of correlations between the charge of a fragment and its location in the freeze-out configuration, created by the mutual Coulomb interactions inside the non-spherical source. An either non-Hubblean or non-isotropic radial expansion is required to describe the fragment kinetic energies and their anisotropy. The qualitative similarity of the results for the studied reactions suggests that the concept of a longitudinally elongated freeze-out configuration is generally applicable for central collisions of heavy systems. The deformation decreases slightly with increasing beam energy. (orig.)

  9. Broadband spectrally dynamic solid state illumination source

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, David B; Asghar, Ali; Gupta, Shalini; Kang, Hun; Pan, Ming [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-0250 (United States); Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30302-4106 (United States); Summers, Chris; Ferguson, Ian T [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States)

    2006-06-15

    Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  11. Statistical multifragmentation of non-spherical expanding sources in central heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Le Fevre, A. E-mail: a.lefevre@gsi.de; Ploszajczak, M.; Toneev, V.D.; Auger, G.; Begemann-Blaich, M.L.; Bellaize, N.; Bittiger, R.; Bocage, F.; Borderie, B.; Bougault, R.; Bouriquet, B.; Charvet, J.L.; Chbihi, A.; Dayras, R.; Durand, D.; Frankland, J.D.; Galichet, E.; Gourio, D.; Guinet, D.; Hudan, S.; Hurst, B.; Lautesse, P.; Lavaud, F.; Legrain, R.; Lopez, O.; Lukasik, J.; Lynen, U.; Mueller, W.F.J.; Nalpas, L.; Orth, H.; Plagnol, E.; Rosato, E.; Saija, A.; Schwarz, C.; Sfienti, C.; Tamain, B.; Trautmann, W.; Trzcinski, A.; Turzo, K.; Vient, E.; Vigilante, M.; Volant, C.; Zwieglinski, B.; Botvina, A.S

    2004-04-19

    We study the anisotropy effects measured with INDRA at GSI in central collisions of {sup 129}Xe+{sup nat}Sn at 50 A MeV and {sup 197}Au+{sup 197}Au at 60, 80, 100 A MeV incident energy. The microcanonical multifragmentation model with non-spherical sources is used to simulate an incomplete shape relaxation of the multifragmenting system. This model is employed to interpret observed anisotropic distributions in the fragment size and mean kinetic energy. The data can be well reproduced if an expanding prolate source aligned along the beam direction is assumed. An either non-Hubblean or non-isotropic radial expansion is required to describe the fragment kinetic energies and their anisotropy. The qualitative similarity of the results for the studied reactions suggests that the concept of a longitudinally elongated freeze-out configuration is generally applicable for central collisions of heavy systems. The deformation decreases slightly with increasing beam energy.

  12. A spherical model for the transient x-ray source A0620-00

    International Nuclear Information System (INIS)

    Dilworth, C.; Maraschi, L.; Perola, G.C.

    1977-01-01

    The continuum spectrum of the transient X-ray source A0620-00, from infrared to X-ray frequencies, is interpreted as emission from a uniform spherical cloud of hot gas in which the free-free spectrum is modified by Thomson scattering. On this basis, the radius and the density of the cloud, and the distance of the source, are derived. The change of the spectrum with the time indicates a decrease of both radius and density with decreasing luminosity. Considering the production of X-rays to be due to impulsive accretion in a low-mass binary system, these results open the question as to whether the accreting object is a white dwarf rather than a neutron star. (author)

  13. The motion of a cloud of solid spherical particles falling in a cellular flow field at low Stokes number

    Science.gov (United States)

    Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth

    2017-11-01

    We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.

  14. Analytic solution of magnetic induction distribution of ideal hollow spherical field sources

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-12-01

    The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.

  15. Measurement of spherical compound refractive X-ray lens at ANKA synchrotron radiation source

    International Nuclear Information System (INIS)

    Dudchik, Yu.I.; Simon, R.; Baumbach, T.

    2007-01-01

    Parameters of compound refractive X-ray lens were measured at ANKA synchrotron radiation source. The lens consists of 224 spherical concave epoxy microlenses formed inside glass capillary. The curvature radius of individual microlens is equal to 100 microns. Measured were: X-ray focal spot, lens focal length and gain in intensity. The energy of X-ray beam was equal to 12 keV and 14 keV. It is shown that when X-ray lens is used, the gain in intensity of the X-ray beam in some cases may exceed value of 100. Tested lens is suitable to focus X-rays into, at least, 2-microns in size spot. (authors)

  16. Radiation drag in the field of a non-spherical source

    Science.gov (United States)

    Bini, D.; Geralico, A.; Passamonti, A.

    2015-01-01

    The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static space-time belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e. the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.

  17. Induction heating of a spherical aluminum moderator vessel for the Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    Yousuf, A.

    1994-01-01

    This task was to identify and design a heating system to apply 15 kW of heat to a cold source vessel to simulate the Advanced Neutron Source reactor. This research project aims at the analysis of the induction heating of a spherical aluminum moderator vessel. Computer modeling is presented for the design and analysis of the induction heating system. The objective is to apply 15 kW of heat as uniformly as possible to the outer wall of a 410 mm diameter sphere of thickness 1.5 mm. The report also aims at the analysis of a system model which is simulated using the Eddycuff electromagnetic software. The computer model is built with the finite element analysis software Patran. The induction heating system analysis shows that the predicted performance is in close agreement with the computer simulated data. Hardware constraints such as power supplies and matching load are also analyzed in terms of performance and cost. Physical modeling is also suggested, in which the coil and the workpiece are scaled down

  18. ONETRAN, 1-D Transport in Planar, Cylindrical, Spherical Geometry for Homogeneous, Inhomogeneous Problem, Anisotropic Source

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: ONETRAN solves the one- dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (K-eff and eigenvalue searches) problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. 2 - Method of solution: The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. Negative fluxes are eliminated by a local set-to-zero and correct algorithm. Standard inner (within-group) iteration cycles are accelerated by system re-balance, coarse mesh re-balance, or Chebyshev acceleration. Outer iteration cycles are accelerated by coarse-mesh re-balance. 3 - Restrictions on the complexity of the problem: Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. On CDC machines MAXCOR can be about 25 000 words and peripheral storage is used for most group-dependent data

  19. Point source detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps

    Science.gov (United States)

    Vielva, P.; Martínez-González, E.; Gallegos, J. E.; Toffolatti, L.; Sanz, J. L.

    2003-09-01

    We present an estimation of the point source (PS) catalogue that could be extracted from the forthcoming ESA Planck mission data. We have applied the Spherical Mexican Hat Wavelet (SMHW) to simulated all-sky maps that include cosmic microwave background (CMB), Galactic emission (thermal dust, free-free and synchrotron), thermal Sunyaev-Zel'dovich effect and PS emission, as well as instrumental white noise. This work is an extension of the one presented in Vielva et al. We have developed an algorithm focused on a fast local optimal scale determination, that is crucial to achieve a PS catalogue with a large number of detections and a low flux limit. An important effort has been also done to reduce the CPU time processor for spherical harmonic transformation, in order to perform the PS detection in a reasonable time. The presented algorithm is able to provide a PS catalogue above fluxes: 0.48 Jy (857 GHz), 0.49 Jy (545 GHz), 0.18 Jy (353 GHz), 0.12 Jy (217 GHz), 0.13 Jy (143 GHz), 0.16 Jy (100 GHz HFI), 0.19 Jy (100 GHz LFI), 0.24 Jy (70 GHz), 0.25 Jy (44 GHz) and 0.23 Jy (30 GHz). We detect around 27 700 PS at the highest frequency Planck channel and 2900 at the 30-GHz one. The completeness level are: 70 per cent (857 GHz), 75 per cent (545 GHz), 70 per cent (353 GHz), 80 per cent (217 GHz), 90 per cent (143 GHz), 85 per cent (100 GHz HFI), 80 per cent (100 GHz LFI), 80 per cent (70 GHz), 85 per cent (44 GHz) and 80 per cent (30 GHz). In addition, we can find several PS at different channels, allowing the study of the spectral behaviour and the physical processes acting on them. We also present the basic procedure to apply the method in maps convolved with asymmetric beams. The algorithm takes ~72 h for the most CPU time-demanding channel (857 GHz) in a Compaq HPC320 (Alpha EV68 1-GHz processor) and requires 4 GB of RAM memory; the CPU time goes as O[NRoN3/2pix log(Npix)], where Npix is the number of pixels in the map and NRo is the number of optimal scales needed.

  20. Preparation and Characterization of the Solid Spherical HMX/F2602 by the Suspension Spray-Drying Method

    Science.gov (United States)

    Ji, Wei; Li, Xiaodong; Wang, Jingyu; Ye, Baoyun; Wang, Cailing

    2016-10-01

    Solid spherical octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine/fluororubber2602 (HMX/F2602) was prepared by the suspension spray-drying method as follows: firstly, thinning octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was obtained by a solvent-anti-solvent method. Secondly, thinning HMX suspended in ethyl acetate solvent in a solution of a binder-F2602-was made into a suspension. Finally, the samples were prepared by spray drying. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), and its thermal stability as well as mechanical and spark sensitivities were measured. The results of SEM showed that the grain of HMX/F2602 was solid spherical and the particle distribution was homogeneous. The results of XPS indicated that F2602 can be successfully coated on the surface of HMX crystals. Compared to raw HMX, th characteristic drop height was increased from 19.60 to 40.37 cm, an increase of 79.10%. The friction sensitivities of HMX reduced from 100 to 28% and the spark sensitivity of HMX/F2602 increased. The critical explosion temperatures of raw HMX and HMX/F2602 were 275.43 and 274.30°C, respectively. The amount of gas evolution of raw HMX and HMX/F2602 was 0.15 and 0.12 ml.(5 g)-1, respectively. The results of DSC and vacuum stability tests (VSTs) indicate that the thermal stability of HMX/F2602 was equal to that of raw HMX and HMX and F2602 had good compatibility.

  1. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development

    International Nuclear Information System (INIS)

    Cheng, E.T.; Cerbone, R.J.; Sviatoslavsky, I.N.; Galambos, L.D.; Peng, Y.-K.M.

    2000-01-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device can be complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation three, can produce a neutron wall loading from 0.5 to 5 MW m -2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW year m -2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept

  2. Inventory and sources of transuranic solid waste

    International Nuclear Information System (INIS)

    1978-08-01

    In the past, solid radioactive waste has often been buried in the most accessible and convenient vacant place, without a great deal of thought for the long-term consequences. The transuranium (TRU) elements were very strictly conserved and, at first, solid waste containing separated fission products was not a serious land burial problem. Wartime pressures for production and lack of knowledge or understanding led to siting and operational practices that, in many situations, are unsatisfactory by present day standards. Purpose of this report is to support the development of standards and criteria which will specifically address the problem of TRU contaminated waste generated by Department of Energy (DOE) nuclear programs and commercial application of nuclear technology. This report covers: DOE facilities, commercial disposal sites, commercial nuclear industry, TRU-contaminated waste inventory, and waste projections

  3. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources

    International Nuclear Information System (INIS)

    Sussman, Roberto A.

    2009-01-01

    A numerical approach is considered for spherically symmetric spacetimes that generalize Lemaitre-Tolman-Bondi dust solutions to nonzero pressure ('LTB spacetimes'). We introduce quasilocal (QL) variables that are covariant LTB objects satisfying evolution equations of Friedman-Lemaitre-Robertson-Walker (FLRW) cosmologies. We prove rigorously that relative deviations of the local covariant scalars from the QL scalars are nonlinear, gauge invariant and covariant perturbations on a FLRW formal background given by the QL scalars. The dynamics of LTB spacetimes is completely determined by the QL scalars and these exact perturbations. Since LTB spacetimes are compatible with a wide variety of ''equations of state,'' either single fluids or mixtures, a large number of known solutions with dark matter and dark energy sources in a FLRW framework (or with linear perturbations) can be readily examined under idealized but nontrivial inhomogeneous conditions. Coordinate choices and initial conditions are derived for a numerical treatment of the perturbation equations, allowing us to study nonlinear effects in a variety of phenomena, such as gravitational collapse, nonlocal effects, void formation, dark matter and dark energy couplings, and particle creation. In particular, the embedding of inhomogeneous regions can be performed by a smooth matching with a suitable FLRW solution, thus generalizing the Newtonian 'top hat' models that are widely used in astrophysical literature. As examples of the application of the formalism, we examine numerically the formation of a black hole in an expanding Chaplygin gas FLRW universe, as well as the evolution of density clumps and voids in an interactive mixture of cold dark matter and dark energy.

  4. Classification of sources of municipal solid wastes in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Buenrostro, O. [Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-105, 58400, Michoacan, Morelia (Mexico); Bocco, G. [Departamento de Ecologia de los Recursos Naturales, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Campus Morelia, Apartado Postal 27-3 Xangari, 58089, Michoacan, Morelia (Mexico); Cram, S. [Departamento de Geografia Fisica, Instituto de Geografia, Universidad Nacional Autonoma de Mexico, Circuito Exterior, C.P. 04510 Ciudad Universitaria, Mexico City (Mexico)

    2001-05-01

    The existence of different classifications of municipal solid waste (MSW) creates confusion and makes it difficult to interpret and compare the results of generation analyses. In this paper, MSW is conceptualized as the solid waste generated within the territorial limits of a municipality, independently of its source of generation. Grounded on this assumption, and based on the economic activity that generates a solid waste with determinate physical and chemical characteristics, a hierarchical source classification of MSW is suggested. Thus, a connection between the source and the type of waste is established. The classification categorizes the sources into three divisions and seven classes of sources: residential, commercial, institutional, construction/demolition, agricultural-animal husbandry, industrial, and special. When applied at different geographical scales, this classification enables the assessment of the volume of MSW generated, and provides an overview of the types of residues expected to be generated in a municipality, region or state.

  5. Calculation of spherical models of lead with a source of 14 MeV-neutrons

    International Nuclear Information System (INIS)

    Markovskij, D.V.; Borisov, A.A.

    1989-01-01

    Neutron transport calculations for spherical models of lead have been done with the one-dimensional code BLANK realizing the direct Monte Carlo method in the whole range of neutron energies and they are compared with the experimental results. 6 refs, 10 figs, 3 tabs

  6. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    International Nuclear Information System (INIS)

    Barnes, D.C.; Nebel, R.A.; Ribe, F.L.; Schauer, M.M.; Schranck, L.S.; Umstadter, K.R.

    1999-01-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q). copyright 1999 American Institute of Physics

  7. On the comparsion of the Spherical Wave Expansion-to-Plane Wave Expansion and the Sources Reconstruction Method for Antenna Diagnostics

    DEFF Research Database (Denmark)

    Alvarez, Yuri; Cappellin, Cecilia; Las-Heras, Fernando

    2008-01-01

    A comparison between two recently developed methods for antenna diagnostics is presented. On one hand, the Spherical Wave Expansion-to-Plane Wave Expansion (SWE-PWE), based on the relationship between spherical and planar wave modes. On the other hand, the Sources Reconstruction Method (SRM), based...

  8. Compact and multi-view solid state neutral particle analyzer arrays on National Spherical Torus Experiment-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D., E-mail: deyongl@uci.edu; Heidbrink, W. W.; Hao, G. Z.; Zhu, Y. B. [Departments of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tritz, K. [Departments of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Fredrickson, E. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    A compact and multi-view solid state neutral particle analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade. The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from the charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially, and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPA and r-SSNPA are mainly sensitive to passing and trapped particles, respectively. In addition, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thicknesses to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10, and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics instabilities.

  9. Spherical agarose-coated magnetic nanoparticles functionalized with a new salen for magnetic solid-phase extraction of uranyl ion

    International Nuclear Information System (INIS)

    Serenjeh, Fariba Nazari; Hashemi, Payman; Ghiasvand, Ali Reza; Naeimi, Hossein; Zakerzadeh, Elham

    2016-01-01

    The authors describe a method for magnetic solid phase extraction of uranyl ions from water samples. It is based on the use of spherical agarose-coated magnetic nanoparticles along with magnetic field agitation. The salen type Schiff base N,N’-bis(4-hydroxysalicylidene)-1,2-phenylenediamine was synthesized from resorcinol in two steps and characterized by infrared and nucleic magnetic resonance spectroscopies. The particles were then activated by an epichlorohydrin method and functionalized with the Schiff base which acts as a selective ligand for the extraction of UO 2 (II). Following preconcentration and elution with HCl, the ions were quantified by spectrophotometry using Arsenazo III as the indicator. The effects of pH value, ionic strength and amount of the adsorbent on the extraction of UO 2 (II) were optimized by a multivariate central composite design method. Six replicate analyses under optimized conditions resulted in a recovery of 96.6 % with a relative standard deviation of 3.4 % for UO 2 (II). The detection limit of the method (at a signal-to-noise ratio of 3σ) is 10 μg L -1 . The method was successfully applied to the determination of UO 2 (II) in spiked water samples. (author)

  10. Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.

    Science.gov (United States)

    Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M

    2018-02-13

    Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

  11. Laboratory Experiments to Study Spherical, Iron Oxide Concretion Growth Without Solid Nuclei: Implications for Understanding Meridiani "Blueberries"

    Science.gov (United States)

    Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.

    2006-03-01

    Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.

  12. Size of the virtual source behind a convex spherical surface emitting a space charge limited ion current

    International Nuclear Information System (INIS)

    Chavet, I.

    1987-01-01

    A plasma source fitted with a circular orifice and emitting a space charge limited ion current can be made to operate with a convex spherical plasma boundary (meniscus) by appropriately adjusting its extraction parameters. In this case, the diameter of the virtual source behind the meniscus is much smaller than the orifice diameter. The effective value of this virtual source diameter depends significantly on various practical factors that are more or less controllable. Its lower ideal limit, however, depends only on the radio δ of the interelectrode distance to the meniscus curvature radius and on the ratio ω of the initial to final ion energy. This ideal limit is given for the ranges 0.1 ≤ δ ≤ 10 and 10 -7 ≤ ω ≤ 10 -3 . Preliminary experimental results are reported. (orig.)

  13. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    Science.gov (United States)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  14. Repetitive Solid Spherical Pellet Injection and Irradiation toward the Repetitive-mode Fast-Ignition Fusion miniReactor CANDY

    International Nuclear Information System (INIS)

    HANAYAMA, Ryohei; KOMEDA, Osamu; NISHIMURA, Yasuhiko; MORI, Yoshitaka; ISHII, Katsuhiro; NAKAYAMA, Suisei; OKIHARA, Shinichiro; FUJITA, Kazuhisa; SEKINE, Takashi; SATO, Nakahiro; KAWASHIMA, Toshiyuki; KAN, Hirofumi; KURITA, Takashi; NAKAMURA, Naoki; KONDO, Takuya; FUJINE, Manabu; AZUMA, Hirozumi; HIOKI, Tatsumi; KAKENO, Mitsutaka; MOTOHIRO, Tomoyoshi

    2016-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy [1-4]. Neutron generator using lasers also requires a repeating pellet target supplier. Here we present the first demonstration of target injection and neutron generation[5]. We injected more than 1300 spherical deuterated polystyrene(C 8 D 8 ) bead pellet targets during 23 minutes at 1 Hz(Fig. 1). After the pellet targets fell for a distance of 18 cm, we applied the synchronized laser-diode-pumped ultra-intense laser HAMA. The laser intensity at the focal point is 5 x 10 18 W/cm 2 , which is high enough to generate neutrons. As a result of the irradiation, we produced 2.45-MeV DD neutrons. Figure 2 shows the neutron time-of-flight signals detected by plastic scintillators coupled to photomultipliers. The neutron energy was calculated by the time-of-flight method. The maximum neutron yield was 9.5 x 10 4 /4π sr. The result is a step toward fusion power and also suggests possible industrial neutron sources. (paper)

  15. Preparation of water-equivalent radioactive solid sources

    International Nuclear Information System (INIS)

    Yamazaki, Ione M.; Koskinas, Marina F.; Dias, Mauro S.

    2011-01-01

    The development of water-equivalent solid sources in two geometries, cylindrical and flat without the need of irradiation in a strong gamma radiation source to obtain polymerization is described. These sources should have density similar to water and good uniformity. Therefore, the density and uniformity of the distribution of radioactive material in the resins were measured. The variation of these parameters in the cylindrical geometry was better than 2.0% for the density and 2.3% for the uniformity and for the flat geometry the values obtained were better than 2.0 % and better than 1.3%, respectively. These values are in good agreement with the literature. (author)

  16. Analytic sensing for multi-layer spherical models with application to EEG source imaging

    OpenAIRE

    Kandaswamy, Djano; Blu, Thierry; Van De Ville, Dimitri

    2013-01-01

    Source imaging maps back boundary measurements to underlying generators within the domain; e. g., retrieving the parameters of the generating dipoles from electrical potential measurements on the scalp such as in electroencephalography (EEG). Fitting such a parametric source model is non-linear in the positions of the sources and renewed interest in mathematical imaging has led to several promising approaches. One important step in these methods is the application of a sensing principle that ...

  17. Neutron time-of-flight signals from expanding or contracting spherical sources

    International Nuclear Information System (INIS)

    Murphy, T.J.; Chrien, R.E.; Klare, K.A.

    1996-01-01

    The width of the energy distribution of fusion-produced neutrons is often used as an indication of the temperature of the reacting ions. The Doppler broadening of the neutron energy is due to the center-of-mass velocity of reacting ion pairs and is characterized by the ion temperature for a Maxwellian distribution of ions with zero collective velocity. If there is bulk fluid motion or turbulence characterized by a velocity on the order of the ion thermal speed, a significant additional broadening may introduced. Suggestions of this phenomenon have been observed for two classes of laser targets. The first is a ''gas bag'' target, in which a deuterated hydrocarbon gas is contained in a thin spherical membrane and illuminated uniformly. The second target is an ICF capsule with a deuterated plastic inner layer. In both cases, measured neutron energy distributions were wider than expected from theoretical ion temperatures alone would predict, and if interpreted as indicative of the ion temperature, are inconsistent with the neutron yields observed

  18. Radiological and chemical source terms for Solid Waste Operations Complex

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1994-01-01

    The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ''source term'' means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements

  19. Solid state light source driver establishing buck or boost operation

    Science.gov (United States)

    Palmer, Fred

    2017-08-29

    A solid state light source driver circuit that operates in either a buck convertor or a boost convertor configuration is provided. The driver circuit includes a controller, a boost switch circuit and a buck switch circuit, each coupled to the controller, and a feedback circuit, coupled to the light source. The feedback circuit provides feedback to the controller, representing a DC output of the driver circuit. The controller controls the boost switch circuit and the buck switch circuit in response to the feedback signal, to regulate current to the light source. The controller places the driver circuit in its boost converter configuration when the DC output is less than a rectified AC voltage coupled to the driver circuit at an input node. The controller places the driver circuit in its buck converter configuration when the DC output is greater than the rectified AC voltage at the input node.

  20. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  1. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shahab, S.; Gray, M.; Erturk, A., E-mail: alper.erturk@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  2. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    International Nuclear Information System (INIS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-01-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver

  3. Plasma jet source parameter optimisation and experiments on injection into Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Semenov, A.A.; Voronin, A.V.

    2005-01-01

    Results of theoretical and experimental research on the plasma sources and injection of plasma and gas jet produced by the modified source into tokamak Globus-M are presented. An experimental test stand was developed for investigation of intense plasma jet generation. Optimisation of pulsed coaxial accelerator parameters by means of analytical calculations is performed with the aim of achieving the highest flow velocity at limited coaxial electrode length and discharge current. The optimal parameters of power supply to generate a plasma jet with minimal impurity contamination and maximum flow velocity were determined. A comparison of experimental and calculation results is made. Plasma jet parameters are measured, such as: impurity species content, pressure distribution across the jet, flow velocity, plasma density, etc. Experiments on the interaction of a higher kinetic energy plasma jet with the magnetic field and plasma of the Globus-M tokamak were performed. Experimental results on plasma and gas jet injection into different Globus-M discharge phases are presented and discussed. Results are presented on the investigation of plasma jet injection as the source for discharge breakdown, plasma current startup and initial density rise. (author)

  4. Renewable energy source from pyrolysis of solid wastes

    International Nuclear Information System (INIS)

    Md Kawser Jamil; Farid Nasir Ani

    2000-01-01

    Malaysia is blessed with a significant renewable energy resource base such as solar energy and biomass. To continue with its industrial development, Malaysia must manages energy supply its c prudently in order to avoid becoming an energy importer supply. Most significantly renewable energy from biomass such as rice husks, wood wastes, oil palm wastes, rubber wastes and other agricultural wastes. Beside rice and timber. Malaysia produces a huge amount of palm oil and natural rubber. These generate a significant amount of solid wastes in the forms of oil palm shell and rubber. These wastes are producing pollution and emission problems in Malaysia which is causing an environmental issue. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric studies of the wastes, it appeared that the wastes could be used as an alternative value-added source of energy. For this purpose a fast pyrolysis of 300 mi-n lone, and 50 mm diameter stainless-steel reactor was designed and fabricated. The grounded, sieved and dried solid feed particles underwent pyrolysis reactor at moderate temperature and were converted into pyrolytic oil, solid char and cas. Oil and char were collected while the cas was flared. The oil was characterised by GC-MS technique. Detailed analysis of the oil showed that there was no concentration of biologically active polycyclic aromatic species in the oil. The fuel properties of the derived oils were also analysed and compared to diesel fuel. (Author)

  5. Single-photon sources based on single molecules in solids

    International Nuclear Information System (INIS)

    Moerner, W E

    2004-01-01

    Single molecules in suitable host crystals have been demonstrated to be useful single-photon emitters both at liquid-helium temperatures and at room temperature. The low-temperature source achieved controllable emission of single photons from a single terrylene molecule in p-terphenyl by an adiabatic rapid passage technique. In contrast with almost all other single-molecule systems, terrylene single molecules show extremely high photostability under continuous, high-intensity irradiation. A room-temperature source utilizing this material has been demonstrated, in which fast pumping into vibrational sidebands of the electronically excited state achieved efficient inversion of the emissive level. This source yielded a single-photon emission probability p(1) of 0.86 at a detected count rate near 300 000 photons s -1 , with very small probability of emission of more than one photon. Thus, single molecules in solids can be considered as contenders for applications of single-photon sources such as quantum key distribution

  6. Evaluation of temperature history of a spherical nanosystem irradiated with various short-pulse laser sources

    Science.gov (United States)

    Lahiri, Arnab; Mondal, Pranab K.

    2018-04-01

    Spatiotemporal thermal response and characteristics of net entropy production rate of a gold nanosphere (radius: 50-200 nm), subjected to a short-pulse, femtosecond laser is reported. In order to correctly illustrate the temperature history of laser-metal interaction(s) at picoseconds transient with a comprehensive single temperature definition in macroscale and to further understand how the thermophysical response of the single-phase lag (SPL) and dual-phase lag (DPL) frameworks (with various lag-ratios') differs, governing energy equations derived from these benchmark non-Fourier frameworks are numerically solved and thermodynamic assessment under both the classical irreversible thermodynamics (CIT) as well as extended irreversible thermodynamics (EIT) frameworks is subsequently carried out. Under the frameworks of SPL and DPL with small lag ratio, thermophysical anomalies such as temperature overshooting characterized by adverse temperature gradient is observed to violate the local thermodynamic equilibrium (LTE) hypothesis. The EIT framework, however, justifies the compatibility of overshooting of temperature with the second law of thermodynamics under a nonequilibrium paradigm. The DPL framework with higher lag ratio was however observed to remain free from temperature overshooting and finds suitable consistency with LTE hypothesis. In order to solve the dimensional non-Fourier governing energy equation with volumetric laser-irradiation source term(s), the lattice Boltzmann method (LBM) is extended and a three-time level, fully implicit, second order accurate finite difference method (FDM) is illustrated. For all situations under observation, the LBM scheme is featured to be computationally superior to remaining FDM schemes. With detailed prediction of maximum temperature rise and the corresponding peaking time by all the numerical schemes, effects of the change of radius of the gold nanosphere, the magnitude of fluence of laser, and laser irradiation with

  7. Incineration of urban solid waste containing radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Ronchin, G.P., E-mail: giulio.ronchin@mail.polimi.i [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy); Campi, F.; Porta, A.A. [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2011-01-15

    Incineration of urban solid waste accidentally contaminated by orphan sources or radioactive material is a potential risk for environment and public health. Moreover, production and emission of radioactive fumes can cause a heavy contamination of the plant, leading to important economic detriment. In order to prevent such a hazard, in February 2004 a radiometric portal for detection of radioactive material in incoming waste has been installed at AMSA (Azienda Milanese per i Servizi Ambientali) 'Silla 2' urban solid waste incineration plant of Milan. Radioactive detections performed from installation time up to December 2006 consist entirely of low-activity material contaminated from radiopharmaceuticals (mainly {sup 131}I). In this work an estimate of the dose that would have been committed to population, due to incineration of the radioactive material detected by the radiometric portal, has been evaluated. Furthermore, public health and environmental effects due to incineration of a high-activity source have been estimated. Incineration of the contaminated material detected appears to have negligible effects at all; the evaluated annual collective dose, almost entirely conferred by {sup 131}I, is indeed 0.1 man mSv. Otherwise, incineration of a 3.7 x 10{sup 10} Bq (1 Ci) source of {sup 137}Cs, assumed as reference accident, could result in a light environmental contamination involving a large area. Although the maximum total dose, owing to inhalation and submersion, committed to a single individual appears to be negligible (less than 10{sup -8} Sv), the environmental contamination leads to a potential important exposure due to ingestion of contaminated foods. With respect to 'Silla 2' plant and to the worst meteorological conditions, the evaluated collective dose results in 0.34 man Sv. Performed analyses have confirmed that radiometric portals, which are today mainly used in foundries, represent a valid public health and environmental

  8. Spherical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  9. The Realistic Versus the Spherical Head Model in EEG Dipole Source Analysis in the Presence of Noise

    National Research Council Canada - National Science Library

    Vanrumste, Bart

    2001-01-01

    .... For 27 electrodes, an EEG epoch of one time sample and spatially white Gaussian noise we found that the importance of the realistic head model over the spherical head model reduces by increasing the noise level.

  10. Extremely Low Frequency (ELF) Propagation Formulas for Dipole Sources Radiating in a Spherical Earth-Ionosphere Waveguide

    National Research Council Canada - National Science Library

    Casey, Joseph

    2002-01-01

    .... In these formulas, the earth and ionosphere boundaries are modeled as scalar surface impedances. The spherical waveguide formulas are applied to predict the electromagnetic fields produced by vertical and horizontal electric dipoles...

  11. Spray drying of spherical Li{sub 4}Ti{sub 5}O{sub 12}/C powders using polyvinyl pyrrolidone as binder and carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China); Shanghai Nanotechnology Promotion Center, Shanghai 200237 (China); Wang, Qian; Cao, Chunhui [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China); Han, Xuewu [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Jian, E-mail: zjskycn@163.com [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie, Xiaohua, E-mail: xiaohuaxie@126.com [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xia, Baojia [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China)

    2015-02-05

    Highlights: • The spherical Li{sub 4}Ti{sub 5}O{sub 12}/C granules were prepared by spray drying. • Polyvinyl pyrrolidone (PVP) was used as binder and carbon source. • Tap density and spherical structure increase with the increase of PVP content. • Li{sub 4}Ti{sub 5}O{sub 12}/C granules exhibits better rate capability and excellent cyclability. - Abstract: Polyvinyl pyrrolidone (PVP) was used as binder and carbon source to synthesize stable and spherical Li{sub 4}Ti{sub 5}O{sub 12}/C granules by spray drying. The effects of PVP content and atmospheres on the properties of Li{sub 4}Ti{sub 5}O{sub 12} were investigated. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and electrochemical tests, respectively. The results indicate that the average particle size, tap density and degree of spherical structure increase accordingly to the increase of PVP content. However, the large secondary particle would deteriorate the rate capacity at high current density. The carbon coating could significantly improve the rate capacity, which is attributed to the smaller primary particle and higher electrical conductivity.

  12. Improving the Efficiency of Solid State Light Sources

    International Nuclear Information System (INIS)

    Joanna McKittrick

    2003-01-01

    This proposal addresses the national need to develop a high efficiency light source for general illumination applications. The goal is to perform research that would lead to the fabrication of a unique solid state, white-emitting light source. This source is based on an InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to produce white light. White-light LEDs are commercially available which use UV from a GaN chip to excite a phosphor suspended in epoxy around the chip. Currently, these devices are relatively inefficient. This research will target one technical barrier that presently limits the efficiency of GaN based devices. Improvements in efficiencies will be achieved by improving the internal conversion efficiency of the LED die, by improving the coupling between the die and phosphor(s) to reduce losses at the surfaces, and by selecting phosphors to maximize the emissions from the LEDs in conversion to white light. The UCSD research team proposes for this project to develop new phosphors that have high quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by the GaN device. The main goal for the UCSD team was to develop new phosphor materials with a very specific property: phosphors that could be excited at long UV-wavelengths (λ=350-410 nm). The photoluminescence of these new phosphors must be activated with photons emitted from GaN based dies. The GaN diodes can be designed to emit UV-light in the same range (λ=350-410 nm). A second objective, which is also very important, is to search for alternate methods to fabricate these phosphors with special emphasis in saving energy and time and reduce pollution

  13. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D

    2010-01-01

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 M o-dot zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  14. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D, E-mail: evanoc@tapir.caltech.ed, E-mail: cott@tapir.caltech.ed [TAPIR, Mail Code 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-06-07

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 M{sub o-dot} zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  15. Finite element evaluation of elasto-plastic accommodation energies during solid state transformations: Coherent, spherical precipitate in finite matrix

    International Nuclear Information System (INIS)

    Sen, S.; Balasubramaniam, R.; Sethuraman, R.

    1996-01-01

    The molar volume difference between the matrix and the precipitate phases in the case of solid state phase transformations results in the creation of stain energy in the system due to the misfit strains. A finite element model based on the initial strain approach is proposed to evaluate elasto-plastic accommodation energies during solid state transformation. The three-dimensional axisymmetric model has been used to evaluate energies as a function of transformation for α-β hydrogen transformations in the Nb-H system. The transformation has been analyzed for the cases of transformation progressing both from the center to surface and from the surface to center of the system. The effect of plastic deformation has been introduced to make the model realistic, specifically to the Nb-NbH phase transformation which involves a 4% linear misfit strain. It has been observed that plastic deformation reduces the strain energies compared to the linear elastic analysis

  16. Spherical sampling

    CERN Document Server

    Freeden, Willi; Schreiner, Michael

    2018-01-01

    This book presents, in a consistent and unified overview, results and developments in the field of today´s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.

  17. Spherical CNNs

    OpenAIRE

    Cohen, Taco S.; Geiger, Mario; Koehler, Jonas; Welling, Max

    2018-01-01

    Convolutional Neural Networks (CNNs) have become the method of choice for learning problems involving 2D planar images. However, a number of problems of recent interest have created a demand for models that can analyze spherical images. Examples include omnidirectional vision for drones, robots, and autonomous cars, molecular regression problems, and global weather and climate modelling. A naive application of convolutional networks to a planar projection of the spherical signal is destined t...

  18. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-30

    ... Measurement; Municipal Solid Waste (MSW), Recycling, and Source Reduction Measurement in the U.S. AGENCY... Subjects Environmental protection, municipal solid waste (MSW) characterization, MSW management, recycling, measurement, data, data collection, construction and demolition (C&D) recycling, source reduction, life cycle...

  19. Solid waste as an alternative energy source and a means of solving ...

    African Journals Online (AJOL)

    This paper presents practical ways of generating energy from solid waste as a means of solving the problem of solid waste disposal which is confronting the major cities in Nigeria and also providing alternative energy source to supplement the high cost and fast depleting conventional sources of energy. It also discussed the ...

  20. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States.

    Science.gov (United States)

    Anning, David W

    2011-10-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from Salton Sea accounting unit.

  1. Commercial and Industrial Solid Waste Incineration Units (CISWI): New Source Performance Standards (NSPS) and Emission Guidelines (EG) for Existing Sources

    Science.gov (United States)

    Learn about the New Source Performance Standards (NSPS) for commercial and industrial solid waste incineration (CISWI) units including emission guidelines and compliance times for the rule. Read the rule history and summary, and find supporting documents

  2. Evolution of the spherical clusters

    International Nuclear Information System (INIS)

    Surdin, V.G.

    1978-01-01

    The possible processes of the Galaxy spherical clusters formation and evolution are described on a popular level. The orbits of spherical cluster motion and their spatial velocities are determined. Given are the distrbutions of spherical cluster stars according to their velocities and the observed distribution of spherical clusters in the area of the Galaxy slow evolution. The dissipation and dynamic friction processes destructing clusters with the mass less than 10 4 of solar mass and bringing about the reduction of clusters in the Galaxy are considered. The paradox of forming mainly X-ray sources in spherical clusters is explained. The schematic image of possible ways of forming X-ray sources in spherical clusters is given

  3. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  4. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements...

  5. Solution of the comoving-frame equation of transfer in spherically symmetric flows. IV. Frequency-dependent source functions for scattering by atoms and electrons

    International Nuclear Information System (INIS)

    Mihalas, D.; Kunasz, P.B.; Hummer, D.G.

    1976-01-01

    A numerical method is presented of solving the radiative transfer equation in the comoving frame of a spherically symmetric expanding atmosphere in which both the line and the electron-scattering source function can depend on frequency (i.e., when there is partial frequency redistribution in the scattering process). This method is used to assess the adequacy of various assumptions regarding frequency redistribution in the comoving frame and to discuss the effects of electron scattering more accurately than previously possible. The methods developed here can be used in realistic model atmospheres to account for the (major) effects of electron scattering upon emergent flux profiles

  6. Water-equivalent solid sources prepared by means of two distinct methods

    International Nuclear Information System (INIS)

    Koskinas, Marina F.; Yamazaki, Ione M.; Potiens Junior, Ademar

    2014-01-01

    The Nuclear Metrology Laboratory at IPEN is involved in developing radioactive water-equivalent solid sources prepared from an aqueous solution of acrylamide using two distinct methods for polymerization. One of them is the polymerization by high dose of 60 Co irradiation; in the other method the solid matrix-polyacrylamide is obtained from an aqueous solution composed by acrylamide, catalyzers and an aliquot of a radionuclide. The sources have been prepared in cylindrical geometry. In this paper, the study of the distribution of radioactive material in the solid sources prepared by both methods is presented. (author)

  7. Solving the forward problem in EEG source analysis by spherical and fdm head modeling: a comparative analysis - biomed 2009

    NARCIS (Netherlands)

    Vatta, F.; Meneghini, F.; Esposito, F.; Mininel, S.; Di Salle, F.

    2009-01-01

    Neural source localization techniques based on electroencephalography (EEG) use scalp potential data to infer the location of underlying neural activity. This procedure entails modeling the sources of EEG activity and modeling the head volume conduction process to link the modeled sources to the

  8. SOLID OXYGEN SOURCE FOR BIOREMEDIATION IN SUBSURFACE SOILS

    Science.gov (United States)

    Sodium percarbonate was encapsulated in poly(vinylidene chloride) to determine its potential as a slow-release oxygen source for biodegradation of contaminan ts in subsurface soils. In laboratory studies under aqueous conditions, the encapsulated sodium percarbonate was estimate...

  9. Characterization of domestic and market solid wastes at source in ...

    African Journals Online (AJOL)

    AJL

    Waste management is an important element of environmental protection. Proper ... market waste generated from source and also the seasonal composition of household waste. The ..... the recent explosion in packaged water business and the.

  10. Multiply charged ions from solid substances with the mVINIS Ion Source

    International Nuclear Information System (INIS)

    Dragani, I; Nedeljkovi, T; Jovovi, J; Siljegovic, M; Dobrosavljevic, A

    2007-01-01

    We have used the well known metal-ions-from-volatile-compounds (MIVOC) method at the mVINIS Ion Source to produce the multiply charged ion beams form solid substances. Based on this method the very intense and stable multiply charged ion beams of several solid substances having the high melting points were extracted. The ion yields and the spectra of multiply charged ion beams obtained from solid materials like Fe and Hf will be presented. We have utilized the multiply charged ion beams from solid substances to irradiate the polymers, fullerenes and glassy carbon at the low energy channel for modification of materials

  11. New renewable source of energy from municipal solid waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Zaman, Ashiquz; Mamunor Rashid, Mohammad

    2010-09-15

    Renewable energy plays an important role in the supply of energy. When energy sources are used, the demand for fossil fuels is reduced. Emissions from the evaporation and combustion of these traditional fossil fuels contributing to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and many alternative fuels are being developed based on solar, wind and biomass. Natural State Research has developed different alternative hydrocarbon fuel produced from abundant waste plastic materials.

  12. To study the municipal solid waste as an energy source

    International Nuclear Information System (INIS)

    Ahmed, Z.; Khan, M.M.

    2005-01-01

    The solid waste management is a very complicated specially when it must be environmental friendly. In the present life, power energy is being more expensive than ever before and human off spring is struggling td acquire cheap ways of getting energy. At the same time, he is facing another problem of waste disposal pollution in the environment, which is a by-product of his industries and population, and when it would be hazardous to life, it will be a more serious problem. In this study, an idea is made to use garbage as an alternate fuel and the analysis of ingredients is done to compare it with the usual fuel i.e. coal. On the other hand, municipal waste (garbage) disposal will be automatically solved. (author)

  13. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    International Nuclear Information System (INIS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-01-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H 3 O + , but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re + with O 2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re 2 2+ is found to charge transfer with O 2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba + , which is reacted with N 2 O to create BaO + , and we find a rate constant that agrees with the literature

  14. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  15. A study about ions sources for solids and gases

    International Nuclear Information System (INIS)

    Perez Z, E.

    1975-01-01

    Description of the different ways of obtaining ions and the causes which limits their production is covered among the various possible combinations of parameters involved in any source in order to obtain the maximum current of ions, the following were selected: filament current against: focusing voltage and accelerating voltage, establishing also a ions current relationship between detectors. In the first pair of parameters, the increase of the accelerating voltage produced the increase of the ionization current and similarly in the second and third pair of parameters the increase of the filament current and pression respectively produced the same effect. During the separation between the discharge camera and lens it was observed that to each variation in the extraction voltage corresponded an equal variation in the focusing voltage. Finally a relationship was established in the ions current between grating and detector in order to determine the more appropriate distance between the camera and the focusing lens. The increase of the ionization current when the accelerating voltage, the magnetic field and the gas pressure are increased is interpreted as a physical fact; the efficiency of a source is considered. (author)

  16. New development of solid state sub-millimeter sources

    International Nuclear Information System (INIS)

    Nishizawa, Jun-ichi

    1982-01-01

    The TUNNETT (tunnel injection transit time negative resistance) diode was proposed by the author in the analysis of avalanching negative resistance diodes and seemed to be the most promising semiconductor source in the frequency range from 100 to 1000 GHz. The first TUNNETT oscillation was realized experimentally in 1968 from a GaAs p + n diode. Recently, several types of GaAs TUNNETT diodes have been fabricated by the use of the author's new liquid phase epitaxial method, which is named the temperature difference method under controlled vapour pressure. The oscillation characteristics of p + - n - n + diodes are shown. On the other hand, the static induction transistor (SIT) shows the excellent performance for high power use in microwave region. The static induced tunnel transit time transistor (SIT 4 ) is a kind of SIT in which the injection source region is replaced by the tunnel injection for use in submillimeter region. In SIT 4 , the gate voltage controls the field of the tunnelling region, and the tunnelling electrons transit to the drain without reaching the gate. The SIT's using tunnelling and ideal (ballistic) SIT are promising devices in submillimeter region. The author suggested the generation of electromagnetic waves by using phonons in semiconductors from submillimeter to infared. Above 1000 GHz up to 100 THz of the field of conventional semiconductors, semiconductor Raman and Brillouin lasers are expected to be the most useful devices in the future. (Wakatsuki, Y.)

  17. A Low-Cost Open Source 3D-Printable Dexterous Anthropomorphic Robotic Hand with a Parallel Spherical Joint Wrist for Sign Languages Reproduction

    Directory of Open Access Journals (Sweden)

    Andrea Bulgarelli

    2016-06-01

    Full Text Available We present a novel open-source 3D-printable dexterous anthropomorphic robotic hand specifically designed to reproduce Sign Languages’ hand poses for deaf and deaf-blind users. We improved the InMoov hand, enhancing dexterity by adding abduction/adduction degrees of freedom of three fingers (thumb, index and middle fingers and a three-degrees-of-freedom parallel spherical joint wrist. A systematic kinematic analysis is provided. The proposed robotic hand is validated in the framework of the PARLOMA project. PARLOMA aims at developing a telecommunication system for deaf-blind people, enabling remote transmission of signs from tactile Sign Languages. Both hardware and software are provided online to promote further improvements from the community.

  18. Analysis on Physical Characteristics of Rural Solid Waste in Dongjiang River Source Area, China

    Directory of Open Access Journals (Sweden)

    WANG Tao

    2014-06-01

    Full Text Available Dongjiang river is the source of drinking water of Guangdong Province and Hongkong, and the source area includes three counties in Ganzhou city of Jiangxi Province: Xunwu, Anyuan and Dingnan. Three typical villages were chosen in Dongjiang river source area to investigate the producing quantity and physical characteristics of rural solid waste. Results of investigation showed that the dominant ingredient in rural solid waste in Dongjiang river source area was kitchen waste, taking over 60%, followed by dust, reaching 12%, while other components took less than 10%. The per-capita producing quantity of solid waste of county-level village was 0.2~0.47 kg·d -1 and averaged by 0.36 kg·d -1, while that of town-level village was 0.18~0.35 kg· d -1, averaged by 0.29 kg· d -1 and that of hamlet was 0.07~0.33 kg· d -1, averaged by 0.17 kg· d -1. Water content in rural mixed solid waste of investigated area was significantly linear with percentage of kitchen waste in the mixed waste(R 2 =0.626, P=0.019. The average calorie wasaround 2 329 kJ·kg -1, which indicated that the rural solid waste in Dongjiang river source area was not suitable for incineration disposal directly.

  19. Spherical galaxies.

    Science.gov (United States)

    Telles, J. E.; de Souza, R. E.; Penereiro, J. C.

    1990-11-01

    RESUMEN. Presentamos fotometria fotografica de 8 objetos y espectrosco- pla para 3 galaxias, las cuales son buenos candidatos para galaxias esfericas. Los resultados fotometricos se presentan en la forma de iso- fotas y de perfiles radiales promedlo, de los cuales se derivan para- metros estructurales. Estas observaciones combinadas con parametros di- namicos obtenidos de observaciones espectrosc6picas, son consistentes con el plano fundamental derivado por Djorgovski y Davis (1987). ABSTRACT. We present photographic surface photometry for 8 objects and spectroscopy for 3 galaxies which are good candidates for spherical galaxies. Photometric results are presented in the form of isophotes and mean radial profiles from which we derived structural parameters. These observations combined with dynamical parameters obtained from spectroscopic observations are consistent with the fundamental plane derived by Djorgovski and Davis (1987). Keq wo : CALAXIES-ELLIPTICAL

  20. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States

    Science.gov (United States)

    Anning, David W.; Flynn, Marilyn E.

    2014-01-01

    Recent studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, domestic, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey’s National Water Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model that has improved the understanding of sources, loads, yields, and concentrations of dissolved solids in streams of the conterminous United States.

  1. Solid waste as an energy source for the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Meier, P.M.; McCoy, T.H.

    1976-06-01

    This report, one of a series prepared for the BNL study of the Energy Future of the Northeastern United States, presents an assessment of the potential contribution of energy recovery from municipal refuse to energy supply in the region. A brief review of the present and likely future quantity and composition of municipal refuse and the technologies available for energy recovery (Chapters II and III) is followed by a comparison of the potential contributions to energy supply of the various recovery options including direct firing in utility boilers, pyrolysis to oil or gas, and steam generation for industrial process heat or district space heating (Chapter IV). The relationship of refuse energy recovery to market conditions for alternative energy sources is considered in Chapter V, which also includes an analysis of the impact of haul costs, interest rates, and delivered prices of the major fuels. Institutional barriers to implementation of energy recovery are reviewed in Chapter VI, and the environmental implications of the concept are addressed in Chapter VII. In the concluding chapters, scenarios of energy recovery are developed for 1985 and 2000, and the sensitivity of overall energy yield to projections and assumptions is examined. Although even under the most optimistic assumptions, refuse energy recovery is found to contribute only some 5 percent of total regional consumption, the economic and environmental benefits, coupled with the increasing difficulty of finding other refuse disposal alternatives, make energy recovery a very attractive policy choice for helping to relieve future energy supply difficulties in the Northeast. (auth)

  2. Solid sources of krypton-85; Sources solides de krypton-85; Tverdye istochniki kriptona-85; Fuentes solidas de cripton-85

    Energy Technology Data Exchange (ETDEWEB)

    Puig, J R; Sandier, J [Centre d' Etudes Nucleaires de Saclay (France)

    1962-01-15

    Krypton-85, a {beta}-emitter with a long half-life and low biological hazard, has considerable industrial potentialities. It is difficult, however, to manufacture sources since the element occurs in gaseous form and cannot be chemically fixed. The authors describe a method of krypton-fixation in a macromolecular matrix formed by mass polymerization of a liquid monomer containing krypton; they also give an account of the preparation of two types of source produced in this way-one enclosed in polystyrene, the other in polyvinyl acetate. Such sources lose krypton; the activity of the first decreases by 8 % daily, that of the second by 3 % daily. These apparent decays enable the diffusion coefficients of krypton in these polymers to be calculated. Diffusion appears to be prevented by the cross-linkages which exist in the polymers. (author) [French] Le krypton-85, emetteur {beta} de longue periode et de faible danger biologique, offre des avantages importants pour une utilisation industrielle. Mais la fabrication de sources est difficile du fait que cet element se presente sous forme gazeuse et qu'il ne peut etre fixe chimiquement. Les auteurs exposent une methode de fixation du krypton dans une matrice macromoleculaire formee par la polymerisation en masse d'un monomere liquide contenant le krypton, et decrivent les preparations de deux types de sources realisees sur ce principe - l'une enfermee dans du polystyrene, l'autre dans de l'acetate de polyvinyle. Les sources ainsi obtenues laissent echapper du krypton; leur activite diminue de 8% par jour pour la premiere et de 3% par jour pour la seconde. Ces decroissances apparentes permettent de calculer les coefficients de diffusion du krypton dans ces polymeres. Celle-ci parait empechee par les liaisons de pontage existant dans le polymere. (author) [Spanish] El cripton-85 es un emisor beta de periodo largo y poco peligroso desde el punto de vista biologico, que ofrece considerables ventajas para su empleo en la

  3. Using multi spherical spectrometry for determination of dosimetric characteristics of mixed neutron and gamma radiation fields of fission sources

    International Nuclear Information System (INIS)

    Fyulep, M.; Nikodemova, D.; Grabovtsova, A.; Galan, P.; Trousil, J.

    1977-01-01

    Possibilities of the application of multispherical spectrometry in personnel dosimetry of neutrons (n) and gamma radiation (γ) are considered. Studies were made to elucidate a possibility of using albedo dosemeters to increase the sensitivity of personnel dosemeters. Determined were the dose due to the (n,γ) reaction in a human body, absorbed dose and dose equivalent. The effect of (n,γ) dose on the reading of personnel gamma dosemeter was considered. It is shown that the above effect on the dosemeter readings for frontal irradiation by a broad neutron beam in everyday personnel dosimetry near 252 Cf sources may be neglected. Only in the case of strongly slowed-down fission spectrum the effect of the (n,γ) reaction is considerable. The application of albedo dosemeter is expedient to take into account the corrections of personnel dosemeter readings [ru

  4. Extraction and purification of {sup 227}Ac and development of solid {sup 219}Rn source

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Quan; Qiu, Shoukang; Xiao, Detao; Zhou, Yaohui; An, Xiaogang [University of South China, Hengyang (China). Radon Key Laboratory of Hunan Province/School of Nuclear Science and Technology

    2014-04-01

    The method of {sup 227}Ac extraction and purification from high-grade uranium ore and the test results of solid {sup 219}Rn source made from {sup 227}Ac are reported in this paper. With five years of follow-up monitoring, radiochemical purity of {sup 227}Ac and the emanation power of solid {sup 219}Rn source has been checked by emanation method and γ-spectrometry, the results showed that {sup 228}Th, {sup 231}Pa and {sup 226}Ra have been effectively removed and the emanation power of {sup 219}Rn source is about 80%. The long-term test results also showed that the {sup 219}Rn emanation rate remains stable in a wide air humidity range (40% ∝ 90%). Though the {sup 219}Rn source has not been accurately calibrated yet, it has been applied in the research for delay coincidence measurement of {sup 223}Ra. (orig.)

  5. High-power, solid-state rf source for accelerator cavities

    International Nuclear Information System (INIS)

    Vaughan, D.R.; Mols, G.E.; Reid, D.W.; Potter, J.M.

    1985-01-01

    During the past few years the Defense and Electronics Center of Westinghouse Electric Corporation has developed a solid-state, 250-kW peak, rf amplifier for use with the SPS-40 radar system. This system has a pulse length of 60 μs and operates across the frequency band from 400 to 450 MHz. Because of the potential use of such a system as an rf source for accelerator applications, a collaborative experiment was initiated between Los Alamos National Laboratory and Westinghouse to simulate the resonant load conditions of an accelerator cavity. This paper describes the positive results of that experiment as well as the solid-state amplifier architecture. It also explores the future of high-power, solid-state amplifiers as rf sources for accelerator structures

  6. Solid waste as renewable source of energy. Current and future possibility in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Taqiy Eddine, Boukelia; Salah, Mecibah Med [Mentouri Univ., Constantine (Algeria). Mechanical Dept.

    2012-11-01

    Algeria has created a green momentum by launching an ambitious program to develop renewable energies and promote energy efficiency. Solid waste is one of most important sources of biomass potential in Algeria, which can be used as renewable energy sources. With economic development and the evolution of population, the quantity of solid waste is increasing rapidly in Algeria; according to the National Cadastre for Solid Waste Generation, the overall generation of municipal solid waste was more than 10.3 million tons per year, and the amount of industrial solid waste, including non-hazardous and inert industrial waste was 2,547,000 tons per year, with a stock quantity of 4,483,500 tons. The hazardous waste generated amounts to 325,100 tons per year; the quantities of waste in stock and awaiting a disposal solution amount to 2,008,500 tons. Healthcare waste reaches to 125,000 tons per year. The management of solid waste and its valorization is based on the understanding of solid waste composition by its categories and physicochemical characteristics. Elimination is the solution applied to 97% of waste produced in Algeria. Wastes are disposed in the following ways: open dumps (57%), burned in the open air in public dumps or municipal uncontrolled ones (30%), and controlled dumps and landfill (10%). On the other side, the quantities destined for recovery are too low: only 2% for recycling and 1% for composting. Waste to energy is very attractive option for elimination solid waste with energy recovery. In this paper, we give an overview for this technology, including its conversion options and its useful products (such as electricity, heat and transportation fuel), and waste to energy-related environmental issues and its challenges. (orig.)

  7. Efficient all solid-state continuous-wave yellow-orange light source

    DEFF Research Database (Denmark)

    Janousek, Jiri; Johansson, Sandra; Tidemand-Lichtenberg, Peter

    2005-01-01

    We present highly efficient sum-frequency generation between two CW IR lasers using periodically poled KTP. The system is based on the 1064 and 1342 nm laser-lines of two Nd:YVO4 lasers. This is an all solid-state light source in the yellow-orange spectral range. The system is optimized in terms ...

  8. All solid state high voltage power supply for neutral beam sources

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1984-01-01

    The conceptual design of a high frequency solid state, high power, high voltage, power system that reacts fast enough to be compatible with the requirements of a neutral beam source is presented. The system offers the potential of significant advantages over conventional power line frequency systems; such as high reliability, long life, relatively little maintenance requirements, compact size and modular design

  9. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Directory of Open Access Journals (Sweden)

    Cai Bo-Feng

    2014-01-01

    Citation: Cai, B.-F., Liu, J.-G., Gao, Q.-X., et al., 2014. Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv. Clim. Change Res. 5(2, doi: 10.3724/SP.J.1248.2014.081.

  10. Plasmonics for solid-state lighting : enhanced excitation and directional emission of highly efficient light sources

    NARCIS (Netherlands)

    Lozano, G.; Louwers, Davy J.; Rodriguez, S.R.K.; Murai, S.; Jansen, O.T.A.; Verschuuren, M.A.; Gomez Rivas, J.

    2013-01-01

    Light sources based on reliable and energy-efficient light-emitting diodes (LEDs) are instrumental in the development of solid-state lighting (SSL). Most research efforts in SSL have focused on improving both the intrinsic quantum efficiency (QE) and the stability of light emitters. For this reason,

  11. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development. Final report of a scientific research supported by the USDOE/SBIR program

    International Nuclear Information System (INIS)

    Cheng, E.T.

    1999-01-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation 3, can produce a neutron wall loading from 0.5 to 5 MW/m 2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW-y/m 2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept

  12. Test of Effective Solid Angle code for the efficiency calculation of volume source

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. Y.; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of); Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is hard to determine a full energy (FE) absorption peak efficiency curve for an arbitrary volume source by experiment. That's why the simulation and semi-empirical methods have been preferred so far, and many works have progressed in various ways. Moens et al. determined the concept of effective solid angle by considering an attenuation effect of γ-rays in source, media and detector. This concept is based on a semi-empirical method. An Effective Solid Angle code (ESA code) has been developed for years by the Applied Nuclear Physics Group in Seoul National University. ESA code converts an experimental FE efficiency curve determined by using a standard point source to that for a volume source. To test the performance of ESA Code, we measured the point standard sources and voluminous certified reference material (CRM) sources of γ-ray, and compared with efficiency curves obtained in this study. 200∼1500 KeV energy region is fitted well. NIST X-ray mass attenuation coefficient data is used currently to check for the effect of linear attenuation only. We will use the interaction cross-section data obtained from XCOM code to check the each contributing factor like photoelectric effect, incoherent scattering and coherent scattering in the future. In order to minimize the calculation time and code simplification, optimization of algorithm is needed.

  13. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    Science.gov (United States)

    Shi, Suan; Li, Jing; Blersch, David M

    2018-04-19

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  14. Recombination of radiation defects in solid methane: neutron sources and cryo-volcanism on celestial bodies

    Science.gov (United States)

    Kirichek, O.; Savchenko, E. V.; Lawson, C. R.; Khyzhniy, I. V.; Jenkins, D. M.; Uyutnov, S. A.; Bludov, M. A.; Haynes, D. J.

    2018-03-01

    Physicochemical properties of solid methane exposed to ionizing radiation have attracted significant interest in recent years. Here we present new trends in the study of radiation effects in solid methane. We particularly focus on relaxation phenomena in solid methane pre-irradiated by energetic neutrons and electron beam. We compare experimental results obtained in the temperature range from 10K to 100K with a model based on the assumption that radiolysis defect recombinations happen in two stages, at two different temperatures. In the case of slow heating up of the solid methane sample, irradiated at 10K, the first wave of recombination occurs around 20K with a further second wave taking place between 50 and 60K. We also discuss the role of the recombination mechanisms in “burp” phenomenon discovered by J. Carpenter in the late 1980s. An understanding of these mechanisms is vital for the designing and operation of solid methane moderators used in advanced neutron sources and could also be a possible explanation for the driving forces behind cryo-volcanism on celestial bodies.

  15. Residents’ Household Solid Waste (HSW Source Separation Activity: A Case Study of Suzhou, China

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2014-09-01

    Full Text Available Though the Suzhou government has provided household solid waste (HSW source separation since 2000, the program remains largely ineffective. Between January and March 2014, the authors conducted an intercept survey in five different community groups in Suzhou, and 505 valid surveys were completed. Based on the survey, the authors used an ordered probit regression to study residents’ HSW source separation activities for both Suzhou and for the five community groups. Results showed that 43% of the respondents in Suzhou thought they knew how to source separate HSW, and 29% of them have source separated HSW accurately. The results also found that the current HSW source separation pilot program in Suzhou is valid, as HSW source separation facilities and residents’ separation behavior both became better and better along with the program implementation. The main determinants of residents’ HSW source separation behavior are residents’ age, HSW source separation facilities and government preferential policies. The accessibility to waste management service is particularly important. Attitudes and willingness do not have significant impacts on residents’ HSW source separation behavior.

  16. Imaging of fast-neutron sources using solid-state track-recorder pinhole radiography

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Gold, R.; Roberts, J.H.; Kaiser, B.J.; Preston, C.C.

    1983-08-01

    Pinhole imaging methods are being developed and tested for potential future use in imaging the intense neutron source of the Fusion Materials Irradiation Test (FMIT) Facility. Previously reported, extensive calibration measurements of the proton, neutron, and alpha particle response characteristics of CR-39 polymer solid state track recorders (SSTRs) are being used to interpret the results of imaging experiments using both charged particle and neutron pinhole collimators. High resolution, neutron pinhole images of a 252 Cf source have been obtained in the form of neutron induced proton recoil tracks in CR-39 polymer SSTR. These imaging experiments are described as well as their potential future applications to FMIT

  17. A review of the applications to solids of the laser ion source in mass spectrometry

    International Nuclear Information System (INIS)

    Conzemius, R.J.; Capellen, J.M.

    1980-01-01

    The review is intended to provide a panoramic view of the broadening applications of the laser ion source in mass spectrometry. In these applications a laser beam has been used to excite a solid specimen to the ionized state or to the vaporized state in the ion source of a mass spectrometer. The review is divided into two main sections: Analytical features and applications. The analytical features section has been subdivided into five areas: Detection sensitivity, ionisation efficiency, collection efficiency, quantification, and crater-depth analysis. Applications have been separated into ten different areas: Biological, carbon, fossil fuels, gaseous impurities, geological, inorganics, isotopic analysis, metals, organics and polymers. (EBE)

  18. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  19. Municipal solid waste source-separated collection in China: A comparative analysis

    International Nuclear Information System (INIS)

    Tai Jun; Zhang Weiqian; Che Yue; Feng Di

    2011-01-01

    A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

  20. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    International Nuclear Information System (INIS)

    Tooker, J.F.; Huynh, P.; Street, R.W.

    2009-01-01

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  1. Analysis of solids by spark-source mass spectrometry; Analyse des solides au spectrometre de masse a etincelles

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, R; Desjardins, M; Brun, J C; Cornu, A; Bourguillot, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-07-01

    Spark source mass spectrometer MS7 has been designed to determine traces of impurities in solids without standards. An atlas of 12 000 lines, assembled in the Grenoble laboratory, allows a quick investigation of mass spectra, notwithstanding their complexity due to multiply charged and polyatomic darkening. Photometric measurements increase accuracy calibration curve is known for each photo-plate. Further, reproducibility is better, if random fluctuations of matrix line darkening are corrected. So far, in a concentration range of 0,01 to 1 000 ppm (atomic), reproducibility is approximately 20 per cent, but absolute value of results depends on 'sensitivity coefficients'. (authors) [French] Le spectrometre de masse a etincelles, de type MS7, est destine a l'analyse chimique de traces dans les solides, sans echantillons etalons. L'emploi de catalogues de 12 000 raies, elabores au laboratoire, permet un depouillement rapide des spectres, malgre leur complexite due aux ionisations multiples et aux associations d'atomes. Le niveau d'apparition d'une impurete donne une estimation de sa teneur, mais la valeur du renseignement depend de la preparation des electrodes et de la connaissance plus ou moins approfondie des processus d'ionisation dans l'etincelle et de noircissement des emulsions photographiques. Les mesures photometriques augmentent la precision des resultats, si l'on determine systematiquement la courbe de noircissement de chaque plaque. De meme la reproductibilite est amelioree si l'on tient compte des fluctuations statistiques du noircissement de l'emulsion par les ions de la matrice. Actuellement, les concentrations mesurees dans le domaine de 0,01 a 1000 ppm atomiques sont reproductibles a 20 pour cent pres, mais leur valeur absolue n'est assuree qu'a un coefficient 3 pres. Des etudes sont en cours pour calibrer l'appareil en valeur absolue, par une determination des coefficients de sensibilite a partir d'echantillons etalons. (auteurs)

  2. Semi-empirical Determination of Detection Efficiency for Voluminous Source by Effective Solid Angle Method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. Y.; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of); Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In the field of γ-ray measurements, the determination of full energy (FE) absorption peak efficiency for a voluminous sample is difficult, because the preparation of the certified radiation source with the same chemical composition and geometry for the original voluminous sample is not easy. In order to solve this inconvenience, simulation or semi-empirical methods are preferred in many cases. Effective Solid Angle (ESA) Code which includes semi-empirical approach has been developed by the Applied Nuclear Physics Group in Seoul National University. In this study, we validated ESA code by using Marinelli type voluminous KRISS (Korea Research Institute of Standards and Science) CRM (Certified Reference Materials) sources and IAEA standard γ-ray point sources. And semi-empirically determined efficiency curve for voluminous source by using the ESA code is compared with the experimental value. We calculated the efficiency curve of voluminous source from the measured efficiency of standard point source by using the ESA code. We will carry out the ESA code validation by measurement of various CRM volume sources with detector of different efficiency.

  3. Semi-empirical Calculation of Detection Efficiency for Voluminous Source Based on Effective Solid Angle Concept

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. Y.; Kim, J. H.; Choi, H. D.; Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the Effective Solid Angle (ESA) Code. The procedure for semi-empirical determination of the FE efficiency for the arbitrary volume sources and the calculation principles and processes about ESA code is referred to, and the code was validated with a HPGe detector (relative efficiency 32%, n-type) in previous studies. In this study, we use different type and efficiency of HPGe detectors, in order to verify the performance of the ESA code for the various detectors. We calculated the efficiency curve of voluminous source and compared with experimental data. We will carry out additional validation by measurement of various medium, volume and shape of CRM volume sources with detector of different efficiency and type. And we will reflect the effect of the dead layer of p-type HPGe detector and coincidence summing correction technique in near future.

  4. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    International Nuclear Information System (INIS)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.

    2001-01-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  5. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  6. An incentive-based source separation model for sustainable municipal solid waste management in China.

    Science.gov (United States)

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.

  7. Dosimetric calibration of solid state detectors with low energy β sources

    International Nuclear Information System (INIS)

    Fidanzio, Andrea; Pia Toni, Maria; Capote, Roberto; Pena, Juan; Pasciuti, Katia; Bovi, Maurizio; Perrone, Franco; Azario, Luigi; Lazzeri, Mauro; Gaudino, Diego; Piermattei, Angelo

    2008-01-01

    A PTW Optidos plastic scintillation and a PTW natural diamond detectors were calibrated in terms of absorbed dose to water with β fields produced by 90 Sr + 90 Y and 85 Kr reference sources. Each source was characterized at the Italian National Metrological Institute - the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of ENEA (ENEA-INMRI) - for two different series, 1 and 2, of ISO reference β-particle radiation fields. Beam flattening filters were used for the series 1 β fields to give uniform absorbed dose rates over a large area at a source-to-reference plane distance of 30 cm. The series 2 β fields were produced at source-to-reference plane distance of 10 cm, without the beam flattening filters, in order to obtain higher absorbed dose rates. The reference absorbed dose rate values were directly determined by the Italian national standard for β-particle dosimetry (a PTW extrapolation ionization chamber) for the series 1 β fields and by a calibrated transfer standard chamber, (a Capintec thin fixed-volume parallel plate ionization chamber) for the series 2 β fields. Finally the two solid state detectors were calibrated in terms of absorbed dose to water with the series 2 β field. The expanded uncertainties of the calibration coefficients obtained for the plastic scintillation dosimeter were 10% and 12% (2SD) for the 90 Sr + 90 Y and the 85 Kr sources, respectively. The expanded uncertainties obtained for the diamond dosimeter were 10% (2SD) and 16% (2SD) for the 90 Sr + 90 Y and the 85 Kr sources, respectively. The good results obtained with the 90 Sr + 90 Y and the 85 Kr β sources encourage to implement this procedure to calibrate this type of detectors at shorter distances and with other β sources of interest in brachytherapy, for example the 106 Ru source

  8. Pair distribution function and structure factor of spherical particles

    International Nuclear Information System (INIS)

    Howell, Rafael C.; Proffen, Thomas; Conradson, Steven D.

    2006-01-01

    The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed

  9. Development of solid radioactive sources in acrylamide; Desenvolvimento de fontes radioativas solidas em resina acrilamida

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, I.M.; Koskinas, M.F.; Dias, M.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas; Andrade e Silva, L.G.; Vieira, J.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes

    2004-07-01

    The development of water-equivalent solid sources of {sup 133} Ba prepared from an aqueous solution of acrylamide by polymerization by a high dose {sup 60}Co irradiation is described. The main resin characteristics were measured, such as: density, effective atomic number and uniformity. The variation of these parameters was in the range of 1,08 to 1,16 g.cm{sup -3} for density, 3.7 to 4.0 for effective atomic number and 2.8 to 7.2% for the uniformity. These values are in agreement with the literature. (author)

  10. Life cycle assessment of a household solid waste source separation programme: a Swedish case study.

    Science.gov (United States)

    Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik

    2011-10-01

    The environmental impact of an extended property close source-separation system for solid household waste (i.e., a systems for collection of recyclables from domestic properties) is investigated in a residential area in southern Sweden. Since 2001, households have been able to source-separate waste into six fractions of dry recyclables and food waste sorting. The current system was evaluated using the EASEWASTE life cycle assessment tool. Current status is compared with an ideal scenario in which households display perfect source-separation behaviour and a scenario without any material recycling. Results show that current recycling provides substantial environmental benefits compared to a non-recycling alternative. The environmental benefit varies greatly between recyclable fractions, and the recyclables currently most frequently source-separated by households are often not the most beneficial from an environmental perspective. With optimal source-separation of all recyclables, the current net contribution to global warming could be changed to a net-avoidance while current avoidance of nutrient enrichment, acidification and photochemical ozone formation could be doubled. Sensitivity analyses show that the type of energy substituted by incineration of non-recycled waste, as well as energy used in recycling processes and in the production of materials substituted by waste recycling, is of high relevance for the attained results.

  11. Start-up of anaerobic digestion of source-sorted organic municipal solid waste

    International Nuclear Information System (INIS)

    Maroun, Rania

    2004-01-01

    Municipal solid waste (MSW) disposal is a major environmental concern worldwide. Among the environmentally sound technologies for the treatment of MSW, composting in the form of anaerobic digestion (AD) appears as a suitable alternative that offers the advantage of rapid stabilization of organic matter, reduction in waste volume, production of methane, and minimal environmental impacts in comparison to land filling and incineration. Yet, although outstanding advances in anaerobic digestion of solid substrate have been made in the last 10 years, some development areas are lagging, including the fast and reliable process start-up in terms of type of inocula and overall start-up strategies. The present study investigates the start-up and operation of bench-scale anaerobic digesters treating the source-sorted organic fraction of municipal solid waste. The experimental program consisted of starting up two digesters in parallel. Three consecutive interventions in the start-up program were implemented to achieve steady state. Start-up was relatively slow indicating the seed obtained from an operating anaerobic wastewater treatment plant was not suitable. The use of cattle manure together with effluent dilution reduced the acclimation period (Author.)

  12. SACALCCYL, Calculates the average solid angle subtended by a volume; SACALC2B, Calculates the average solid angle for source-detector geometries

    International Nuclear Information System (INIS)

    Whitcher, Ralph

    2007-01-01

    1 - Description of program or function: SACALC2B calculates the average solid angle subtended by a rectangular or circular detector window to a coaxial or non-coaxial rectangular, circular or point source, including where the source and detector planes are not parallel. SACALC C YL calculates the average solid angle subtended by a cylinder to a rectangular or circular source, plane or thick, at any location and orientation. This is needed, for example, in calculating the intrinsic gamma efficiency of a detector such as a GM tube. The program also calculates the number of hits on the cylinder side and on each end, and the average path length through the detector volume (assuming no scattering or absorption). Point sources can be modelled by using a circular source of zero radius. NEA-1688/03: Documentation has been updated (January 2006). 2 - Methods: The program uses a Monte Carlo method to calculate average solid angle for source-detector geometries that are difficult to analyse by analytical methods. The values of solid angle are calculated to accuracies of typically better than 0.1%. The calculated values from the Monte Carlo method agree closely with those produced by polygon approximation and numerical integration by Gardner and Verghese, and others. 3 - Restrictions on the complexity of the problem: The program models a circular or rectangular detector in planes that are not necessarily coaxial, nor parallel. Point sources can be modelled by using a circular source of zero radius. The sources are assumed to be uniformly distributed. NEA-1688/04: In SACALC C YL, to avoid rounding errors, differences less than 1 E-12 are assumed to be zero

  13. A study of the physico-chemical characteristics of a solid radon 222 source

    International Nuclear Information System (INIS)

    Chuiton, G.

    1990-01-01

    A solid radon 222 source is described; it is made of a manganese oxide impregnated acrylic felt disc on which radium 226 is fixed. The disc is incorporated into a scanning device allowing the passage through the felt of a radon 222 free gas (air or nitrogen) previously led to a relative humidity of air near to saturation. At the device outlet, a stable activity of radon 222 is obtained. The preparation, characteristics and radiochemical stability conditions of the 226 radium source are presented. Following a description of the scanning device, the radon 222 emanation coefficient is studied as a function of the relative humidity of air. The reliability of the device is assessed by an uncertainty calculation for the utilisation conditions recommended. Finally, an approach to the physico-chemical processes governing radon 222 emanation rate in the device is set forth [fr

  14. Narrowband solid state vuv coherent source for laser cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Michan, J. Mario [TRIUMF (Canada); Polovy, Gene; Madison, Kirk W. [The University of British Columbia, Department of Physics and Astronomy (Canada); Fujiwara, Makoto C. [TRIUMF (Canada); Momose, Takamasa, E-mail: momose@chem.ubc.ca [The University of British Columbia, Department of Chemistry, Department of Physics and Astronomy (Canada)

    2015-11-15

    We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman-α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

  15. Direct Synthesis of Co-doped Graphene on Dielectric Substrates Using Solid Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    Qi Wang; Pingping Zhang; Qiqi Zhuo; Xiaoxin Lv; Jiwei Wang; Xuhui Sun

    2015-01-01

    Direct synthesis of high-quality doped graphene on dielectric substrates without transfer is highly desired for simplified device processing in electronic applications.However,graphene synthesis directly on substrates suitable for device applications,though highly demanded,remains unattainable and challenging.Here,a simple and transfer-free synthesis of high-quality doped graphene on the dielectric substrate has been developed using a thin Cu layer as the top catalyst and polycyclic aromatic hydrocarbons as both carbon precursors and doping sources.N-doped and N,F-co-doped graphene have been achieved using TPB and F16Cu Pc as solid carbon sources,respectively.The growth conditions were systematically optimized and the as-grown doped graphene were well characterized.The growth strategy provides a controllable transfer-free route for high-quality doped graphene synthesis,which will facilitate the practical applications of graphene.

  16. Spherical subsystem of galactic radiosources

    Energy Technology Data Exchange (ETDEWEB)

    Gorshkov, A G; Popov, M V [Moskovskij Gosudarstvennyj Univ. (USSR). Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' '

    1975-05-01

    The concentration of statistically complete sampling radiosources of the Ohiof scanning with plane spectra towards the Galaxy centre has been discovered. Quantitative calculations have showed that the sources form a spheric subsystem, which is close in parameters to such old formations in the Galaxy as globular clusters and the RRLsub(YR) type stars. The luminosity of the galaxy spheric subsystem object equals 10/sup 33/ erg/sec, the total number of objects being 7000. The existence of such a subsystem explains s the anomalously by low incline of statistics lgN-lgS in HF scanning PKS (..gamma..-2700Mgz) and the Michigan University scanning (..gamma..=8000Mgz) because the sources of galaxy spheric subsystem make up a considerable share in the total number of sources, especially at high frequencies (50% of sources with a flux greater than a unit of flux per 8000Mgz). It is very probable that the given subsystem consists of the representatives of one of the following class of objects: a) heat sources - the H2H regions with T=10/sup 40/K, Nsub(e)=10/sup 3/, l=1 ps b) supermass black holes with mass M/Mo approximately 10/sup 5/.

  17. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  19. On-demand generation of background-free single photons from a solid-state source

    Science.gov (United States)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  20. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-06-01

    With rapid economic growth and massive urbanization, China faces the problem of municipal solid waste (MSW) disposal and the pressing need for development of alternative energy. Waste-to-energy (WTE) incineration, which recovers energy from discarded MSW and produces electricity and/or steam for heating, is recognized as a renewable source of energy and is playing an increasingly important role in MSW management in China. This article provides an overview of the WTE industry, discusses the major challenges in expanding WTE incineration in China, namely, high capital and operational costs, equipment corrosion, air pollutant emissions, and fly ash disposal. A perspective on MSW as a renewable energy source in China is also presented. Currently, only approximately 13% of MSW generated in China is disposed in WTE facilities. With the significant benefits of environmental quality, the reduction of greenhouse gas (GHG) emissions, and government policies and financial incentives as a renewable energy source, WTE incineration industry is expected to experience significant growth in the coming decade and make greater contribution to supplying renewable energy in China. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Micro/Nano Fabricated Solid-State Thermoelectric Generator Devices for Integrated High Voltage Power Sources

    Science.gov (United States)

    Fleurial, J.-P.; Ryan, M. A.; Snyder, G. J.; Huang, C.-K.; Whitacre, J. F.; Patel, J.; Lim, J.; Borshchevsky, A.

    2002-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Conventional power generators devices become inefficient in extreme environments (such as encountered in Mars, Venus or outer planet missions) and rechargeable energy storage devices can only be operated in a narrow temperature range thereby limiting mission duration. The planned development of much smaller spacecrafts incorporating a variety of micro/nanodevices and miniature vehicles will require novel, reliable power technologies. It is also expected that such micro power sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Advanced solid-state thermoelectric combined with radioisotope or waste heat sources and low profile energy storage devices are ideally suited for these applications. The Jet Propulsion Laboratory has been actively pursuing the development of thermoelectric micro/nanodevices that can be fabricated using a combination of electrochemical deposition and integrated circuit processing techniques. Some of the technical challenges associated with these micro/nanodevice concepts, their expected level of performance and experimental fabrication and testing results to date are presented and discussed.

  2. Effect of bile diversion on satiety and fat absorption from liquid and solid dietary sources

    International Nuclear Information System (INIS)

    Doty, J.E.; Gu, Y.G.; Meyer, J.H.

    1988-01-01

    In previous studies, liquid fat has been used to determine the effect of bile diversion on fat absorption. Since protein digests, in addition to bile salts, are capable of solubilizing lipids, we hypothesized that fat incorporated in the protein-rich matrix of solid food would be less sensitive to bile diversion than fat ingested as an oil or liquid. Using [3H]glycerol triether as a nonabsorbable fat recovery marker, we determined how much [14C]triolein was absorbed from solid (chicken liver) and liquid (margarine) dietary sources. After a standard liquid/solid meal with either the chicken liver or margarine labeled, midintestinal chyme was collected for 6 hr, extracted, and counted for 14C and 3H activity. Zero, eighty, or one hundred percent of endogenous bile was diverted. Fat absorption from both chicken liver and margarine was nearly complete by midintestine with 0% diversion and was little affected by diversion of 80% of bile. Complete biliary diversion significantly decreased fat absorption from margarine (87.9 +/- 4.4 to 37.2 +/- 9.2%, P less than 0.05) but reduced [14C]triolein absorption from chicken liver less consistently and insignificantly (78.8 +/- 6.9 to 43.9 +/- 10.6%). These data indicate that fat absorption is not solely dependent on bile and support the hypothesis that fat ingested in a cellular matrix is less dependent on bile than liquid fat. Using these same animals but with the midintestinal cannulas plugged to expose the distal intestine to unabsorbed luminal nutrients, we also demonstrated that bile diversion of an initial meal reduced food consumption at a meal offered 3 hr later

  3. Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source.

    Science.gov (United States)

    Maddi, Chiranjeevi; Bourquard, Florent; Barnier, Vincent; Avila, José; Asensio, Maria-Carmen; Tite, Teddy; Donnet, Christophe; Garrelie, Florence

    2018-02-19

    New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped 'few-layer' graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology.

  4. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste

    KAUST Repository

    Ghanimeh, Sophia A.

    2012-08-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314l CH 4/gVS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825mg HAc/l, propionate content from 2073 to 488mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5gVS/l/d in comparison to 1.9gVS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10gVSS/l and enhanced solids and soluble COD removal. © 2012 Elsevier Ltd.

  5. Barriers on the propagation of renewable energy sources and sustainable solid waste management practices in Greece.

    Science.gov (United States)

    Boemi, Sn; Papadopoulos, Am; Karagiannidis, A; Kontogianni, S

    2010-11-01

    Renewable energy sources (RES), excluding large hydroelectric plants, currently produce 4.21% of total electricity production in Greece. Even when considering the additional production from large hydroelectric plants, which accounts for some 7.8%, the distance to be covered towards the objective of 20% electricity produced from RES by 2010 and respectively towards 20% of total energy production by 2020 is discouraging. The potential, however, does exist; unfortunately so do serious barriers. On the other hand, solid waste management (SWM) is an issue that generates continuously increasing interest due to the extra amounts of solid waste generated; the lack of existing disposal facilities with adequate infrastructure and integrated management plans, also often accompanied by legislative and institutional gaps. However, socio-economic and public awareness problems are still met in the planning and implementation of RES and SWM projects, together with the lack of a complete national cadastre and a spatial development master plan, specifying areas eligible for RES and SWM development. Specific barriers occur for individual RES and the on-going inclusion of waste-derived renewable energy in the examined palette further increases the complexity of the entire issue. The consolidated study of this broad set of barriers was a main task of the present study which was carried out within the frame of a Hellenic-Canadian research project; the main results will be discussed herein.

  6. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste

    KAUST Repository

    Ghanimeh, Sophia A.; El-Fadel, Mutasem E.; Saikaly, Pascal

    2012-01-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314l CH 4/gVS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825mg HAc/l, propionate content from 2073 to 488mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5gVS/l/d in comparison to 1.9gVS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10gVSS/l and enhanced solids and soluble COD removal. © 2012 Elsevier Ltd.

  7. Tunability of the circadian action of tetrachromatic solid-state light sources

    International Nuclear Information System (INIS)

    Žukauskas, A.; Vaicekauskas, R.

    2015-01-01

    An approach to the optimization of the spectral power distribution of solid-state light sources with the tunable non-image forming photobiological effect on the human circadian rhythm is proposed. For tetrachromatic clusters of model narrow-band (direct-emission) light-emitting diodes (LEDs), the limiting tunability of the circadian action factor (CAF), which is the ratio of the circadian efficacy to luminous efficacy of radiation, was established as a function of constraining color fidelity and luminous efficacy of radiation. For constant correlated color temperatures (CCTs), the CAF of the LED clusters can be tuned above and below that of the corresponding blackbody radiators, whereas for variable CCT, the clusters can have circadian tunability covering that of a temperature-tunable blackbody radiator

  8. Solid-state laser source of narrowband ultraviolet B light for skin disease care

    Science.gov (United States)

    Tarasov, Aleksandr A.; Chu, Hong

    2013-03-01

    We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.

  9. Tunability of the circadian action of tetrachromatic solid-state light sources

    Energy Technology Data Exchange (ETDEWEB)

    Žukauskas, A., E-mail: arturas.zukauskas@ff.vu.lt [Institute of Applied Research, Vilnius University, Saulėtekio al. 9-III, LT-10222 Vilnius (Lithuania); Vaicekauskas, R. [Department of Computer Science, Vilnius University, Didlaukio g. 47, Vilnius LT-08303 (Lithuania)

    2015-01-26

    An approach to the optimization of the spectral power distribution of solid-state light sources with the tunable non-image forming photobiological effect on the human circadian rhythm is proposed. For tetrachromatic clusters of model narrow-band (direct-emission) light-emitting diodes (LEDs), the limiting tunability of the circadian action factor (CAF), which is the ratio of the circadian efficacy to luminous efficacy of radiation, was established as a function of constraining color fidelity and luminous efficacy of radiation. For constant correlated color temperatures (CCTs), the CAF of the LED clusters can be tuned above and below that of the corresponding blackbody radiators, whereas for variable CCT, the clusters can have circadian tunability covering that of a temperature-tunable blackbody radiator.

  10. The spherical harmonics method, II (application to problems with plane and spherical symmetry)

    Energy Technology Data Exchange (ETDEWEB)

    Mark, C

    1958-12-15

    The application of the spherical harmonic method to problems with plane or spherical symmetry is discussed in detail. The numerical results of some applications already made are included to indicate the degree of convergence obtained. Formulae for dealing with distributions of isotropic sources are developed. Tables useful in applying the method are given in Section 11. (author)

  11. Analytical formulae to calculate the solid angle subtended at an arbitrarily positioned point source by an elliptical radiation detector

    International Nuclear Information System (INIS)

    Abbas, Mahmoud I.; Hammoud, Sami; Ibrahim, Tarek; Sakr, Mohamed

    2015-01-01

    In this article, we introduce a direct analytical mathematical method for calculating the solid angle, Ω, subtended at a point by closed elliptical contours. The solid angle is required in many areas of optical and nuclear physics to estimate the flux of particle beam of radiation and to determine the activity of a radioactive source. The validity of the derived analytical expressions was successfully confirmed by the comparison with some published data (Numerical Method)

  12. Decontamination of materials contaminated with Francisella philomiragia or MS2 bacteriophage using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Young, A A; Johnson, C A; Minter, Z A; Wells, C M

    2014-08-01

    The aim of the study was to develop test methods and evaluate survival of Francisella philomiragia cells and MS2 bacteriophage after exposure to PES-Solid (a solid source of peracetic acid) formulations with or without surfactants. Francisella philomiragia cells (≥7·6 log10 CFU) or MS2 bacteriophage (≥6·8 log10 PFU) were deposited on seven different test materials and treated with three different PES-Solid formulations, three different preneutralized samples and filter controls at room temperature for 15 min. There were 0-1·3 log10 CFU (6 log10 CFU/PFU F. philomiragia cells and/or MS2 bacteriophage on different materials. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  13. Are Nanoparticles Spherical or Quasi-Spherical?

    Science.gov (United States)

    Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G

    2015-07-20

    The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design of interferometer system for Keda Torus eXperiment using terahertz solid-state diode sources

    International Nuclear Information System (INIS)

    Xie, Jinlin; Wang, Haibo; Li, Hong; Lan, Tao; Liu, Adi; Liu, Wandong; Yu, Changxuan; Ding, Weixing

    2014-01-01

    A solid-state source based terahertz (THz) interferometer diagnostic system has been designed and characterized for the Keda Torus eXperiment (KTX). The THz interferometer utilizes the planar diodes based frequency multiplier (X48) to provide the probing beam at fixed frequency 0.650 THz, and local oscillator is provided by an independent solid-state diode source with tunable frequency (0.650 THz +/− 10 MHz). Both solid-state sources have approximately 1 mW power. The planar-diode mixers optimized for high sensitivity, ∼750 mV/mW, are used in the heterodyne detection system, which permits multichannel interferometer on KTX with a low phase noise. A sensitivity of e l> min = 4.5 × 10 16 m −2 and a temporal resolution of 0.2 μs have been achieved during the initial bench test

  15. Performance of the prototype LANL solid deuterium ultra-cold neutron source

    CERN Document Server

    Hill, R E; Bowles, T J; Greene, G L; Hogan, G; Lamoreaux, S; Marek, L; Mortenson, R; Morris, C L; Saunders, A; Seestrom, S J; Teasdale, W A; Hoedl, S; Liu, C Y; Smith, D A; Young, A; Filippone, B W; Hua, J; Ito, T; Pasyuk, E A; Geltenbort, P; García, A; Fujikawa, B; Baessler, S; Serebrov, A

    2000-01-01

    A prototype of a solid deuterium (SD sub 2) source of Ultra-Cold Neutrons (UCN) is currently being tested at LANSCE. The source is contained within an assembly consisting of a 4 K polyethylene moderator surrounded by a 77 K beryllium flux trap in which is embedded a spallation target. Time-of-flight measurements have been made of the cold neutron spectrum emerging directly from the flux trap assembly. A comparison is presented of these measurements with results of Monte Carlo (LAHET/MCNP) calculations of the cold neutron fluxes produced in the prototype assembly by a beam of 800 MeV protons incident on the tungsten target. A UCN detector was coupled to the assembly through a guide system with a critical velocity of 8 m/s ( sup 5 sup 8 Ni). The rates and time-of-flight data from this detector are compared with calculated values. Measurements of UCN production as a function of SD sub 2 volume (thickness) are compared with predicted values. The dependence of UCN production on SD sub 2 temperature and proton beam...

  16. Solid source growth of Si oxide nanowires promoted by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Congxiang [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Wen-wen; Wang, Xingli [Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Xiaocheng [Laboratory of clean energy chemistry and materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18 Tianshui Middle Road, Lanzhou 730000 (China); Tan, Chong Wei [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Tay, Beng Kang, E-mail: ebktay@ntu.edu.sg [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Coquet, Philippe [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore)

    2014-09-30

    Highlights: • An array of well aligned and uniform CNTs is successfully fabricated by PECVD. • SiONW growth utilizes Si substrate as the source, ruling out the usage of silane. • With CNT array on the substrate, SiONW growth is improved significantly. • CNTs help dispersion of the catalysts and diffusion of the Si atoms. - Abstract: We report a method to promote solid source growth of Si oxide nanowires (SiONWs) by using an array of vertically aligned carbon nanotubes (CNTs). It starts with the fabrication of CNT array by plasma enhanced chemical vapor deposition (PECVD) on Si wafers, followed by growth of SiONWs. Herein, CNTs serve as a scaffold, which helps the dispersion of catalysts for SiONWs and also provides space for hydrogen which boosts the diffusion of Si atoms and hence formation of SiONWs. As the result, a three dimensional (3D) hybrid network of densely packed SiONWs and CNTs can be produced rapidly.

  17. Solid core dipoles and switching power supplies: lower cost light sources?

    Science.gov (United States)

    Benesch, J.; Philip, S.

    2015-05-01

    As a result of improvements in power semiconductors, moderate frequency switching supplies can now provide the hundreds of amps typically required by accelerators with zero-to-peak noise in the kHz region ~ 0.06% in current or voltage mode. Modeling was undertaken using a finite electromagnetic program to determine if eddy currents induced in the solid steel of CEBAF magnets and small supplemental additions would bring the error fields down to the 5ppm level needed for beam quality. The expected maximum field of the magnet under consideration is 0.85 T and the DC current required to produce that field is used in the calculations. An additional 0.1% current ripple is added to the DC current at discrete frequencies 360 Hz, 720 Hz or 7200 Hz. Over the region of the pole within 0.5% of the central integrated BdL the resulting AC field changes can be reduced to less than 1% of the 0.1% input ripple for all frequencies, and a sixth of that at 7200 Hz. Doubling the current, providing 1.5 T central field, yielded the same fractional reduction in ripple at the beam for the cases checked. A small dipole was measured at 60, 120, 360 and 720 Hz in two conditions and the results compared to the larger model for the latter two frequencies with surprisingly good agreement. For light sources with aluminum vacuum vessels and full energy linac injection, the combination of solid core dipoles and switching power supplies may result in significant cost savings. The work may also be used to guide retrofit of existing machines to reduce the level of ripple in the particle beam path.

  18. Efficient all solid-state UV source for satellite-based lidar applications.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2003-07-01

    A satellite-based UV-DIAL measurement system would allow continuous global monitoring of ozone concentration in the upper atmosphere. However such systems remain difficult to implement because aerosol-scattering return signals for satellite-based lidars are very weak. A suitable system must produce high-energy UV pulses at multiple wavelengths with very high efficiency. For example, a nanosecond system operating at 10 Hz must generate approximately 1 J per pulse at 308-320 nm. An efficient space-qualified wavelength-agile system based on a single UV source that can meet this requirement is probably not available using current laser technology. As an alternative, we're pursuing a multi-source approach employing all-solid-state modules that individually generate 300-320 nm light with pulse energies in the range of 50-200 mJ, with transform-limited bandwidths and good beam quality. Pulses from the individual sources can be incoherently summed to obtain the required single-pulse energy. These sources use sum-frequency mixing of the 532 nm second harmonic of an Nd:YAG pump laser with 731-803 nm light derived from a recently-developed, state-of-the-art, nanosecond optical parametric oscillator. Two source configurations are under development, one using extra-cavity sum-frequency mixing, and the other intra-cavity sum-frequency mixing. In either configuration, we hope to obtain sum-frequency mixing efficiency approaching 60% by carefully matching the spatial and temporal properties of the laser and OPO pulses. This ideal balance of green and near-IR photons requires an injection-seeded Nd:YAG pump-laser with very high beam quality, and an OPO exhibiting unusually high conversion efficiency and exceptional signal beam quality. The OPO employs a singly-resonant high-Fresnel-number image-rotating self-injection-seeded nonplanar-ring cavity that achieves pump depletion > 65% and produces signal beams with M{sup 2} {approx} 3 at pulse energies exceeding 50 mJ. Pump beam

  19. Role of rural solid waste management in non-point source pollution control of Dianchi Lake catchments, China

    Institute of Scientific and Technical Information of China (English)

    Wenjing LU; Hongtao WANG

    2008-01-01

    In recent years, with control of the main municipal and industrial point pollution sources and implementation of cleaning for some inner pollution sources in the water body, the discharge of point source pollution decreased gradually, while non-point source pollution has become increasingly distressing in Dianchi Lake catchments. As one of the major targets in non-point source pollution control, an integrated solid waste controlling strategy combined with a technological solution and management system was proposed and implemented based on the waste disposal situation and characteristics of rural solid waste in the demonstration area. As the key technoogy in rural solid waste treatment, both centralized plantscale composting and a dispersed farmer-operated waste treating system showed promise in rendering timely benefits in efficiency, large handling capacity, high quality of the end product, as well as good economic return. Problems encountered during multi-substrates co-com-posting such as pathogens, high moisture content, asyn-chronism in the decomposition of different substrates, and low quality of the end product can all be tackled. 92.5% of solid waste was collected in the demonstration area, while the treating and recycling ratio reached 87.9%, which pre-vented 32.2 t nitrogen and 3.9 t phosphorus per year from entering the water body of Dianchi Lake after imple-mentation of the project.

  20. Erosion and damage by hard spherical particles on glass

    NARCIS (Netherlands)

    Slikkerveer, P.J.; Verspui, M.A.; Skerka, G.J.E.

    1999-01-01

    Solid particle impact of hard spherical particles on glass is of fundamental interest because of the presence of a number of different impact regimes. Understanding the impact of spherical particles is also a step toward modeling the behavior of rounded particles. This paper verifies theoretical

  1. An approach for evaluating the effects of source separation on municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, J.H. [Finnish Environment Institute, Helsinki (Finland)

    2000-07-01

    An approach was developed for integrated analysis of recovery rates, waste streams, costs and emissions of municipal solid waste management (MSWM). The approach differs from most earlier models used in the strategic planning of MSWM because of a comprehensive analysis of on-site collection systems of waste materials separated at source for recovery. As a result, the recovery rates and sizes of waste streams can be calculated on the basis of the characteristics of separation strategies instead of giving them as input data. The modelling concept developed can also be applied in other regions, municipalities and districts. This thesis consists of four case studies. Three of these were performed to test the approach developed and to evaluate the effects of separation on MSWM in Finland. In these case studies the approach was applied for modelling: (1) Finland's national separation strategy for municipal solid waste, (2) the effects of separation on MSWM systems in the Helsinki region and (3) the efficiency of various waste collection methods in the Helsinki region. The models developed for these three case studies are static and linear simulation models which were constructed in the format of an Excel spreadsheet. In addition, a new version of the original Swedish MIMES/Waste model was constructed and applied in one of the case studies. The case studies proved that the approach is an applicable tool for various research settings and circumstances in the strategic planning of MSWM. The following main results were obtained from the case studies: A high recovery rate level (around 70 %wt) can be achieved in MSWM without incineration; Central sorting of mixed waste must be included in Finland's national separation strategy in order to reach the recovery rate targets of 50 %wt (year 2000) and 70 %wt (year 2005) adopted for municipal solid waste in the National Waste Plan. The feasible source separation strategies result in recovery rates around 35-40 %wt with the

  2. Development of a dc low pressure D- surface-conversion source using a 10-cm-diameter solid barium converter

    International Nuclear Information System (INIS)

    Kwan, J.W.; Anderson, O.A.; Chan, C.F.; Cooper, W.S.; deVries, G.J.; Kunkel, W.B.; Leung, K.N.; Lietzke, A.F.; Steele, W.F.; van Os, C.F.A.; Wells, R.P.; Williams, M.D.

    1991-09-01

    A D - surface-conversion source using a solid barium converter is designed for steady-state operation to produce 200 mA of D - . A similar ion source of twice the size as the one discussed here will meet the requirements set by the present US-ITER neutral beam injector design. Among the possible types of ion sources being considered for the US-ITER neutral beam design, the barium converter surface-conversion source is the only kind that does not use cesium in the discharge. This absence of cesium will minimize the number of accelerator breakdowns. 15 refs., 4 figs

  3. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in closed...... form and an application to the storage of heat-generating nuclear waste is discussed....

  4. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2015-07-01

    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  5. Phosphorus diffusion with the help of the solid planar source in the manufacturing of the integrated circuits

    Directory of Open Access Journals (Sweden)

    B. A. Shangereeva

    2008-02-01

    Full Text Available The results of the development and realization of the basic process of the phosphorus diffusion for the formation of the active region of the power silicon transistor have been considered. It is shown that the obtained optimum technological conditions of the phosphorus diffusion using solid planar source allow to get the transistors with improved electrophysical parameters.

  6. Sources, amounts, and characteristics of low-level radioactive solid wastes

    International Nuclear Information System (INIS)

    Kibbey, A.H.; Godbee, H.W.

    1979-01-01

    Low-level radioactive solid wastes (LLW) are generated in the nuclear fuel cycle, national defense programs, institutional (especially medical/biological) applications, and other research and development activities. The estimated total accumulation of defense LLW, approx. 50.8 x 10 6 ft 3 (approx. 1.4 x 10 6 m 3 ), is roughly three times that estimated for commercial LLW, mill tailings excepted. All nuclear fuel cycle steps generate some LLW, but power plants are the chief source. From 1975 through 1977, reactor process stream cleanup generated approx. 1 x 10 6 (approx. 2.8 x 10 4 m 3 ) annually. Spent fuel storage (or reprocessing) and facility decontamination and decommissioning will become important LLW generators as the nuclear power industry matures. The LLW contains dry contaminated trash, much of which is combustible and/or compactible; discarded tools and equipment; wet filter sludges and ion-exchange resins; disposable filter cartridges; and solidified or sorbed liquids, including some organics. A distinguishing characteristic of LLW is a long-lived alpha-emitting transuranic content of 5 ft 3 (approx. 2.1 x 10 4 m 3 )/y. The majority of these wastes, > 6 x 10 5 ft 3 (> 1.7 x 10 4 m 3 ), was medical and academic wastes which usually contained isotopes with induced activities of less than or equal to 60-day half-life, neglecting 3 H and 14 C

  7. Frequency-Stabilized Source of Single Photons from a Solid-State Qubit

    Directory of Open Access Journals (Sweden)

    Jonathan H. Prechtel

    2013-10-01

    Full Text Available Single quantum dots are solid-state emitters that mimic two-level atoms but with a highly enhanced spontaneous emission rate. A single quantum dot is the basis for a potentially excellent single-photon source. One outstanding problem is that there is considerable noise in the emission frequency, making it very difficult to couple the quantum dot to another quantum system. We solve this problem here with a dynamic feedback technique that locks the quantum-dot emission frequency to a reference. The incoherent scattering (resonance fluorescence represents the single-photon output, whereas the coherent scattering (Rayleigh scattering is used for the feedback control. The fluctuations in emission frequency are reduced to 20 MHz, just approximately 5% of the quantum-dot optical linewidth, even over several hours. By eliminating the 1/f-like noise, the relative fluctuations in quantum-dot noise power are reduced to approximately 10^{-5} at low frequency. Under these conditions, the antibunching dip in the resonance fluorescence is described extremely well by the two-level atom result. The technique represents a way of removing charge noise from a quantum device.

  8. Insects associated with the composting process of solid urban waste separated at the source

    Directory of Open Access Journals (Sweden)

    Gladis Estela Morales

    2010-01-01

    Full Text Available Sarcosaprophagous macroinvertebrates (earthworms, termites and a number of Diptera larvae enhance changes in the physical and chemical properties of organic matter during degradation and stabilization processes in composting, causing a decrease in the molecular weights of compounds. This activity makes these organisms excellent recyclers of organic matter. This article evaluates the succession of insects associated with the decomposition of solid urban waste separated at the source. The study was carried out in the city of Medellin, Colombia. A total of 11,732 individuals were determined, belonging to the classes Insecta and Arachnida. Species of three orders of Insecta were identified, Diptera, Coleoptera and Hymenoptera. Diptera corresponding to 98.5% of the total, was the most abundant and diverse group, with 16 families (Calliphoridae, Drosophilidae, Psychodidae, Fanniidae, Muscidae, Milichiidae, Ulidiidae, Scatopsidae, Sepsidae, Sphaeroceridae, Heleomyzidae, Stratiomyidae, Syrphidae, Phoridae, Tephritidae and Curtonotidae followed by Coleoptera with five families (Carabidae, Staphylinidae, Ptiliidae, Hydrophilidae and Phalacaridae. Three stages were observed during the composting process, allowing species associated with each stage to be identified. Other species were also present throughout the whole process. In terms of number of species, Diptera was the most important group observed, particularly Ornidia obesa, considered a highly invasive species, and Hermetia illuscens, both reported as beneficial for decomposition of organic matter.

  9. Assessment of Renewable Energy Sources & Municipal Solid Waste for Sustainable Power Generation in Nigeria

    Science.gov (United States)

    Aderoju, Olaide M.; Dias, Guerner A.; Echakraoui, Zhour

    2017-12-01

    The demand for Energy in most Sub-Saharan African countries has become unimaginable despite its high potential of natural and renewable resources. The deficit has impeded the regions’ economic growth and sustainability. Nigeria as a nation is blessed with fossil fuels, abundant sunlight, hydro, wind and many among others, but the energy output to its population (185 million) still remains less than 4000MW. Currently, the clamour for an alternative but renewable energy source is the demand of the globe but it is quite expensive to achieve the yield that meets the Nigeria demand. Hence, this study aims at identifying and mapping out various regions with renewable energy potentials. The study also considers municipal solid waste as a consistent and available resource for power generation. Furthermore, this study examines the drawbacks inhibiting the inability to harness these renewable, energy generating potentials in full capacity. The study will enable the authorities and other stakeholders to invest and plan on providing a sustainable energy for the people.

  10. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    Science.gov (United States)

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  11. Research on spherically converging ion-beam fusion neutron source for the fundamental research of atomic energy. JAERI's nuclear research promotion program, H10-050. Contract research

    International Nuclear Information System (INIS)

    Yoshikawa, Kiyoshi; Inoue, Nobuyuki; Yamazaki, Tetsuo

    2002-03-01

    Potential well formation due to space charge associated with spherically converging ion beams plays a key and essential role in the beam-beam colliding fusion, which is the major mechanism of the Inertial Electrostatic Confinement Fusion (IECF) devices. Many theoretical results so far predicted strongly localized potential well formation, and actually for the past 30 years, many experiments were dedicated to clarify this mechanism, but neither could provide definitive evidence. In this study, we succeeded for the first time in the world in observing the double-well potential profile by use of the laser-induced fluorescence method that makes use of Stark effects, which put a period to the controverse for 30 years on the existence of the double-well potential profile. Furthermore, aiming at demonstrating a numerical prediction of a strongly nonlinear dependence of the fusion reaction rate on the discharge current on negligence of the charge exchange processes, triple-grid auxiliary system was introduced in order to reduce the operating gas pressure, with a successful result of reducing the pressure down to 1/5 of the conventional one required for glow discharge with single-grid system. Also, we measured accelerated atoms' kinetic energies through Doppler shift spectroscopy, and found the maximum energy increases proportionally to the applied voltage, which implies an enhancement of the fusion reaction cross-section with an increasing applied voltage in the near future. (author)

  12. Analytical solutions of electric potential and impedance for a multilayered spherical volume conductor excited by time-harmonic electric current source: application in brain EIT

    International Nuclear Information System (INIS)

    Xiao Chunyan; Lei Yinzhao

    2005-01-01

    A model of a multilayered spherical volume conductor with four electrodes is built. In this model, a time-harmonic electric current is injected into the sphere through a pair of drive electrodes, and electric potential is measured by the other pair of measurement electrodes. By solving the boundary value problem of the electromagnetic field, the analytical solutions of electric potential and impedance in the whole conduction region are derived. The theoretical values of electric potential on the surface of the sphere are in good accordance with the experimental results. The analytical solutions are then applied to the simulation of the forward problem of brain electrical impedance tomography (EIT). The results show that, for a real human head, the imaginary part of the electric potential is not small enough to be ignored at above 20 kHz, and there exists an approximate linear relationship between the real and imaginary parts of the electric potential when the electromagnetic parameters of the innermost layer keep unchanged. Increase in the conductivity of the innermost layer leads to a decrease of the magnitude of both real and imaginary parts of the electric potential on the scalp. However, the increase of permittivity makes the magnitude of the imaginary part of the electric potential increase while that of the real part decreases, and vice versa

  13. Analytical calculation of the solid angle subtended by an arbitrarily positioned ellipsoid to a point source

    International Nuclear Information System (INIS)

    Heitz, Eric

    2017-01-01

    We present a geometric method for computing an ellipse that subtends the same solid-angle domain as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid such that it is transformed into a sphere from which a disk that covers the same solid-angle domain can be computed. We demonstrate that by applying the inverse linear transformation on this disk we obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB implementation of our algorithm and we validate it numerically.

  14. Analytical calculation of the solid angle subtended by an arbitrarily positioned ellipsoid to a point source

    Energy Technology Data Exchange (ETDEWEB)

    Heitz, Eric, E-mail: eheitz.research@gmail.com

    2017-04-21

    We present a geometric method for computing an ellipse that subtends the same solid-angle domain as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid such that it is transformed into a sphere from which a disk that covers the same solid-angle domain can be computed. We demonstrate that by applying the inverse linear transformation on this disk we obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB implementation of our algorithm and we validate it numerically.

  15. FY 2006 Miniature Spherical Retroreflectors Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  16. Municipal Solid Waste Landfills: New Source Performance Standards (NSPS), Emission Guidelines (EG) and Compliance Times

    Science.gov (United States)

    learn about the NSPS for municipal solid waste landfills by reading the rule summary, rule history, code of federal regulations text, fact sheets, background information documents, related rules and compliance information.

  17. Effect of inoculation dosing on the composting of source-selected organic fraction of municipal solid wastes

    OpenAIRE

    Barrena Gómez, Raquel

    2006-01-01

    The effects of a commercial inoculum (MicroGest 10X, Brookside Agra L.C.) on the field-scale composting of the source-selected organic fraction of municipal solid wastes (OFMSW) have been studied by following routine parameters of the composting process (temperature, oxygen content and moisture) and biologically-related tests such as the respirometric index and the maturity grade. The inoculum was added to composting piles of OFMSW at different levels: control (no added inoculum), treatment A...

  18. Automatisation of reading and interpreting photographically recorded spark source mass spectra for the quantitative analysis in solids

    International Nuclear Information System (INIS)

    Naudin, Guy.

    1976-01-01

    Quantitative analysis in solids by spark source mass spectrometry involves the study of photographic plates by means of a microdensitometer. After a graphic treatment of data from the plate, a scientific program is used to calculate the concentrations of isotopes. The automatisation of the three parts has been realised by using a program for computer. This program has been written in the laboratory for a small computer (Multi 8, Intertechnique) [fr

  19. Alpha-particle autoradiography by solid state track detectors to spatial distribution of radioactivity in alpha-counting source

    International Nuclear Information System (INIS)

    Ishigure, Nobuhito; Nakano, Takashi; Enomoto, Hiroko; Koizumi, Akira; Miyamoto, Katsuhiro

    1989-01-01

    A technique of autoradiography using solid state track detectors is described by which spatial distribution of radioactivity in an alpha-counting source can easily be visualized. As solid state track detectors, polymer of allyl diglycol carbonate was used. The advantage of the present technique was proved that alpha-emitters can be handled in the light place alone through the whole course of autoradiography, otherwise in the conventional autoradiography the alpha-emitters, which requires special carefulness from the point of radiation protection, must be handled in the dark place with difficulty. This technique was applied to rough examination of self-absorption of the plutonium source prepared by the following different methods; the source (A) was prepared by drying at room temperature, (B) by drying under an infrared lamp, (C) by drying in ammonia atmosphere after redissolving by the addition of a drop of distilled water which followed complete evaporation under an infrared lamp and (D) by drying under an infrared lamp after adding a drop of diluted neutral detergent. The difference in the spatial distributions of radioactivity could clearly be observed on the autoradiographs. For example, the source (C) showed the most diffuse distribution, which suggested that the self-absorption of this source was the smallest. The present autoradiographic observation was in accordance with the result of the alpha-spectrometry with a silicon surface-barrier detector. (author)

  20. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  1. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  2. Recent Progress on Spherical Torus Research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki [PPPL; Kaita, Robert [PPPL

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  3. Towards zero solid waste: utilising tannery waste as a protein source for poultry feed

    OpenAIRE

    Paul, Hiralal; Antunes, A Paula M; Covington, Anthony D; Evans, Paul; Phillips, Paul S

    2013-01-01

    Zero waste is now a strongly emerging issue for sustainable industrial development where minimisation and utilisation of waste are a priority in the leather industry. In a tannery hides and skins converted in to leather through various processes. Approximately 20% (w/w) of the chrome containing tannery solid waste (TSW) is generated from one tonne of raw hides and skins. However, tannery solid waste may also be a resource if it is managed expertly as we move towards zero waste.\\ud This resear...

  4. Sparse acoustic imaging with a spherical array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Xenaki, Angeliki

    2015-01-01

    In recent years, a number of methods for sound source localization and sound field reconstruction with spherical microphone arrays have been proposed. These arrays have properties that are potentially very useful, e.g. omni-directionality, robustness, compensable scattering, etc. This paper propo...

  5. A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand.

    Science.gov (United States)

    Sukholthaman, Pitchayanin; Sharp, Alice

    2016-06-01

    Municipal solid waste has been considered as one of the most immediate and serious problems confronting urban government in most developing and transitional economies. Providing solid waste performance highly depends on the effectiveness of waste collection and transportation process. Generally, this process involves a large amount of expenditures and has very complex and dynamic operational problems. Source separation has a major impact on effectiveness of waste management system as it causes significant changes in quantity and quality of waste reaching final disposal. To evaluate the impact of effective source separation on waste collection and transportation, this study adopts a decision support tool to comprehend cause-and-effect interactions of different variables in waste management system. A system dynamics model that envisages the relationships of source separation and effectiveness of waste management in Bangkok, Thailand is presented. Influential factors that affect waste separation attitudes are addressed; and the result of change in perception on waste separation is explained. The impacts of different separation rates on effectiveness of provided collection service are compared in six scenarios. 'Scenario 5' gives the most promising opportunities as 40% of residents are willing to conduct organic and recyclable waste separation. The results show that better service of waste collection and transportation, less monthly expense, extended landfill life, and satisfactory efficiency of the provided service at 60.48% will be achieved at the end of the simulation period. Implications of how to get public involved and conducted source separation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    International Nuclear Information System (INIS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; Furtado da Silva, Alessandra; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson Jose

    2005-01-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 deg. C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 deg. C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1

  7. Modelling the transport of solid contaminants originated from a point source

    Science.gov (United States)

    Salgueiro, Dora V.; Conde, Daniel A. S.; Franca, Mário J.; Schleiss, Anton J.; Ferreira, Rui M. L.

    2017-04-01

    The solid phases of natural flows can comprise an important repository for contaminants in aquatic ecosystems and can propagate as turbidity currents generating a stratified environment. Contaminants can be desorbed under specific environmental conditions becoming re-suspended, with a potential impact on the aquatic biota. Forecasting the distribution of the contaminated turbidity current is thus crucial for a complete assessment of environmental exposure. In this work we validate the ability of the model STAV-2D, developed at CERIS (IST), to simulate stratified flows such as those resulting from turbidity currents in complex geometrical environments. The validation involves not only flow phenomena inherent to flows generated by density imbalance but also convective effects brought about by the complex geometry of the water basin where the current propagates. This latter aspect is of paramount importance since, in real applications, currents may propagate in semi-confined geometries in plan view, generating important convective accelerations. Velocity fields and mass distributions obtained from experiments carried out at CERIS - (IST) are used as validation data for the model. The experimental set-up comprises a point source in a rectangular basin with a wall placed perpendicularly to the outer walls. Thus generates a complex 2D flow with an advancing wave front and shocks due to the flow reflection from the walls. STAV-2D is based on the depth- and time-averaged mass and momentum equations for mixtures of water and sediment, understood as continua. It is closed in terms of flow resistance and capacity bedload discharge by a set of classic closure models and a specific high concentration formulation. The two-layer model is derived from layer-averaged Navier-Stokes equations, resulting in a system of layer-specific non-linear shallow-water equations, solved through explicit first or second-order schemes. According to the experimental data for mass distribution, the

  8. Modelling of the influence of the vacancy source and sink activity and the stress state on diffusion in crystalline solids

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2011-01-01

    Diffusion in solids is a well-known phenomenon that has many consequences in technology and material science. Modelling of diffusion-controlled processes requires both a reliable theory of diffusion and reliable kinetic coefficients, as well as other thermodynamic data. Often the classical Darken theory, valid for stress-free systems with ideal vacancy source and sink activity, is generalized to multicomponent systems with ideal vacancy source and sink activity. Nazarov and Gurov presented a theory for stress-free systems with no vacancy source and sink activity. Recently we published a general theory of diffusion that accounted for the role of non-ideal vacancy source and sink activity, as well as the stress state. Since diffusion theories are tested and diffusion coefficients measured usually on diffusion couples, this paper presents evolution equations based on that general theory for a diffusion couple. In the limit, the equations of the Darken theory and the Nazarov and Gurov theory are valid for ideal vacancy source and sink activity and no vacancy source and sink activity, respectively. Simulations for binary and ternary diffusion couples demonstrate the influence of the vacancy source and sink activity and the stress state on evolution of site fraction profiles of components and vacancies, and on the Kirkendall effect.

  9. Solid Soap Production using Plantain Peel Ash as Source of Alkali ...

    African Journals Online (AJOL)

    A neat soap, which was milky white in colour, was obtained when the improved ash extract was reacted with the bleached oil blend. This was also the colour of two other soaps made from pure potassium hydroxide and pure sodium hydroxide alkalis, respectively and the same bleached oil blend. It was concluded that solid ...

  10. Feasibility of municipal solid waste (MSW as energy sources for Saudi Arabia’s future Reverse osmosis (RO desalination plants

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2016-12-01

    Full Text Available The Kingdom of Saudi Arabia (KSA generates between 1.4–1.75 kg/person/day of Municipal Solid Waste (MSW that accounts for over 16 million tons of MSW/year. The solid waste collected from different sources is dumped in landfills, thereby creating environmental concerns. In this paper, the potential of solid waste as an energy source (Waste to Energy (WTE for Reverse Osmosis (RO water purification was evaluated. The KSA is known for its acute fresh water shortages and uses desalination technology in meeting its daily water requirements; a process that is energy intensive. The evaluation of the energy content of MSW shows a potential to produce about 927 MW in 2015, based on a total mass burn, and about 1,692 MW in 2032. The MSW-WTE plants can produce about 1.5% of the targeted 120 GW of energy for 2032. For the R.O system, it will give approximately 16.8% of the daily fresh water needed for total mass burn and 2.4% with the recycling option.

  11. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6–4.3%), repeatability (4–9%), reproducibility (9–11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as

  12. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  13. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  14. National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Masayuki Ono

    2000-01-01

    The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. Physics outcome of the NSTX research program is relevant to near-term applications such as the Volume Neutron Source (VNS) and burning plasmas, and future applications such as the pilot and power plants. The NSTX device began plasma operations in February 1999 and the plasma current was successfully ramped up to the design value of 1 million amperes (MA) on December 14, 1999. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments have also started. Stable CHI discharges of up to 133 kA and 130-msec duration have been produced using 20 kA of injected current. Using eight antennas connected to two transmitters, up to 2 MW of HHFW power was successfully coupled to the plasma. The Neutral-beam Injection (NBI) heating system and associated NBI-based diagnostics such as the Charge-exchange Recombination Spectrometer (CHERS) will be operational in October 2000

  15. Spherical rhenium metal powder

    International Nuclear Information System (INIS)

    Leonhardt, T.; Moore, N.; Hamister, M.

    2001-01-01

    The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)

  16. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  17. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  18. BIOREMEDIATION FOR ACID MINE DRAINAGE: ORGANIC SOLID WASTE AS CARBON SOURCES FOR SULFATE-REDUCING BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. N. Jamil

    2013-12-01

    Full Text Available Biological sulfate reduction has been slowly replacing chemical unit processes to treat acid mine drainage (AMD. Bioremediations for AMD treatment are favored due to their low capital and maintenance cost. This paper describes the available AMD treatment, current SRB commercialization such as THIOPAQ® and BioSulphide® technologies, and also the factors and limitations faced. THIOPAQ® and BioSulphide® technologies use expensive carbon sources such as hydrogen as the electron donor. This paper discusses the possibility of organic solid waste as an alternative substrate as it is cheaper and abundant. A possible AMD treatment system setup was also proposed to test the efficiency of sulfate-reducing bacteria utilizing organic solid substrate.

  19. Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States.

    Science.gov (United States)

    Reedy, Jill; Krebs-Smith, Susan M

    2010-10-01

    The objective of this research was to identify top dietary sources of energy, solid fats, and added sugars among 2- to 18-year-olds in the United States. Data from the National Health and Nutrition Examination Survey, a cross-sectional study, were used to examine food sources (percentage contribution and mean intake with standard errors) of total energy (data from 2005-2006) and energy from solid fats and added sugars (data from 2003-2004). Differences were investigated by age, sex, race/ethnicity, and family income, and the consumption of empty calories-defined as the sum of energy from solid fats and added sugars-was compared with the corresponding discretionary calorie allowance. The top sources of energy for 2- to 18-year-olds were grain desserts (138 kcal/day), pizza (136 kcal/day), and soda (118 kcal/day). Sugar-sweetened beverages (soda and fruit drinks combined) provided 173 kcal/day. Major contributors varied by age, sex, race/ethnicity, and income. Nearly 40% of total energy consumed (798 of 2,027 kcal/day) by 2- to 18-year-olds were in the form of empty calories (433 kcal from solid fat and 365 kcal from added sugars). Consumption of empty calories far exceeded the corresponding discretionary calorie allowance for all sex-age groups (which range from 8% to 20%). Half of empty calories came from six foods: soda, fruit drinks, dairy desserts, grain desserts, pizza, and whole milk. There is an overlap between the major sources of energy and empty calories: soda, grain desserts, pizza, and whole milk. The landscape of choices available to children and adolescents must change to provide fewer unhealthy foods and more healthy foods with less energy. Identifying top sources of energy and empty calories can provide targets for changes in the marketplace and food environment. However, product reformulation alone is not sufficient-the flow of empty calories into the food supply must be reduced.

  20. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  1. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  2. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  3. Radioactive solid waste management study of generated in the source production laboratory for brachytherapy

    International Nuclear Information System (INIS)

    Barbosa, Nayane K.O.; Carvalho, Vitória S.; Marques, José R.O.; Costa, Osvaldo L.; Baptista, Tatyana S.; Vicente, Roberto; Rostelato, M.E.C.M.; Zeituni, Carlos A.; Souza, Daiane C.B.

    2017-01-01

    A management system for radioactive solid wastes generated during seed production in the Laboratório de Produção de Fontes para Radioterapia (LPFRT) was developed. For this, the volume and the mass of each item of solid wastes generated in Glove box were estimated. It is possible to estimate, per week, how much reject will enter the warehouse, what space it will occupy and also its weight. In the final step of the characterization, the decay calculation is applied to define the time the reject will be stored for later disposal in the collection system. After the characterization process, it is noticed that the rate of volume and radioactivity decreases as the retention time of the rejects increases due to the release of the materials, and also, there is the decay of the radioactivity present in the reservoir. It is also observed that the rate of entry and exit of the wastes is proportional

  4. Spherical loudspeaker array for local active control of sound.

    Science.gov (United States)

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  5. Effective pair potentials for spherical nanoparticles

    International Nuclear Information System (INIS)

    Van Zon, Ramses

    2009-01-01

    An effective description for rigid spherical nanoparticles in a fluid of point particles is presented. The points inside the nanoparticles and the point particles are assumed to interact via spherically symmetric additive pair potentials, while the distribution of points inside the nanoparticles is taken to be spherically symmetric and smooth. The resulting effective pair interactions between a nanoparticle and a point particle, as well as between two nanoparticles, are then given by spherically symmetric potentials. If overlap between particles is allowed, as can occur for some forms of the pair potentials, the effective potential generally has non-analytic points. It is shown that for each effective potential the expressions for different overlapping cases can be written in terms of one analytic auxiliary potential. Even when only non-overlapping situations are possible, the auxiliary potentials facilitate the formulation of the effective potentials. Effective potentials for hollow nanoparticles (appropriate e.g. for buckyballs) are also considered and shown to be related to those for solid nanoparticles. For hollow nanoparticles overlap is more physical, since this covers the case of a smaller particle embedded in a larger, hollow nanoparticle. Finally, explicit expressions are given for the effective potentials derived from basic pair potentials of power law and exponential form, as well as from the commonly used London–van der Waals, Morse, Buckingham, and Lennard-Jones potentials. The applicability of the latter is demonstrated by comparison with an atomic description of nanoparticles with an internal face centered cubic structure

  6. Fundamentals of spherical array processing

    CERN Document Server

    Rafaely, Boaz

    2015-01-01

    This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications.   The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...

  7. Municipal Solid Waste Landfill New Source Performance Standards (NSPS) and Emission Guidelines (EG) -- Questions and Answers

    Science.gov (United States)

    This November 1998 document of questions and answers are provided as a guide for those subject to the new source performance standards (NSPS) or emission guidelines (EG), as well as those implementing the NSPS or EG.

  8. Sources of series resistance in the Harwell solid state alpha detector

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1985-12-01

    The metal-semiconductor contacts to the Harwell solid state alpha detector have been characterized and the effect of the contact geometry has been assessed. To a reasonable approximation the latter gives rise to an emitter series resistance with an expected range of 20 +- 8 ohms. The contacts behave like parallel RC networks which become noticeably frequency dependent above ca. 100 kHz. Up to this frequency the emitter contact is likely to add 6 +- 4 ohms to the series resistance and the contribution from the base contact varies inversely with the square of the diode's diameter, being 5 +- 3 ohms for a diode with a diameter of 30 mm. (author)

  9. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

    1993-09-01

    Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC's Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula

  10. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  11. Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities

    Science.gov (United States)

    Wein, Stephen; Lauk, Nikolai; Ghobadi, Roohollah; Simon, Christoph

    2018-05-01

    Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-state emitters and ultrasmall mode volume cavities. We derive and analyze an expression for photon indistinguishability that accounts for relevant detrimental effects, such as plasmon-induced quenching and pure dephasing. We then provide the general cavity and emitter conditions required to achieve efficient indistinguishable photon emission and also discuss constraints due to phonon sideband emission. Using these conditions, we propose that a nanodiamond negatively charged silicon-vacancy center combined with a plasmonic-Fabry-Pérot hybrid cavity is an excellent candidate system.

  12. Solid-state laser source of narrowband ultraviolet B light for skin disease care with advanced performance

    Science.gov (United States)

    Tarasov, Aleksandr A.; Chu, Hong; Buchwald, Kristian

    2015-02-01

    Two years ago we reported about the development of solid state laser source for medical skin treatment with wavelength 310.6 nm and average power 200 mW. Here we describe the results of investigation of the advanced version of the laser, which is a more compact device with increased output power and flat top beam profile. Ti: Sapphire laser, the main module of our source, was modified and optimized such, that UV average power of the device was increased 1.7 times. Fiber optic homogenizer was replaced by articulated arm with diffraction diffuser, providing round spot with flat profile at the skin. We investigated and compare characteristics of Ti: Sapphire lasers with volume Bragg grating and with fused silica transmission grating, which was used first time for Ti: Sapphire laser spectral selection and tuning. Promising performance of last gratings is demonstrated.

  13. Leather Industry Solid Waste as Nitrogen Source for Growth of Common Bean Plants

    International Nuclear Information System (INIS)

    Lima, D.Q.; Oliveira, L.C.A.; Bastos, A.R.R.; Carvalho, G.S.; Marques, J.G.S.M.; Carvalho, J.G.; De Souza, G.A.

    2010-01-01

    The leather industry generates large amounts of a Cr-containing solid waste (wet blue leather). This material is classified by the Brazilian Environmental Council as a category-one waste, requiring a special disposal. The patented process Br n. PI 001538 is a technique to remove chromium from wet blue leather, with the recovery of a solid collagenic material (collagen), containing high nitrogen levels. This work aimed to evaluate the residual effect of soil application of collagen on the production of dry matter, content and accumulation of N in common bean plants (Phaseolus vulgaris L.), after the previous growth of elephant grass (Pennisetum purpureum Schumach.) cv. Napier, as well as to quantify the mineralization rate of N in the soil. The application of collagen, at rates equivalent to 16 and 32 tha-1, provided greater N contents in the common bean plants, indicating residual effect of these rates of application; the same was observed for the rates of 4 and 8tha-1, though in smaller proportions. Higher mineralization rates of N collagen occurred next to 16 days after soil incubation. During the 216 days of incubation, the treatments with collagen showed higher amounts of mineralized nitrogen.

  14. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Chanakya, H.N.; Sharma, Isha; Ramachandra, T.V.

    2009-01-01

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks

  15. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Science.gov (United States)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  16. Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber

    Science.gov (United States)

    Liu, Xiaoyu; Mason, Mark A.; Guo, Zhishi; Krebs, Kenneth A.; Roache, Nancy F.

    2015-12-01

    This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber at different ventilation rates for up to 4000 h using ASTM D 6670-01 (2007). Tests were performed on four types of furniture constructed of different materials and from different manufacturers. The data were used to evaluate two empirical emission models, i.e., a first-order and power-law decay model. The experimental results showed that some furniture tested in this study, made only of solid wood and with less surface area, had low formaldehyde source emissions. The effect of ventilation rate on formaldehyde emissions was also examined. Model simulation results indicated that the power-law decay model showed better agreement than the first-order decay model for the data collected from the tests, especially for long-term emissions. This research was limited to a laboratory study with only four types of furniture products tested. It was not intended to comprehensively test or compare the large number of furniture products available in the market place. Therefore, care should be taken when applying the test results to real-world scenarios. Also, it was beyond the scope of this study to link the emissions to human exposure and potential health risks.

  17. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  18. Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS, Kazakhstan.

    Science.gov (United States)

    Nápoles, H Jiménez; León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Priest, N D; Artemyev, O; Lukashenko, S

    2004-01-01

    New data on the concentrations of key fission/activation products and transuranium nuclides in samples of soil and water from the Semipalatinsk Nuclear Test Site are presented and interpreted. Sampling was carried out at Ground Zero, Lake Balapan, the Tel'kem craters and reference locations within the test site boundary well removed from localised sources. Radionuclide ratios have been used to characterise the source term(s) at each of these sites. The geochemical partitioning of plutonium has also been examined and it is shown that the bulk of the plutonium contamination at most of the sites examined is in a highly refractory, non-labile form.

  19. Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS, Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Napoles, H.J.H. Jimenez; Leon Vintro, L. E-mail: luis.leon@ucd.ie; Mitchell, P.I.; Omarova, A.; Burkitbayev, M.; Priest, N.D.; Artemyev, O.; Lukashenko, S

    2004-09-01

    New data on the concentrations of key fission/activation products and transuranium nuclides in samples of soil and water from the Semipalatinsk Nuclear Test Site are presented and interpreted. Sampling was carried out at Ground Zero, Lake Balapan, the Tel'kem craters and reference locations within the test site boundary well removed from localised sources. Radionuclide ratios have been used to characterise the source term(s) at each of these sites. The geochemical partitioning of plutonium has also been examined and it is shown that the bulk of the plutonium contamination at most of the sites examined is in a highly refractory, non-labile form.

  20. Studies of spherical inertial-electrostatic confinement

    International Nuclear Information System (INIS)

    Miley, G.H.

    1992-01-01

    Theoretical and experimental results from studies of Spherical Inertial-Electrostatic Confinement (SIEC) are presented. This principle of IEC involves the confinement by multiple potential wells created by ion injection into a spherical device containing biased grids. A semitransparent cathode accelerates ions, generating a spherical ion-beam flow which converges at the center of the spherical volume, creating a space charge (potential well) region. An electron flow is created by the core (virtual anode) region, forming in turn a virtual cathode. Ions trapped inside this well oscillate back and forth until they fuse or degrade in energy. Such multiple wells with virtual anodes and cathodes, have been called ''Poissors'' following the original work by Farnsworth and by Hirsch. Fusion within the core occurs by reactions between non-Maxwellian beam-beam type ions. This has the potential for achieving a high power density and also for burning both D-T and advanced fuels. If successful, such a device would be attractive for a variety of high power density applications, e.g., space power or as a neutron source based on D-D or D-T operation. Simulations of recent SIEC experiments have been carried out using the XL-code, to solve Poisson's equation, self-consistently with the collisionless Vlasov equation in spherical geometry for several current species and grid parameters. The potential profile predictions are reasonably consistent with experimental results. Potential well measurements used a collimated proton detector. Results indicate that an ∼ 15-kV virtual anode, at least one centimeter in radius, was formed in a spherical device with a cathode potential of 30 kV using an ion current of ∼ 30 mA. Analysis indicates D + densities on the order of 10 9 cm -3 , and D 2 + densities on the order of 10 10 cm -3 . Steady-state D-D neutron emission of about 10 6 n/sec is observed

  1. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-02

    ... States'' as part of a broader discussion about sustainable materials management. This information will be..., as well as its transparency. There is also a growing need for a more holistic assessment of how... sustainable management of these materials through safe recycling and source reduction. The Agency will...

  2. Evaluation of the impact of sodium lauryl sulfate source variability on solid oral dosage form development.

    Science.gov (United States)

    Qiang, Dongmei; Gunn, Jocelyn A; Schultz, Leon; Li, Z Jane

    2010-12-01

    The objective of this study was to investigate the effects of sodium lauryl sulfate (SLS) from different sources on solubilization/wetting, granulation process, and tablet dissolution of BILR 355 and the potential causes. The particle size distribution, morphology, and thermal behaviors of two pharmaceutical grades of SLS from Spectrum and Cognis were characterized. The surface tension and drug solubility in SLS solutions were measured. The BILR 355 tablets were prepared by a wet granulation process and the dissolution was evaluated. The critical micelle concentration was lower for Spectrum SLS, which resulted in a higher BILR 355 solubility. During wet granulation, less water was required to reach the same end point using Spectrum than Cognis SLS. In general, BILR 355 tablets prepared with Spectrum SLS showed a higher dissolution than the tablets containing Cognis SLS. Micronization of SLS achieved the same improved tablet dissolution as micronized active pharmaceutical ingredient. The observed differences in wetting and solubilization were likely due to the different impurity levels in SLS from two sources. This study demonstrated that SLS from different sources could have significant impact on wet granulation process and dissolution. Therefore, it is critical to evaluate SLS properties from different suppliers, and then identify optimal formulation and process parameters to ensure robustness of drug product manufacture process and performance.

  3. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  4. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes

    2003-01-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  5. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  6. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Robinson, D.C.; Akers, R.; Allfrey, S.J.

    1999-01-01

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  7. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Robinson, D.C.; Akers, R.; Allfrey, S.J.

    2001-01-01

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  8. Particles in spherical electromagnetic radiation fields

    International Nuclear Information System (INIS)

    Mitter, H.; Thaller, B.

    1984-03-01

    If the time-dependence of a Hamiltonian can be compensated by an appropriate symmetry transformation, the corresponding quantum mechanical problem can be reduced to an effectively stationary one. With this result we investigate the behavior of nonrelativistic particles in a spherical radiation field produced by a rotating source. Then the symmetry transformation corresponds to a rotation. We calculate the transition probabilities in Born approximation. The extension to problems involving an additional Coulomb potential is briefly discussed. (Author)

  9. Theory and applications of spherical microphone array processing

    CERN Document Server

    Jarrett, Daniel P; Naylor, Patrick A

    2017-01-01

    This book presents the signal processing algorithms that have been developed to process the signals acquired by a spherical microphone array. Spherical microphone arrays can be used to capture the sound field in three dimensions and have received significant interest from researchers and audio engineers. Algorithms for spherical array processing are different to corresponding algorithms already known in the literature of linear and planar arrays because the spherical geometry can be exploited to great beneficial effect. The authors aim to advance the field of spherical array processing by helping those new to the field to study it efficiently and from a single source, as well as by offering a way for more experienced researchers and engineers to consolidate their understanding, adding either or both of breadth and depth. The level of the presentation corresponds to graduate studies at MSc and PhD level. This book begins with a presentation of some of the essential mathematical and physical theory relevant to ...

  10. p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Xiu, F.X.; Yang, Z.; Mandalapu, L.J.; Liu, J.L.; Beyermann, W. P.

    2006-01-01

    Phosphorus-doped p-type ZnO films were grown on r-plane sapphire substrates using molecular-beam epitaxy with a solid-source GaP effusion cell. X-ray diffraction spectra and reflection high-energy electron diffraction patterns indicate that high-quality single crystalline (1120) ZnO films were obtained. Hall and resistivity measurements show that the phosphorus-doped ZnO films have high hole concentrations and low resistivities at room temperature. Photoluminescence (PL) measurements at 8 K reveal a dominant acceptor-bound exciton emission with an energy of 3.317 eV. The acceptor energy level of the phosphorus dopant is estimated to be 0.18 eV above the valence band from PL spectra, which is also consistent with the temperature dependence of PL measurements

  11. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    Science.gov (United States)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  12. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  13. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    Science.gov (United States)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  14. Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels

    International Nuclear Information System (INIS)

    Kelly, J. Andrew; Fu, Miao; Clinch, J. Peter

    2016-01-01

    International commitments on greenhouse gases, renewables and air quality warrant consideration of alternative residential heating technologies. The residential sector in Ireland accounts for approximately 25% of primary energy demand with roughly half of primary home heating fuelled by oil and 11% by solid fuels. Displacing oil and solid fuel usage with air source heat pump (ASHP) technology could offer household cost savings, reductions in emissions, and reduced health impacts. An economic analysis estimates that 60% of homes using oil, have the potential to deliver savings in the region of €600 per annum when considering both running and annualised capital costs. Scenario analysis estimates that a grant of €2400 could increase the potential market uptake of oil users by up to 17% points, whilst a higher oil price, similar to 2013, could further increase uptake from heating oil users by 24% points. Under a combined oil-price and grant scenario, CO_2 emissions reduce by over 4 million tonnes per annum and residential PM_2_._5 and NO_X emissions from oil and peat reduce close to zero. Corresponding health and environmental benefits are estimated in the region of €100m per annum. Sensitivity analyses are presented assessing the impact of alternate discount rates and technology performance. This research confirms the potential for ASHP technology and identifies and informs policy design considerations with regard to oil price trends, access to capital, targeting of grants, and addressing transactions costs. - Highlights: • Air Source Heat Pumps can offer substantial savings over oil fired central heating. • Significant residential air and climate emission reductions are possible. • Associated health and environmental benefits are estimated up to €100m per annum. • Results can inform policy interventions in the residential market to support change.

  15. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    Science.gov (United States)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  16. Investigation of a superthermal ultracold neutron source based on a solid deuterium converter for the TRIGA Mainz reactor

    International Nuclear Information System (INIS)

    Lauer, Thorsten

    2010-01-01

    Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.The development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. Significant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).Several big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.Thanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm 3 , but they are able to provide densities around 100 UCN/cm 3 for experiments.In the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. In parallel, a second UCN source for the radial beamport D was designed and

  17. Investigation of a superthermal ultracold neutron source based on a solid deuterium converter for the TRIGA Mainz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Thorsten

    2010-12-22

    Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.The development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. Significant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).Several big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.Thanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm{sup 3}, but they are able to provide densities around 100 UCN/cm{sup 3} for experiments.In the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. In parallel, a second UCN source for the radial beamport D was

  18. First results of spherical GEMs

    CERN Document Server

    Pinto, Serge Duarte; Brock, Ian; Croci, Gabriele; David, Eric; de Oliveira, Rui; Ropelewski, Leszek; van Stenis, Miranda; Taureg, Hans; Villa, Marco

    2010-01-01

    We developed a method to make GEM foils with a spherical geometry. Tests of this procedure and with the resulting spherical GEMs are presented. Together with a spherical drift electrode, a spherical conversion gap can be formed. This eliminates the parallax error for detection of x-rays, neutrons or UV photons when a gaseous converter is used. This parallax error limits the spatial resolution at wide scattering angles. Besides spherical GEMs, we have developed curved spacers to maintain accurate spacing, and a conical field cage to prevent edge distortion of the radial drift field up to the limit of the angular acceptance of the detector. With these components first tests are done in a setup with a spherical entrance window but a planar readout structure; results will be presented and discussed. A flat readout structure poses difficulties, however. Therefore we will show advanced plans to make a prototype of an entirely spherical double-GEM detector, including a spherical 2D readout structure. This detector w...

  19. Spherical Torus Center Stack Design

    International Nuclear Information System (INIS)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-01

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device

  20. Spherical Casimir pistons

    Energy Technology Data Exchange (ETDEWEB)

    Dowker, J S, E-mail: dowker@man.ac.uk [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2011-08-07

    A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.

  1. Spherical Casimir pistons

    International Nuclear Information System (INIS)

    Dowker, J S

    2011-01-01

    A piston is introduced into a spherical lune Casimir cavity turning it into two adjacent lunes separated by the (hemispherical) piston. On the basis of zeta-function regularization, the vacuum energy of the arrangement is finite for conformal propagation in spacetime. For even spheres this energy is independent of the angle of the lune. For odd dimensions it is shown that for all Neumann, or all Dirichlet, boundary conditions the piston is repelled or attracted by the nearest wall if d = 3, 7, ... or if d = 1, 5, ... , respectively. For hybrid N-D conditions these requirements are switched. If a mass is added, divergences arise which render the model suspect. The analysis, however, is relatively straightforward and involves the Barnes zeta function. The extension to finite temperatures is made and it is shown that for the 3, 7, ... series of odd spheres, the repulsion by the walls continues but that, above a certain temperature, the free energy acquires two minima symmetrically placed about the midpoint.

  2. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Science.gov (United States)

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  3. Electrical properties of spherical syncytia.

    Science.gov (United States)

    Eisenberg, R S; Barcilon, V; Mathias, R T

    1979-01-01

    Syncytial tissues consist of many cells whose intracellular spaces are electrically coupled one to another. Such tissues typically include narrow, tortuous extracellular space and often have specialized membranes at their outer surface. We derive differential equations to describe the potentials induced when a sinusoidal or steady current is applied to the intracellular space with a microelectrode. We derive solutions for spherical preparations with isotropic properties or with a particular anisotropy in effective extracellular and intracellular resistivities. Solutions are presented in an approximate form with a simple physical interpretation. The leading term in the intracellular potential describes an "isopotential" cell in which there is no spatial variation of intracellular potential. The leading term in the extracellular potential, and thus the potential across the inner membranes, varies with radial position, even at zero frequency. The next term of the potentials describes the direct effects of the point source of current and, for the parameters given here, acts as a series resistance producing a large local potential drop essentially independent of frequency. A lumped equivalent circuit describes the "low frequency" behavior of the syncytium, and a distributed circuit gives a reasonably accurate general description. Graphs of the spatial variation and frequency dependence of intracellular, extracellular, and transmembrane potential are given, the response to sinusoidal currents is used to calculate numerically the response to a step function of current.

  4. Fluorescence of molecules placed near a spherical particle: Rabi splitting

    Directory of Open Access Journals (Sweden)

    M.M. Dvoynenko

    2017-12-01

    Full Text Available Theoretical study of spontaneously emitted spectra of point-like source placed near spherical Ag particle was performed. It was shown that near-field electromagnetic interaction between a point-like emitter and spherical Ag particle leads to strong coupling between them at very small emitter-metal surface distances. It was shown that values of Rabi splitting are quantitatively close to that of emitter-flat substrate interaction.

  5. Chlorine in solid fuels fired in pulverized fuel boilers sources, forms, reactions, and consequences: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    David A. Tillman; Dao Duong; Bruce Miller [Foster Wheeler North America Corp. (United States)

    2009-07-15

    Chlorine is a significant source of corrosion and deposition, both from coal and from biomass, and in PF boilers. This investigation was designed to highlight the potential for corrosion risks associated with once-through units and advanced cycles. The research took the form of a detailed literature investigation to evaluate chlorine in solid fuels: coals of various ranks and origins, biomass fuels of a variety of types, petroleum cokes, and blends of the above. The investigation focused upon an extensive literature review of documents dating back to 1991. The focus is strictly corrosion and deposition. To address the deposition and corrosion issues, this review evaluates the following considerations: concentrations of chlorine in available solid fuels including various coals and biomass fuels, forms of chlorine in those fuels, and reactions - including reactivities - of chlorine in such fuels. The assessment includes consideration of alkali metals and alkali earth elements as they react with, and to, the chlorine and other elements (e.g., sulfur) in the fuel and in the gaseous products of combustion. The assessment also includes other factors of combustion: for example, combustion conditions including excess O{sub 2} and combustion temperatures. It also considers analyses conducted at all levels: theoretical calculations, bench scale laboratory data and experiments, pilot plant experiments, and full scale plant experience. Case studies and plant surveys form a significant consideration in this review. The result of this investigation focuses upon the concentrations of chlorine acceptable in coals burned exclusively, in coals burned with biomass, and in biomass cofired with coal. Values are posited based upon type of fuel and combustion technology. Values are also posited based upon both first principles and field experience. 86 refs., 8 figs., 7 tabs.

  6. JUST: Joint Upgraded Spherical Tokamak

    International Nuclear Information System (INIS)

    Azizov, E.A.; Dvorkin, N.Ya.; Filatov, O.G.

    1997-01-01

    The main goals, ideas and the programme of JUST, spherical tokamak (ST) for the plasma burn investigation, are presented. The place and prospects of JUST in thermonuclear investigations are discussed. (author)

  7. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J.; Barbosa, L.F.W.; Patire Junior, H.; The high-power microwave sources group

    2003-01-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  8. Miniaturization of Spherical Magnetodielectric Antennas

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle

    ; Arbitrary order of the spherical wave, arbitrary radius of the spherical antenna, as well as arbitrarily large core permeability and/or permittivity, given an inversely proportional frequency variation of the imaginary part(s) and an arbitrary dispersion of the real part(s) - thus describing both lossless...... with a magnetic loss tangent of 1 and relative permeability of 300 yield Q/e equal 65% of the Chu lower bound, with a simultaneous e of 71%....

  9. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  10. Analog parameters of solid source Zn diffusion In X Ga1-X As nTFETs down to 10 K

    Science.gov (United States)

    Bordallo, C.; Martino, J. A.; Agopian, P. G. D.; Alian, A.; Mols, Y.; Rooyackers, R.; Vandooren, A.; Verhulst, A. S.; Smets, Q.; Simoen, E.; Claeys, C.; Collaert, N.

    2016-12-01

    The analog parameters of In0.53Ga0.47As and In0.7Ga0.3As nTFETs with solid state Zn diffused source are investigated from room temperature down to 10 K. The In0.7Ga0.3As devices are shown to yield a higher on-state current than the In0.53Ga0.47As counterparts, and, consequently, a higher transconductance due to the lower bandgap. At the same time, the In0.7Ga0.3As devices present higher output conductance values. The balance between these two factors results in a higher intrinsic voltage gain (A V) for In0.7Ga0.3As nTFETs at low gate bias and similar A V for both devices at high gate voltage. The transconductance is reduced at low temperature due to the increase of the bandgap, while the output conductance is decreased (improved) upon cooling, which is related to the reduction of the drain dependence of the BTBT generation rate. The temperature influence is more pronounced in the output conductance than in the transconductance, resulting in an increase of the intrinsic voltage gain at low temperatures for both devices and bias.

  11. Biomethane Production as an Alternative Bioenergy Source from Codigesters Treating Municipal Sludge and Organic Fraction of Municipal Solid Wastes

    Directory of Open Access Journals (Sweden)

    M. Evren Ersahin

    2011-01-01

    Full Text Available Energy recovery potential of a mesophilic co-digester treating OFMSW and primary sludge at an integrated biomethanization plant was investigated based on feasibility study results. Since landfilling is still the main solid waste disposal method in Turkey, land scarcity will become one of the most important obstacles. Restrictions for biodegradable waste disposal to sanitary landfills in EU Landfill Directive and uncontrolled long-term contamination with gas emissions and leachate necessitate alternative management strategies due to rapid increase in MSW production. Moreover, since energy contribution from renewable resources will be required more in the future with increasing oil prices and dwindling supplies of conventional energy sources, the significance of biogas as a renewable fuel has been increased in the last decade. Results indicated that almost 93% of annual total cost can be recovered if 100% renewable energy subsidy is implemented. Besides, considering the potential revenue when replacing transport fuels, about 26 heavy good vehicles or 549 cars may be powered per year by the biogas produced from the proposed biomethanization plant (PE = 100,000; XPS = 61 g TS/PE⋅day; XSS-OFMSW=50 g TS/PE⋅day.

  12. Potential of solid waste utilization as source of refuse derived fuel (RDF) energy (case study at temporary solid waste disposal site in West Jakarta)

    Science.gov (United States)

    Indrawati, D.; Lindu, M.; Denita, P.

    2018-01-01

    This study aims to measure the volume of solid waste generated as well asits density, composition, and characteristics, to analyze the potential of waste in TPS to become RDF materials and to analyze the best composition mixture of RDF materials. The results show that the average of solid waste generation in TPS reaches 40.80 m3/day, with the largest percentage of its share is the organic waste component of 77.9%, while the smallest amount of its share is metal and rubber of 0.1%. The average water content and ash content of solid waste at the TPS is 27.7% and 6.4% respectively, while the average calorific potential value is 728.71 kcal/kg. The results of solid waste characteristics comparison at three TPS indicate thatTPS Tanjung Duren has the greatest waste potential to be processed into RDF materials with a calorific value of 893.73 kcal/kg, water content level of 24.6%, andlow ash content of 6.11%. This research has also shown that the best composition for RDF composite materials is rubber, wood, and textile mixtureexposed to outdoor drying conditions because it produced low water content and low ash content of 10.8% and 9.6%, thus optimizedthe calorific value of 4,372.896 kcal/kg.

  13. An open-source library for the numerical modeling of mass-transfer in solid oxide fuel cells

    Science.gov (United States)

    Novaresio, Valerio; García-Camprubí, María; Izquierdo, Salvador; Asinari, Pietro; Fueyo, Norberto

    2012-01-01

    The generation of direct current electricity using solid oxide fuel cells (SOFCs) involves several interplaying transport phenomena. Their simulation is crucial for the design and optimization of reliable and competitive equipment, and for the eventual market deployment of this technology. An open-source library for the computational modeling of mass-transport phenomena in SOFCs is presented in this article. It includes several multicomponent mass-transport models ( i.e. Fickian, Stefan-Maxwell and Dusty Gas Model), which can be applied both within porous media and in porosity-free domains, and several diffusivity models for gases. The library has been developed for its use with OpenFOAM ®, a widespread open-source code for fluid and continuum mechanics. The library can be used to model any fluid flow configuration involving multicomponent transport phenomena and it is validated in this paper against the analytical solution of one-dimensional test cases. In addition, it is applied for the simulation of a real SOFC and further validated using experimental data. Program summaryProgram title: multiSpeciesTransportModels Catalogue identifier: AEKB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 140 No. of bytes in distributed program, including test data, etc.: 64 285 Distribution format: tar.gz Programming language:: C++ Computer: Any x86 (the instructions reported in the paper consider only the 64 bit case for the sake of simplicity) Operating system: Generic Linux (the instructions reported in the paper consider only the open-source Ubuntu distribution for the sake of simplicity) Classification: 12 External routines: OpenFOAM® (version 1.6-ext) ( http://www.extend-project.de) Nature of problem: This software provides a library of models for

  14. On the radiative transfer problem in a spherical medium subject to Fresnel's reflective boundary conditions

    International Nuclear Information System (INIS)

    Mohammed, M.H.H.

    2012-01-01

    Radiation transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) and diffuse reflecting boundary is considered. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The solution of the problem containing an energy source in a medium of specular and diffuse reflecting boundaries is given in terms of the solution of the source-free problem. The source-free problem for anisotropic scattering through a homogeneous solid sphere and two concentric spheres is solved by using the Pomraning- Eddington approximation method. This method transform the integro-differential equation into two differential equations for the radiance g (x) and net flux q (x) which has an analytical solution in terms of the modified Bessel function. Two different weight functions are used to verify the boundary conditions and so, find the solution constants. The partial heat fluxes at the boundaries of a solid sphere and spherical shell of transparent and reflecting boundaries are calculated. The media are taken with or without internal black-body radiation. The calculations are carried out for various values of refractive index and different radii. The results are compared with those of the Galerkin technique

  15. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  16. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    International Nuclear Information System (INIS)

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-01-01

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  17. Spherical transceivers for ultrafast optical wireless communications

    Science.gov (United States)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  18. Source identification of underground fuel spills by solid-phase microextraction/high-resolution gas chromatography/genetic algorithms.

    Science.gov (United States)

    Lavine, B K; Ritter, J; Moores, A J; Wilson, M; Faruque, A; Mayfield, H T

    2000-01-15

    Solid-phase microextraction (SPME), capillary column gas chromatography, and pattern recognition methods were used to develop a potential method for typing jet fuels so a spill sample in the environment can be traced to its source. The test data consisted of gas chromatograms from 180 neat jet fuel samples representing common aviation turbine fuels found in the United States (JP-4, Jet-A, JP-7, JPTS, JP-5, JP-8). SPME sampling of the fuel's headspace afforded well-resolved reproducible profiles, which were standardized using special peak-matching software. The peak-matching procedure yielded 84 standardized retention time windows, though not all peaks were present in all gas chromatograms. A genetic algorithm (GA) was employed to identify features (in the standardized chromatograms of the neat jet fuels) suitable for pattern recognition analysis. The GA selected peaks, whose two largest principal components showed clustering of the chromatograms on the basis of fuel type. The principal component analysis routine in the fitness function of the GA acted as an information filter, significantly reducing the size of the search space, since it restricted the search to feature subsets whose variance is primarily about differences between the various fuel types in the training set. In addition, the GA focused on those classes and/or samples that were difficult to classify as it trained using a form of boosting. Samples that consistently classify correctly were not as heavily weighted as samples that were difficult to classify. Over time, the GA learned its optimal parameters in a manner similar to a perceptron. The pattern recognition GA integrated aspects of strong and weak learning to yield a "smart" one-pass procedure for feature selection.

  19. Growth and yield of tomato cultivated on composted duck excreta enriched wood shavings and source-separated municipal solid waste

    Directory of Open Access Journals (Sweden)

    Vincent Zoes

    2011-02-01

    Full Text Available A greenhouse experiment was conducted to evaluate the use of growth substrates, made with duck excreta enriched wood shaving compost (DMC and the organic fraction of source-separated municipal solid waste (MSW compost, on the growth and yield of tomato (Lycopersicum esculentum Mill. cv. Campbell 1327. Substrate A consisted of 3:2 (W/W proportion of DMC and MSW composts. Substrates B and C were the same as A but contained 15% (W/W ratio of brick dust and shredded plastic, respectively. Three control substrates consisted of the commercially available peat-based substrate (Pr, an in-house sphagnum peat-based substrate (Gs, and black earth mixed with sandy loam soil (BE/S in a 1:4 (W/W ratio. Substrates (A, B, C and controls received nitrogen (N, phosphate (P and potassium (K at equivalent rates of 780 mg/pot, 625 mg/pot, and 625 mg/pot, respectively, or were used without mineral fertilizers. Compared to the controls (Pr, Gs and BE/S, tomato plants grown on A, B, and C produced a greater total number and dry mass of fruits, with no significant differences between them. On average, total plant dry-matter biomass in substrate A, B, and C was 19% lower than that produced on Pr, but 28% greater than biomass obtained for plant grown, on Gs and BE/S. Plant height, stem diameter and chlorophyll concentrations indicate that substrates A, B, and C were particularly suitable for plant growth. Although the presence of excess N in composted substrates favoured vegetative rather than reproductive growth, the continuous supply of nutrients throughout the growing cycle, as well as the high water retention capacity that resulted in a reduced watering by 50%, suggest that substrates A, B, and C were suitable growing mixes, offering environmental and agronomic advantages.

  20. Confined detonations with cylindrical and spherical symmetry

    International Nuclear Information System (INIS)

    Linan, A.; Lecuona, A.

    1979-01-01

    An imploding spherical or cylindrical detonation, starting in the interface of the detonantion with an external inert media, used as a reflector, creates on it a strong shock wave moving outward from the interface. An initially weak shock wave appears in the detonated media that travels toward the center, and it could reach the detonation wave, enforcing it in its process of implosion. To describe the fluid field, the Euler s equations are solved by means of expansions valid for the early stages of the process. Isentropic of the type P/pγ-K for the detonated and compressed inert media are used. For liquid or solid reflectors a more appropriate equation is used. (Author) 8 refs

  1. Spherical Demons: Fast Surface Registration

    Science.gov (United States)

    Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2009-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813

  2. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    Science.gov (United States)

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.

  3. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    International Nuclear Information System (INIS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-01-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50–750 pg Cr, R 2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3–17.7 μg g −1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g −1 Cr. The limit of detection was 3.3 ng g −1 Cr. - Highlights: ► Direct solid sampling is first time employed for Cr in plant materials. ► Calibration curves with liquids and solids are coincident. ► Microanalysis of plants for Cr is validated by reference materials. ► The proposed HR-CS GF AAS method is environmental friendly.

  4. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, Alex; Nobrega, Joaquim A. [Department of Chemistry, Federal University of Sao Carlos, Post Office Box 676, 13560-970, Sao Carlos-SP (Brazil); Rego, Jardes F. [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil); Neto, Jose A. Gomes, E-mail: anchieta@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil)

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 Degree-Sign C and 2400 Degree-Sign C, respectively. Slopes of calibration curves (50-750 pg Cr, R{sup 2} > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 {mu}g g{sup -1} Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 {+-} 2.1 {mu}g g{sup -1} Cr. The limit of detection was 3.3 ng g{sup -1} Cr. - Highlights: Black-Right-Pointing-Pointer Direct solid sampling is first time employed for Cr in plant materials. Black-Right-Pointing-Pointer Calibration curves with liquids and solids are coincident. Black-Right-Pointing-Pointer Microanalysis of plants for Cr is validated by reference materials. Black-Right-Pointing-Pointer The proposed HR-CS GF AAS method is environmental friendly.

  5. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    CERN Document Server

    Elghazaly, A

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement.

  6. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    International Nuclear Information System (INIS)

    Elghazaly, A.; Attia, M.T.

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement

  7. Trapped surfaces in spherical stars

    International Nuclear Information System (INIS)

    Bizon, P.; Malec, E.; O'Murchadha, N.

    1988-01-01

    We give necessary and sufficient conditions for the existence of trapped surfaces in spherically symmetric spacetimes. These conditions show that the formation of trapped surfaces depends on both the degree of concentration and the average flow of the matter. The result can be considered as a partial validation of the cosmic-censorship hypothesis

  8. Spherical Pendulum, Actions, and Spin

    NARCIS (Netherlands)

    Richter, Peter H.; Dullin, Holger R.; Waalkens, Holger; Wiersig, Jan

    1996-01-01

    The classical and quantum mechanics of a spherical pendulum are worked out, including the dynamics of a suspending frame with moment of inertia θ. The presence of two separatrices in the bifurcation diagram of the energy-momentum mapping has its mathematical expression in the hyperelliptic nature of

  9. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  10. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  11. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  12. Laplacian eigenmodes for spherical spaces

    International Nuclear Information System (INIS)

    Lachieze-Rey, M; Caillerie, S

    2005-01-01

    The possibility that our space is multi-rather than singly-connected has gained renewed interest after the discovery of the low power for the first multipoles of the CMB by WMAP. To test the possibility that our space is a multi-connected spherical space, it is necessary to know the eigenmodes of such spaces. Except for lens and prism space, and to some extent for dodecahedral space, this remains an open problem. Here we derive the eigenmodes of all spherical spaces. For dodecahedral space, the demonstration is much shorter, and the calculation method much simpler than before. We also apply our method to tetrahedric, octahedric and icosahedric spaces. This completes the knowledge of eigenmodes for spherical spaces, and opens the door to new observational tests of the cosmic topology. The vector space V k of the eigenfunctions of the Laplacian on the 3-sphere S 3 , corresponding to the same eigenvalue λ k = -k(k + 2), has dimension (k + 1) 2 . We show that the Wigner functions provide a basis for such a space. Using the properties of the latter, we express the behaviour of a general function of V k under an arbitrary rotation G of SO(4). This offers the possibility of selecting those functions of V k which remain invariant under G. Specifying G to be a generator of the holonomy group of a spherical space X, we give the expression of the vector space V x k of the eigenfunctions of X. We provide a method to calculate the eigenmodes up to an arbitrary order. As an illustration, we give the first modes for the spherical spaces mentioned

  13. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico; Proyeccion de generacion de desechos radiactivos solidos, liquidos y fuentes radiactivas gastadas en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E. [Universidad Politecnica del Valle de Toluca, Km 5.7 Carretera Almoloya de Juarez, Estado de Mexico (Mexico); Monroy G, F.; Lizcano C, D., E-mail: fabiola.monroy@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  14. Effects of Brinkman number on thermal-driven convective spherical ...

    African Journals Online (AJOL)

    Michael Horsfall

    KEYWORDS: Magnetic field generation, Thermal-driven convection, Brinkman number, Dynamo action, Fluid outer core ... The problem considers conducting fluid motion in a rapidly rotating spherical shell. The ... is, that the energy lost by the electric currents must be ... which are sources of free electrons and basically due.

  15. Fly Ash and Composted Bio solids as a Source of Fe for Hybrid Poplar: A Greenhouse Study

    International Nuclear Information System (INIS)

    Lombard, K.; O'Neill, M.; Ulery, A.; Mexal, J.; Sammis, T.; Onken, B.; Forster-Cox, S.

    2011-01-01

    Soils of northwest New Mexico have an elevated ph and CaCo 3 content that reduces Fe solubility, causes chlorosis, and reduces crop yields. Could bio solids and fly ash, enriched with Fe, provide safe alternatives to expensive Fe EDDHA (sodium ferric ethylenediamine di-(o-hydroxyphenyl-acetate)) fertilizers applied to Populus hybrid plots? Hybrid OP-367 was cultivated on a Doak sandy loam soil amended with composted bio solids or fly ash at three agricultural rates. Fly ash and Fe EDDHA treatments received urea ammonium nitrate (UAN), bio solids, enriched with N, did not. Both amendments improved soil and plant Fe. Heavy metals were below EPA regulations, but high B levels were noted in leaves of trees treated at the highest fly ash rate. ph increased in fly ash soil while salinity increased in bio solids-treated soil. Chlorosis rankings improved in poplars amended with both byproducts, although composted bio solids offered the most potential at improving Fe/tree growth cheaply without the need for synthetic inputs.

  16. Trends in intakes and sources of solid fats and added sugars among U.S. children and adolescents: 1994-2010.

    Science.gov (United States)

    Slining, M M; Popkin, B M

    2013-08-01

    There are increasing global concerns about improving the dietary intakes of children and adolescents. In the United States (U.S.), the focus is on reducing energy from foods and beverages that provide empty calories from solid fats and added sugars (SoFAS). We examine trends in intakes and sources of solid fat and added sugars among U.S. 2-18 year olds from 1994 to 2010. Data from five nationally representative surveys, the Continuing Survey of Food Intakes by Individuals Surveys (1994-1996) and the What We Eat In America, National Health and Nutrition Examination Surveys (2003-2004, 2005-2006, 2007-2008 and 2009-2010) were used to examine key food sources and energy from solid fats and added sugars. Sample sizes ranged from 2594 to 8259 per survey period, for a total of 17 268 observations across the five surveys. Food files were linked over time to create comparable food groups and nutrient values. Differences were examined by age, race/ethnicity and family income. Daily intake of energy from SoFAS among U.S. 2-18 year olds decreased from 1994 to 2010, with declines primarily detected in the recent time periods. Solid fats accounted for a greater proportion of total energy intake than did added sugars. Although the consumption of solid fats and added sugars among children and adolescents in the U.S. decreased between 1994-1998 and 2009-2010, mean intakes continue to exceed recommended limits. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  17. Quality Factor and Radiation Efficiency of Dual-Mode Self-Resonant Spherical Antennas With Lossy Magnetodielectric Cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2014-01-01

    For spherical antennas consisting of a solid magnetodielectric lossy core with an impressed surface current density exciting a superposition of the ${\\rm TE}_{mn}$ and ${\\rm TM}_{mn}$ spherical modes, we analytically determine the radiation quality factor $Q$ and radiation efficiency $e$ . Also, we...

  18. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  19. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    Science.gov (United States)

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base

  20. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  1. Characteristic wave velocities in spherical electromagnetic cloaks

    International Nuclear Information System (INIS)

    Yaghjian, A D; Maci, S; Martini, E

    2009-01-01

    We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.

  2. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  3. Developement of Spherical Polyurethane Beads

    Institute of Scientific and Technical Information of China (English)

    K. Maeda; H. Ohmori; H. Gyotoku

    2005-01-01

    @@ 1Results and Discussion We established a new method to produce the spherical polyurethane beads which have narrower distribution of particle size. This narrower distribution was achieved by the polyurethane prepolymer which contains ketimine as a blocked chain-extending agent. Firstly, the prepolymer is dispersed into the aqueous solution containing surfactant. Secondaly, water comes into the inside of prepolymer as oil phase. Thirdly, ketimine is hydrolyzed to amine, and amine reacts with prepolymer immediately to be polyurethane.Our spherical polyurethane beads are very suitable for automotive interior parts especially for instrument panel cover sheet producing under the slush molding method, because of good process ability, excellent durability to the sunlight and mechanical properties at low temperature. See Fig. 1 ,Fig. 2 and Fig. 3 (Page 820).

  4. Contractions of affine spherical varieties

    International Nuclear Information System (INIS)

    Arzhantsev, I V

    1999-01-01

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL 2 -varieties are considered

  5. Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments — A developing country case study from Owerri, Nigeria

    International Nuclear Information System (INIS)

    Arukwe, Augustine; Eggen, Trine; Möder, Monika

    2012-01-01

    of isomers), metabolites of non-ionic surfactants (nonylphenol-polyethoxylates), UV-filter compound ethyl methoxy cinnamate (EHMC) and bisphenol A (BPA) were particularly determined in the sediment samples at high μg/kg dry weight concentration. Measuring contaminants in such areas will help in increasing governmental, societal and industrial awareness on the extent and seriousness of the contamination both at waste disposal sites and surrounding terrestrial and aquatic environments. -- Highlights: ► Solid waste management in developing countries ► Solid waste as a significant source of contaminants of emerging concern ► Contaminant leaching from solid waste to surrounding environment ► Detection of several contaminants of emerging concern and with endocrine-disrupting activities ► Phthalates are the dominant contaminant group with concentrations that are comparable with other countries.

  6. Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments - A developing country case study from Owerri, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Arukwe, Augustine, E-mail: arukwe@bio.ntnu.no [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway); Eggen, Trine [Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Postveien 213, N-4353 Klepp St. (Norway); Moeder, Monika [Helmholtz Centre for Environmental Research UFZ, Department of Analytical Chemistry, Permoserstrasse 15, D-04318 Leipzig (Germany)

    2012-11-01

    isomers), metabolites of non-ionic surfactants (nonylphenol-polyethoxylates), UV-filter compound ethyl methoxy cinnamate (EHMC) and bisphenol A (BPA) were particularly determined in the sediment samples at high {mu}g/kg dry weight concentration. Measuring contaminants in such areas will help in increasing governmental, societal and industrial awareness on the extent and seriousness of the contamination both at waste disposal sites and surrounding terrestrial and aquatic environments. -- Highlights: Black-Right-Pointing-Pointer Solid waste management in developing countries Black-Right-Pointing-Pointer Solid waste as a significant source of contaminants of emerging concern Black-Right-Pointing-Pointer Contaminant leaching from solid waste to surrounding environment Black-Right-Pointing-Pointer Detection of several contaminants of emerging concern and with endocrine-disrupting activities Black-Right-Pointing-Pointer Phthalates are the dominant contaminant group with concentrations that are comparable with other countries.

  7. Acoustic reciprocity: An extension to spherical harmonics domain.

    Science.gov (United States)

    Samarasinghe, Prasanga; Abhayapala, Thushara D; Kellermann, Walter

    2017-10-01

    Acoustic reciprocity is a fundamental property of acoustic wavefields that is commonly used to simplify the measurement process of many practical applications. Traditionally, the reciprocity theorem is defined between a monopole point source and a point receiver. Intuitively, it must apply to more complex transducers than monopoles. In this paper, the authors formulate the acoustic reciprocity theory in the spherical harmonics domain for directional sources and directional receivers with higher order directivity patterns.

  8. Other Solid Waste Incineration (OSWI) Units Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources Fact Sheets

    Science.gov (United States)

    This page contains a November 2005, and and November 2006 fact sheet with information regarding the final and proposed NSPS and Emission Guidelines for Existing Sources for OSWI. This document provides a summary of the information for this regulation

  9. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-01

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS feed , while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS feed . The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO 3 /kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  10. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  11. Morphology, composition, and mixing state of primary particles from combustion sources ? crop residue, wood, and solid waste

    OpenAIRE

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A. P.; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye

    2017-01-01

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combusti...

  12. Emulating Spherical Wave Channel Models in Multi-probe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Carreño, Xavier; Nielsen, Jesper Ødum

    2015-01-01

    to emulate spherical wave channel models in multi-probe anechoic chamber setups. In this paper, a technique based on the field synthesis principle is proposed to approximate spherical waves emitted from arbitrarily located point sources with arbitrary polarizations. Simulation results show that static......Spherical wave channel modeling has attracted huge research attention for massive multiple-input multiple-output (MIMO) and short-distance MIMO systems. Current research work in multi-probe anechoic chamber systems is limited to reproduce radio channels assuming planar wavefronts. There is a need...... spherical waves can be reproduced with a limited number of probes, and the field synthesis accuracy of spherical wave depends on the location of the source point....

  13. InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Yeh, N.-T.; Liu, W.-S.; Chen, S.-H.; Chiu, P.-C.; Chyi, J.-I.

    2002-01-01

    This letter presents the lasing properties of InAs/GaAs quantum dot lasers with InGaP cladding layers grown by solid-source molecular-beam epitaxy. These Al-free lasers exhibit a threshold current density of 138 A/cm 2 , an internal loss of 1.35 cm -1 , and an internal quantum efficiency of 31% at room temperature. At a low temperature, a very high characteristic temperature of 425 K and very low threshold current density of 30 A/cm 2 are measured

  14. A Spherical Aerial Terrestrial Robot

    Science.gov (United States)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  15. Cooperative effects in spherical spasers

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which...... a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit...

  16. Spherical bodies of constant width

    OpenAIRE

    Lassak, Marek; Musielak, Michał

    2018-01-01

    The intersection $L$ of two different non-opposite hemispheres $G$ and $H$ of a $d$-dimensional sphere $S^d$ is called a lune. By the thickness of $L$ we mean the distance of the centers of the $(d-1)$-dimensional hemispheres bounding $L$. For a hemisphere $G$ supporting a %spherical convex body $C \\subset S^d$ we define ${\\rm width}_G(C)$ as the thickness of the narrowest lune or lunes of the form $G \\cap H$ containing $C$. If ${\\rm width}_G(C) =w$ for every hemisphere $G$ supporting $C$, we...

  17. Photons in a spherical cavity

    International Nuclear Information System (INIS)

    Ionescu-Pallas, N.; Vlad, V.I.

    1999-01-01

    The spectrum of black body radiation at the absolute temperature T, in an ideal spherical cavity of radius R, is studied. The departures from the classical predictions of Planck's theory, due to the discrete energies of the radiation quanta confined inside the cavity, depend on the adiabatic invariant RT and are significant for RT≤ 1 cm K. Special attention was paid to evidence sudden changes in the spectrum intensities, forbidden bands of frequency, as well as major modifications of the total energy for RT≤ 1 cm K. Similar effects were present in case of a cubic cavity too. (authors)

  18. Spherical Detector Device Mathematical Modelling with Taking into Account Detector Module Symmetry

    International Nuclear Information System (INIS)

    Batyj, V.G.; Fedorchenko, D.V.; Prokopets, S.I.; Prokopets, I.M.; Kazhmuradov, M.A.

    2005-01-01

    Mathematical Model for spherical detector device accounting to symmetry properties is considered. Exact algorithm for simulation of measurement procedure with multiple radiation sources is developed. Modelling results are shown to have perfect agreement with calibration measurements

  19. Spherical harmonic expansion of short-range screened Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)

    2006-07-07

    Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.

  20. A series of inorganic solid nitrogen sources for the synthesis of metal nitride clusterfullerenes: the dependence of production yield on the oxidation state of nitrogen and counter ion.

    Science.gov (United States)

    Liu, Fupin; Guan, Jian; Wei, Tao; Wang, Song; Jiao, Mingzhi; Yang, Shangfeng

    2013-04-01

    A series of nitrogen-containing inorganic solid compounds with variable oxidation states of nitrogen and counter ions have been successfully applied as new inorganic solid nitrogen sources toward the synthesis of Sc-based metal nitride clusterfullerenes (Sc-NCFs), including ammonium salts [(NH4)xH(3-x)PO4 (x = 0-2), (NH4)2SO4, (NH4)2CO3, NH4X (X = F, Cl), NH4SCN], thiocyanate (KSCN), nitrates (Cu(NO3)2, NaNO3), and nitrite (NaNO2). Among them, ammonium phosphates ((NH4)xH(3-x)PO4, x = 1-3) and ammonium thiocyanate (NH4SCN) are revealed to behave as better nitrogen sources than others, and the highest yield of Sc-NCFs is achieved when NH4SCN was used as a nitrogen source. The optimum molar ratio of Sc2O3:(NH4)3PO4·3H2O:C and Sc2O3:NH4SCN:C has been determined to be 1:2:15 and 1:3:15, respectively. The thermal decomposition products of these 12 inorganic compounds have been discussed in order to understand their different performances toward the synthesis of Sc-NCFs, and accordingly the dependence of the production yield of Sc-NCFs on the oxidation state of nitrogen and counter ion is interpreted. The yield of Sc3N@C80 (I(h) + D(5h)) per gram Sc2O3 by using the N2-based group of nitrogen sources (thiocyanate, nitrates, and nitrite) is overall much lower than those by using gaseous N2 and NH4SCN, indicating the strong dependence of the yield of Sc-NCFs on the oxidation state of nitrogen, which is attributed to the "in-situ" redox reaction taking place for the N2-based group of nitrogen sources during discharging. For NH3-based group of nitrogen sources (ammonium salts) which exhibits a (-3) oxidation states of nitrogen, their performance as nitrogen sources is found to be sensitively dependent on the anion, and this is understood by considering their difference on the thermal stability and/or decomposition rate. Contrarily, for the N2-based group of nitrogen sources, the formation of Sc-NCFs is independent to both the oxidation state of nitrogen (+3 or +5) and the

  1. Strategic Factors of Household Solid Waste Segregation at Source Program, Awareness and Participation of Citizens of the 3 Municipality District of Tehran

    Directory of Open Access Journals (Sweden)

    Qasem Ghanbari

    2016-03-01

    Full Text Available Background and Objective: Solving the problems caused by household solid waste and its management without the continuous cooperation of the citizens as the main producers of household solid waste is impossible. The aims of this study were to define strategic factors of Household Solid Waste Segregation at Source Program and the level of awareness and participation of citizens in the program.Materials and Methods: In this cross-sectional study we interviewed 640 citizens of the 3 Municipality District of Tehran. Internal Factor Evaluation and External Factor Evaluation matrices were used to assess the strategic factors of the program.Results: Of 640 participants, 517 (80.8% were aware of the program, and 383 (59.9% participated in the program. Among participants 628 (98.1% were well-informed about the correlation between implementation of the program and environmental health promotion. People between 35 to 45 years showed the most participation rate.Conclusion: This study showed that citizens showed acceptable awareness of the program and evaluation of internal and external factors indicated high potential to increase public participation in the program.

  2. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    International Nuclear Information System (INIS)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn; Kang, Eun Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  3. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Ho; Oh, Yu Whan; Ham, Soo Youn [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Kang, Eun Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Ki Yeol [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-06-15

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 +/- 0.9%, and 1.7 +/- 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 +/- 7.4%) was significantly greater (p < 0.01) than that in the CPM (18.4 +/- 5.3%), with an IVV of 13.1 +/- 6.6%. However, the IVVs were in an acceptable range (< 25%), regardless of nodule size. The accuracy of 3D volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  4. Effect of the high-pitch mode in dual-source computed tomography on the accuracy of three-dimensional volumetry of solid pulmonary nodules: a phantom study.

    Science.gov (United States)

    Hwang, Sung Ho; Oh, Yu-Whan; Ham, Soo-Youn; Kang, Eun-Young; Lee, Ki Yeol

    2015-01-01

    To evaluate the influence of high-pitch mode (HPM) in dual-source computed tomography (DSCT) on the accuracy of three-dimensional (3D) volumetry for solid pulmonary nodules. A lung phantom implanted with 45 solid pulmonary nodules (n = 15 for each of 4-mm, 6-mm, and 8-mm in diameter) was scanned twice, first in conventional pitch mode (CPM) and then in HPM using DSCT. The relative percentage volume errors (RPEs) of 3D volumetry were compared between the HPM and CPM. In addition, the intermode volume variability (IVV) of 3D volumetry was calculated. In the measurement of the 6-mm and 8-mm nodules, there was no significant difference in RPE (p > 0.05, respectively) between the CPM and HPM (IVVs of 1.2 ± 0.9%, and 1.7 ± 1.5%, respectively). In the measurement of the 4-mm nodules, the mean RPE in the HPM (35.1 ± 7.4%) was significantly greater (p volumetry with HPM for solid pulmonary nodule is comparable to that with CPM. However, the use of HPM may adversely affect the accuracy of 3D volumetry for smaller (< 5 mm in diameter) nodule.

  5. Interactions between charged spherical macroions

    International Nuclear Information System (INIS)

    Stevens, M.J.; Falk, M.L.; Robbins, M.O.

    1996-01-01

    Monte Carlo (MC) simulations were used to study the screened interactions between charged spherical macroions surrounded by discrete counterions, and to test previous theories of screening. The simulations were performed in the primitive cell of the bcc lattice, and in the spherical Wigner endash Seitz cell that is commonly used in approximate calculations. We found that the Wigner endash Seitz approximation is valid even at high volume fractions φ and large macroion charges Z, because the macroion charge becomes strongly screened. Pressures calculated from Poisson endash Boltzmann theory and local density functional theory deviate from MC values as φ and Z increase, but continue to provide upper and lower bounds for the MC results. While Debye endash Hueckel (DH) theory fails badly when the bare charge is used, MC pressures can be fit with an effective DH charge, Z DH , that is nearly independent of volume fraction. As Z diverges, Z DH saturates at zψ max R m /λ, where z is the counterion charge, R m is the macroion radius, λ is the Bjerrum length, and ψ max is a constant of order 10. copyright 1996 American Institute of Physics

  6. Casimir effect in spherical shells

    International Nuclear Information System (INIS)

    Ruggiero, J.R.

    1985-01-01

    The analytic regularization method is applied to study the Casimir effect for spherical cavities. Although many works have been presented in the past few years, problems related to the elimination of the regulator parameter still remain. A way to calculate the zero point energy of a perfectly conducting spherical shell which is a miscellaneous of those presented early is here proposed, How a cancelation of divergent terms occurs and how a finite parte is obtained after the elimination of the regulator parameter is shown. As a by-product the zero point energy of the interior vibration modes is obtained and this has some relevance to the quarks bag model. This relev ance is also discussed. The calculation of the energy fom the density view is also discussed. Some works in this field are criticized. The logarithmic divergent terms in the zero point energy are studied when the interior and exterior of the sphere are considered as a medium not dispersive and characterized by a dielectric constants ε 1 and ε 2 and peermeability constants μ 1 and μ 2 respectivelly. The logarithmic divergent terms are not present in the case of ε i μ i =K, with K some constant and i=1,2. (author) [pt

  7. Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

    Science.gov (United States)

    Abramov, Yuriy A

    2015-06-01

    The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.

  8. Progress in octahedral spherical hohlraum study

    Directory of Open Access Journals (Sweden)

    Ke Lan

    2016-01-01

    Full Text Available In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.

  9. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  10. An experimental study of solid source diffusion by spin on dopants and its application for minimal silicon-on-insulator CMOS fabrication

    Science.gov (United States)

    Liu, Yongxun; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro

    2017-06-01

    Solid source diffusions of phosphorus (P) and boron (B) into the half-inch (12.5 mm) minimal silicon (Si) wafers by spin on dopants (SOD) have been systematically investigated and the physical-vapor-deposited (PVD) titanium nitride (TiN) metal gate minimal silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) have successfully been fabricated using the developed SOD thermal diffusion technique. It was experimentally confirmed that a low temperature oxidation (LTO) process which depresses a boron silicide layer formation is effective way to remove boron-glass in a diluted hydrofluoric acid (DHF) solution. It was also found that top Si layer thickness of SOI wafers is reduced in the SOD thermal diffusion process because of its consumption by thermal oxidation owing to the oxygen atoms included in SOD films, which should be carefully considered in the ultrathin SOI device fabrication. Moreover, normal operations of the fabricated minimal PVD-TiN metal gate SOI-CMOS inverters, static random access memory (SRAM) cells and ring oscillators have been demonstrated. These circuit level results indicate that no remarkable particles and interface traps were introduced onto the minimal wafers during the device fabrication, and the developed solid source diffusion by SOD is useful for the fabrication of functional logic gate minimal SOI-CMOS integrated circuits.

  11. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  12. X-ray absorption spectroscopy of diluted system by undulator photon source and multi-element solid-state detector

    CERN Document Server

    Tanida, H

    2001-01-01

    In order to measure the extended X-ray absorption fine structure (EXAFS) spectrum of an ultra-diluted system, an optics and detector control system for a synchrotron radiation beamline is developed. The undulator gap width is continuously tuned to obtain the maximum X-ray photon flux during the energy scan for the EXAFS measurement. A piezoelectric translator optimizes the parallelism of the double crystal in a monochromator at each measurement point to compensate for mechanical errors of the monochromator, resulting in a smooth and intense X-ray photon flux during the measurement. For a detection of a weak fluorescence signal from diluted samples, a 19-element solid-state detector and digital signal processor are used. A K-edge EXAFS spectrum of iron in a myoglobin aqueous solution with a concentration of 5.58 parts per million was obtained by this system.

  13. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups.

    Science.gov (United States)

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin

    2016-07-01

    Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.

  14. Sources and speciation of heavy metals in municipal solid waste (MSW) and its effect on the separation technique

    Energy Technology Data Exchange (ETDEWEB)

    Biollaz, S; Ludwig, Ch; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A literature search was carried out to determine sources and speciation of heavy metals in MSW. A combination of thermal and mechanical separation techniques is necessary to achieve the required high degrees of metal separation. Metallic goods should be separated mechanically, chemically bound heavy metals by a thermal process. (author) 1 fig., 1 tab., 6 refs.

  15. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...... composition of the wastes and the estimated methane potentials....

  16. The ETE spherical Tokamak project. IAEA report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br

    2002-07-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  17. Spherical sila- and germa-homoaromaticity.

    Science.gov (United States)

    Chen, Zhongfang; Hirsch, Andreas; Nagase, Shigeru; Thiel, Walter; Schleyer, Paul von Ragué

    2003-12-17

    Guided by the 2(N + 1)2 electron-counting rule for spherical aromatic molecules, we have designed various spherical sila- and germa-homoaromatic systems rich in group 14 elements. Their aromaticity is revealed by density-functional computations of their structures and the nucleus-independent chemical shifts (NICS). Besides the formerly used endohedral inclusion strategy, spherical homoaromaticity is another way to stabilize silicon and germanium clusters.

  18. Spherical collapse in chameleon models

    International Nuclear Information System (INIS)

    Brax, Ph.; Rosenfeld, R.; Steer, D.A.

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity

  19. Spherical collapse in chameleon models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Ph. [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Rosenfeld, R. [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, 01140-070, São Paulo (Brazil); Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr [APC, UMR 7164, CNRS, Université Paris 7, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2010-08-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.

  20. Spherical Collapse in Chameleon Models

    CERN Document Server

    Brax, Ph; Steer, D A

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.

  1. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China.

    Science.gov (United States)

    Ma, Wenchao; Tai, Lingyu; Qiao, Zhi; Zhong, Lei; Wang, Zhen; Fu, Kaixuan; Chen, Guanyi

    2018-08-01

    Few studies have comprehensively taken into account the source apportionment and human health risk of soil heavy metals in the vicinity of municipal solid waste incinerator (MSWI) in high population density area. In this study, 8 elements (Cr, Pb, Cu, Ni, Zn, Cd, Hg, and As) in fly ash, soil samples from different functional areas and vegetables collected surrounding the MSWI in North China were determined. The single pollution index, integrated Nemerow pollution index, principal component analysis (PCA), absolute principle component score-multiple linear regression (APCS-MLR) model and dose-response model were used in this study. The results showed that the soils around the MSWI were moderately polluted by Cu, Pb, Zn, and Hg, and heavily polluted by As and Cd. MSWI had a significant influence on the distribution of soil heavy metals in different distances from MSWI. The source apportionment results showed that MSWI, natural source, industrial discharges and coal combustion were the four major potential sources for heavy metals in the soils, with the contributions of 36.08%, 29.57%, 10.07%, and 4.55%, respectively. MSWI had a major impact on Zn, Cu, Pb, Cd, and Hg contamination in soil. The non-carcinogenic risk and carcinogenic risk posed by soil heavy metals surrounding the MSWI were unacceptable. The soil heavy metals concentrations and health risks in different functional areas were distinct. MSWI was the predominate source of non-carcinogenic risk with the average contribution rate of 36.99% and carcinogenic risk to adult male, adult female and children with 4.23×10 -4 , 4.57×10 -4 , and 1.41×10 -4 respectively, implying that the impact of MSWI on human health was apparent. This study provided a new insight for the source apportionment and health risk assessment of soil heavy metals in the vicinity of MSWI. Copyright © 2018. Published by Elsevier B.V.

  2. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  3. WAVEMOTH-FAST SPHERICAL HARMONIC TRANSFORMS BY BUTTERFLY MATRIX COMPRESSION

    International Nuclear Information System (INIS)

    Seljebotn, D. S.

    2012-01-01

    We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L 2 log 2 L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L ∼ 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.

  4. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  5. The calculation of dose rates from rectangular sources

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1998-01-01

    A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)

  6. Phase-locking of a terahertz solid-state source using a superconducting hot-electron bolometer mixer

    International Nuclear Information System (INIS)

    Miao, W; Zhang, W; Zhou, K M; Li, S L; Zhang, K; Duan, W Y; Yao, Q J; Shi, S C

    2013-01-01

    We report on a scheme whereby the local-oscillator (LO) of a THz heterodyne receiver can be phase-locked by the mixer of the heterodyne receiver. This scheme is demonstrated for the phase-locking of an 847.6 GHz Gunn oscillator and multiplier chain combined source with a superconducting hot-electron bolometer (HEB) mixer. We show that with this technique the phase-locked beat signal can reach a signal-to-noise ratio higher than 70 dB in a resolution bandwidth (RBW) of 1 Hz. This phase-locking scheme should find good use in THz heterodyne spectrometers. (paper)

  7. Design of a cold-neutron source for the Bariloche LINAC with solid mesitylene as moderator material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, J.R.

    2006-01-01

    We present the results of calculations performed with the code MCNP-4C relative to the neutron-field behaviour within the moderator for the Bariloche-LINAC cold-neutron source, using mesitylene at 89 K as moderating material. Throughout the design calculations we used preliminary nuclear-data libraries for that material that were previously generated and partially validated. The optimum dimensions for a slab and a cylindrical moderator were obtained, with and without a premoderator, from the point of view of neutron production and time-width of the neutron pulse

  8. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    Science.gov (United States)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  9. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    Science.gov (United States)

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  10. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Directory of Open Access Journals (Sweden)

    Soydemir E.

    2014-07-01

    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  11. Szilard-Chalmers effect in solid H I O{sub 4}. 2 H{sub 2} O by neutron irradiation (source-reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Takriti, S [radiochemistry laboratory, syrian atomic energy commission P.O. Box 6091 Damascus, (Syrian Arab Republic)

    1995-10-01

    The Szilard-Chalmers effect in solid periodic acid was investigated. In order to study the initial distribution of {sup 128I} o{sub 4} as a function of neutron flux, samples were irradiated utilizing both neutron source ({sup 241} Am-Be), the manual vertical irradiation channel and the thermal column of ET-R R-1 research reactor in Egypt. The initial retention reached a maximum of 40% after 120 minutes at 5.5 x 10 {sup 8} n s{sup -1} cm {sup -2}. The data was analysed using first order reaction. As a result, the activation Ko= 2.82 x 10 {sup 11} (S{sup -1}), respectively. Kinetics comparison of the dehydration and irradiation reactions for this solid showed disorder in the crystallographic form. Such disorder may be the result of dehydration or irradiation reactions, where the loss of water molecule will lead to formation of vacancies which, in turn, are responsible for the distribution process. 6 figs., 1 tab.

  12. Stability of the spherical form of nuclei

    International Nuclear Information System (INIS)

    Sabry, A.A.

    1976-08-01

    An extension of the mass formula for a spherical nucleus in the drop model to include a largely deformed nucleus of different forms is investigated. It is found that although the spherical form is stable under small deformations from equilibrium, there exists for heavier nuclei another more favourable stable form, which can be approximated by two, or three touching prolate ellipsoids of revolution

  13. How Spherical Is a Cube (Gravitationally)?

    Science.gov (United States)

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  14. Spherical Tensor Calculus for Local Adaptive Filtering

    Science.gov (United States)

    Reisert, Marco; Burkhardt, Hans

    In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.

  15. Molecular beam epitaxy growth of niobium oxides by solid/liquid state oxygen source and lithium assisted metal-halide chemistry

    Science.gov (United States)

    Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan

    2015-09-01

    In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.

  16. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Directory of Open Access Journals (Sweden)

    Wanshun Zhao

    2013-04-01

    Full Text Available We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD. The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM. Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films.

  17. High-temperature operation of self-assembled GaInNAs/GaAsN quantum-dot lasers grown by solid-source molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Liu, C.Y.; Yoon, S.F.; Sun, Z.Z.; Yew, K.C.

    2006-01-01

    Self-assembled GaInNAs/GaAsN single layer quantum-dot (QD) lasers grown using solid-source molecular-beam epitaxy have been fabricated and characterized. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm 2 from a GaInNAs QD laser (50x1700 μm 2 ) at 10 deg. C. High-temperature operation up to 65 deg. C was also demonstrated from an unbonded GaInNAs QD laser (50x1060 μm 2 ), with high characteristic temperature of 79.4 K in the temperature range of 10-60 deg. C

  18. Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics.

    Science.gov (United States)

    Kim, Se-Hee; Choi, Keun-Ho; Cho, Sung-Ju; Choi, Sinho; Park, Soojin; Lee, Sang-Young

    2015-08-12

    Forthcoming flexible/wearable electronic devices with shape diversity and mobile usability garner a great deal of attention as an innovative technology to bring unprecedented changes in our daily lives. From the power source point of view, conventional rechargeable batteries (one representative example is a lithium-ion battery) with fixed shapes and sizes have intrinsic limitations in fulfilling design/performance requirements for the flexible/wearable electronics. Here, as a facile and efficient strategy to address this formidable challenge, we demonstrate a new class of printable solid-state batteries (referred to as "PRISS batteries"). Through simple stencil printing process (followed by ultraviolet (UV) cross-linking), solid-state composite electrolyte (SCE) layer and SCE matrix-embedded electrodes are consecutively printed on arbitrary objects of complex geometries, eventually leading to fully integrated, multilayer-structured PRISS batteries with various form factors far beyond those achievable by conventional battery technologies. Tuning rheological properties of SCE paste and electrode slurry toward thixotropic fluid characteristics, along with well-tailored core elements including UV-cured triacrylate polymer and high boiling point electrolyte, is a key-enabling technology for the realization of PRISS batteries. This process/material uniqueness allows us to remove extra processing steps (related to solvent drying and liquid-electrolyte injection) and also conventional microporous separator membranes, thereupon enabling the seamless integration of shape-conformable PRISS batteries (including letters-shaped ones) into complex-shaped objects. Electrochemical behavior of PRISS batteries is elucidated via an in-depth analysis of cell impedance, which provides a theoretical basis to enable sustainable improvement of cell performance. We envision that PRISS batteries hold great promise as a reliable and scalable platform technology to open a new concept of cell

  19. A multi purpose 4 π counter spherical ionization chamber type

    International Nuclear Information System (INIS)

    Calin, Marian Romeo; Calin, Adrian Cantemir

    2004-01-01

    A pressurized ionization chamber detector able to measure radioactive sources in internal 2π or 4π geometry was built in order to characterize alpha and beta radioactive sources, i.e. to calibrate these sources by relative method and to test the behavior of gas mixtures in pressurized-gas radiation detectors. The detector we made is of spherical shape and works by collecting in a uniform electric field the ionization charges resulting from the interaction of ionizing radiation with gas in the sensitive volume of the chamber. An ionizing current proportional to the activity of the radioactive source to be measured is obtained. In this paper a gas counter with a spherical symmetry is described. This detector can work in a very satisfactory manner, either as a flow counter or as a ionization chamber reaching in the latter case a good α pulse height resolution, even with large emitting sources. Calculations are made in order to find the dependence of the pulse shape on the direction of emission of an α-particle by a point source in the chamber (finite track). A good agreement is found between these calculations and the experimental tests performed, which show that this dependence can be employed in high efficiency measurements of angular α-γ correlations. (authors)

  20. Intrinsic cylindrical and spherical waves

    International Nuclear Information System (INIS)

    Ludlow, I K

    2008-01-01

    Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed

  1. Alfven Eigenmodes in spherical tokamaks

    International Nuclear Information System (INIS)

    Gryaznevich, Mikhail P.; Sharapov, Sergei E.; Berk, Herbert L.; Pinches, Simon D.

    2005-01-01

    Electromagnetic instabilities are often excited by fast super-Alfvenic ions produced by neutral beam injection (NBI) in plasmas of the spherical tokamaks START and MAST (toroidal magnetic confinement devices in which the minor a and major R 0 radii of the torus are comparable, R 0 /a≅1.2/1.8). These instabilities are seen as discrete weakly-damped toroidal and elliptical Alfven Eigenmodes (TAEs and EAEs) with frequencies tracing in time the Alfven scaling with the equilibrium magnetic field and plasma density, or as energetic particle modes (EPMs) whose frequencies don't start from TAE-frequency and sweep down in time faster than the equilibrium parameters change. In some discharges the beam drives Aflvenic-type modes that start from the TAE frequency and sweep in both up- and down- directions. Such electromagnetic perturbations are interpreted as 'hole-clump' long-living nonlinear fluctuations of the fast ion distribution function predicted by Berk-Breizman-Petviashvili [Phys. Lett. A238 (1998) 408]. It is found on both START and MAST that the Alfven instabilities weaken in their mode amplitude and in the number of unstable modes as the pressure of the thermal plasma increases, in agreement with increased thermal ion Landau damping and the pressure effect on core-localised TAEs. (author)

  2. Spherically symmetric charged compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)

    2015-08-15

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)

  3. The spherical harmonics method, 1 (general development of the theory)

    International Nuclear Information System (INIS)

    Mark, C.

    1957-02-01

    A method of obtaining approximate solutions of the transport equation is presented in a form applicable in principle to any geometry. The approximation will give good results in cases where the angular distribution is not very anisotropic. The basis of the approximation is to expand the density per unit solid angle Ψ(→/r, →/Ω) in spherical harmonic tensors formed from →/Ω the unit vector in the direction of velocity, and to break off the expansion. A differential equation whose degree increases with the order of the approximation is obtained for the total density Ψ (o) (r). This equation has the form where the numbers ν i depend on the order of the approximation and on the value of the parameter a of the medium, but not at all on the geometry. When the equation for the total density is an ordinary equation, we simulate the physical condition of continuity of Ψ(→/r, →/Ω) at a boundary in a multi-medium problem by requiring that the spherical harmonic moments of Ψ(→/r, →/Ω) which we retain be continuous; and this determines the constants in the solution for Ψ (o) (→/r. The form of the solution for the total density and the necessary moments in an approximation of general order is given explicitly for plane and spherical symmetry; and for cylindrical symmetry the solution is given for two low-order approximations. In a later report (CRT-338, Revised) the application of the method to several problems involving plane and spherical symmetry will be discussed in detail and the results of a number of examples already worked will also be given. (author)

  4. The spherical harmonics method, 1 (general development of the theory)

    Energy Technology Data Exchange (ETDEWEB)

    Mark, C

    1957-02-15

    A method of obtaining approximate solutions of the transport equation is presented in a form applicable in principle to any geometry. The approximation will give good results in cases where the angular distribution is not very anisotropic. The basis of the approximation is to expand the density per unit solid angle {Psi}({yields}/r, {yields}/{Omega}) in spherical harmonic tensors formed from {yields}/{Omega} the unit vector in the direction of velocity, and to break off the expansion. A differential equation whose degree increases with the order of the approximation is obtained for the total density {Psi}{sup (o)}(r). This equation has the form where the numbers {nu}{sub i} depend on the order of the approximation and on the value of the parameter a of the medium, but not at all on the geometry. When the equation for the total density is an ordinary equation, we simulate the physical condition of continuity of {Psi}({yields}/r, {yields}/{Omega}) at a boundary in a multi-medium problem by requiring that the spherical harmonic moments of {Psi}({yields}/r, {yields}/{Omega}) which we retain be continuous; and this determines the constants in the solution for {Psi}{sup (o)}({yields}/r. The form of the solution for the total density and the necessary moments in an approximation of general order is given explicitly for plane and spherical symmetry; and for cylindrical symmetry the solution is given for two low-order approximations. In a later report (CRT-338, Revised) the application of the method to several problems involving plane and spherical symmetry will be discussed in detail and the results of a number of examples already worked will also be given. (author)

  5. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  6. Reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Walton, Tim

    2014-01-01

    waves traveling in any direction. In particular, rigid sphere microphone arrays are robust, and have the favorable property that the scattering introduced by the array can be compensated for - making the array virtually transparent. This study examines a recently proposed sound field reconstruction...... method based on a point source expansion, i.e. equivalent source method, using a rigid spherical array. The study examines the capability of the method to distinguish between sound waves arriving from different directions (i.e., as a sound field separation method). This is representative of the potential...

  7. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  8. Solid waste management: an overview

    International Nuclear Information System (INIS)

    Ayoub, G.M.

    1995-01-01

    The source, effect and characterization of solid wastes are discussed. Constituents of municipal solid wastes and a comparative compositions of municipal solid waste with some data on Lebanon are given. Collection, transport and processing practices are next introduced. Finally treatment and disposal techniques are presented with emphasis on the solid waste as energy source and as material source. Methods of recycling are evaluated in respect with their environmental impact. 7 refs. 2 tabs

  9. Analysis the potential gas production of old municipal solid waste landfill as an alternative energy source: Preliminary results

    Science.gov (United States)

    Hayati, A. P.; Emalya, N.; Munawar, E.; Schwarzböck, T.; Lederer, J.; Fellner, J.

    2018-03-01

    The MSW landfill produces gas which is represent the energy resource that lost and polluted the ambient air. The objective of this study is to evaluate the potential gas production of old landfill as an alternative energy source. The study was conducted by using 10 years old waste in landfill simulator reactor (LSR). Four Landfills Simulator Reactors (LSR) were constructed for evaluate the gas production of old MSW landfilled. The LSR was made of high density poly ethylene (HDPE) has 50 cm outside diameter and 150 cm of high. The 10 years old waste was excavated from closed landfill and subsequently separated from inorganic fraction and sieved to maximum 50 mm size particle prior emplaced into the LSR. Although quite small compare to the LSR containing fresh waste has been reported, the LRS containing 10 years old waste still produce much landfill gas. The landfill gas produced of LSR operated with and without leachate recirculation were about 29 and 21 litter. The composition of landfill gas produced was dominated by CO2 with the composition of CH4 and O2 were around 12.5% and 0.2 %, respectively.

  10. High-order perturbations of a spherical collapsing star

    International Nuclear Information System (INIS)

    Brizuela, David; Martin-Garcia, Jose M.; Sperhake, Ulrich; Kokkotas, Kostas D.

    2010-01-01

    A formalism to deal with high-order perturbations of a general spherical background was developed in earlier work [D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 74, 044039 (2006); D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Phys. Rev. D 76, 024004 (2007)]. In this paper, we apply it to the particular case of a perfect fluid background. We have expressed the perturbations of the energy-momentum tensor at any order in terms of the perturbed fluid's pressure, density, and velocity. In general, these expressions are not linear and have sources depending on lower-order perturbations. For the second-order case we make the explicit decomposition of these sources in tensor spherical harmonics. Then, a general procedure is given to evolve the perturbative equations of motions of the perfect fluid for any value of the harmonic label. Finally, with the problem of a spherical collapsing star in mind, we discuss the high-order perturbative matching conditions across a timelike surface, in particular, the surface separating the perfect fluid interior from the exterior vacuum.

  11. High-power, continuous-wave, solid-state, single-frequency, tunable source for the ultraviolet.

    Science.gov (United States)

    Aadhi, A; Apurv Chaitanya, N; Singh, R P; Samanta, G K

    2014-06-15

    We report the development of a compact, high-power, continuous-wave, single-frequency, ultraviolet (UV) source with extended wavelength tunability. The device is based on single-pass, intracavity, second-harmonic-generation (SHG) of the signal radiation of a singly resonant optical parametric oscillator (SRO) working in the visible and near-IR wavelength range. The SRO is pumped in the green with a 25-mm-long, multigrating, MgO doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) as nonlinear crystal. Using three grating periods, 8.5, 9.0, and 9.5 μm of the MgO:sPPLT crystal and a single set of cavity mirrors, the SRO can be tuned continuously across 710.7-836.3 nm in the signal and corresponding idler across 2115.8-1462.1 nm with maximum idler power of 1.9 W and maximum out-coupled signal power of 254 mW. By frequency-doubling the intracavity signal with a 5-mm-long bismuth borate (BIBO) crystal, we can further tune the SRO continuously over 62.8 nm across 355.4-418.2 nm in the UV with maximum single-frequency UV power, as much as 770 mW at 398.28 nm in a Gaussian beam profile. The UV radiation has an instantaneous line-width of ∼14.5  MHz and peak-peak frequency stability of 151 MHz over 100 s. More than 95% of the tuning range provides UV power >260  mW. Access to lower UV wavelengths can in principle be realized by operating the SRO in the visible using shorter grating periods.

  12. Analyzing correlation functions with tesseral and Cartesian spherical harmonics

    International Nuclear Information System (INIS)

    Danielewicz, Pawel; Pratt, Scott

    2007-01-01

    The dependence of interparticle correlations on the orientation of particle relative momentum can yield unique information on the space-time features of emission in reactions with multiparticle final states. In the present paper, the benefits of a representation and analysis of the three-dimensional correlation information in terms of surface spherical harmonics is presented. The harmonics include the standard complex tesseral harmonics and the real Cartesian harmonics. Mathematical properties of the lesser known Cartesian harmonics are illuminated. The physical content of different angular harmonic components in a correlation is described. The resolving power of different final-state effects with regard to determining angular features of emission regions is investigated. The considered final-state effects include identity interference, strong interactions, and Coulomb interactions. The correlation analysis in terms of spherical harmonics is illustrated with the cases of Gaussian and blast-wave sources for proton-charged meson and baryon-baryon pairs

  13. The inverse spatial Laplacian of spherically symmetric spacetimes

    International Nuclear Information System (INIS)

    Fernandes, Karan; Lahiri, Amitabha

    2017-01-01

    We derive the inverse spatial Laplacian for static, spherically symmetric backgrounds by solving Poisson’s equation for a point source. This is different from the electrostatic Green function, which is defined on the four dimensional static spacetime, while the equation we consider is defined on the spatial hypersurface of such spacetimes. This Green function is relevant in the Hamiltonian dynamics of theories defined on spherically symmetric backgrounds, and closed form expressions for the solutions we find are absent in the literature. We derive an expression in terms of elementary functions for the Schwarzschild spacetime, and comment on the relation of this solution with the known Green function of the spacetime Laplacian operator. We also find an expression for the Green function on the static pure de-Sitter space in terms of hypergeometric functions. We conclude with a discussion of the constraints of the electromagnetic field. (paper)

  14. Modeling mantle convection in the spherical annulus

    Science.gov (United States)

    Hernlund, John W.; Tackley, Paul J.

    2008-12-01

    Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.

  15. Low-temperature growth of highly crystalline β-Ga2O3 nanowires by solid-source chemical vapor deposition.

    Science.gov (United States)

    Han, Ning; Wang, Fengyun; Yang, Zaixing; Yip, SenPo; Dong, Guofa; Lin, Hao; Fang, Ming; Hung, TakFu; Ho, Johnny C

    2014-01-01

    Growing Ga2O3 dielectric materials at a moderately low temperature is important for the further development of high-mobility III-V semiconductor-based nanoelectronics. Here, β-Ga2O3 nanowires are successfully synthesized at a relatively low temperature of 610°C by solid-source chemical vapor deposition employing GaAs powders as the source material, which is in a distinct contrast to the typical synthesis temperature of above 1,000°C as reported by other methods. In this work, the prepared β-Ga2O3 nanowires are mainly composed of Ga and O elements with an atomic ratio of approximately 2:3. Importantly, they are highly crystalline in the monoclinic structure with varied growth orientations in low-index planes. The bandgap of the β-Ga2O3 nanowires is determined to be 251 nm (approximately 4.94 eV), in good accordance with the literature. Also, electrical characterization reveals that the individual nanowire has a resistivity of up to 8.5 × 10(7) Ω cm, when fabricated in the configuration of parallel arrays, further indicating the promise of growing these highly insulating Ga2O3 materials in this III-V nanowire-compatible growth condition. 77.55.D; 61.46.Km; 78.40.Fy.

  16. Assessment of metal pollution sources by SEM/EDS analysis of solid particles in snow: a case study of Žerjav, Slovenia.

    Science.gov (United States)

    Miler, Miloš; Gosar, Mateja

    2013-12-01

    Solid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic-anthropogenic, anthropogenic, and secondary weathering products. Geogenic-anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit. The most important anthropogenic metal-bearing particles in snow were Pb-, Sb- and Sn-bearing oxides and sulphides. The morphology of these particles showed that they formed at temperatures above their melting points. They were most abundant in snow sampled closest to the Pb-processing plant and least abundant in snow taken farthest from the plant, thus indicating that Pb processing was their predominant source between the last snowfall and the time of sampling. SEM/EDS analysis showed that Sb and Sn contents in these anthropogenic phases were higher and more variable than in natural Pb-bearing ore minerals. The most important secondary weathering products were Pb- and Zn-containing Fe-oxy-hydroxides whose elemental composition and morphology indicated that they mostly resulted from oxidation of metal-bearing sulphides emitted from the Pb-processing plant. This study demonstrated the importance of single particle analysis using SEM/EDS for differentiation between various sources of metals in the environment.

  17. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill.

    Science.gov (United States)

    Melnyk, A; Dettlaff, A; Kuklińska, K; Namieśnik, J; Wolska, L

    2015-10-15

    Due to a continuous demand of land for infrastructural and residential development there is a public concern about the condition of surface soil near municipal solid waste landfills. A total of 12 surface (0-20 cm) soil samples from a territory near a landfill were collected and the concentration of 16 PAHs and 7 PCB congeners were investigated in these samples. Limits of detection were in the range of 0.038-1.2 μg/kg for PAHs and 0.025-0.041 μg/kg for PCBs. The total concentration of ∑ PAHs ranged from 892 to 3514 μg/kg with a mean of 1974 μg/kg. The total concentration of ∑ PCBs ranged from 2.5 to 12 μg/kg with a mean of 4.5 μg/kg. Data analyses allowed to state that the PAHs in surface soils near a landfill were principally from pyrogenic sources. Due to air transport, PAHs forming at the landfill are transported outside the landfill. PCB origin is not connected with the landfill. Aroclor 1242 can be the source of PCBs in several samples. Copyright © 2015. Published by Elsevier B.V.

  18. Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    Directory of Open Access Journals (Sweden)

    Yoon SF

    2006-01-01

    Full Text Available AbstractSelf-assembled GaInNAs quantum dots (QDs were grown on GaAs (001 substrate using solid-source molecular-beam epitaxy (SSMBE equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM, photoluminescence (PL, and transmission electron microscopy (TEM measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW operation at room temperature (RT with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2 at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2, with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C.

  19. Averaging in spherically symmetric cosmology

    International Nuclear Information System (INIS)

    Coley, A. A.; Pelavas, N.

    2007-01-01

    The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis

  20. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    Science.gov (United States)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  1. Elastic interaction between surface and spherical pore

    International Nuclear Information System (INIS)

    Ganeev, G.Z.; Kadyrzhanov, K.K.; Kislitsyn, S.B.; Turkebaev, T.Eh.

    2000-01-01

    The energy of elastic interaction of a gas-filled spherical cavity with a boundary of an elastic isotropic half-space is determined. The elastic field of a system of a spherical cavity - boundary is represented as an expansion in series of potential functions. The factors of expansions are determined by boundary conditions on a free surface of an elastic half-space and on a spherical surface of a cavity with pressure of gas P. Function of a Tresca-Miesesa on a surface of elastic surface is defined additionally with purpose creep condition determination caused by gas pressure in the cavity. (author)

  2. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    International Nuclear Information System (INIS)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Grabovski, E. V.; Frolov, I. N.; Laukhin, Ya. N.; Oleinik, G. M.; Ol’khovskaya, O. G.

    2016-01-01

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m_l(θ) ∝ sin"–"1θ and m_l(θ) ∝ sin"–"2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m_l(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m_l(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.

  3. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  4. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.

    Science.gov (United States)

    Chen, You Wei; Lee, Hwei Voon

    2018-02-01

    In the present work, four types of newly chosen municipal solid wastes (Panax ginseng, spent tea residue, waste cotton cloth, and old corrugated cardboard) were studied as the promising sources for nanocellulose, which has efficiently re-engineered the structure of waste products into highly valuable nanocellulose materials. The nanocellulose was produced directly via a facile one-pot oxidative hydrolysis process by using H 2 O 2 /Cr(NO 3 ) 3 solution as the bleaching agent and hydrolysis medium under acidic condition. The isolated nanocellulose products were well-characterized in terms of chemical composition, product yield, morphological structure and thermal properties. The study has found that the crystallinity index of the obtained nanocellulose products were significantly higher (62.2-83.6%) than that of its starting material due to the successive elimination of lignin, hemicellulose and amorphous regions of cellulose, which were in good agreement with the FTIR analysis. The evidence of the successful production of nanocellulose was given by TEM observation which has revealed the fibril widths were ranging from 15.6 to 46.2nm, with high cellulose content (>90%), depending on the cellulosic origin. The physicochemical properties of processed samples have confirmed that the isolation of high purity nanocellulose materials from different daily spent products is possible. The comparative study can help to provide a deep insight on the possibility of revalorizing the municipal solid wastes into nanocellulose via the simple and versatile one-pot isolation system, which has high potential to be used in commercial applications for sustainable development. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    Science.gov (United States)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  6. Monodromy in the quantum spherical pendulum

    International Nuclear Information System (INIS)

    Guillemin, V.; Uribe, A.

    1989-01-01

    In this article we show that monodromy in the quantum spherical pendulum can be interpreted as a Maslov effect: i.e. as multi-valuedness of a certain generating function of the quantum energy levels. (orig.)

  7. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  8. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...

  9. Spiral CT manifestations of spherical pneumonia

    International Nuclear Information System (INIS)

    Li Xiaohong; Yang Hongwei; Xu Chunmin; Qin Xiu

    2008-01-01

    Objective: To explore the Spiral CT manifestations and differential diagnosis of spherical pneumonia. Methods: 18 cases of spherical pneumonia and 20 cases of peripheral pulmonary carcinoma were selected, both of them were confirmed by clinic and/or pathology. The SCT findings of both groups were compared retrospectively. Results: Main spiral CT findings of spherical pneumonia were showed as followings: square or triangular lesions adjacent to pleura; with irregular shape, blurry, slightly lobulated margin, sometimes with halo sign. Small inflammatory patches and intensified vascular markings around the lesions were seen. Lesions became smaller or vanished after short-term anti-inflammatory treatment. Conclusion: Spherical pneumonia showed some characteristics on Spiral CT scan, which are helpful in diagnosis and differential diagnosis of this disease. (authors)

  10. Feasibility study for the Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Attenberger, S.E.; Baylor, L.R.

    1985-10-01

    The design of the Spherical Torus Experiment (STX) is discussed. The physics of the plasma are given in a magnetohydrodynamic model. The structural aspects and instrumentation of the device are described. 19 refs., 103 figs

  11. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  12. Method of producing spherical lithium aluminate particles

    International Nuclear Information System (INIS)

    Yang, L.; Medico, R.R.; Baugh, W.A.

    1983-01-01

    Spherical particles of lithium aluminate are formed by initially producing aluminium hydroxide spheroids, and immersing the spheroids in a lithium ion-containing solution to infuse lithium ions into the spheroids. The lithium-infused spheroids are rinsed to remove excess lithium ion from the surface, and the rinsed spheroids are soaked for a period of time in a liquid medium, dried and sintered to form lithium aluminate spherical particles. (author)

  13. START: the creation of a spherical tokamak

    International Nuclear Information System (INIS)

    Sykes, Alan

    1992-01-01

    The START (Small Tight Aspect Ratio Tokamak) plasma fusion experiment is now operational at AEA Fusion's Culham Laboratory. It is the world's first experiment to explore an extreme limit of the tokamak - the Spherical Tokamak - which theoretical studies predict may have substantial advantages in the search for economic fusion power. The Head of the START project, describes the concept, some of the initial experimental results and the possibility of developing a spherical tokamak power reactor. (author)

  14. Influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration

    International Nuclear Information System (INIS)

    Deng, Jinping; Ji, Xiaoling

    2014-01-01

    By using the four-dimensional (4D) computer code of the time-dependent propagation of laser beams through atmospheric turbulence, the influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration is studied in detail, where the mean-squared beam width, the power in the bucket (PIB), the β parameter and the energy Strehl ratio are taken as the characteristic parameters. It is shown that turbulence results in beam spreading, and the effect of spherical aberration on the beam spreading decreases due to turbulence. Gaussian beams with negative spherical aberration are more affected by turbulence than those with positive spherical aberration. For the negative spherical aberration case, the focus position moves to the source plane due to turbulence. It is mentioned that the influence of turbulence on the energy focusability defined by a certain energy (i.e. PIB = 63%) is very heavy when the negative spherical aberration is very heavy. On the other hand, the influence of turbulence on the energy focusability defined by the energy within a given bucket radius (i.e. mean-squared beam width) is heaviest when a certain negative spherical aberration coefficient is adopted. (papers)

  15. Novel Insight for Organic Matter Sourcing: Interest of Time Resolved Fluorescence to Qualify and Quantify PAH Content of Solid Matrix at High Resolution

    Science.gov (United States)

    Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.

    2017-12-01

    OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of

  16. Radiative Transfer Equation for Anisotropic Spherical Medium with Specular Reflective Index

    International Nuclear Information System (INIS)

    Elghazaly, A.

    2009-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with diffuse and angular dependent (specular) reflecting boundaries is solved using the Pomraning-Eddington approximation method. The angular dependent specular reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. The calculations are carried out for spherical media of radii 0.1, 1.0, and 10 mfp and for different scattering albedo. Two different weight functions are used to verify the boundary conditions. Our results are compared with the available data and give an excellent agreement for thick and highly scattering media

  17. Spherical cows in dark matter indirect detection

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Nicolás [Centro de Investigaciones, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá (Colombia); Necib, Lina; Slatyer, Tracy R., E-mail: nicolas.bernal@uan.edu.co, E-mail: lnecib@mit.edu, E-mail: tslatyer@mit.edu [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-12-01

    Dark matter (DM) halos have long been known to be triaxial, but in studies of possible annihilation and decay signals they are often treated as approximately spherical. In this work, we examine the asymmetry of potential indirect detection signals of DM annihilation and decay, exploiting the large statistics of the hydrodynamic simulation Illustris. We carefully investigate the effects of the baryons on the sphericity of annihilation and decay signals for both the case where the observer is at 8.5 kpc from the center of the halo (exemplified in the case of Milky Way-like halos), and for an observer situated well outside the halo. In the case of Galactic signals, we find that both annihilation and decay signals are expected to be quite symmetric, with axis ratios very different from 1 occurring rarely. In the case of extragalactic signals, while decay signals are still preferentially spherical, the axis ratio for annihilation signals has a much flatter distribution, with elongated profiles appearing frequently. Many of these elongated profiles are due to large subhalos and/or recent mergers. Comparing to gamma-ray emission from the Milky Way and X-ray maps of clusters, we find that the gamma-ray background appears less spherical/more elongated than the expected DM signal from the large majority of halos, and the Galactic gamma ray excess appears very spherical, while the X-ray data would be difficult to distinguish from a DM signal by elongation/sphericity measurements alone.

  18. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    International Nuclear Information System (INIS)

    Aoi, Y; Tominaga, T

    2013-01-01

    Titanium dioxide (TiO 2 ) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  19. Investigation and analysis to the content of natural radionuclides at rate-earth ore and solid waste in China through the first nationwide pollution source survey

    International Nuclear Information System (INIS)

    Lou Jianjun; Liu Guifang; Sun Qinghong

    2011-01-01

    China has launched the First Nationwide Pollution Source Survey (FNPSS) during 2006-2009. Ministry Environmental Protection (MEP) sponsored the campaign of measuring the natural radionuclide contents. And the Ministry Environmental Protection (MEP) organized the measurements of natural radionuclide contents of in the factories and mines associated with rare-earth, niobium/tantalum, zircon, tin, lead/zinc, copper, iron, phosphate, coal, aluminum and vanadium. This paper analyzes mainly the data on the contents of U, 232 Th and 226 Ra in the rare-earth ore and solid waste produced by the rare-earth industry in China, as one of a series of papers on naturally occurring radioactive materials (NORM) s investigation. It is concluded that the average of the U, 232 Th and 226 Ra for the monazite sand of rare-earth ore is 16911, 49683, and 20072 Bq/kg, respectively. The average of U, 232 Th and 226 Ra in bastnaesite is 42, 701 and 91 Bq/kg, respectively. The average of U, 232 Th and 226 Ra in the ionic type rare-earth ore is 3918.6, 2315 and 1221 Bq/kg, respectively. (authors)

  20. Case Study for the ARRA-funded Ground Source Heat Pump (GSHP) Demonstration at Wilders Grove Solid Waste Service Center in Raleigh, NC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Malhotra, Mini [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Zeyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a distributed GSHP system for providing all the space conditioning, outdoor air ventilation, and 100% domestic hot water to the Wilders Grove Solid Waste Service Center of City of Raleigh, North Carolina. This case study is based on the analysis of measured performance data, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning and outdoor air ventilation as the demonstrated GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GSHP system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation and improving the operational efficiency of the demonstrated GSHP system.

  1. All spherically symmetric charged anisotropic solutions for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2017-06-15

    In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)

  2. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  3. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong, E-mail: hdjang@kigam.re.kr; Cho, Kuk, E-mail: kukcho@pusan.ac.kr [Korea Institute of Geoscience and Mineral Resources (Korea, Republic of)

    2013-09-15

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO{sub 2}, TiO{sub 2}, and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying.

  4. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    International Nuclear Information System (INIS)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong; Cho, Kuk

    2013-01-01

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO 2 , TiO 2 , and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying

  5. ELSA- The European Levitated Spherical Actruator

    Science.gov (United States)

    Ruiz, M.; Serin, J.; Telteu-Nedelcu, D.; De La Vallee Poussin, H.; Onillon, E.; Rossini, L.

    2014-08-01

    The reaction sphere is a magnetic bearing spherical actuator consisting of a permanent magnet spherical rotor that can be accelerated in any direction. It consists of an 8-pole permanent magnet spherical rotor that is magnetically levitated and can be accelerated about any axis by a 20-pole stator with electromagnets. The spherical actuator is proposed as a potential alternative to traditional momentum exchange devices such as reaction wheels (RWs) or control moment gyroscopes (CMGs). This new actuator provides several benefits such as reduced mass and power supply allocated to the attitude and navigation unit, performance gain, and improved reliability due to the absence of mechanical bearings. The paper presents the work done on the levitated spherical actuator and more precisely the electrical drive including its control unit and power parts. An elegant breadboard is currently being manufactured within the frame of an FP7 project. This project also comprises a feasibility study to show the feasibility of integrating such a system on a flight platform and to identify all the challenges to be solved in terms of technology or components to be developed.

  6. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  7. Scaling of a fast spherical discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, P. S., E-mail: Ants@isan.troitsk.ru; Dorokhin, L. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2017-02-15

    The influence of the discharge cavity dimensions on the properties of the spherical plasma formed in a fast discharge was studied experimentally. The passage of a current pulse with an amplitude of 30–40 kA and a rise rate of ~10{sup 12} A/s (a fast discharge) through a spherical ceramic (Al{sub 2}O{sub 3}) cavity with an inner diameter of 11 mm filled with argon at a pressure of 80 Pa results in the formation of a 1- to 2-mm-diameter spherical plasma with an electron temperature of several tens of electronvolts and a density of 10{sup 18}–10{sup 19} cm{sup –3}. It is shown that an increase in the inner diameter of the discharge cavity from 11 to 21 mm leads to the fourfold increase in the formation time of the spherical plasma and a decrease in the average ion charge. A decrease in the cavity diameter to 7 mm makes the spherical plasma unstable.

  8. Spherical aberrations of human astigmatic corneas.

    Science.gov (United States)

    Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A

    2011-11-01

    To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.

  9. Friction factor for water flow through packed beds of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Kaluđerović-Radoičić Tatjana

    2017-01-01

    Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022

  10. A single-source solid-precursor method for making eco-friendly doped semiconductor nanoparticles emitting multi-color luminescence.

    Science.gov (United States)

    Manzoor, K; Aditya, V; Vadera, S R; Kumar, N; Kutty, T R N

    2007-02-01

    A novel synthesis method is presented for the preparation of eco-friendly, doped semiconductor nanocrystals encapsulated within oxide-shells, both formed sequentially from a single-source solid-precursor. Highly luminescent ZnS nanoparticles, in situ doped with Cu(+)-Al3+ pairs and encapsulated with ZnO shells are prepared by the thermal decomposition of a solid-precursor compound, zinc sulfato-thiourea-oxyhydroxide, showing layered crystal structure. The precursor compound is prepared by an aqueous wet-chemical reaction involving necessary chemical reagents required for the precipitation, doping and inorganic surface capping of the nanoparticles. The elemental analysis (C, H, N, S, O, Zn), quantitative estimation of different chemical groups (SO4(2-) and NH4(-)) and infrared studies suggested that the precursor compound is formed by the intercalation of thiourea, and/or its derivatives thiocarbamate (CSNH2(-)), dithiocarbamate (CS2NH2(-)), etc., and ammonia into the gallery space of zinc-sulfato-oxyhydroxide corbel where the Zn(II) ions are both in the octahedral as well as tetrahedral coordination in the ratio 3 : 2 and the dopant ions are incorporated within octahedral voids. The powder X-ray diffraction of precursor compound shows high intensity basal reflection corresponding to the large lattice-plane spacing of d = 11.23 angstroms and the Rietveld analysis suggested orthorhombic structure with a = 9.71 angstroms, b = 12.48 angstroms, c = 26.43 angstroms, and beta = 90 degrees. Transmission electron microscopy studies show the presence of micrometer sized acicular monocrystallites with prismatic platy morphology. Controlled thermolysis of the solid-precursor at 70-110 degrees C leads to the collapse of layered structure due to the hydrolysis of interlayer thiourea molecules or its derivatives and the S2- ions liberated thereby reacts with the tetrahedral Zn(II) atoms leading to the precipitation of ZnS nanoparticles at the gallery space. During this process

  11. Relativistic properties of spherical diodes with a radial electron flux

    International Nuclear Information System (INIS)

    Chetvertkov, V.I.

    1987-01-01

    Forward and backward electron diodes with concentric spherical electrodes (inner cathode, outer anode or vice versa) are considered under the assumption that the emission is limited by the space charge and the guiding magnetic field is predominantly radial within a region of solid angle α f < 4π bounding the electron flux. The Poisson equations for the relativistic factor γ are solved for generalized model dependences. Ultrarelativistic and new nonrelativistic solutions are found, and analytic approximations to the solution near the cathode are used to carry out numerical calculations. The characteristics of forward and backward diodes turn out to be related to the exact solutions for a planar diode. Accurate approximations are found for calculating the diode parameters in a wide range of voltages; they can also be used to check the validity of the 3/2 laws and the ultrarelativistic solutions

  12. Electromagnetic cloaking in higher order spherical cloaks

    Science.gov (United States)

    Sidhwa, H. H.; Aiyar, R. P. R. C.; Kulkarni, S. V.

    2017-06-01

    The inception of transformation optics has led to the realisation of the invisibility devices for various applications, one of which is spherical cloaking. In this paper, a formulation for a higher-order spherical cloak has been proposed to reduce its physical thickness significantly by introducing a nonlinear relation between the original and transformed coordinate systems and it has been verified using the ray tracing approach. Analysis has been carried out to observe the anomalies in the variation of refractive index for higher order cloaks indicating the presence of poles in the relevant equations. Furthermore, a higher-order spherical cloak with predefined values of the material characteristics on its inner and outer surfaces has been designed for practical application.

  13. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  14. Spherical tokamak power plant design issues

    International Nuclear Information System (INIS)

    Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.

    2000-01-01

    The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed

  15. Dynamics of a spherical minority game

    International Nuclear Information System (INIS)

    Galla, T; Coolen, A C C; Sherrington, D

    2003-01-01

    We present an exact dynamical solution of a spherical version of the batch minority game (MG) with random external information. The control parameters in this model are the ratio of the number of possible values for the public information over the number of agents, and the radius of the spherical constraint on the microscopic degrees of freedom. We find a phase diagram with three phases: two without anomalous response (an oscillating versus a frozen state) and a further frozen phase with divergent integrated response. In contrast to standard MG versions, we can also calculate the volatility exactly. Our study reveals similarities between the spherical and the conventional MG, but also intriguing differences. Numerical simulations confirm our analytical results

  16. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  17. Flow and scour around spherical bodies

    DEFF Research Database (Denmark)

    Truelsen, Christoffer

    2003-01-01

    Spherical bodies placed in the marine environment may bury themselves due to the action of the waves and the current on the sediment in their immediate neighborhood. The present study addresses this topic by a numerical and an experimental investigation of the flow and scour around a spherical body...... results except in the critical flow regime. For flow around a near-wall sphere, a weak horseshoe vortex emerges as the gap ratio becomes less than or equal to 0.3. In Chapter 3, a RANS flow solver has been used to compute the bed shear stress for a near-wall sphere. The model results compare well...... 4, an experimental study on the scour around spherical bodies and self-burial in sand for steady current and waves has been carried out. The effect of the contraction of streamlines is found to be the key element in the scour process both for steady current and waves. Furthermore, it is demonstrated...

  18. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  19. The effect of the boron source composition ratio on the adsorption performance of hexagonal boron nitride without a template

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Zhang, Tong; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Cui, Xingyu

    2015-08-01

    An inexpensive boric acid (H{sub 3}BO{sub 3}) and borax (Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O) mix was used as a source of boron with different composition ratios, and urea was used as a nitrogen source, in flowing ammonia atmosphere, for the preparation of hexagonal boron nitride (h-BN) with different micro-morphologies. Under a certain synthesis process, the effects of the molar ratio of borax and boric acid (or simply the boron source composition ratio for short) on the phase composition of the sample were studied; the work also explored the effect of boron source composition ratio on the micro-morphology, adsorption desorption isotherm and specific surface area of the h-BN powder. The main purpose of this work was to determine the optimum composition ratio of preparing spherical mesoporous h-BN and ensure that the micro-mechanism underpinning the formation of spherical mesoporous h-BN was understood. The results showed that at the optimum boron source composition ratio of 1:1, globular mesoporous spheres with a diameter of approximately 600–800 nm could be obtained with the highest pore volume and specific surface area (230.2 m{sup 2}/g). - Graphical abstract: Display Omitted - Highlights: • Spherical h-BN was synthesized by controlling the boron source composition ratio. • Without extra spherical template, solid Na{sub 2}O was equal to a spherical template. • At boron source composition ratio of 1:1, h-BN had best adsorption performance.

  20. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  1. Analysis of a spherical permanent magnet actuator

    International Nuclear Information System (INIS)

    Wang, J.; Jewell, G.W.; Howe, D.

    1997-01-01

    This paper describes a new form of actuator with a spherical permanent magnet rotor and a simple winding arrangement, which is capable of a high specific torque by utilizing a rare-earth permanent magnet. The magnetic-field distribution is established using an analytical technique formulated in spherical coordinates, and the results are validated by finite element analysis. The analytical field solution allows the prediction of the actuator torque and back emf in closed forms. In turn, these facilitate the characterization of the actuator and provide a firm basis for design optimization, system dynamic modeling, and closed-loop control law development. copyright 1997 American Institute of Physics

  2. Development of a spherical neutron rem monitor

    International Nuclear Information System (INIS)

    Panchal, C.G.; Madhavi, V.; Bansode, P.Y.; Jakati, R.K.; Ghodgaonkar, M.D.; Desai, S.S.; Shaikh, A.M.; Sathian, V.

    2007-01-01

    A new neutron rem monitor based on spherical LINUS with the state of art electronic circuits has been designed in Electronics Division. This prototype instrument encompasses a spherical double polythene moderator to improve an isotropic response and a lead layer to extend its energy response compared to the conventional neutron rem monitors. A systematic testing and calibration of the energy and directional response of the prototype monitor have been carried out. Although the monitor is expected to perform satisfactorily upto an energy ∼ 55 MeV, at present its response has been tested upto 5 MeV. (author)

  3. Sources of nitrous oxide and other climate relevant gases on surface area in a dairy free stall barn with solid floor and outside slurry storage

    Science.gov (United States)

    Schmithausen, Alexander J.; Trimborn, Manfred; Büscher, Wolfgang

    2018-04-01

    Livestock production systems in agriculture are one of the major emitters of greenhouse gases. So far, the focus of research in the dairy farm sector was primarily on ruminal methane (CH4) emissions. Emissions of nitrous oxide (N2O) usually arise from solid manure or in deep litter free stall barns. Release of N2O occurs as a result of interactions between organic material, nitrogen and moisture. Data of N2O emissions from modern dairy barns and liquid manure management systems are rare. Thus, the goal of this research was to determine the main sources of trace gas emissions at the dairy farm level, including N2O. Areas such as the scraped surface area where dry and wet conditions alternate are interesting. Possible sources of trace gases within and outside the barn were localised by measuring trace gas concentration rates from different dairy farm areas (e.g., areas covered with urine and excrement or slurry storage system) via the closed chamber technique. The results indicate typical emission ratios of carbon dioxide (CO2), CH4 and N2O in the various areas to generate comparable equivalent values. Calculated on the basis of nitrogen excretion from dairy cows, total emissions of N2O were much lower from barns than typically measured in fields. However, there were also areas within the barn with individual events and unexpected release factors of N2O concentrations such as urine patches, polluted areas and cubicles. Emission factors of N2O ranged from 1.1 to 5.0 mg m-2 d-1, respectively, for cleaned areas and urine patches. By considering the release factors of these areas and their proportion of the entire barn, total emission rates of 371 CO2-eq. LU-1 a-1, 36 CO2-eq. LU-1 a-1, and 1.7 kg CO2-eq. LU-1 a-1 for CO2, CH4 and N2O, respectively, were measured for the whole barn surface area. The CH4 emissions from surface area were stronger climate relevant comparing to N2O emissions, but compared to CH4 emissions from slurry storage or ruminal fermentation (not

  4. Simulation of microtearing turbulence in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Guttenfelder, W.; Kaye, S. M.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States); Nevins, W. M.; Wang, E. [Lawrence Livermore National Laboratory, Livermore, California 04551 (United States); Zhang, J.; Crocker, N. A. [University of California Los Angeles, California 90095 (United States); Yuh, H. [Nova Photonics Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport ({approx}98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E Multiplication-Sign B flows as experimental values of E Multiplication-Sign B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.

  5. Gauge/gravity duality for interactions of spherical membranes in 11-dimensional pp-wave

    International Nuclear Information System (INIS)

    Lee, Hok Kong; McLoughlin, Tristan; Wu Xinkai

    2005-01-01

    We investigate the gauge/gravity duality in the interaction between two spherical membranes in the 11-dimensional pp-wave background. On the supergravity side, we find the solution to the field equations at locations close to a spherical source membrane, and use it to obtain the light-cone Lagrangian of a spherical probe membrane very close to the source, i.e., with their separation much smaller than their radii. On the gauge theory side, using the BMN matrix model, we compute the one-loop effective potential between two membrane fuzzy spheres. Perfect agreement is found between the two sides. Moreover, the one-loop effective potential we obtain on the gauge theory side is valid beyond the small-separation approximation, giving the full interpolation between interactions of membrane-like objects and that of graviton-like objects

  6. Sintering of Spherical Particles of Equal and Different Size Arranged in a Body Centered Cubic Structure

    DEFF Research Database (Denmark)

    Redanz, Pia; McMeeking, R. M.

    2003-01-01

    Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif......, different dihedral angles and the evolution of relative density and sintering stresses are studied....

  7. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...

  8. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  9. Sphericity in the interacting boson model

    International Nuclear Information System (INIS)

    Ogata, H.

    1977-01-01

    The interacting boson model (IBM) of Arima and Iachello is examined. The transition between the rotational and vibrational modes of even-even nuclei is presented as a function of a sphericity parameter, which is determined primarily from yrast band spectra. The backbending feature is reasonably reproduced. (author)

  10. Exact solutions of the spherically symmetric multidimensional ...

    African Journals Online (AJOL)

    The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...

  11. Added Mass of a Spherical Cap Body

    Czech Academy of Sciences Publication Activity Database

    Šimčík, Miroslav; Punčochář, Miroslav; Růžička, Marek

    2014-01-01

    Roč. 118, OCT 18 (2014), s. 1-8 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : spherical cap * added mass * single particle Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.337, year: 2014

  12. MAST: a Mega Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Darke, A.C.; Harbar, J.R.; Hay, J.H.; Hicks, J.B.; Hill, J.W.; McKenzie, J.S.; Morris, A.W.; Nightingale, M.P.S.; Todd, T.N.; Voss, G.M.; Watkins, J.R.

    1995-01-01

    The highly successful tight aspect ratio tokamak research pioneered on the START machine at Culham, together with the attractive possibilities of the concept, suggest a larger device should be considered. The design of a Mega Amp Spherical Tokamak is described, operating at much higher currents and over longer pulses than START and compatible with strong additional heating. (orig.)

  13. A Generalization of the Spherical Inversion

    Science.gov (United States)

    Ramírez, José L.; Rubiano, Gustavo N.

    2017-01-01

    In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…

  14. Spherical torus, compact fusion at low field

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1985-02-01

    A spherical torus is obtained by retaining only the indispensable components on the inboard side of a tokamak plasma, such as a cooled, normal conductor that carries current to produce a toroidal magnetic field. The resulting device features an exceptionally small aspect ratio (ranging from below 2 to about 1.3), a naturally elongated D-shaped plasma cross section, and ramp-up of the plasma current primarily by noninductive means. As a result of the favorable dependence of the tokamak plasma behavior to decreasing aspect ratio, a spherical torus is projected to have small size, high beta, and modest field. Assuming Mirnov confinement scaling, an ignition spherical torus at a field of 2 T features a major radius of 1.5 m, a minor radius of 1.0 m, a plasma current of 14 MA, comparable toroidal and poloidal field coil currents, an average beta of 24%, and a fusion power of 50 MW. At 2 T, a Q = 1 spherical torus will have a major radius of 0.8 m, a minor radius of 0.5 m, and a fusion power of a few megawatts

  15. Segmented gamma scanning method for measuring holdup in the spherical container

    International Nuclear Information System (INIS)

    Deng Jingshan; Li Ze; Gan Lin; Lu Wenguang; Dong Mingli

    2007-01-01

    Some special nuclear material (SNM) is inevitably deposited in the facilities (mixer, reactor) of nuclear material process line. Exactly knowing the quantity of nuclear material holdup is very important for nuclear material accountability and critical safety. This paper presents segmented gamma scanning method for SNM holdup measurement of spherical container, at the left, right and back of which other equipments exist so that the detectors can be put at the only front of container for measurement. The nuclear material deposited in the spherical container can be looked as spherical shell source, which is divided into many layers. The detectors scanning spherical shell source are moved layer by layer from the top to the bottom to obtain projection data, with which deposited material distribution can be reconstructed by using Least Square (LS) method or Maximum Likelihood (ML) method. With these methods accurate total holdup can be obtained by summing up all the segmental values reconstructed. In this paper this measurement method for holdup in the spherical container was verified with Monte-Carlo simulation calculation and experiment. (authors)

  16. Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies

    Science.gov (United States)

    Sozio, Fabio; Yavari, Arash

    2017-01-01

    In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.

  17. Spherical Bessel transform via exponential sum approximation of spherical Bessel function

    Science.gov (United States)

    Ikeno, Hidekazu

    2018-02-01

    A new algorithm for numerical evaluation of spherical Bessel transform is proposed in this paper. In this method, the spherical Bessel function is approximately represented as an exponential sum with complex parameters. This is obtained by expressing an integral representation of spherical Bessel function in complex plane, and discretizing contour integrals along steepest descent paths and a contour path parallel to real axis using numerical quadrature rule with the double-exponential transformation. The number of terms in the expression is reduced using the modified balanced truncation method. The residual part of integrand is also expanded by exponential functions using Prony-like method. The spherical Bessel transform can be evaluated analytically on arbitrary points in half-open interval.

  18. Enhancing the beamforming map of spherical arrays at low frequencies using acoustic holography

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Torras Rosell, Antoni; Fernandez Grande, Efren

    2014-01-01

    Recent studies have shown that the localization of acoustic sources based on circular arrays can be improved at low frequencies by combining beamforming with acoustic holography. This paper extends this technique to the three dimensional case by making use of spherical arrays. The pressure captur...

  19. Spherical active coated nano-particles – impact of the electric Hertzian dipole orientation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Mostafavi, M.; Malureanu, Radu

    2011-01-01

    Spherical active coated nano-particles comprised of a silica nano-cylinder core covered with a plasmonic nano-shell are investigated with regard to their near- and far-field properties. The source of excitation is taken to be that of a tangential or a radial electric Hertizan dipole while three...

  20. Isotopic measurements (C,N,O) of detonation soot produced from labeled and unlabeled Composition B-3 indicate source of solid carbon residues

    Science.gov (United States)

    Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel

    2017-06-01

    Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.

  1. Non-conformal contact mechanical characteristic analysis on spherical components

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-zhi, G.; Bin, H.; Zheng-ming, G.; Feng-mei, Y.; Jin, Q [The 2. Artillery Engineering Univ., Xi' an (China)

    2017-03-15

    Non-conformal spherical-contact mechanical problems is a three-dimensional coordination or similar to the coordination spherical contact. Due to the complexity of the problem of spherical-contact and difficulties of solving higher-order partial differential equations, problems of three-dimensional coordination or similar to the coordination spherical-contact is still no exact analytical method for solving. It is based on three-dimensional taper model is proposed a model based on the contour surface of the spherical contact and concluded of the formula of the contact pressure and constructed of finite element model by contact pressure distribution under the non-conformal spherical. The results shows spherical contact model can reflect non-conformal spherical-contacting mechanical problems more than taper-contacting model, and apply for the actual project.

  2. Normal modes and quality factors of spherical dielectric resonators: I ...

    Indian Academy of Sciences (India)

    Eigenmodes; spherical resonators; spherical dielectric resonators; quality factors. PACS No. 42.50. .... Alternatively, introducing the angular momentum operator L defined as, L = (1/j)( r × ∇) ...... referee of the article for some helpful comments.

  3. Partial discharges within two spherical voids in an epoxy resin

    International Nuclear Information System (INIS)

    Illias, H A; Mokhlis, H; Tunio, M A; Chen, G; Bakar, A H A

    2013-01-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions. (paper)

  4. Physics results from the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Kaye, S.; Bell, M.

    2000-01-01

    The mission of the National Spherical Torus Experiment (NSTX) is to extend the understanding of toroidal physics to low aspect ratio (R/a ∼ 1.25) in low collisionality regimes. NSTX is designed to operate with up to 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI), and Co-Axial Helicity Injection (CHI) for non-inductive startup. Initial experiments focused on establishing conditions that will allow NSTX to achieve its aims of simultaneous high-β t and high-bootstrap current fraction, and to develop methods for non-inductive operation, which will be necessary for Spherical Torus power plants. Ohmic discharges with plasma currents up to 1 MA, stored energies up to 55 kJ, β t ∼ 10%, and a range of shapes and configurations were produced. Density limits in deuterium and helium reached 80% and 120% of the Greenwald limit respectively. Significant electron heating was observed with up to 2.3 MW of HHFW. Up to 270 kA of toroidal current for up to 200 msec was produced noninductively using CHI. Initial NBI experiments were carried out with up to two beam sources (3.2 MW). Plasmas with stored energies of up to 140 kJ and β t =21% were produced

  5. The theory of spherically symmetric thin shells in conformal gravity

    Science.gov (United States)

    Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury

    The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.

  6. The prospects for electron Bernstein wave heating of spherical tokamaks

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.

    2000-02-01

    Electron Bernstein waves are analysed as possible candidates for heating spherical tokamaks. An inhomogeneous plane slab model of the plasma with a sheared magnetic field is used to calculate the linear conversion of the ordinary mode (O-mode) to the extraordinary mode (X-mode). A formula for the fraction of the incident O-mode energy which is converted to the X-mode at the O-mode cut-off is derived. This fraction is then able to propagate to the upper hybrid resonance where it is converted to the electron Bernstein mode. The damping of electron Bernstein waves at the fourth harmonic resonance, corresponding to a 60GHz source on the Mega Amp Spherical Tokamak MAST [A C Darke et al Proc 16th Symposium on Fusion Energy, Champaign- Urbana, Illinois USA IEEE, 2 p1456 (1995)], is computed. This is shown to be so strongly absorbing that the electron Bernstein wave would be totally absorbed in the outer regions of the resonance. This feature implies that electron Bernstein wave current drive (on- or off-axis) could be very efficient. (author)

  7. Quality metric for spherical panoramic video

    Science.gov (United States)

    Zakharchenko, Vladyslav; Choi, Kwang Pyo; Park, Jeong Hoon

    2016-09-01

    Virtual reality (VR)/ augmented reality (AR) applications allow users to view artificial content of a surrounding space simulating presence effect with a help of special applications or devices. Synthetic contents production is well known process form computer graphics domain and pipeline has been already fixed in the industry. However emerging multimedia formats for immersive entertainment applications such as free-viewpoint television (FTV) or spherical panoramic video require different approaches in content management and quality assessment. The international standardization on FTV has been promoted by MPEG. This paper is dedicated to discussion of immersive media distribution format and quality estimation process. Accuracy and reliability of the proposed objective quality estimation method had been verified with spherical panoramic images demonstrating good correlation results with subjective quality estimation held by a group of experts.

  8. Simplified discrete ordinates method in spherical geometry

    International Nuclear Information System (INIS)

    Elsawi, M.A.; Abdurrahman, N.M.; Yavuz, M.

    1999-01-01

    The authors extend the method of simplified discrete ordinates (SS N ) to spherical geometry. The motivation for such an extension is that the appearance of the angular derivative (redistribution) term in the spherical geometry transport equation makes it difficult to decide which differencing scheme best approximates this term. In the present method, the angular derivative term is treated implicitly and thus avoids the need for the approximation of such term. This method can be considered to be analytic in nature with the advantage of being free from spatial truncation errors from which most of the existing transport codes suffer. In addition, it treats the angular redistribution term implicitly with the advantage of avoiding approximations to that term. The method also can handle scattering in a very general manner with the advantage of spending almost the same computational effort for all scattering modes. Moreover, the methods can easily be applied to higher-order S N calculations

  9. Spherical harmonics and integration in superspace

    International Nuclear Information System (INIS)

    Bie, H de; Sommen, F

    2007-01-01

    In this paper, the classical theory of spherical harmonics in R m is extended to superspace using techniques from Clifford analysis. After defining a super-Laplace operator and studying some basic properties of polynomial null-solutions of this operator, a new type of integration over the supersphere is introduced by exploiting the formal equivalence with an old result of Pizzetti. This integral is then used to prove orthogonality of spherical harmonics of different degree, Green-like theorems and also an extension of the important Funk-Hecke theorem to superspace. Finally, this integration over the supersphere is used to define an integral over the whole superspace, and it is proven that this is equivalent with the Berezin integral, thus providing a more sound definition of the Berezin integral

  10. Spherical projections and liftings in geometric tomography

    DEFF Research Database (Denmark)

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....

  11. Spherical Cancer Models in Tumor Biology

    Directory of Open Access Journals (Sweden)

    Louis-Bastien Weiswald

    2015-01-01

    Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.

  12. New mathematical framework for spherical gravitational collapse

    International Nuclear Information System (INIS)

    Giambo, Roberto; Giannoni, Fabio; Magli, Giulio; Piccione, Paolo

    2003-01-01

    A theorem, giving necessary and sufficient condition for naked singularity formation in spherically symmetric non-static spacetimes under hypotheses of physical acceptability, is formulated and proved. The theorem relates the existence of singular null geodesics to the existence of regular curves which are supersolutions of the radial null geodesic equation, and allows us to treat all the known examples of naked singularities from a unified viewpoint. New examples are also found using this approach, and perspectives are discussed. (letter to the editor)

  13. Particle Entrainment in Spherical-Cap Wakes

    Energy Technology Data Exchange (ETDEWEB)

    Warncke, Norbert G W; Delfos, Rene; Ooms, Gijs; Westerweel, Jerry, E-mail: n.g.w.warncke@tudelft.nl [Laboratory for Aero- and Hydrodynamics, Delft University of Technology (Netherlands)

    2011-12-22

    In this work we study the preferential concentration of small particles in the turbulent wake behind a spherical-cap object. We present a model predicting the mean particle concentration in the near-wake as a function of the characteristic Stokes number of the problem, the turbulence level and the Froude number. We compare the model with our experimental results on this flow, measured in a vertical water tunnel.

  14. Spherical tokamak without external toroidal fields

    International Nuclear Information System (INIS)

    Kaw, P.K.; Avinash, K.; Srinivasan, R.

    2001-01-01

    A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)

  15. All silicon waveguide spherical microcavity coupler device.

    Science.gov (United States)

    Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F

    2011-02-14

    A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

  16. Solid State Neutral Particle Analyzer Array on NSTX

    International Nuclear Information System (INIS)

    Shinohara, K.; Darrow, D.S.; Roquemore, A.L.; Medley, S.S.; Cecil, F.E.

    2004-01-01

    A Solid State Neutral Particle Analyzer (SSNPA) array has been installed on the National Spherical Torus Experiment (NSTX). The array consists of four chords viewing through a common vacuum flange. The tangency radii of the viewing chords are 60, 90, 100, and 120 cm. They view across the three co-injection neutral beam lines (deuterium, 80 keV (typ.) with tangency radii 48.7, 59.2, and 69.4 cm) on NSTX and detect co-going energetic ions. A silicon photodiode used was calibrated by using a mono-energetic deuteron beam source. Deuterons with energy above 40 keV can be detected with the present setup. The degradation of the performance was also investigated. Lead shots and epoxy are used for neutron shielding to reduce handling any hazardous heavy metal. This method also enables us to make an arbitrary shape to be fit into the complex flight tube

  17. Indicators of Mass in Spherical Stellar Atmospheres

    Science.gov (United States)

    Lester, John B.; Dinshaw, Rayomond; Neilson, Hilding R.

    2013-04-01

    Mass is the most important stellar parameter, but it is not directly observable for a single star. Spherical model stellar atmospheres are explicitly characterized by their luminosity ( L⋆), mass ( M⋆), and radius ( R⋆), and observations can now determine directly L⋆ and R⋆. We computed spherical model atmospheres for red giants and for red supergiants holding L⋆ and R⋆ constant at characteristic values for each type of star but varying M⋆, and we searched the predicted flux spectra and surface-brightness distributions for features that changed with mass. For both stellar classes we found similar signatures of the stars’ mass in both the surface-brightness distribution and the flux spectrum. The spectral features have been use previously to determine log 10(g), and now that the luminosity and radius of a non-binary red giant or red supergiant can be observed, spherical model stellar atmospheres can be used to determine a star’s mass from currently achievable spectroscopy. The surface-brightness variations of mass are slightly smaller than can be resolved by current stellar imaging, but they offer the advantage of being less sensitive to the detailed chemical composition of the atmosphere.

  18. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  19. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  20. Collisions of droplets on spherical particles

    Science.gov (United States)

    Charalampous, Georgios; Hardalupas, Yannis

    2017-10-01

    Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.

  1. Next Step Spherical Torus Design Studies

    International Nuclear Information System (INIS)

    Neumeyer, C.; Heitzenroeder, P.; Kessel, C.; Ono, M.; Peng, M.; Schmidt, J.; Woolley, R.; Zatz, I.

    2002-01-01

    Studies are underway to identify and characterize a design point for a Next Step Spherical Torus (NSST) experiment. This would be a ''Proof of Performance'' device which would follow and build upon the successes of the National Spherical Torus Experiment (NSTX) a ''Proof of Principle'' device which has operated at PPPL since 1999. With the Decontamination and Decommissioning (DandD) of the Tokamak Fusion Test Reactor (TFTR) nearly completed, the TFTR test cell and facility will soon be available for a device such as NSST. By utilizing the TFTR test cell, NSST can be constructed for a relatively low cost on a short time scale. In addition, while furthering spherical torus (ST) research, this device could achieve modest fusion power gain for short-pulse lengths, a significant step toward future large burning plasma devices now under discussion in the fusion community. The selected design point is Q=2 at HH=1.4, P subscript ''fusion''=60 MW, 5 second pulse, with R subscript ''0''=1.5 m, A=1.6, I subscript ''p''=10vMA, B subscript ''t''=2.6 T, CS flux=16 weber. Most of the research would be conducted in D-D, with a limited D-T campaign during the last years of the program

  2. Integrals of products of spherical functions

    International Nuclear Information System (INIS)

    Veverka, O.

    1975-01-01

    Various branches of mathematical physics use integral formulas of the products of spherical functions. In quantum mechanics and in transport theory the integrals ∫sub((4π))dΩ vectorYsub(s)sup(t)(Ω vector)Ysub(l)sup(k)(Ω vector)Ysub(n)sup(m)(Ω vector), ∫sub(-1)sup(1)dμPsub(s)sup(t)(μ)Psub(l)sup(k)(μ)Psub(n)sup(m)(μ), ∫sub(-1)sup(1)dμPsub(s)(μ)Psub(l)(μ)Psub(n)(μ) are generally applied, where Ysub(α)sup(β)(Ω vector) are spherical harmonics, Psub(α)sup(β)(μ) are associated Legendre functions, and Psub(α)(μ) are Legendre polynomials. In the paper, the general procedure of calculating the integrals of the products of any combination of spherical functions is given. The procedure is referred to in a report on the boundary conditions for the cylindrical geometry in neutron transport theory for both the outer and inner cylindrical boundaries. (author)

  3. Thermal behaviour of a spherical addition to molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Roehmen, E.

    1995-05-01

    This thesis presents a numerical model for describing the thermal behaviour of a spherical alloy addition when added to a melt. It is assumed that: no significant heat of solution between the alloy addition and the melt is involved, the dissolution rate is dominated by heat transfer from the melt, the heat flow into the addition is spherically symmetric, the additions have a well defined melting point, there are no solid phase transformations, heat conduction can be represented by Fourier`s law, and the heat transfer from the melt can be described by an average heat transfer coefficient. The model is validated by comparison with experimental data obtained from immersion experiments on: (1) a 4.88 cm diameter Al sphere chilled in liquid nitrogen to -196 {sup o}C and then immersed in water of 3.8 {sup o}C and 18.1 {sup o}C, (2) 4.90 cm diameter Al spheres at room temperatures immersed in molten Al of 720 {sup o}C, and (3) 3.72 cm diameter 75 wt% FeSi spheres at 150 {sup o}C immersed in molten steel of 1600 {sup o}C. The shell thickness and temperatures at the sphere centre and surface were recorded as functions of time. For model and experiment to agree, it was found that the density, specific heat and thermal conductivity of the alloy addition must depend on temperature, and an inner heat transfer resistance across the sphere-shell interphase must be included. The sensible heat of the melt that solidifies should be included in the heat balance only when the shell is expanding. The inner heat transfer resistance is shown to be very important in determining the melting/dissolution time for alloy additions that react strongly with the melt. 70 refs., 60 figs., 36 tabs.

  4. Sampling and analytical procedures for the determination of VOCs released into air from natural and anthropogenic sources: A comparison between SPME (Solid Phase Micro Extraction) and ST (Solid Trap) methods

    International Nuclear Information System (INIS)

    Tassi, F.; Capecchiacci, F.; Buccianti, A.; Vaselli, O.

    2012-01-01

    In the present study, two sampling and analytical methods for VOC determination in fumarolic exhalations related to hydrothermal-magmatic reservoirs in volcanic and geothermal areas and biogas released from waste landfills were compared: (a) Solid Traps (STs), consisting of three phase (Carboxen B, Carboxen C and Carbosieve S111) absorbent stainless steel tubes and (b) Solid Phase Micro Extraction (SPME) fibers, composed of DiVinylBenzene (DVB), Carboxen and PolyDimethylSiloxane. These techniques were applied to pre-concentrate VOCs discharged from: (i) low-to-high temperature fumaroles collected at Vulcano Island, Phlegrean Fields (Italy), and Nisyros Island (Greece), (ii) recovery wells in a solid waste disposal site located near Florence (Italy). A glass condensing system cooled with water was used to collect the dry fraction of the fumarolic gases, in order to allow more efficient VOC absorption avoiding any interference by water vapor and acidic gases, such as SO 2 , H 2 S, HF and HCl, typically present at relatively high concentrations in these fluids. Up to 37 organic species, in the range of 40–400 m/z, were determined by coupling gas chromatography to mass spectrometry (GC–MS). This study shows that the VOC compositions of fumaroles and biogas determined via SPME and ST are largely consistent and can be applied to the analysis of VOCs in gases released from different natural and anthropogenic environments. The SPME method is rapid and simple and more appropriate for volcanic and geothermal emissions, where VOCs are present at relatively high concentrations and prolonged gas sampling may be hazardous for the operator. The ST method, allowing the collection of large quantities of sample, is to be preferred to analyze the VOC composition of fluids from diffuse emissions and air, where these compounds are present at relatively low concentrations.

  5. On spherical harmonic representation of transient waves in dispersive media

    International Nuclear Information System (INIS)

    Borisov, Victor V

    2003-01-01

    Axisymmetric transient solutions to the inhomogeneous telegraph equation are constructed in terms of spherical harmonics. Explicit solutions of the initial-value problem are derived in the spacetime domain by means of the Smirnov method of incomplete separation of variables and the Riemann formula. The corresponding Riemann function is constructed with the help of the Olevsky theorem. Solutions for some source distributions on a sphere expanding with a velocity greater than the wavefront velocity are obtained. This allows an analogous solution in the case of a circle belonging to a sphere expanding with the wavefront velocity to be written at once. Application of the scalar solution to a description of electromagnetic waves is also discussed

  6. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus

    Directory of Open Access Journals (Sweden)

    Sarat Babu Imandi

    2013-09-01

    Full Text Available Mustard oil cake (Brassica napus, the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds was observed with the substrate of mustard oil cake in four days of fermentation.

  7. Watermarking on 3D mesh based on spherical wavelet transform.

    Science.gov (United States)

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  8. Novel Discrete Element Method for 3D non-spherical granular particles.

    Science.gov (United States)

    Seelen, Luuk; Padding, Johan; Kuipers, Hans

    2015-11-01

    Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.

  9. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  10. Chiral pion dynamics for spherical nucleon bags

    International Nuclear Information System (INIS)

    Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1980-01-01

    A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)

  11. Physicochemical Characteristics, in Vitro Fermentation Indicators, Gas Production Kinetics, and Degradability of Solid Herbal Waste as Alternative Feed Source for Ruminants

    Directory of Open Access Journals (Sweden)

    A. N. Kisworo

    2017-08-01

    Full Text Available The aims of this research were to study the nutrient and secondary metabolite contents of solid herbal wastes (SHW that were preserved by freeze drying, sun drying and silage, as well as to analyze their effects on in vitro fermentation indicators i.e., gas production kinetics and degradability of solid herbal waste. Physical and chemical properties on three forms of SHW (sun dry, freeze dry, and silage were characterized and then an in vitro gas production experiment was performed to determine the kinetics of gas production, methane production, NH3, microbial protein, and SHW degradability. Polyethylene glycol (PEG was added to the three treatments to determine the biological activity of tannins. Results showed that all three preparations of SHW still contained high nutrient and plant secondary metabolite contents. Gas production, methane, NH3, microbial protein, in vitro degradability of dry matter (IVDMD and organic matter (IVDOM of SHW silage were lower (P<0.05 compared to sun dry and freeze dry. These results were apparently due to the high content of secondary metabolites especially tannin. It can be concluded that solid herbal wastes (SHW can be used as an alternative feed ingredients for ruminants with attention to the content of secondary metabolites that can affect the process of fermentation and digestibility in the rumen.

  12. Spherically symmetric self-similar universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Toronto Univ., Ontario (Canada)

    1979-10-01

    A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.

  13. The generalized spherical model of ferromagnetic films

    International Nuclear Information System (INIS)

    Costache, G.

    1977-12-01

    The D→ infinity of the D-vectorial model of a ferromagnetic film with free surfaces is exactly solved. The mathematical mechanism responsible for the onset of a phase transition in the system is a generalized sticking phenomenon. It is shown that the temperature at which the sticking appears, the transition temperature of the model is monotonously increasing with increasing the number of layers of the film, contrary to what happens in the spherical model with overall constraint. Certain correlation inequalities of Griffiths type are shown to hold. (author)

  14. The spherical tokamak fusion power plant

    International Nuclear Information System (INIS)

    Wilson, H.R.; Voss, G.; Ahn, J.W.

    2003-01-01

    The design of a 1GW(e) steady state fusion power plant, based on the spherical tokamak concept, has been further iterated towards a fully self-consistent solution taking account of plasma physics, engineering and neutronics constraints. In particular a plausible solution to exhaust handling is proposed and the steam cycle refined to further improve efficiency. The physics design takes full account of confinement, MHD stability and steady state current drive. It is proposed that such a design may offer a fusion power plant which is easy to maintain: an attractive feature for the power plants following ITER. (author)

  15. The status of the Brazilian spherical detector

    International Nuclear Information System (INIS)

    Aguiar, O D; Andrade, L A; Filho, L Camargo; Costa, C A; Araujo, J C N de; Neto, E C de Rey; Souza, S T de; Fauth, A C; Frajuca, C; Frossati, G; Furtado, S R; Furtado, V G S; Magalhaes, N S; Jr, R M Marinho; Matos, E S; Meliani, M T; Melo, J L; Miranda, O D; Jr, N F Oliveira; Ribeiro, K L; Salles, K B M; Stellati, C; Jr, W F Velloso

    2002-01-01

    The first phase of the Brazilian Graviton Project is the construction and operation of the gravitational wave detector Mario Schenberg at the Physics Institute of the University of Sao Paulo. This gravitational wave spherical antenna is planned to feature a sensitivity better than h = 10 -21 Hz -1/2 at the 3.0-3.4 kHz bandwidth, and to work not only as a detector, but also as a testbed for the development of new technologies. Here we present the status of this detector

  16. Spherical conformal models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Takisa, P.M.; Maharaj, S.D.; Manjonjo, A.M.; Moopanar, S. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-10-15

    We consider spherical exact models for compact stars with anisotropic pressures and a conformal symmetry. The conformal symmetry condition generates an integral relationship between the gravitational potentials. We solve this condition to find a new anisotropic solution to the Einstein field equations. We demonstrate that the exact solution produces a relativistic model of a compact star. The model generates stellar radii and masses consistent with PSR J1614-2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed physical examination shows that the model is regular, well behaved and stable. The mass-radius limit and the surface red shift are consistent with observational constraints. (orig.)

  17. Galileon radiation from a spherical collapsing shell

    Energy Technology Data Exchange (ETDEWEB)

    Martín-García, Javier [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera 15, E-28049 Madrid (Spain); Vázquez-Mozo, Miguel Á. [Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM),Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)

    2017-01-17

    Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell’s physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.

  18. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.

    1988-01-01

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  19. Spherical Panoramas for Astrophysical Data Visualization

    Science.gov (United States)

    Kent, Brian R.

    2017-05-01

    Data immersion has advantages in astrophysical visualization. Complex multi-dimensional data and phase spaces can be explored in a seamless and interactive viewing environment. Putting the user in the data is a first step toward immersive data analysis. We present a technique for creating 360° spherical panoramas with astrophysical data. The three-dimensional software package Blender and the Google Spatial Media module are used together to immerse users in data exploration. Several examples employing these methods exhibit how the technique works using different types of astronomical data.

  20. Geometrodynamics of spherically symmetric Lovelock gravity

    International Nuclear Information System (INIS)

    Kunstatter, Gabor; Taves, Tim; Maeda, Hideki

    2012-01-01

    We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)

  1. Facile preparation and visible light photocatalytic activity of CdIn2S4 monodispersed spherical particles

    International Nuclear Information System (INIS)

    Mu Jin; Wei Qinglian; Yao Pingping; Zhao Xueling; Kang Shizhao; Li Xiangqing

    2012-01-01

    Highlights: ► CdIn 2 S 4 monodispersed spherical particles were prepared by a soft solution method. ► Mercaptoacetic acid was used as capping agent to hinder the fast crystal growth. ► Thioacetamide as sulfur source resulted in the slow growth of particles. ► CdIn 2 S 4 spheres showed high visible light photocatalytic activity. - Abstract: We developed a facile method to prepare CdIn 2 S 4 monodispersed spherical particles by using mercaptoacetic acid as capping agent and thioacetamide as sulfur source. The results indicated that the size and morphology of CdIn 2 S 4 particles were related to reaction time. The CdIn 2 S 4 spherical particles with an average size of about 236 nm and a narrow size distribution were formed after reacting for 7 h. The photocatalytic activity of as-synthesized CdIn 2 S 4 spherical particles was evaluated by the photocatalytic degradation of methyl orange under visible light illumination. The results showed that the photocatalytic activity increased with prolonging reaction time in the preparation of CdIn 2 S 4 spherical particles. The CdIn 2 S 4 spherical particles prepared after reacting for 7 h exhibited a 98% degradation efficiency of methyl orange after 15 min visible light irradiation.

  2. Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry

    Science.gov (United States)

    Toque, Nathalie

    1996-12-01

    This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.

  3. Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments - a developing country case study from Owerri, Nigeria.

    Science.gov (United States)

    Arukwe, Augustine; Eggen, Trine; Möder, Monika

    2012-11-01

    In developing countries, there are needs for scientific basis to sensitize communities on the problems arising from improper solid waste deposition and the acute and long-term consequences for areas receiving immobilized pollutants. In Nigeria, as in many other African countries, solid waste disposal by way of open dumping has been the only management option for such wastes. Herein, we have highlighted the challenges of solid waste deposit and management in developing countries, focusing on contaminants of emerging concern and leaching into the environment. We have analyzed sediments and run-off water samples from a solid waste dumping site in Owerri, Nigeria for organic load and compared these with data from representative world cities. Learning from previous incidents, we intend to introduce some perspective for awareness of contaminants of emerging concerns such as those with potential endocrine disrupting activities in wildlife and humans. Qualitative and quantitative data obtained by gas chromatography and mass spectrometric analysis (GC-MS) provide an overview on lipophilic and semi-polar substances released from solid waste, accumulated in sediments and transported via leachates. The chromatograms of the full scan analyses of the sediment extracts clearly point to contamination related to heavy oil. The homologous series of n-alkanes with chain lengths ranging between C16 and C30, as well as detected polyaromatic hydrocarbon (PAH) compounds such as anthracene, phenanthrene, fluoranthene and pyrene support the assumption that diesel fuel or high boiling fractions of oil are deposited on the site. Targeted quantitative analysis for selected compounds showed high concentration of substances typically released from man-made products such as plastics, textiles, household and consumer products. Phthalate, an integral component of plastic products, was the dominant compound group in all sediment samples and run-off water samples. Technical nonylphenols (mixture of

  4. Low energy recoil detection with a spherical proportional counter

    Science.gov (United States)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  5. Initial assessments of ignition spherical torus

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Borowski, S.K.; Bussell, G.T.

    1985-12-01

    Initial assessments of ignition spherical tori suggest that they can be highly cost effective and exceptionally small in unit size. Assuming advanced methods of current drive to ramp up the plasma current (e.g., via lower hybrid wave at modest plasma densities and temperatures), the inductive solenoid can largely be eliminated. Given the uncertainties in plasma energy confinement times and the effects of strong paramagnetism on plasma pressure, and allowing for the possible use of high-strength copper alloys (e.g., C-17510, Cu-Ni-Be alloy), ignition spherical tori with a 50-s burn are estimated to have major radii ranging from 1.0 to 1.6 m, aspect ratios from 1.4 to 1.7, vacuum toroidal fields from 2 to 3 T, plasma currents from 10 to 19 MA, and fusion power from 50 to 300 MW. Because of its modest field strength and simple poloidal field coil configuration, only conventional engineering approaches are needed in the design. A free-standing toroidal field coil/vacuum vessel structure is assessed to be feasible and relatively independent of the shield structure and the poloidal field coils. This exceptionally simple configuration depends significantly, however, on practical fabrication approaches of the center conductor post, about which there is presently little experience. 19 refs

  6. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  7. Status of National Spherical Torus Experiment (NSTX)*

    Science.gov (United States)

    Ono, Masayuki

    2001-10-01

    The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. The NSTX experimental facility has been operating reliably and its capabilities steadily improving. Due to relatively efficient ohmic current drive and benign halo current behavior, the plasma current was increased to 1.4 MA, which is well above the design value of 1 MA. The plasmas at 1 MA are now routinely heated by NBI to the average toroidal beta value of 20 percent range at 3 kG with electrons and ions in the 1-2 keV range. Even with the “L-mode” edge, the energy confinement time can well exceed the so-called L-mode (and even H-mode) scaling values. As a part of ST tool development, High Harmonic Fast Wave (HHFW) heating has demonstrated efficient electron heating with the central electron temperatures reaching 3.7 keV. HHFW induced H-modes have been also observed. For CHI (Coaxial Helicity Injection) non-inductive start-up, CHI discharges of up to 300 kA of toroidal current and 300 msec duration have been produced from zero current using = 25 kA of injected current. The poster presentation will also include the near term NSTX facility upgrade plan.

  8. Bidispersed Sphere Packing on Spherical Surfaces

    Science.gov (United States)

    Atherton, Timothy; Mascioli, Andrew; Burke, Christopher

    Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  9. Rotating field current drive in spherical plasmas

    International Nuclear Information System (INIS)

    Brotherton-Ratcliffe, D.; Storer, R.G.

    1988-01-01

    The technique of driving a steady Hall current in plasmas using a rotating magnetic field is studied both numerically and analytically in the approximation of negligible ion flow. A spherical plasma bounded by an insulating wall and immersed in a uniform magnetic field which has both a rotating component (for current drive) and a constant ''vertical'' component (for MHD equilibrium) is considered. The problem is formulated in terms of an expansion of field quantities in vector spherical harmonics. The numerical code SPHERE solves the resulting pseudo-harmonic equations by a multiple shooting technique. The results presented, in addition to being relevant to non-inductive current drive generally, have a direct relevance to the rotamak experiments. For the case of no applied vertical field the steady state toroidal current driven by the rotating field per unit volume of plasma is several times less than in the long cylinder limit for a plasma of the same density, resistivity and radius. The application of a vertical field, which for certain parameter regimes gives rise to a compact torus configuration, improves the current drive dramatically and in many cases gives ''better'' current drive than the long cylinder limit. This result is also predicted by a second order perturbation analysis of the pseudo-harmonic equations. A steady state toroidal field is observed which appears consistent with experimental observations in rotamaks regarding magnitude and spatial dependence. This is an advance over previous analytical theory which predicted an oppositely directed toroidal field of undefined magnitude. (author)

  10. Crack propagation on spherical pressure vessels

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1975-01-01

    The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here

  11. Contact of a spherical probe with a stretched rubber substrate

    Science.gov (United States)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  12. The behaviour of spherical HTR fuel elements under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, W; Naoumidis, A [Institute for Reactor Material, KFA Juelich (Germany)

    1985-07-01

    Hypothetical accidents may lead to significantly higher temperatures in HTR fuel than during normal operation. In order to obtain meaningful statements on fission product behaviour and release, irradiated spherical fuel elements containing a large number of coated particles (20,000-40,000) with burnups between 6 and 16% FIMA were heated at temperatures between 1400 and 2500 deg. C. HTI-pyrocarbon coating retains the gaseous fission products (e.g. Kr) very well up to about 2400 deg. C if the burnup does not exceed the specified value for THTR (11.5%). Cs diffuses through the pyrocarbon significantly faster than Kr and the diffusion is enhanced at higher fuel burnups because of irradiation induced kernel microstructure changes. Below about 1800 deg. C the Cs release rate is controlled by diffusion in the fuel kernel; above this temperature the diffusion in the pyrocarbon coating is the controlling parameter. An additional SiC coating interlayer (TRISO) ensures Cs retention up to 1600 deg. C. However, the release obtained in the examined fuel elements was only by a factor of three lower than through the HTI pyrocarbon. Solid fission products added to UO{sub 2}-TRISO particles to simulate high burnup behave in various ways and migrate to attack the SiC coating. Pd migrates fastest and changes the SiC microstructure making it permeable.

  13. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  14. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  15. A model experiment to study swallowing of spherical and elongated particles

    Directory of Open Access Journals (Sweden)

    Marconati Marco

    2017-01-01

    Full Text Available Swallowing disorders are not uncommon among elderly and people affected by neurological diseases. For these patients the ingestion of solid grains, such as pharmaceutical oral solid formulations, could result in choking. This generally results in a low compliance in taking solid medications. The effect of the solid medication size on the real or perceived ease of swallowing is still to be understood from the mechanistic viewpoint. The interplay of the inclusion shape and the rheology of the liquid being swallowed together with the medication is also not fully understood. In this study, a model experiment was developed to study the oropharyngeal phase of swallowing, replicating the dynamics of the bolus flow induced by the tongue (by means of a roller driven by an applied force. Experiments were performed using a wide set of solid inclusions, dispersed in a thick Newtonian liquid. Predictions for a simple theory are compared with experiments. Results show that an increase in the grain size results in a slower dynamics of the swallowing. Furthermore, the experiments demonstrated the paramount role of shape, as flatter and more streamlined inclusions flow faster than spherical. This approach can support the design of new oral solid formulations that can be ingested more easily and effectively also by people with mild swallowing disorders.

  16. Measurement of Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... at the centerline of the jet are carried out for mass loadings of 0.5, 1, 1.6 and particle sizes 880μm, 1350μm, 1820μm for spherical particles. For each non-spherical shape only a single size and loading are considered. The turbulence modulation of the carrier phase is found to highly dependent on the turbulence......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...

  17. The prediction of spherical aberration with schematic eyes.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1996-07-01

    Many model eyes have been proposed; they differ in optical characteristics and therefore have different aberrations and image quality. In predicting the visual performance of the eye, we are most concerned with the central foveal vision. Spherical aberration is the only on-axis monochromatic aberration and can be used as a criterion to assess the degree of resemblance of eye models to the human eye. We reviewed and compiled experimental values of the spherical aberration of the eye, calculated the spherical aberration of several different categories of model eyes and compared the calculated results to the experimental data. Results show an over-estimation of spherical aberration by all models, the finite schematic eyes predicting values of spherical aberration closest to the experimental data. Current model eyes do not predict the average experimental values of the spherical aberration of the eye. A new model eye satisfying this assessment criterion is required for investigations of the visual performance of the eye.

  18. Non-Spherical Gravitational Collapse of Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    Zade S S; Patil K D; Mulkalwar P N

    2008-01-01

    We study the non-spherical gravitational collapse of the strange quark null fluid.The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole.We extend the earlier work of Harko and Cheng[Phys.Lett.A 266 (2000) 249]to the non-spherical case.

  19. Spherical solitons in Earth’S mesosphere plasma

    International Nuclear Information System (INIS)

    Annou, K.; Annou, R.

    2016-01-01

    Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry

  20. On the phase diagram of non-spherical nanoparticles

    CERN Document Server

    Wautelet, M; Hecq, M

    2003-01-01

    The phase diagram of nanoparticles is known to be a function of their size. In the literature, this is generally demonstrated for cases where their shape is spherical. Here, it is shown theoretically that the phase diagram of non-spherical particles may be calculated from the spherical case, at the same surface area/volume ratio, both with and without surface segregation, provided the surface tension is considered to be isotropic.

  1. Time-dependent integral transport equation kernels, leakage rates and collision rates for plane and spherical geometry

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1987-01-01

    Time-dependent integral transport equation flux and current kernels for plane and spherical geometry are derived for homogeneous media. Using the multiple collision formalism, isotropic sources that are delta distributions in time are considered for four different problems. The plane geometry flux kernel is applied to a uniformly distributed source within an infinite medium and to a surface source in a semi-infinite medium. The spherical flux kernel is applied to a point source in an infinite medium and to a point source at the origin of a finite sphere. The time-dependent first-flight leakage rates corresponding to the existing steady state first-flight escape probabilities are computed by the Laplace transform technique assuming a delta distribution source in time. The case of a constant source emitting neutrons over a time interval, Δt, for a spatially uniform source is obtained for a slab and a sphere. Time-dependent first-flight leakage rates are also determined for the general two region spherical medium problem for isotropic sources with a delta distribution in time uniformly distributed throughout both the inner and outer regions. The time-dependent collision rates due to the uncollided neutrons are computed for a slab and a sphere using the time-dependent first-flight leakage rates and the time-dependent continuity equation. The case of a constant source emitting neutrons over a time interval, Δt, is also considered

  2. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  3. Impact of Spherical Frit Beads on Simulated DWPF Slurries

    International Nuclear Information System (INIS)

    SMITH, MICHAEL

    2005-01-01

    It has been shown that the rheological properties of simulated Defense Waste Processing Facility (DWPF) melter feed with the glass former frit as mostly (90 weight percent) solid spherical particles (referred to as beads) were improved as the feed was less viscous as compared to DWPF melter feed that contained the normal irregular shaped frit particles. Because the physical design of the DWPF Slurry Mix Evaporator (SME), Melter Feed Tank (MFT), and melter feed loop are fixed, the impact of changing the rheology might be very beneficial. Most importantly, higher weight percent total solids feed might be processed by reducing the rheological properties (specifically yield stress) of the feed. Additionally, if there are processing problems, such as air entrainment or pumping, these problems might be alleviated by reducing the rheological properties, while maintaining targeted throughputs. Rheology modifiers are chemical, physical, or a combination of the two and can either thin or thicken the rheology of the targeted slurry. The beads are classified as a physical rheological modifier in this case. Even though the improved rheological properties of the feed in the above mentioned DWPF tanks could be quite beneficial, it is the possibility of increased melt rate that is the main driver for the use of beaded glass formers. By improving the rheological properties of the feed, the weight percent solids of the feed could be increased. This higher weight percent solids (less water) feed could be processed faster by the melter as less energy would be required to evaporate the water, and more would be available for the actual melting of the waste and the frit. In addition, the use of beads to thin the feed could possibly allow for the use of a lower targeted acid stoichiometry in the feed preparation process (if in fact acid stoichiometry is being driven by feed rheology as opposed to feed chemistry). Previous work by the Savannah River National Laboratory (SRNL) with the lab

  4. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  5. Cylindrical and Spherical Active Coated Nanoparticles as Nanoantennas: Active nanoparticles as nanoantennas

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2017-01-01

    In this article, we review the fundamental properties of several spherical and cylindrical, passive, and active coated nanoparticles (CNPs) with an emphasis on their potential for nanoantenna and nanoamplifier synthesis. For the spherical geometries, the nanoparticles are excited by an electric...... Hertzian dipole (EHD), which represents, e.g., a stimulated atom or molecule. The cylindrical nanoparticles are excited by a magnetic line source (MLS). In the active cases, gain is added to the core region of the particle. For simplicity, it is represented by a canonical, frequency-independent gain model....... We demonstrate that specific CNPs can be designed to be resonant and well matched to their respective excitation sources. With active cores, these designs can lead to extremely large total radiated powers. For both configurations, insights into the effects of the nanoparticle material composition...

  6. On three-dimensional spherical acoustic cloaking

    International Nuclear Information System (INIS)

    Munteanu, Ligia; Chiroiu, Veturia

    2011-01-01

    Transformation acoustics opens a new avenue towards the design of acoustic metamaterials, which are materials engineered at the subwavelength scale in order to mimic the parameters in wave equations. The design of the acoustic cloaking is based on the property of equations being invariant under a coordinate transformation, i.e. a specific spatial compression is equivalent to a variation of the material parameters in the original space. In this paper, the sound invisibility performance is discussed for spherical cloaks. The original domain consists of alternating concentric layers made from piezoelectric ceramics and epoxy resin, following a triadic Cantor sequence. The spatial compression, obtained by applying the concave-down transformation, leads to an equivalent domain with an inhomogeneous and anisotropic distribution of the material parameters.

  7. Nuclear structure investigations on spherical nuclei

    International Nuclear Information System (INIS)

    Heisenberg, J.; Calarco, J.; Dawson, J.; Hersman, F.W.

    1989-09-01

    This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12 C(e,e'p) and 16 O(e,e'p); 12 C(e,e'α) and 16 O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12 C(γ,p); future directions in giant resonance studies; proton knockout from 16 O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model

  8. Saltation movement of large spherical particles

    Science.gov (United States)

    Chara, Z.; Dolansky, J.; Kysela, B.

    2017-07-01

    The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.

  9. Coulomb potentials between spherical heavy ions

    International Nuclear Information System (INIS)

    Iwe, H.

    1982-01-01

    The Coulomb interaction between spherical nuclei having arbitrary radial nuclear charge distributions is calculated. All these realistic Coulomb potentials are given in terms of analytical expressions and are available for immediate application. So in no case a numerical computation of the Coulomb integral is required. The parameters of the charge distributions are taken from electron scattering analysis. The Coulomb self-energies of the charge distributions used are also calculated analytically in a closed form. For a number of nucleus-nucleus pairs, the Coulomb potentials derived from realistic charge distributions are compared with those normally used in various nucleus-nucleus optical model calculations. In this connection a detailed discussion of the problem how to choose consistently Coulomb parameters for different approximations is given. (orig.)

  10. Application studies of spherical tokamak plasma merging

    International Nuclear Information System (INIS)

    Ono, Yasushi; Inomoto, Michiaki

    2012-01-01

    The experiment of plasma merging and heating has long history in compact torus studies since Wells. The study of spherical tokamak (ST), starting from TS-3 plasma merging experiment of Tokyo University in the late 1980s, is followed by START of Culham laboratory in the 1900s, TS-4 and UTST of Tokyo University and MAST of Culham laboratory in the 2000s, and last year by VEST of Soul University. ST has the following advantages: 1) plasma heating by magnetic reconnection at a MW-GW level, 2) rapid start-up of high beta plasma, 3) current drive/flux multiplication and distribution control of ST plasma, 4) fueling and helium-ash exhaust. In the present article, we emphasize that magnetic reconnection and plasma merging phenomena are important in ST plasma study as well as in plasma physics. (author)

  11. Simple spherical ablative-implosion model

    International Nuclear Information System (INIS)

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-01-01

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling

  12. Space Propulsion via Spherical Torus Fusion Reactor

    International Nuclear Information System (INIS)

    Williams, Craig H.; Juhasz, Albert J.; Borowski, Stanley K.; Dudzinski, Leonard A.

    2003-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 204 days, with an initial mass in low Earth orbit of 1630 mt. Engineering conceptual design, analysis, and assessment were performed on all major systems including nuclear fusion reactor, magnetic nozzle, power conversion, fast wave plasma heating, fuel pellet injector, startup/re-start fission reactor and battery, and other systems. Detailed fusion reactor design included analysis of plasma characteristics, power balance and utilization, first wall, toroidal field coils, heat transfer, and neutron/X-ray radiation

  13. Canonical quantization of static spherically symmetric geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A

    2013-01-01

    The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''

  14. Laser Pulse Heating of Spherical Metal Particles

    Directory of Open Access Journals (Sweden)

    Michael I. Tribelsky

    2011-12-01

    Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  15. Spherical Nb single crystals containerlessly grown by electrostatic levitation

    International Nuclear Information System (INIS)

    Sung, Y.S.; Takeya, H.; Hirata, K.; Togano, K.

    2003-01-01

    Spherical Nb (T m =2750 K) single crystals were grown via containerless electrostatic levitation (ESL). Samples became spherical at melting in levitation and undercooled typically 300-450 K prior to nucleation. As-processed samples were still spherical without any macroscopic shape change by solidification showing a uniform dendritic surface morphology. Crystallographic {111} planes exposed in equilateral triangular shapes on the surface by preferential macroetching and spotty back-reflection Laue patterns confirm the single crystal nature of the ESL-processed Nb samples. No hysteresis in magnetization between zero field and field cooling also implies a clean defect-free condition of the spherical Nb single crystals

  16. Investigation of spherical and concentric mechanism of compound droplets

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2016-07-01

    Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.

  17. Low-Q Electrically Small Spherical Magnetic Dipole Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    Three novel electrically small antenna configurations radiating a TE10 spherical mode corresponding to a magnetic dipole are presented and investigated: multiarm spherical helix (MSH) antenna, spherical split ring resonator (S-SRR) antenna, and spherical split ring (SSR) antenna. All three antennas...... are self-resonant, with the input resistance tuned to 50 ohms by an excitation curved dipole/monopole. A prototype of the SSR antenna has been fabricated and measured, yielding results that are consistent with the numerical simulations. Radiation quality factors (Q) of these electrically small antennas (in...

  18. Fluid Fuel Fluctuations in the Spherical Tank

    Directory of Open Access Journals (Sweden)

    H. D. Nguyen

    2014-01-01

    Full Text Available Many authors tried to solve a task concerning small fluctuations of the incompressible ideal liquid, which partially fills a stationary tank of any shape. There is a long list of references to this subject. The article presents a task solution on own fluctuations of liquid in spherical capacity, with boundary conditions on a free surface and a surface with a resistance – drain surface. Relevance of problem consists in assessment of influence of intra tank devices (measuring, intaking, damping devices, etc. on the liquid fuel fluctuations. The special attention is paid to finding the own values and frequencies of the equations of disturbed flow fluctuations with dissipation available on the boundary surfaces. In contrast to the previous examples, the lowering speed and the free surface area at undisturbed state are variable.The article also considers a variation formulation of the auxiliary boundary tasks. In solution of variation tasks, the attached Legendre's functions were used as coordinate functions. Further, after substitution of the variation tasks solution in the boundary conditions and the subsequent mathematical operations the characteristic equation was obtained. To obtain solutions of the cubic characteristic equation Cardano formulas were used. The article also considers the task on the own motions of liquid filling a capacity between two concentric spheres and flowing out via the intake in case there is a free surface. Reliability of the obtained numerical results is confirmed by comparison with calculation results of frequencies resulting from solutions of a task on the own fluctuations of liquid in the spherical capacity with the constant depth of liquid. All numerical calculations were performed using the Matlab environment.

  19. Comptonization effects in spherical accretion onto black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1983-01-01

    For spherical accretion of gas onto a black hole, dissipative heating (from magnetic reconnection), dissipation of turbulence, etc.) leads at high accretion rates to densities and temperatures at which Comptonization unavoidably plays an important role, both in determining gas temperature and in forming the emergent spectrum. A careful and reliable treatment of the interaction of the gas with the radiation field is greatly complicated by the necessity of dealing with the essentially nonlocal nature of Comptonization. We limit ourselves here to finding approximate descriptions of some observational features of such astrophysical objects with a simple, yet justifiable, Ansatz that evades the complexities of nonlocality. The results for accretion spectra are of interest, e.g., in connection with galactic halo objects (1--10 5 M/sub sun/). High mass (10 7 --10 10 M/sub sun/) cases are of interest as models for active galactic nuclei. In particular, a very natural connection between the ratio of luminosity to Eddington luminosity and the hardness of X-ray spectra emerges, suggesting that the observed X-ray hardness ratios of luminous sources are a consequence of those sources being more or less Eddington limited

  20. Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation.

    Science.gov (United States)

    Foo, K Y; Hameed, B H

    2013-02-01

    In this work, preparation of granular activated carbon from oil palm biodiesel solid residue, oil palm shell (PSAC) by microwave assisted KOH activation has been attempted. The physical and chemical properties of PSAC were characterized using scanning electron microscopy, volumetric adsorption analyzer and elemental analysis. The adsorption behavior was examined by performing batch adsorption experiments using methylene blue as dye model compound. Equilibrium data were simulated using the Langmuir, Freundlich and Temkin isotherm models. Kinetic modeling was fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models, while the adsorption mechanism was determined using the intraparticle diffusion and Boyd equations. The result was satisfactory fitted to the Langmuir isotherm model with a monolayer adsorption capacity of 343.94mg/g at 30°C. The findings support the potential of oil palm shell for preparation of high surface area activated carbon by microwave assisted KOH activation. Copyright © 2012 Elsevier Ltd. All rights reserved.