WorldWideScience

Sample records for solid solution matrix

  1. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, Richard; Martin, Georges.

    1978-01-01

    The stability of various types of solid solutions under irradiation is studied. In this paper, observations made on AlZn solid solutions under 1 MeV electron irradiation are reported. Al-Zn was chosen as a prototype of solid solutions with a simple miscibility gap. It is shown that under appropriate irradiation conditions undersaturated AnZn solid solutions give rise to a homogeneous precipitation of coherent G.P. zones and of incoherent Zn precipitates the atomic volume of which is smaller than that of the matrix. We propose a more general treatment of solute concentration heterogeneities in solid solutions under irradiation and suggest how it might account for the nucleation of the observed phases. The growth of the observed precipitates is studied

  2. Solid-soluted content of cerium in solid solution of sphene

    International Nuclear Information System (INIS)

    Zhao Wei; Teng Yuancheng; Li Yuxiang; Ren Xuetan; Huang Junjun

    2010-01-01

    The sphene solid solution was synthesized by solid-state method,with calcium carbonate, silica, titanium dioxide, cerium oxalate and alumina as raw materials. The solid-soluted content of cerium in sphene was researched by means of X-ray diffraction (XRD), backscattering scanning electron microscopy (BSE), energy dispersive spectroscopy (EDS) and so on. The influence of A l3+ ion introduction to sphene on the solid-soluted content of cerium in sphene solid solution was studied. The results indicate that when introducing Al 3+ to sphene as electrovalence compensation, Ce 4+ could be well solidified to Ca 1-x Ce x Ti 1-2x A l2x SiO 5 , and the solid-soluted content is approximately 12.61%. With no electrovalence compensation, Ce 4+ could be solidified to Ca 1-2x Ce x TiSiO 5 , and the solid-soluted content is approximately 10.98%. The appropriate synthesis temperature of sphene solid solution is 1 260 degree C.(authors)

  3. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  4. Magnetic clusters in ilmenite-hematite solid solutions

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Burton, B. P.; Rasmussen, Helge Kildahl

    2010-01-01

    We report the use of high-field 57Fe Mössbauer spectroscopy to resolve the magnetic ordering of ilmenite-hematite [xFeTiO3−(1−x)Fe2O3] solid solutions with x>0.5. We find that nanometer-sized hematite clusters exist within an ilmenite-like matrix. Although both phases are antiferromagnetically...

  5. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    Science.gov (United States)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  6. Multi-cut solutions in Chern-Simons matrix models

    Science.gov (United States)

    Morita, Takeshi; Sugiyama, Kento

    2018-04-01

    We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.

  7. Fine interstitial clusters as recombinators in decomposing solid solutions under irradiation

    International Nuclear Information System (INIS)

    Trushin, Yu.V.

    1991-01-01

    Behaviour of interstitial clusters and their roll in processes of radiation swelling of metals are described. It is shown that occurrence of coherent advanced precipitations during decomposition of solid solutions under irradiation leads to matrix supersaturation over interstitial atoms. This enhances recombination of unlike defects due to vacancy precipitation on fine interstitial clusters. Evaluation of cluster sizes was conducted

  8. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    Science.gov (United States)

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the

  9. Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements

    International Nuclear Information System (INIS)

    Pröbstle, M.; Neumeier, S.; Feldner, P.; Rettig, R.; Helmer, H.E.; Singer, R.F.; Göken, M.

    2016-01-01

    Solid solution strengthening of the γ matrix is one key factor for improving the creep strength of single crystal nickel-base superalloys at high temperatures. Therefore a strong partitioning of solid solution hardening elements to the matrix is beneficial for high temperature creep strength. Different Rhenium-free alloys which are derived from CMSX-4 are investigated. The alloys have been characterized regarding microstructure, phase compositions as well as creep strength. It is found that increasing the Titanium (Ti) as well as the Tungsten (W) content causes a stronger partitioning of the solid solution strengtheners, in particular W, to the γ phase. As a result the creep resistance is significantly improved. Based on these ideas, a Rhenium-free alloy with an optimized chemistry regarding the partitioning behavior of W is developed and validated in the present study. It shows comparable creep strength to the Rhenium containing second generation alloy CMSX-4 in the high temperature / low stress creep regime and is less prone to the formation of deleterious topologically close packed (TCP) phases. This more effective usage of solid solution strengtheners can enhance the creep properties of nickel-base superalloys while reducing the content of strategic elements like Rhenium.

  10. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  11. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    Science.gov (United States)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-03-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  12. Synthesis, characterization and thermal expansion studies on ThO2-SmO1.5 solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.

    2008-01-01

    Full text: A highly homogeneous Th 1-x Sm x O 2 ; 0 ≤ x ≤ 0.8 solid solutions were synthesized by co-precipitation technique and the co-precipitated samples were sintered at 1473 K. Compositions of the solid solutions were characterized by standard wet-chemical analysis. X-ray diffraction measurements were performed in the sintered pellets for structural analysis, lattice parameter calculation and determination of solid solubility of SmO 1.5 in ThO 2 matrix. Bulk and theoretical densities of solid solutions were also determined. A fluorite structure was observed for ThO 2 -SmO 1.5 solid solutions with 0-55.2 mol % SmO 1.5 . Their thermal expansion coefficients were measured using high temperature X-ray diffraction technique. The mean linear thermal expansivity, αm for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mole percent of SmO 1.5 were determined in the temperature range 298 to 2000 K for the first time. The mean linear thermal expansion coefficients for ThO 2 -SmO 1.5 solid solutions are 10.47x10 -6 K -1 , 11.16x10 -6 K -1 and 11.45x10 -6 K -1 , respectively. The percentage linear thermal expansion in this temperature range, for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mol % SmO 1.5 are 1.82,1.94 and 1.99 respectively. It is suggested that the solid solutions are stable up to 2000 K. It is also suggested that the effect and nature of the dopant are the important parameters influenced in the thermal expansion of the ThO 2

  13. Radionuclide solubility control by solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.; Klinkenberg, M.; Rozov, K.; Bosbach, D. [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6); Vinograd, V. [Frankfurt Univ. (Germany). Inst. of Geosciences

    2015-07-01

    The migration of radionuclides in the geosphere is to a large extend controlled by sorption processes onto minerals and colloids. On a molecular level, sorption phenomena involve surface complexation, ion exchange as well as solid solution formation. The formation of solid solutions leads to the structural incorporation of radionuclides in a host structure. Such solid solutions are ubiquitous in natural systems - most minerals in nature are atomistic mixtures of elements rather than pure compounds because their formation leads to a thermodynamically more stable situation compared to the formation of pure compounds. However, due to a lack of reliable data for the expected scenario at close-to equilibrium conditions, solid solution systems have so far not been considered in long-term safety assessments for nuclear waste repositories. In recent years, various solid-solution aqueous solution systems have been studied. Here we present state-of-the art results regarding the formation of (Ra,Ba)SO{sub 4} solid solutions. In some scenarios describing a waste repository system for spent nuclear fuel in crystalline rocks {sup 226}Ra dominates the radiological impact to the environment associated with the potential release of radionuclides from the repository in the future. The solubility of Ra in equilibrium with (Ra,Ba)SO{sub 4} is much lower than the one calculated with RaSO{sub 4} as solubility limiting phase. Especially, the available literature data for the interaction parameter W{sub BaRa}, which describes the non-ideality of the solid solution, vary by about one order of magnitude (Zhu, 2004; Curti et al., 2010). The final {sup 226}Ra concentration in this system is extremely sensitive to the amount of barite, the difference in the solubility products of the end-member phases, and the degree of non-ideality of the solid solution phase. Here, we have enhanced the fundamental understanding regarding (1) the thermodynamics of (Ra,Ba)SO{sub 4} solid solutions and (2) the

  14. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hang; Tang, Zhiyong; Zhang, Kang; Wang, Lei; Shi, Huimin; Zhang, Guanhua; Duan, Huigao

    2017-01-01

    Ternary transition metal oxides have received intense research interest as electrode materials for lithium ion batteries, due to their high specific capacity originating from the synergic effects of multiple metal active sites. Reducing the size of metal oxides nanoparticles and dispersing these nanoparticles in carbon matrix are considering effective strategies to improve the electrochemical performance of transition metal oxides. Ternary CuCo 2 O 4 nanoclusters ultra-uniformly dispersed in carbon nanofiber matrix forming a pseudo-solid-solution structure are successfully synthesized by a facile electrospinning method followed by an appropriate annealing process. As the anodic electrode for lithium ion batteries, the pseudo-solid-solution CuCo 2 O 4 /C electrode exhibits a high reversible specific capacity, improved rate capacity and excellent cycling stability. A discharge capacity of 865 mAh g −1 is obtained at the current density of 200 mA g −1 after 400 cycles. Surprisingly, the electrode still retains about 610 mAh g −1 after 800 cycles even at the current density of 600 mA g −1 . The superior lithium storage performance of the pseudo-solid-solution CuCo 2 O 4 /C composites is mainly attributed to the unique amorphous structure. The ultrafine CuCo 2 O 4 nanoclusters uniformly dispersed in carbon matrix can buffer the volume change and improve the conductivity of the metal oxide based electrode, guaranteeing the structure stability and fast electron transfer.

  15. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan

    2005-02-01

    A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.

  16. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  17. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  18. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R; Chen, Long-Qing

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  19. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, R.; Martin, G.

    1979-01-01

    A TEM study of 1 MeV electron irradiated Al 1.9 at% Zn solid solution shows that Zn precipitates form, under irradiation at temperatures well above the Zn solvus temperature outside irradiation. The corresponding upward shift of this temperature is dose rate dependent. This new example of radiation-induced precipitation exhibits unexpected features, which are not accounted for by the available models: (1) no correlation exists between the location of the precipitates and that of the point defects sinks; (2) the precipitation of incoherent β-phase with atomic volume smaller than that of the matrix, and of coherent G.P. zones both occurs; (3) the size of the coherent β precipitates saturates at large dose. A general mechanism for solute concentration fluctuations under irradiation is proposed which qualitatively accounts for the formation of coherent G.P. zones and for the nucleation of solute clusters with more complex structures. A reanalysis of Russell's model (1977) for the growth of incoherent precipitates shows that it may qualitatively account for the observed behavior of the β phase precipitates. (Auth.)

  20. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  1. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  2. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  3. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  4. Analytical solutions to matrix diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  5. Approximate Solution of LR Fuzzy Sylvester Matrix Equations

    Directory of Open Access Journals (Sweden)

    Xiaobin Guo

    2013-01-01

    Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.

  6. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  7. Microstructural and microchemical studies of phase stability in V-O solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Chanchal, E-mail: chanchal@igcar.gov.in [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Singh, Akash [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Basu, Joysurya [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh (India); Ramachandran, Divakar; Mohandas, E [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India)

    2017-02-15

    Over the last couple of decades vanadium and V-based alloys have received significant attention as a potential structural material for fusion power applications because of their favourable mechanical properties under irradiation and at elevated temperatures. They are also considered as the advanced options of storage materials for hydrogen and its isotopes. However, the higher affinity of V for O, C and N poses critical challenges in its engineering applications since they lead to degradation of mechanical properties. They can further interact with the matrix to produce metallic oxy-carbo-nitride precipitates. To a certain limit, these precipitates are beneficial and can be exploited to enhance the mechanical behaviour of the alloy through suitable microstructural design. However, this requires a prior knowledge of the interaction between the alloy and the impurity solutes. In the present work vanadium specific experiments have been designed and carried out to bring out the V-interstitial solute interaction by charging oxygen in the near surface region of vanadium. Microstructural and microchemical behaviour of the V-O solid solution has been studied through HRTEM (high resolution transmission electron microscopy) and HAADF (high angle annular dark field) coupled with EELS. Quantitative electron microscopy has been carried out to study structural modification of the alloy in atomic level caused by O charging. - Highlights: •Controlled experiments were carried out in pulsed laser ablation set-up to promote V-O interaction. • As a consequence of O dissolution, V transformed into a bct structure which is otherwise a bcc structure. •In V-O solid solution, dissolved O in the V matrix introduces significant amount of lattice strain. • Present work can be extended for introducing interstitial O in other pure transition metals and their alloys.

  8. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  9. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  10. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  11. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  12. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  13. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  14. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.

    Science.gov (United States)

    Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L

    2011-10-07

    We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid. © 2011 American Institute of Physics

  15. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  16. A Study on Microstructural Change and Properties of Mg-1.4 wt%Ca-xwt%Zn Alloys by Two-Step Solid Solution and Aging Treatment

    International Nuclear Information System (INIS)

    Koo, Seong Mo; Kim, Hye Sung; Jeong, Ha-Guk; Kim, Teak-Soo

    2015-01-01

    Optimum heat treatment conditions to improve the hardness and corrosion resistance of ternary Mg-Ca-Zn alloys have been studied, based on the theoretical models and DSC (Differential scanning calorimetry) experimental data. Two-step heating process at 420 ℃ and 480 ℃ has been applied and we have found that the low melting point phase, Ca_2Mg_6Zn_3 can effectively be dissolved into α-Mg matrix without premature melting. Due to preceding treatment at lower temperature followed by the second stage solid solution heat treatment at 480 ℃, Mg-1.4 wt%Ca-xwt%Zn alloys (x=0, 1.5 and 4.0) exhibit improved corrosion resistance than that from the single step solid solution treated alloy at 480 ℃. However, aging treatment of the alloy at 200 ℃ has led to the homogeneous precipitation of Ca_2Mg_6Zn_3 and Mg_2Ca phases in the matrix as well as at the grain boundary. This microstructural change results in the deterioration of corrosion resistance mainly originated from galvanic corrosion between the matrix and the precipitates. The hardness of Mg-1.4%Cax%Zn alloy, on the other hand, significantly increases with Zn addition by applying two-step solid solution and aging heat treatment.

  17. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solutionSolid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  18. Solution of the Stieltjes truncated matrix moment problem

    Directory of Open Access Journals (Sweden)

    Vadim M. Adamyan

    2005-01-01

    Full Text Available The truncated Stieltjes matrix moment problem consisting in the description of all matrix distributions \\(\\boldsymbol{\\sigma}(t\\ on \\([0,\\infty\\ with given first \\(2n+1\\ power moments \\((\\mathbf{C}_j_{n=0}^j\\ is solved using known results on the corresponding Hamburger problem for which \\(\\boldsymbol{\\sigma}(t\\ are defined on \\((-\\infty,\\infty\\. The criterion of solvability of the Stieltjes problem is given and all its solutions in the non-degenerate case are described by selection of the appropriate solutions among those of the Hamburger problem for the same set of moments. The results on extensions of non-negative operators are used and a purely algebraic algorithm for the solution of both Hamburger and Stieltjes problems is proposed.

  19. SOLISOL-handling of solid solutions. Version 1.1

    International Nuclear Information System (INIS)

    Boerjesson, S.; Emren, A.

    1992-09-01

    SOLISOL is a C computer program designed to model geochemical reactions involving solid solutions. The program searches equilibrium concentrations of the components in the aqueous phase and the solid solution given by limited quantities of the solid solution components. The equilibrium code PHREEQE is used as a subprogram in SOLISOL. Subprograms external to PHREEQE extract information from PHREEQE results, take care of conserved properties, calculate solubilities and produce inputdata for PHREEQE. The essential idea in this process is to calculate solubilities for the components in terms of saturation indices, and give directions to PHREEQE on how to search for the equilibrium under those constraints. (au)

  20. Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models

    Science.gov (United States)

    Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil

    2018-02-01

    We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.

  1. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    Science.gov (United States)

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  2. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  3. The structure of solutions of the matrix linear unilateral polynomial equation with two variables

    Directory of Open Access Journals (Sweden)

    N. S. Dzhaliuk

    2017-07-01

    Full Text Available We investigate the structure of solutions of the matrix linear polynomial equation $A(\\lambdaX(\\lambda+B(\\lambdaY(\\lambda=C(\\lambda,$ in particular, possible degrees of the solutions. The solving of this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix coefficients in triangular forms with invariant factors on the main diagonals, to which the matrices $A (\\lambda, B(\\lambda$ \\ and \\ $C(\\lambda$ are reduced by means of semiscalar equivalent transformations. On the basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solutions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree are established. An effective method for constructing minimal degree solutions of the equations is suggested. In this article, unlike well-known results about the estimations of the degrees of the solutions of the matrix polynomial equations in which both matrix coefficients are regular or at least one of them is regular, we have considered the case when the matrix polynomial equation has arbitrary matrix coefficients $A(\\lambda$ and $B(\\lambda.$ 

  4. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A [INSTM RU at the Department of Chemistry of the University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Mattei, G; Mazzoldi, P [Department of Physics, CNISM and University of Padova, via Marzolo 8, 35131 Padova (Italy); Paz, E; Palomares, F J [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Cavigli, L, E-mail: cesar.dejulian@unifi.it [Department of Physics-LENS, University of Florence, via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO{sub 2} matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  5. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    International Nuclear Information System (INIS)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A; Mattei, G; Mazzoldi, P; Paz, E; Palomares, F J; Cavigli, L

    2010-01-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO 2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  6. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Science.gov (United States)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  7. CRYSTAL-QUASICHEMICAL ANALYSIS OF DEFECT SUBSYSTEM OF DOPED PbTe: Sb CRYSTALS AND Pb-Sb-Te SOLID SOLUTIONS

    Directory of Open Access Journals (Sweden)

    D.M. Freik

    2014-05-01

    Full Text Available Within crystalquasichemical formalism models of point defects of crystals in the Pb-Sb-Te system were specified. Based on proposed crystalquasichemical formulae of antimony doped crystals PbTe:Sb amphoteric dopant effect was explained. Mechanisms of solid solution formation for РbТе-Sb2Те3: replacement of antimony ions lead sites  with the formation of cation vacancies  (I or neutral interstitial tellurium atoms  (II were examined. Dominant point defects in doped crystals PbTe:Sb and РbТе-Sb2Те3 solid solutions based on p-PbTe were defined. Dependences of concentration of dominant point defects, current carriers and Hall concentration on content of dopant compound and the initial deviation from stoichiometry in the basic matrix were calculated.

  8. Fabrication and Application of (1-x) NaCl+xKCl Solid Solution

    International Nuclear Information System (INIS)

    Kyi Kyi Lwin

    2011-12-01

    (1-X)NaCl+xKCl solid solution are prepared by the starting materials NaCl (0.9, 0.95) in equal molar ratio. The solid solutions are heat-treated at various temperature and XRD analyses are carried out for the solid solutions to examine the crystalline phase, crystallographic orientation and lattice parameters. The electrical properties of the solutions are determined by using the conductometer. The solid solutions are utilized as crystal oscillator and outcoming frequencies, capacitances and dielectric constants are also investigated.

  9. The thermodynamics and kinetics of interstitial solid solutions

    International Nuclear Information System (INIS)

    Silva, J.R.G. da.

    1976-04-01

    Studies of hydrogen metal systems where the hidrogen is disolved in a solid solution are presented. Particular items of interest are: the thermodynamics of the hydrogen-iron system; the solubility of hidrogen in super pure iron single crytals; the thermodinamic functions of hydrogen in solid solutions of Nb, Ta and V; and the solubility of hydrogen in α-manganese. The diffusion of carbon and nitrogen in BCC iron is also studied

  10. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  11. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  12. Synthesis of (U,Zr)C solid solutions under exothermic conditions

    International Nuclear Information System (INIS)

    Wang, L.L.; Moore, H.G.; Gladson, J.W.

    1993-01-01

    The reactions of forming (U,Zr)C solid solutions from their elemental components or similarly less stable reactants such as UC 2 are strongly exothermic due to the high stability of these solid solutions. A simple approach of utilizing this heat of formation energy to assist the solid solution reaction process is to intimately mix the less stable reactant powders and then pressed them into a compact. The compact is then heated to the ignition temperature of the reaction. The feasibility of this reaction method to synthesize (U,Zr)C solid solutions has been demonstrated in this study. The preliminary results also show that both the initial composition and the heating rate have a significant effect on the nature of the reaction process. As expected the degree of powder mixing was also found to affect the completeness of the reaction

  13. Energy spectrum of charge carriers in TlIn{sub 1–x}Yb{sub x}Te{sub 2} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, F. F., E-mail: farzali@physics.ab.az [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan); Agaeva, U. M.; Zarbaliev, M. M., E-mail: zarbalievmm51@mail.ru [Sumqayit State University (Azerbaijan)

    2016-10-15

    The temperature dependences of the electrical conductivity σ(T), the Hall coefficient R(T), and the thermoelectric coefficient α(T) are investigated in TlIn{sub 1–x}Yb{sub x}Te{sub 2} (0 < x < 0.10) solid solutions at 80–1000K. From the kinetic parameters, the effective masses of electrons and holes are determined. The obtained experimental data on σ(T) and α(T) are interpreted within the context of a model with one and two types of charge carriers. It is established that, since x = 0.05, the TlIn{sub 1–x}Yb{sub x}Te{sub 2} solid solutions belong to the class of narrow-gap semiconductors that have high matrix elements of interaction.

  14. On-cartridge derivatisation using matrix solid phase dispersion for the determination of cyclamate in foods

    International Nuclear Information System (INIS)

    Li, Jianjun; Liu, Yun; Liu, Qianping; Hui, Junfeng; Liu, Yangzi

    2017-01-01

    A novel method for determination of sodium cyclamate in foods was developed. In this method, a syringe was loaded with the homogeneous mixture of the sample, KMnO 4 powder and silica dispersant and used as a matrix solid phase dispersion (MSPD) reactor. As the reactor was infiltrated with small amounts of concentrated HCl, cyclamate was converted to 2-chlorocyclohexanone quickly and effectively within 5 min and determined by HPLC on a reversed-phase column using UV detection at a wavelength of 310 nm. Comparing with the traditional derivatisation in solution, the better clean-up was provided using on-cartridge derivatisation of MSPD, and much time, labor, and expense were saved. The results showed good linearity (r 2  = 0.9998) over the concentration range of 1–500 mg/L. The limit of detection (LOD) and limits of quantification (LOQ) of the cyclamate were 0.3 mg/L and 1 mg/L respectively. The recoveries ranged from 91.6% to 101.3% with the relative standard deviations (RSDs) in the range of 2.5%–4.3%. - Highlights: • A novel method was developed for the determination of cyclamate in foods. • On cartridge derivatisation, using matrix solid phase dispersion, was developed. • A new derivatisation reaction for cyclamate conversion to 2-chlorocyclohexanone was developed. • The method was rapid, simple, inexpensive, effective.

  15. The calcium oxide influence on formation of manganese, calcium pyrovanadate solid solutions

    International Nuclear Information System (INIS)

    Vatolin, N.A.; Volkova, P.I.; Sapozhnikova, T.V.; Ovchinnikova, L.A.

    1988-01-01

    The X-ray graphic, derivatographic, microscopic and chemical methods are used to study solid solutions of manganese, calcium pyrovanadates containing 1-10 mass% CaO and the products of interaction of reprocessing charges of vanadium-containing converter slags intended for he formation of manganese and calcium pyrovanadates with additions of calcium oxide within 10-90 mass%. It is established that in the case of 1-6 mass% CaO content in manganese pyrovanadate solid interstitial solutions appear, while at 6-20 mass% CaO - solid substitution solutions form. The results of calculating elementary cell parameters as well as melting temperatures and pyrovanadate solid solution solubility depending on CaO content are presented. The best solubility of introduction solid solutions during vanadium extraction according to the lime technology is found

  16. X-Ray Characterization of Non-Equilibrium Solid Solutions

    International Nuclear Information System (INIS)

    Brown, A.; Rosdahl, Oe.

    1975-01-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kα 2 radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  17. Comparative solution and solid-phase glycosylations toward a disaccharide library

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Agoston, Agnes

    2009-01-01

    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  18. Parametric Level Statistics in Random Matrix Theory: Exact Solution

    International Nuclear Information System (INIS)

    Kanzieper, E.

    1999-01-01

    During recent several years, the theory of non-Gaussian random matrix ensembles has experienced a sound progress motivated by new ideas in quantum chromodynamics (QCD) and mesoscopic physics. Invariant non-Gaussian random matrix models appear to describe universal features of low-energy part of the spectrum of Dirac operator in QCD, and electron level statistics in normal conducting-superconducting hybrid structures. They also serve as a basis for constructing the toy models of universal spectral statistics expected at the edge of the metal-insulator transition. While conventional spectral statistics has received a detailed study in the context of RMT, quite a bit is known about parametric level statistics in non-Gaussian random matrix models. In this communication we report about exact solution to the problem of parametric level statistics in unitary invariant, U(N), non-Gaussian ensembles of N x N Hermitian random matrices with either soft or strong level confinement. The solution is formulated within the framework of the orthogonal polynomial technique and is shown to depend on both the unfolded two-point scalar kernel and the level confinement through a double integral transformation which, in turn, provides a constructive tool for description of parametric level correlations in non-Gaussian RMT. In the case of soft level confinement, the formalism developed is potentially applicable to a study of parametric level statistics in an important class of random matrix models with finite level compressibility expected to describe a disorder-induced metal-insulator transition. In random matrix ensembles with strong level confinement, the solution presented takes a particular simple form in the thermodynamic limit: In this case, a new intriguing connection relation between the parametric level statistics and the scalar two-point kernel of an unperturbed ensemble is demonstrated to emerge. Extension of the results obtained to higher-order parametric level statistics is

  19. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  20. Microstructure and hardness of Mg–9Li–6Al–xLa (x=0, 2, 5) alloys during solid solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Pengfei [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Qu, Zhikun [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Harbin Normal University, Harbin 150025 (China); Wu, Ruizhi, E-mail: rzwu@hrbeu.edu.cn [Key Laboratory of Superlight Materials & Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)

    2015-02-11

    The microstructure evolution of Mg–9Li–6Al–xLa (x=0, 2, 5) alloy under different solid solution parameters was investigated. The results show that, during solution treatment at 350 °C, the lamellar AlLi is precipitated from α-Mg in Mg–9Li–6Al, while the MgLi{sub 2}Al is dissolved into the matrix. However, during solution treatment at 450 °C, the AlLi phase is wholly dissolved into matrix, while the MgLi{sub 2}Al is precipitated from β-Li. The addition of La can reduce the size of α-Mg, restrain the formation of AlLi, and make the precipitated MgLi{sub 2}Al from β-Li at 450 °C be finer than that in Mg–9Li–6Al. With the addition of La, the decrease of the amount of AlLi and MgLi{sub 2}Al leads to a descent of hardness, while the refinement, Al–La phase precipitation, and the solution of Al atoms can improve the hardness of the alloys.

  1. Luminescence of Ce3+ ions in Y3Al5O12 - Y3Ga5O12 solid solution

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Nazar, I.V.; Limarenko, L.N.; Pashkovskij, M.V.

    1996-01-01

    Regularities of changes in spectral and energetic characteristics of the Ce 3+ ions radiation in the Y 3 Al 5-x Ga x O 12 solid solutions, related to change in the matrix crystal field force and dissipation of the luminescence excitation energy because of transfers between the valency zone ceiling and the Ce 3+ excited ion basis state are obtained. 9 refs., 3 figs., 1 tab

  2. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    Science.gov (United States)

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  3. Evaluation of a Solid Phase DNA Binding Matrix for Downstream PCR Analysis

    National Research Council Canada - National Science Library

    Bader, Douglas E; Fisher, Glen R; Stratilo, Chad W

    2005-01-01

    A commercially available solid-phase DNA binding matrix (FTA cards) was evaluated for its ability to capture and release DNA for downstream gene amplification and detection assays using polymerase chain reaction (PCR...

  4. Precipitation of Nd-Ca carbonate solid solution at 25 degrees C

    International Nuclear Information System (INIS)

    Carroll, S.A.

    1993-01-01

    The formation of a Nd-Ca carbonate solid solution was studied by monitoring the reactions of calcite with aqueous Nd, orthorhombic NdOHCO 3 (s) with aqueous Ca, and calcite with hexagonal Nd-carbonate solid phase as a function of time at 25 degrees C and controlled pCO 2 (g). All experiments reached steady state after 200 h of reaction. The dominant mechanism controlling the formation of the solid solution was precipitation of a Nd-Ca carbonate phase from the bulk solution as individual crystals or at the orthorhombic NdOHCO 3 (s)-solution interface. The lack of Nd adsorption or solid solution at the calcite-solution interface suggests that the solid solution was orthorhombic and may be modeled as a mixture of orthorhombic NdOHCO 3 (s) and aragonite. Orthorhombic NdOHCO 3 (s) was determined to be the stable Nd-carbonate phase in the Nd-CO 2 -H 2 O system at pCO 2 (g) 0.1 atmospheres at 25 degrees C. The equilibrium constant corrected to zero ionic strength for orthorhombic NdOHCO 3 (s) solubility is 10 10.41(±0.29) for the following: NdOHCO 3 (s) + 3H + = Nd 3+ + CO 2 (g) + H 2 O. Results are discussed in relation to radioactive waste disposal by burial, and specifically in relation to americium chemistry

  5. On the Solution of the Rational Matrix Equation

    Directory of Open Access Journals (Sweden)

    Faßbender Heike

    2007-01-01

    Full Text Available We study numerical methods for finding the maximal symmetric positive definite solution of the nonlinear matrix equation , where is symmetric positive definite and is nonsingular. Such equations arise for instance in the analysis of stationary Gaussian reciprocal processes over a finite interval. Its unique largest positive definite solution coincides with the unique positive definite solution of a related discrete-time algebraic Riccati equation (DARE. We discuss how to use the butterfly algorithm to solve the DARE. This approach is compared to several fixed-point and doubling-type iterative methods suggested in the literature.

  6. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  7. Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation

    Directory of Open Access Journals (Sweden)

    S. Balaji

    2014-01-01

    Full Text Available A Legendre wavelet operational matrix method (LWM is presented for the solution of nonlinear fractional-order Riccati differential equations, having variety of applications in quantum chemistry and quantum mechanics. The fractional-order Riccati differential equations converted into a system of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed scheme are more accurate and reliable and they are compared with recently developed numerical, analytical, and stochastic approaches. Comparison shows that the proposed LWM approach has a greater performance and less computational effort for getting accurate solutions. Further existence and uniqueness of the proposed problem are given and moreover the condition of convergence is verified.

  8. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    International Nuclear Information System (INIS)

    Jie, J.C.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Li, T.J.

    2014-01-01

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al 12 Mg 17 phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β

  9. X-Ray Characterization of Non-Equilibrium Solid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Rosdahl, Oe

    1975-07-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kalpha{sub 2} radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  10. Nanostructured sodium lithium niobate and lithium niobium tantalate solid solutions obtained by controlled crystallization of glass

    International Nuclear Information System (INIS)

    Radonjic, L.; Todorovic, M.; Miladinovic, J.

    2005-01-01

    Transparent, nanostructured glass ceramics based on ferroelectric solid solutions of the type Na 1-x Li x NbO 3 (in very narrow composition regions for x = 0.12 and 0.93) and LiNb 1-y Ta y O 3 (y = 0.5 unlimited solid solubility), can be obtained by controlled crystallization of glass. The parent glass samples were prepared by conventional melt-quenching technique. Heat-treatment of the parent glasses was performed at the various temperatures, for the same time. The glass structure evolution during the controlled crystallization was examined by FT-IR spectroscopy analysis. Crystalline phases were identified by X-ray diffraction analysis and SEM was used for microstructure characterization. Densities of the crystallized glasses were measured by Archimedean principle. The capacitance and dielectric loss tangent were measured at a frequency of 1 kHz, at the room temperature. It was found that in the all investigated systems crystallize solid solutions Na 1-x Li x NbO 3 and LiNb 1-y Ta y O 3 in the glassy matrix, have crystal size on nanoscale (less than 100 nm), which is one of requirements to get a transparent glass ceramic that could be a good ferroelectric material regarding to the measured properties

  11. Microstructure and Hardness of Mg - 9Li - 6Al Alloy After Different Variants of Solid Solution Treatment

    Science.gov (United States)

    Zheng, Haipeng; Fei, Pengfei; Wu, Ruizhi; Hou, Legan; Zhang, Milin

    2018-03-01

    The microstructure and the hardness of cast magnesium alloy Mg - 9% Li - 6% Al are studied after a treatment for solid solution at 300, 350, and 450°C for 0.5 - 5 h. The phase composition of the alloy is represented by α-Mg, β-Li, thin-plate and faceted particles of an AlLi phase, and particles of a MgLi2Al θ-phase. The θ-phase dissolves in the matrix in the initial stage of the solution treatment, which causes growth in the hardness of the alloy. At a temperature above 350°C the AlLi phase dissolves giving way to short rod-like precipitates of a θ-phase, which remain steady in the process of solution treatment. The hardness of the alloy deceases in this stage for this reason.

  12. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  13. On-cartridge derivatisation using matrix solid phase dispersion for the determination of cyclamate in foods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianjun, E-mail: bootan12@126.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Northwest University, Xi' an 710069 (China); National Engineering Research Center for Miniaturized Detection Systems, Xi' an 710069 (China); Liu, Yun [College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710062 (China); Liu, Qianping [National Engineering Research Center for Miniaturized Detection Systems, Xi' an 710069 (China); Hui, Junfeng [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Northwest University, Xi' an 710069 (China); Liu, Yangzi [National Engineering Research Center for Miniaturized Detection Systems, Xi' an 710069 (China)

    2017-06-15

    A novel method for determination of sodium cyclamate in foods was developed. In this method, a syringe was loaded with the homogeneous mixture of the sample, KMnO{sub 4} powder and silica dispersant and used as a matrix solid phase dispersion (MSPD) reactor. As the reactor was infiltrated with small amounts of concentrated HCl, cyclamate was converted to 2-chlorocyclohexanone quickly and effectively within 5 min and determined by HPLC on a reversed-phase column using UV detection at a wavelength of 310 nm. Comparing with the traditional derivatisation in solution, the better clean-up was provided using on-cartridge derivatisation of MSPD, and much time, labor, and expense were saved. The results showed good linearity (r{sup 2} = 0.9998) over the concentration range of 1–500 mg/L. The limit of detection (LOD) and limits of quantification (LOQ) of the cyclamate were 0.3 mg/L and 1 mg/L respectively. The recoveries ranged from 91.6% to 101.3% with the relative standard deviations (RSDs) in the range of 2.5%–4.3%. - Highlights: • A novel method was developed for the determination of cyclamate in foods. • On cartridge derivatisation, using matrix solid phase dispersion, was developed. • A new derivatisation reaction for cyclamate conversion to 2-chlorocyclohexanone was developed. • The method was rapid, simple, inexpensive, effective.

  14. Investigation of Carnuba Wax as Matrix in the Formulation of Solid ...

    African Journals Online (AJOL)

    This study was carried out to investigate the drug entrapment efficiency, release potential and drug release mechanisms of solid lipid microparticles (SLMs) prepared with different concentrations of two non ionic surfactants using carnauba wax as the lipid matrix. SLMs were prepared by melt dispersion technique, whereby ...

  15. Stabilization of pH in solid-matrix hydroponic systems

    Science.gov (United States)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  16. Stationary solution of a time dependent density matrix formalism

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1994-01-01

    A stationary solution of a time-dependent density-matrix formalism, which is an extension of the time-dependent Hartree-Fock theory to include the effects of two-body correlations, is obtained for the Lipkin model hamiltonian, using an adiabatic treatment of the two-body interaction. It is found that the obtained result is a reasonable approximation for the exact solution of the model. (author)

  17. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    Science.gov (United States)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  18. An improved V-Lambda solution of the matrix Riccati equation

    Science.gov (United States)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1988-01-01

    The authors present an improved algorithm for computing the V-Lambda solution of the matrix Riccati equation. The improvement is in the reduction of the computational load, results from the orthogonality of the eigenvector matrix that has to be solved for. The orthogonality constraint reduces the number of independent parameters which define the matrix from n-squared to n (n - 1)/2. The authors show how to specify the parameters, how to solve for them and how to form from them the needed eigenvector matrix. In the search for suitable parameters, the analogy between the present problem and the problem of attitude determination is exploited, resulting in the choice of Rodrigues parameters.

  19. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  20. Explicit solutions of the cubic matrix nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Demontis, Francesco; Mee, Cornelis van der

    2008-01-01

    In this paper, we derive a class of explicit solutions, global in (x, t) is an element of R 2 , of the focusing matrix nonlinear Schrödinger equation using straightforward linear algebra. We obtain both the usual and multiple pole multisoliton solutions as well as a new class of solutions exponentially decaying as x → ±∞

  1. Matrix integral solutions to the discrete KP hierarchy and its Pfaffianized version

    International Nuclear Information System (INIS)

    Lafortune, Stéphane; Li, Chun-Xia

    2016-01-01

    Matrix integrals used in random matrix theory for the study of eigenvalues of Hermitian ensembles have been shown to provide τ -functions for several hierarchies of integrable equations. In this article, we extend this relation by showing that such integrals can also provide τ -functions for the discrete KP hierarchy and a coupled version of the same hierarchy obtained through the process of Pfaffianization. To do so, we consider the first equation of the discrete KP hierarchy, the Hirota–Miwa equation. We write the Wronskian determinant solutions to the Hirota–Miwa equation and consider a particular form of matrix integrals, which we show is an example of those Wronskian solutions. The argument is then generalized to the whole hierarchy. A similar strategy is used for the Pfaffianized version of the hierarchy except that in that case, the solutions are written in terms of Pfaffians rather than determinants. (paper)

  2. Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions

    International Nuclear Information System (INIS)

    Hinatsu, Y.; Fujino, T.

    1988-01-01

    Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions with fluorite structure were measured from 4.2 K to room temperature. An antiferromagnetic transition was observed for all the solid solutions examined in this study (y ≤ 0.33). The Neel temperature of the oxygen-hypostoichiometric solid solutions (x 2 solid solutions, but different from that of (U,Th)O 2 solid solutions. The effective magnetic moment decreased with increasing calcium concentration, which indicates the oxidation of uranium in the solid solutions. From the analysis of the magnetic susceptibility data, it was found that the oxidation state of uranium was either tetravalent or pentavalent. The Neel temperature of the hyperstoichiometric solid solutions (x > 0) did not change appreciably with calcium concentrations. From the comparison of the magnetic susceptibility data of the hypostoichiometric solid solutions with those of the hyperstoichiometric solid solutions, the effect of oxygen vacancies is more significant than that of interstitial oxygens on the decrease of magnetic interactions between uranium ions

  3. Thermal expansion studies on uranium-neodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Venkata Krishnan, R.; Antony, M.P.; Nagarajan, K.

    2012-01-01

    Uranium-Neodymium mixed oxides solid solutions (U 1-y Nd y ) O 2 (y=0.2-0.95) were prepared by combustion synthesis using citric acid as fuel. Structural characterization and computation of lattice parameter was carried out from room temperature X-ray diffraction measurements. Single-phase fluorite structure was observed up to y=0.80. For solid solutions with y>0.80 additional Nd 2 O 3 lines were visible

  4. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    Science.gov (United States)

    Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  5. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD and Dispersive Solid Phase Extraction (d-SPE of Plant Samples

    Directory of Open Access Journals (Sweden)

    Ireneusz Sowa

    2018-03-01

    Full Text Available Polyaniline (PANI is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME. In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI was used for dispersive solid phase extraction (d-SPE and matrix solid–phase extraction (MSPD. The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.

  6. Thermodynamic characteristics of systems with solid solutions composed of crystal hydrates of lanthanide and yttrium chlorides, at 250C. III. Systems of Roozeboom's type IV, with restricted solid solutions

    International Nuclear Information System (INIS)

    Sokolova, N.P.

    1983-01-01

    The values of the activity, the activity coefficients, the free energy of mixing and the excess free energy of mixing have been calculated for CeCl 3 -LnCl 3 -H 2 O systems (where Ln identical with Sm, Gd, Dy, Ho, Er, Y) containing solid solutions of types IV and IVa. It is shown that the stability of the solid solutions decreases with increasing difference between the radii of the cations of cerium and the second lanthanide, which enter into the composition of the components of the solid solutions. The factors determining the composition of a liquid solution corresponding to the eutonic point are specified

  7. A Green's function method for two-dimensional reactive solute transport in a parallel fracture-matrix system

    Science.gov (United States)

    Chen, Kewei; Zhan, Hongbin

    2018-06-01

    The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.

  8. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    Science.gov (United States)

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Minimal solution of linear formed fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    Maryam Mosleh

    2012-10-01

    Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.

  10. Low temperature kinetics of In-Cd solid solution decomposition

    Czech Academy of Sciences Publication Activity Database

    Pal-Val, P.P.; Pal-Val, L.N.; Ostapovets, A.A.; Vaněk, Přemysl

    2008-01-01

    Roč. 137, - (2008), s. 35-42 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z10100520 Keywords : low temperatures * In-based alloys * solid solutions * isothermal structure instability * Young's modulus * electrical resistivity * phase diagrams Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scientific.net/3-908451-53-1/35/

  11. Dislocation cross-slip in fcc solid solution alloys

    International Nuclear Information System (INIS)

    Nöhring, Wolfram Georg; Curtin, W.A.

    2017-01-01

    Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. Here, the cross-slip transition path in solid solutions is calculated using atomistic methods for three representative systems of Ni-Al, Cu-Ni and Al-Mg over a range of solute concentrations. Studies using both true random alloys and their corresponding average-alloy counterparts allow for the independent assessment of the roles of (i) fluctuations in the spatial solute distribution in the true random alloy randomness and (ii) average alloy properties such as stacking fault energy. The results show that the solute fluctuations dominate the activation energy barrier, i.e. there are large sample-to-sample variations around the average activation barrier. The variations in activation barrier correlate linearly with the energy difference between the initial and final states. The distribution of this energy difference can be computed analytically in terms of the solute/dislocation interaction energies. Thus, the distribution of cross-slip activation energies can be accurately determined from a parameter-free analytic model. The implications of the statistical distribution of activation energies on the rate of cross-slip in real alloys are then identified.

  12. Improvements in the critical current densities of Nb3Sn by solid solution additions of Sn in Nb

    International Nuclear Information System (INIS)

    Luhman, T.; Suenaga, M.

    1975-01-01

    The effectiveness of solid solution additions of Sn to Nb in improving the superconducting properties of diffusion processed Nb 3 Sn conductors was examined. It was found that an increase in the superconducting critical current density, Jc, as function of layer thickness (d) may be obtained for thick Nb 3 Sn layers by solid solution additions of Sn in Nb. A large increase in J/sub c/ (d) is also achieved by increasing the Sn content in the bronze matrix material. In addition to uses of this material in magnet fabrications a potential application of these improved J/sub c/(d) values may lie in the use of Nb 3 Sn in power transmission lines. Here, a high superconducting critical current density is necessary throughout the material to carry the increased current during fault conditions. The magnetic field dependence of J/sub c/ is a function of alloy content but the alloying changes studied here do not increase the high field critical current capability of Nb 3 Sn. (auth)

  13. Phase segregation in cerium-lanthanum solid solutions

    NARCIS (Netherlands)

    Belliere, V.; Joorst, G; Stephan, O; de Groot, FMF; Weckhuysen, BM

    2006-01-01

    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy ( STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a

  14. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  15. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  16. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  17. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  18. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    Science.gov (United States)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  19. Minimal parameter solution of the orthogonal matrix differential equation

    Science.gov (United States)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1990-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  20. Extraction of acetanilides in rice using ionic liquid-based matrix solid phase dispersion-solvent flotation.

    Science.gov (United States)

    Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie

    2018-04-15

    Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ab initio identified design principles of solid-solution strengthening in Al

    International Nuclear Information System (INIS)

    Ma Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2013-01-01

    Solid-solution strengthening in six Al–X binary systems is investigated using first-principle methods. The volumetric mismatch parameter and the solubility enthalpy per solute were calculated. We derive three rules for designing solid-solution strengthened alloys: (i) the solubility enthalpy per solute is related to the volumetric mismatch by a power law; (ii) for each annealing temperature, there exists an optimal solute–volume mismatch to achieve maximum strength; and (iii) the strengthening potential of high volumetric mismatch solutes is severely limited by their low solubility. Our results thus show that the thermodynamic properties of the system (here Al–X alloys) set clear upper bounds to the achievable strengthening effects owing to the reduced solubility with increasing volume mismatch. (paper)

  2. Matrix method for two-dimensional waveguide mode solution

    Science.gov (United States)

    Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee

    2018-05-01

    In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.

  3. Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se

    International Nuclear Information System (INIS)

    Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V.

    2014-01-01

    We have summarized experimental data on the phase diagram of the system Ag 2 S–Ag 2 Se. Standard thermodynamic functions of four solid solutions in this system have been calculated using the model of regular and subregular solutions: a restricted fcc solid solution γ-Ag 2 S-Ag 2 S 1−x Se x (x 2 S–Ag 2 Se, monoclinic solid solution (α) from Ag 2 S to Ag 2 S 0.4 Se 0.6 , and orthorhombic solid solution (α) from Ag 2 S 0.3 Se 0.7 to the Ag 2 Se. G mix and S mix have been evaluated using the subregular model for asymmetric solution for the region Ag 2 S 0.4 Se 0.6 –Ag 2 S 0.3 Se 0.7 . The thermodynamic data can be used for modeling in complex natural systems and in matters of semiconductor materials

  4. Headspace versus direct immersion solid phase microextraction in complex matrixes: investigation of analyte behavior in multicomponent mixtures.

    Science.gov (United States)

    Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz

    2015-08-18

    This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in

  5. The response matrix discrete ordinates solution to the 1D radiative transfer equation

    International Nuclear Information System (INIS)

    Ganapol, Barry D.

    2015-01-01

    The discrete ordinates method (DOM) of solution to the 1D radiative transfer equation has been an effective method of solution for nearly 70 years. During that time, the method has experienced numerous improvements as numerical and computational techniques have become more powerful and efficient. Here, we again consider the analytical solution to the discrete radiative transfer equation in a homogeneous medium by proposing a new, and consistent, form of solution that improves upon previous forms. Aided by a Wynn-epsilon convergence acceleration, its numerical evaluation can achieve extreme precision as demonstrated by comparison with published benchmarks. Finally, we readily extend the solution to a heterogeneous medium through the star product formulation producing a novel benchmark for closed form Henyey–Greenstein scattering as an example. - Highlights: • Presents a new solution to the RTE called the response matrix DOM (RM/DOM). • Solution representations avoid the instability common in exponential solutions. • Explicit form in terms of matrix hyperbolic functions. • Extreme accuracy through Wynn-epsilon acceleration checked by published benchmarks. • Provides a more transparent numerical evaluation than found previously

  6. Diffusion kinetics and spinodal decay of quasi-equilibrium solid solutions

    International Nuclear Information System (INIS)

    Zakharov, M.A.

    2000-01-01

    Phenomenological theory for rearrangement of solid solutions with the hierarchy of the component atomic mobilities is elaborated in the approximation of the local equilibrium. The hydrodynamic stage of the evolution of these solutions is studied as a sequence of quasi-equilibrium states characterized by implementation of some conditions of the total equilibrium. On the basis of separation of fast and slow constituents of diffusion and on the basis of the method of reduced description one derived equation for evolution of separations of fast components in quasi-equilibrium solid solutions at the arbitrary stages of rearrangement in terms of the generalized lattice model taking account of the proper volumes of the components. The conditions of the stability of quasi-equilibrium solutions to the spinodal decomposition are determined and the equations of metastability boundaries of such systems are derived [ru

  7. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  8. Exact solution of some linear matrix equations using algebraic methods

    Science.gov (United States)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  9. TOEPLITZ, Solution of Linear Equation System with Toeplitz or Circulant Matrix

    International Nuclear Information System (INIS)

    Garbow, B.

    1984-01-01

    Description of program or function: TOEPLITZ is a collection of FORTRAN subroutines for solving linear systems Ax=b, where A is a Toeplitz matrix, a Circulant matrix, or has one or several block structures based on Toeplitz or Circulant matrices. Such systems arise in problems of electrodynamics, acoustics, mathematical statistics, algebra, in the numerical solution of integral equations with a difference kernel, and in the theory of stationary time series and signals

  10. Hydrothermal crystallization of zirconia and zirconia solid solutions

    International Nuclear Information System (INIS)

    Pyda, W.; Haberko, K.; Bucko, M.M.

    1991-01-01

    Zirconia as well as yttria-zirconia and calcia-zirconia solid-solution powders were crystallized under hydrothermal conditions from (co)precipitated hydroxides. The morphology of the power particles is strongly dependent on the crystallization conditions. The powders crystallized in a water solution of Na, K, and Li hydroxides show elongated particles of much larger sizes than those which result from the process carried out in pure water or a water solution of Na, K, or Li chlorides. The shapes of the latter particles are isometric. In this paper the growth mechanism of the elongated particles is suggested

  11. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions

    International Nuclear Information System (INIS)

    Tao, D.P.

    2004-01-01

    Based on the free volume theory and the lattice model, the partition functions of pure solids and their mixtures were expressed. This resulted in the establishment of a thermodynamic model for solid solutions. The model naturally combines the excess entropy and excess enthalpy of a solution by means of new expressions of the configurational partition functions of solids and their mixtures derived from statistical thermodynamics, which is approximate to real solid solutions, that is S E ≠0 (V E ≠0) and H E ≠0. It can describe the thermodynamic properties of partially miscible systems and predict the thermodynamic properties in a multicomponent solid solution system using only the related binary infinite dilute activity coefficients. The predicted activity coefficients from the model are in good agreement with the experimental data of the ternary solid dilutions. This shows that the prediction effect of the proposed model is of better stability and reliability because it has a good physical basis

  12. On matrix diffusion: formulations, solution methods and qualitative effects

    Science.gov (United States)

    Carrera, Jesús; Sánchez-Vila, Xavier; Benet, Inmaculada; Medina, Agustín; Galarza, Germán; Guimerà, Jordi

    Matrix diffusion has become widely recognized as an important transport mechanism. Unfortunately, accounting for matrix diffusion complicates solute-transport simulations. This problem has led to simplified formulations, partly motivated by the solution method. As a result, some confusion has been generated about how to properly pose the problem. One of the objectives of this work is to find some unity among existing formulations and solution methods. In doing so, some asymptotic properties of matrix diffusion are derived. Specifically, early-time behavior (short tests) depends only on φm2RmDm / Lm2, whereas late-time behavior (long tracer tests) depends only on φmRm, and not on matrix diffusion coefficient or block size and shape. The latter is always true for mean arrival time. These properties help in: (a) analyzing the qualitative behavior of matrix diffusion; (b) explaining one paradox of solute transport through fractured rocks (the apparent dependence of porosity on travel time); (c) discriminating between matrix diffusion and other problems (such as kinetic sorption or heterogeneity); and (d) describing identifiability problems and ways to overcome them. RésuméLa diffusion matricielle est un phénomène reconnu maintenant comme un mécanisme de transport important. Malheureusement, la prise en compte de la diffusion matricielle complique la simulation du transport de soluté. Ce problème a conduit à des formulations simplifiées, en partie à cause de la méthode de résolution. Il s'en est suivi une certaine confusion sur la façon de poser correctement le problème. L'un des objectifs de ce travail est de trouver une certaine unité parmi les formulations et les méthodes de résolution. C'est ainsi que certaines propriétés asymptotiques de la diffusion matricielle ont été dérivées. En particulier, le comportement à l'origine (expériences de traçage courtes) dépend uniquement du terme φm2RmDm / Lm2, alors que le comportement à long terme

  13. Nanocellular foam with solid flame retardant

    Science.gov (United States)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.; Costeux, Stephane

    2017-11-21

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.

  14. Comparison of ethylcellulose matrix characteristics prepared by solid dispersion technique or physical mixing

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadeghi

    2003-07-01

    Full Text Available The characteristics of ethylcellulose matrices prepared from solid dispersion systems were compared with those prepared from physical mixture of drug and polymer. Sodium diclofenac was used as a model drug and the effect of the drug:polymer ratio and the method of matrix production on tablet crushing strength, friability, drug release profile and drug release mechanism were evaluated. The results showed that increasing the polymer content in matrices increased the crushing strengths of tablets. However the friability of tablets was independent of polymer content. Drug release rate was greatly affected by the amount of polymer in the matrices and considerable decrease in release rate was observed by increasing the polymer content. It was also found that the type of mixture used for matrix production had great influence on the tablet crushing strength and drug release rate. Matrices prepared from physical mixtures of drug and polymer was harder than those prepared from solid dispersion systems, but their release rates were considerably faster. This phenomenon was attributed to the encapsulation of drug particles by polymer in matrices prepared from solid dispersion system which caused a great delay in diffusion of the drug through polymer and made diffusion as a rate retarding process in drug release mechanism.

  15. A new Eulerian-Lagrangian finite element simulator for solute transport in discrete fracture-matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-07-01

    Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.

  16. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Karakirova, Y.

    2007-01-01

    A simple new approach for independent calibration of solid state/EPR (SS/EPR) dosimetry system is reported. It is based on the fact that: (i) gamma-irradiation of solid sucrose (sugar) induces stable EPR detectable free radicals accompanied by UV detectable brown colour stable in the solid state and in solution; (ii) both the EPR intensity of gamma-irradiated solid sucrose and its solution UV absorbance linearly depend on the absorbed dose high energy radiation and may be independently used for dosimetric purpose; (iii) UV spectrometers are calibrated. The correlation between EPR response and absorbed dose radiation of solid sucrose and UV absorption of its solutions is used in the present communication for calibration purpose. The procedure of sucrose extraction from sucrose-paraffin dosimeters is described. The calibration procedure may be applied to any other (alanine, self-calibrated, etc.) SS/EPR dosimeters, simultaneously irradiated with sucrose

  17. Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions

    Directory of Open Access Journals (Sweden)

    Marina Popolizio

    2018-01-01

    Full Text Available Multiterm fractional differential equations (MTFDEs nowadays represent a widely used tool to model many important processes, particularly for multirate systems. Their numerical solution is then a compelling subject that deserves great attention, not least because of the difficulties to apply general purpose methods for fractional differential equations (FDEs to this case. In this paper, we first transform the MTFDEs into equivalent systems of FDEs, as done by Diethelm and Ford; in this way, the solution can be expressed in terms of Mittag–Leffler (ML functions evaluated at matrix arguments. We then propose to compute it by resorting to the matrix approach proposed by Garrappa and Popolizio. Several numerical tests are presented that clearly show that this matrix approach is very accurate and fast, also in comparison with other numerical methods.

  18. [Evaluation of the Peusner's coefficients matrix for polymeric membrane and ternary non-electrolyte solutions].

    Science.gov (United States)

    Jasik-Slęzak, Jolanta; Slęzak-Prochazka, Izabella; Slęzak, Andrzej

    2014-01-01

    A system of network forms of Kedem-Katchalsky (K-K) equations for ternary non-electrolyte solutions is made of eight matrix equations containing Peusner's coefficients R(ij), L(ij), H(ij), W(ij), K(ij), N(ij), S(ij) or P(ij) (i, j ∈ {1, 2, 3}). The equations are the result of symmetric or hybrid transformation of the classic form of K-K equations by the use of methods of Peusner's network thermodynamics (PNT). Calculating concentration dependences of the determinant of Peusner's coefficients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) and P(ij) (i, j ∈ {1, 2, 3}). The material used in the experiment was a hemodialysis Nephrophan membrane with specified transport properties (L(p), σ, Ω) in aqueous glucose and ethanol solution. The method involved equations for determinants of the matrixes coefficients R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}). The objective of calculations were dependences of determinants of Peusner's coeffcients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}) within the conditions of solution homogeneity upon an average concentration of one component of solution in the membrane (C1) with a determined value of the second component (C2). The method of calculating the determinants of Peusner's coeffcients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}) is a new tool that may be applicable in studies on membrane transport. Calculations showed that the coefficients are sensitive to concentration and composition of solutions separated by a polymeric membrane.

  19. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR.

    Science.gov (United States)

    Policianova, Olivia; Brus, Jiri; Hruby, Martin; Urbanova, Martina; Zhigunov, Alexander; Kredatusova, Jana; Kobera, Libor

    2014-02-03

    Solid dispersions of active pharmaceutical ingredients are of increasing interest due to their versatile use. In the present study polyvinylpyrrolidone (PVP), poly[N-(2-hydroxypropyl)-metacrylamide] (pHPMA), poly(2-ethyl-2-oxazoline) (PEOx), and polyethylene glycol (PEG), each in three Mw, were used to demonstrate structural diversity of solid dispersions. Acetylsalicylic acid (ASA) was used as a model drug. Four distinct types of the solid dispersions of ASA were created using a freeze-drying method: (i) crystalline solid dispersions containing nanocrystalline ASA in a crystalline PEG matrix; (ii) amorphous glass suspensions with large ASA crystallites embedded in amorphous pHPMA; (iii) solid solutions with molecularly dispersed ASA in rigid amorphous PVP; and (iv) nanoheterogeneous solid solutions/suspensions containing nanosized ASA clusters dispersed in a semiflexible matrix of PEOx. The obtained structural data confirmed that the type of solid dispersion can be primarily controlled by the chemical constitutions of the applied polymers, while the molecular weight of the polymers had no detectable impact. The molecular structure of the prepared dispersions was characterized using solid-state NMR, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). By applying various (1)H-(13)C and (1)H-(1)H correlation experiments combined with T1((1)H) and T1ρ((1)H) relaxation data, the extent of the molecular mixing was determined over a wide range of distances, from intimate intermolecular contacts (0.1-0.5 nm) up to the phase-separated nanodomains reaching ca. 500 nm. Hydrogen-bond interactions between ASA and polymers were probed by the analysis of (13)C and (15)N CP/MAS NMR spectra combined with the measurements of (1)H-(15)N dipolar profiles. Overall potentialities and limitations of individual experimental techniques were thoroughly evaluated.

  20. PERTURBATION ESTIMATES FOR THE MAXIMAL SOLUTION OF A NONLINEAR MATRIX EQUATION

    Directory of Open Access Journals (Sweden)

    Vejdi I. Hasanov

    2017-06-01

    Full Text Available In this paper a nonlinear matrix equation is considered. Perturba- tion estimations for the maximal solution of the considered equation are obtained. The results are illustrated by the use of numerical ex- amples.

  1. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  2. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach.

    Science.gov (United States)

    Reichhardt, Courtney; Fong, Jiunn C N; Yildiz, Fitnat; Cegelski, Lynette

    2015-01-01

    Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analyses. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using ¹³C CPMAS and ¹³C{(¹⁵N}, ¹⁵N{³¹P}, and ¹³C{³¹P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, ¹⁵N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. Copyright © 2014. Published by Elsevier B.V.

  3. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    Science.gov (United States)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  4. Contribution to the study of the structure of silver krypton solid solutions; Contribution a l'etude de la structure des solutions solides argent-krypton

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Tullairet, J; Delaplace, J; Antolin-Baudier, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [French] Les solutions solides argent, krypton, realisees par decharges electrique ont ete etudiees par Rayons X, resistivite electrique et microscopie electronique en transmission. Les mesures de parametre cristallin et de resistivite residuelle ont montre que le comportement de l'atome de krypton est tres different de celui des autres elements de la classification periodique en solution dans l'argent. La restauration du parametre cristallin et de la resistivite electrique en fonction de la temperature a ete etudiee. (auteurs)

  5. Water-equivalent solid sources prepared by means of two distinct methods

    International Nuclear Information System (INIS)

    Koskinas, Marina F.; Yamazaki, Ione M.; Potiens Junior, Ademar

    2014-01-01

    The Nuclear Metrology Laboratory at IPEN is involved in developing radioactive water-equivalent solid sources prepared from an aqueous solution of acrylamide using two distinct methods for polymerization. One of them is the polymerization by high dose of 60 Co irradiation; in the other method the solid matrix-polyacrylamide is obtained from an aqueous solution composed by acrylamide, catalyzers and an aliquot of a radionuclide. The sources have been prepared in cylindrical geometry. In this paper, the study of the distribution of radioactive material in the solid sources prepared by both methods is presented. (author)

  6. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    International Nuclear Information System (INIS)

    Ma, Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2015-01-01

    We propose an approach for the computationally efficient and quantitatively accurate prediction of solid-solution strengthening. It combines the 2-D Peierls–Nabarro model and a recently developed solid-solution strengthening model. Solid-solution strengthening is examined with Al–Mg and Al–Li as representative alloy systems, demonstrating a good agreement between theory and experiments within the temperature range in which the dislocation motion is overdamped. Through a parametric study, two guideline maps of the misfit parameters against (i) the critical resolved shear stress, τ 0 , at 0 K and (ii) the energy barrier, ΔE b , against dislocation motion in a solid solution with randomly distributed solute atoms are created. With these two guideline maps, τ 0 at finite temperatures is predicted for other Al binary systems, and compared with available experiments, achieving good agreement

  7. Low-temperature matrix effects on orientational motion of Methyl radical trapped in gas solids: Angular tunneling vs. libration

    Science.gov (United States)

    Dmitriev, Yurij A.; Zelenetckii, Ilia A.; Benetis, Nikolas P.

    2018-05-01

    EPR investigation of the lineshape of matrix -isolated methyl radical, CH3, spectra recorded in solid N2O and CO2 was carried out. Reversible temperature-dependent line width anisotropy was observed in both matrices. This effect is a fingerprint of the extra-slow radical rotation about the in-plane C2 axes. The rotation was found to be anisotropic and closely correlated to the orientational dynamics of the matrix molecules. It was suggested that a recently discovered "hoping precession" effect of matrix molecules in solid CO2 is a common feature of matrices of the linear molecules CO, N2O, and CO2. A new low-temperature matrix effect, referred to as "libration trap", was proposed which accounts for the changing CH3 reorientational motion about the radical C3-axis from rotation to libration. Temperature dependence of the intensity of the EPR satellites produced by these nonrotating-but librating methyls was presented. This allowed for a rough estimation of the rotation hindering potential due to correlation mismatch between the radical and the nearest matrix molecules' librations.

  8. Acceleration of criticality analysis solution convergence by matrix eigenvector for a system with weak neutron interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Takada, Tomoyuki; Kuroishi, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kadotani, Hiroyuki [Shizuoka Sangyo Univ., Iwata, Shizuoka (Japan)

    2003-03-01

    In the case of Monte Carlo calculation to obtain a neutron multiplication factor for a system of weak neutron interaction, there might be some problems concerning convergence of the solution. Concerning this difficulty in the computer code calculations, theoretical derivation was made from the general neutron transport equation and consideration was given for acceleration of solution convergence by using the matrix eigenvector in this report. Accordingly, matrix eigenvector calculation scheme was incorporated together with procedure to make acceleration of convergence into the continuous energy Monte Carlo code MCNP. Furthermore, effectiveness of acceleration of solution convergence by matrix eigenvector was ascertained with the results obtained by applying to the two OECD/NEA criticality analysis benchmark problems. (author)

  9. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  10. Synthesis and characterization of type solid solution in the binary ...

    Indian Academy of Sciences (India)

    We have investigated Bi2O3–Eu2O3 binary system by doping with Eu2O3 in the composition range from 1 to 10 mole% via solid state reactions and succeeded to stabilize -Bi2O3 ... Our experimental observations strongly suggested that oxygen deficiency type non-stoichiometry is present in doped type solid solutions.

  11. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  12. Growth and dissolution of liquid 3He droplets in solid 4He matrix

    International Nuclear Information System (INIS)

    Gan'shin, A.N.; Grigor'ev, V.N.; Majdanov, V.A.; Penzev, A.A.; Rudavskij, Eh.Ya.; Rybalko, A.S.

    2000-01-01

    The phase separation kinetics of solid 3 He - 4 He mixtures was investigated using pressure measurements in the conditions when the two-phase system formed consists of concentrated phase liquid droplets (almost pure 3 He) in the dilute phase crystal matrix (almost pure 4 He). It is shown that the liquid droplet growth may be described by a sum of two exponential processes with small and large time contacts as cooling down step by step. This is a result of the strong influence of strains which appear in the crystal at the phase separation due to a large difference in molar volume between the phases and probably give rise to plastic deformation of the matrix and to non-equilibrium 3 He concentration in it. The 3 He atom transfer occurs only to the extent of strain relaxation. It is found that the cyclic growth and dissolution of the liquid droplets affect the crystal quality and lead to pressure increase. The coexistence of liquid and solid phases in droplets is speculated to be possible

  13. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  14. Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties

    Directory of Open Access Journals (Sweden)

    Snežana Bošković

    2012-09-01

    Full Text Available In this paper a short review of our results on the synthesis of nanosized CeO2, CaMnO3 and BaCeO3 solid solutions are presented. The nanopowders were prepared by two innovative methods: self propagating room temperature synthesis (SPRT and modified glycine/nitrate procedure (MGNP. Different types of solid solutions with rare earth dopants in concentrations ranging from 0–0.25 mol% were synthesized. The reactions forming solid solutions were studied. In addition, the characteristics of prepared nanopowders, phenomena during sintering and the properties of sintered samples are discussed.

  15. Environmental Dependence of Artifact CD Peaks of Chiral Schiff Base 3d-4f Complexes in Soft Mater PMMA Matrix

    Directory of Open Access Journals (Sweden)

    Yu Okamoto

    2011-10-01

    Full Text Available Four chiral Schiff base binuclear 3d-4f complexes (NdNi, NdCu, GdNi, and GdCu have been prepared and characterized by means of electronic and CD spectra, IR spectra, magnetic measurements, and X-ray crystallography (NdNi. A so-called artifact peak of solid state CD spectra, which was characteristic of oriented molecules without free molecular rotation, appeared at about 470 nm. Magnetic data of the complexes in the solid state (powder and in PMMA cast films or solutions indicated that only GdCu preserved molecular structures in various matrixes of soft maters. For the first time, we have used the changes of intensity of artifact CD peaks to detect properties of environmental (media solid state (KBr pellets, PMMA cast films, concentration dependence of PMMA in acetone solutions, and pure acetone solution for chiral 3d-4f complexes (GdCu. Rigid matrix keeping anisotropic orientation exhibited a decrease in the intensity of the artifact CD peak toward negative values. The present results suggest that solid state artifact CD peaks can be affected by environmental viscosity of a soft mater matrix.

  16. Thermal conductivities of (ZrxPu(1-x)/2Am(1-x)/2)N solid solutions

    International Nuclear Information System (INIS)

    Nishi, Tsuyoshi; Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo

    2011-01-01

    The thermal conductivity of Zr-based transuranium (TRU) nitride solid solutions is important for designing subcritical cores in nitride-fueled ADS. Some results have been reported concerning the thermal conductivities of (Zr,Pu)N. However, there have been no experimental data on the thermal conductivities of Zr-based nitride solid solutions containing MA. In this study, the authors prepared sintered samples of (Zr x Pu (1-x)/2 Am (1-x)/2) N (x=0.0, 0.58, 0.80) solid solutions. The thermal diffusivity and heat capacity of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were measured using a laser flash method and drop calorimetry, respectively. Thermal conductivities were determined from the measured thermal diffusivities, heat capacities and bulk densities over a temperature range of 473 to 1473 K. The thermal conductivities of (Zr 0.58 Pu 0.21 Am 0.21 )N and (Zr 0.80 Pu 0.10 Am 0.10 )N solid solutions were found to be higher than that of (Pu 0.5 Am 0.5 )N due to the high thermal conductivity of ZrN as the principal component, although they were lower than that of ZrN due to the impurifying effect of the transuranium elements. Thus, the thermal conductivities of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions increased with increasing ZrN concentration. Moreover, in order to help to promote the design study of nitride-fueled ADS, the thermal conductivity of the (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were fitted to an equation using the least squares method. (author)

  17. Long-term behavior of refractory thorium-plutonium dioxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Claparede, Laurent, E-mail: laurent.claparede@umontpellier.fr [ICSM, UMR 5257 CNRS/CEA/Univ. Montpellier/ENSCM, Site de Marcoule, Bât. 426, BP 17171, 30207 Bagnols/Cèze (France); Guigue, Mireille [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France); Jouan, Gauthier [CEA, Nuclear Energy Division, DTEC Department, BP 17171, 30207 Bagnols/Cèze (France); Nadah, Nassima [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France); Dacheux, Nicolas [ICSM, UMR 5257 CNRS/CEA/Univ. Montpellier/ENSCM, Site de Marcoule, Bât. 426, BP 17171, 30207 Bagnols/Cèze (France); Moisy, Philippe [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France)

    2017-01-15

    The long-term behavior of Th{sub 0.87}Pu{sub 0.13}O{sub 2} was examined in nitric acid concentrations. The normalized dissolution rates after 3380 days, range from (1.4 ± 0.2) × 10{sup −6} g m{sup −2} d{sup −1} in 5 M HNO{sub 3} down to (3.2 ± 0.4) × 10{sup −8} g m{sup −2} d{sup −1} in 10{sup −3} M HNO{sub 3}, which confirms the high chemical durability of this solid solution. The amounts of plutonium measured in solution lead to 0.9% and 2.1% of dissolved solid in 1 M and 5 M HNO{sub 3}, respectively. In such conditions, the time required to reach the full dissolution of the material varies from 430 years (5 M HNO{sub 3}) to 18,000 years (10{sup −3} M HNO{sub 3}). Moreover, the partial order related to the proton activity (n = 0.45 ± 0.03) suggests that the dissolution is mainly driven by surface reactions occurring at the solid/liquid interface. The characterization of the leached samples by SEM shows small microstructural modifications (i.e. detachment of crystallites) and the absence of neoformed phase while from PXRD, the unit cell parameter and crystallite size are not significantly affected. - Highlights: • Leaching tests of Th{sub 0.87}Pu{sub 0.13}O{sub 2} were performed for 9 years in several nitric acid solutions. • The high chemical durability of thorium-plutonium oxide solid solutions was confirmed. • The solubility of plutonium(IV) was not controlled by the precipitation of plutonium tetrahydroxide in these experiments.

  18. Synthesis and characterization of solid solutions in ABCO 4 system

    Science.gov (United States)

    Novoselov, A.; Zimina, G.; Komissarova, L.; Pajaczkowska, A.

    2006-01-01

    Formation of continuous solid solutions with a tetragonal structure of K 2NiF 4-type was investigated by direct solid-state synthesis, carbonate precipitations, the freeze-drying method and the Czochralski crystal growth technique. In the systems of SrLaAlO 4-CaLaAlO 4, SrNdAlO 4-CaNdAlO 4, SrPrAlO 4-CaPrAlO 4, SrLaAlO 4-SrLaGaO 4 and SrLaAlO 4-SrLaFeO 4 solid solutions are formed in the whole concentration range (0.0⩽ x⩽1.0) and in the systems of SrLaAlO 4-SrLaMnO 4 and SrLaAlO 4-SrLaCrO 4 in the limited compositional interval of (0.0⩽ x⩽0.20) and (0.0⩽ x⩽0.25), respectively, with composition dependency of lattice constants following Vegard's law.

  19. Studies on supercritical fluid extraction of uranium and thorium from liquid and solid matrix

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Pal, Ankita; Saxena, M.K.; Ramakumar, K.L.

    2006-05-01

    Supercritical fluid extraction (SFE) is being widely used in pharmaceutical and food industry. Because of its simplicity, ease of operation and more importantly the reduction in the analytical waste generation, this technique is being viewed as a potential application technique in nuclear industry also. CO 2 is employed as supercritical fluid (SCF) as it is easily recyclable, non-toxic, chemically inert, radiochemically stable and inexpensive. Radioanalytical chemistry section (Radiochemistry and Isotope group) has recently procured a supercritical fluid extraction/chromatography system. The present report describes the work carried out on the system. Detailed study on uranium and thorium extraction from highly acidic medium and tissue paper matrix has been carried out. Direct dissolution and extraction of uranium compounds employing SCF has been carried out. CO 2 was employed as supercritical fluid along with very small amount of Tri n-butyl phosphate (TBP) and Tri n-octyl phosphine oxide (TOPO) as co-solvents. The effect of various operating parameters like CO 2 flow rate, co-solvent percentage, temperature and pressure on extraction was investigated and parameters for maximum extraction were optimized. For comparison, the modes of extraction viz. static and dynamic and modes of complexation viz. in-situ and online were studied. Uranium extraction of ∼98% has been achieved from nitric acid medium employing TBP as co-solvent in 30 minutes extraction time, whereas with TOPO ∼99% uranium extraction could be achieved. Uranium from tissue paper matrix could be extracted upto the extent of 98% with TOPO as co-solvent whereas with TBP extraction of (66.83± 9.80)% was achievable. Direct dissolution of UO 2 , U 3 O 8 , U metal, U-Al alloy solids into SCF CO 2 was carried out employing TBP-HNO 3 complex and SFE of uranium was performed using TBP as co-solvent. UO 2 and U 3 O 8 solids could be dissolved within 20 minutes and extraction of ∼98% was achieved. For U

  20. The complex synthesis and solid state chemistry of ceria-lanthana solid solutions prepared via a hexamethylenetetramine precipitation

    International Nuclear Information System (INIS)

    Fleming, P.G.; Holmes, J.D.; Otway, D.J.; Morris, M.A.

    2011-01-01

    Mixed oxide solid solutions are becoming ever more commercially important across a range of applications. However, their synthesis can be problematical. Here, we show that ceria-lanthana solid solutions can be readily prepared via simple precipitation using hexamethylenetetramine. However, the solution chemistry can be complex, which results in the precipitated particles having a complex structure and morphology. Great care must be taken in both the synthesis and characterisation to quantify the complexity of the product. Even very high heat treatments were not able to produce highly homogeneous materials and X-ray diffractions reveals the non-equilibrium form of particles prepared in this way. Unexpected crystal structures are revealed including a new metastable cubic La 2 O 3 phase. - Graphical abstract: The suggested mechanism for the formation of dual fluorite phase particles, where Step 1 corresponds to room temperature aging, Step 2; heating the solution to 90 deg. C, Step 3; cooling of the solution to room temperature, Step 4; calcination to 500 deg. C, Step 5; calcination to 700 deg. C and Step 6; calcination to 1300 deg. C. The terminology of e.g. La 1-x Ce x (OH) 3 is used to indicate the formation of a mixed oxy-hydroxy participate rather than a definitive assignment of stoichiometry. Similarly, La 1-y Ce y O 2 only implies a mixed solid solution. Highlights: → Mol% of prepared Ce-La oxides did not follow that of reactant mol%. → Complex reaction pathway found to be dependent on metal solution concentrations. → At certain concentrations core shell particles were found to form. → A reaction model was produced based on cationic solubility. → Report lanthana solubility higher than previously reported in CeO 2 .

  1. Direct and indirect effects of radiation on polar solid solutions

    International Nuclear Information System (INIS)

    Ershov, V.G.; Gaponova, I.S.

    1982-01-01

    Radiation-chemical decomposition of a solute is due to the direct effect of ionizing radiation on it and also to its reaction with radical-ion products of radiolysis of the solution. At low temperature, the movement of the reagents is limited, and thus it is possible to isolate and evaluate the contribution of direct and indirect effects of radiation on the solute. The present paper is devoted to an investigation of the mechanism of formation of radicals from a solute (LiNO 2 ) in a polar solid solution (CH 3 OH) under the effect of γ-radiation

  2. Fabrication of metal matrix composite by semi-solid powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yufeng [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  3. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    International Nuclear Information System (INIS)

    Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.

    2014-01-01

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process

  4. Characterization of solid-solution interface by potentiometric titration and electrophoretic mobility

    International Nuclear Information System (INIS)

    Lindecker, C.; Drot, R.; Fourest, B.; Simoni, E.

    1999-01-01

    The study of nuclear waste storage in deep geological sites involves the understanding of processes which could produce a possible dispersion or retention of radioelements. The dispersion of solid particles in aqueous solution is consequently important to be characterized. In this bi-phased system it is necessary to determine the characteristics of the solid-solution interface. The method used of this study is the techniques of potentiometric titration applied to heterogeneous systems. The material studied were phosphate matrices which were synthesized in the laboratory. The dependence of their surface change upon the nature of the electrolytes was investigated

  5. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  6. Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zhenzi, E-mail: zzjing@tongji.edu.cn [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Jin, Fangming [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2017-05-15

    Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6–5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite. - Highlights: •Pure pollucite barely exists in nature due to coexistence of Cs and Na. •Pollucite, analcime and their solid solutions could be hydrothermally synthesized. •Most formed solid solutions were found to have similar properties to pollucite. •Even coexistence in nature, pollucite favors to form due to site preference for Cs over Na.

  7. Light refractive index in indium phosphide and InP-containing solid solutions

    International Nuclear Information System (INIS)

    Yas'kov, A.D.

    1983-01-01

    Spectral and temperatUre dependences of the InP and Gasub(x)Insub(1-x)P refractive indexes in the range of 0.98-1.3 μm are measured. The obtained in this case and published earlier experimental data on refractive index dispersion of the InP and solid solutions with its participation are generalized within the framework of a simple model approach based on a consecutiVe account of measured parameters of zone structure with the solid solution composition

  8. Explicit solutions to correlation matrix completion problems, with an application to risk management and insurance.

    Science.gov (United States)

    Georgescu, Dan I; Higham, Nicholas J; Peters, Gareth W

    2018-03-01

    We derive explicit solutions to the problem of completing a partially specified correlation matrix. Our results apply to several block structures for the unspecified entries that arise in insurance and risk management, where an insurance company with many lines of business is required to satisfy certain capital requirements but may have incomplete knowledge of the underlying correlation matrix. Among the many possible completions, we focus on the one with maximal determinant. This has attractive properties and we argue that it is suitable for use in the insurance application. Our explicit formulae enable easy solution of practical problems and are useful for testing more general algorithms for the maximal determinant correlation matrix completion problem.

  9. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  10. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0solid solutions and the gaseous oxygen by thermal gravimetric analysis at 600 degrees Celsius has shown that these solutions have not a ideal behaviour. A thermodynamic model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  11. Solution of the scattering T matrix equation in discrete complex momentum space

    International Nuclear Information System (INIS)

    Rawitscher, G.H.; Delic, G.

    1984-01-01

    The scattering solution to the Lippmann-Schwinger equation is expanded into a set of spherical Bessel functions of complex wave numbers, K/sub j/, with j = 1,2 , . . . , M. The value of each K/sub j/ is determined from the condition that the spherical Bessel function smoothly matches onto an asymptotically outgoing spherical Hankel (or Coulomb) function of the correct physical wave number at a matching point R. The spherical Bessel functions thus determined are Sturmian functions, and they form a complete set in the interval 0 to R. The coefficients of the expansion of the scattering function are determined by matrix inversion of a linear set of algebraic equations, which are equivalent to the solution of the T-matrix equation in complex momentum space. In view of the presence of a matching radius, no singularities are encountered for the Green's functions, and the inclusion of Coulomb potentials offers no computational difficulties. Three numerical examples are performed in order to illustrate the convergence of the elastic scattering matrix S with M. One of these consists of a set of coupled equations which describe the breakup of a deuteron as it scatters from the nucleus on 58 Ni. A value of M of 15 or less is found sufficient to reproduce the exact S matrix element to an accuracy of four figures after the decimal point

  12. Determination of clenbuterol in bovine liver by combining matrix solid phase dispersion and molecularly imprinted solid phase extraction followed by liquid chromatography/electrospray ion trap multiple stage mass spectrometry

    NARCIS (Netherlands)

    Crescenzi, C; Bayoudh, S; Cormack, P.A G; Klein, T; Ensing, K

    2001-01-01

    Matrix solid-phase dispersion(MSPD) is a new sample pretreatment for solid samples. This technique greatly simplifies sample pretreatment but, nonetheless, the extracts often still require an extra cleanup step that is both laborious and time-consuming. The potential;of combining MSPD with

  13. Studies on Al-Mg solid solutions using electrical resistivity and microhardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Afify, N.; El-Halawany, S.M.; Mossad, A. [Assiut Univ. (Egypt). Dept. of Physics

    1999-08-01

    Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al-Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as {delta}{rho}{sub all} = 64.66 c(1-c) {mu}{omega} cm. In addition, both the temperature coefficient of resistivity, {alpha}{sub all} and the relaxation time of the free electrons {tau}{sub all} in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, {eta}, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature {theta} decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation {delta}HV{sub s} = 135.5C{sup 0.778} MPa which is comparable to the theory of solid solution hardening for all alloys; {delta}HV{sub s} {approx} C{sup 0.5-0.67} MPa. (orig.)

  14. Preconditioned Krylov and Gauss-Seidel solutions of response matrix equations

    International Nuclear Information System (INIS)

    Lewis, E.E.; Smith, M.A.; Yang, W.S.; Wollaber, A.

    2011-01-01

    The use of preconditioned Krylov methods is examined as an alternative to the partitioned matrix acceleration applied to red-black Gauss Seidel (RBGS) iteration that is presently used in the variational nodal code, VARIANT. We employ the GMRES algorithm to treat non-symmetric response matrix equations. A pre conditioner is formulated for the within-group diffusion equation which is equivalent to partitioned matrix acceleration of RBGS iterations. We employ the pre conditioner, which closely parallels two-level p multigrid, to improve RBGS and GMRES algorithms. Of the accelerated algorithms, GMRES converges with less computational effort than RBGS and therefore is chosen for further development. The p multigrid pre conditioner requires response matrices with two or more degrees of freedom (DOF) per interface that are polynomials, which are both orthogonal and hierarchical. It is therefore not directly applicable to very fine mesh calculations that are both slow to converge and that are often modeled with response matrices with only one DOF per interface. Orthogonal matrix aggregation (OMA) is introduced to circumvent this difficulty by combining N×N fine mesh response matrices with one DOF per interface into a coarse mesh response matrix with N orthogonal DOF per interface. Numerical results show that OMA used alone or in combination with p multigrid preconditioning substantially accelerates GMRES solutions. (author)

  15. Preconditioned Krylov and Gauss-Seidel solutions of response matrix equations

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, E.E., E-mail: e-lewis@northwestern.edu [Department of Mechanical Engineering, Northwestern University, Evanston, IL (United States); Smith, M.A.; Yang, W.S.; Wollaber, A., E-mail: masmith@anl.gov, E-mail: wsyang@anl.gov, E-mail: wollaber@lanl.gov [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2011-07-01

    The use of preconditioned Krylov methods is examined as an alternative to the partitioned matrix acceleration applied to red-black Gauss Seidel (RBGS) iteration that is presently used in the variational nodal code, VARIANT. We employ the GMRES algorithm to treat non-symmetric response matrix equations. A pre conditioner is formulated for the within-group diffusion equation which is equivalent to partitioned matrix acceleration of RBGS iterations. We employ the pre conditioner, which closely parallels two-level p multigrid, to improve RBGS and GMRES algorithms. Of the accelerated algorithms, GMRES converges with less computational effort than RBGS and therefore is chosen for further development. The p multigrid pre conditioner requires response matrices with two or more degrees of freedom (DOF) per interface that are polynomials, which are both orthogonal and hierarchical. It is therefore not directly applicable to very fine mesh calculations that are both slow to converge and that are often modeled with response matrices with only one DOF per interface. Orthogonal matrix aggregation (OMA) is introduced to circumvent this difficulty by combining N×N fine mesh response matrices with one DOF per interface into a coarse mesh response matrix with N orthogonal DOF per interface. Numerical results show that OMA used alone or in combination with p multigrid preconditioning substantially accelerates GMRES solutions. (author)

  16. Solute redistribution in dendritic solidification with diffusion in the solid

    Science.gov (United States)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  17. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  18. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  19. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  20. Current state in adsorption from multicomponent solutions of nonelectrolytes on solids

    International Nuclear Information System (INIS)

    Borowko, M.; Jaroniec, M.

    1983-01-01

    This paper surveys the research carried out on the adsorption from multicomponent liquid mixtures of nonelectrolytes on solids with emphasis on the work performed by the authors. The consistent theoretical treatment of adsorption from concentrated and dilute multicomponent solutions and its application to the liquid adsorption chromatography with the mixed mobile phase are presented. This treatment involved nonideality of the bulk and surface phases, energetic heterogeneity of the adsorbent surface and it may be extended to multilayer adsorption from solutions. The multicomponent liquid/solid adsorption systems, studied experimentally, are reviewed. Many of them have been examined by means of the equations derived for liquid adsorption on heterogeneous surfaces. These studies are summarized in this paper. Moreover, the model studies illustrating the influence of solution nonideality and adsorbent heterogeneity on the excess adsorption isotherms and the distribution coefficient are discussed. (orig.)

  1. Face-centered-cubic Nb-Si solid solutions produced by picosecond pulsed laser quenching

    International Nuclear Information System (INIS)

    Wang, W.K.; Spaepen, F.

    1985-01-01

    Face-centered-cubic Nb/sub 100-x/Si/sub x/ solid solutions (10 2 . The lattice parameters of these solutions suggest that the solute atoms can be interstitial or substitutional, probably as a result of a change in the quenching conditions

  2. The {P,Q,k+1}-Reflexive Solution to System of Matrix Equations AX=C, XB=D

    Directory of Open Access Journals (Sweden)

    Chang-Zhou Dong

    2015-01-01

    Full Text Available Let P∈Cm×m and Q∈Cn×n be Hermitian and {k+1}-potent matrices; that is, Pk+1=P=P⁎ and Qk+1=Q=Q⁎, where ·⁎ stands for the conjugate transpose of a matrix. A matrix X∈Cm×n is called {P,Q,k+1}-reflexive (antireflexive if PXQ=X (PXQ=-X. In this paper, the system of matrix equations AX=C and XB=D subject to {P,Q,k+1}-reflexive and antireflexive constraints is studied by converting into two simpler cases: k=1 and k=2. We give the solvability conditions and the general solution to this system; in addition, the least squares solution is derived; finally, the associated optimal approximation problem for a given matrix is considered.

  3. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    Science.gov (United States)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  4. Structure and high-piezoelectricity in lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, B.

    2002-01-01

    A review of the recent advances in the understanding of piezoelectricity in lead oxide solid solutions is presented, giving special attention to the structural aspects. It has now become clear that the very high electromechanical response in these materials is directly related to the existence of

  5. Changes in the Spectral Features of Zinc Phthalocyanine Induced by Nitrogen Dioxide Gas in Solution and in Solid Polymer Nanofiber Media.

    Science.gov (United States)

    Zugle, Ruphino; Tetteh, Samuel

    2017-03-01

    The changes in the spectral features of zinc phthalocyanine in the visible domain as a result of its interaction with nitrogen dioxide gas were assessed in this work. This was done both in solution and when the phthalocyanine was incorporated into a solid polystyrene polymer nanofiber matrix. The spectral changes were found to be spontaneous and marked in both cases suggesting a rapid response criterion for the detection of the gas. In particular, the functionalised nano-fabric material could serve as a practical fire alarm system as it rapidly detects the nitrogen dioxide gas generated during burning.

  6. Application of Box-Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances.

    Science.gov (United States)

    Zhang, Junjie; Wei, Yanli; Li, Huizhen; Zeng, Eddy Y; You, Jing

    2017-08-01

    Extensive use of neonicotinoid insecticides has raised great concerns about their ecological risk. A reliable method to measure trace neonicotinoids in complicated aquatic environment is a premise for assessing their aquatic risk. To effectively remove matrix interfering substances from field water samples before instrumental analysis with HPLC/MS/MS, a multi-sorbent solid phase extraction method was developed using Box-Behnken design. The optimized method employed 200mg HLB/GCB (w/w, 8/2) as the sorbents and 6mL of 20% acetone in acetonitrile as the elution solution. The method was applied for measuring neonicotinoids in water at a wide range of concentrations (0.03-100μg/L) containing various amounts of matrix components. The recoveries of acetamiprid, imidacloprid, thiacloprid and thiamethoxam from the spiked samples ranged from 76.3% to 107% while clothianidin and dinotefuran had relatively lower recoveries. The recoveries of neonicotinoids in water with various amounts of matrix interfering substances were comparable and the matrix removal rates were approximately 50%. The method was sensitive with method detection limits in the range of 1.8-6.8ng/L for all target neonicotinoids. Finally, the developed method was validated by measurement of trace neonicotinoids in natural water. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Existence of a solid solution from brucite to β-Co(OH)2

    International Nuclear Information System (INIS)

    Giovannelli, F.; Delorme, F.; Autret-Lambert, C.; Seron, A.; Jean-Prost, V.

    2012-01-01

    Highlights: ► A solid solution exist between Mg(OH) 2 and β-Co(OH) 2 . ► Synthesis has been performed through an easy and fast coprecipitation route. ► No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH) 2 ) and β-Co(OH) 2 , all the compositions are possible. The solid solution Mg 1−x Co x (OH) 2 has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg–Co mixed oxide with all possible cationic ratios.

  8. Calorimetric measurements on plutonium rich (U,Pu)O2 solid solutions

    International Nuclear Information System (INIS)

    Kandan, R.; Babu, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2008-01-01

    Enthalpy increments of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 were measured using a high-temperature differential calorimeter by employing the method of inverse drop calorimetry in the temperature range 956-1803 K. From the fit equations for the enthalpy increments, other thermodynamic functions such as heat capacity, entropy and Gibbs energy function have been computed in the temperature range 298-1800 K. The results are presented and compared with the data available in the literature. The results indicate that the enthalpies of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 obey the Neumann-Kopp's molar additivity rule

  9. Matrix-Matched Iron-Oxide Laser Ablation ICP-MS U–Pb Geochronology Using Mixed Solution Standards

    Directory of Open Access Journals (Sweden)

    Liam Courtney-Davies

    2016-08-01

    Full Text Available U–Pb dating of the common iron-oxide hematite (α-Fe2O3, using laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS, provides unparalleled insight into the timing and processes of mineral deposit formation. Until now, the full potential of this method has been negatively impacted by the lack of suitable matrix-matched standards. To achieve matrix-matching, we report an approach in which a U–Pb solution and ablated material from 99.99% synthetic hematite are simultaneously mixed in a nebulizer chamber and introduced to the ICP-MS. The standard solution contains fixed U- and Pb-isotope ratios, calibrated independently, and aspiration of the isotopically homogeneous solution negates the need for a matrix-matched, isotopically homogenous natural iron-oxide standard. An additional advantage of using the solution is that the individual U–Pb concentrations and isotope ratios can be adjusted to approximate that in the unknown, making the method efficient for dating hematite containing low (~10 ppm to high (>1 wt % U concentrations. The above-mentioned advantage to this solution method results in reliable datasets, with arguably-better accuracy in measuring U–Pb ratios than using GJ-1 Zircon as the primary standard, which cannot be employed for such low U concentrations. Statistical overlaps between 207Pb/206Pb weighted average ages (using GJ-1 Zircon and U–Pb upper intercept ages (using the U–Pb mixed solution method of two samples from iron-oxide copper-gold (IOCG deposits in South Australia demonstrate that, although fractionation associated with a non-matrix matched standard does occur when using GJ-1 Zircon as the primary standard, it does not impact the 207Pb/206Pb or upper intercept age. Thus, GJ-1 Zircon can be considered reliable for dating hematite using LA-ICP-MS. Downhole fractionation of 206Pb/238U is observed to occur in spot analyses of hematite. The use of rasters in future studies will hopefully minimize

  10. Ti2Al(C, N) Solid Solution Reinforcing TiAl-Based Composites: Evolution of a Core-Shell Structure, Interfaces, and Mechanical Properties.

    Science.gov (United States)

    Song, Xiaojie; Cui, Hongzhi; Han, Ye; Ding, Lei; Song, Qiang

    2018-05-16

    In this work, Ti 2 Al(C, N) solid solution with lamellar structure-enhanced TiAl matrix composites was synthesized by vacuum arc melting, using bulk g-C 3 N 4 , Ti, and Al powders as raw materials. The phases, microstructures, interfaces, and mechanical properties were investigated. MAX phase of Ti 2 Al(C, N) solid solution with lamellar structure was formed. During the melting process, first, C 3 N 4 reacted with Ti to form Ti(C, N) by Ti + C 3 N 4 → Ti(C, N). Then Ti 2 Al(C, N) was formed by a peritectic reaction of TiAl(l) + Ti(C, N)(s) → Ti 2 Al(C, N). C 3 N 4 is the single reactant that provides C and N simultaneously to final product of Ti 2 Al(C, N). The interfaces of TiAl//Ti 2 Al(C, N) and Ti 2 Al(C, N)//Ti(C, N) display perfect orientation relationships with low misfit values. The microhardness, compressive strength, and strain of best-performing TiAl-10 mol % Ti 2 Al(C, N) composite were improved by 45%, 55.7%, and 50% compared with the TiAl alloy, respectively. Uniformly distributed Ti 2 Al(C, N) and unreacted Ti(C, N) particles contributed to the grain refinement and reinforcement of the TiAl matrix. Laminated tearing, particle pull-out, and the crack-arresting of Ti 2 Al(C, N) are crucial for the improvement in compressive strength and plasticity of the composites.

  11. Combinational approach using solid dispersion and semi-solid matrix technology to enhance in vitro dissolution of telmisartan

    Directory of Open Access Journals (Sweden)

    Syed Faisal Ali

    2016-02-01

    Full Text Available The present investigation was focused to formulate semi-solid capsules (SSCs of hydrophobic drug telmisartan (TLMS by encapsulating semi-solid matrix of its solid dispersion (SD in HPMC capsules. The combinational approach was used to reduce the lag time in drug release and improvise its dissolution. SDs of TLMS was prepared using hot fusion method by varying the combinations of Pluronic-F68, Gelucire 50/13 and Plasdone S630. A total of nine batches (SD1-SD9 were characterized for micromeritic properties, in vitro dissolution behavior and surface characterization. SD4 with 52.43% cumulative drug release (CDR in phosphate buffer, pH 7.4, in 120 min, t50% 44.2 min and DE30min 96.76% was selected for the development of semi-solid capsules. Differential scanning calorimetry of SD4 revealed molecular dispersion of TLMS in Pluronic-F68. SD4 was formulated into SSCs using Gelucire 44/14 and PEG 400 as semi-solid components and PEG 6000 as a suspending agent to achieve reduction in lag time for effective drug dissolution. SSC6 showed maximum in vitro drug dissolution 97.49 % in phosphate buffer, pH 7.4 with in 20 min that was almost a three folds reduction in the time required to achieve similar dissolution by SD. Thus, SSCs present an excellent approach to enhance in vitro dissolution as well as to reduce the lag time of dissolution for poorly water soluble drugs especially to those therapeutic classes that are intended for faster onset of action. Developed approach based on HPMC capsules provided a better alternative to target delivery of telmisartan to the vegetarian population.

  12. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  13. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  14. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2009-01-01

    The lattice thermal expansion of the transuranium nitride solid solutions was measured to investigate the composition dependence. The single-phase solid solution samples of (Np 0.55 Am 0.45 )N, (Pu 0.59 Am 0.41 )N, (Np 0.21 Pu 0.52 Am 0.22 Cm 0.05 )N and (Pu 0.21 Am 0.18 Zr 0.61 )N were prepared by carbothermic nitridation of the respective transuranium dioxides and nitridation of Zr metal through hydride. The lattice parameters were measured by the high temperature X-ray diffraction method from room temperature up to 1478 K. The linear thermal expansion of each sample was determined as a function of temperature. The average thermal expansion coefficients over the temperature range of 293-1273 K for the solid solution samples were 10.1, 11.5, 10.8 and 8.8 x 10 -6 K -1 , respectively. Comparison of these values with those for the constituent nitrides showed that the average thermal expansion coefficients of the solid solution samples could be approximated by the linear mixture rule within the error of 2-3%.

  15. On the solution of Stein's equation and Fisher information matrix of an ARMAX process

    NARCIS (Netherlands)

    Klein, A.; Spreij, P.

    2004-01-01

    The main goal of this paper consists in expressing the solution of a Stein equation in terms of the Fisher information matrix (FIM) of a scalar ARMAX process. A condition for expressing the FIM in terms of a solution to a Stein equation is also set forth. Such interconnections can be derived when a

  16. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    Science.gov (United States)

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  17. On the solution of a rational matrix equation arising in G-networks

    NARCIS (Netherlands)

    B. Meini (Beatrice); T. Nesti (Tommaso)

    2017-01-01

    textabstractWe consider the problem of solving a rational matrix equation arising in the solution of G-networks. We propose and analyze two numerical methods: a fixed point iteration and the Newton–Raphson method. The fixed point iteration is shown to be globally convergent with linear convergence

  18. Thermodynamic mixing properties of the UO{sub 2}–HfO{sub 2} solid solution: Density functional theory and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ke, E-mail: keyuan@umich.edu [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Becker, Udo [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-03-15

    HfO{sub 2} is a neutron absorber and has been mechanically mixed with UO{sub 2} in nuclear fuel in order to control the core power distribution. During nuclear fission, the temperature at the center of the fuel pellet can reach above 1300 K, where hafnium may substitute uranium and form the binary solid solution of UO{sub 2}–HfO{sub 2}. UO{sub 2} adopts the cubic fluorite structure, but HfO{sub 2} can occur in monoclinic, tetragonal, and cubic structures. The distribution of Hf and U ions in the UO{sub 2}–HfO{sub 2} binary and its atomic structure influence the thermal conductivity and melting point of the fuel. However, experimental data on the UO{sub 2}–HfO{sub 2} binary are limited. Therefore, the enthalpies of mixing of the UO{sub 2}–HfO{sub 2} binary with three different structures were calculated in this study using density functional theory and subsequent Monte Carlo simulations. The free energy of mixing was obtained from thermodynamic integration of the enthalpy of mixing over temperature. From the ΔG of mixing, a phase diagram of the binary was obtained. The calculated UO{sub 2}–HfO{sub 2} binary forms extensive solid solution across the entire compositional range, but there are a variety of possible exsolution phenomena associated with the different HfO{sub 2} polymorphs. As the structure of the HfO{sub 2} end member adopts lower symmetry and becomes less similar to cubic UO{sub 2}, the miscibility gap of the phase diagram expands, accompanied by an increase in cell volume by 7–10% as the structure transforms from cubic to monoclinic. Close to the UO{sub 2} end member, which is relevant to the nuclear fuel, the isometric uranium-rich solid solutions exsolve as the fuel cools, and there is a tendency to form the monoclinic hafnium-rich phase in the matrix of the isometric, uranium-rich solid solution phase.

  19. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements...

  20. High-temperature, Knudsen cell-mass spectroscopic studies on lanthanum oxide/uranium dioxide solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; McEachern, R.; LeBlanc, J.C.

    2001-01-01

    Knudsen cell-mass spectroscopic experiments were carried out with lanthanum oxide/uranium oxide solid solutions (1%, 2% and 5% (metal at.% basis)) to assess the volatilization characteristics of rare earths present in irradiated nuclear fuel. The oxidation state of each sample used was conditioned to the 'uranium dioxide stage' by heating in the Knudsen cell under an atmosphere of 10% CO 2 in CO. The mass spectra were analyzed to obtain the vapour pressures of the lanthanum and uranium species. It was found that the vapour pressure of lanthanum oxide follows Henry's law, i.e., its value is directly proportional to its concentration in the solid phase. Also, the vapour pressure of lanthanum oxide over the solid solution, after correction for its concentration in the solid phase, is similar to that of uranium dioxide. (authors)

  1. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  2. Studies on thermal expansion and XPS of urania-thoria solid solutions

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Panneerselvam, G.; Bera, Santanu; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2000-01-01

    The thermal expansion characteristics of polycrystalline (U y Th 1-y )O 2 solid solutions with y=0.13, 0.55 and 0.91 were determined in the temperature range from 298 to 1973 K by means of X-ray diffraction technique. For these temperatures, the average linear thermal expansion coefficients for (U 0.13 Th 0.87 )O 2 , (U 0.55 Th 0.45 )O 2 and (U 0.91 Th 0.09 )O 2 are 1.033x10 -5 , 1.083x10 -5 and 1.145x10 -5 K -1 , respectively. The measured thermal expansion values were compared with those calculated by applying the equations for linear thermal expansion of pure urania and thoria. It was shown that the stoichiometric (U, Th)O 2 solid solutions are almost ideal at least up to 2000 K. The binding energies of U 4f 7/2 and Th 4f 7/2 electrons of (U 0.1 Th 0.9 )O 2 , (U 0.25 Th 0.75 )O 2 , (U 0.50 Th 0.50 )O 2 , (U 0.75 Th 0.25 )O 2 and (U 0.90 Th 0.10 )O 2 were experimentally determined by X-ray photoelectron spectroscopy. The result showed the presence of only U 4+ and Th 4+ chemical states in the stoichiometric urania-thoria solid solutions

  3. EVALUATION OF A BUFFERED SOLID PHASE DISPERSION PROCEDURE ADAPTED FOR PESTICIDE ANALYSES IN THE SOIL MATRIX

    Directory of Open Access Journals (Sweden)

    Ana María Domínguez

    2015-08-01

    Full Text Available An evaluation of the pesticides extracted from the soil matrix was conducted using a citrate-buffered solid phase dispersion sample preparation method (QuEChERS. The identification and quantitation of pesticide compounds was performed using gas chromatography-mass spectrometry. Because of the occurrence of the matrix effect in 87% of the analyzed pesticides, the quantification was performed using matrix-matched calibration. The method's quantification limits were between 0.01 and 0.5 mg kg-1. Repeatability and intermediate precision, expressed as a relative standard deviation percentage, were less than 20%. The recoveries in general ranged between 62% and 99%, with a relative standard deviation < 20%. All the responses were linear, with a correlation coefficient (r ≥0.99.

  4. LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid sample. A new approach was presented to improve the detection limit and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions, respectively. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to obtained LOD of 0.07 ppm for Cr element in solutions. (author)

  5. LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions

  6. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  7. Mobile plant for encapsulating of solid high-level radioactive waste in metal matrix

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Arustamov, A.Eh.; Shiryaev, V.V.; Ozhovan, M.I.; Semenov, K.N.; Kachalov, M.B.

    1993-01-01

    Technology for disposal of spent radionuclide sources of ionizing radiation into the standard well-type storage facilities is considered. Universal mobile facility, providing for incorporation of high-level solid wastes into metallic matrices, is proposed. The facility consists of separate moduli, assembled on a transport platform. Electrical meter, wherein the matrix metal (lead and its alloys) is melted and heated up to 600-800 C constitutes the basic modulus in the facility. 4 refs., 4 figs

  8. The effects of additives on the microstructure and sinterability of molybdenum oxide - study of related solid solutions

    International Nuclear Information System (INIS)

    Kassem, M.

    2006-01-01

    This study focuses on the phase transformation induced during mixing a fixed quantity of MoO 3 with various concentration of V 2 O 5 , Bn 2 O 5 , Al 2 O 3 and pure aluminium. These concentrations are 2, 3, 4, 5, 10, 20, 40 and 50%. Employing several physical techniques such as x-ray powder diffraction, FTIR and DTA, different solid solution were identified. Also the compressibility and sintering of these solid solutions have been studied via the variation of the density of pellets prepared from these solid solutions (Author)

  9. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva.

    Science.gov (United States)

    Cao, Wan; Cao, Jun; Ye, Li-Hong; Xu, Jing-Jing; Hu, Shuai-Shuai; Peng, Li-Qing

    2015-12-01

    This article describes the use of the mesoporous molecular sieve KIT-6 as a sorbent in miniaturized matrix solid-phase dispersion (MSPD) in combination with ultra-performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT-6 was used as a sorbent material for this mode of extraction. Compared with common silica-based sorbents (C18 and activated silica gel), the proposed KIT-6 dispersant with a three-dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting "green chemistry" requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02-0.04 μg/mL and 0.07-0.13 μg/mL, respectively. Finally, the miniaturized matrix solid-phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dynamic analysis of structures with solid-fluid interaction

    International Nuclear Information System (INIS)

    Nahavandi, A.N.; Pedrido, R.R.; Cloud, R.L.

    1977-01-01

    This study develops a finite element model for interaction between an elastic solid and fluid medium (flow-induced vibrations in nuclear reactor components). Plane triangular finite elements have been used separately for fluid, solid, and solid-fluid continuua and the equivalent mass, damping, and stiffness matrices and interaction load arrays for all elements are derived and assembled into global matrices. The global matrix differential equation of motion developed is solved in time to obtain the pressure and velocity distributions in the fluid, as well as the displacements in the solid. Two independent computer programs are used to obtain the dynamic solution. The first program is a finite element program developed for solid-fluid interaction studies. This program uses the modal superposition technique in which the eigenvalues and eigenvectors for the system are found and used to uncouple the equations. This approach allows an analytic solution in each integration time step. The second program is WECAN finite element program in which a new element library subroutine for solid-fluid interaction was incorporated. This program can employ a NASTRAN direct integration scheme based on a central difference formula for the acceleration and velocity terms and an implicit representation of the displacement term. This reduces the problem to a matrix equation whose right hand side is updated in every time step and is solved by a variation of the Gaussian elimination method known as the wave front technique. Results have been obtained for the case of water, between two flat elastic parallel plates, initially at rest and accelerated suddenly by applying a step pressure. The results obtained from the above-mentioned two independent finite element programs are in full agreement. This verification provides the confidence needed to initiate parametric studies. Both rigid wall (no solid-fluid interaction) and flexible wall (including solid-fluid interaction) cases were examined

  11. Existence of a solid solution from brucite to {beta}-Co(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Delorme, F.; Autret-Lambert, C. [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Seron, A.; Jean-Prost, V. [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 Orleans Cedex 2 (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A solid solution exist between Mg(OH){sub 2} and {beta}-Co(OH){sub 2}. Black-Right-Pointing-Pointer Synthesis has been performed through an easy and fast coprecipitation route. Black-Right-Pointing-Pointer No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH){sub 2}) and {beta}-Co(OH){sub 2}, all the compositions are possible. The solid solution Mg{sub 1-x}Co{sub x}(OH){sub 2} has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg-Co mixed oxide with all possible cationic ratios.

  12. Ionic thermocurrents and ionic conductivity of solid solutions of SrF2 and YbF3

    NARCIS (Netherlands)

    Meuldijk, J.; Hartog, den H.W.

    1983-01-01

    We report dielectric [ionic thermocurrent (!TC)] experiments and ionic conductivity of cubic solid solutions of the type Sr1-xYbxF2+x. These combined experiments provide us with new information concerning the ionic conductivity mechanisms which play an important role in solid solutions Sr1-xRxF2+x

  13. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  14. Excess Gibbs energy for six binary solid solutions of molecularly simple substances

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, L J; Staveley, L A.K.

    1985-01-01

    In this paper we apply the method developed in a previous study of Ar + CH/sub 4/ to the evaluation of the excess Gibbs energy G /SUP E.S/ for solid solutions of two molecularly simple components. The method depends on combining information on the excess Gibbs energy G /SUP E.L/ for the liquid mixture of the two components with a knowledge of the (T, x) solid-liquid phase diagram. Certain thermal properties o the pure substances are also needed. G /SUP E.S/ has been calculated for binary mixtures of Ar + Kr, Kr + CH/sub 4/, CO + N/sub 2/, Kr + Xe, Ar + N/sub 2/, and Ar + CO. In general, but not always, the solid mixtures are more non-ideal than the liquid mixtures of the same composition at the same temperature. Except for the Kr + CH/sub 4/ system, the ratio r = G /SUP E.S/ /G /SUP E.L/ is larger the richer the solution in the component with the smaller molecules.

  15. B-site substituted solid solutions on the base of sodium-bismuth titanate

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2016-12-01

    Full Text Available The paper presents results of studies of the formation of phases during the solid-state synthesis in the [(Na0.5Bi0.50.80Ba0.20](Ti1–yByO3 system of solid solutions with B-site substitutions. The substitutions by zirconium, tin and ion complexes (In0.5Nb0.5 and (Fe0.5Nb0.5 have been studied. It has been found that the synthesis is a multi-step process associated with the formation of a number of intermediate phases (depending on the compositions and calcination temperatures. Single-phase solid solutions have been produced at the calcination temperatures in the interval 1000–1100∘C. An increase in the substituting ions concentration leads to a linear increase of the crystal cell size. At the same time, the tolerance factor gets reduced boosting the stability of the antiferroelectric phase as compared to that of the ferroelectric phase.

  16. A Structure-dependent matrix representation of manipulator kinematics and its inverse solution

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1987-03-01

    In this paper, derivation of kinematic equations for a six-link manipulator is presented using the homogeneous transformation (A i -matrix) based on Denavit-Hartenberg method, and additionally a solution procedure of its inverse problem is outlined. In order to examine the validity of a system of equations, solutions were compared with the exact ones of the inverse kinematics (for the same type of a manipulator) expressed in arbitrarily given co-ordinate systems. Through complete agreement of joint solutions between the two, the present purpose was accomplished. As shown in this paper, an explicit description between adjacent links will give a possible clue to a systematic treatment of the inverse problem for a class of manipulators. (author)

  17. Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer

    International Nuclear Information System (INIS)

    Reid, Ellen F.; Burn, Paul L.; Lo, Shih-Chun; Hogan, Conor F.

    2013-01-01

    The solution phase and solid-state electrochemistry and electrochemiluminescence (ECL) of an iridium(III) complex-cored dendrimeric analogue of Ir(ppy) 3 , (G1pIr), are reported. The solid-state electrochemistry and solid-state ECL of Ir(ppy) 3 itself is also described for the first time. In solution phase, the dendrimer displays greater immunity to oxygen quenching in photoluminescence (PL) experiments and exhibits greater ECL efficiency compared to the parent Ir(ppy) 3 core under the same conditions, despite a lower photoluminescence quantum yield. It is proposed that the dendrons which effectively shield the core from PL quenching interactions in the solid-state counteract the effects of parasitic side-reactions during the solution ECL experiments. Electroactive and ECL-active solid-state films of both Ir(ppy) 3 and G1pIr were produced by drop-coating on boron doped diamond electrodes. Films of Ir(ppy) 3 produced stable co-reactant ECL. However, films of G1pIr produced lower than expected ECL intensity. This was attributed to poorer charge transport and the lipophilicity of the film limiting the rate of interaction with the co-reactant required for formation of the excited state

  18. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  19. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y2O3 particles

    International Nuclear Information System (INIS)

    Genc, Aziz; Luetfi Ovecoglu, M.

    2010-01-01

    Research highlights: → Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. → Reinforcement of the selected Ni-W powders with WC and Y 2 O 3 particles and further MA together for 12 h. → There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. → Sintering of the developed composites and the characterization investigations of the sintered samples. → Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y 2 O 3 particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 o C for 1 h under Ar and H 2 gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  20. Influence of chemical heterogeneity of solid solutions on brittleness in chromium steels

    International Nuclear Information System (INIS)

    Madyanov, S.A.; Sedov, V.K.; Apaev, B.A.

    1985-01-01

    The role of chemical heterogeneity of solid solutions in formation of mechanical properties of Kh09, Kh15, Kh20, Kh19N2G5T chromium steels has been investigated. It is established that besides the known regioA of chemical heterogeneity in the vicinity of 475 deg C exists a high-temperature region (1000-1050 deg C), where maximum heteroge=- neity of chromium distribution in solid solution, is observed. Both types of chemical heterogeneity cause essential hardening of alloys, which becomes apparent in abrupt change of capability to microplastic deformation The mechanism of occurrence of the given temper brittleness consists in carbon diffusion into microvolunes enriched in carbide-forming elements

  1. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  2. Thermodynamics of CoAl2O4-CoGa2O4 solid solutions

    International Nuclear Information System (INIS)

    Lilova, Kristina I.; Navrotsky, Alexandra; Melot, Brent C.; Seshadri, Ram

    2010-01-01

    CoAl 2 O 4 , CoGa 2 O 4 , and their solid solution Co(Ga z Al 1-z ) 2 O 4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO.B 2 O 3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O'Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing. - Graphical abstract: Measured enthalpies of mixing of CoAl 2 O 4 -CoGa 2 O 4 solid solutions are close to zero but entropies of mixing reflect the complex cation distribution, so the system is not an ideal solution.

  3. A matrix formulation of Frobenius power series solutions using products of 4X4 matrices

    Directory of Open Access Journals (Sweden)

    Jeremy Mandelkern

    2015-08-01

    Full Text Available In Coddington and Levison [7, p. 119, Thm. 4.1] and Balser [4, p. 18-19, Thm. 5], matrix formulations of Frobenius theory, near a regular singular point, are given using 2X2 matrix recurrence relations yielding fundamental matrices consisting of two linearly independent solutions together with their quasi-derivatives. In this article we apply a reformulation of these matrix methods to the Bessel equation of nonintegral order. The reformulated approach of this article differs from [7] and [4] by its implementation of a new ``vectorization'' procedure that yields recurrence relations of an altogether different form: namely, it replaces the implicit 2X2 matrix recurrence relations of both [7] and [4] by explicit 4X4 matrix recurrence relations that are implemented by means only of 4X4 matrix products. This new idea of using a vectorization procedure may further enable the development of symbolic manipulator programs for matrix forms of the Frobenius theory.

  4. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  5. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  6. Influence of hydrostatic pressure on BCC-lattice parameter in molybdenum, niobium and vanadium with rhenium solid solutions

    International Nuclear Information System (INIS)

    Smol'yaninova, Eh.A.; Stribuk, E.K.; Tyavlovskij, V.I.

    1987-01-01

    Data on the effect of 1.8GPa hydrostatic pressure on bcc lattice parameters of solid solutions in Mo-Re, Nb-Re, V-re systems are presented. It is shown that after the application hydrostatic pressure a decrease in bcc lattice parameter is observed and the greatest change in the lattice parameter takes place in bcc of solid solutions in the Nb-Re system (DELTA A ∼ 0.0035 nm). Analysis of the experimental data obtained on the basis of calculations made for packing density change in the above-mentioned solid solutions under the pressure is carried out

  7. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids

    Science.gov (United States)

    Xu, Jixian; Voznyy, Oleksandr; Liu, Mengxia; Kirmani, Ahmad R.; Walters, Grant; Munir, Rahim; Abdelsamie, Maged; Proppe, Andrew H.; Sarkar, Amrita; García de Arquer, F. Pelayo; Wei, Mingyang; Sun, Bin; Liu, Min; Ouellette, Olivier; Quintero-Bermudez, Rafael; Li, Jie; Fan, James; Quan, Lina; Todorovic, Petar; Tan, Hairen; Hoogland, Sjoerd; Kelley, Shana O.; Stefik, Morgan; Amassian, Aram; Sargent, Edward H.

    2018-06-01

    Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon3. Advances in surface passivation2,4-7, combined with advances in device structures8, have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 20169. Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to 300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9-11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses ( 600 nm) and record values of JSC (32 mA cm-2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.

  8. Regularities in electroconductivity and thermo-emf in systems of binary continuous solid solutions of metals

    International Nuclear Information System (INIS)

    Vedernikov, M.V.; Dvunitkin, V.G.; Zhumagulov, A.

    1978-01-01

    Given are new experimental data about specific electric resistance of 10 systems of binary continuous solid metal solutions at the temperatures of 293 and 4.2 K: Cr-V, Mo-Nb, Mo-V, Cr-Mo, Nb-V, Ti-Zr, Hf-Zr, Hf-Ti, Sc-Zr, Sc-Hf. For the first time a comparative analysis of all available data on the resistance dependence on the composition of systems of continuous solid solutions, which covers 21 systems, is carried out. The ''resistance-composition'' dependence for such alloy systems is found to be of two types. The dependence of the first type is characteristic of the systems, formed by two isoelectronic metals, the dependence of the second type - for the systems, formed by non-isoelectronic metals. Thermo-emf of each type of solid solutions differently depends on their compositions

  9. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  10. On the Solution of the Rational Matrix Equation X=Q+LX−1LT

    Directory of Open Access Journals (Sweden)

    Heike Faßbender

    2007-01-01

    Full Text Available We study numerical methods for finding the maximal symmetric positive definite solution of the nonlinear matrix equation X=Q+LX−1LT, where Q is symmetric positive definite and L is nonsingular. Such equations arise for instance in the analysis of stationary Gaussian reciprocal processes over a finite interval. Its unique largest positive definite solution coincides with the unique positive definite solution of a related discrete-time algebraic Riccati equation (DARE. We discuss how to use the butterfly SZ algorithm to solve the DARE. This approach is compared to several fixed-point and doubling-type iterative methods suggested in the literature.

  11. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  12. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    Science.gov (United States)

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  13. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2015-01-01

    Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

  14. Uranothorite solid solutions: From synthesis to dissolution

    International Nuclear Information System (INIS)

    Costin, Dan-Tiberiu

    2012-01-01

    USiO 4 coffinite appears as one of the potential phases formed in the back-end of the alteration of spent fuel, in reducing storage conditions. A study aiming to assess the thermodynamic data associated with coffinite through an approach based on the preparation of Th 1-x U x SiO 4 uranothorite solid solutions was then developed during this work. First, the preparation of uranothorite samples was successfully undertaken in hydrothermal conditions. However, the poly-phased samples systematically formed for x ≥ 0,2 underlined the kinetic hindering linked with the preparation of uranium-enriched samples, including coffinite end-member. Nevertheless, the characterization of the various samples led to confirm the formation of an ideal solid solution and allowed the constitution of a spectroscopic database. The purification of the samples was then performed by the means of different protocols based on physical (dispersion-centrifugation) or chemical (selective dissolution of secondary phases) methods. This latter led to a complete of the impurities (Th 1-y U y O 2 mixed oxide and amorphous silica) through successive washing steps in acid then basic media. Finally, dissolution experiments were undertaken on uranothorite samples (0 ≤ xexp. ≤ 0,5) and allowed pointing out the influence of composition, pH and temperature on the normalized dissolution rate of the compounds. Also, the associated thermodynamic data, such as activation energy, indicate that the reaction is controlled by surface reactions. Once the equilibrium is reached, the analogous solubility constants were determined for each composition studied, then allowing the extrapolation to coffinite value. It was then finally possible to conclude on the inversion of coffinitisation reaction with temperature. (author) [fr

  15. Lattice parameters and electrical resistivity of Ceria-Yttria solid solutions

    International Nuclear Information System (INIS)

    Rey, Jose Fernando Queiruga

    2002-01-01

    Ce0 2 :u mol% Y 2 O 3 (u=0, 4, 6, 8, 10 and 12) solid solutions were prepared by the conventional powder mixture technique. The main purposes of this work are: the study of the dependence of the lattice parameter of the Ceria cubic phase on the Yttria content, comparing the experimental data with data calculated according to the existing theoretical models; to determine the dependence of the ionic conductivity on the Yttria content; and to study the stability of the cubic fluorite phase after extensive thermal treatments (aging) of the Ceria-Yttria specimens. The results show that the lattice parameter of the solid solutions follows the Vegard's law and can be described by the two reported theoretical models. The 8 mol% Yttria-doped Ceria was found to present the largest value of ionic conductivity. Preliminary results show that a large decrease is found for only 1 h aging at 700 deg C and that the ionic conductivity decreases for ceramic specimens aged for times up to 10 h. (author)

  16. Effect of ionizing radiation on solid and water solution Penicillin G

    International Nuclear Information System (INIS)

    Ben Salem, I.; Amine, Kh.M.; Mabrouk, Y.; Saidi, M.; Mezni, M; Boulila, N; Hafez, E

    2015-01-01

    Penicillin G is a conventional antibiotic used for treatment of different kinds of infectious diseases. Due to its huge quantity production and resistance to biodegradability, this molecule has been a serious concern for clinicians and environmentalists. In this study, the effect of ionizing radiation on the penicillin G powder and in water solution was investigated. The Nuclear Magnetic Resonance (NMR) and fourier transform infrared spectroscopy (FTIR) analysis showed that the ionizing radiation at 50 kGy has no effect on the integrity of solid Penicillin G. The anti-microbial assays revealed that the activity of irradiated solid Penicillin G did not reduce and was stable after storage for one month. Ionizing radiation at 50 kGy led to degradation of water solution Penicillin G. The complete disappear of peaks observed in the control sample confirmed the broken of β-lactam ring, the decarboxylation and cleavage of the thiazolidine ring. The product issued from the irradiation of Penicillin G, was completely removed by the bacterium Cupriavidus.metallidurans. Thus, the ionizing irradiation followed by a biological treatment was very effective method for removing of Penicillin G antibiotics residuals from water solution.

  17. Thorium-d-metals compounds and solid solutions

    International Nuclear Information System (INIS)

    Chachkhiani, Z.B.; Chechernikov, V.I.; Chachkhiani, L.G.

    1986-01-01

    Thorium compounds with Fe, Co, Ni dependence of their magnetic properties on temperature, pressure and concentration of the second element are considered. Anomalous magnetic behaviour of alloys in the Th-Fe system is noted. Special attention is paid to compounds with CaCu 5 type hexagonal structure and their solid solutions. Th-Co-Ni specimens containing up to 25% Ni are ferromagnetics and the rest are paramagnetics. Specimens with 60% cobalt content do not display ferromagnetic properties up to 4.2 K. Hydrides of Th 7 M 3 H 30 type (M - Fe, Co, Ni) are also considered. Highly hydrogenized specimens (under high pressure) appear to be stronger ferromagnetics

  18. phase formation and thermal stability of fcc (fluorite) Ce1-xTbxO2-d solid solutions

    NARCIS (Netherlands)

    de Vries, Karel Jan; de Vries, K.J.; Meng, G.Y.

    1998-01-01

    Ce1−xTbxO2−δ solid solutions (x = 0.3, 0.4, and 0.5) were synthesized by a coprecipitation method, using ammonia. The formation process of the solid solutions was studied as a function of temperature up to 1200°C by X-ray diffraction, thermogravimetric analysis, and differential scanning

  19. A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem

    DEFF Research Database (Denmark)

    Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Pontil, Massimiliano

    2014-01-01

    We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured...... sparsity, and low rank of the BES matrix. The method is based on the factorization of the BES matrix as a product of a sparse coding matrix and a dense latent source matrix. The structured sparse-low-rank structure is enforced by minimizing a regularized functional that includes the ℓ21-norm of the coding...... matrix and the squared Frobenius norm of the latent source matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic scenarios...

  20. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  1. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids

    KAUST Repository

    Xu, Jixian

    2018-04-20

    Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation2,4-7, combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9-11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of JSC (32 mA cm-2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.

  2. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids

    KAUST Repository

    Xu, Jixian; Voznyy, Oleksandr; Liu, Mengxia; Kirmani, Ahmad R.; Walters, Grant; Munir, Rahim; Abdelsamie, Maged; Proppe, Andrew H.; Sarkar, Amrita; Garcí a de Arquer, F. Pelayo; Wei, Mingyang; Sun, Bin; Liu, Min; Ouellette, Olivier; Quintero-Bermudez, Rafael; Li, Jie; Fan, James; Quan, Li Na; Todorovic, Petar; Tan, Hairen; Hoogland, Sjoerd; Kelley, Shana O.; Stefik, Morgan; Amassian, Aram; Sargent, Edward H.

    2018-01-01

    Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation2,4-7, combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9-11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of JSC (32 mA cm-2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.

  3. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids.

    Science.gov (United States)

    Xu, Jixian; Voznyy, Oleksandr; Liu, Mengxia; Kirmani, Ahmad R; Walters, Grant; Munir, Rahim; Abdelsamie, Maged; Proppe, Andrew H; Sarkar, Amrita; García de Arquer, F Pelayo; Wei, Mingyang; Sun, Bin; Liu, Min; Ouellette, Olivier; Quintero-Bermudez, Rafael; Li, Jie; Fan, James; Quan, Lina; Todorovic, Petar; Tan, Hairen; Hoogland, Sjoerd; Kelley, Shana O; Stefik, Morgan; Amassian, Aram; Sargent, Edward H

    2018-04-23

    Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size 1,2 . Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation 2,4-7 , combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (J SC ) and open-circuit voltage (V OC ), as seen in previous reports 3,9-11 . Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of J SC (32 mA cm -2 ) are fabricated. The V OC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.

  4. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    Czech Academy of Sciences Publication Activity Database

    Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 85, FEB (2015), s. 53-66 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015

  6. The Application Strategy of Iterative Solution Methodology to Matrix Equations in Hydraulic Solver Package, SPACE

    International Nuclear Information System (INIS)

    Na, Y. W.; Park, C. E.; Lee, S. Y.

    2009-01-01

    As a part of the Ministry of Knowledge Economy (MKE) project, 'Development of safety analysis codes for nuclear power plants', KOPEC has been developing the hydraulic solver code package applicable to the safety analyses of nuclear power plants (NPP's). The matrices of the hydraulic solver are usually sparse and may be asymmetric. In the earlier stage of this project, typical direct matrix solver packages MA48 and MA28 had been tested as matrix solver for the hydraulic solver code, SPACE. The selection was based on the reasonably reliable performance experience from their former version MA18 in RELAP computer code. In the later stage of this project, the iterative methodologies have been being tested in the SPACE code. Among a few candidate iterative solution methodologies tested so far, the biconjugate gradient stabilization methodology (BICGSTAB) has shown the best performance in the applicability test and in the application to the SPACE code. Regardless of all the merits of using the direct solver packages, there are some other aspects of tackling the iterative solution methodologies. The algorithm is much simpler and easier to handle. The potential problems related to the robustness of the iterative solution methodologies have been resolved by applying pre-conditioning methods adjusted and modified as appropriate to the application in the SPACE code. The application strategy of conjugate gradient method was introduced in detail by Schewchuk, Golub and Saad in the middle of 1990's. The application of his methodology to nuclear engineering in Korea started about the same time and is still going on and there are quite a few examples of application to neutronics. Besides, Yang introduced a conjugate gradient method programmed in C++ language. The purpose of this study is to assess the performance and behavior of the iterative solution methodology compared to those of the direct solution methodology still being preferred due to its robustness and reliability. The

  7. High performance passive matrix electrochromic display

    International Nuclear Information System (INIS)

    Aliev, A.E.

    2003-01-01

    A matrix addressable electrochromic display (ECD) based on solid polymer electrolyte screen-printed on the surface of nano structured WO 3 +0.1TiO 2 electrodes, in which all pixels were insulted by negative photoresist material has been developed. Five types of nano structured films produced by a sol-gel method were investigated to enhance the electrochemical, optical, and mechanical properties of electrochromic tungsten oxide films. The film based on WO 3-x +0.1TiO 2-y sol-gel solution mixed with 32 mol.% oxalic acid was found to be stable and has excellent characteristics in coloring/bleaching kinetics. The ECD used nano structured electrochromic tungsten trioxide layer protected by SiO 2 -CeO 2 -Li 2 O thin film solid electrolyte, screen-printed solid polymer electrolyte mixed with white TiO 2 pigment (P25), and metallic counter electrode covered with carbon layer, has exhibited fast switching, excellent memory effect and substantially free from image diffusion and cross talk effects. (author)

  8. Local structure of Th1-xMO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Moisy, Ph.; Dacheux, N.; Purans, J.E.

    2004-01-01

    X-ray absorption spectroscopy of Th 1-x U x O 2 and Th 1-x Pu x O 2 solid solutions was carried out on the Th, U L 3 -edges, and Pu L 3 edge to study the local structure environment of actinide mixed oxides. Various compositions of Th 1-x M x O 2 solid solutions have been prepared through the coprecipitation of the mixed oxalates from chloride or nitrate solutions: x = 0.11, 0.24, 0.37, 0.53, 0.67, 0.81, 0.91 and 1 for Th 1-x U x O 2 , and x = 0.13, 0.32, 0.66 and 1 for Th 1-x Pu x O 2 . They were characterized using X- ray diffraction. XRD analysis allowed to confirm that the variation of the lattice parameters varies linearly with the composition between the end members, suggesting that the atomic volume was conserved regardless of the details of the local distortions of the lattice, following the Vegard's law. Extending X-ray absorption fine structure (EXAFS) provides a direct characterization of the local distortions present in solid solutions. We found that opposite to the lattice parameter obtained by XRD, the interatomic distances given by EXAFS do not follow completely to neither the Vegard's law nor the virtual crystal approximation (VCA). However, the average lattice parameter obtained from EXAFS data for the first and the second shells agrees well with the one calculated from XRD data. (authors)

  9. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    Science.gov (United States)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  10. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  11. The solution space of the unitary matrix model string equation and the Sato Grassmannian

    International Nuclear Information System (INIS)

    Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.

    1992-01-01

    The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)

  12. Self-Aggregation in Pyrrole:  Matrix Isolation, Solid State Infrared Spectroscopy, and DFT Study

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, Rui

    2004-01-01

    Pyrrole (C4H5N) was embedded in low-temperature solid inert matrixes (argon, xenon; T = 9 K) and both the monomer and low-order aggregates characterized by FTIR spectroscopy. The spectroscopic studies were complemented by extensive theoretical [DFT(B3LYP)/6-311++G(d,p)] structural and vibrational studies carried out for the monomer and their self-aggregates (up to four units). The calculated spectrum for monomeric pyrrole fits well those obtained immediately after deposition (at 9 K) of dilut...

  13. Characterization investigations during mechanical alloying and sintering of Ni-W solid solution alloys dispersed with WC and Y{sub 2}O{sub 3} particles

    Energy Technology Data Exchange (ETDEWEB)

    Genc, Aziz, E-mail: agenc@itu.edu.t [Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey); Luetfi Ovecoglu, M. [Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey)

    2010-10-15

    Research highlights: {yields} Characterization investigations on the Ni-W solid solution alloys fabricated via mechanical alloying and the evolution of the properties of the powders with increasing MA durations. {yields} Reinforcement of the selected Ni-W powders with WC and Y{sub 2}O{sub 3} particles and further MA together for 12 h. {yields} There is no reported literature on the development and characterization of Ni-W solid solution alloys matrix composites fabricated via MA. {yields} Sintering of the developed composites and the characterization investigations of the sintered samples. {yields} Identification of new 'pomegranate-like' structures in the bulk of the samples. - Abstract: Blended elemental Ni-30 wt.% W powders were mechanically alloyed (MA'd) for 1 h, 3 h, 6 h, 12 h, 24 h, 36 h and 48 h in a Spex mixer/mill at room temperature in order to investigate the effects of MA duration on the solubility of W in Ni and the grain size, hardness and particle size. Microstructural and phase characterizations of the MA'd powders were carried out using X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). On the basis of achieved saturation on the solid solubility, hardness and particle size, the Ni-30 wt.% W powders MA'd for 48 h were chosen as the matrix which was reinforced with different amounts of WC and/or with 1 wt.% Y{sub 2}O{sub 3} particles. The reinforced powders were further MA'd for 12 h. The MA'd powders were sintered at 1300 {sup o}C for 1 h under Ar and H{sub 2} gas flowing conditions. Microstructural characterizations of the sintered samples were conducted via XRD and SEM. Sintered densities were measured by using the Archimedes' method. Vickers microhardness tests were performed on both MA'd powders and the sintered samples. Sliding wear experiments were done in order to investigate wear behaviors of the sintered samples.

  14. Large-scale fluctuations in the diffusive decomposition of solid solutions

    International Nuclear Information System (INIS)

    Karpov, V.G.; Grimsditch, M.

    1995-01-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L∼(na) -1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered

  15. Large-scale fluctuations in the diffusive decomposition of solid solutions

    Science.gov (United States)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.

  16. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  17. Decomposition features of a supersaturated solid solution in the Mg-3.3 wt. % Yb alloy

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Kajgorodova, L.I.; Sukhanov, V.D.; Dobatkina, T.V.

    2007-01-01

    Methods of electron microscopy, hardness measuring and X-ray diffraction analysis are applied to study decomposition kinetics for a supersaturated solid solution in a Mg-3.3 mas. % alloy on aging within a temperature range of 150-225 deg C. The mechanism of supersaturation solid solution decomposition is revealed along with the nature of phases precipitated at various stages of aging: on incomplete and extended aging as well as at maximum hardness. The types of structural constituents responsible for changes of hardness on aging are determined [ru

  18. Analysis of semi-solid processing for metal matrix composite synthesis using factorial design

    Directory of Open Access Journals (Sweden)

    Kratus Ranieri

    2012-02-01

    Full Text Available The main goal in this work is to conduct a quantitative analysis of the mechanical stir casting process for obtaining particulate metal matrix composites. A combined route of stirring at semi-solid state followed by stirring at liquid state is proposed. A fractional factorial design was developed to investigate the influence and interactions of factors as: time, rotation, initial fraction and particle size, on the incorporated fraction. The best incorporations were obtained with all factors at high levels, as well as that very long stirring periods have no strong influence being particle size and rotation the most important factors on the incorporated fraction. Particle wetting occurs during stirring at semi-solid state, highlighting the importance of the interactions between particles and the alloy globularized phase. The role of the alloying element Mg as a wettability-promoting agent is discussed. The shear forces resulting from the stirring system is emphasized and understood as the effect of rotation itself added to the propeller blade geometry.

  19. MANAGEMENT OF SOLID WASTE GENERATED BY THE INTEGRATED STEELWORKS ACTIVITY AND SOLUTIONS TO REDUCE THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Anişoara CIOCAN

    2010-05-01

    Full Text Available The development of steel industry is subject to solve major problems arising from industry-nature relationship, strictly targeted on pollution control and protection of natural resources and energy. In this paper we discussed about the management of solid waste generated by an integrated steelwork located near a major urban area and the adopted solutions for the reduction of environmental impact. There are summarized technical solutions that are currently applied and were proposed some solutions that can be applied in accordance with the environmental legislations. The new solutions are proposed for integrated management of solid wastes in accordance with: the exact quantification (quantitative, qualitative and the generation sources of emissions and solid wastes; controlled storage; minimization of the wastes and its harmfulness; transformation of the wastes into valuable by-products used directly by the company in a subsequent process, or by external down-stream user.

  20. Specific features of kinetics of He3-He4 solid solution transformations at superlow temperatures

    International Nuclear Information System (INIS)

    Mikheev, V.A.; Majdanov, V.A.; Mikhin, N.P.

    1986-01-01

    The NMR data on the phase transition kinetics of 3 He- 4 He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm 2 /mol with a 3 He content of 0.54 %. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of 3 He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid

  1. Solid solutions on the base of CuCr2Se4 and CUsUb(1/2)Insub(1/2)Crsub(2)Sesub(4)

    International Nuclear Information System (INIS)

    Smirnov, S.G.; Rozantsev, A.V.; Kesler, Ya.A.; Gordeev, I.V.; Tret'yakov, Yu.D.

    1983-01-01

    The CuCr 2 Se 4 interaction with Cusub(1/2)Insub(1/2)Crsub(2)Sesub(4) for determining the fields of solid solutions existence and studying their crystallochemical properties is investigated. Solid solutions of the (1-x)Cusub(1/2)Insub(1/2)Crsub(2)Sesub(4)xxCuCrsub(2)Sesub(4) are prepared, two limited regions of solid solutions of spinel type at 0 <= x <= 0.2 and 0.8 <= x <= 1 are determined. X-ray radiography investigation of synthesized solid solutions is carried out. It has been found that at 0 <= x <= 0.2 solid solutions are crystallized in the ordered spinel structure F anti 43m

  2. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    International Nuclear Information System (INIS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A.R.; Breitling, Frank

    2016-01-01

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm"2. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm"2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  3. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Barbara [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Foertsch, Tobias C. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Welle, Alexander [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattes, Daniela S. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Meier, Michael A.R., E-mail: m.a.r.meier@kit.edu [Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Breitling, Frank, E-mail: frank.breitling@kit.edu [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-15

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm{sup 2}. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm{sup 2}, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  4. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D.

    1999-12-01

    The major contributions of the isotopes 122 Sb and 124 Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300 o C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb 2 O 3 increases by about two orders of magnitude between 25 and 200 o C, and then levels out or decreases slightly. At 250 o C, in oxidizing solutions, Sb 2 O 5 ·xH 2 O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na 2α [H(H 2 O)] 2-2α Sb 2 O 6 , which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200 o C and decreases at temperatures above 250 o C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO 3 - or Sb(OH) 6 - ), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations ≥ 0.00005 mol·dm -3 in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be ruled out that hydrated Sb 2 O 5 (especially the pyrochlore form) might be less soluble in near-neutral, low

  5. Impact of vacancy-solute clusters on the aging of α-Fe solid solutions

    International Nuclear Information System (INIS)

    Schuler, Thomas

    2015-01-01

    Understanding and monitoring the aging of steels under vacancy supersaturation is a challenge of great practical interest for many industrial groups, and most of all for those related to nuclear energy. These steels always contain interstitial solutes, either as alloying elements or as impurities, and vacancies (V) that are equilibrium structural defects of materials. We have chosen the Fe-V -X system (X = C, N or O) as a model system for ferritic steels. Vacancy-solute clusters are likely to form in such systems because, despite the very low concentrations of their components, these cluster show very high attractive bonding. First of all, we have been working on the computation of intrinsic equilibrium properties of individual clusters, both thermodynamic (free binding energies) and kinetic (mobilities, dissociation coefficients, and their relationship with continuum diffusion) properties. Thanks to this atomic-scale characterization procedure, we have been able to highlight various effects of these clusters on a macroscopic system containing different cluster types: increase of solute solubility limits and total vacancy concentrations, flux couplings between interstitial solutes and vacancies, acceleration of solute precipitation kinetics and precipitate dissolution by solid solution stabilization due to vacancies. These results would not have been obtained without the development and/or extension of analytical methods in statistical physics which are able to describe cluster's components and their interactions at the atomic scale. Finally, we have also been working on cavities in α-iron, the study of which requires a different approach. Our study highlights the impact of the atomic discrete lattice on the equilibrium shape of cavities, and describes various kinetic mechanisms of these objects at the atomic scale. (author) [fr

  6. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  7. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  8. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  9. Decomposition of supersaturated solid solutions Mg-Ho and Mg-Gd

    International Nuclear Information System (INIS)

    Sukhanov, V.D.; Dobromyslov, A.V.; Rokhlin, L.L.; Dobatkina, T.V.

    2002-01-01

    Methods of electron microscopy and X-ray diffraction analysis are applied to study ageing magnesium base alloys with holmium and gadolinium. It is shown that the precipitation of supersaturated Mg base solid solutions goes through several subsequent stages and is accompanied by a considerable precipitation hardening effect at the stage of metastable phase precipitation. The influence of aging time and temperature on precipitation kinetics is established [ru

  10. Experimental considerations on producing highly polarized liquid 3He in a matrix of solid 4He

    International Nuclear Information System (INIS)

    Greenberg, A.S.; Hebral, B.; Papoular, M.; Beal-Monod, M.T.

    1980-01-01

    Two experiments are briefly reviewed in which droplets of 3 He were formed in solid 4 He. These experiments indicate such conditions are favorable for the production of quasi-stable highly polarized liquid 3 He. A solid solution of dilute 3 He in 4 He is proposed as a promising system to produce experimentally realizable highly polarized liquid 3 He using the Castaing-Nozieres decompression

  11. Photocatalytic hydrogen production over solid solutions between BiFeO{sub 3} and SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lingwei; Lv, Meilin [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Liu, Gang [Shenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xu, Xiaoxiang, E-mail: xxxu@tongji.edu.cn [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China)

    2017-01-01

    Graphical abstract: We have successfully prepared a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions. These materials own strong visible light absorption and demonstrate appealing photocatalytic activity under both full range and visible light irradiation. - Highlights: • Band gap values can be tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. • Photocatalytic activity is greatly improved after constituting solid solutions. • Photocatalytic activity is influenced by surface area and light absorption. • Fe plays an important role for band gap reduction and catalytic activity. - Abstract: Constituting solid solutions has been an appealing means to gain control over various physicochemical properties. In this work, we synthesized a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions and systematically explored their structural, optical and photocatalytic properties. Our results show that all solid solutions crystallize in a primitive cubic structure and their band gap values can be easily tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. Photocatalytic hydrogen production under both full range and visible light irradiation is greatly improved after forming solid solutions. The highest hydrogen production rate obtained is ∼180 μmol/h under full range irradiation (λ ≥ 250 nm) and ∼4.2 μmol/h under visible light irradiation (λ ≥ 400 nm), corresponding to apparent quantum efficiency ∼2.28% and ∼0.10%, respectively. The activity is found to be strongly influenced by surface area and light absorption. Theoretical calculation suggests that Fe contributes to the formation of spin-polarized bands in the middle of original band gap and is responsible for the band gap reduction and visible light photocatalytic activity.

  12. Matrix effects in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Chen, Xiaoshan.

    1995-01-01

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids

  13. Evaluation of the matrix exponential for use in ground-water-flow and solute-transport simulations; theoretical framework

    Science.gov (United States)

    Umari, A.M.; Gorelick, S.M.

    1986-01-01

    It is possible to obtain analytic solutions to the groundwater flow and solute transport equations if space variables are discretized but time is left continuous. From these solutions, hydraulic head and concentration fields for any future time can be obtained without ' marching ' through intermediate time steps. This analytical approach involves matrix exponentiation and is referred to as the Matrix Exponential Time Advancement (META) method. Two algorithms are presented for the META method, one for symmetric and the other for non-symmetric exponent matrices. A numerical accuracy indicator, referred to as the matrix condition number, was defined and used to determine the maximum number of significant figures that may be lost in the META method computations. The relative computational and storage requirements of the META method with respect to the time marching method increase with the number of nodes in the discretized problem. The potential greater accuracy of the META method and the associated greater reliability through use of the matrix condition number have to be weighed against this increased relative computational and storage requirements of this approach as the number of nodes becomes large. For a particular number of nodes, the META method may be computationally more efficient than the time-marching method, depending on the size of time steps used in the latter. A numerical example illustrates application of the META method to a sample ground-water-flow problem. (Author 's abstract)

  14. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  16. Crystal-chemical features of the solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.V.; Kesler, Ya.A.; Gordeev, I.V.; Mozhaev, A.P.

    1988-04-01

    The unusual magnetic properties of the solid solutions of CuCr/sub 2/S/sub 4/ in Cu/sub 0.5/Mo/sub 0.5/Cr/sub 2/S/sub 4/ (M = Al, Ga, In) are closely related to the crystal chemistry of these compounds. Specimens for structural investigation were obtained by solid-phase synthesis in evacuated quartz capsules. X-ray phase analysis of all the compounds was made by the powder method in a DRON-1 diffractometer with Cu K..cap alpha.. filtered radiation. The experimental confirmation of the ordering of the cations in the tetrahedral sublattice of the investigated spinels was obtained by the authors from their IR absorption spectra taken in the range 400-33 cm/sup /minus/1/. The presence of seven intense absorption bands in the spectra of the specimens indicates that these materials belong to the space group F/anti/43m, i.e., that there is ordering in the A sublattice. Their investigation led them to the conclusion that in a number of cases the vibrational spectra of the crystals are more sensitive in the investigation of atomic ordering than the spectra of x-ray and neutron diffraction, in agreement with the theoretical predictions.

  17. Solution of the Multigroup-Diffusion equation by the response matrix method

    International Nuclear Information System (INIS)

    Oliveira, C.R.E.

    1980-10-01

    A preliminary analysis of the response matrix method is made, considering its application to the solution of the multigroup diffusion equations. The one-dimensional formulation is presented and used to test some flux expansions, seeking the application of the method to the two-dimensional problem. This formulation also solves the equations that arise from the integro-differential synthesis algorithm. The slow convergence of the power method, used to solve the eigenvalue problem, and its acceleration by means of the Chebyshev polynomial method, are also studied. An algorithm for the estimation of the dominance ratio is presented, based on the residues of two successive iteration vectors. This ratio, which is not known a priori, is fundamental for the efficiency of the method. Some numerical problems are solved, testing the 1D formulation of the response matrix method, its application to the synthesis algorithm and also, at the same time, the algorithm to accelerate the source problem. (Author) [pt

  18. Bridging phases at the morphotropic boundaries of lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, Beatriz; Cox, DE

    2006-01-01

    Ceramic solid solutions of PbZr1-xTixO3 (PZT) with compositions x similar or equal to 0.50 are well-known for their extraordinarily large piezoelectric responses. The latter are highly anisotropic, and it was recently shown that, for the rhombohedral compositions (x less than or similar to 0.5), the

  19. Study of valence of cerium and praseodymium ions in Pr1-xCexO2 solid solutions

    International Nuclear Information System (INIS)

    Gartsman, K.G.; Kartenko, N.F.; Melekh, B.T.

    1990-01-01

    Effect of preparation conditions of Pr 1-x Ce x O 2 solid solutions on Ce and Pr ion valence within Pr 1-x Ce x O 2 system is studied. The data obtained enable to conclude that praseodymium may depending on annealing conditions change its state from Pr 3+ to Pr 4+ , while Ce 4+ is stable in Pr 1-x Ce x O 2 solid solutions

  20. Solid solutions in the system Nd2(SeO4)3 - Sm2(SeO4)3 - H2O

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Tsybukova, T.N.; Velikov, A.A.

    1984-01-01

    Using the method of isothermal solubility at 25 deg C the system Nd 2 (SeO 4 ) 3 -Sm 2 (SeO 4 ) 3 -H 2 O has been studied. Roentgenographic recording of solid ''residues'' is realized. For solid solutions energies of interchange and formation heats are calculated. Formation heats of solid solutions on the basis of samarium selenates are also found experimentally

  1. Failure criterion effect on solid production prediction and selection of completion solution

    Directory of Open Access Journals (Sweden)

    Dariush Javani

    2017-12-01

    Full Text Available Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohr–Coulomb and Mogi–Coulomb, were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohr–Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi–Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi–Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.

  2. Determination of UV filters in high ionic strength sample solutions using matrix-compatible coatings for solid-phase microextraction.

    Science.gov (United States)

    An, Jiwoo; Anderson, Jared L

    2018-05-15

    A double-confined polymeric ionic liquid (PIL) sorbent coating was fabricated for the determination of nine ultraviolet (UV) filters in sample solutions containing high salt content by direct immersion solid-phase microextraction (DI-SPME) coupled to high-performance liquid chromatography (HPLC). The IL monomer and crosslinker cations and anions, namely, 1-vinyl-3-decylimidazolium styrenesulfonate ([VImC 10 ][SS]) and 1,12-di(3-vinylbenzylimidazolium) dodecane distyrenesulfonate ([(VBIm) 2 C 12 ] 2[SS]), were co-polymerized to create a highly stable sorbent coating which allowed for up to 120 direct-immersion extractions in 25% NaCl (w/v) solution without a decrease in its extraction capability. Extraction and desorption parameters such as desorption solvent, agitation rate, extraction time, desorption solvent volume, and desorption time were evaluated and optimized. The analytical performance of the styrenesulfonate anion-based PIL fiber, PIL fiber containing chloride anions, and a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber were compared. Coefficients of determination (R 2 ) for the styrenesulfonate anion-based PIL fiber ranged from 0.995 to 0.999 and the limits of detection (LODs) varied from 0.1 to 5 µg L -1 . The developed method was successfully applied in real water samples including tap, pool, and lake water, and acceptable relative recovery values were obtained. The lifetime of the PIL fiber containing chloride anions as well as the PDMS/DVB fiber were considerably shorter than the PIL fiber containing the styrenesulfonate anion, with both fibers showing a notable decrease in reproducibility and significant damage to the sorbent coating surface after 40 and 70 extractions, respectively. The R 2 values for the chloride anion containing PIL fiber were at or higher than 0.991 with LODs ranging from 0.5 to 5 µg L -1 . For the PDMS/DVB fiber, R 2 values ranged from 0.992 to 0.999 and LODs were found to be as low as 0.2

  3. Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Liu, Chengbin; Meng, Deshui; Li, Yue; Wang, Longlu; Liu, Yutang; Luo, Shenglian

    2015-01-01

    Graphical abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution onto TiO 2 nanofibers was fabricated. The hierarchical heterostructures exhibit high visible light photocatalytic activity and outstanding recycling performance. - Highlights: • Novel hierarchical heterostructure of TiO 2 @ZnS–In 2 S 3 solid solution. • Efficient inhibition of ZnS–In 2 S 3 solid solution aggregation. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique hierarchical architecture of ZnS–In 2 S 3 solid solution nanostructures onto TiO 2 nanofibers (TiO 2 @ZnS–In 2 S 3 ) has been successfully fabricated by simple hydrothermal method. The ZnS–In 2 S 3 solid solution nanostructures exhibit a diversity of morphologies: nanosheet, nanorod and nanoparticle. The porous TiO 2 nanofiber templates effectively inhibit the aggregation growth of ZnS–In 2 S 3 solid solution. The formation of ZnS–In 2 S 3 solid solution is proved by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and the intimate contact between TiO 2 nanofibers and ZnS–In 2 S 3 solid solution favors fast transfer of photogenerated electrons. The trinary TiO 2 @ZnS–In 2 S 3 heterostructures exhibit high adsorption capacity and visible light photocatalytic activity for the degradation of rhodamine B dye (RhB), remarkably superior to pure TiO 2 nanofibers or binary structures (ZnS/TiO 2 nanofibers, In 2 S 3 /TiO 2 nanofibers and ZnS–In 2 S 3 solid solution). Under visible light irradiation the RhB photocatalytic degradation rate over TiO 2 @ZnS–In 2 S 3 heterostructures is about 16.7, 12.5, 6.3, 5.9, and 2.2 times that over pure TiO 2 nanofibers, ZnS nanoparticles, In 2 S 3 /TiO 2 nanofibers, ZnS/TiO 2 nanofibers, and ZnS-In 2 S 3 solid solution, respectively. Furthermore, the TiO 2 @ZnS–In 2 S 3 heterostructures show highly stable recycling performance

  4. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    Science.gov (United States)

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. First-principles investigations of solid solution strengthening in Al alloys

    OpenAIRE

    Ma, Duancheng

    2012-01-01

    Any material properties, in principle, can be reproduced or predicted by performing firstprinciples calculations. Nowadays, however, we are dealing with complex alloy compositions and processes. The complexities cannot be fully described by first-principles, because of the limited computational power. The primary objective of this study is to investigate an important engineering problem, solid solution strengthening, in a simplified manner. The simplified scheme should allow fast and reliable...

  6. Deep and shallow acceptor levels in solid solutions Pb0.98Sm0.02S

    International Nuclear Information System (INIS)

    Hasanov, H.A.; Rahimov, R.Sh.

    2010-01-01

    It is well known that the metal vacancies the energy levels of which take place between permitted energies of valency band, are the main acceptor centers in the led salts and solid solutions on their base. The aim of the given paper is founding of character of acceptor levels in single crystals Pb 0 .98Sm 0 .02S with low concentrations of charge carrier. The deep and shallow acceptor levels are found at investigation of Hall effect in Pb 0 .98Sm 0 .02S solid solution with character of low concentrations of charge carriers in crystals

  7. The investigation of solid solutions thin interlayers in CdS/CdTe film heterosystems

    International Nuclear Information System (INIS)

    Khrypunov, G.; Boyko, B.; Chernykh, O.

    1999-01-01

    The photo-response spectral dependence of ITO/CdTe/Au/Cu and ITO/CdS/CdTe/Au/Cu film heterosystems were investigated. At illuminations ITO/CdS/CdTe/Au/Cu heterosystems on ITO side a photo-response maximum was observed for photon absorption with a wavelength of 0.87 μm that is stipulated by formation of CdS x Te 1-x solid solutions interlayer with band gap width less than in CdTe layer. By use optical measurement transmittance spectra was selected a spectral photosensitivity interval appropriate to the contribution of non-equilibrium charge carriers generated in solid solutions interlayer by photon absorption with energy less than CdTe film band gap

  8. Study of reaction sequences for formation of solid solution: 0,48 ...

    African Journals Online (AJOL)

    ... of a low concentration of ions forming the perovskite structure PZT (Pb2+, Zr4+ et Ti4+) by other ions (Zn2+, Cr3+ et Sb+5 in our study) alters the reaction sequences training of the solid solution PZT and especially the formation of intermediate phase. Keywords: PZT / Calcination / TGA / DTA / RX / Piezoelectric Ceramics ...

  9. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    Science.gov (United States)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  10. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    Science.gov (United States)

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  11. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  12. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, M.; Mulder, P.P.J.; Bire, R.; Hess, P.; Boer, de J.

    2009-01-01

    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC¿MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  13. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, A. M.; Mulder, P.P.J.; Bire, L.; Hess, P.; de Boer, J.

    2009-01-01

    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  14. Liquid chromatography tandem mass spectrometry method using solid-phase extraction and bead-beating-assisted matrix solid-phase dispersion to quantify the fungicide tebuconazole in controlled frog exposure study: analysis of water and animal tissue

    DEFF Research Database (Denmark)

    Hansen, Martin; Poulsen, Rikke; Luong, Xuan

    2014-01-01

    and on tissue from exposed and non-exposed adult X. laevis. Using solid-phase extraction (SPE), the analytical method allows for quantification of tebuconazole at concentrations as low as 3.89 pg mL(-1) in 10 mL water samples. Using bead-beating-assisted matrix solid-phase dispersion (MSPD), it was possible...

  15. Explicit solutions to the generalized Sylvester matrix equation AX- XF = BY%广义Sylvester矩阵方程AX-XF=BY的显式解

    Institute of Scientific and Technical Information of China (English)

    周彬; 段广仁

    2006-01-01

    A complete, general and explicit solution to the generalized Sylvester matrix equation AX-XF = BY, with F being an arbitrary square matrix, is investigated. The proposed solution is in an extremely neat form represented by a controllability matrix of the matrix pair (A,B), a symmetric operator and an observability matrix of the matrix pair (Z,F), where Z is an arbitrary matrix used to denote the degree of freedom in the solution. Furthermore, based on the Faddeev - Leverrier algorithm, an equivalent form of the proposed solution is established. At the same time, an equivalent form of the solutions proposed in [ 13 ] is also induced. These results provide great convenience to the analysis and design problems in control systems. The results proposed in this note is a further discussion of the results proposed in [ 13 ].%给出了广义Sylvester矩阵方程AX-XF=BY当F为任意矩阵时的一种完全的解析通解.该通解由矩阵对(A,B)构成的能控性矩阵,一个对称算子矩阵和矩阵对(Z,F)构成的能观性矩阵组成,这里Z是一个任意的参数矩阵,用来表征该方程的解的自由度.利用著名的Levverrier算法,该解析解的一个等价形式被给出.给出的结果是参考文献[13]的推广,在[13]中F被假设为友矩阵.

  16. Measurement of total dissolved solids using electrical conductivity

    International Nuclear Information System (INIS)

    Ray, Vinod K.; Jat, J.R.; Reddy, G.B.; Balaji Rao, Y.; Phani Babu, C.; Kalyanakrishnan, G.

    2017-01-01

    Total dissolved solids (TDS) is an important parameter for the disposal of effluents generated during processing of different raw materials like Magnesium Di-uranate (MDU), Heat Treated Uranium Peroxide (HTUP), Sodium Di-uranate (SDU) in Uranium Extraction plant and Washed and Dried Frit (WDF) in Zirconium Extraction Plant. The present paper describes the use of electrical conductivity for determination of TDS. As electrical conductivity is matrix dependent property, matrix matched standards were prepared for determination of TDS in ammonium nitrate solution (AN) and mixture of ammonium nitrate and ammonium sulphate (AN/AS) and results were found to be in good agreement when compared with evaporation method. (author)

  17. CSBB-ConeExclusion, adapting structure based solution virtual screening to libraries on solid support.

    Science.gov (United States)

    Shave, Steven; Auer, Manfred

    2013-12-23

    Combinatorial chemical libraries produced on solid support offer fast and cost-effective access to a large number of unique compounds. If such libraries are screened directly on-bead, the speed at which chemical space can be explored by chemists is much greater than that addressable using solution based synthesis and screening methods. Solution based screening has a large supporting body of software such as structure-based virtual screening tools which enable the prediction of protein-ligand complexes. Use of these techniques to predict the protein bound complexes of compounds synthesized on solid support neglects to take into account the conjugation site on the small molecule ligand. This may invalidate predicted binding modes, the linker may be clashing with protein atoms. We present CSBB-ConeExclusion, a methodology and computer program which provides a measure of the applicability of solution dockings to solid support. Output is given in the form of statistics for each docking pose, a unique 2D visualization method which can be used to determine applicability at a glance, and automatically generated PyMol scripts allowing visualization of protein atom incursion into a defined exclusion volume. CSBB-ConeExclusion is then exemplarically used to determine the optimum attachment point for a purine library targeting cyclin-dependent kinase 2 CDK2.

  18. Influence of lanthanium atoms on the physico-chemical properties of GeS0,5Se0,5 solid solutions

    International Nuclear Information System (INIS)

    Murguzov, M.I.; Alakbarov, A.S.; Bayramov, R.B.

    2010-01-01

    By the methods of physical-chemical analysis (DTA, X-ray, MSA, as well as measurement of microhardness and density determination) the influence of La on the physico-chemical properties of solid solutions (GeS 0 ,5Se 0 ,5) 1 -x(La) x was studied and its microdiagram was plotted. At room temperature the GeS 0 ,5Se 0 ,5 based solid solid solution extent to 4 at. percent La. The dependence of lanthane microhardness was studied

  19. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  20. Experimental and theoretical study of solid solution stability under irradiation

    International Nuclear Information System (INIS)

    Cauvin, Richard.

    1981-08-01

    The behavior of dilute alloys (Al-Zn, Al-Ag, Al-Si, Al-Ge and Al-Mg) under 1 MeV electron irradiation has been studied in a high voltage electron microscope. A phenomenon of homogeneous precipitation induced by irradiation in undersaturated solid solutions (Al-Zn, Al-Ag and Al-Si) has been discovered; the observed precipitates are either coherent or incoherent, but never associated with point defect sinks. The solubility limit is a function of irradiation temperature and flux; but, under irradiation, it does not behave as a true thermal solubility limit (without irradiation). The existing theories (kinetic or strictly thermodynamic) do not account for this phenomenon. It is shown that the irreversibility of the mutual recombination between trapped vacancies and mixed interstitials is the driving force of this homogeneous precipitation. Using a dilute solid solution model, we show that, under irradiation, the homogeneous stationary state, stable from a strictly thermodynamic point of view, can be unstable when the recombination reaction is taken into account. The solubility limit under irradiation is calculated with a nucleation-growth model taking account for this effect; it is proportional to the thermal solubility limit without irradiation. This model explains all the experimental observations [fr

  1. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  2. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    Directory of Open Access Journals (Sweden)

    Jesús-Alejandro Peña-Jiménez

    2016-09-01

    Full Text Available The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  3. Sensitive determination of three aconitum alkaloids and their metabolites in human plasma by matrix solid-phase dispersion with vortex-assisted dispersive liquid-liquid microextraction and HPLC with diode array detection.

    Science.gov (United States)

    Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri

    2016-05-01

    A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lyapunov Functions and Solutions of the Lyapunov Matrix Equation for Marginally Stable Systems

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian

    2000-01-01

    We consider linear systems of differential equations $I \\ddot{x}+B \\dot{x}+C{x}={0}$ where $I$ is the identity matrix and $B$ and $C$ are general complex $n$ x $n$ matrices. Our main interest is to determine conditions for complete marginalstability of these systems. To this end we find solutions...... of the Lyapunov matrix equation and characterize the set of matrices $(B, C)$ which guarantees marginal stability. The theory is applied to gyroscopic systems, to indefinite damped systems, and to circulatory systems, showing how to choose certain parameter matrices to get sufficient conditions for marginal...... stability.Comparison is made with some known results for equations with real system matrices.Moreover more general cases are investigated and several examples are given....

  5. Preparation, structural, dielectric and magnetic properties of LaFeO3–PbTiO3 solid solutions

    International Nuclear Information System (INIS)

    Ivanov, S.A.; Tellgren, R.; Porcher, F.; Ericsson, T.; Mosunov, A.; Beran, P.; Korchagina, S.K.; Kumar, P. Anil; Mathieu, R.; Nordblad, P.

    2012-01-01

    Highlights: ► Solid-solutions of (1−x)LaFeO 3 –(x)PbTiO 3 were synthesized by solid-state reaction. ► XRPD and NPD evidence orthorhombic (x 0.8) crystal structures. ► LaFeO 3 -rich compositions order antiferromagnetically (x 3 -rich compositions exhibit ferroelectric order (x larger than 0.8). ► Magnetic and dielectric (relaxor) ordering coexist near room-temperature around x = 0.4. -- Abstract: Solid solutions of (1−x)LaFeO 3 –(x)PbTiO 3 (0 3+ cations in the B-site with propagation vector k = (0,0,0). Based on the obtained experimental data, a combined structural and magnetic phase diagram has been constructed. The factors governing the structural, dielectric and magnetic properties of (1−x)LaFeO 3 –(x)PbTiO 3 solid solutions are discussed, as well as their possible multiferroicity.

  6. Model for UV induced formation of gold nanoparticles in solid polymeric matrices

    Science.gov (United States)

    Sapogova, N.; Bityurin, N.

    2009-09-01

    UV irradiation of polymeric PMMA films containing HAuCl 4 followed by annealing at 60-80 °C forms gold nanoparticles directly within the bulk material. The kinetics of nanoparticle formation was traced by extinction spectra of nanocomposite film changes vs annealing time. We propose that UV irradiation causes HAuCl 4 dissociation and thus provides a polymeric matrix with atomic gold. The presence of an oversaturated solid solution of atomic gold in the polymeric matrix leads to Au nanoparticle formation during annealing. This process can be understood as a phase transition of the first order. In this paper we apply several common kinetic models of the phase transition for describing Au nanoparticle formation inside the solid polymer matrix. We compare predictions of these models with the experimental data and show that these models cannot describe the process. We propose that the stabilization effect of the matrix on the growing gold nanoparticles is important. The simplest model introducing some probability for the transition from growing nanoparticle to the non-growing, stabilized form is suggested. It is shown that this model satisfactorily describes the experimentally observed evolution of the extinction spectrum of Au nanoparticles forming in a polymer matrix.

  7. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  8. Phase relations and Gibbs energies of spinel phases and solid solutions in the system Mg-Rh-O

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K.T., E-mail: katob@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Prusty, Debadutta [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Kale, G.M. [Institute for Materials Research, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Refinement of phase diagram for the system Mg-Rh-O and thermodynamic data for spinel compounds MgRh{sub 2}O{sub 4} and Mg{sub 2}RhO{sub 4} is presented. Black-Right-Pointing-Pointer A solid-state electrochemical cell is used for thermodynamic measurement. Black-Right-Pointing-Pointer An advanced design of the solid-state electrochemical cell incorporating buffer electrodes is deployed to minimize polarization of working electrode. Black-Right-Pointing-Pointer Regular solution model for the spinel solid solution MgRh{sub 2}O{sub 4} - Mg{sub 2}RhO{sub 4} based on ideal mixing of cations on the octahedral site is proposed. Black-Right-Pointing-Pointer Factors responsible for stabilization of tetravalent rhodium in spinel compounds are identified. - Abstract: Pure stoichiometric MgRh{sub 2}O{sub 4} could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh{sub 2}O{sub 3} in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh{sub 2}O{sub 3}. The spinel phase can be considered as a solid solution of Mg{sub 2}RhO{sub 4} in MgRh{sub 2}O{sub 4}. The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg{sub 1+x}Rh{sub 2-x}O{sub 4} was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh{sub 2}O{sub 4} and Mg{sub 2}RhO{sub 4} were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured

  9. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D

    1999-12-01

    The major contributions of the isotopes {sup 122}Sb and {sup 124}Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300{sup o}C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb{sub 2}O{sub 3} increases by about two orders of magnitude between 25 and 200{sup o}C, and then levels out or decreases slightly. At 250{sup o}C, in oxidizing solutions, Sb{sub 2}O{sub 5}{center_dot}xH{sub 2}O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na{sub 2{alpha}}[H(H{sub 2}O)]{sub 2-2{alpha}}Sb{sub 2}O{sub 6}, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200{sup o}C and decreases at temperatures above 250{sup o}C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO{sub 3}{sup -} or Sb(OH){sub 6}{sup -}), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations {>=} 0.00005 mol{center_dot}dm{sup -3} in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be

  10. Geological constraints on the thermodynamic properties of the stilbite - stellerite solid solution in low-grade metabasalts

    Science.gov (United States)

    Fridriksson, Thráinn; Neuhoff, Philip S.; Arnórsson, Stefán; Bird, Dennis K.

    2001-11-01

    Standard state thermodynamic data for stilbite (Ca2NaAl5Si13O36∗16H2O) and stellerite (Ca2Al4Si14O36∗14H2O), together with mixing properties of the stilbite -stellerite solid solution (stilbite SS) are derived through assessment of geological observations of stilbite SS compositions in metabasalts, experimental phase equilibria, and calorimetric observations. Measured compositions of stilbite SS in Tertiary metabasalts in Iceland and Icelandic geothermal systems change systematically towards the stellerite endmember with increasing stratigraphic depth and temperature. Standard molal volumes, heat capacities, and entropies for the endmembers of the solid solution are derived through critical review of published crystallographic and calorimetric data for natural stilbite SS. Standard molal Gibbs energies of formation at 298.15 K and 1 bar for stilbite (-4,946,475cal mol-1) and stellerite (-4,762,036 cal mol-1) and the mixing properties of the solid solution are retrieved from observed phase- and compositional-relations in metabasalts at Berufjördur, Iceland, measured temperatures of zeolite mineral distribution in active geothermal systems, and published observations of reversed phase equilibria. Mixing in stilbite SS can be described with an athermal solid solution model. Thermodynamic data resulting from our analysis provide close correlation between compositions of stilbite SS in Icelandic geothermal systems predicted from compositions of geothermal solutions and observed compositions of these minerals in low-grade metabasalts of Iceland, as well as the observed temperature of the stilbite SS to laumontite (leonhardite) transition in Icelandic geothermal systems. Stilbite SS composition in metabasalts is a sensitive function of temperature, fluid composition, coexisting minerals (especially silica polymorphs) and geothermal gradient.

  11. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  12. Explicit thin-lens solution for an arbitrary four by four uncoupled beam transfer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Balandin, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Orlov, S. [Moscow State Univ. (Russian Federation). Faculty of Computational Mathematics and Cybernetics

    2011-10-15

    In the design of beam transport lines one often meets the problem of constructing a quadrupole lens system that will produce desired transfer matrices in both the horizontal and vertical planes. Nowadays this problem is typically approached with the help of computer routines, but searching for the numerical solution one has to remember that it is not proven yet that an arbitrary four by four uncoupled beam transfer matrix can be represented by using a finite number of drifts and quadrupoles (representation problem) and the answer to this questions is not known not only for more or less realistic quadrupole field models but also for the both most commonly used approximations of quadrupole focusing, namely thick and thin quadrupole lenses. In this paper we make a step forward in resolving the representation problem and, by giving an explicit solution, we prove that an arbitrary four by four uncoupled beam transfer matrix actually can be obtained as a product of a finite number of thin-lenses and drifts. (orig.)

  13. Four Thermochromic o-Hydroxy Schiff Bases of α-Aminodiphenylmethane: Solution and Solid State Study

    Directory of Open Access Journals (Sweden)

    Marija Zbačnik

    2017-01-01

    Full Text Available More than a hundred years after the first studies of the photo- and thermochromism of o-hydroxy Schiff bases (imines, it is still an intriguing topic that fascinates several research groups around the world. The reasons for such behavior are still under investigation, and this work is a part of it. We report the solution-based and mechanochemical synthesis of four o-hydroxy imines derived from α-aminodiphenylmethane. The thermochromic properties were studied for the single crystal and polycrystalline samples of the imines. The supramolecular impact on the keto-enol tautomerism in the solid state was studied using SCXRD and NMR, while NMR spectroscopy was used for the solution state. All four imines are thermochromic, although the color changes of the single crystals are not as strong as of the polycrystalline samples. One of the imines shows negative thermochromism, and that one is in keto-amine tautomeric form, both in the solid state as in solution.

  14. Kinetics and thermodynamics of the dissolution of Th1-xMxO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Dacheux, N.; Moisy, Ph.; Purans, J.

    2004-01-01

    Kinetics of the dissolution of Th 1-x M x O 2 (M = U, Pu) solid solutions was investigated as a function of several chemical parameters such as pH, substitution ratio, temperature, ionic strength, and electrolyte. Several compositions of Th 1-x U x O 2 and Th 1-x Pu x O 2 were synthesized and characterized before and after leaching by using several methods such as XRD, EXAFS, BET, PIXE, SEM, and XPS. Leaching tests were performed in nitric, hydrochloric or sulfuric media and groundwater. The normalized dissolution rates were evaluated for Th 1-x U x O 2 , and Th 0.88 Pu 0.12 O 2 leading to the determination of the partial order related to the proton concentration, n, and to the corresponding normalized dissolution rate constant at pH = 0, k'T. While for Th enriched solids, the solid solutions Th 1-x U x O 2 have the same dissolution behaviour than ThO 2 with a partial order n ∼ 0.3, in the case of uranium enriched solids, Th 1-x U x O 2 has the same dissolution behaviour than UO 2 with a partial order of n = 1, indicating that uranium oxidation rate becomes the limiting step of the dissolution process. The stoichiometry of the release of both actinides (U or Pu, Th) was verified until the precipitation of thorium occurred in the leachate for pH > 2, while uranium was released in the solution as an uranyl form. For uranium enriched solid solutions, thermodynamic equilibrium was reached after 100 days, and solubility constant of secondary phase was determined. In the case of Th 1-x Pu x O 2 , the dissolution behaviour is similar to that of ThO 2 , but only kinetic aspect of the dissolution can be studied. From the analysis of XPS and EXAFS data on leached and un-leached Th 1-x U x O 2 samples, the dissolution mechanism of solid solutions was explained and will be discussed. The role of the electrolytes on the dissolution of the solid solutions is discussed. Kinetics parameters of dissolution are also given in groundwater and in neutral media

  15. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Guanhua; Zhang, Hang; Zhang, Xiang; Zeng, Wei; Su, Qingmei; Du, Gaohui; Duan, Huigao

    2015-01-01

    Exploring advanced anode materials to maximize the capacity of lithium ion batteries has been an active research area for decades. Constructing composites materials has been proved to be one of the most effective methods to achieve higher capacity due to the synergistic effect. In this work, we proposed and demonstrated a concept of solid-solution-like ZnO/C composites to approach the largest possible synergistic effect by introducing the most interfaces and minimizing the pulverization. The solid-solution-like ZnO/C electrode could achieve a high reversible capacity of 813.3 mAh g −1 at a current density of 100 mA g −1 after 100 cycles with a decrease rate of only 0.4% per cycle. Moreover, the discharge capacity still maintained 53.5% of the original value even when the current density increased to 40 times as much as the original, showing a distinguished rate performance. In addition, such solid-solution-like nanofibers can be easily prepared because of their compatibility with the existing industrial PAN-based spinning process. This may pave the way to mass produce lithium ion batteries with significantly enhanced performance using existing low-cost commercial facilities and recipes.

  16. A Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Fuyang Tian

    2017-11-01

    Full Text Available Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasirandom structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics and their applications and limits in single phase HEAs.

  17. Determination of volatile compounds in grape distillates by solid-phase extraction and gas chromatography.

    Science.gov (United States)

    Lukić, Igor; Banović, Mara; Persurić, Dordano; Radeka, Sanja; Sladonja, Barbara

    2006-01-06

    Solid-phase extraction (SPE) procedure on octadecylsilica (C18) was developed for accumulation of volatile compounds from grape distillates. The procedure was optimised for final analysis by capillary gas chromatography. At mass concentrations in model solutions ranging from 0.1 to 50 mg/l solid-phase extraction recoveries of all analytes ranged from 69% for 2-phenylethanol to 102% for capric acid, with RSD values from 2 to 9%. SPE recoveries of internal standards to be added in the sample solution prior to extraction, higher alcohols 2-ethyl-1-hexanol and 1-undecanol, were 97 and 93%, respectively, with RSD values of 3%. Detection limits of analyzed compounds in model solutions ranged from 0.011 mg/l for isoamyl acetate to 0.037 mg/l for caproic acid. Method efficiency was tested in relation to acetic acid content, volume fraction of ethanol and possible matrix effects. A significant influence of matrix on SPE efficiency for geraniol, cis-2-hexen-1-ol and cis-3-hexen-1-ol was detected. For the same reason, 2-phenylethanol could not be determined by developed SPE method in samples of grape distillates. The developed solid-phase extraction method was successfully applied to determine the differences in volatile compound content in different grape distillates produced by the distillation of crushed, pressed and fermented grapes.

  18. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System

    Science.gov (United States)

    Yang, Bin; Lai, Wen-Sheng

    2009-06-01

    The relative stability of fcc and bcc solid solutions and amorphous phase with different compositions in the Cu-Al system is studied by molecular dynamics simulations with n-body potentials. For Cu1-xAlx alloys, the calculations show that the fcc solid solution has the lowest energies in the composition region with x 0.72, while the bee solid solution has the lowest energies in the central composition range, in agreement with the ball-milling experiments that a single bcc solid solution with 0.30 < x < 0.70 is obtained. The evolution of structures in solid solutions and amorphous phase is studied by the coordination number (CN) and bond-length analysis so as to unveil the underlying physics. It is found that the energy sequence among three phases is determined by the competition in energy change originating from the bond length and CNs (or the number of bonds).

  19. Np(V) carbonates in solid state and aqueous solution

    International Nuclear Information System (INIS)

    Meinrath, G.

    1994-01-01

    The solubility of NaNpO 2 CO 3 (s) in 0.1M perchlorate solution at 25 deg C in equilibrium with 1.0% CO 2 /N 2 atmosphere has been investigated as a function of pH/lg [CO 3 2- ]. The solid phase was found hexagonal with a=1008.1±0.3 pm and c=991.1±0.2 pm. A solubility product of lg Ksp(NaNpO 2 CO 3 ) = -10.22±0.02 and a formation constant of the first Np(V) carbonato species of lg β 01 = 4.52±0.02 was evaluated. For the dicarbonato species an upper limit of lg lg β 02 2 partial pressure gave evidence that carbonato species are prevailing in solutions at both 1% and 0.03% CO 2 partial pressures. (author) 26 refs.; 4 figs.; 3 tabs

  20. Effect of β-phase decomposition on the superconducting properties of Ti-27 at percent Nb solid solution

    International Nuclear Information System (INIS)

    Hariharan, Y.; Valsakumar, M.C.; Radhakrishnan, T.S.

    1980-01-01

    The effect of β-phase decomposition on the superconducting transition temperature (Tsub(c)) of a Ti-27 at % Nb solid solution has been studied by the resistive technique. The samples were β-quenched from 900deg C and cold rolled to 30%. Annealing at 400deg C for various times upto 15 hours causes Ti-rich phases to precipitate out of the matrix. This decomposition of the β-phase is seen to lead to a progressive enhancement in Tsub(c) from 7.7 K in the β-quenched state to 8.8 K in the sample annealed for 15 hours; further, the width Δ Tsub(c) of the superconducting transition (=90 mK in the β-quenched state) reaches a maximum value (360 mK) for a 10-hour anneal. The conjecture that the enhancement in Tsub(c) occurs as a result of precipitation and the consequent enrichment of the Nb content of the matrix is examined. It is estimated that to account for the large observed enhancement of Tsub(c), the Nb enrichment would have to be of the order of 5-6%; whereas a TEM study has revealed the enrichment to be of the order of 0.2% only. Analysis of the X-ray diffractograms is also not in favour of this hypothesis. Hence alternative mechanisms to account for the Tsub(c) enhancement are currently under investigation. Also discussed is the calculation of Tsub(c) using McMillan's formula for strongly coupled superconductors. (author)

  1. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  2. Solution and solid-phase halogen and C-H hydrogen bonding to perrhenate.

    Science.gov (United States)

    Massena, Casey J; Riel, Asia Marie S; Neuhaus, George F; Decato, Daniel A; Berryman, Orion B

    2015-01-28

    (1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.

  3. Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions. Chemical composition range and flux crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.A. [N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, 603950 (Russian Federation); Marychev, M.O., E-mail: marychev@yandex.ru [N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, 603950 (Russian Federation); Andreev, P.V.; Lykov, V.A.; Faddeev, M.A. [N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, 603950 (Russian Federation); Koseva, I. [Bulgarian Academy of Science, Institute of General and Inorganic Chemistry, BU-1113 Sofia (Bulgaria); Nikolov, V. [N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, 603950 (Russian Federation)

    2015-11-01

    A series of Ca{sub 2−x}Li{sub 2x}GeO{sub 4} specimens with 0 < 2x < 2, were synthesized by the classical solid state method. X-ray analysis revealed that for 0 < 2x < 0.6 only Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions of Ca{sub 2}GeO{sub 4} structure crystallized. The cell parameters of these solid solutions linearly decreased upon increasing the lithium concentration, which means that the solutions are in accordance with the Vegard's law. For 2x > 0.6 the specimens contained two phases: (i) Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions with maximum lithium concentration approximately equal to that for 2x = 0.6 and minimum values of the cell parameters and (ii) Li{sub 2}CaGeO{sub 4} phase. Li{sub 2}O·MoO{sub 3}–Ca{sub 2}GeO{sub 4} high-temperature solutions were used to grow Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions and Li{sub 2}CaGeO{sub 4} single crystals by the high temperature solution (flux) method. Li{sub 2}CaGeO{sub 4} crystals were grown in the concentration range 8–26 wt. % Ca{sub 2}GeO{sub 4} in the temperature range 830–980 °C. Crystals with chemical compositions of the Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions with different Li concentrations were grown in the concentration range 26–40 wt. % Ca{sub 2}GeO{sub 4} in the temperature range 980–1090 °C. - Highlights: • Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions are established for the first time. • The Li concentration range into the solutions is between 0 and 0.6. • The solid solutions are in accordance to Vegard's law. • Suitable solutions are found out for Ca{sub 2−x}Li{sub 2x}GeO{sub 4} and Li{sub 2}CaGeO{sub 4} crystal growth.

  4. Correlation of Solid State and Solution Coordination Numbers with Infrared Spectroscopy in Five-, Six-, and Eight-Coordinate Transition Metal Complexes of DOTAM.

    Science.gov (United States)

    Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David

    2016-08-16

    Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.

  5. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C2h symmetry trans conformation (O=C-C=O dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the com...

  6. Atomic mean-square displacements and the critical-voltage effect in cubic solid solutions

    International Nuclear Information System (INIS)

    Shirley, C.G.; Fisher, R.M.

    1979-01-01

    The critical-voltage phenomena observed in high-voltage electron microscope images of bend contours as well as in corresponding Kikuchi or convergent-beam diffraction patterns provide sensitive methods of determining submicroscopic alloy parameters such as Debye temperatures, short-range order, and atomic scattering factors. Only a very limited number of critical voltages can be observed in metal crystals in the voltage range usually available, 100 to 1200 kV, so that quantitative interpretation of the data must be based on a few-parameter model which incorporates all the pertinent factors. A satisfactory two-parameter model has been developed which can be used to interpret or compute the critical voltages of substitutional solid solutions as functions of composition, temperature and short-range order. In the alloy systems Fe-Cr, Ni-Au, Cu-Au and Cu-Al, sufficient critical voltage data are available to derive the model parameters which pertain to atomic bonding in the lattice. In addition to atomic scattering amplitudes, the critical voltage depends strongly on the atomic mean-square displacements. The static contribution to the mean-square displacements is large in alloys with large atomic-radius disparity, and is especially sensitive to short-range order in f.c.c. solid solutions. Well-defined best estimates for the model parameters are used to predict the critical voltage and its sensitivity to composition, temperature and short-range order for a large number of solid solutions. Systems for which critical-voltage studies may be of considerable interest are indicated. (author)

  7. The influence of P solutes on an irradiated α-Fe matrix

    International Nuclear Information System (INIS)

    Hurchand, H.; Kenny, S.D.; Sanz-Navarro, C.F.; Smith, R.; Flewitt, P.E.J.

    2005-01-01

    Atomistic simulations of collision cascades in a Fe-0.04at.%P matrix and a pure Fe matrix are compared to investigate the interaction of the phosphorus atoms with the radiation. The simulations were performed for a primary knock-on atom having an energy in the range 1-16 keV. It is observed that the P atom in the Fe matrix does not increase significantly the damage induced to the lattice post irradiation. The density of vacancies and the morphology of the clusters formed in the Fe-0.04at.%P system are indistinguishable from residual defects produced in a pure irradiated Fe matrix. There are two mechanisms by which the Fe interstitials interact with the P atoms. The first occurs when a P atom is dislodged from its substitutional position by a recoil atom and combines with an Fe interstitial to form a mixed dumbbell. The second is one in which the Fe interstitial is attracted to a substitutional P atom due to the lattice strain region in the vicinity of the P atom. In this case the P atom acts as an attractive centre for interstitial Fe atoms and stabilises them into Fe-P nano-clusters. Nearly 35% of the atoms which are ejected from the core region of the cascade during the ballistic phase form such solute-defect clusters which remain pinned over the period of several hundred picoseconds. Finally, the radiation induced mobility of the P atom is reported. Substitutional P atoms whether isolated or as part of the larger defect clusters have a high energy barrier for diffusion but the P atoms displaced from substitutional sites can diffuse through the lattice by hopping between dumbbell and tetrahedral sites

  8. Ionic conductivity of LISICON solid solutions, Li 2+2 xZn 1- xGeO 4

    Science.gov (United States)

    Bruce, P. G.; West, A. R.

    1982-10-01

    The conductivity of LISICON γII-type solid solutions of general formula Li 2+2 xZn 1- xGeO 4 (-0.36 class of Li + ion conductors, was measured over the temperature range ˜25 to 300°C. Conductivities appear to be very composition dependent near the stoichiometric composition x = 0, but less so in the range 0.15 ≲ x ≲ 0.87. It is shown that interstitial Li + ions rather than cation vacancies give rise to high conductivities. The solid electrolyte properties and possible applications of the solid solutions are evaluated. The LISICON composition, x = 0.75, decomposes readily above ˜300°C by precipitation of Li 4GeO 4, thereby limiting its possible usefulness, but compositions in the range x = 0.45 to 0.55 appear to be stable at all temperatures. However, irreversible decreases in conductivity (aging effects) occur on annealing, even at room temperature. The conductivity data of quenched samples give linear Arrhenius plots, but with anomalously high prefactors, over the range ˜25 to 130°C; at higher temperatures reversible changes of slope to lower activation energies occur. A variety of minor polymorphic transitions occur on annealing γII solid solutions below ˜300°C and their relationship to the conductivity was also determined.

  9. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    Waysbort, Daniel; McGarvey, David J.; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M.; Durst, H. Dupont

    2009-01-01

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green TM , has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO 4 -2 ) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t 1/2 ≤ 4 min), 1:10 for HD (t 1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  10. Decay property of regularity-loss type for solutions in elastic solids with voids

    KAUST Repository

    Djouamai, Leila; Said-Houari, Belkacem

    2014-01-01

    In this paper, we consider the Cauchy problem for a system of elastic solids with voids. First, we show that a linear porous dissipation leads to decay rates of regularity-loss type of the solution. We show some decay estimates for initial data in Hs(R)∩L1(R). Furthermore, we prove that by restricting the initial data to be in Hs(R)∩L1,γ(R) and γ. ∈. [0, 1], we can derive faster decay estimates of the solution. Second, we show that by adding a viscoelastic damping term, then we gain the regularity of the solution and obtain the optimal decay rate. © 2013 Elsevier Ltd.

  11. A Moessbauer study on the photolysis of potassium trisoxalatoferrate(III) in solid and solutions

    International Nuclear Information System (INIS)

    Sato, H.; Tominaga, T.

    1977-01-01

    The photolysis of potassium trisoxalatoferrate(III) in solid and aqueous solutions was studied by Moessbauer spectroscopy. A ferrous species was mainly detected as an intermediate product in the photoirradiated solutions. A tentative mechanism was proposed for the overall reactions in and after the photolysis of this compound. The Moessbauer spectra were measured with a Hitachi AA-40 or Shimadzu MEG-2 Moessbauer spectrometer against Co-57 in copper foil. Acrylic holders (32 mm in diameter) were used for measurements of solutions: the irradiated solution was quickly frozen before measurement by adding it dropwise into the acrylic holder which had been cooled with liquid nitrogen or dry-ice. (T.I.)

  12. Precipitation in solid solution and structural transformations in single crystals of high rhenium ruthenium-containing nickel superalloys at high-temperature creep

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A.A.; Petrushin, N.V.; Zaitsev, D.V.; Treninkov, I.A.; Filonova, E.V. [All-Russian Scientific Research Institute of Aviation Materials (VIAM), Moscow (Russian Federation)

    2010-07-01

    The phase composition and structure of single crystals of two superalloys (alloy 1 and alloy 2) were investigated in this work. For alloy 1 (Re - 9 wt%) the kinetics of precipitation in solid solution at heat treatment (HT) was investigated. TEM and X-Ray examinations have revealed that during HT rhombic phase (R-phase) precipitation (Immm class (BCR)) occurs. The TTT diagram is plotted, it contains the time-temperature area of the existence of R-phase particles. The element content of R-phase is identified (at. %): Re- 51.5; Co- 23.5; Cr- 14.8; Mo- 4.2; W- 3.3; Ta- 2.7. For alloy 2 (Re - 6.5 wt %, Ru - 4 wt %) structural transformations at high-temperature creep are investigated. By dark-field TEM methods it is established, that in alloy 2 the additional phase with a rhombic lattice is formed during creep. Particles of this phase precipitate in {gamma}-phase and their quantity increases during high-temperature creep. It is revealed that during creep 3-D dislocation network is formed in {gamma}-phase. At the third stage of creep the process of inversion structure formation is observed in the alloy, i.e. {gamma}'-phase becomes a matrix. Thus during modeling creep the volume fraction of {gamma}'-phase in the samples increases from 30% (at creep duration of 200 hrs) up to 55% (at 500 hrs). The processes of structure formation in Re and Ru-containing nickel superalloys are strongly affected by decomposition of solid solution during high-temperature creep that includes precipitation of additional TCP-phases. (orig.)

  13. Photoelectrochemical properties of CdSesub(x)Tesub(1-x) semiconducting solid solutions

    International Nuclear Information System (INIS)

    Kolbasov, G.Ya.; Karpov, I.I.; Pavelets, A.M.; Khanat, L.N.

    1985-01-01

    Photoelectrochemical properties of polycrystalline films of solid solutions CdSesub(x)Tesub(1-x) at x=0.5-0.8 are studied. Films from 5 to 30 μm thickness had hexagonal or mixed cubic and hexogonal structures depending on the compositions. All compositions had the electron type of conductivity. Alkali solutions of Na 2 S and S were used as electrolyte. Polarization characteristics of the CdSesub(0.5)Tesub(0.5) photoelectrode, curves of spectral dependence of photo electrochemical current and of the changes of photo-e.m.f. on electrode potential are plotted

  14. Influence of lanthanum on the physico-chemical properties of solid solutions GeS0.5Se0.5

    International Nuclear Information System (INIS)

    Murquzov, M.I.; Alekperov, A.S.; Bayramov, R.B.

    2010-01-01

    By the methods of physical-chemical analysis (X-ray, MSA, as well as measurement of microhardness and density determination) the influence of La on the physico-chemical properties of solid solutions (GeS 0 .5Se 0 .5) 1 -x(La) x was studied and its microdiagram was plotted. At room temperature the GeS 0 .5Se 0 .5 based solid solution extent 4 at. percent of La. The dependence of lanthane microhardness was studied

  15. Structural studies of TiC1−xOx solid solution by Rietveld refinement and first-principles calculations

    International Nuclear Information System (INIS)

    Jiang, Bo; Hou, Na; Huang, Shanyan; Zhou, Gege; Hou, Jungang; Cao, Zhanmin; Zhu, Hongmin

    2013-01-01

    The lattice parameters, structural stability and electronic structure of titanium oxycarbides (TiC 1−x O x , 0≤x≤1) solid solution were investigated by Rietveld refinement and first-principles calculations. Series of TiC 1−x O x were precisely synthesized by sintering process under the vacuum. Rietveld refinement results of XRD patterns show the properties of continuous solid solution in TiC 1−x O x over the whole composition range. The lattice parameters vary from 0.4324 nm to 0.4194 nm decreasing with increasing oxygen concentration. Results of first-principles calculations reveal that the disorder C/O structure is stable than the order C/O structure. Further investigations of the vacancy in Ti 1−Va (C 1−x O x ) 1−Va solid solution present that the structure of vacancy segregated in TiO-part is more stable than the disorder C/O structure, which can be ascribed to the Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy via the analysis of the electron density difference plots and PDOS. - Graphical abstract: XRD of series of titanium oxycarbides (TiC 1−x O x , 0≤x≤1) solid solution prepared by adjusting the proportion of TiO in the starting material. Highlights: • Titanium oxycarbides were obtained by sintering TiO and TiC under carefully controlled conditions. • Rietveld refinement results show continuous solid solution with FCC structure in TiC 1−x O x . • The disorder C/O structure is stable than the order C/O structure. • Introduction of vacancy segregated in TiO-part is more stable than disorder C/O structure. • Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy enhance structural stability

  16. Preparation and X-ray diffraction characterization of Th1-xBixO2-0.5x (where x= 0 to 0.5) solid solutions

    International Nuclear Information System (INIS)

    Kanrar, Buddhadev; Misra, N.L.

    2015-01-01

    Solid solutions of ThO 2 and Bi 2 O 3 were prepared by solid state reactions of these oxides. X-ray diffraction studies indicated that Bi +3 up to 50 at% can be dissolved in ThO 2 lattice. Rietveld refinement of the XRD patterns indicated single phase solid solutions up to 50 atom% of Bi +3 in ThO 2 lattice. The cell parameters of the solid solutions were found to decrease with increasing amount of Bi +3 in the lattice. (author)

  17. Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California

    Science.gov (United States)

    Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.

    1989-01-01

    Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.

  18. Theoretical multi-physics approaches to solid-solution strengthening of Al

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Duancheng; Friak, Martin; Raabe, Dierk; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2009-07-01

    The strengthening of soft metallic materials has a long tradition and is an important metallurgical topic since the time when ancient smiths forged the first swords. Intense materials research revealed a combination of three mechanisms as decisive for solid-solution strengthening phenomena: (i) the size mismatch of components (Mott and Nabarro's parelastic concept), (ii) the elastic modulus mismatch of atoms (Fleischer's dielastic contribution), and (iii) the concentration of solutes (statistical concept of Friedel and Labusch). Combining density functional theory calculations and linear-elasticity theory, the key parameters that are essential for the classical strengthening theories are determined in order to test them and identify their possible validity limits. The strengthening of fcc aluminium is chosen as an example and a series of binary systems Al-X (with X=Ca,Sr,Ir,Li,Mg,Cu) was considered. Comparing our results with those obtained by applying classical theories we find clear deviations. These deviations originate from non-classical lattice distortions due to the size mismatch of solute atoms in their first coordination shells.

  19. Solution of quadratic matrix equations for free vibration analysis of structures.

    Science.gov (United States)

    Gupta, K. K.

    1973-01-01

    An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.

  20. Diffuse neutron scattering study of metallic interstitial solid solutions

    International Nuclear Information System (INIS)

    Barberis, P.

    1991-10-01

    We studied two interstitial solid solutions (Ni-C(1at%) and Nb-O(2at%) and two stabilized zirconia (ZrO2-CaO(13.6mol%) and ZrO2-Y2O3(9.6mol%) by elastic diffuse neutron scattering. We used polarized neutron scattering in the case of the ferromagnetic Ni-based sample, in order to determine the magnetic perturbation induced by the C atoms. Measurements were made on single crystals in the Laboratoire Leon Brillouin (CEA-CNRS, Saclay, France). An original algorithm to deconvolve time-of-flight spectra improved the separation between elastically and inelastically scattered intensities. In the case of metallic solutions, we used a simple non-linear model, assuming that interstitials are isolated and located in octahedral sites. Results are: - in both compounds, nearest neighbours are widely displaced away from the interstitial, while next nearest neighbours come slightly closer. - the large magnetic perturbation induced by carbon in Nickel decreases with increasing distance on the three first neighbour shells and is in good agreement with the total magnetization variation. - no chemical order between solute atoms could be evidenced. Stabilized zirconia exhibit a strong correlation between chemical order and the large displacements around vacancies and dopants. (Author). 132 refs., 38 figs., 13 tabs

  1. Synthesis and structural characteristics of the spinel-type solid solutions in the Mn-V-Fe-O system

    International Nuclear Information System (INIS)

    Ponomaryov, V.I.; Dubrovina, I.N.; Zakharov, R.G.

    1976-01-01

    The part of the spinel region bounded by the compounds Mn 3 O 4 , Mn 2 VO 4 , Fe 2 VO 4 , and Fe 3 O 4 in the four-component system Mn-V-Fe-O was studied. The compounds were synthesized by ceramic technology. Samples were heated in a CO 2 atmosphere free of oxygen at 1100 0 C for 25-50 hr. It was found that the average composition of the spinel compound in the system had the formula Mnsub(1.00)Fesub(1.33)Vsub(0.67)O 4 . X-ray and neutron radiogrphic analyses were made. Crystallo-chemical formulas of the solid solutions considered are tabulated. The magnetic moments of saturation, calculated by the Neel model, are shown, and their experimental values are presented. The crystallo-chemical formulas of the spinel solid solutions in the Mn-V-Fe-O system are of interest in interpreting the concentration dependence of the physico-chemical properties of solid solutions of oxides based on metals with varying valence

  2. Auger recombination in p-type InAs and in Gasub(x)Insub(1-x)As solid solutions

    International Nuclear Information System (INIS)

    Zotova, N.V.; Yassievich, I.N.

    1977-01-01

    The probability of the Auger recombination in p-type semiconductors, which is accompanied by transition of the second hole into the zone, splitted by spin-orbital interaction, was calculated. The above process is effective when the energy of spin-orbital splitting off Δ is close to the forbidden zone energy Esub(g), which takes place in the case of InAs, GaSb and solid solutions based on these compounds. The calculation is performed for the non-degenerate hole gas at a finite difference of Esub(g) - Δ. By means of the study of radiative recombination in InAs and Gasub(x)Insub(1-x)As solid solutions with small contents of GaAs (0 17 cm -3 . It is found that the quantum yield of radiative recombination increases sharply in Gasub(x)Insub(1-x)As solid solutions with the increase of x, which is associated with the increase of the difference of Esub(g) - Δ; the radiative recombination intensity increases in correspondence with the theoretical calculation made

  3. Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2000-02-03

    A new class of binary mesoporous yttria-zirconia (YZ) and ternary mesoporous metal-YZ materials (M = electroactive Ni/Pt) is presented here that displays the highest surface area of any known form of yttria-stabilized zirconia. These mesoporous materials form as solid solutions and retain their structural integrity to 800 C, which bodes well for their possible utilization in fuel cells. (orig.)

  4. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.; Gaynor, Whitney; Ding, I-Kang; Rim, Seung-Bum; Peumans, Peter; McGehee, Michael D.

    2011-01-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag

  5. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Tao, N [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hong, Y [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Lu, J [LASMIS, University of Technology of Troyes, 10000, Troyes (France); Lu, K [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2005-11-21

    Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

  6. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  7. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  8. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  9. Phase transitions in solid Kr-CH4 solutions and rotational excitations in phase II

    International Nuclear Information System (INIS)

    Bagatskii, M.I.; Mashchenko, D.A.; Dudkin, V.V.

    2007-01-01

    The heat capacity C p of solid Kr-n CH 4 solutions with the CH 4 concentrations n=0.82, 0.86, 0.90 as well as solutions with n=0.90, 0.95 doped with 0.002 O 2 impurity has been investigated under equilibrium vapor pressure over the internal 1-24 K. The (T,n)-phase diagram was refined and the region of two-phase states was determined for Kr-n CH 4 solid solutions. The contribution of the rotational subsystem, C r ot, to the heat capacity of the solutions has been separated. Analysis of C r ot(T) at T 1 and E 2 between the tunnel levels of the A-, T- and A-, E--nuclear-spin species of CH 4 molecules in the orientationally ordered subsystem, and to determine the effective energy gaps E 1 between lowest levels of the A- and T- species. The relations τ(n) and E 1 (n) stem from changes of the effective potential field caused as the replacement of CH 4 molecules by Kr atoms at sites of the ordered sublattices. The effective gaps E L between a group of tunnel levels of the ground-state liberation state and the nearest group of excited levels of the liberation state of the ordered CH 4 molecules in the solutions with n=0.90 (E L =52 K) and 0.95 (E L =55 K) has been estimated

  10. A solid solution series of atacamite type Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Sebastian [TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, Freiberg 09596 (Germany); Dinnebier, Robert E. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569 (Germany); Röder, Christian [TU Bergakademie Freiberg, Institute of Theoretical Physics, Leipziger Strasse 23, Freiberg 09596 (Germany); Freyer, Daniela, E-mail: daniela.freyer@chemie.tu-freiberg.de [TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, Freiberg 09596 (Germany)

    2015-08-15

    For the first time a complete solid solution series Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these two metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 2−2x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes

  11. Magnetoelectric effect in (BiFeO3x–(BaTiO31-x solid solutions

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available The aim of the present work was to study magnetoelectric effect (ME in (BiFeO3x-(BaTiO31-x solid solutions in terms of technological conditions applied in the samples fabrication process. The rapidly growing interest in these materials is caused by their multiferroic behaviour, i.e. coexistence of both electric and magnetic ordering. It creates possibility for many innovative applications, e.g. in steering the magnetic memory by electric field and vice versa. The investigated samples of various chemical compositions (i.e. x = 0.7, 0.8 and 0.9 were prepared by the solid-state sintering method under three sets of technological conditions differing in the applied temperature and soaking time. Measurements of the magnetoelectric voltage coefficient αME were performed using a dynamic lock-in technique. The highest value of αME was observed for 0.7BiFeO3-0.3BaTiO3 solid solution sintered at the highest temperature (T = 1153 K after initial electrical poling despite that the soaking time was reduced 10 times in this case.

  12. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  13. Specific features of kinetics of He/sup 3/-He/sup 4/ solid solution transformations at superlow temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, V A; Majdanov, V A; Mikhin, N P

    1986-06-01

    The NMR data on the phase transition kinetics of /sup 3/He-/sup 4/He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm/sup 2//mol with a /sup 3/He content of 0.54%. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of /sup 3/He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid.

  14. Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models: Stability analysis and convergence behaviour of a point and a plane solver

    International Nuclear Information System (INIS)

    Wilde, Juray de; Vierendeels, Jan; Heynderickx, Geraldine J.; Marin, Guy B.

    2005-01-01

    Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed. The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP). The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations. The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution. The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated. Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated

  15. Purification of uranothorite solid solutions from polyphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, Nicolas, E-mail: nicolas.clavier@icsm.fr [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Szenknect, Stéphanie; Costin, Dan Tiberiu; Mesbah, Adel; Ravaux, Johann [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Poinssot, Christophe [CEA/DEN/DRCP/DIR, Site de Marcoule – Bât. 400, BP 17171, 30207 Bagnols/Cèze cedex (France); Dacheux, Nicolas [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Purification of Th{sub 1−x}U{sub x}SiO{sub 4} uranothorites from oxide mixture was investigated. •Repetition of centrifugation steps was discarded due to poor recovery yields. •Successive washings in acid and basic media allowed the elimination of oxide secondary phases. •Structural and microstructural characterization of the purified samples was provided. -- Abstract: The mineral coffinite, nominally USiO{sub 4}, and associated Th{sub 1−x}U{sub x}SiO{sub 4} uranothorite solid solutions are of great interest from a geochemical point of view and in the case of the direct storage of spent nuclear fuels. Nevertheless, they clearly exhibit a lack in the evaluation of their thermodynamic data, mainly because of the difficulties linked with their preparation as pure phases. This paper thus presents physical and chemical methods aiming to separate uranothorite solid solutions from oxide additional phases such as amorphous SiO{sub 2} and nanometric crystallized Th{sub 1−y}U{sub y}O{sub 2}. The repetition of centrifugation steps envisaged in first place was rapidly dropped due to poor recovery yields, to the benefit of successive washings in acid then basic media. Under both static and dynamic flow rates (i.e. low or high rate of leachate renewal), ICP-AES (Inductively Coupled Plasma – Atomic Emission Spectroscopy) analyses revealed the systematic elimination of Th{sub 1−y}U{sub y}O{sub 2} in acid media and of SiO{sub 2} in basic media. Nevertheless, two successive steps were always needed to reach pure samples. On this basis, a first cycle performed in static conditions was chosen to eliminate the major part of the accessory phases while a second one, in dynamic conditions, allowed the elimination of the residual impurities. The complete purification of the samples was finally evidenced through the characterization of the samples by the means of PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron

  16. Investigation of a 0.52 eV absorption band of n-type Ge1-xSix solid solutions irradiated with fast electrons at 77 K

    International Nuclear Information System (INIS)

    Abbasov, Sh.M.; Allakhverdiev, K.R.; Agaverdieva, G.T.; Bakhyshov, N.A.; Nagiev, A.I.

    1987-01-01

    Solid solutions belonging to the Ge 1-x Si x system are among the promising semiconductor materials. There is no published information on the absorption band in the region of 0.52 eV in Ge 1-x Si x solid solutions irradiated with fast electrons. The authors determined the infrared absorption spectra, impurity photoconductivity, and Hall effect of n-type Ge 1-x Si x solid solutions doped with antimony. These solid solutions were irradiated at 77 K with 5 MeV electrons in doses up to 2 x 10 17 cm -2 . This irradiation was carried out by a method described in Ref. 3

  17. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

    Science.gov (United States)

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin

    2018-02-14

    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  18. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  19. Solid solution inhomogeneity in DC-cast AlMn(Fe,Si) ingots

    International Nuclear Information System (INIS)

    Lakner, J.; Kovacs-Csetenyi, E.; Lal, K.

    1990-01-01

    The aim of this work was to characterize the structure in cast state of the AlMn1 alloy containing different Fe and Si concentration. The casting parameters were intended to keep constant and the effect of impurities was studied. The inhomogeneity along the diameter of cast billet was characterized by the dendrite arm spacing and by the solid solution content. To explain the results the model developed for binary AlFe and AlMn alloys was applied

  20. From solid solution to cluster formation of Fe and Cr in α-Zr

    International Nuclear Information System (INIS)

    Burr, P.A.; Wenman, M.R.; Gault, B.; Moody, M.P.; Ivermark, M.; Rushton, M.J.D.; Preuss, M.; Edwards, L.; Grimes, R.W.

    2015-01-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  1. From solid solution to cluster formation of Fe and Cr in α-Zr

    Energy Technology Data Exchange (ETDEWEB)

    Burr, P.A., E-mail: burr.patrick@gmail.com [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Wenman, M.R. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Gault, B.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Ivermark, M. [High Temperature Materials, Sandvik Materials Technology, 734 27 Hallstahammar (Sweden); University of Manchester, School of Materials, M13 9PL (United Kingdom); Rushton, M.J.D. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Preuss, M. [University of Manchester, School of Materials, M13 9PL (United Kingdom); Edwards, L. [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Menai, New South Wales 2234 (Australia); Grimes, R.W. [Centre for Nuclear Engineering and Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom)

    2015-12-15

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  2. Distributions of traces of metals on sorption from solutions of vanadium(V)

    International Nuclear Information System (INIS)

    Evseeva, N.K.; Turnaov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    A study is made of the distributions of traces of metals between aqueous solutions of vanadium(V) and a solid reagent made by introducing di-2-ethylhexylphosphoric acid into an inert matrix: a nonionic macroporous copolymer of polystyrene with divinyl benzene (wofatit Y 29). As regards degree of extraction, the trace components fall in the series zinc > cadmium > manganese > copper > cobalt, which resemble the extractability series. The vanadium content of the solution and the concentrations of the trace components have virtually no effect on the sorption. The process is effective in concentrating trace components from solutions containing vanadium(V)

  3. Distribution of microimpurities of metals at their sorption from vanadium (5) solutions

    International Nuclear Information System (INIS)

    Evseeva, N.K.; Turanov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    Distribution of metal microimpurities (Zn, Mn, Cu, Co, Fe) between aqueous solutions of vanadium (5) and solid extracting agent, prepared by means of introduction of di-2-ethylhexylphosphoric acid into inert matrix-nonionogeneous macropore copolymer of polystyrene with divinylbenzene (vofatit Y-29), has been studied. Accroding to the degree of extraction the microimpurities are arranged in the series: zinc > cadmium > manganese > copper > cobalt, which is similar to the series of extractability. Vanadium content in solution and concentration of microimpurities practically does not affect the sorption. It has been established that the process is effective for microimpurities concentration from solutions containing vanadium (5)

  4. Distribution of microimpurities of metals at their sorption from vanadium (5) solutions

    Energy Technology Data Exchange (ETDEWEB)

    Evseeva, N.K.; Turanov, A.N.; Telegin, G.F.; Kremenskaya, I.N.

    1983-01-01

    Distribution of metal microimpurities (Zn, Mn, Cu, Co, Fe) between aqueous solutions of vanadium (5) and solid extracting agent, prepared by means of introduction of di-2-ethylhexylphosphoric acid into inert matrix-nonionogeneous macropore copolymer of polystyrene with divinylbenzene (vofatit Y-29), has been studied. According to the degree of extraction the microimpurities are arranged in the series: zinc > cadmium > manganese > copper > cobalt, which is similar to the series of extractability. Vanadium content in solution and concentration of microimpurities practically does not affect the sorption. It has been established that the process is effective for microimpurities concentration from solutions containing vanadium (5).

  5. Neutron diffraction radiation of solid solution of carbon and hydrogen in the α-titanium in the homogeneity domain

    International Nuclear Information System (INIS)

    Mirzaev, B.B.; Khidirov, I.; Mukhtarova, N.N.

    2005-01-01

    In the work by the neutron-graph the homogeneity domain of the introduction solid solution TiC x H y is determined. The sample neutron grams have been taken on the neutron diffractometer (λ=.1085 nm) installed at the thermal column of the WWR-SM reactor (INF AN RUz). For the phase analysis and estimation of solid solutions homogeneity the X-ray graph was used. X-ray grams were taken on the X-ray diffractometer DRON-3M with use of CuK α radiation (λ=0.015418 nm)

  6. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  7. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  8. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  9. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  10. Pseudospectral operational matrix for numerical solution of single and multiterm time fractional diffusion equation

    OpenAIRE

    GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD

    2016-01-01

    This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...

  11. Status of the inert matrix fuel program at PSI

    International Nuclear Information System (INIS)

    Ledergerber, G.; Degueldre, C.; Kasemeyer, U.; Stanculescu, A.; Paratte, J.M.; Chawla, R.

    1997-01-01

    Incineration of plutonium by a once-through cycle in LWRs utilising an inert matrix based fuel may prove to be an attractive way of making use of the energy of fissile plutonium and reducing both the hazard potential and the volumes of the waste. Yttria stabilised zirconia forms a solid solution with oxides of rare earth elements (e.g. erbium, cerium) and some actinides. The small absorption cross section, the excellent stability under irradiation, and the insolubility in acids and water recommends this material as an inert matrix. Neutronics calculations with erbium as burnable poison show that these compositions would be optimal from the reactivity point of view. A fuel element with an improved reactivity behaviour over its life cycle has been designed for possible introduction into a heterogeneous LWR core. (author). 16 refs., 1 tab., 10 figs

  12. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    Science.gov (United States)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  13. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    Science.gov (United States)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  14. Direct measurements of the enthalpy of solution of solid solute in supercritical fluids: study on the CO2-naphthalene system.

    Science.gov (United States)

    Zhang, X; Han, B; Zhang, J; Li, H; He, J; Yan, H

    2001-10-01

    A setup for a calorimeter for simultaneously measuring the solubility and the solution enthalpy of solid solutes in supercritical fluids (SCFs) has been established. The enthalpy of solution of naphthalene in supercritical CO2 was measured at 308.15 K in the pressure range from 8.0-11.0 MPa. It was found that the enthalpy of solution (deltaH) was negative in the pressure range from 8.0 to 9.5 MPa, and the absolute value decreased with increasing pressure. In this pressure range, the dissolution of the solute was enthalpy driven. However, the deltaH became positive at pressures higher than 9.5 MPa, and the dissolution was entropy driven. Monte Carlo simulation was performed to analyze the local structural environment of the solvated naphthalene molecules in supercritical CO2 under the experimental conditions for the calorimetric measurements. By combining the enthalpy data and the simulation results, it can be deduced that the energy level of CO2 in the high compressible region is higher than that at higher pressures, which results in the large negative enthalpy of solution and the larger degree of solvent-solute clustering in the high compressible region.

  15. Contribution to the study of the structure of silver krypton solid solutions

    International Nuclear Information System (INIS)

    Levy, V.; Tullairet, J.; Delaplace, J.; Antolin-Baudier, J.; Adda, Y.

    1964-01-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [fr

  16. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. High-temperature thermoelectric properties of the β-As2−xBixTe3 solid solution

    Directory of Open Access Journals (Sweden)

    J.-B. Vaney

    2016-10-01

    Full Text Available Bi2Te3-based compounds are a well-known class of outstanding thermoelectric materials. β-As2Te3, another member of this family, exhibits promising thermoelectric properties around 400 K when appropriately doped. Herein, we investigate the high-temperature thermoelectric properties of the β-As2−xBixTe3 solid solution. Powder X-ray diffraction and scanning electron microscopy experiments showed that a solid solution only exists up to x = 0.035. We found that substituting Bi for As has a beneficial influence on the thermopower, which, combined with extremely low thermal conductivity values, results in a maximum ZT value of 0.7 at 423 K for x = 0.017 perpendicular to the pressing direction.

  18. High-temperature electrical properties of the Bi2.1Sr1.9(Ca1-xYx)Cu2Oy solid solution

    International Nuclear Information System (INIS)

    Hong, Byungsun; Mason, T.O.

    1993-01-01

    By a combination of conventional physical property measurements and high temperature electrical property studies, the solid solution limit, transport parameters, and potential defect regimes of the Bi 2.1 Sr 1.9 (Ca 1 - x Y x )Cu 2 O y solid solution were established. A continuous solid solution extends to x = 0.7 or 0.8. The electrical properties indicate that the product of the hole density-of-states and mobility for semiconducting compositions is approximately an order of magnitude smaller than for the other p-type superconducting cuprates. A pronounced drop in hole concentration accompanies the tetragonal-to-orthorhombic transition at x = 0.5, where after superconductivity disappears. The electrical properties also indicate that a composition x ≥ 0.7 is the appropriate ''reference'' compound for the solid solution series. Upon doping this yttrium-rich insulating composition with calcium, holes are introduced. With increased calcium content (decreased yttrium content) the system exhibits several defect regimes reminiscent of the behavior in the La 2 - x AE x CuO 4 (AE = Sr or Ba) system. Oxygen defects (interstitial and vacancies) are believed to play an important role in the defect structure

  19. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    International Nuclear Information System (INIS)

    Cui, Yajuan; Fang, Ruimei; Shang, Hongyan; Shi, Zhonghua; Gong, Maochu; Chen, Yaoqiang

    2015-01-01

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m 2 /g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure

  20. Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy

    DEFF Research Database (Denmark)

    Christophersen, Philip C.; Birch, Ditlev; Saarinen, Jukka

    2015-01-01

    The aim of this study was to gain new insights into protein distribution in solid lipid microparticles (SLMs) and subsequent release mechanisms using a novel label-free chemical imaging method, coherent anti-Stokes Raman scattering (CARS) microscopy. Lysozyme-loaded SLMs were prepared using...... in the solid lipid matrix, which required full lipolysis of the entire matrix to release lysozyme completely. Therefore, SLMs with lysozyme incorporated in an aqueous solution released lysozyme much faster than with lysozyme incorporated as a solid. In conclusion, CARS microscopy was an efficient and non......-destructive method for elucidating the distribution of lysozyme in SLMs. The interpretation of protein distribution and release during lipolysis enabled elucidation of protein release mechanisms. In future, CARS microscopy analysis could facilitate development of a wide range of protein-lipid matrices with tailor...

  1. Green's matrix for a second-order self-adjoint matrix differential operator

    International Nuclear Information System (INIS)

    Sisman, Tahsin Cagri; Tekin, Bayram

    2010-01-01

    A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.

  2. High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions

    International Nuclear Information System (INIS)

    Liu, Wei; Zhang, Qiang; Yin, Kang; Chi, Hang; Zhou, Xiaoyuan; Tang, Xinfeng; Uher, Ctirad

    2013-01-01

    The study of Mg 2 Si 1−x Sn x -based thermoelectric materials has received widespread attention due to a potentially high thermoelectric performance, abundant raw materials, relatively low cost of modules, and non-toxic character of compounds. In this research, Mg 2.16 (Si 0.4 Sn 0.6 ) 1−y Bi y solid solutions with the nominal Bi content of 0≤y≤0.03 are prepared using a two-step solid state reaction followed by spark plasma sintering consolidation. Within this range of Bi concentrations, no evidence of second phase segregation was found. Bi is confirmed to occupy the Si/Sn sites in the crystal lattice and behaves as an efficient n-type dopant in Mg 2 Si 0.4 Sn 0.6 . Similar to the effect of Sb, Bi doping greatly increases the electron density and the power factor, and reduces the lattice thermal conductivity of Mg 2.16 Si 0.4 Sn 0.6 solid solutions. Overall, the thermoelectric figure of merit of Bi-doped Mg 2.16 Si 0.4 Sn 0.6 solid solutions is improved by about 10% in comparison to values obtained with Sb-doped materials of comparable dopant content. This improvement comes chiefly from a marginally higher Seebeck coefficient of Bi-doped solid solutions. The highest ZT∼1.4 is achieved for the y=0.03 composition at 800 K. - Graphical abstract: (a)The relationship between electrical conductivity and power factor for Sb/Bi-doped Mg 2.16 (Si 0.4 Sn 0.6 ) 1−y (Sb/Bi) y (0 2.16 (Si 0.4 Sn 0.6 ) 1−y Bi y (0≤y≤0.03) solid solutions. (c)Temperature dependent dimensionless figure of merit ZT of Mg 2.16 (Si 0.4 Sn 0.6 ) 1−y Bi y (0≤y≤0.03) solid solutions. - Highlights: • Bi doped Mg 2.16 Si 0.4 Sn 0.6 showed 15% enhancement in the power factor as compared to Sb doped samples. • Bi doping reduced κ ph of Mg 2.16 Si 0.4 Sn 0.6 due to stronger point defect scattering. • The highest ZT=1.4 at 800 K was achieved for Mg 2.16 (Si 0.4 Sn 0.6 ) 0.97 Bi 0.03

  3. New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber.

    Science.gov (United States)

    Lee, Sangyool; Lee, Youngkwan; Cho, Mi-Suk; Nam, Jae-Do

    2008-09-01

    Solid state redox supercapacitors were fabricated using a solid polymer electrolyte, nitrile butadiene rubber (NBR)-KCI and chemically deposited polypyrrole (PPy) as the conducting polymer electrodes on both surfaces of a NBR film. The optimal conditions for the preparation of the PPy/NBR electrode were confirmed as functions of the uptake of pyrrole monomer into the NBR matrix as well as the immersion time in an oxidant solution. The morphology of the PPy-NBR-KCI capacitor was observed using scanning electron microscopy. The performance of the capacitors was characterized using a galvanostatic charge-discharge technique.

  4. Microstructure and Mechanical Strengths of Metastable FCC Solid Solutions in Al-Ce-Fe System

    OpenAIRE

    A., Inoue; H., Yamaguchi; M., Kikuchi; T., Masumoto; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research

    1990-01-01

    A metastable fcc solid solution (SS) with high mechanical strengths and good bending ductility was found to be formed in rapidly solidified Al-Ce-Fe alloys containing the solute elements below about 6 at%. The SS consists of equiaxed grains with a size of about 2μm and contains a high density of internal defects. The highest hardness (H_v) and tensile fracture strengtn (σ_f) are 440 and 860 MPa in the as-quenched state and remain almost unchanged up to about 600 K for 1 h, though fine compoun...

  5. Solution properties of solid and liquid potassium-indium alloys

    International Nuclear Information System (INIS)

    Takenaka, T.; Saboungi, M.L.

    1987-01-01

    It was recently shown by a combination of electrical resistivity, thermodynamic, and structural measurements that equiatomic alloys formed between K or Na and either Bi, Sb, Te, or Pb show pronounced deviations from ordinary metallic behavior and from ideal solution behavior, e.g., small values for the electrical conductivity and sharp peaks for the Darken excess stability function. Physical explanation of this behavior has been advanced on the basis of the formation of complex structural species similar to those reported for the corresponding solid alloys. The authors have chosen K-In alloys for several reasons. Phase diagram considerations coupled with small electronegativity differences between K and In would lead one to predict small deviations from ideal behavior, thus, this system would be suitable to test for oddities in alloy solution behavior in systems which deviate little from ideal behavior. Others have demonstrated that the position of the peak in the electrical resistivity changed in going from Li to Na and to K in the following sequence X/sub In/ ≅ 0.25, 0.40, and 0.50, respectively. The thermodynamic properties of these alloys would be expected to present similar trends

  6. Non-perturbative approach for laser radiation interactions with solids

    International Nuclear Information System (INIS)

    Jalbert, G.

    1985-01-01

    Multiphoton transitions in direct-gap crystals are studied considering non-perturbative approaches. Two methods currently used for atoms and molecules are revised, generalized and applied to solids. In the first one, we construct an S-matrix which incorporates the eletromagnetic field to all orders in an approximated way leading to analytical solution for the multiphoton transition rates. In the second one, the transition probability is calculated within the Bloch-Floquet formalism applieed to the specific case of solids. This formalism is interpreted as a classical approximation to the quantum treatment of the field. In the weak field limit, we compare our results with the usual perturbation calculations. We also incorporate, in the first approach, the non homogeneity and the multimodes effects of a real laser. (author) [pt

  7. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids

    Science.gov (United States)

    Takahashi, Tomoko; Thornton, Blair

    2017-12-01

    This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.

  8. Corrosion performance of SiCsubp/6061 Al metal matrix composites in sodium chloride solution

    International Nuclear Information System (INIS)

    Mohmad Soib bin Selamat

    1995-01-01

    The corrosion performance of silicon carbide particle/aluminium metal matrix composites (SiCsubp/Al) were studied in sodium chloride solution by means of electrochemical, microscopic, gravimetric and analytical techniques. The materials under investigation were compocasting processed 6061 Al reinforced with increasing amounts of SiC particles. Potentiostatic polarization tests were done in 0.1M NaCl solutions that were aerated or deaerated to observe overall corrosion behaviour. It was seen that the corrosion potentials did not vary greatly in relation to the amounts of SiCsubp reinforcement. Corrosion tests showed that the degree of corrosion increased with increasing SiCsubp content. SEM analysis technique was used to study the corroded samples and the pitting morphology. By TEM, no intermetallic layer was found at SiC/Al interface. A model for pitting process was proposed

  9. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  10. Improved parallel solution techniques for the integral transport matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Zerr, R. Joseph, E-mail: rjz116@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States); Azmy, Yousry Y., E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Burlington Engineering Laboratories, Raleigh, NC (United States)

    2011-07-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  11. Improved parallel solution techniques for the integral transport matrix method

    International Nuclear Information System (INIS)

    Zerr, R. Joseph; Azmy, Yousry Y.

    2011-01-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  12. Giant asymmetry of separation and homogenization processes in solid 3He-4He solutions

    International Nuclear Information System (INIS)

    Grigor'ev, V.N.; Majdanov, V.A.; Penzev, A.A.; Polev, A.V.; Rubets, S.P.; Rudavskij, Eh.Ya.; Rybalko, A.S.; Syrnikov, E.V.

    2005-01-01

    The kinetics of the processes of separation and homogenization of solid 3 He- 4 He solutions is compared by using the precision barometry. The experiments were made with the initial specimens of three types: weak 3 He- 4 He and 4 He- 3 He solutions and concentrated 3 He- 4 He ones. It is found that the homogenization rate at the initial stage may be more than 500 times higher that the rate of separation. This is the case for all types of the solutions studied. The appreciable rate of phase separation in the concentrated solutions where, according to the modern concepts, impurity atoms in quantum crystals should be localized, suggests that in such conditions there is a new unknown mechanism of mass-transfer, while the fast homogenization points to a nondiffusion nature of the process

  13. Indications of the formation of an oversaturated solid solution during hydrogenation of Mg-Ni based nanocomposite produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama, CRIDESAT, Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)

    2009-07-15

    An oversaturated solid solution of H in a nanocomposite material formed mainly by nanocrystalline Mg{sub 2}Ni, some residual nanocrystalline Ni and an Mg rich amorphous phase has been found for the first time. The nanocomposite was produced by mechanical alloying starting from Mg and Ni elemental powders, using a SPEX 8000D mill. The hydriding characterization of the nanocomposite was carried out by solid-gas reaction method in a Sievert's type apparatus. The maximum hydrogen content reached in a period of 21 Ks without prior activation was 2.00 wt.% H under hydrogen pressure of 2 MPa at 363 K. The X-ray diffraction analysis showed the presence of an oversaturated solid solution between nanocrystalline Mg{sub 2}Ni and H without any sign of Mg{sub 2}NiH{sub 4} hydride formation. The dehydriding behaviour was studied by differential scanning calorimetry and thermogravimetry. The results showed the existence of two desorption peaks, the first one associated with the transformation of the oversaturated solid solution into Mg{sub 2}NiH{sub 4}, and the second one with the Mg{sub 2}NiH{sub 4} desorption. (author)

  14. Influence of Ce 0.68 Zr 0.32 O 2 solid solution on depositing ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Influence of Ce0.68Zr0.32O2 solid solution on depositing -alumina washcoat on FeCrAl foils. Mei-Qing Shen Li-Wei Jia Wen-Long Zhou Jun Wang Ying Huang. Composites Volume 29 Issue 1 February 2006 pp 73-76 ...

  15. Reduction of the Curie temperature in the multiferroic Bi5Fe1+xTi3−xO15 solid solution

    International Nuclear Information System (INIS)

    Salazar-Kuri, U; Mendoza, M E; Silva, R; Siqueiros, J M; Gervacio-Arciniega, J J

    2014-01-01

    In this work, the phase diagram of the system Bi 4 Ti 3 O 12 -BiFeO 3 in the region of the solid solution Bi 5 Fe 1+x Ti 3−x O 15 was refined. The limit of solubility was determined to be at x = 0.1. The Curie temperature (T C ) of the ferroelectric phase transition was determined by dielectric permittivity measurements at 100 kHz for the phase Bi 5 FeTi 3 O 15 as well as for the solid solution. A decrease in T C from 750 °C to 742 °C (solid solution at x = 0.1) was found. These results can be explained in terms of the perturbation of the oxygen octahedral perovskite layers resulting from the substitution of Ti 4+ by Fe 3+ ions. (paper)

  16. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  17. Leachability of radionuclides from bituminous solid, (3)

    International Nuclear Information System (INIS)

    Yokoyama, Hayaichi; Kanbe, Hiromi; Ono, Tatsuo

    1981-01-01

    Leachability of radionuclides from solidified wastes is one of the most important factors for the safety assessment on sea disposal. This paper describes the effects on leach rate of pH of liquid waste, temperature of leachant and swelling. The following results are obtained: (1) It was found that a higher pH value of the liquid waste caused a lower leach rate. The leach rate of 60 Co was related to the solubility of 60 Co depending on pH value of the solution. (2) A higher leachant temperature induced a lower leachability. (3) The leach rate increased with increasing the swelling of solid. The radioactivity distributed uniformly in the matrix of swelled solid except near the thin surface layer. (4) Three leaching process were assumed to derive an analytical equation of leach rate, that is; the first is the dissolution process of radionuclides exposed on the surface of solid, the second the diffusion process, and the third the process of dissolution of radionuclides which is accessed with increasing of the amount of leachant into the solid. This equation fitted by experimental results was found to predict effectively a long-term leaching. (author)

  18. Role of impurity molecules in radiation-initiated processes in solid carbohydrates

    International Nuclear Information System (INIS)

    Kavetskii, V.G.; Yudin, I.V.

    1992-01-01

    Extension of the use of ionizing radiation for sterilization of medicinal preparations is stimulating the study of radiation-initiated processes in solid polyhydroxyl matrixes containing impurities of various organic substances. Such investigations make it possible to establish common characteristics of the effect of impurity molecules on the radiolysis of organic crystals. The materials of the investigation were lactose and rhamnose, precipitated by slow evaporation of the solvent from saturated aqueous solutions with different dihydroxyacetone contents. 4 refs., 1 fig

  19. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    International Nuclear Information System (INIS)

    Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN

    2015-01-01

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys

  20. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    Science.gov (United States)

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  1. Investigation of solid solution of hydrogen in α-manganese by neutron diffraction and inelastic neutron scattering

    International Nuclear Information System (INIS)

    Fedotov, V.K.; Antonov, V.E.; Kolesnikov, A.I.; Kornell, K.; Vipf, G.; Grosse, G.; Vagner, F.Eh.; Sikolenko, V.V.; Sumin, V.V.; )

    1997-01-01

    The FCC-lattice of the solid solution α-MnH 0.073 with the mass of 8.45 g is investigated by the neutron diffraction method and the inelastic neutron scattering technique. The neutron diffraction measurements are made by the diffractometer D1B with pyrographite monochromator and the high-resolution Fourier diffractometer HRFD at 300 K. The study of the inelastic incoherent neutron scattering is carried out by means of the inverse geometry spectrometer KDSOG-M at 90 K. The comparative analysis of α-MnH 0.073 and α-Mn spectra is fulfilled for the more correct separation of effects of hydrogen introduction. It is found out that the structure of the solid solution α-MnH 0.073 belongs to the same spatial group I-43m as the structure of α-Mn [ru

  2. Engineering solutions to the management of solid radioactive waste

    International Nuclear Information System (INIS)

    1991-01-01

    The management of radioactive waste, its safe handling and ultimate disposal, is of vital concern to engineers in the nuclear industry. The international conference 'Engineering Solutions to the Management of Solid Radioactive Waste', organized by the Institution of Mechanical Engineers and held in Manchester in November 1991, provided a forum for the discussion and comparison of the different methods of waste management used in Europe and America. Papers presented and discussed included: the interaction between the design of containers for low level radioactive waste and the design of a deep repository, commercial low level waste disposal sites in the United States, and the development of radioactive waste monitoring systems at the Sellafield reprocessing complex. This volume is a collection of 22 papers presented at the conference. All are indexed separately. (author)

  3. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bin, E-mail: kongbin@buaa.edu.cn; Jia, Lina, E-mail: jialina@buaa.edu.cn; Su, Linfen, E-mail: sulinfen@mse.buaa.edu.cn; Guan, Kai, E-mail: guankai@mse.buaa.edu.cn; Weng, Junfei, E-mail: wengjf@mse.buaa.edu.cn; Zhang, Hu, E-mail: zhanghu@buaa.edu.cn

    2015-07-15

    Controlling the elements content in the niobium solid solution (Nb{sub SS}) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, Nb{sub SS} grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr{sub 2}Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of Nb{sub SS} grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in Nb{sub SS} and brittle Cr{sub 2}Nb and Nb-silicides precipitate phases display negative effect.

  4. Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams

    International Nuclear Information System (INIS)

    Thakur, Neha; Kumar, Sanjukta A.; Wagh, D.N.; Das, Sadananda; Pandey, Ashok K.; Kumar, Sangita D.; Reddy, A.V.R.

    2012-01-01

    Highlights: ► Th complexed with poly (bis[2-(methacryloyloxy)-ethyl]phosphate) as tailored polymer membranes. ► Membranes offered high capacity and selectivity for fluoride in aqueous media. ► Quantitative uptake (80 ± 5%) of fluoride. ► Fast sorption kinetics. ► Reusability of polymer membranes. - Abstract: Fluoride related health hazards (fluorosis) are a major environmental problem in many regions of the world. It affects teeth; skeleton and its accumulation over a long period can lead to changes in the DNA structure. It is thus absolutely essential to bring down the fluoride levels to acceptable limits. Here, we present a new inorganic–organic hybrid polymer sorbent having tailored fixed-sites for fluoride sorption. The matrix supported poly (bis[2-(methacryloyloxy)-ethyl]phosphate) was prepared by photo-initiator induced graft-polymerization in fibrous and microporous (sheet) host poly(propylene) substrates. These substrates were conditioned for selective fluoride sorption by forming thorium complex with phosphate groups on bis[2-methacryloyloxy)-ethyl] phosphate (MEP). These tailored sorbents were studied for their selectivity towards fluoride in aqueous media having different chemical conditions. The fibrous sorbent was found to take up fluoride with a faster rate (15 min for ≈76% sorption) than the sheet sorbent. But, the fluoride loading capacity of sheet sorbent (4320 mg kg −1 ), was higher than fibrous and any other sorbent reported in the literature so far. The sorbent developed in the present work was found to be reusable after desorption of fluoride using NaOH solution. It was tested for solid phase extraction of fluoride from natural water samples.

  5. Complexon Solutions in Freon for Decontamination of Solids and SNF Treatment

    International Nuclear Information System (INIS)

    Kamachev, V.; Shadrin, A.; Murzin, A.

    2008-01-01

    Full text of publication follows: The possibility of using complexon solutions in supercritical and compressed carbon dioxide for decontamination of solid surfaces and for spent nuclear fuel (SNF) treatment was demonstrated in the works of Japanese, Russian and American researchers. The obtained data showed that the use of complexon solutions in carbon dioxide sharply decreases the volume of secondary radioactive wastes because it can be easily evaporated, purified and recycled. Moreover, high penetrability of carbon dioxide allows decontamination of surfaces with complex shape. However, one of the disadvantages of carbon dioxide is its high working pressure (10-20 MPa for supercritical CO 2 and 7 MPa for compressed CO 2 ). Moreover, in case of SNF treatment, carbon dioxide solvent will be contaminated with 14 C, which in the course of SNF dissolution in CO 2 containing TBP*HNO 3 adduct stage will be oxidized into CO 2 . These main disadvantages can be eliminated by using complexon solutions in ozone-friendly Freon HFC-134a for decontamination and SNF treatment. Our experimental data for real contaminated materials showed that the decontamination factor for complexon solutions in liquid Freon HFC-134a at 1,2 MPa and 25 deg. C is close to that attained in carbon dioxide. Moreover, the possibility of SNF treatment in Freon HFC-134a was demonstrated in trials using real SNF and its imitators. (authors)

  6. Local structure in the disordered solid solution of cis- and trans-perinones

    DEFF Research Database (Denmark)

    Teteruk, Jaroslav L.; Glinnemann, Juergen; Heyse, Winfried

    2016-01-01

    preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic....... The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including...

  7. (Nbx, Zr1-x)4AlC3 MAX Phase Solid Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations.

    Science.gov (United States)

    Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef

    2016-06-06

    The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

  8. Specific features of concentrated phase under decomposition of weak solid /sup 3/He-/sup 4/He solution

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, V A; Majdamov, V A; Kal' noj, S E; Omelaenko, N I

    1988-06-01

    The decomposition of solid /sup 3/He-/sup 4/He solutuions is studied on the samples 0.54% /sup 3/He(V=20.55 cm/sup 3//mole) and 0.60% /sup 4/He (V=24.04-24.93 cm/sup 3//mole) using pulse NMR method. At T=100 mK the decomposition of a weak solution proceeds more than for 30 h, the decomposition rate and temperature being dependent on the sample prehistory. In the concentrated phase of the decomposed weak solution the spin diffraction of /sup 3/He is of the quasi-one-dimensional character with the diffusion coefficient D /similar to/ 10/sup -5/ cm/sup 2//sec typical of liquid /sup 3/He and exceeding that bulk solid /sup 3/He by two orders of magnitude. The longitudinal relaxation time in the quasi-one-dimensional phase (/similar to/ 1 sec) is characteristic of the solid state and coinsides with data for bulk /sup 3/He. The temperature behaviour of magnetization in the quasi-one-dimensional phase is well described by the Curie law.

  9. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites.

    Science.gov (United States)

    Wagener, Philipp; Brandes, Gudrun; Schwenke, Andreas; Barcikowski, Stephan

    2011-03-21

    The crucial step in the production of solid nanocomposites is the uniform embedding of nanoparticles into the polymer matrix, since the colloidal properties or specific physical properties are very sensitive to particle dispersion within the nanocomposite. Therefore, we studied a laser-based generation method of a nanocomposite which enables us to control the agglomeration of nanoparticles and to increase the single particle dispersion within polyurethane. For this purpose, we ablated targets of silver and copper inside a polymer-doped solution of tetrahydrofuran by a picosecond laser (using a pulse energy of 125 μJ at 33.3 kHz repetition rate) and hardened the resulting colloids into solid polymers. Electron microscopy of these nanocomposites revealed that primary particle size, agglomerate size and particle dispersion strongly depend on concentration of the polyurethane added before laser ablation. 0.3 wt% polyurethane is the optimal polymer concentration to produce nanocomposites with improved particle dispersion and adequate productivity. Lower polyurethane concentration results in agglomeration whereas higher concentration reduces the production rate significantly. The following evaporation step did not change the distribution of the nanocomposite inside the polyurethane matrix. Hence, the in situ coating of nanoparticles with polyurethane during laser ablation enables simple integration into the structural analogue polymer matrix without additives. Furthermore, it was possible to injection mold these in situ-stabilized nanocomposites without affecting particle dispersion. This clarifies that sufficient in situ stabilization during laser ablation in polymer solution is able to prevent agglomeration even in a hot polymer melt.

  10. Molecular Structure, Vibrational Spectra, Quantum Chemical Calculations and Photochemistry of Picolinamide and Isonicotinamide Isolated in Cryogenic Inert Matrixes and in the Neat Low-Temperature Solid Phases

    OpenAIRE

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, R.

    2007-01-01

    Picolinamide (PA) and isonicotinamide (INA), two structural isomers of pyridinecarboxamide, have been investigated by matrix isolation and low-temperature solid-state infrared spectroscopy, combined with UV (λ > 235 nm) photoexcitation and density functional theory and ab initio (MP2) theoretical studies. In consonance with the theoretical data, both PA and INA were found to exist in a single conformation in cryogenic rare gas matrixes. Comparison between the experimental spectra of the matri...

  11. Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation

    Science.gov (United States)

    Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia

    2016-04-01

    We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.

  12. Variable valence of praseodymium in rare-earth oxide solid solutions

    International Nuclear Information System (INIS)

    Kravchinskaya, M.V.; Merezhinskii, K.Y.; Tikhonov, P.A.

    1986-01-01

    Solid solutions of elevated praseodymium oxide content have interesting electrical properties, making them the basis for the manufacture of high-temperature electrically conducting materials. Establishment of the composition-structure-valence state relationships enables control of the material properties. The authors performed investigations using a thermogravimetric apparatus with an electronic microbalance of type EM-5-3M, and using x-ray phase analysis of powders (DRON-1 diffractometer, CuK /SUB alpha/ -radiation). The authors also studied the kinetics of praseodymium oxidation with a thermogravimetric apparatus under isothermal conditions. Evaluation of the results with the equation of Kolmogorov, Erofeev, and Avraam indicates that the process is limited by the chemical oxidation of praseodymium and not by diffusion

  13. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  14. Structure, elastic stiffness, and hardness of Os 1- xRu xB 2 solid solution transition-metal diborides

    KAUST Repository

    Kanoun, Mohammed; Hermet, Patrick; Goumri-Said, Souraya

    2012-01-01

    On the basis of recent experiments, the solid solution transition-metal diborides were proposed to be new ultra-incompressible hard materials. We investigate using density functional theory based methods the structural and mechanical properties, electronic structure, and hardness of Os 1-xRu xB 2 solid solutions. A difference in chemical bonding occurs between OsB 2 and RuB 2 diborides, leading to significantly different elastic properties: a large bulk, shear moduli, and hardness for Os-rich diborides and relatively small bulk, shear moduli, and hardness for Ru-rich diborides. The electronic structure and bonding characterization are also analyzed as a function of Ru-dopant concentration in the OsB 2 lattice. © 2012 American Chemical Society.

  15. Structure, elastic stiffness, and hardness of Os 1- xRu xB 2 solid solution transition-metal diborides

    KAUST Repository

    Kanoun, Mohammed

    2012-05-31

    On the basis of recent experiments, the solid solution transition-metal diborides were proposed to be new ultra-incompressible hard materials. We investigate using density functional theory based methods the structural and mechanical properties, electronic structure, and hardness of Os 1-xRu xB 2 solid solutions. A difference in chemical bonding occurs between OsB 2 and RuB 2 diborides, leading to significantly different elastic properties: a large bulk, shear moduli, and hardness for Os-rich diborides and relatively small bulk, shear moduli, and hardness for Ru-rich diborides. The electronic structure and bonding characterization are also analyzed as a function of Ru-dopant concentration in the OsB 2 lattice. © 2012 American Chemical Society.

  16. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  17. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  18. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    Science.gov (United States)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  19. Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi

    2014-10-15

    The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of Sr2Ir1−xMxO4 (M=Ti, Fe, Co) solid solutions

    International Nuclear Information System (INIS)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W.; Subramanian, M.A.

    2012-01-01

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr 2 IrO 4 are investigated. A complete solid solution Sr 2 Ir 1−x Ti x O 4 is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO 6 octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr 2 IrO 4 . - Graphical abstract: Solid solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO 6 octahedra tilting are found to be correlated. Highlights: ► Solid Solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) are synthesized. ► The Sr 2 Ir 1−x Ti x O 4 solid solution is complete while those of Fe and Co are relatively limited. ► The change in a cell parameter with substitution is much less than that of the c parameter. ► Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. ► Doping results in a suppression of the weak ferromagnetic ordering in Sr 2 IrO 4 .

  1. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    Science.gov (United States)

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  2. The ionic conductivity and defect structure of fluorite-type solid solutions Basub(1-x)Usub(x)Fsub(2+2x)

    International Nuclear Information System (INIS)

    Ouwerkerk, M.

    1986-01-01

    The crystal growth and the characterization of the solid solutions Msub(1-x)Usub(x)Fsub(2+2x) (M = Ca, Sr, Ba and Pb) are described. X-ray diffraction and X-ray fluorescence methods have been utilized to determine the U 4+ content of the solid solutions. The incorporation of UF 4 in PbF 2 is found to have a stabilizing effect on the β-PbF 2 (fluorite) structure. A study of the conductivity properties of Basub(1-x)Usub(x)Fsub(2+2x) and of Pbsub(1-x)Usub(x)Fsub(2+2x) is presented. The effect of an anion excess on the diffuse phase transition and the specific heat anomaly of single crystals Msub(1-x)Usub(x)Fsub(2+2x) was studied with impedance spectroscopy and calorimetric measurements. Finally, a study of the fluorite-type solid solutions Basub(1-x)Lasub(x)Fsub(2+x) and Basub(1-x)Usub(x)Fsub(2+2x) using the Thermally Stimulated Depolarization Current (TSDC) technique is presented. (Auth.)

  3. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    Science.gov (United States)

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  5. Reproducibility of serum protein profiling by systematic assessment using solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry

    DEFF Research Database (Denmark)

    Callesen, Anne K; Christensen, René Depont; Madsen, Jonna S

    2008-01-01

    for serum protein profiling we investigated a range of sample preparation techniques and developed a statistical method based on repeated analyses for evaluation of protein-profiling performance of MALDI MS. Two different solid-phase extraction (SPE) methods were investigated, namely custom......Protein profiling of human serum by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is potentially a new diagnostic tool for early detection of human diseases, including cancer. Sample preparation is a key issue in MALDI MS and the analysis of complex samples such as serum......-made microcolumns and commercially available magnetic beads. Using these two methods, nineteen different sample preparation methods for serum profiling by MALDI MS were systematically tested with regard to matrix selection, stationary phase, selectivity, and reproducibility. Microcolumns were tested with regard...

  6. On the modeling of irradiation-induced homogeneous precipitation in proton-bombarded Ni-Si solid solutions

    Science.gov (United States)

    Lam, Nghi Q.; Janghorban, K.; Ardell, A. J.

    1981-10-01

    Irradiation-induced solute redistribution leading to precipitation of coherent γ' particles in undersaturated Ni-based solid solutions containing 6 and 8 at.% Si during 400-keV proton bombardment was modeled, based on the concept of solute segregation in concentrated alloys under spatially-dependent defect production conditions. The combined effects of (i) an extremely large difference between the defect production rates in the peak-damage and mid-range regions during irradiation and (ii) a preferential coupling between the interstitial and solute fluxes generate a net transient flux of Si atoms into the mid-range region, which is much larger than the solute flux out of this location. As a result, the Si concentration exceeds the solubility limit and homogeneous precipitation of the γ' phase occurs in this particular region of the irradiated samples. The spatial, compositional and temperature dependences of irradiation-induced homogeneous precipitation derived from the present theoretical calculations are in good qualitative agreement with experimental observations

  7. Investigation of the existence and uniqueness of extremal and positive definite solutions of nonlinear matrix equations

    Directory of Open Access Journals (Sweden)

    Abdel-Shakoor M Sarhan

    2016-05-01

    Full Text Available Abstract We consider two nonlinear matrix equations X r ± ∑ i = 1 m A i ∗ X δ i A i = I $X^{r} \\pm \\sum_{i = 1}^{m} A_{i}^{*}X^{\\delta_{i}}A_{i} = I$ , where − 1 < δ i < 0 $- 1 < \\delta_{i} < 0$ , and r, m are positive integers. For the first equation (plus case, we prove the existence of positive definite solutions and extremal solutions. Two algorithms and proofs of their convergence to the extremal positive definite solutions are constructed. For the second equation (negative case, we prove the existence and the uniqueness of a positive definite solution. Moreover, the algorithm given in (Duan et al. in Linear Algebra Appl. 429:110-121, 2008 (actually, in (Shi et al. in Linear Multilinear Algebra 52:1-15, 2004 for r = 1 $r = 1$ is proved to be valid for any r. Numerical examples are given to illustrate the performance and effectiveness of all the constructed algorithms. In Appendix, we analyze the ordering on the positive cone P ( n ‾ $\\overline{P(n}$ .

  8. The X-ray electronic spectra of TiC-NbC solid solution

    International Nuclear Information System (INIS)

    Cherkashenko, V.M.; Ezhov, A.V.; Nazarova, S.Z.; Kurmaev, Eh.Z.; Nojmann, M.

    2001-01-01

    X-ray photoelectronic spectra of inner levels and valency lands in TiC-NbC solid solutions were studied. Results of combining TiL α -, NbL β2.15 -, CK α - X-ray emission spectra and photoelectronic spectra of valency bands in one energy scale in reference to the Fermi level were analyzed. It is shown that a change in crystal lattice parameters, as well as charge redistribution between titanium and niobium atoms, produce a strong effect on electronic structure formation in the mixed carbides mentioned [ru

  9. A unified approach to model uptake kinetics of trace elements in complex aqueous – solid solution systems

    International Nuclear Information System (INIS)

    Thien, Bruno M.J.; Kulik, Dmitrii A.; Curti, Enzo

    2014-01-01

    Highlights: • There are several models able to describe trace element partitioning in growing minerals. • To describe complex systems, those models must be embedded in a geochemical code. • We merged two models into a unified one suitable for implementation in a geochemical code. • This unified model was tested against coprecipitation experimental data. • We explored how our model reacts to solution depletion effects. - Abstract: Thermodynamics alone is usually not sufficient to predict growth-rate dependencies of trace element partitioning into host mineral solid solutions. In this contribution, two uptake kinetic models were analyzed that are promising in terms of mechanistic understanding and potential for implementation in geochemical modelling codes. The growth Surface Entrapment Model (Watson, 2004) and the Surface Reaction Kinetic Model (DePaolo, 2011) were shown to be complementary, and under certain assumptions merged into a single analytical expression. This Unified Uptake Kinetics Model was implemented in GEMS3K and GEM-Selektor codes ( (http://gems.web.psi.ch)), a Gibbs energy minimization package for geochemical modelling. This implementation extends the applicability of the unified uptake kinetics model to accounting for non-trivial factors influencing the trace element partitioning into solid solutions, such as the changes in aqueous solution composition and speciation, or the depletion effects in closed geochemical systems

  10. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszkiewicz, Marek, E-mail: mpietraszkiewicz@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Dutkiewicz, Grzegorz; Borowiak, Teresa [Adam Mickiewicz University, Faculty of Chemistry, Department of Crystallography, Grunwaldzka 6, 60-780 Poznań (Poland); Kaczmarek, Anna M. [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium); Van Deun, Rik, E-mail: rik.vandeun@ugent.be [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium)

    2016-02-15

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu{sup 3+} to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip){sub 3}. The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  11. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  12. Thermoelectric properties of Bi2Te3-Bi2Se3 solid solutions prepared by attrition milling and hot pressing

    International Nuclear Information System (INIS)

    Lee, Go-Eun; Kim, Il-Ho; Choi, Soon-Mok; Lim, Young-Soo; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2014-01-01

    Bi 2 Te 3-y Se y (y = 0.15 - 0.6) solid solutions were prepared by attrition milling and hot pressing. The lattice constants decreased with increasing Se content, indicating that the Se atoms were successfully substituted into the Te sites. All specimens exhibited n-type conduction, and their electrical resistivities increased slightly with increasing temperature. With increasing Se content, the Seebeck coefficients increased while the thermal conductivity decreased due to the increase in phonon scattering. The maximum figure of merit obtained was 0.63 at 440 K for the undoped Bi 2 Te 2.4 Se 0.6 solid solution.

  13. Crystalline structure and electrical properties of Dy1-XCaXMnO3 solid solution

    Directory of Open Access Journals (Sweden)

    Durán, P.

    2002-12-01

    Full Text Available Solid solutions corresponding to the Dy1-xCaXMnO3 system, x=0.0 to 0.60 have been studied. The powders were prepared by solid state reaction of the corresponding oxides and carbonates. Sintered bodies were obtained by firing between 1250 and 1450ºC. All the compositions showed single-phased perovskite-type structure with orthorhombic symmetry and Space Group Pbnm. Increase of the CaO content leads to a monotonic decrease of the orthorhombicity factor b/a with the Ca2+ concentration up to x=0.60. All the solid solutions crystallised with the same O’-type orthorhombic perovskite structure such as pure DyMnO3. Electrical measurements have shown semiconducting behaviour for all the solid solutions. The room temperature conductivity increases monotonically with the CaO content. The 60/40 Ca/Dy composition showed a high value of the electrical conductivity and a correlative very low value of the activation energy. Thermally activated small polaron hopping mechanism controls the conductivity of these perovskite ceramics.Se han estudiado soluciones sólidas correspondientes al sistema Dy1-xCaxMnO3, x=0.0 a 0.60. Los polvos cerámicos fueron preparados por reacción en estado sólido de los correspondientes óxidos y carbonatos. Los materiales cerámicos se obtuvieron por sinterización entre 1250º y 1450ºC. Todas las composiciones fueron monofásicas y mostraron una estructura tipo perovskita, con simetría ortorrómbica y Grupo Espacial Pbnm. El aumento del contenido en CaO llevó a una disminución monótona del factor de ortorrombicidad, b/a. Todas las soluciones sólidas cristalizaron con el mismo tipo de estructura perovskita ortorrómbica O’, como la del compuesto puro DyMnO3. Las medidas eléctricas mostraron comportamiento semiconductor en todas las soluciones sólidas. La conductividad a temperatura ambiente aumenta monótonamente con el contenido de CaO. La composición 60/40 mostró un elevado valor de conductividad y un correlativo

  14. Finite element evaluation of elasto-plastic accommodation energies during solid state transformations: Coherent, spherical precipitate in finite matrix

    International Nuclear Information System (INIS)

    Sen, S.; Balasubramaniam, R.; Sethuraman, R.

    1996-01-01

    The molar volume difference between the matrix and the precipitate phases in the case of solid state phase transformations results in the creation of stain energy in the system due to the misfit strains. A finite element model based on the initial strain approach is proposed to evaluate elasto-plastic accommodation energies during solid state transformation. The three-dimensional axisymmetric model has been used to evaluate energies as a function of transformation for α-β hydrogen transformations in the Nb-H system. The transformation has been analyzed for the cases of transformation progressing both from the center to surface and from the surface to center of the system. The effect of plastic deformation has been introduced to make the model realistic, specifically to the Nb-NbH phase transformation which involves a 4% linear misfit strain. It has been observed that plastic deformation reduces the strain energies compared to the linear elastic analysis

  15. Improving the electrocatalytic properties of Pd-based catalyst for direct alcohol fuel cells: effect of solid solution.

    Science.gov (United States)

    Wen, Cuilian; Wei, Ying; Tang, Dian; Sa, Baisheng; Zhang, Teng; Chen, Changxin

    2017-07-07

    The tolerance of the electrode against the CO species absorbed upon the surface presents the biggest dilemma of the alcohol fuel cells. Here we report for the first time that the inclusion of (Zr, Ce)O 2 solid solution as the supporting material can significantly improve the anti-CO-poisoning as well as the activity of Pd/C catalyst for ethylene glycol electro-oxidation in KOH medium. In particular, the physical origin of the improved electrocatalytic properties has been unraveled by first principle calculations. The 3D stereoscopic Pd cluster on the surface of (Zr, Ce)O 2 solid solution leads to weaker Pd-C bonding and smaller CO desorption driving force. These results support that the Pd/ZrO 2 -CeO 2 /C composite catalyst could be used as a promising effective candidate for direct alcohol fuel cells application.

  16. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  17. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1975-01-01

    Tritides of such metals as scandium, titanium, and erbium are useful materials for determining the effects of helium accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation, as reported elsewhere, which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages (2 to 4 years, depending on the parent metal), the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Scandium is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature tritium solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp scandium lattice are only minimally changed by tritium solution, and we have succeeded in obtaining single crystal ScT 0 . 3 samples in two crystallographic orientations. Using a very sensitive technique, we have measured 3 He emission from both these samples, as well as from fine-grained thin film scandium-tritium solid solution samples (ScT 0 . 3 - 0 . 4 ). The fine-grained film samples release 3 He at 2 to 3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  18. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1976-01-01

    Tritides of such metals as Sc, Ti, and Er are useful materials for determining the effects of He accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages, the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Sc is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature T solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp Sc lattice are only minimally changed by T solution. Single crystal ScT/sub 0.3/ samples in two crystallographic orientations were obtained. Using a very sensitive technique, 3 He emission was measured from both these samples, as well as from fine-grained thin film Sc--T solid solution samples (ScT/sub 0.3-0.4/). The fine-grained film samples release 3 He at 2-3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  19. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  20. Neutron diffraction studies on Ca1− xBaxZr4P6O24 solid solutions

    Indian Academy of Sciences (India)

    P6O24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from ...

  1. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  2. High temperature thermodynamics of H2 and D2 in titanium, and in dilute titanium oxygen solid solutions

    International Nuclear Information System (INIS)

    Dantzer, P.

    1983-01-01

    The Tian Calvet microcalorimetric method has been improved in order to determine ΔH-barsub(H)(D), the partial molar enthalpy of mixing of hydrogen (deuterium) in the Ti-H 2 (D 2 ) solid systems for compositions 0 2 solid solutions (y = (O/Ti)) at 745 K. The combined calorimetric and equilibrium method allows a precise evaluation of the partial molar entropies. The results of this study differ substantially from earlier published data. (author)

  3. Analytical solutions for non-linear conversion of a porous solid particle in a gas–II. Non-isothermal conversion and numerical verification

    NARCIS (Netherlands)

    Brem, Gerrit; Brouwers, J.J.H.

    1990-01-01

    In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid

  4. Analytical solutions for non-linear conversion of a porous solid particle in a gas : II. non-isothermal conversion and numerical verification

    NARCIS (Netherlands)

    Brem, G.; Brouwers, J.J.H.

    1990-01-01

    In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid

  5. Ion mobility and conductivity in the M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (M=K, Rb) solid solutions with fluorite structure

    Energy Technology Data Exchange (ETDEWEB)

    Kavun, V. Ya., E-mail: kavun@ich.dvo.ru [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation); Uvarov, N.F. [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, 18, Kutateladze Str., Novosibirsk 630128 (Russian Federation); Slobodyuk, A.B.; Polyantsev, M.M.; Merkulov, E.B. [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation); Ulihin, A.S. [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, 18, Kutateladze Str., Novosibirsk 630128 (Russian Federation); Goncharuk, V.K. [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2017-05-15

    Ionic mobility and conductivity in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} and Rb{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (x=0.05, 0.09) solid solutions with the fluorite structure have been investigated using the methods of {sup 19}F NMR, X-ray diffraction and impedance spectroscopy. Types of ionic motions in the fluoride sublattice of solid solutions have been established and temperature ranges of their realization have been determined (150–450 K). Diffusion of fluoride ions is a dominating type of ionic motions in the fluoride sublattice of solid solutions under study above 350 K. Due to high ionic conductivity, above 10{sup –3} S/cm at 450 K, these solid solutions can be used as solid electrolytes in various electrochemical devices and systems. - Graphical abstract: Temperature dependence of the concentration of mobile (2, 4) and immobile (1, 3) F ions in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions. - Highlights: • Studied the ion mobility, conductivity in M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions (M=K, Rb). • An analysis of {sup 19}F NMR spectra made it possible to identify types of ion mobility. • The main type of ion motion above 300 K in solid solutions is a diffusion of ions F{sup –}. • The ionic conductivity of the solid solutions studied more than 10{sup –3} S/cm at 450 K.

  6. Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns

    International Nuclear Information System (INIS)

    Ersoez, Arzu; Say, Ridvan; Denizli, Adil

    2004-01-01

    Solid-phase extraction (SPE) columns packed with materials based on molecularly imprinted polymers (MIPs) were used to develop selective separation and preconcentration for Ni(II) ion from aqueous solutions. SPE is more rapid, simple and economical method than the traditional liquid-liquid extraction. MIPs were used as column sorbent to increase the grade of selectivity in SPE columns. In this study, we have developed a polymer obtained by imprinting with Ni(II) ion as a ion-imprinted SPE sorbent. For this purpose, NI(II)-methacryloylhistidinedihydrate (MAH/Ni(II)) complex monomer was synthesized and polymerized with cross-linking ethyleneglycoldimethacrylate to obtain [poly(EGDMA-MAH/Ni(II))]. Then, Ni(II) ions were removed from the polymer getting Ni(II) ion-imprinted sorbent. The MIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.3 to 25 ng/ml and the detection limit was 0.3 ng/ml (3 s) for flame atomic absorption spectrometry (FAAS). Ni(II) ion-imprinted microbeads can be used several times without considerable loss of adsorption capacity. When the adsorption capacity of nickel imprinted microbeads were compared with non-imprinted microbeads, nickel imprinted microbeads have higher adsorption capacity. The K d (distribution coefficient) values for the Ni(II)-imprinted microbeads show increase in K d for Ni(II) with respect to both K d values of Zn(II), Cu(II) and Co(II) ions and non-imprinted polymer. During that time K d decreases for Zn(II), Cu(II) and Co(II) ions and the k' (relative selectivity coefficient) values which are greater than 1 for imprinted microbeads of Ni(II)/Cu(II), Ni(II)/Zn(II) and Ni(II)/Co(II) are 57.3, 53.9, and 17.3, respectively. Determination of Ni(II) ion in sea water showed that the interfering matrix had been almost removed during preconcentration. The column was good enough for Ni determination in matrixes containing similar ionic radii ions such as Cu(II), Zn(II) and Co(II)

  7. Shell model for BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions

    Science.gov (United States)

    Vielma, J.; Jackson, D.; Roundy, D.; Schneider, G.

    2010-03-01

    Even though the composition of BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions is similar to other ferroelectric compounds, the dielectric response is unusual. Results of permittivity measurements as a function of temperature show a diffuse phase transition indicative of a weakly coupled relaxor behavior.footnotetextC. C. Huang and D. P. Cann, J. Appl. Phys. 104, 024117 (2008) To investigate the weakly coupled relaxor behavior in these materials at intermediate length scales we are developing a newly calibrated shell model based on first-principles supercell calculations of both the solid solution and its compositional endpoints. Initial results for its phase diagram will presented.

  8. Study on the improvement of toughness of Nb-based super high temperature materials by forming solid solution and composites; Niobuki chokoon zairyo no koyoka to fukugoka ni yoru kyojinsei kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    If materials superior to Ni-based and Co-based super alloys could be developed, great progress is expected in the energy source saving, enhancement of aircraft speed, and simplification of member structure. Metals having high fusing point are prospective as well as C/C composites and ceramics among possible materials. Especially, Nb has a similar density to Ni, and its fusing point is 1,000 centigrade higher than Ni. It has also ductility. Furthermore, it is characterized by the formation of solid solution with other various metals having high fusing point. Accordingly, Nb-based composite alloys having excellent high temperature strength as well as excellent ductility and toughness can be developed by enhancing the solid solution formation and the dispersion with composites of compound phases using Nb as a base material. The purpose of this study is to provide fundamental data for the development of Nb-based composite alloys. The optimum matrix materials and their fabrication processes have been investigated, to evaluate their high temperature properties. Consequently, it was found that the enhancement by the deposition of intermetallic compounds or by the dispersion of oxides was an effective method for the formation of composites of Nb-based alloys. 4 refs., 88 figs., 24 tabs.

  9. Evaluation of Antibacterial Enrofloxacin in Eggs by Matrix Solid Phase Dispersion-Flow Injection Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Xiaocui Duan

    2014-01-01

    Full Text Available The study based on the chemiluminescence (CL reaction of potassium ferricyanide and luminol in sodium hydroxide medium, enrofloxacin (ENRO could dramatically enhance CL intensities and incorporated with matrix solid-phase dispersion (MSPD technique (Florisil used as dispersant, dichloromethane eluted the target compounds. A simple flow injection chemiluminescence (FL-CL method with MSPD technique for determination of ENRO in eggs was described. Under optimal conditions, the CL intensities were linearly related to ENRO concentration ranging from 4.0×10-8 g.L−1 to 5.0×10-5 g.L−1, with a correlation coefficient of 0.9989 and detection limit of 5.0×10-9 g.L−1. The relative standard deviation was 3.6% at an ENRO concentration of 2.0×10-6 g.L−1. Our testing technique can help ensure food safety, and thus, protect public health.

  10. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    Science.gov (United States)

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The effect of the cooling rate during quenching, electron bombardment and plastic deformation on the kinetics of a solid solution disintegration in iron-copper alloys

    International Nuclear Information System (INIS)

    Fedorov, G.B.; Zhukov, V.P.; Braun, A.G.; Smirnov, E.A.

    1974-01-01

    From the electroresistivity variation at 77 0 K, the influence of nonequilibrium point defect density and of complexes and dislocations on the decay process of the iron-copper solid solution is determined. Owing to high quenching rate of thin foils, isochrones of their electroconductivity curves appear shifted by about 200 0 C to lower temperatures. For quenched and irradiated specimens at 200-250 0 C a sharp retardation of electroconductivity decline is observed due to a zone stage. The plastic deformation (15%) leads to a partial suppression of that stage. Both irradiation and deformation initiate the process of copper separation from the solid solution, the latter being the stronger, the more copper is in the solid solution

  12. Tensometrical properties of volumetric crystals of germanium-silicon solid solutions irradiated by fast electrons

    International Nuclear Information System (INIS)

    Abbasov, Sh.M.

    2002-01-01

    Full Text: In the present work the tensometrical properties of Ge1-xSix solid solution monocrystal contended of up to 15 at. % Si were investigated. The radiation-proof strain gauges of researched crystals were made. For this purpose the site was cutted out from a sample, perpendicularly or in parallel of a crystal axes. After polishing the samples had thickness of 30-40 microns, and length of 2 mm

  13. Photophysical processes study for poly (P-substituted styrenes) in solid films and in solutions

    International Nuclear Information System (INIS)

    Al-Hakeem, I.A.

    1985-01-01

    In this work, the absorption and emission spectra of poly (P-NN dimethyl amino styrene), poly (P-Fluoro Styrene), poly (P-CH2OCH3 styrene), poly (P-Methyl (styrene), poly(P-Tertiary butyl styrene) have been studied in solid films and solutions. The effect of added dimethylterph-thalate as a quencher to the fluorescence emission of the polymers used in this work were studied.(5 tabs., 39 figs., 60 refs.)

  14. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  15. Iron site occupancies in magnetite-ulvospinel solid solution: A new approach using XMCD

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, C. I.; Henderson, C. M. B.; Telling, N. D.; Pattrick, R. A.D.; Vaughan, D. J.; Charnock, J. M.; Arenholz, E.; Tuna, F.; Coker, V.S.; Laan, G. van der

    2009-06-22

    Ordering of Fe{sup 3+} and Fe{sup 2+} between octahedral (Oh) and tetrahedral (Td) sites in synthetic members of the magnetite (Fe{sub 3}O{sub 4}) - ulvoespinel (Fe{sub 2}TiO{sub 4}) solid-solution series was determined using Fe L{sub 2,3}-edge X-ray magnetic circular dichroism (XMCD) coupled with electron microprobe and chemical analysis, Ti L-edge spectroscopy, Fe K-edge EXAFS and XANES, Fe{sub 57} Moessbauer spectroscopy, and unit cell parameters. Microprobe analysis, cell edges and chemical FeO determinations showed that the bulk compositions of the samples were stoichiometric magnetite-ulvoespinel solid-solutions. Surface sensitive XMCD showed that the surfaces of these oxide minerals were more sensitive to redox conditions and some samples required re-equilibration with suitable solid-solid buffers. Detailed site-occupancy analysis of these samples gave XMCD-Fe{sup 2+}/Fe{sup 3+} ratios very close to stoichiometric values. L{sub 2,3}-edge spectroscopy showed that Ti{sup 4+} was restricted to Oh sites. XMCD results showed that significant Fe{sup 2+} only entered Td when the Ti content was > 0.40 apfu while Fe{sup 2+} in Oh increased from 1 a.p.f.u in magnetite to a maximum of {approx}1.4 apfu in USP45. As the Ti content increased from this point, the steady increase in Fe{sup 2+} in Td sites was clearly observable in the XMCD spectra, concurrent with a slow decrease in Fe{sup 2+} in Oh sites. Calculated magnetic moments showed a steady decrease from magnetite (4.06 {mu}{sub B}) to USP45 (1.5 {mu}{sub B}) and then a slower decrease towards the value for ulvoespinel (0 {mu}{sub B}). Two of the synthesized samples were also partially maghemitized by re-equilibrating with an oxidizing Ni-NiO buffer and XMCD showed that Fe{sup 2+} oxidation only occurred at Oh sites, with concomitant vacancy formation restricted to this site. This study shows the advantage of using XMCD as a direct measurement of Fe oxidation state in these complex magnetic spinels. These results

  16. Small interstitial clusters as opposite defect recombinators in decomposing solid solutions under irradiation

    International Nuclear Information System (INIS)

    Orlov, A.N.; Trushin, Yu.V.

    1988-01-01

    An attempt was made to make allowance for the role of binary and ternary interstitials in the kinetics of radiation point defects both in the presence and in the absence of coherent preseparation. It is shown that in solid solutions, decomposing under irradiation, recombination with binary and ternary interstitials proceeds more quickly than directly, and this difference is more pronounced (from 2 up to 20 time growth) due to defect flow for preseparation at the stage of coherent preseparation formation

  17. PRODUCTION, DIELECTRIC PROPERTY AND MICROWAVE ABSORPTION PROPERTY OF SiC(Fe SOLID SOLUTION POWDER BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    XIAOLEI SU

    2014-03-01

    Full Text Available SiC(Fe solid solution powders were synthesized by sol–gel method under different reaction time, using methyltriethoxysilane as the silicon and carbon source and analytic ferric chloride as the dopant, respectively. The synthesized powders have been characterized by XRD, SEM and Raman spectra. Results show that the lattice constant decreases with increasing reaction time. The electric permittivities of SiC samples were determined in the frequency range of 8.2 ~ 12.4 GHz. Results show that the permittivity of SiC decreases with increasing reaction time. The SiC(Fe solid solution powder with reaction time of 4 h with 2 mm thickness exhibit the best microwave absorption property in X-band range (8.2 - 12.4 GHz. The microwave absorption mechanism has been discussed.

  18. Structural determination of new solid solutions [Y2-x Mx ][Sn2-x Mx ]O7-3x/2 (M = Mg or Zn by Rietveld method

    Directory of Open Access Journals (Sweden)

    Mohamed Douma

    2010-12-01

    Full Text Available New [Y2-x Mx][Sn2-x Mx]O7-3x/2 (0 ≤x≤ 0.30 for M = Mg and 0 ≤x≤ 0.36 for M = Zn solid solutions with the pyrochlore structure were synthesized via high-temperature solid-state reaction method. Powder X-ray diffraction (PXRD patterns and Fourier transform infrared (FT-IR spectra showed that these materials are new non-stoichiometric solid solutions with the pyrochlore type structure. The structural parameters for the solids obtained were successfully determined by Rietveld refinement based on the analysis of the PXRD diagrams. Lattice parameter (a of these solid solutions decreases when x increases in both series. All samples obtained have the pyrochlore structure Fd-3m, no. 227 (origin at center -3m with M2+ (M = Mg2+ or Zn2+ cations in Y3+ and Sn4+ sites, thus creating vacancies in the anionic sublattice.

  19. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  20. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  1. Crystallochemical features of solid solutions based on Ga/sub 2/3/Cr/sub 2/S/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.V.; Kesler, Ya.A.; Gordeev, I.V.; Stupnikov, V.A.

    1988-04-01

    Ga/sub 2/3/Cr/sub 2/S/sub 4/ shows a rare type of phase transition where increases in temperature and pressure produce the disordered modification. A source of disordering can be isomorphous substitution in the tetrahedral sublattice. The authors therefore made and examined solid solutions of Ga/sub (2/3-2x/3)/M/sub x/(Cr/sub 2/)S/sub 4/ type, where M = Fe, Co, Ni, Cu. Specimens containing Fe and show a quasi-continuous solid-solution series, where the Fe system obeys Vegard's rule. Specimens containing nickel show a narrow ordering range. The most interesting results have been obtained for specimens containing copper. Cu/sub x/Ga/sub 2/3(1-x)/Cr/sub 2/S/sub 4/ specimens show a transition from a structure ordered on the tetrahedral positions, symmetry F/anti/43m, to the normal-spinel structure, Fd3m.

  2. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  3. Photoluminescence study in solid solutions of CdMgMnTe semimagnetic semiconductors

    International Nuclear Information System (INIS)

    Kusraev, Yu.G.; Averkieva, G.K.

    1993-01-01

    Luminescence and resonant Raman scattering in quaternary solid solutions of CdMgMnTe semimagnetic semiconductors are investigated. It is shown that the intensity and position of the luminescence band, conditioned by the 4 T 1 --> 6 A 1 optical transitions in the Mn d-shell, depend on the local crystal environment. Temperature variations of the photoluminescence spectra are interpreted on the base of a model of electron excitation energy transport from Mn 2+ to different recombination centers. In the resonant Raman scattering spectrum were observed three longitudinal vibrational modes with energies near to phonon energies of corresponding binary compounds

  4. Matrix Optical Absorption in UV-MALDI MS.

    Science.gov (United States)

    Robinson, Kenneth N; Steven, Rory T; Bunch, Josephine

    2018-03-01

    In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10 -17 cm -2 was identified as a potential minimum for desorption/ionization of analytes. Graphical Abstract ᅟ.

  5. Internal friction and dislocation collective pinning in disordered quenched solid solutions

    Science.gov (United States)

    D'Anna, G.; Benoit, W.; Vinokur, V. M.

    1997-12-01

    We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.

  6. Calculations of oscillation spectra of disordered interstitial solid solutions of vanadium-oxygen system

    International Nuclear Information System (INIS)

    Danilkin, S.A.

    1978-01-01

    The frequency spectra calculation of disordered solid interstitial solutions of a vanadium-oxygen system for oxygen concentration of 5.9% and 15.8% (V 16 O and V 16 O 3 ) is carried out. The axially-symmetric model of crystal lattice dinamics with consideration of vanadium-oxygen and vanadium-vanadium interactions up to the second coordination sphere is used. On the whole, the obtained spectra are in qualitative agreement with experiment and reflect correctly all the changes in frequency spectra of pure vanadium on doping with oxygen

  7. Thermoelectric properties of Bi2Te3 base solid solutions in the Bi2Te3-InS system

    International Nuclear Information System (INIS)

    Safarov, M.G.; Rustamov, P.G.; Alidzhanov, M.A.

    1979-01-01

    The rich Bi 2 Te 3 part ot the Bi 2 Te 3 -InS constitutional diagram has been studied with a view to produce new Bi 2 Te 3 -based solid solutions and to establish the maximum solubility of InS in Bi 2 Te 3 . The methods of differential-thermal, X-ray phase and microstructural analysis have been used. The alloys microhardness, density and thermal electric properties have been measured. A large region of Bi 2 Te 3 -based restricted solid solutions has been detected; it reaches 14.0 mol.% InS at room temperature. Studied have been the thermoelectromotive forces, electric and thermal conductivity of the alloys, containing up to 5 mol.% InS in the 300-700 K temperature range

  8. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    Science.gov (United States)

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  9. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    Science.gov (United States)

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability

  10. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  11. Rovibrational matrix elements of the multipole moments

    Indian Academy of Sciences (India)

    Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...

  12. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  13. Formation of solid solutions of gallium in Fe–Cr and Fe–Co alloys: Mössbauer studies and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, V.V. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Kleinerman, N.M., E-mail: kleinerman@imp.uran.ru [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Vershinin, A.V.; Mushnikov, N.V.; Protasov, A.V.; Stashkova, L.A. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Gorbatov, O.I. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE - 100 44 Stockholm (Sweden); Ruban, A.V. [Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE - 100 44 Stockholm (Sweden); Gornostyrev, Yu.N. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation)

    2014-11-25

    Highlights: • Structure features of the formation of quasibinary solid solutions Fe–Co–Ga and Fe–Cr–Ga are found. • The first-principles calculation of mixing and solubility energies for Ga in an Fe–X alloy are given. • Ga handicaps the processes of phase separation in the Fe–Cr system and ordering in the Fe–Co system. • Preference of Ga entering in the neighborhood of a second element can help study multielement alloys. - Abstract: Investigation of Ga influence on the structure of Fe–Cr and Fe–Co alloys was performed with the use of Mössbauer spectroscopy and X-ray diffraction methods. The experimental results are compared with results of first-principles calculations of the mixing and solubility energies for Ga in an Fe–X (X = Co, Cr) alloy both in ferromagnetic and paramagnetic states. It is shown that Ga mainly goes into the solid solutions of the base alloys. In the alloys of the Fe–Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The results of the first-principles calculations testify in favor of a preferable dissolution of Ga in the FeCo regions of a multicomponent structure rather than FeCr regions, both types of regions being in the ferromagnetic state at the temperature of annealing. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to enter the nearest surroundings of iron atoms, thus forming binary Fe–Ga regions (or phases)

  14. Multiple Multidentate Halogen Bonding in Solution, in the Solid State, and in the (Calculated) Gas Phase.

    Science.gov (United States)

    Jungbauer, Stefan H; Schindler, Severin; Herdtweck, Eberhardt; Keller, Sandro; Huber, Stefan M

    2015-09-21

    The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A wave propagation matrix method in semiclassical theory

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.

    1977-05-01

    A wave propagation matrix method is used to derive the semiclassical formulae of the multiturning point problem. A phase shift matrix and a barrier transformation matrix are introduced to describe the processes of a particle travelling through a potential well and crossing a potential barrier respectively. The wave propagation matrix is given by the products of phase shift matrices and barrier transformation matrices. The method to study scattering by surface transparent potentials and the Bloch wave in solids is then applied

  16. XAFS spectroscopic study of uranyl coordination in solids and aqueous solution

    International Nuclear Information System (INIS)

    Thompson, H.A.; Brown, G.E. Jr.; Parks, G.A.

    1997-01-01

    To evaluate the ability of X-ray absorption fine structure (XAFS) spectroscopy to elucidate the coordination environment of U 6+ at the solid-water interface, we conducted an in-depth analysis of experimental XAFS data from U 6+ solid and solution model compounds. Using the ab initio XAFS code FEFF6, we calculated phase-shift and amplitude functions for fitting experimental data. The code FEFF6 does a good job of reproducing experimental data and is particularly valuable for providing phase-shift and amplitude functions for neighboring atoms whose spectral contributions are difficult to isolate from experimental data because of overlap of Fourier transform features. In solid-phase model compounds at ambient temperature, we were able to fit spectral contributions from axial O (1.8 Angstrom), equatorial O (2.2-2.5 Angstrom), N (2.9 Angstrom), C (2.9 Angstrom), Si (3.2 Angstrom), P (3.6 Angstrom), distant 0 (4.3 Angstrom), and U (4.0, 4.3, 4.9, and 5.2 Angstrom) atoms. Contributions from N, C, Si, P, distant O, and distant U (4.9 and 5.2 Angstrom) are weak and therefore might go undetected in a sample of unknown composition. Lowering the temperature to 10 K extends detection of U neighbors to 7.0 Angstrom. The ability to detect these atoms suggests that XAFS might be capable of discerning inner-sphere U sorption at solid aluminosilicate-water interfaces. XAFS should definitely detect multinuclear U complexes and precipitates. Multiple-scattering paths are minor contributors to uranyl XAFS beyond k = 3 Angstrom -1 . Allowing shell-dependent disorder parameters (σ 2 ) to vary, we observed narrow ranges of σ 2 values for similar shells of neighboring atoms. Knowledge of these ranges is necessary to constrain the fit of XAFS spectra for unknowns. Finally, we found that structures reported in the literature for uranyl diacetate and rutherfordine are not completely correct. 50 refs., 6 figs., 2 tabs

  17. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  18. Study of vibrational and magnetic excitations in NicMg1-cO solid solutions by Raman spectroscopy

    International Nuclear Information System (INIS)

    Cazzanelli, E; Kuzmin, A; Mariotto, G; Mironova-Ulmane, N

    2003-01-01

    The Raman scattering by phonons and magnons was studied for the first time in the polycrystalline solid solutions Ni c Mg 1-c O. The experimental Raman spectrum for c = 0.9 is similar to that of NiO and consists of six well resolved bands, whose origins are the disorder-induced one-phonon scattering (bands at 400 and 500 cm -1 ), two-phonon scattering (bands at 750, 900, and 1100 cm -1 ), and two-magnon scattering (the broad band at ∼ 1400 cm -1 ). We found that the dependence of the two-magnon band in solid solutions on the composition and temperature is consistent with their magnetic phase diagram. We also observed that the relative contribution of two-phonon scattering decreases strongly upon dilution with magnesium ions and disappears completely at c < 0.5. Such behaviour is explained in terms of a disorder-induced effect, which increases the probability of the one-phonon scattering processes

  19. Matrix effect on hydrogen-atom tunneling of organic molecules in cryogenic solids

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2000-01-01

    Although the tunneling of atoms through potential energy barriers separating the reactant and reaction systems is not paid much attention in organic reactions, this plays an important role in reactions including the transfer of light atoms. Atomic tunneling is especially important for chemical reactions at low temperatures, since the thermal activation of reactant systems is very slow process in comparison with the tunneling. One of the typical reactions of atomic tunneling is hydrogen-atom abstraction from alkanes in cryogenic solids exposed to high-energy radiation. Irradiation of alkane molecules causes the homolytic cleavage of C-H bonds, which results in the pairwise formation of free hydrogen atoms and organic free radicals. Since the activation energies for the abstraction of hydrogen atoms from alkane molecules by free hydrogen atoms are higher than 5 kcal/mol, the lifetime of free hydrogen atoms at 77 K is estimated from the Arrhenius equation of k=vexp(-E a /RT) to be longer than 10 hrs. However, except for solid methane, free hydrogen atoms immediately convert to alkyl radicals even at 4.2 K by hydrogen-atom tunneling from alkane molecules to the free hydrogen atoms. The rate of hydrogen atom tunneling does not necessary increase with decreasing activation energy or the peak height of the potential energy barrier preventing the tunneling. Although the activation energy is the lowest at the tertiary carbon of alkanes, hydrogen atom tunneling from branched alkanes with tertiary carbon at the antepenultimate position of the carbon skeleton is the fastest at the secondary penultimate carbon. Based on our experimental results, we have proposed that the peculiarity of the hydrogen-atom abstraction in cryogenic solids comes from the steric hindrance by matrix molecules to the deformation of alkane molecules from the initial sp 3 to the final sp 2 configurations. The steric hindrance causes the increase of the height of the potential energy barrier for the

  20. Solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Wide, L.

    1977-01-01

    Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de

  1. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  2. Effect of W content in solid solution on properties and microstructure of (Ti,W)C-Ni{sub 3}Al cermets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bin; Xiong, Weihao, E-mail: whxiong@hust.edu.cn; Zhang, Man; Jing, Yong; Li, Baolong; Luo, Haifeng; Wang, Shengqing

    2016-08-15

    (Ti{sub 1-x}W{sub x})C solid solutions (x = 0.05, 0.15, 0.25, 0.35) were synthesized by carbothermal reduction and then were used as hard phases to prepare (Ti,W)C-Ni{sub 3}Al cermets by vacuum sintering. (Ti,W)C-Ni{sub 3}Al cermets showed weak core-rim structure carbide particles embedded in Ni{sub 3}Al binder. As W content in (Ti,W)C increased, core-rim structure of carbide particles got weaker and the contrast of particles lowered down in SEM-BSE morphologies. Furthermore, the densification of cermets was promoted with W content in solid solution increasing, meanwhile TRS and toughness of cermets were improved obviously. In this paper, the wettability of molten metal on different group transition metal carbides was discussed in detail based on valence-electron configurations (VECs) of carbides. - Highlights: • (Ti{sub 1-x}W{sub x})C solid solutions were synthesized by carbothermal reduction. • (Ti,W)C-Ni{sub 3}Al cermets were prepared through powder metallurgy route. • The increase of W can improve wetting and densification significantly. • (Ti,W)C-Ni{sub 3}Al cermets showed a weak core-rim structure particles embedded in binder. • Wetting behavior were discussed from valence-electron configurations of carbides.

  3. Spatial structure peculiarities of influenza A virus matrix M1 protein in an acidic solution that simulates the internal lysosomal medium.

    Science.gov (United States)

    Shishkov, Alexander; Bogacheva, Elena; Fedorova, Natalia; Ksenofontov, Alexander; Badun, Gennadii; Radyukhin, Victor; Lukashina, Elena; Serebryakova, Marina; Dolgov, Alexey; Chulichkov, Alexey; Dobrov, Evgeny; Baratova, Lyudmila

    2011-12-01

    The structure of the C-terminal domain of the influenza virus A matrix M1 protein, for which X-ray diffraction data were still missing, was studied in acidic solution. Matrix M1 protein was bombarded with thermally-activated tritium atoms, and the resulting intramolecular distribution of the tritium label was analyzed to assess the steric accessibility of the amino acid residues in this protein. This technique revealed that interdomain loops and the C-terminal domain of the protein are the most accessible to labeling with tritium atoms. A model of the spatial arrangement of the C-terminal domain of matrix M1 protein was generated using rosetta software adjusted to the data obtained by tritium planigraphy experiments. This model suggests that the C-terminal domain is an almost flat layer with a three-α-helical structure. To explain the high level of tritium label incorporation into the C-terminal domain of the M1 protein in an acidic solution, we also used independent experimental approaches (CD spectroscopy, limited proteolysis and MALDI-TOF MS analysis of the proteolysis products, dynamic light scattering and analytical ultracentrifugation), as well as multiple computational algorithms, to analyse the intrinsic protein disorder. Taken together, the results obtained in the present study indicate that the C-terminal domain is weakly structured. We hypothesize that the specific 3D structural peculiarities of the M1 protein revealed in acidic pH solution allow the protein greater structural flexibility and enable it to interact effectively with the components of the host cell. © 2011 The Authors Journal compilation © 2011 FEBS.

  4. Determination of six pesticides in the medicinal herb Cordia salicifolia by matrix solid-phase dispersion and gas chromatography/mass spectrometry.

    Science.gov (United States)

    de Carvalho, Pedro Henrique Viana; Prata, Vanessa de Menezes; Alves, Péricles Barreto; Navickiene, Sandro

    2009-01-01

    A simple and effective extraction method based on matrix solid-phase dispersion was developed for acephate, chlorpropham, pyrimicarb, bifenthrin, tetradifon, and phosalone in leaves of the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products. The determination method was GC/MS with selected-ion monitoring. Different parameters of the method were evaluated, such as type of solid phase (C18, alumina, silica gel, and Florisil) and the amount of solid phase and eluent (dichloromethane, ethyl acetate, chloroform, and cyclohexane). The best results were obtained using 0.5 g herb sample, 0.5 g neutral alumina as the dispersant sorbent, 0.5 g C18 as the cleanup sorbent, and cyclohexane-dichloromethane (3 + 1, v/v) as the eluting solvent. The method was validated using herb samples fortified with pesticides at different concentration levels (0.3, 0.5, and 1.0 mg/kg). Average recoveries (seven replicates) ranged from 67.7 to 129.9%, with relative standard deviations between 6.3 and 26%. Detection and quantitation limits for the herb ranged from 0.10 to 0.15 and 0.15 to 0.25 mg/kg, respectively.

  5. Magnetic and electrical properties of (FeIn2S4)1−x(CuIn5S8)x solid solutions

    International Nuclear Information System (INIS)

    Trukhanov, S.V.; Bodnar, I.V.; Zhafar, M.A.

    2015-01-01

    In this study, single crystals of FeIn 2 S 4 and CuIn 5 S 8 compounds, and (FeIn 2 S 4 ) 1−x (CuIn 5 S 8 ) x solid solutions were grown using the Bridgman method. The magnetic and electrical properties of the samples obtained were investigated at temperatures of 5–300 K and in a magnetic field range of 0–14 T. It was established that all of the solid solutions were paramagnets down to low temperatures of ~10 K. It was shown that the ground state of the magnetic phase of the samples was a spin glass state, where the freezing temperature increased monotonically with the increase in the concentration of Fe 2+ cations. All of the samples exhibited semiconductor characteristics in terms of electrical resistivity. The concentration-dependent critical magnetic temperatures, magnetic moment, and activation energy were plotted, which are probably explained by the magnetic state formation of the (FeIn 2 S 4 ) 1−x (CuIn 5 S 8 ) x solid solution single crystals based on the empirical Goodenough–Kanamori rules

  6. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  7. Rational parametrisation of normalised Stiefel manifolds, and explicit non-'t Hooft solutions of the Atiyah-Drinfeld-Hitchin-Manin instanton matrix equations for Sp(n)

    International Nuclear Information System (INIS)

    McCarthy, P.J.

    1981-01-01

    It is proved that normalised Stiefel manifolds admit a rational parametrisation which generalises Cayley's parametrisation of the unitary groups. Applying (the quaternionic case of) this parametrisation to the Atiyah-Drinfeld-Hitchin-Manin (ADHM) instanton matrix equations, large families of new explicit rational solutions emerge. In particular, new explicit non-'t Hooft solutions are presented. (orig.)

  8. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  9. Doping with lead of single crystals of solid solutions of Sbsub(1,5)Bisub(0,5)Tlsub(3)-Bisub(2)Sesub(3)

    International Nuclear Information System (INIS)

    Abrikosov, N.Kh.; Ivanova, L.D.; Polikarpova, N.V.; Galechyan, M.G.

    1984-01-01

    By the Czochralski method with liquid phase additional feeding single crystals of solid solutions of the Sbsub(1.5)Bisub(0.5)Tesub(3)-Bisub(2)Sesub(3) system with 0, 10 and 15 mol.% of Bi 2 Se 3 content doped with lead up to 1.37 at/cm 3 are grown. Lead content in crystals and alloys is determined by the atom-abmethod using the scale of standard solutions. It has been found that the effective coefficient of lead distribution in investigated solutions is approximately 0.5. It is shown that lead addition leads to increase of electric conductivity and heat conductivity and decrease of thermoelectric coeffcient at the expense of current carriers concentration growth, the lead in crystals of solid solutions of the Sbsub(1.5)Bisub(0.5)Tesub(3)-Bisub(2)Sesub(3) system being a single charge acceptor

  10. Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO.sub.3./sub.-SrMnO.sub.3./sub. solid solution

    Czech Academy of Sciences Publication Activity Database

    Savinov, Maxim; Bovtun, Viktor; Tereshina-Chitrova, Evgenia; Stupakov, Alexandr; Dejneka, Alexandr; Tyunina, Marina

    2018-01-01

    Roč. 112, č. 5 (2018), s. 1-4, č. článku 052901. ISSN 0003-6951 R&D Projects: GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : dielectric relaxation * epitaxial films * paraelectric-magnetic * SrTiO 3 -SrMnO 3 solid solution Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 3.411, year: 2016

  11. Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

    Science.gov (United States)

    Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei

    2015-01-30

    Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Matrix product solution of an inhomogeneous multi-species TASEP

    Science.gov (United States)

    Arita, Chikashi; Mallick, Kirone

    2013-03-01

    We study a multi-species exclusion process with inhomogeneous hopping rates and find a matrix product representation for the stationary state of this model. The matrices belong to the tensor algebra of the fundamental quadratic algebra associated with the exclusion process. We show that our matrix product representation is equivalent to a graphical construction proposed by Ayyer and Linusson (2012 arXiv:1206.0316), which generalizes an earlier probabilistic construction due to Ferrari and Martin (2007 Ann. Prob. 35 807).

  13. Solid on liquid deposition, a review of technological solutions

    OpenAIRE

    Homsy, Alexandra; Laux, Edith; Jeandupeux, Laure; Charmet, Jérôme; Bitterli, Roland; Botta, Chiara; Rebetez, Yves; Banakh, Oksana; Keppner, Herbert

    2015-01-01

    Solid-on-liquid deposition (SOLID) techniques are of great interest to the MEMS and NEMS (Micro- and Nano Electro Mechanical Systems) community because of potential applications in biomedical engineering, on-chip liquid trapping, tunable micro-lenses, and replacements of gate oxides. However, depositing solids on liquid with subsequent hermetic sealing is difficult because liquids tend to have a lower density than solids. Furthermore, current systems seen in nature lack thermal, mechanical or...

  14. The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices

    Science.gov (United States)

    Dehghan, Mehdi; Hajarian, Masoud

    2012-08-01

    A matrix P is called a symmetric orthogonal if P = P T = P -1. A matrix X is said to be a generalised bisymmetric with respect to P if X = X T = PXP. It is obvious that any symmetric matrix is also a generalised bisymmetric matrix with respect to I (identity matrix). By extending the idea of the Jacobi and the Gauss-Seidel iterations, this article proposes two new iterative methods, respectively, for computing the generalised bisymmetric (containing symmetric solution as a special case) and skew-symmetric solutions of the generalised Sylvester matrix equation ? (including Sylvester and Lyapunov matrix equations as special cases) which is encountered in many systems and control applications. When the generalised Sylvester matrix equation has a unique generalised bisymmetric (skew-symmetric) solution, the first (second) iterative method converges to the generalised bisymmetric (skew-symmetric) solution of this matrix equation for any initial generalised bisymmetric (skew-symmetric) matrix. Finally, some numerical results are given to illustrate the effect of the theoretical results.

  15. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  16. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  17. Probing structural homogeneity of La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions by combined spectroscopic and computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Huittinen, N., E-mail: n.huittinen@hzdr.de [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden (Germany); Arinicheva, Y. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Kowalski, P.M.; Vinograd, V.L. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); JARA High-Performance Computing, Schinkelstraße 2, 52062 Aachen (Germany); Neumeier, S. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Bosbach, D. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); JARA High-Performance Computing, Schinkelstraße 2, 52062 Aachen (Germany)

    2017-04-01

    Here we study the homogeneity of Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} (x = 0, 0.11, 0.33, 0.55, 0.75, 0.92, 1) monazite-type solid solutions by a combination of Raman and time-resolved laser fluorescence spectroscopies (TRLFS) with complementary quasi-random structure-based atomistic modeling studies. For the intermediate La{sub 0.45}Gd{sub 0.55}PO{sub 4} composition we detected a significant broadening of the Raman bands corresponding to the lattice vibrations of the LnO{sub 9} polyhedron, indicating much stronger distortion of the lanthanide cation site than the PO{sub 4} tetrahedron. A distortion of the crystal lattice around the dopant site was also confirmed in our TRLFS measurements of Eu{sup 3+} doped samples, where both the half width (FWHM) of the excitation peaks and the {sup 7}F{sub 2}/{sup 7}F{sub 1} ratio derived from the emission spectra increase for intermediate solid-solution compositions. The observed variation in FWHM correlates well with the simulated distribution of Eu···O bond distances within the investigated monazites. The combined results imply that homogenous Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions are formed over the entire composition range, which is of importance in the context of using these ceramics for immobilization of radionuclides. - Highlights: •Homogenous Eu{sup 3+}-doped La{sub 1-x}Gd{sub x}PO{sub 4} monazite-type solid solutions have been synthesized. •Solid solution formation is accompanied by slight distortion of the LnO{sub 9} polyhedron. •Raman and laser spectroscopic trends are observed within the monazite series. •Results are explained with atomistic simulations of Eu-O bond distance distribution.

  18. Radiation-induced transformations of isolated organic molecules in solid rare gas matrices

    International Nuclear Information System (INIS)

    Feldman, V.I.

    1998-01-01

    Complete text of publication follows. The studies of radiation-chemical behaviour of isolated organic molecules in rigid inert media are of considerable interest for radiation chemistry and general structural chemistry. Previous efforts were limited to the ESR studies of radicals resulting from some small hydrocarbon molecules in frozen rare gas solutions. Recently, we developed an approach to the radiation chemistry of isolated organic molecules using classic matrix isolation procedure for sample preparation and a combination of ESR and IR spectroscopy for characterization of paramagnetic and diamagnetic species resulting form electron irradiation or organic molecules in solid rare gas matrices at 10-15 K. The results obtained reveal high efficiency of energy transfer from rare gas matrix to organic molecules. The total radiation-chemical yields of degradation of organic molecules in argon and xenon matrices were measured directly by IR spectroscopy. The studies of the effect of electron scavengers on the radiolysis of organic molecules in solid rare gases show that the main primary process is positive hole transfer from matrix to additive molecule. ESR spectra of a number of radical cations (alkanes, ethers, arenes) were first characterized in a low-disturbing environment. It was found that the electronic characteristics (IP, polarizability) of the matrix used had crucial effect on trapping and degradation of primary organic radical cations. Using matrices with various IP provides an unique possibility to examine the chemical meaning of excess energy resulting from exothermic positive hole transfer, that is, to follow the fate of excited cations in condensed phase

  19. Improved Riccati Transfer Matrix Method for Free Vibration of Non-Cylindrical Helical Springs Including Warping

    Directory of Open Access Journals (Sweden)

    A.M. Yu

    2012-01-01

    Full Text Available Free vibration equations for non-cylindrical (conical, barrel, and hyperboloidal types helical springs with noncircular cross-sections, which consist of 14 first-order ordinary differential equations with variable coefficients, are theoretically derived using spatially curved beam theory. In the formulation, the warping effect upon natural frequencies and vibrating mode shapes is first studied in addition to including the rotary inertia, the shear and axial deformation influences. The natural frequencies of the springs are determined by the use of improved Riccati transfer matrix method. The element transfer matrix used in the solution is calculated using the Scaling and Squaring method and Pad'e approximations. Three examples are presented for three types of springs with different cross-sectional shapes under clamped-clamped boundary condition. The accuracy of the proposed method has been compared with the FEM results using three-dimensional solid elements (Solid 45 in ANSYS code. Numerical results reveal that the warping effect is more pronounced in the case of non-cylindrical helical springs than that of cylindrical helical springs, which should be taken into consideration in the free vibration analysis of such springs.

  20. A new and efficient Solid Phase Microextraction approach for analysis of high fat content food samples using a matrix-compatible coating.

    Science.gov (United States)

    De Grazia, Selenia; Gionfriddo, Emanuela; Pawliszyn, Janusz

    2017-05-15

    The current work presents the optimization of a protocol enabling direct extraction of avocado samples by a new Solid Phase Microextraction matrix compatible coating. In order to further extend the coating life time, pre-desorption and post-desorption washing steps were optimized for solvent type, time, and degree of agitation employed. Using optimized conditions, lifetime profiles of the coating related to extraction of a group of analytes bearing different physical-chemical properties were obtained. Over 80 successive extractions were carried out to establish coating efficiency using PDMS/DVB 65µm commercial coating in comparison with the PDMS/DVB/PDMS. The PDMS/DVB coating was more prone to irreversible matrix attachment on its surface, with consequent reduction of its extractive performance after 80 consecutive extractions. Conversely, the PDMS/DVB/PDMS coating showed enhanced inertness towards matrix fouling due to its outer smooth PDMS layer. This work represents the first step towards the development of robust SPME methods for quantification of contaminants in avocado as well as other fatty-based matrices, with minimal sample pre-treatment prior to extraction. In addition, an evaluation of matrix components attachment on the coating surface and related artifacts created by desorption of the coating at high temperatures in the GC-injector port, has been performed by GCxGC-ToF/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of ideal solution and validation of stiffness and strength by finite element method for truss-wall corrugated cellular solids

    International Nuclear Information System (INIS)

    Choi, Jeong Ho; Lee, Jung Hwan; Lee, Je Hyun

    2014-01-01

    The objective of this study is to find the density, stiffness, and strength of truss-wall unit cell models. The diamond-corrugation, triangular-corrugation, and Navtruss-corrugation models are used for the unit cell. The ideal solutions derived for these are based on solid wall unit cell models and are developed using the Gibson-Ashby theory. To verify the ideal solutions of the models, the density, strength, and stiffness are simulated using ABAQUS software and compared with the ideal solutions on a log-log scale. The material properties of stainless steel 304 are applied. The diameter is 0.5 mm; the opening width is 0.5 mm; and the corrugation angle is 45 .deg. . Consequently, the relative Young's modulus and relative yield strength of the truss-wall unit models are good matches for the ideal expectations. It may be possible to apply a truss-wall model to diverse fields such as transportation or biomedical applications as one of the open-cell cellular solids.

  2. Development of ideal solution and validation of stiffness and strength by finite element method for truss-wall corrugated cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Ho [Samjung E and W, Changwon (Korea, Republic of); Lee, Jung Hwan [Korea Institute of Materials Science,Changwon (Korea, Republic of); Lee, Je Hyun [Changwon National University, Changwon (Korea, Republic of)

    2014-05-15

    The objective of this study is to find the density, stiffness, and strength of truss-wall unit cell models. The diamond-corrugation, triangular-corrugation, and Navtruss-corrugation models are used for the unit cell. The ideal solutions derived for these are based on solid wall unit cell models and are developed using the Gibson-Ashby theory. To verify the ideal solutions of the models, the density, strength, and stiffness are simulated using ABAQUS software and compared with the ideal solutions on a log-log scale. The material properties of stainless steel 304 are applied. The diameter is 0.5 mm; the opening width is 0.5 mm; and the corrugation angle is 45 .deg. . Consequently, the relative Young's modulus and relative yield strength of the truss-wall unit models are good matches for the ideal expectations. It may be possible to apply a truss-wall model to diverse fields such as transportation or biomedical applications as one of the open-cell cellular solids.

  3. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.

    Science.gov (United States)

    Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi

    2015-06-16

    Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a

  4. Electronic structure and photocatalytic activities of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Wenjie; Hu, Jinli; Huang, Jing; Wu, Xin; Lin, Sen, E-mail: slin@fzu.edu.cn; Huang, Caijin; Qiu, Xiaoqing, E-mail: qiuxq@fzu.edu.cn

    2015-12-01

    Highlights: • (Bi{sub 2−δ}Y{sub δ})Sn2O7 solid solutions were synthesized by one-step hydrothermal method. • The contribution of Bi 6s orbitals to electronic structures can be continuously tuned. • The high photocatalytic activity should originate from the good band dispersions. - Abstract: A series of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions were prepared by a one-step hydrothermal method to investigate the correlation between the electronic structures and photocatalytic activity. All the (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} samples were characterized by X-ray diffraction, transmission electron microscopy, infrared and UV–vis absorption spectroscopy, and the Brunauer–Emmett–Teller technique. The effects of Bi 6s orbitals in (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions on the electronic structures and photogradation of colorless 2-naphthol solution were investigated experimentally and theoretically. It is found that the introduction of Y{sup 3+} induces the shrinkage of the lattice of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions. Consequently, the contribution of Bi 6s orbitals to electronic structures of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions can be continuously tuned by Y{sup 3+} substitution for Bi{sup 3+}. Density function theory calculations reveal that the Bi 6s and O 2p states dominate the top of valence band of Bi{sub 2}Sn{sub 2}O{sub 7}, while the bottom of conduction band mainly consists of the states of Sn 5s, O 2p and Bi 6p. Once the Bi{sup 3+} ions are substituted by Y{sup 3+}, the intensity of Bi 6s states is weakening at the top of valence band while the bottom of conduction band retains the same feature observed for pure Bi{sub 2}Sn{sub 2}O{sub 7}. Moreover, the band dispersions of valence band and conduction band become narrower after Y{sup 3+} introduction into the lattice of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions. As a result, the

  5. Solidification of TRU wastes in a ceramic matrix

    International Nuclear Information System (INIS)

    Loida, A.; Schubert, G.

    1991-01-01

    Aluminumsilicate based ceramic materials have been evaluated as an alternative waste form for the incorporation of TRU wastes. These waste forms are free of water and - cannot generate hydrogen radiolyticly, - they show good compatibility between the compounds of the waste and the matrix, - they are resistent against aqueous solutions, heat and radiation. R and D-work has been performed to demonstrate the suitability of this waste form for the immobilization of TRU-wastes. Four kinds of original TRU-waste streams and a mixture of all of them have been immobilized by ceramization, using glove box and remote operation technique as well. Clay minerals, (kaolinite, bentonite) and reactive corundum were selected as ceramic raw materials (KAB 78) in an appropriate ratio yielding 78 wt% Al 2 O 3 and 22 wt%SiO 2 . The main process steps are (i) pretreatment of the liquid waste (concentration, denitration, neutralization, solid- liquid separation), (ii) mixing with ceramic raw materials and forming, (iii) heat treatment with T max. of 1300 0 C for 15 minutes. The waste load of the ceramic matrix has been increased gradually from 20 to 50, in some cases to 60 wt.%

  6. SOLIDS PRECIPITATION EVENT IN MCU CAUSAL ANALYSIS AND RECOMMENDATIONS FROM SOLIDS RECOVERY TEAM

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, A.; Aponte, C.

    2014-08-15

    A process upset occurred in the Modular Caustic-Side Solvent Extraction Unit (MCU) facility on April 6th, 2014. During recovery efforts, a significant amount of solids were found in the Salt Solution Feed Tank (SSFT), Salt Solution Receipt Tanks (SSRTs), two extraction contactors, and scrub contactors. The solids were identified by Savannah River National Laboratory (SRNL) as primarily sodium oxalate and sodium alumina silicate (NAS) with the presence of some aluminum hydroxide. NAS solids have been present in the SSFT since simulant runs during cold chemical startup of MCU in 2007, and have not hindered operations since that time. During the process upset in April 2014, the oxalate solids partially blocked the aqueous outlet of the extraction contactors, causing salt solution to exit through the contactor organic outlet to the scrub contactors with the organic phase. This salt solution overwhelmed the scrub contactors and passed with the organic phase to the strip section of MCU. The partially reversed flow of salt solution resulted in a Strip Effluent (SE) stream that was high in Isopar™ L, pH and sodium. The primary cause of the excessive solids accumulation in the SSRTs and SSFT at MCU is attributed to an increase in the frequency of oxalic acid cleaning of the 512-S primary filter. Agitation in the SSRTs at MCU in response to cold weather likely provided the primary mechanism to transfer the solids to the contactors. Sources of the sodium oxalate solids are attributed to the oxalic acid cleaning solution used to clean the primary filter at the Actinide Removal Process (ARP) filtration at 512-S, as well as precipitation from the salt batch feed, which is at or near oxalate saturation. The Solids Recovery Team was formed to determine the cause of the solids formation and develop recommendations to prevent or mitigate this event in the future. A total of 53 recommendations were generated. These recommendations were organized into 4 focus areas: • Improve

  7. Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions

    Science.gov (United States)

    Khajehtourian, Romik

    Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The

  8. Electric conductivity of solid solutions of the Na3-2xMxPO4 (M=Cd, Pb) systems

    International Nuclear Information System (INIS)

    Shekhtman, G.Sh.; Burmakin, E.I.; Smirnov, N.B.; Esina, N.O.

    2002-01-01

    Electric conductivity, phase composition and conductivity character in the system Na 3-2x Cd x PO 4 in the temperature range of 300-750 deg C were studied by the methods of conductometry, X-ray phase and thermal analyses. It was ascertained that maximum values of electric conductivity (6.25x10 -3 S/cm at 300 deg C) are observed near upper concentration boundaries (x ≅ 0.4) of monophase regions in γ-solid solutions. Conductivity of the solid electrolytes studied is of cocationic character. The values of activation energies of Na + and Cd 2+ cation jumping over in solid electrolytes Na 2.7 Cd 0.15 PO 4 are 38.7 and 43.6 kJ/mol respectively according to the NMR data [ru

  9. A new variable temperature solution-solid interface scanning tunneling microscope.

    Science.gov (United States)

    Jahanbekam, Abdolreza; Mazur, Ursula; Hipps, K W

    2014-10-01

    We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift. By incorporating an open solution reservoir in the chamber, solvent evaporation from the sample is minimized; allowing users to use volatile solvents for temperature dependent studies at high temperatures. The new design enables the user to image at the SS interface with some volatile solvents for long periods of time (>24 h). An increase in the nonlinearity of the piezoelectric scanner in the lateral direction as a function of temperature is addressed. A temperature dependent study of cobalt(II) octaethylporphyrin (CoOEP) at the toluene/Au(111) interface has been performed with this instrument. It is demonstrated that the lattice parameters remain constant within experimental error from 24 °C to 75 °C. Similar quality images were obtained over the entire temperature range. We report the unit cell of CoOEP at the toluene/Au(111) interface (based on two molecules per unit cell) to be A = (1.36 ± 0.04) nm, B = (2.51 ± 0.04) nm, and α = 97° ± 2°.

  10. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    International Nuclear Information System (INIS)

    Hoda, Numan; Budama, Leyla; Çakır, Burçin Acar; Topel, Önder; Ozisik, Rahmi

    2013-01-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH 4 within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles

  11. Mathematical Analysis of the Solidification Behavior of Plain Steel Based on Solute- and Heat-Transfer Equations in the Liquid-Solid Zone

    Science.gov (United States)

    Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.

    2018-04-01

    An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.

  12. Combined solid state and solution NMR studies of α,ε-15N labeled bovine rhodopsin

    International Nuclear Information System (INIS)

    Werner, Karla; Lehner, Ines; Dhiman, Harpreet Kaur; Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald; Klein-Seetharaman, Judith; Khorana, H. Gobind

    2007-01-01

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of α,ε- 15 N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13 C, 15 N-REDOR and HETCOR experiments of all possible 13 C' i-1 carbonyl/ 15 N i -tryptophan isotope labeled amide pairs, and H/D exchange 1 H, 15 N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15 N nuclei and partially to their bound protons. 1 H, 15 N chemical shift assignment was achieved for indole side chains of Trp35 1.30 and Trp175 4.65 . 15 N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175 4.65 at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin

  13. Local structural relaxation around Co2+ along the hardystonite-Co-åkermanite melilite solid solution

    Science.gov (United States)

    Ardit, Matteo; Cruciani, Giuseppe; Dondi, Michele

    2012-10-01

    Six pure compounds belonging to the hardystonite (Ca2ZnSi2O7)-Co-åkermanite (Ca2CoSi2O7) solid solution were investigated by the combined application of X-ray powder diffraction and electronic absorption spectroscopy. Structural refinements of the XRPD data revealed a negative excess volume of mixing due to the single isovalent substitution of Co for Zn in the tetrahedral site. In agreement with the diffraction data, deconvolution of the optical spectra showed a progressive decreasing of the crystal field strength parameter 10 Dq moving toward the Co-åkermanite end-member, meaning that the local cobalt-oxygen bond distance, Co}}{-}{{O}}rangle^{{local}} , increased along the join with the amount of cobalt. The calculated structural relaxation coefficient around the fourfold coordinated Co2+ in the Ca2(Zn1- x Co x )Si2O7 join was ɛ = 0.69, very far from the one predicted by the Vegard's law ( ɛ = 0) and at variance with ɛ = 0.47 previously found for tetrahedrally coordinated Co2+ in gahnite-Co-aluminate spinel solid solution. This difference is consistent with the largest constraints existing on the spinel structure, based on cubic closest packing, compared to the more flexible layered melilite structure.

  14. Dispersion of dielectric permittivity and magnetic properties of solid solution PZT–PFT

    Directory of Open Access Journals (Sweden)

    Skulski Ryszard

    2015-09-01

    Full Text Available In this paper we present the results of investigations into ceramic samples of solid solution (1-x(PbZr0.53Ti0.47O3- x(PbFe0.5Ta0.503 (i.e. (1-xPZT-xPFT with x = 0.25, 0.35 and 0.45. We try to find the relation between the character of dielectric dispersion at various temperatures and the composition of this solution. We also describe the magnetic properties of investigated samples. With increasing the content of PFT also mass magnetization and mass susceptibility increase (i.e. magnetic properties are more pronounced at every temperature. The temperature dependences of mass magnetization and re­ciprocal of mass susceptibility have similar runs for all the compositions. However, our magnetic investigations exhibit weak antiferromagnetic ordering instead of the ferromagnetic one at room temperature. We can also say that up to room tempera­ture any magnetic phase transition has not occurred. It may be a result of the conditions of the technological process during producing our PZT-PFT ceramics.

  15. A Wronskian of Jost solutions

    International Nuclear Information System (INIS)

    Corona-Corona, Gulmaro

    2004-01-01

    Based on the standard fact that any matrix potential u=u(x) determines a family of Jost solutions whose parameter runs analytically (continuously) on the (closed) half planes, respectively, the zeros of a suitable matrix valued Wronskian of a Jost solution pair are explored

  16. Phase transition in Smsub(1-x)Gdsub(x)S and Smsub(1-x)Tmsub(x)S solid solutions under pressure

    International Nuclear Information System (INIS)

    Kaminskij, V.V.; Stepanov, N.N.; Romanova, M.V.

    1985-01-01

    Experiments are conducted on studying the effect of the n quantity on Psub(pt) (phase transition pressure) for SmS and systems of solid solutions Smsub(1-x)Gdsub(x)S and Smsub(1-x)Tmsub(x)S with conductivity electron concentrations approximately 10 19 -10 21 cm -3 corresponding to the semiconducting phase of these solutions. The investigated monocrystal samples have been prepared by the method of planar crystallization from the melt, have been chipped off over the cleavage planes [100], their characteristic sizes not exceeding 2 mm. Samples of the Smsub(1-x)Tmsub(x)S system were polycrystalline and they had characteristic dimensions of approximately 3mm. Concentration of conductivity electrons has been determined from measurements of the Hall constant. Hydrostatic compression of the samples has been exercised in a piston high-pressure chamber at T=300 K. The observed electric conductivity jump determined by the standard d.c. compensation technique was a criterion of the presence of the phase transition to the metal state. Dependences of Psub(pt) in SmS base solid solutions with approximately 10 19 -10 21 cm -3 concentration of conductivity electrons have similar tendency in behaviour: a certain increase in the phase transition pressure with n growth and then its drop at n approaching concentrations corresponding to compositions close to critical ones for the semiconductor-metal phase transition in any system of solid solutions. If the first mechanism prevails at small as then further on the second mechanism swelling by a power law with a high index plays the main role

  17. Crystal structure and magnetic properties of the solid-solution phase Ca3Co2-v Sc v O6

    International Nuclear Information System (INIS)

    Hervoches, Charles H.; Fredenborg, Vivian Miksch; Kjekshus, Arne; Fjellvag, Helmer; Hauback, Bjorn C.

    2007-01-01

    The two crystallographically non-equivalent Co atoms of the quasi-one-dimensional crystal structure of Ca 3 Co 2 O 6 form chains with alternating, face-sharing polyhedra of Co2O 6 trigonal prisms and Co1O 6 octahedra. This compound forms a substitutional solid-solution phase with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 (more specifically Ca 3 Co1Co2 1- v Sc v O 6 ) extends up to v∼0.55. The crystal structure belongs to space group R3-barc with lattice parameters (in hexagonal setting): 9.0846(3)≤a≤9.1300(2) A and 10.3885(4)≤c≤10.4677(4) A. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice. - Graphical abstract: The quasi-one-dimensional Ca 3 Co 2 O 6 phase forms a substitutional solid-solution system with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 extends up to v∼0.55. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice

  18. Determination of boron in aqueous solutions by solid state nuclear track detectors technique, using a filtered neutron beam

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Pugliesi, R.; Khouri, M.T.F.C.

    1985-11-01

    The solid state nuclear track detectors technique has been used for determination of boron in aqueous solutions, using a filtered neutron beam. The particles tracks from the 10 B(n,α)Li 7 reaction were registered in the CR-39 film, chemically etched in a (30%) KOH solution 70 0 C during 90 minutes. The obtained results showed the usefulness of this technique for boron determination in the ppm range. The inferior detectable limit was 9 ppm. The combined track registration efficiency factor K has been evaluated in the solutions, for the CR-39 detector and its values is K= (4,60 - + 0,06). 10 -4 cm. (Author) [pt

  19. Electron paramagnetic resonance response and magnetic interactions in ordered solid solutions of lithium nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, Pavia (Italy); Paleari, A. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita di Milano, Milan (Italy); Massarotti, V.; Capsoni, D. [Dipartimento di Chimica-Fisica, Universita di Pavia, Pavia (Italy)

    1996-09-23

    EPR data of ordered solid solutions of lithium nickel oxides are reported as a function of the lithium content. The features of the signal and the EPR centre density are analysed by a model of dynamical trapping of holes in [(Ni{sup 2+}-O-Ni{sup 2+})-h{sup +}] complexes. The possible origin of the interactions responsible for the magnetic ordering and some features of the transport properties are also discussed. (author)

  20. Dislocation glide in Ni-Al solid solutions from the atomic scale up: a molecular dynamics study; Etude du glissement des dislocations dans la solution solide Ni-Al par simulation a l'echelle atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rodary, E

    2003-01-01

    The glide of an edge dislocation in solid solutions is studied by molecular dynamics, at fixed temperature and imposed external stress. We have optimized an EAM potential for Ni(1 a 8% A1): it well reproduces the lattice expansion, local atomic order, stacking fault energy as a function of composition, as well as the elastic properties of the {gamma}' phase with L1{sub 2} structure. On increasing the stress, the dislocation is first immobile, then glides with a velocity proportional to the stress and the velocity saturates on reaching the transverse sound velocity. However, only beyond a static threshold stress, {sigma}{sub s}, does the dislocation glide a distance large enough to allow macroscopic shear; the linear part of the velocity-stress curve extrapolates to zero at a dynamical threshold stress, {sigma}{sub d}, The friction coefficient, and the threshold stresses ({sigma}{sub s} and {sigma}{sub d}), increase with the A1 concentration and decrease with temperature (300 and 500 K). Close to the critical shear stress, {sigma}{sub s}, the dislocation glide is analysed with a 'stop and go' model. The latter yields the flight velocity between obstacles, the mean obstacle density and the distribution of the waiting time on each obstacle as a function of stress, composition and temperature. The obstacle to the glide is proposed to be the strong repulsion between Al atoms brought into nearest neighbour position by the glide process, and not the dislocation-solute interaction. The microscopic parameters so defined are introduced into a micro-mechanical model, which well reproduces the known behaviour of nickel base solid solutions. (author)