WorldWideScience

Sample records for solid solution catalysts

  1. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  2. Structural parameters of polyethylenes obtained using a palladium catalyst: dilute solution and solid state studies

    International Nuclear Information System (INIS)

    Meneghetti, Simoni Plentz; Lutz, Pierre J.; Duval, M.; Kress, Jacky; Lapp, A.

    2001-01-01

    Polyethylenes were obtained using palladium catalyst [(Ar N=C(Me)-C(Me)=N Ar) Pd(CH 2 ) 3 (COOMe)] + BAr' 4 - (VERSIPOL TM ); Ar2,6-i-Pr 2 -C 6 H 3 and Ar'3,5-(CF 3 ) 2 -C 6 H 3 . The combination of dilute solution and solid state characterization of these polyethylenes revealed strong differences between structural parameters of samples prepared under almost identical conditions except ethylene pressure (6, 3 and 1 bar). These differences can be explained by the fact that samples prepared at 6 bar are almost linear, with only a few short branches, whereas those synthesized at 1 bar are highly branched or even hyper branched. (author)

  3. Improving the electrocatalytic properties of Pd-based catalyst for direct alcohol fuel cells: effect of solid solution.

    Science.gov (United States)

    Wen, Cuilian; Wei, Ying; Tang, Dian; Sa, Baisheng; Zhang, Teng; Chen, Changxin

    2017-07-07

    The tolerance of the electrode against the CO species absorbed upon the surface presents the biggest dilemma of the alcohol fuel cells. Here we report for the first time that the inclusion of (Zr, Ce)O 2 solid solution as the supporting material can significantly improve the anti-CO-poisoning as well as the activity of Pd/C catalyst for ethylene glycol electro-oxidation in KOH medium. In particular, the physical origin of the improved electrocatalytic properties has been unraveled by first principle calculations. The 3D stereoscopic Pd cluster on the surface of (Zr, Ce)O 2 solid solution leads to weaker Pd-C bonding and smaller CO desorption driving force. These results support that the Pd/ZrO 2 -CeO 2 /C composite catalyst could be used as a promising effective candidate for direct alcohol fuel cells application.

  4. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  5. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution.

    Science.gov (United States)

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong

    2015-04-15

    We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Fe1-xZnxS ternary solid solution as an efficient Fenton-like catalyst for ultrafast degradation of phenol.

    Science.gov (United States)

    Gao, Jing; Liu, Yutang; Xia, Xinnian; Wang, Longlu; Dong, Wanyue

    2018-07-05

    Heterogeneous Fenton-like system has been proved to be an promising alternative to Fenton system due to its easy separation. However, it's a challenge to design heterogeneous Fenton-like catalysts with high activity and great durability. Here, ternary solid solution Fe 1-x Zn x S were prepared via hydrothermal synthesis as heterogeneous Fenton-like catalysts. The Fe 0.7 Zn 0.3 S sample exhibited state of the art activity for yielding OH by H 2 O 2 decomposition, and the ultrafast degradation of phenol was achieved in 4 min at initial acidic condition under room temperature. The phenol degradation rate constant of Fe 0.7 Zn 0.3 S was 99 and 70 times of ZnS and FeS, respectively. Further, we show that the unique structural configuration of iron atoms, the formation of FeS 2 -pyrite with (200) plane, are responsible for the excellent activity. The intermediate products were identified by LC-MS and a possible pathway was accordingly proposed to elucidate the mechanism of phenol degradation by OH. Overall, this work provides an idea for the rational design of the relevant heterogeneous Fenton-like catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Dehydration of alcohols using solid acid catalysts

    OpenAIRE

    Cholerton, Mary

    2014-01-01

    Solid acid catalysts were prepared through silicon substitution into aluminophosphate frameworks. Silicon incorporation was confirmed using solid state nuclear magnetic resonance spectroscopy. The nature of the acid sites generated was determined using Fourier Transform infrared spectroscopy. These materials were tested as catalysts for the dehydration of ethanol to ethylene at low operating temperatures. The materials were active for dehydration of ethanol to ethylene with significant differ...

  8. Study of fluorine doped (Nb,Ir)O_2 solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    International Nuclear Information System (INIS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Patel, Prasad; Chung, Sung Jae; Park, Sung Kyoo; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2016-01-01

    Graphical abstract: High surface area (∼300 m"2/g) nanostructured powders of nominal composition (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb_1_−_xIr_x)O_2 with an optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb_1_−_xIr_x)O_2:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb_0_._7_5Ir_0_._2_5)O_2:10F exhibits superior electrochemical activity than pure IrO_2. • Stability of the (Nb,Ir)O_2:10F nanomaterials is comparable to pure (Nb,Ir)O_2. • High surface area F doped (Nb,Ir)O_2 are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m"2/g) nanostructured powders of (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F (∼100 m"2/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb_2O_5 and 10 wt.% F doped Nb_2O_5 powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O_2 and 10 wt.% F doped (Nb,Ir)O_2 [(NbIr)O_2:10F] electro-catalysts by soaking in IrCl_4 followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F with ∼75 at.% reduction in noble metal content exhibited comparable OER activity to commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2

  9. Study of fluorine doped (Nb,Ir)O{sub 2} solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kadakia, Karan Sandeep [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Velikokhatnyi, Oleg I.; Datta, Moni Kanchan [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Patel, Prasad [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chung, Sung Jae [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Park, Sung Kyoo [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N. [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, PA 15217 (United States)

    2016-10-15

    Graphical abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of nominal composition (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb{sub 1−x}Ir{sub x})O{sub 2} with an optimal composition (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO{sub 2} and nanostructured in-house chemically synthesized IrO{sub 2}. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F exhibits superior electrochemical activity than pure IrO{sub 2}. • Stability of the (Nb,Ir)O{sub 2}:10F nanomaterials is comparable to pure (Nb,Ir)O{sub 2}. • High surface area F doped (Nb,Ir)O{sub 2} are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F (∼100 m{sup 2}/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb{sub 2}O{sub 5} and 10 wt.% F doped Nb{sub 2}O{sub 5} powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O{sub 2} and 10 wt.% F doped (Nb,Ir)O{sub 2} [(NbIr)O{sub 2}:10F] electro-catalysts by soaking in IrCl{sub 4} followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb{sub 0.75}Ir

  10. Isobutane alkylation over solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kozorezov, Y.I.; Lisin, V.I.

    1979-05-01

    Commercial alumina modified with 6Vertical Bar3< by wt boron trifluoride was active in isobutane alkylation with ethylene in a flow reactor at 5:1 isobutane-ethylene and 5-20 min reaction time. The reaction rate was first-order in ethylene and increased with increasing temperature (20/sup 0/-80/sup 0/C) and ethylene pressure (0.2-3 atm). The calculated activation energy was 8.4 kj. Kinetic data and the activity of tert.-butyl chloride, but not ethyl chloride as alkylating agents in place of ethylene suggested a carbonium-ion chain mechanism involving both surface and gas-phase reactions. The ethylene-based yield of the alkylate decreased from 132 to 41Vertical Bar3< by wt after nine hours on stream, and its bromine number increased from 0.2 to 1 g Br/sub 2//100 ml. This inhibition was attributed to adsorption on the active acidic sites of the reaction products, particularly C/sub 10//sup +/ olefins. Catalyst stabilization could probably be achieved by selecting an appropriate solvent that would continuously desorb the inhibiting products from the catalyst surface.

  11. Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Guoqing; Kusakabe, Katsuki; Yamasaki, Satoko [Department of Living Environmental Science, Fukuoka Women' s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529 (Japan)

    2009-04-15

    Transesterification of waste cooking oil with methanol, using tri-potassium phosphate as a solid catalyst, was investigated. Tri-potassium phosphate shows high catalytic properties for the transesterification reaction, compared to CaO and tri-sodium phosphate. Transesterification of waste cooking oil required approximately two times more solid catalyst than transesterification of sunflower oil. The fatty acid methyl ester (FAME) yield reached 97.3% when the transesterification was performed with a catalyst concentration of 4 wt.% at 60 C for 120 min. After regeneration of the used catalyst with aqueous KOH solution, the FAME yield recovered to 88%. Addition of a co-solvent changed the reaction state from three-phase to two-phase, but reduced the FAME yield, contrary to the results with homogeneous catalysts. The catalyst particles were easily agglomerated by the glycerol drops derived from the homogeneous liquid in the presence of co-solvents, reducing the catalytic activity. (author)

  12. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  13. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  14. Solid, double-metal cyanide catalysts for synthesis of ...

    Indian Academy of Sciences (India)

    Sci. Vol. 126, No. 2, March 2014, pp. 499–509. c Indian Academy of Sciences. Solid, double-metal cyanide catalysts for ... drimers, HPs have a highly branched structural design ... geneous catalysts and corrosion of the reactor lin- ... Carbon dioxide is a greenhouse gas. .... polymer product was reprecipitated from the liquid.

  15. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  16. Towards the computational design of solid catalysts

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Rossmeisl, Jan

    2009-01-01

    Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably...... with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts...

  17. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  18. Preparation of FexCe1-xOy solid solution and its application in Pd-only three-way catalysts

    Institute of Scientific and Technical Information of China (English)

    Jianqiang Wang; Meiqing Shen; Jun Wang; Mingshan Cui; Jidong Gao; Jie Ma; Shuangxi Liu

    2012-01-01

    FeOx-CeO2 mixed oxides with increasing Fe/(Ce+Fe) atomic ratio (1-20 mol%) were prepared by sol-gel method and characterized by X-ray powder diffraction (XRD),Brunauer-Emmett-Teller (BET) and Hydrogen temperature-programmed reduction (H2-TPR) techniques.The dynamic oxygen storage capacity (DOSC) was investigated by mass spectrometry with CO/O2 transient pulses.The powder XRD data following Rietveld refinement revealed that the solubility limit of iron oxides in the CeO2 was 5 mol% based on Fe/(Ce+Fe).The lattice parameters experienced a decrease followed by an increase due to the influence of the maximum solubility limit of iron oxides in the CeO2.TPR analysis revealed that Fe introduction into ceria strongly modified the textual and structural properties,which influenced the oxygen handling properties.DOSC results revealed that Ce-based materials containing Fe oxides with multiple valences contribute to the majority of DOSC.The kinetic analysis indicated that the calculated apparent kinetic parameters obey the compensation effect.The three-way catalytic performance for Pd-only catalysts based on the Fe doping support exhibited the redundant iron species separated out of the CeO2 and interacted with the ceria and Pd species on the surface,which seriously influenced the catalytic properties,especially after hydrothermal aging treatment.

  19. Design of porous nanostructured solid catalysts

    DEFF Research Database (Denmark)

    Abildstrøm, Jacob Oskar

    cells, as a mean to transform chemical as the main technique explained. The chapter will also cover degradation mechanisms of the catalyst employed in PEMFC, such as carbon corrosion and particle agglomeration. Strategies on how to increase resistance towards these degradation mechanisms...

  20. Used solid catalysts from chemical and petrochemical industries; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A comprehensive survey of the solid catalysts used in the chemical and petrochemical industries is presented; information on solid catalyst market demand prospective for 1998, the nature of solid catalysts used in the various industrial sectors and for the various chemical products production, the european catalysts manufacturers, solid catalyst poisons and inhibitors according to the various types of chemical reactions, mean compositions of used solid catalysts, an assessment of the volume of used solid catalysts generated by chemical and petrochemical industries, the various ways of solid catalyst regeneration and disposal, the potential for off-site regeneration of used catalysts, and French and European regulations, is presented

  1. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  2. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then

  3. Modified calcium oxide as stable solid base catalyst for Aldol

    Indian Academy of Sciences (India)

    A highly efficient and stable solid-base catalyst for Aldol condensation was prepared by modifying commercial CaO with benzyl bromide in a simple way. It was found that modified CaO can effectively catalyse the Aldol condensation of cyclohexanone and benzaldehyde, as well as various benzaldehydes, to produce ...

  4. Modified calcium oxide as stable solid base catalyst for Aldol ...

    Indian Academy of Sciences (India)

    A highly efficient and stable solid-base catalyst for Aldol condensation was ... was bonded on surface of CaO chemically and almost no Ca(OH)2 formed during the modification process. ... cation, corrosion and waste generation attract great.

  5. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  6. Starch saccharification by carbon-based solid acid catalyst

    Science.gov (United States)

    Yamaguchi, Daizo; Hara, Michikazu

    2010-06-01

    The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO 3H, COOH and OH groups, was investigated at 353-393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8-1.0 mL; starch, 0.3-0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.

  7. Aldol Condensation of Citral with Acetone on Basic Solid Catalysts

    Directory of Open Access Journals (Sweden)

    NODA C.

    1998-01-01

    Full Text Available The catalytic performance of solids with basic properties, such as CaO, MgO and hydrotalcites, was evaluated in the aldol condensation of citral and acetone, the first step in the synthesis of ionones from citral. The best results were obtained with CaO and hydrotalcite with high conversions (98% and selectivities (close to 70% for the main product observed for both of the catalyst. Such pseudoionone yields were greater than those reported in the literature for the homogeneous reaction.

  8. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    Science.gov (United States)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  9. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  10. Radionuclide solubility control by solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.; Klinkenberg, M.; Rozov, K.; Bosbach, D. [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6); Vinograd, V. [Frankfurt Univ. (Germany). Inst. of Geosciences

    2015-07-01

    The migration of radionuclides in the geosphere is to a large extend controlled by sorption processes onto minerals and colloids. On a molecular level, sorption phenomena involve surface complexation, ion exchange as well as solid solution formation. The formation of solid solutions leads to the structural incorporation of radionuclides in a host structure. Such solid solutions are ubiquitous in natural systems - most minerals in nature are atomistic mixtures of elements rather than pure compounds because their formation leads to a thermodynamically more stable situation compared to the formation of pure compounds. However, due to a lack of reliable data for the expected scenario at close-to equilibrium conditions, solid solution systems have so far not been considered in long-term safety assessments for nuclear waste repositories. In recent years, various solid-solution aqueous solution systems have been studied. Here we present state-of-the art results regarding the formation of (Ra,Ba)SO{sub 4} solid solutions. In some scenarios describing a waste repository system for spent nuclear fuel in crystalline rocks {sup 226}Ra dominates the radiological impact to the environment associated with the potential release of radionuclides from the repository in the future. The solubility of Ra in equilibrium with (Ra,Ba)SO{sub 4} is much lower than the one calculated with RaSO{sub 4} as solubility limiting phase. Especially, the available literature data for the interaction parameter W{sub BaRa}, which describes the non-ideality of the solid solution, vary by about one order of magnitude (Zhu, 2004; Curti et al., 2010). The final {sup 226}Ra concentration in this system is extremely sensitive to the amount of barite, the difference in the solubility products of the end-member phases, and the degree of non-ideality of the solid solution phase. Here, we have enhanced the fundamental understanding regarding (1) the thermodynamics of (Ra,Ba)SO{sub 4} solid solutions and (2) the

  11. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  12. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    Science.gov (United States)

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Use of solid-phase salt catalysts in furfural preparation

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, E.F.; Shkut, V.M.; Kebich, M.S.; Kuznetsova, T.A.

    1981-01-01

    The manufacture of furfural (I) from tanning waste, birch sawdust, or corncobs at 220-230 degrees in the presence of 2.0-3.0% double superphosphate, ammophos, (NH/sub 4/)/sub 2/SO/sub 4/, NH/sub 4/NO/sub 3/, or NH/sub 4/Cl was evaluated. Most of I is formed within 40 minutes in the presence of NH4NO3 or NH4Cl, and within 55 minutes in the presence of double superphosphate. The highest yield of I was obtained in the presence of NH4NO3 and/or NH4Cl. The solid-phase catalyst caused a little degradation of lignocellulose.

  14. Solid-soluted content of cerium in solid solution of sphene

    International Nuclear Information System (INIS)

    Zhao Wei; Teng Yuancheng; Li Yuxiang; Ren Xuetan; Huang Junjun

    2010-01-01

    The sphene solid solution was synthesized by solid-state method,with calcium carbonate, silica, titanium dioxide, cerium oxalate and alumina as raw materials. The solid-soluted content of cerium in sphene was researched by means of X-ray diffraction (XRD), backscattering scanning electron microscopy (BSE), energy dispersive spectroscopy (EDS) and so on. The influence of A l3+ ion introduction to sphene on the solid-soluted content of cerium in sphene solid solution was studied. The results indicate that when introducing Al 3+ to sphene as electrovalence compensation, Ce 4+ could be well solidified to Ca 1-x Ce x Ti 1-2x A l2x SiO 5 , and the solid-soluted content is approximately 12.61%. With no electrovalence compensation, Ce 4+ could be solidified to Ca 1-2x Ce x TiSiO 5 , and the solid-soluted content is approximately 10.98%. The appropriate synthesis temperature of sphene solid solution is 1 260 degree C.(authors)

  15. MESOPOROUS ACID SOLID AS A CARRIER FOR METALLOCENE CATALYST IN ETHYLENE POLYMERIZATION AND A CATALYST IN CATALYTIC DEGRADATION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Wen-xi Cheng; Li-ya Shi; Shi-yun Li; Hui Chen; Tao Tang

    2007-01-01

    The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene(PE)catalytic degradation was investigated.Here,HMCM-41 and AlMCM-41.and mesoporous silicoaluminophosphate molecular sieves(SAPO1 and SAPO2)were synthesized and used as acid solid.Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing.The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1.supported metallocene catalyst.This work shows a novel technology for chemical recycling of polyolefin.

  16. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  17. Preparation and Characterization of a Solid Acid Catalyst from Macro Fungi Residue for Methyl Palmitate Production

    Directory of Open Access Journals (Sweden)

    Min Wang

    2015-07-01

    Full Text Available During the process of fungal polysaccharide extraction for health care products and food factories, a large quantity of macro-fungi residues are produced, but most of the residues are abandoned and become environmental pollutants. A solid acid catalyst, prepared by sulfonating carbonized Phellinus igniarius residue, was shown to be an efficient and environmentally benign catalyst for the esterification of palmitate acid (PA and methanol. As a comparison, two types of common biomass catalysts, wheat straws and wood chips, were prepared. In this study, characterizations, including scanning electron microscopy, thermo-gravimetric analysis, Fourier transform infrared spectrometry, Brunauer-Emmett-Teller assays and elemental analysis, and reaction conditions for the synthesis of methyl palmitate (MP using solid acid catalysts were investigated. Experiments showed that the solid acid catalyst prepared from P. igniarius residue had a higher catalytic activity than the other two catalysts, and the highest yield of MP catalyzed by P. igniarius residue solid acid catalyst was 91.5% under the following optimum conditions: molar ratio of methanol/PA of 10:1, reaction temperature of 60 °C, mass ratio of catalyst/substrate of 2%, and a reaction time of 1.5 h. Thus, the use of this catalyst offers a method for producing MP.

  18. Review of the Production of Biodiesel from Waste Cooking Oil using Solid Catalysts

    Directory of Open Access Journals (Sweden)

    N.H. Said

    2015-06-01

    Full Text Available The need for fossil fuels and the emissions generated from these fuels are increasing daily. Researchers are concerned with global warming as well as climate change; and energy sustainability and material usages are important issues today. Waste cooking oil (WCO can be processed into biodiesel as an alternative fuel to replace diesel. Production of biodiesel using WCO as the feedstock has been of growing interest for the last two decades. A number of research papers related to the improvements in production, raw materials and catalyst selection have been published. This paper reviews the various types of heterogeneous solid catalyst in the production of biodiesel via the transesterification of WCO. The catalysts used can be classified according to their state presence in the transesterification reaction as homogeneous or heterogeneous catalysts. Homogeneous catalysts act in the same liquid phase as the reaction mixture, whereas heterogeneous catalysts act in a solid phase with the reaction mixture. Heterogeneous catalysts are non-corrosive, a green process and environmentally friendly. They can be recycled and used several times, thus offering a more economic pathway for biodiesel production. The advantages and drawbacks of these heterogeneous catalysts are presented. Future work focuses on the application of economically and environmentally friendly solid catalysts in the production of biodiesel using WCO as the raw material.

  19. Aerobic Oxidation of 5-(Hydroxymethyl)furfural in Ionic Liquids with Solid Ruthenium Hydroxide Catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim Johannes Bjarki; Eyjolfsdottir, Ester; Gorbanev, Yury

    2012-01-01

    The aerobic oxidation of 5-(hydroxymethyl)furfural was investigated over solid ruthenium hydroxide catalysts in ionic liquids at elevated temperatures and pressures. Several different catalyst supports were tested in combination with various ionic liquids. The best result was obtained in [EMIm...

  20. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    Science.gov (United States)

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants

    Directory of Open Access Journals (Sweden)

    D. Chaitanya Kumar Rao

    2016-08-01

    Full Text Available Nano-catalysts containing copper–cobalt oxides (Cu–Co–O have been synthesized by the citric acid (CA complexing method. Copper (II nitrate and Cobalt (II nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, CuCo-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of CuCo-I nano-catalyst.

  2. Solid acid zeolite catalysts for benzene/ ethylene alkylation reactions

    OpenAIRE

    2011-01-01

    Alkylation of benzene with ethylene to ethylbenzene is widely used in the petrochemical industry. Ethylbenzene is an important raw material in the petrochemical industry. It is used as feedstock for the production of styrene, an important material for plastic and rubber production.The conventional catalyst for this alkylation process is AlCl₃, which accounted for 24% of the worldwide ethylbenzene production in 2009.As utilization of this catalyst involves problems with separation, handling, s...

  3. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    Science.gov (United States)

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  4. Infrared absorption spectroscopy characterization of liquid-solid interfaces: The case of chiral modification of catalysts

    Science.gov (United States)

    Zaera, Francisco

    2018-03-01

    An overview is provided here of our work on the characterization of chiral modifiers for the bestowing of enantioselectivity to metal-based hydrogenation catalysts, with specific reference to the so-called Orito reaction. We start with a brief discussion of the use of infrared absorption spectroscopy (IR) for the characterization of chemical species at liquid-solid interfaces, describing the options available as well as the information that can be extracted from such experiments and the advantages and disadvantages associated with the technique. We then summarize the main results that we have reported to date from our IR study of the adsorption of cinchona alkaloids and related compounds from solutions onto platinum surfaces. Several observations are highlighted and placed in context in terms of the existing knowledge and their relevance to catalysis. Key conclusions include the uniqueness of the nature of the adsorbed species when in the presence of the solvent (versus when the uptake is done under vacuum, or versus the pure or dissolved molecules), the fact that each modifier adopts unique and distinct adsorption geometries on the surface and that those change with the concentration of the solution in ways that correlate well with the performance of the catalyst, the potential tendency of at least some of these chiral modifiers to bind to the surface primarily via the nitrogen atom of the amine group, not the aromatic ring as it is often assumed, and the observation that the ability of one modifier to dominate the catalytic chemistry in solutions containing mixtures of two or more of those is linked to their capacity for displacing each other from the surface, which in turn is determined by a balance between the strength of their binding to the surface and their solubility in the liquid solvent.

  5. Sodium phosphate as a solid catalyst for biodiesel preparation

    Directory of Open Access Journals (Sweden)

    S. T. Jiang

    2010-03-01

    Full Text Available Sodium phosphate (Na3PO4 was chosen as catalyst for biodiesel preparation from rapeseed oil. The effects of mass ratio of catalyst to oil, molar ratio of methanol to oil, reaction temperature and rotation speed on biodiesel yield were investigated. For a mass ratio of catalyst to oil of 3%, molar ratio of methanol to oil of 9:1, reaction temperature of 343K and rotation speed of 600rpm, the transesterification was nearly completed within 20 minutes. Na3PO4 has a similar activity to homogeneous catalysts. Na3PO4 could be used repeatedly for 8 runs without any activation treatment and no obvious activity loss was observed. The concentrations of catalyst in biodiesel ranged from 0.6 to 0.7 mg/g. Compared to Na3PO4, Na3PO4.10H2O was cheaper, but the final yield was 71.3%, much lower than that of Na3PO4 at 99.7%.

  6. Selective production of aromatics from alkylfurans over solid acid catalysts

    DEFF Research Database (Denmark)

    Wang, Dong; Dumesic, James A.; Osmundsen, Christian Mårup

    2013-01-01

    to deactivation by carbon deposition than do microporous materials. Results from Raman spectroscopy and the trend of turnover frequency with varying tungsten surface densities for a series of WOx-ZrO2 catalysts are consistent with previous investigations of other acid-catalyzed reactions; this suggests...

  7. Exceptionally Stable and Efficient Solid Supported Hoveyda-Type Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skowerski, K.; Pastva, J.; Czarnocki, S. J.; Janošcová, Jana

    2015-01-01

    Roč. 19, č. 7 (2015), s. 872-877 ISSN 1083-6160 Institutional support: RVO:61388955 Keywords : OLEFIN-METATHESIS CATALYSTS * RING-CLOSING METATHESIS * N-HETEROCYCLIC CARBENES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.922, year: 2015

  8. Uranothorite solid solutions: From synthesis to dissolution

    International Nuclear Information System (INIS)

    Costin, Dan-Tiberiu

    2012-01-01

    USiO 4 coffinite appears as one of the potential phases formed in the back-end of the alteration of spent fuel, in reducing storage conditions. A study aiming to assess the thermodynamic data associated with coffinite through an approach based on the preparation of Th 1-x U x SiO 4 uranothorite solid solutions was then developed during this work. First, the preparation of uranothorite samples was successfully undertaken in hydrothermal conditions. However, the poly-phased samples systematically formed for x ≥ 0,2 underlined the kinetic hindering linked with the preparation of uranium-enriched samples, including coffinite end-member. Nevertheless, the characterization of the various samples led to confirm the formation of an ideal solid solution and allowed the constitution of a spectroscopic database. The purification of the samples was then performed by the means of different protocols based on physical (dispersion-centrifugation) or chemical (selective dissolution of secondary phases) methods. This latter led to a complete of the impurities (Th 1-y U y O 2 mixed oxide and amorphous silica) through successive washing steps in acid then basic media. Finally, dissolution experiments were undertaken on uranothorite samples (0 ≤ xexp. ≤ 0,5) and allowed pointing out the influence of composition, pH and temperature on the normalized dissolution rate of the compounds. Also, the associated thermodynamic data, such as activation energy, indicate that the reaction is controlled by surface reactions. Once the equilibrium is reached, the analogous solubility constants were determined for each composition studied, then allowing the extrapolation to coffinite value. It was then finally possible to conclude on the inversion of coffinitisation reaction with temperature. (author) [fr

  9. Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

    International Nuclear Information System (INIS)

    Zhi, Chen; Dudu, Wu

    2012-01-01

    A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone via the abstraction of a proton in the α-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG

  10. Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Chen; Dudu, Wu [Guangdong Medical College, Dongguan (China)

    2012-06-15

    A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone via the abstraction of a proton in the {alpha}-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG

  11. Effect of the reaction medium on the properties of solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boreskov, G.K.

    1980-01-01

    The effect of the reaction medium on the properties of solid catalysts, such as bulk or supported metals, alloys, or metal oxides, include variations in surface composition, structure, and catalytic properties due to catalyst interaction with the reactants. This interaction leads to the establishment of a steady state, which is determined by the composition of the reaction medium and temperature, but is independent of the initial state of the catalyst. This steady state for a catalyst of a given chemical composition is characterized by an approximately constant specific activity in most chemical reactions, which is almost independent of the preparation method, surface area, or crystal size of the catalyst. The structurally sensitive reactions, which occur only on limited segments of catalyst surface characterized by specific structures, are the exception. The effects of the variations in catalytic properties caused by the reaction medium on the steady-state and nonsteady-state reaction kinetics are also discussed based on the results obtained for oxidative dehydrogenation of 1-butene over an iron/antimony oxide catalyst.

  12. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  13. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  14. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  15. Production of Biodiesel by Esterification of Free Fatty Acid over Solid Catalyst from Biomass Waste

    Science.gov (United States)

    Mukti, N. I. F.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Recently, low cost feedstocks have been utilized to replace vegetable oils in order to improve the economic feasibility of biodiesel. The esterification of free fatty acid (FFA) on Palm Fatty Acid Distillate (PFAD) with methanol using solid catalyst generated from bagasse fly ash is a promising method to convert FFA into biodiesel. In this research, the esterification of FFA on PFAD using the sulfonated bagasse fly ash catalyst was studied. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, and the catalyst loading. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimum conditions were methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%wt. of PFAD, and reaction temperature of 6°C. The reusability of the solid acid carbon catalysts was also studied in this work. The catalytic activity decreased up to 38% after third cycle. The significant decline in catalyst esterification activity was due to acid site leaching. The physico-characteristics and acid site densities were analyzed by Nitrogen gas adsorption, surface functional groups by Fourier transform infrared spectroscopy (FT-IR), elemental analysis using X-ray fluorescent (XRF), and acid-base back titration methods for determination of acid density.

  16. Rapid and Efficient Collection of Platinum from Karstedt's Catalyst Solution via Ligands-Exchange-Induced Assembly.

    Science.gov (United States)

    Yang, Gonghua; Wei, Yanlong; Huang, Zhenzhu; Hu, Jiwen; Liu, Guojun; Ou, Ming; Lin, Shudong; Tu, Yuanyuan

    2018-02-21

    Reported herein is a novel strategy for the rapid and efficient collection of platinum from Karstedt's catalyst solution. By taking advantage of a ligand-exchange reaction between alkynols and the 1,3-divinyltetramethyldisiloxane ligand (M Vi M Vi ) that coordinated with platinum (Pt(0)), the Karstedt's catalyst particles with a size of approximately 2.5 ± 0.7 nm could be reconstructed and assembled into larger particles with a size of 150 ± 35 nm due to the hydrogen bonding between the hydroxyl groups of the alkynol. In addition, because the silicone-soluble M Vi M Vi ligand of the Karstedt's catalyst was replaced by water-soluble alkynol ligands, the resultant large particles were readily dispersed in water, resulting in rapid, efficient, and complete collection of platinum from the Karstedt's catalyst solutions with platinum concentrations in the range from ∼20 000 to 0.05 ppm. Our current strategy not only was used for the rapid and efficient collection of platinum from the Karstedt's catalyst solutions, but it also enabled the precise evaluation of the platinum content in the Karstedt's catalysts, even if this platinum content was extremely low (i.e., 0.05 ppm). Moreover, these platinum specimens that were efficiently collected from the Karstedt's catalyst solutions could be directly used for the evaluation of platinum without the need for pretreatment processes, such as calcination and digestion with hydrofluoric acid, that were traditionally used prior to testing via inductively coupled plasma mass spectrometry in conventional methods.

  17. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  18. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  19. Solid Silica-based Sulphonic Acid as an Efficient Green Catalyst for ...

    African Journals Online (AJOL)

    NJD

    Solid Silica-based Sulphonic Acid as an Efficient Green. Catalyst for the Selective Oxidation of Sulphides to. Sulphoxides using NaCIO in Aqueous Media. Ali Amoozadeh* and Firouzeh Nemati. Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran. Received 21 October 2008, revised 6 December ...

  20. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2017-01-01

    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  1. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, Richard; Martin, Georges.

    1978-01-01

    The stability of various types of solid solutions under irradiation is studied. In this paper, observations made on AlZn solid solutions under 1 MeV electron irradiation are reported. Al-Zn was chosen as a prototype of solid solutions with a simple miscibility gap. It is shown that under appropriate irradiation conditions undersaturated AnZn solid solutions give rise to a homogeneous precipitation of coherent G.P. zones and of incoherent Zn precipitates the atomic volume of which is smaller than that of the matrix. We propose a more general treatment of solute concentration heterogeneities in solid solutions under irradiation and suggest how it might account for the nucleation of the observed phases. The growth of the observed precipitates is studied

  2. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  3. Isobutane/butene alkylation on solid catalysts. Where do we stand?

    Energy Technology Data Exchange (ETDEWEB)

    Weitkamp, J.; Traa, Y. [Institute of Chemical Technology I, University of Stuttgart, D-70550 Stuttgart (Germany)

    1999-02-24

    Liquid-phase processes with concentrated sulfuric acid or hydrogen fluoride as catalysts are currently being used in petroleum refining for the manufacture of alkylation gasoline from isobutane and butenes. While the product, i.e., alkylate, is a most valuable gasoline component, the existing processes for its manufacture are less satisfactory. Replacement of the liquid catalysts by a solid acid is an important target of modern research. In the past two decades, a large number of solid acids have been scrutinized, and at least four developments were driven till the pilot plant stage. In this paper, an attempt is made to rationalize, on a mechanistic basis, the selectivity loss almost always encountered with solid acids after relatively short times-on-stream. Suggestions are made concerning a more target-oriented research on isobutane/alkene alkylation in the future

  4. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  5. Palm Frond and Spikelet as Environmentally Benign Alternative Solid Acid Catalysts for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Yahaya Muhammad Sani

    2015-04-01

    Full Text Available A carbonization-sulfonation method was utilized in synthesizing sulfonated mesoporous catalysts from palm tree biomass. Brunauer-Emmet-Teller (BET, powder X-ray diffraction (XRD, energy dispersive X-ray (EDX, and field emission scanning emission microscopy (FE-SEM analyses were used to evaluate the structural and textural properties of the catalysts. Further, Fourier transform infrared (FT-IR spectroscopy and titrimetric analyses measured the strong acid value and acidity distribution of the materials. These analyses indicated that the catalysts had large mesopore volume, large surface area, uniform pore size, and high acid density. The catalytic activity exhibited by esterifying used frying oil (UFO containing high (48% free fatty acid (FFA content further indicated these properties. All catalysts exhibited high activity, with sPTS/400 converting more than 98% FFA into fatty acid methyl esters (FAMEs. The catalyst exhibited the highest acid density, 1.2974 mmol/g, determined by NaOH titration. This is outstanding considering the lower reaction parameters of 5 h, 5:1 methanol-to-oil ratio, and a moderate temperature range between 100 and 200 °C. The study further illustrates the prospect of converting wastes into highly efficient, benign, and recyclable solid acid catalysts.

  6. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2018-03-01

    Full Text Available A series of MgAl-layered double hydroxide (MgAl-HT, the calcined form at 500 °C (MgAlOx, and the rehydrated one at 25 °C (MgAl-HT-RH were synthesized. Physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Surface area of the as-synthesized, calcined, and rehydrated catalysts was determined by N2 physisorption at −196 °C. CO2 temperature-programmed desorption (CO2-TPD was applied to determine the basic sites of catalysts. The catalytic test reaction was carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. The Henry products (1–15 were obtained in a very good yield using MgAl-HT-RH catalyst either by conventional method at 90 °C in liquid phase or under microwave irradiation method. The mesoporous structure and basic nature of the rehydrated solid catalyst were responsible for its superior catalytic efficiency. The robust nature was determined by using the same catalyst five times, where the product % yield was almost unchanged significantly.

  7. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Science.gov (United States)

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. New materials for biodiesel production. The use of MgAl hydrotalcites solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Joao F.P.; Puna, Jaime F.B.; Goncalves, L. [Instituto Superior de Engenharia de Lisboa (ISEL), Lisboa (Portugal). Chemical Engineering Dept.; Bordado, Joao C. [Instituto Superior Tecnico (IST), Lisboa (Portugal). Inst. of Biotechnology and Bioengineering

    2010-07-01

    This work, reports preliminary studies and experimental work done so far in this field, using new solid basic catalysts: Double oxides of Mg and Al, produced by the calcination, at high temperature, of MgAl lamellar structures, the hidrotalcites. A brief introduction of its characterization, utilisation and synthesis of these catalysts, experimental conditions, experimental results and respective conclusions are described, here, with specific detail. The oil treatment procedure, the biodiesel production and purification processes and their respective morphological and textural characterizations are also described, with appropriate tables and figures, using, for instance, SEM, X-Ray Diffraction, Thermo gravimetric analysis (TG) and Middle Infrared Spectroscopy (MIR). (orig.)

  9. Catalytic esterification via silica immobilized p-phenylenediamine and dithiooxamide solid catalysts

    Directory of Open Access Journals (Sweden)

    Thana Jaafar Al-Hasani

    2017-02-01

    Full Text Available The p-phenylenediamine (PDA and dithiooxamide (DTO were immobilized onto silica from rice husk ash (RHA using 3-chloropropyltriethoxyilane (CPTES to form a solid catalyst denoted as RHAPDA and RHADTO, respectively. BET measurements of the catalysts showed the surface area to be 145 and 9.7 m2 g−1 with an average pore diameter of 9.8 and 10.9 nm, respectively. The catalytic performance of RHAPDA and RHADTO was tested in the esterification of ethyl alcohol with acetic acid. A conversion of 48% and 69% was achieved, respectively with 100% selectivity toward ethyl acetate.

  10. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  11. Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication.

    Science.gov (United States)

    Takase, Mohammed; Chen, Yao; Liu, Hongyang; Zhao, Ting; Yang, Liuqing; Wu, Xiangyang

    2014-09-01

    The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  13. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Mao, E-mail: hungcm1031@gmail.com [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h{sup -1}.

  14. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    International Nuclear Information System (INIS)

    Hung, Chang-Mao

    2009-01-01

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h -1 .

  15. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  16. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2010-01-01

    In the search of an alternative fuel to substitute diesel fuel, biodiesel appears as one of the most promising sources of energy for diesel engines because of its environmental advantages and also due to the evolution of the petroleum market. Refined oil is the conventional raw material for the production of this biofuel; however, its major disadvantage is the high cost of its production. Therefore, frying oils, waste oils, crude oils and/or acid oils are being tested as alternative raw materials; nevertheless, there will be some problems if a homogeneous basic catalyst (NaOH) is employed due to the high amount of free fatty acid present in the raw oil. In this work, the transesterification reaction of acid oil using solid resin, Dowex monosphere 550 A, was studied as an alternative process. Ethanol was employed to have a natural and sustainable final product. The reaction temperature's effects, the initial amount of free fatty acid, the molar ratio of alcohol/oil and the type of catalyst (homogeneous or heterogeneous) over the main reaction are analyzed and their effects compared. The results obtained show that the solid resin is an alternative catalyst to be used to produce fatty acid ethyl esters (FAEEs) by a transesterification reaction with a final conversion over 90%. On the other hand, the time required to achieve this conversion is bigger than the one required using conventional technology which employs a homogeneous basic catalyst. This reaction time needs to be optimized. (author)

  17. Synthesis of solid catalyst from egg shell waste and clay for biodiesel production

    Science.gov (United States)

    Setiadji, S.; Sundari, C. D. D.; Munir, M.; Fitriyah, S.

    2018-05-01

    Until now, energy consumption in Indonesia is almost entirely fulfilled by fossil fuels, thus, its availability will be limited and continue to decrease. To overcome these problems, development and utilization of renewable energy are required, one of which is biodiesel. Biodiesel can be prepared through transesterification reaction of vegetable oil using catalyst. In this research, a solid catalyst for biodiesel synthesis was prepared from chicken egg shell waste and clay. Optimization of the transesterification reaction of coconut (Cocos nucifera) oil to obtain biodiesel was also carried out. The formation of CaO/kaolin catalyst was confirmed based on the results of XRD and SEM-EDS. This catalyst is suitable for biodiesel synthesis from vegetable oils with lower FFA (free fatty acid) levels, i.e. coconut oil with FFA level of 0.18%. Based on FTIR result, FFA level and flame tests, it was found that biodiesel was successfully formed. Synthesis of biodiesel has the optimum conditions on reaction time of 16 hours and temperature of 64 °C, with oil: methanol ratio of 1: 15 and CaO/kaolin catalyst concentration of 0.9% in a reflux system.

  18. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  19. SOLISOL-handling of solid solutions. Version 1.1

    International Nuclear Information System (INIS)

    Boerjesson, S.; Emren, A.

    1992-09-01

    SOLISOL is a C computer program designed to model geochemical reactions involving solid solutions. The program searches equilibrium concentrations of the components in the aqueous phase and the solid solution given by limited quantities of the solid solution components. The equilibrium code PHREEQE is used as a subprogram in SOLISOL. Subprograms external to PHREEQE extract information from PHREEQE results, take care of conserved properties, calculate solubilities and produce inputdata for PHREEQE. The essential idea in this process is to calculate solubilities for the components in terms of saturation indices, and give directions to PHREEQE on how to search for the equilibrium under those constraints. (au)

  20. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    Science.gov (United States)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  1. Nature of the activates places of the acid solid catalysts of the sulphated metallic oxides type

    International Nuclear Information System (INIS)

    Gomez, Miguel A; Fontalvo Javier

    1998-01-01

    In this revision the state of the knowledge is presented with respect to the understanding of the nature of the active places for the strongly acid solid catalysts of the type sulphated metallic oxides. The results presented by means of models are based on the characterization of the properties physicochemical carried out by means of technical as XPS, to GO, NMR etc., and the evaluation of the catalytic activity in different applications

  2. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Wan, Zuraida; Hameed, B.H.

    2014-01-01

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO 2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO 2 good potentials for use in esterification of high acid value oil

  3. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    Science.gov (United States)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-03-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  4. Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2006-12-01

    Full Text Available Methanol oxidation in acid solution was studied at platinum single crystals, Pt(hkl, as the model catalyst, and at nanostructural platinum supported on high surface area carbon, Pt/C, as the real catalyst. The linear extrapolation method was used to determine the beginning of hydroxyl anion adsorption. Structural sensitivity of the adsorption was proved and a correlation with the onset of the methanol oxidation current was established at all catalysts. Bisulfate and chloride anions were found to decrease the methanol oxidation rate, but probably did not influence the reaction parth. The specific activity for the reaction increased in the sequence Pt(110 < Pt/C < Pt(111, suggesting that the activity of the supported Pt catalyst can be correlated with the activities of the dominating crystal planes on its surface.

  5. Production of Catalyst-Free Hyperpolarised Ethanol Aqueous Solution via Heterogeneous Hydrogenation with Parahydrogen

    Science.gov (United States)

    Salnikov, Oleg G.; Kovtunov, Kirill V.; Koptyug, Igor V.

    2015-09-01

    An experimental approach for the production of catalyst-free hyperpolarised ethanol solution in water via heterogeneous hydrogenation of vinyl acetate with parahydrogen and the subsequent hydrolysis of ethyl acetate was demonstrated. For an efficient hydrogenation, liquid vinyl acetate was transferred to the gas phase by parahydrogen bubbling and almost completely converted to ethyl acetate with Rh/TiO2 catalyst. Subsequent dissolution of ethyl acetate gas in water containing OH- ions led to the formation of catalyst- and organic solvent-free hyperpolarised ethanol and sodium acetate. These results represent the first demonstration of catalyst- and organic solvent-free hyperpolarised ethanol production achieved by heterogeneous hydrogenation of vinyl acetate vapour with parahydrogen and the subsequent ethyl acetate hydrolysis.

  6. Low temperature kinetics of In-Cd solid solution decomposition

    Czech Academy of Sciences Publication Activity Database

    Pal-Val, P.P.; Pal-Val, L.N.; Ostapovets, A.A.; Vaněk, Přemysl

    2008-01-01

    Roč. 137, - (2008), s. 35-42 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z10100520 Keywords : low temperatures * In-based alloys * solid solutions * isothermal structure instability * Young's modulus * electrical resistivity * phase diagrams Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scientific.net/3-908451-53-1/35/

  7. Synthesis and characterization of type solid solution in the binary ...

    Indian Academy of Sciences (India)

    We have investigated Bi2O3–Eu2O3 binary system by doping with Eu2O3 in the composition range from 1 to 10 mole% via solid state reactions and succeeded to stabilize -Bi2O3 ... Our experimental observations strongly suggested that oxygen deficiency type non-stoichiometry is present in doped type solid solutions.

  8. The thermodynamics and kinetics of interstitial solid solutions

    International Nuclear Information System (INIS)

    Silva, J.R.G. da.

    1976-04-01

    Studies of hydrogen metal systems where the hidrogen is disolved in a solid solution are presented. Particular items of interest are: the thermodynamics of the hydrogen-iron system; the solubility of hidrogen in super pure iron single crytals; the thermodinamic functions of hydrogen in solid solutions of Nb, Ta and V; and the solubility of hydrogen in α-manganese. The diffusion of carbon and nitrogen in BCC iron is also studied

  9. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  10. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  11. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    International Nuclear Information System (INIS)

    Xu, Dongyan; Ma, Hong; Cheng, Fei

    2014-01-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity

  12. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  13. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solutionSolid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  14. Experimental investigation of attrition resistance of zeolite catalysts in two particle gas-solid-solid fluidization system

    International Nuclear Information System (INIS)

    Nawaz, Z.; Ziaoping, T.; Shu, Q.; Wei, F.; Naveed, S.

    2010-01-01

    In the study of mechanical degradation of 34 ZSM-5 and SAPO catalysts, using the gas jet attrition - ASTM standard fluidized bed test (D-5757), the effect of particle size and its quantitative analysis in co-fluidization environment was investigated on the air jet index (AJI) basis. In gas-solid-solid fluidized bed reactors (GSS-FBR), two different sized particles were fluidized under isothermal conditions. In case of ZSM-5 and SAPO-34, significant attrition resistance was observed, which was attributed to small pore size and specific structural strength of the mobile framework image (MFI) and chabasite (CHA) structures, respectively. The optimum AJI for SAPO-34 and ZSM-5 (of particle size 0.2 mm) in GSS-fluidization system was observed to be 0.0118 and 0.0062, respectively. In co-fluidization, deviations from Gwyn relationship were observed due to change in impact of collision. Therefore, zeolites are recommended as suitable catalysts or catalytic supports (for doping of expensive metals) and for commercial use in GSS-FBR. (author)

  15. The international symposium on 'chemical engineering of gas-liquid-solid catalyst reactions'

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H

    1978-06-01

    A report on the International Symposium on ''Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions'', sponsored by the University of Liege (3/2-3/78), covers papers on the hydrodynamics, modeling and simulation, operating behavior, and chemical kinetics of trickle-bed reactors; scale-up of a trickle-bed reactor for hydrotreating Kuwait vacuum distillate; experimental results obtained in trickle-bed reactors for hydroprocessing atmospheric residua, hydrogenation of methylstyrene, hydrogenation of butanone, and hydrodemetallization of petroleum residua; advantages and disadvantages of various three-phase reactor types (e.g., for the liquid-phase hydrogenation of carbon monoxide to benzene, SNG, or methanol) and hydrodynamics, mass and heat transfer, and modeling of bubble columns with suspended catalysts (slurry reactors), and their applications (e.g., in SNG and fermentation processes).

  16. One-step production of biodiesel from Nannochloropsis sp. on solid base Mg-Zr catalyst

    International Nuclear Information System (INIS)

    Li, Yuesong; Lian, Shuang; Tong, Dongmei; Song, Ruili; Yang, Wenyan; Fan, Yong; Qing, Renwei; Hu, Changwei

    2011-01-01

    Nannochloropsis sp., one kind of green microalgae cultivated autotrophically and axenically in laboratory, is used as raw material to produce biodiesel by one-step method in an amended reactor. The effects of several reaction parameters on transesterification over Mg-Zr solid base catalyst were investigated through both conventional method and one-step method. One-step method could give a higher yield of methyl ester than conventional two-step method, which demonstrates that the present one-step method is suitable for biodiesel production from the microalgae Nannochloropsis sp. Moreover, the present one-step method realizes the convenient in situ separation of catalyst from microalgae residue which can be easily used consequently, reducing the procedure units as well as the overall costs.

  17. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A; Briand, Y

    1997-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  18. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A.; Briand, Y.

    1996-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  19. Direct and indirect effects of radiation on polar solid solutions

    International Nuclear Information System (INIS)

    Ershov, V.G.; Gaponova, I.S.

    1982-01-01

    Radiation-chemical decomposition of a solute is due to the direct effect of ionizing radiation on it and also to its reaction with radical-ion products of radiolysis of the solution. At low temperature, the movement of the reagents is limited, and thus it is possible to isolate and evaluate the contribution of direct and indirect effects of radiation on the solute. The present paper is devoted to an investigation of the mechanism of formation of radicals from a solute (LiNO 2 ) in a polar solid solution (CH 3 OH) under the effect of γ-radiation

  20. Patterned forests of vertically-aligned multiwalled carbon nanotubes using metal salt catalyst solutions.

    Science.gov (United States)

    Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J

    2013-01-01

    A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.

  1. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  2. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst

    International Nuclear Information System (INIS)

    Zhang, Zhi-bo; Lu, Qiang; Ye, Xiao-ning; Li, Wen-tao; Hu, Bin; Dong, Chang-qing

    2015-01-01

    Highlights: • Phenolic-rich bio-oil was selectively produced from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. • The actual yield of twelve major phenolic compounds reached 43.9 mg/g. • The peak area% of all phenolics reached 68.5% at the catalyst-to-biomass ratio of 7. • The potassium phosphate/ferroferric oxide catalyst possessed promising recycling properties. - Abstract: A magnetic solid base catalyst (potassium phosphate/ferroferric oxide) was prepared and used for catalytic fast pyrolysis of poplar wood to selectively produce phenolic-rich bio-oil. Pyrolysis–gas chromatography/mass spectrometry experiments were conducted to investigate the effects of pyrolysis temperature and catalyst-to-biomass ratio on the product distribution. The actual yields of important pyrolytic products were quantitatively determined by the external standard method. Moreover, recycling experiments were performed to determine the re-utilization abilities of the catalyst. The results showed that the catalyst exhibited promising activity to selectively produce phenolic-rich bio-oil, due to its capability of promoting the decomposition of lignin to generate phenolic compounds and meanwhile inhibiting the devolatilization of holocellulose. The maximal phenolic yield was obtained at the pyrolysis temperature of 400 °C and catalyst-to-biomass ratio of 2. The concentration of the phenolic compounds increased monotonically along with the increasing of the catalyst-to-biomass ratio, with the peak area% value increasing from 28.1% in the non-catalytic process to as high as 68.5% at the catalyst-to-biomass ratio of 7. The maximal total actual yield of twelve quantified major phenolic compounds was 43.9 mg/g, compared with the value of 29.0 mg/g in the non-catalytic process. In addition, the catalyst could be easily recovered and possessed promising recycling properties.

  3. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    Science.gov (United States)

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  4. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production

    Science.gov (United States)

    Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.

    2018-05-01

    Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.

  5. Solute redistribution in dendritic solidification with diffusion in the solid

    Science.gov (United States)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  6. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  7. Solid phosphoric acid oligomerisation: Manipulating diesel selectivity by controlling catalyst hydration

    International Nuclear Information System (INIS)

    Prinsloo, Nicolaas M.

    2006-01-01

    Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer-Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99-110% H 3 PO 4 , a temperature range of 140-230 o C and using C 3 -C 6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H 3 PO 4 , H 4 P 2 O 7 and H 5 P 3 O 10 . For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H 3 PO 4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration. (author)

  8. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  9. Towards long-term stable solid state electrolyzers with infiltrated catalysts

    DEFF Research Database (Denmark)

    Ovtar, Simona; Chen, Ming; Brodersen, Karen

    conventional power plants or fuel cells. Key challenges for a successful commercialization of solid oxide electrolyzers are up scale it, reduce cost and improve durability. Therefore, large efforts are allocated to improve cell performance. As a relatively novel method to introduce electro......Renewable energy sources like wind and solar are widely considered as the key technologies to cover our growing demands. However, the fluctuating nature of these sources requires a flexible energy system and storage technologies to ensure that energy supply can be covered in a stable and affordable......-catalysts into the porous structure of the electrodes, infiltration has shown very efficient. Solid oxide cells with infiltrated electrodes have been reported to show improved performance compared to conventional cells [1]. In this study, the development of infiltration procedures to improve the stability and catalytic...

  10. An alternative preparation method for ion exchanged catalysts: Solid state redox reaction

    DEFF Research Database (Denmark)

    Schneider, E.; Hagen, A.; Grunwaldt, J.-D.

    2004-01-01

    A new method for modifying zeolites with zinc is proposed. The solid state redox reaction between metallic zinc and ZSM-5 zeolites with different Si/Al ratios was investigated by temperature programmed hydrogen evolution (TPHE), X-ray absorption near edge structure (XANES) and diffuse reflectance...... infrared Fourier transform spectroscopy (DRIFTS). The evolution of hydrogen was detected at temperatures above 620 K. The source of hydrogen was the solid state redox reaction of the metal with protons of the support. The samples exhibit catalytic activity in ethane aromatization indicating that zinc...... should be located at the same sites as in catalysts prepared by conventional methods. Combination of XANES and catalytic activity point to zinc being mainly present in tetrahedral geometry under reaction conditions....

  11. Structure and high-piezoelectricity in lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, B.

    2002-01-01

    A review of the recent advances in the understanding of piezoelectricity in lead oxide solid solutions is presented, giving special attention to the structural aspects. It has now become clear that the very high electromechanical response in these materials is directly related to the existence of

  12. Phase segregation in cerium-lanthanum solid solutions

    NARCIS (Netherlands)

    Belliere, V.; Joorst, G; Stephan, O; de Groot, FMF; Weckhuysen, BM

    2006-01-01

    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy ( STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a

  13. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements...

  14. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  15. Enhanced catalytic performance of Pd catalyst for formic acid electrooxidation in ionic liquid aqueous solution

    Science.gov (United States)

    Feng, Yuan-Yuan; Yin, Qian-Ying; Lu, Guo-Ping; Yang, Hai-Fang; Zhu, Xiao; Kong, De-Sheng; You, Jin-Mao

    2014-12-01

    A protic ionic liquid (IL), n-butylammonium nitrate (N4NO3), is prepared and employed as the electrolyte for formic acid electrooxidation reaction (FAOR) on Pd catalysts. The oxidation peak potential of FAOR in the IL solution shows about a 200 mV negative shift as compared with those in traditional H2SO4/HClO4 electrolytes, suggesting that FAOR can be more easily carried out on Pd catalysts in IL media. The catalytic properties of Pd toward FAOR are not only dependent on the concentration of IL, as a consequence of the varied electronic conductivity of the IL solution, but also on the high potential limit of the cyclic voltammograms. When the Pd catalyst is cycled up to 1.0 V (vs. SCE), which induces a significant oxidation of Pd, it shows ca. 4.0 times higher activity than that not subjected to the Pd oxidation (up to 0.6 V). The Pd oxides, which are more easily formed in IL solution than in traditional H2SO4/HClO4 electrolytes, may play a crucial role in increasing the catalytic activities of Pd toward FAOR. Our work would shed new light on the mechanism of FAOR and highlight the potential applications of IL as green and environment-friendly electrolytes in fuel cells and other technologies.

  16. Hydrothermal crystallization of zirconia and zirconia solid solutions

    International Nuclear Information System (INIS)

    Pyda, W.; Haberko, K.; Bucko, M.M.

    1991-01-01

    Zirconia as well as yttria-zirconia and calcia-zirconia solid-solution powders were crystallized under hydrothermal conditions from (co)precipitated hydroxides. The morphology of the power particles is strongly dependent on the crystallization conditions. The powders crystallized in a water solution of Na, K, and Li hydroxides show elongated particles of much larger sizes than those which result from the process carried out in pure water or a water solution of Na, K, or Li chlorides. The shapes of the latter particles are isometric. In this paper the growth mechanism of the elongated particles is suggested

  17. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  18. Dislocation cross-slip in fcc solid solution alloys

    International Nuclear Information System (INIS)

    Nöhring, Wolfram Georg; Curtin, W.A.

    2017-01-01

    Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. Here, the cross-slip transition path in solid solutions is calculated using atomistic methods for three representative systems of Ni-Al, Cu-Ni and Al-Mg over a range of solute concentrations. Studies using both true random alloys and their corresponding average-alloy counterparts allow for the independent assessment of the roles of (i) fluctuations in the spatial solute distribution in the true random alloy randomness and (ii) average alloy properties such as stacking fault energy. The results show that the solute fluctuations dominate the activation energy barrier, i.e. there are large sample-to-sample variations around the average activation barrier. The variations in activation barrier correlate linearly with the energy difference between the initial and final states. The distribution of this energy difference can be computed analytically in terms of the solute/dislocation interaction energies. Thus, the distribution of cross-slip activation energies can be accurately determined from a parameter-free analytic model. The implications of the statistical distribution of activation energies on the rate of cross-slip in real alloys are then identified.

  19. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  20. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Lopez Granados, Manuel; Riisager, Anders

    2015-01-01

    This review is aimed to be a brief tutorial covering the deactivation of solid catalysts in the liquid phase, with specific focus on leaching, which can be especially helpful to researchers not familiarized with catalytic processes in the liquid phase. Leaching refers to the loss of active species....... However, as a consequence of the development of new processes for biorefineries, an increasing number of reactions deal with liquid media, and thus, the stability and reusability of a solid catalyst in this situation represent a huge challenge that requires specific attention. Leaching of active phases...... is particularly problematic because of its irreversibility and it can be one of the main causes of catalyst deactivation in liquid media, threatening the sustainability of the process. This tutorial review presents a survey of the main aspects concerning the deactivation due to leaching of active species from...

  1. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  2. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  3. Magnetic clusters in ilmenite-hematite solid solutions

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Burton, B. P.; Rasmussen, Helge Kildahl

    2010-01-01

    We report the use of high-field 57Fe Mössbauer spectroscopy to resolve the magnetic ordering of ilmenite-hematite [xFeTiO3−(1−x)Fe2O3] solid solutions with x>0.5. We find that nanometer-sized hematite clusters exist within an ilmenite-like matrix. Although both phases are antiferromagnetically...

  4. X-Ray Characterization of Non-Equilibrium Solid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Rosdahl, Oe

    1975-07-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kalpha{sub 2} radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  5. X-Ray Characterization of Non-Equilibrium Solid Solutions

    International Nuclear Information System (INIS)

    Brown, A.; Rosdahl, Oe.

    1975-01-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kα 2 radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  6. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    Science.gov (United States)

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Utilization of eggshell waste as low-cost solid base catalyst for biodiesel production from used cooking oil

    Science.gov (United States)

    Asri, N. P.; Podjojono, B.; Fujiani, R.; Nuraini

    2017-05-01

    A solid CaO-based catalyst of waste eggshell was developed for biodiesel production from used cooking oil. The waste eggshell powder was calcined in air at 90° C for 4 h to convert calcium species in the eggshells into active CaO catalysts. The characterization of CaO catalyst was done by XRD and BET analysis. The CaO catalyst was then introduced for transesterification of used cooking oil (UCO) for testing of its catalytic activity. The experiment was conducted in batch type reactor that consists of three-neck glass equipped by reflux condenser and magnetic stirrer. Before tranesterification process, the UCO was treated by coconut coir powder in order to reduce the free fatty acid content. The result showed that the catalyst was potentially use for transesterification of used cooking oil into biodiesel with relatively high yield of 75.92% was achieved at reaction temperature, reaction time, molar ratio UCO to methanol and catalyst amount of 65° C, 7 h, 1:15 and 6%, respectively.

  8. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    Science.gov (United States)

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst

    International Nuclear Information System (INIS)

    Poosumas, Jutipong; Ngaosuwan, Kanokwan; Quitain, Armando T.; Assabumrungrat, Suttichai

    2016-01-01

    Highlights: • Transesterification of palm oil using a circulated continuous flow ultrasonic reactor. • Heterogeneous system using CaO as catalyst. • Effects of ultrasonic frequency and power, and catalyst reusability were considered. • A single high frequency and high intensity irradiation is favorable for heterogeneous system. - Abstract: Biodiesel production from transesterification of palm oil using a circulated continuous flow ultrasonic reactor was investigated. Transesterification was carried out at 60 °C, 1 atm and a methanol-to-oil molar ratio of 9:1. The highest reaction rate was achieved at the catalyst loading of 2 wt%, and biodiesel yield constantly increased until transesterification equilibrium (about 80%) was reached. A higher ultrasonic frequency (50 kHz) promoted the heterogeneously catalyzed transesterification of refined palm oil, because the three-phase system (packed solid catalyst, methanol and oil) required more spatial distribution by ultrasonic irradiation. Moreover, the highest ultrasonic power also provided highest transesterification rate and biodiesel yield due to cavitation activity enhancement. Reusability of calcium oxide catalysts was also investigated, and results showed that this can be reused to provide high biodiesel yield for at least three operations with slight decrease in the rate of reaction due to counter balance effect of organic compounds deposition on the catalyst surface. The results from this study can be a basis for scaling up of the process to industrial scale.

  10. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  11. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    Science.gov (United States)

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Synthesis and characterization of solid solutions in ABCO 4 system

    Science.gov (United States)

    Novoselov, A.; Zimina, G.; Komissarova, L.; Pajaczkowska, A.

    2006-01-01

    Formation of continuous solid solutions with a tetragonal structure of K 2NiF 4-type was investigated by direct solid-state synthesis, carbonate precipitations, the freeze-drying method and the Czochralski crystal growth technique. In the systems of SrLaAlO 4-CaLaAlO 4, SrNdAlO 4-CaNdAlO 4, SrPrAlO 4-CaPrAlO 4, SrLaAlO 4-SrLaGaO 4 and SrLaAlO 4-SrLaFeO 4 solid solutions are formed in the whole concentration range (0.0⩽ x⩽1.0) and in the systems of SrLaAlO 4-SrLaMnO 4 and SrLaAlO 4-SrLaCrO 4 in the limited compositional interval of (0.0⩽ x⩽0.20) and (0.0⩽ x⩽0.25), respectively, with composition dependency of lattice constants following Vegard's law.

  13. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  14. Thorium-d-metals compounds and solid solutions

    International Nuclear Information System (INIS)

    Chachkhiani, Z.B.; Chechernikov, V.I.; Chachkhiani, L.G.

    1986-01-01

    Thorium compounds with Fe, Co, Ni dependence of their magnetic properties on temperature, pressure and concentration of the second element are considered. Anomalous magnetic behaviour of alloys in the Th-Fe system is noted. Special attention is paid to compounds with CaCu 5 type hexagonal structure and their solid solutions. Th-Co-Ni specimens containing up to 25% Ni are ferromagnetics and the rest are paramagnetics. Specimens with 60% cobalt content do not display ferromagnetic properties up to 4.2 K. Hydrides of Th 7 M 3 H 30 type (M - Fe, Co, Ni) are also considered. Highly hydrogenized specimens (under high pressure) appear to be stronger ferromagnetics

  15. Np(V) carbonates in solid state and aqueous solution

    International Nuclear Information System (INIS)

    Meinrath, G.

    1994-01-01

    The solubility of NaNpO 2 CO 3 (s) in 0.1M perchlorate solution at 25 deg C in equilibrium with 1.0% CO 2 /N 2 atmosphere has been investigated as a function of pH/lg [CO 3 2- ]. The solid phase was found hexagonal with a=1008.1±0.3 pm and c=991.1±0.2 pm. A solubility product of lg Ksp(NaNpO 2 CO 3 ) = -10.22±0.02 and a formation constant of the first Np(V) carbonato species of lg β 01 = 4.52±0.02 was evaluated. For the dicarbonato species an upper limit of lg lg β 02 2 partial pressure gave evidence that carbonato species are prevailing in solutions at both 1% and 0.03% CO 2 partial pressures. (author) 26 refs.; 4 figs.; 3 tabs

  16. Properties and efficiency of a Pt/Al2O3 catalyst applied in a solid fuel thermo-accumulating furnace

    Directory of Open Access Journals (Sweden)

    SRDJAN BELOSEVIC

    2007-08-01

    Full Text Available A prototype of a solid fuel thermo-accumulating furnace has been developed. In order to achieve a higher combustion efficiency, a Pt/Al2O3 catalyst in the form of 3 ± 0.3 mm spheres was applied, which enabled further combustion of flue gases within the furnace. Experimental investigation of the influence of the catalyst on the conversion of CO has been done for different operation regimes and positions of the catalyst. Paper presents selected results regarding CO emission during wood and coal combustion. Investigations suggest a considerable effect of the catalyst and a strong influence of the catalyst position to CO emission reduction. The microstructure of the catalyst beads, characterized by selective chemisorption of CO, has shown the decrease of the number of Pt sites as a consequence of blockage by coke deposits formed during the combustion of solid fuel.

  17. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao; Dou, Jian; Chen, Luwei; Lin, Jianyi; Zeng, Hua Chun

    2012-01-01

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Experimental and theoretical study of solid solution stability under irradiation

    International Nuclear Information System (INIS)

    Cauvin, Richard.

    1981-08-01

    The behavior of dilute alloys (Al-Zn, Al-Ag, Al-Si, Al-Ge and Al-Mg) under 1 MeV electron irradiation has been studied in a high voltage electron microscope. A phenomenon of homogeneous precipitation induced by irradiation in undersaturated solid solutions (Al-Zn, Al-Ag and Al-Si) has been discovered; the observed precipitates are either coherent or incoherent, but never associated with point defect sinks. The solubility limit is a function of irradiation temperature and flux; but, under irradiation, it does not behave as a true thermal solubility limit (without irradiation). The existing theories (kinetic or strictly thermodynamic) do not account for this phenomenon. It is shown that the irreversibility of the mutual recombination between trapped vacancies and mixed interstitials is the driving force of this homogeneous precipitation. Using a dilute solid solution model, we show that, under irradiation, the homogeneous stationary state, stable from a strictly thermodynamic point of view, can be unstable when the recombination reaction is taken into account. The solubility limit under irradiation is calculated with a nucleation-growth model taking account for this effect; it is proportional to the thermal solubility limit without irradiation. This model explains all the experimental observations [fr

  20. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    Science.gov (United States)

    Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  1. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  2. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, R.; Martin, G.

    1979-01-01

    A TEM study of 1 MeV electron irradiated Al 1.9 at% Zn solid solution shows that Zn precipitates form, under irradiation at temperatures well above the Zn solvus temperature outside irradiation. The corresponding upward shift of this temperature is dose rate dependent. This new example of radiation-induced precipitation exhibits unexpected features, which are not accounted for by the available models: (1) no correlation exists between the location of the precipitates and that of the point defects sinks; (2) the precipitation of incoherent β-phase with atomic volume smaller than that of the matrix, and of coherent G.P. zones both occurs; (3) the size of the coherent β precipitates saturates at large dose. A general mechanism for solute concentration fluctuations under irradiation is proposed which qualitatively accounts for the formation of coherent G.P. zones and for the nucleation of solute clusters with more complex structures. A reanalysis of Russell's model (1977) for the growth of incoherent precipitates shows that it may qualitatively account for the observed behavior of the β phase precipitates. (Auth.)

  3. Diffuse neutron scattering study of metallic interstitial solid solutions

    International Nuclear Information System (INIS)

    Barberis, P.

    1991-10-01

    We studied two interstitial solid solutions (Ni-C(1at%) and Nb-O(2at%) and two stabilized zirconia (ZrO2-CaO(13.6mol%) and ZrO2-Y2O3(9.6mol%) by elastic diffuse neutron scattering. We used polarized neutron scattering in the case of the ferromagnetic Ni-based sample, in order to determine the magnetic perturbation induced by the C atoms. Measurements were made on single crystals in the Laboratoire Leon Brillouin (CEA-CNRS, Saclay, France). An original algorithm to deconvolve time-of-flight spectra improved the separation between elastically and inelastically scattered intensities. In the case of metallic solutions, we used a simple non-linear model, assuming that interstitials are isolated and located in octahedral sites. Results are: - in both compounds, nearest neighbours are widely displaced away from the interstitial, while next nearest neighbours come slightly closer. - the large magnetic perturbation induced by carbon in Nickel decreases with increasing distance on the three first neighbour shells and is in good agreement with the total magnetization variation. - no chemical order between solute atoms could be evidenced. Stabilized zirconia exhibit a strong correlation between chemical order and the large displacements around vacancies and dopants. (Author). 132 refs., 38 figs., 13 tabs

  4. Hydrodeoxygenation of Biomass Pyrolysis Vapor Model Compounds over MoS2 Based Catalysts: A Step in Understanding and Optimizing Fuel Production from Solid Biomass

    DEFF Research Database (Denmark)

    Dabros, Trine Marie Hartmann

    This thesis is dedicated to the investigation, development, and optimization of catalysts and operating conditions for catalytic hydropyrolysis and pyrolysis vapor hydrodeoxygenation (HDO) with the aim of producing liquid fuel from solid biomass.......This thesis is dedicated to the investigation, development, and optimization of catalysts and operating conditions for catalytic hydropyrolysis and pyrolysis vapor hydrodeoxygenation (HDO) with the aim of producing liquid fuel from solid biomass....

  5. The synthesis of Cu/Fe/Fe3O4 catalyst through the aqueous solution ball milling method assisted by high-frequency electromagnetic field

    Science.gov (United States)

    Yingzhe, Zhang; Yuxing, He; Qingdong, Qin; Fuchun, Wang; Wankun, Wang; Yongmei, Luo

    2018-06-01

    In this paper, nano-magnetic Cu/Fe/Fe3O4 catalyst was prepared by a new aqueous solution ball milling method assisted by high-frequency electromagnetic field at room temperature. The products were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and vibrating sample magnetometer (VSM). Microwave induced catalytic degradation of methylene blue (MB) was carried out in the presence of Cu/Fe/Fe3O4. The concentration of methylene blue was determined by UV-Vis spectrophotometry. The solid catalyst showed high catalytic activity of degrade MB and considerable saturation magnetization, lower remanence and coercivity. It indicate that the catalyst can be effectively separated for reuse by simply applying an external magnetic field and it can greatly promote their potential industrial application to eliminate organic pollutants from waste-water. Finally, we found that it is the non-thermal effect of microwave that activated the catalytic activity of Cu/Fe/Fe3O4 to degrade MB.

  6. Engineering solutions to the management of solid radioactive waste

    International Nuclear Information System (INIS)

    1991-01-01

    The management of radioactive waste, its safe handling and ultimate disposal, is of vital concern to engineers in the nuclear industry. The international conference 'Engineering Solutions to the Management of Solid Radioactive Waste', organized by the Institution of Mechanical Engineers and held in Manchester in November 1991, provided a forum for the discussion and comparison of the different methods of waste management used in Europe and America. Papers presented and discussed included: the interaction between the design of containers for low level radioactive waste and the design of a deep repository, commercial low level waste disposal sites in the United States, and the development of radioactive waste monitoring systems at the Sellafield reprocessing complex. This volume is a collection of 22 papers presented at the conference. All are indexed separately. (author)

  7. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  8. Crystal-chemical features of the solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.V.; Kesler, Ya.A.; Gordeev, I.V.; Mozhaev, A.P.

    1988-04-01

    The unusual magnetic properties of the solid solutions of CuCr/sub 2/S/sub 4/ in Cu/sub 0.5/Mo/sub 0.5/Cr/sub 2/S/sub 4/ (M = Al, Ga, In) are closely related to the crystal chemistry of these compounds. Specimens for structural investigation were obtained by solid-phase synthesis in evacuated quartz capsules. X-ray phase analysis of all the compounds was made by the powder method in a DRON-1 diffractometer with Cu K..cap alpha.. filtered radiation. The experimental confirmation of the ordering of the cations in the tetrahedral sublattice of the investigated spinels was obtained by the authors from their IR absorption spectra taken in the range 400-33 cm/sup /minus/1/. The presence of seven intense absorption bands in the spectra of the specimens indicates that these materials belong to the space group F/anti/43m, i.e., that there is ordering in the A sublattice. Their investigation led them to the conclusion that in a number of cases the vibrational spectra of the crystals are more sensitive in the investigation of atomic ordering than the spectra of x-ray and neutron diffraction, in agreement with the theoretical predictions.

  9. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  10. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    International Nuclear Information System (INIS)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu; Chou, Lingjun; Zhuo, Shuping

    2017-01-01

    Highlights: • A novel mesoporous ZrO_2/SO_4"2"− has been prepared via a facile one-pot EISA strategy. • The M-ZrO_2/SO_4"2"− exhibited excellent textural and acidic properties. • The introduced S species were homogeneously dispersed in mesoporous skeleton. • The M-ZrO_2/SO_4"2"− exhibited excellent catalytic performance and reusability. - Abstract: In this paper, a novel mesoporous sulfated zirconium (M-ZrO_2/SO_4"2"−) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N_2-physisorption and TEM characterization techniques indicated that M-ZrO_2/SO_4"2"− possessed distinct mesostructure with big specific surface area (133.5 m"2 g"−"1), large pore volume (0.18 cm"3 g"−"1) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N_2-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO_4"2"−, improved the textural properties of prepared materials. In addition, the NH_3-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO_2/SO_4"2"− even evacuated at 400 °C. Furthermore, the M-ZrO_2/SO_4"2"− was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  11. Synthesis and Characterization of Tin (IV Tungstate Nanoparticles – A Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Manoj Sadanandan

    2012-12-01

    Full Text Available Tin (IV tungstate, a tetravalent metal acid salt was synthesized in the nanoform by chemical coprecipitation method using EDTA as capping agent. The material was found to be stable in mineral acids, bases and organic solvents except  in HF and aquaregia. The material was characterized using EDS, TG/DTA, FTIR, XRD, SEM, HRTEM and BET surface area measurement. The molecular formula of the compound is 2SnO2 3WO3.5H2O determined from elemental analysis using TG/DTA. Surface morphology and particle size were obtained using SEM and HRTEM. The surface area was found to be 205-225m2/g. The Na+ exchange capacity found to be 3.8 meq/g, indicates the presence of surface hydroxyl group and hence the presence of Bronsted acid sites. The catalytic activity of the material was tested by using esterification and oxidation as model reactions. For the esterification of different alcohols, the percentage yield was found to be high for n-alcohol compared to isomeric alcohols. Oxidation of benzyl alcohol gives benzaldehyde and benzoic acid as the only products. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 12nd June 2012, Revised: 23rd July 2012, Accepted: 29th July 2012[How to Cite: S. Manoj, R. Beena, (2012. Synthesis and Characterization of tin(IV Tungstate Nanoparticles – A Solid Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 105-111. doi:10.9767/bcrec.7.2.3622.105-111] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3622.105-111 ] | View in 

  12. Fabrication and Application of (1-x) NaCl+xKCl Solid Solution

    International Nuclear Information System (INIS)

    Kyi Kyi Lwin

    2011-12-01

    (1-X)NaCl+xKCl solid solution are prepared by the starting materials NaCl (0.9, 0.95) in equal molar ratio. The solid solutions are heat-treated at various temperature and XRD analyses are carried out for the solid solutions to examine the crystalline phase, crystallographic orientation and lattice parameters. The electrical properties of the solutions are determined by using the conductometer. The solid solutions are utilized as crystal oscillator and outcoming frequencies, capacitances and dielectric constants are also investigated.

  13. The effect of temperature on nascent morphology of polyethylene polymerized over solution-phase flat model catalysts

    NARCIS (Netherlands)

    Jiang, S.D.; Kong, B.L.; Han, W.; Thune, P.C.; Yang, X.Z.; Loos, J.; Yan, S.K.

    2009-01-01

    The structure and morphology of polyethylene (PE) produced during solution polymerization using bis(imino)pyridyl metal catalysts supported by flat SiO2/Si(100) wafers were investigated by atomic force microscopy (AFM) and electron diffraction. Depending on the polymerization temperature, ranging

  14. Solid-State Polymerization of Poly(ethylene furanoate Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2017-11-01

    Full Text Available In this work, we report the synthesis of poly(ethylene furanoate (PEF, catalyzed by three different catalysts, namely, titanium (IV isopropoxide (TIS, tetrabutyltitanate (TBT, and dibutyltin (IV oxide (DBTO, via the two-stage melt polycondensation method. Solid-state polymerization (SSP was conducted at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. The resultant polymers were analyzed according to their intrinsic viscosity (IV, end groups (–COOH, and thermal properties, via differential scanning calorimetry. DSC results showed that the post polymerization process was favorable to enhance the melting point of the prepared PEF samples. As was expected, the intrinsic viscosity and the average molecular weight of PEF increased with the SSP time and temperature, whereas the number of carboxyl end-groups was decreased. A simple kinetic model was also developed and used to predict the time evolution of polymers IV, as well as the carboxyl and hydroxyl content of PEF during the SSP. From both the experimental measurements and the theoretical simulation results it was proved that the presence of the TIS catalyst resulted in higher transesterification kinetic rate constants and higher reaction rates. The activation energies were not much affected by the presence of different catalysts. Finally, using DBTO as a catalyst, the polyesters produced have higher crystallinity, and as a consequence, higher number of inactive carboxyl and hydroxyl groups.

  15. Cu(3)(BTC)(2) as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes.

    Science.gov (United States)

    Nagaraj, Anbu; Amarajothi, Dhakshinamoorthy

    2017-05-15

    In the present work, Friedel-Crafts alkylation reaction of indole with β-nitrostyrene is examined using a readily available copper based metal-organic frameworks (MOFs) namely, Cu 3 (BTC) 2 (BTC: 1,3,5-benzenetricarboxylic acid) as solid catalyst under mild reaction conditions. Among the various catalysts screened for this reaction, Cu 3 (BTC) 2 exhibits higher activity under the optimized reaction conditions. Besides the absence of leaching of active sites, it is also observed that the catalyst can be reused for four cycles with a minimal decrease in its activity. Cu 3 (BTC) 2 is used as a catalyst to synthesise a series of heterocyclic compounds with different indole and β-nitrostyrene derivatives in moderate to high yields. The present catalytic system shows comparable activity against to recent reports but the advantage of Cu 3 (BTC) 2 is that it does not require any post-functionalization and above all it can be readily synthesised, thus contributing to the synthesis of heterocyclic compounds with high biological interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Solution properties of solid and liquid potassium-indium alloys

    International Nuclear Information System (INIS)

    Takenaka, T.; Saboungi, M.L.

    1987-01-01

    It was recently shown by a combination of electrical resistivity, thermodynamic, and structural measurements that equiatomic alloys formed between K or Na and either Bi, Sb, Te, or Pb show pronounced deviations from ordinary metallic behavior and from ideal solution behavior, e.g., small values for the electrical conductivity and sharp peaks for the Darken excess stability function. Physical explanation of this behavior has been advanced on the basis of the formation of complex structural species similar to those reported for the corresponding solid alloys. The authors have chosen K-In alloys for several reasons. Phase diagram considerations coupled with small electronegativity differences between K and In would lead one to predict small deviations from ideal behavior, thus, this system would be suitable to test for oddities in alloy solution behavior in systems which deviate little from ideal behavior. Others have demonstrated that the position of the peak in the electrical resistivity changed in going from Li to Na and to K in the following sequence X/sub In/ ≅ 0.25, 0.40, and 0.50, respectively. The thermodynamic properties of these alloys would be expected to present similar trends

  17. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  18. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  19. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    International Nuclear Information System (INIS)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. (focus issue review)

  20. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. PMID:27877800

  1. Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel

    International Nuclear Information System (INIS)

    Takase, Mohammed; Zhang, Min; Feng, Weiwei; Chen, Yao; Zhao, Ting; Cobbina, Samuel J.; Yang, Liuqing; Wu, Xiangyang

    2014-01-01

    Highlights: • Silybum marianum contain high amount of oil (46%) and Linoleic acids (65.68%). • Incipient wetness impregnation method was used to load KOH on ZrO 2. • KOH(32%)/ZrO 2 -5 was used to transesterificate Silybum marianum to biodiesel. • Conversion yield of triglycerides to biodiesel (90.8%) at 60 °C was obtained in 2 h. • The properties of the biodiesel were comparable to international standards. - Abstract: This study seeks to investigate zirconia modified with KOH as heterogeneous solid base catalyst for transesterification of new non-edible, Silybum marianum (oil content 46%, FFA 0.68% and linoleic acid 65.68%) oil using methanol to biodiesel. Having screened the catalytic performance of ZrO 2 loaded with different K-compounds, 32% KOH loaded on ZrO 2 was chosen. The catalyst was prepared using incipient wetness impregnation method. Following drying (after impregnation) and calcination at 530 °C for 5 h, the catalyst was characterized by means of Hammett indicators, XRD, FTIR, SEM, TGA and N 2 adsorption desorption measurements. It was found that the yield of the fatty acid methyl esters (FAME) was related to the catalyst base strength. The catalyst had granular and porous structures with high basicity and superior catalytic performance for the transesterification reaction. Maximum yield (90.8%) was obtained at 15:1 methanol to oil molar ratio, 6% catalyst amount, 60 °C reaction temperature in 2 h. The catalyst maintained sustained activity after five times of usage. The oxidative stability and iodine value were the only unsuitable properties of the biodiesel (out of range) but can easily be improved. The cetane number, flash point and the cold flow properties among others were however, comparable to international standards. The study indicated that KOH(32%)/ZrO 2 -5 is an economically, suitable catalyst for producing biodiesel from S. marianum oil which is a potential new non-edible feedstock that can contribute positively to biodiesel

  2. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell

    Science.gov (United States)

    Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2015-06-01

    Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.

  3. Modified fly ash from municipal solid waste incineration as catalyst support for Mn-Ce composite oxides

    Science.gov (United States)

    Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping

    2017-08-01

    Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.

  4. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  5. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Different acidic heterogeneous catalysts like alumina, aluminosilicate, zirconium phosphate, niobic acid, ion-exchange resin Amberlyst-15, and zeolite MOR have been studied in fructose dehydration to 5-hydroxymethylfurfural (HMF). The acidity of these materials was characterized using

  6. Sustainable solid catalyst alkylation of commercial olefins by regeneration with supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2005-12-01

    Supercritical isobutane regeneration of a USY zeolite alkylation catalyst was examined in a continuous, automated reaction / regeneration system. Two feeds were studied; a synthetic isobutane / 2-butene blend, and a commercial refinery isoparaffin / olefin blend. The refinery blend was minimally treated, containing a variety of light olefins, and contaminants, including butadiene, oxygenates and sulfur, which are well known to cause severe catalyst deactivation. Synthetic feed experiments showed that high levels of butene conversion was maintained for more than 200 hours time on stream, and that product quality and catalyst maintenance was relatively stable over the course of the experiment using a 3 hour reaction / 3 hour regeneration cycle. Catalyst activity maintenance was lower when the commercial feed was employed. High levels of alkene conversion were maintained for 78 hours and 192 hours using a 3 hour reaction / 3 hour regeneration cycle and a 2 hour reaction / 2 hour regeneration cycle, respectively.

  7. Purification of uranothorite solid solutions from polyphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, Nicolas, E-mail: nicolas.clavier@icsm.fr [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Szenknect, Stéphanie; Costin, Dan Tiberiu; Mesbah, Adel; Ravaux, Johann [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Poinssot, Christophe [CEA/DEN/DRCP/DIR, Site de Marcoule – Bât. 400, BP 17171, 30207 Bagnols/Cèze cedex (France); Dacheux, Nicolas [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Purification of Th{sub 1−x}U{sub x}SiO{sub 4} uranothorites from oxide mixture was investigated. •Repetition of centrifugation steps was discarded due to poor recovery yields. •Successive washings in acid and basic media allowed the elimination of oxide secondary phases. •Structural and microstructural characterization of the purified samples was provided. -- Abstract: The mineral coffinite, nominally USiO{sub 4}, and associated Th{sub 1−x}U{sub x}SiO{sub 4} uranothorite solid solutions are of great interest from a geochemical point of view and in the case of the direct storage of spent nuclear fuels. Nevertheless, they clearly exhibit a lack in the evaluation of their thermodynamic data, mainly because of the difficulties linked with their preparation as pure phases. This paper thus presents physical and chemical methods aiming to separate uranothorite solid solutions from oxide additional phases such as amorphous SiO{sub 2} and nanometric crystallized Th{sub 1−y}U{sub y}O{sub 2}. The repetition of centrifugation steps envisaged in first place was rapidly dropped due to poor recovery yields, to the benefit of successive washings in acid then basic media. Under both static and dynamic flow rates (i.e. low or high rate of leachate renewal), ICP-AES (Inductively Coupled Plasma – Atomic Emission Spectroscopy) analyses revealed the systematic elimination of Th{sub 1−y}U{sub y}O{sub 2} in acid media and of SiO{sub 2} in basic media. Nevertheless, two successive steps were always needed to reach pure samples. On this basis, a first cycle performed in static conditions was chosen to eliminate the major part of the accessory phases while a second one, in dynamic conditions, allowed the elimination of the residual impurities. The complete purification of the samples was finally evidenced through the characterization of the samples by the means of PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron

  8. Improved hydrogen generation from alkaline NaBH{sub 4} solution using cobalt catalysts supported on modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Guo, Qingjie; Yue, Xuehai [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-12-15

    Hydrogen production from alkaline sodium borohydride (NaBH{sub 4}) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO{sub 3}. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO{sub 3} oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability. (author)

  9. Sustainable solutions for solid waste management in Southeast Asian countries

    International Nuclear Information System (INIS)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-01-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  10. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth

  11. Impact of vacancy-solute clusters on the aging of α-Fe solid solutions

    International Nuclear Information System (INIS)

    Schuler, Thomas

    2015-01-01

    Understanding and monitoring the aging of steels under vacancy supersaturation is a challenge of great practical interest for many industrial groups, and most of all for those related to nuclear energy. These steels always contain interstitial solutes, either as alloying elements or as impurities, and vacancies (V) that are equilibrium structural defects of materials. We have chosen the Fe-V -X system (X = C, N or O) as a model system for ferritic steels. Vacancy-solute clusters are likely to form in such systems because, despite the very low concentrations of their components, these cluster show very high attractive bonding. First of all, we have been working on the computation of intrinsic equilibrium properties of individual clusters, both thermodynamic (free binding energies) and kinetic (mobilities, dissociation coefficients, and their relationship with continuum diffusion) properties. Thanks to this atomic-scale characterization procedure, we have been able to highlight various effects of these clusters on a macroscopic system containing different cluster types: increase of solute solubility limits and total vacancy concentrations, flux couplings between interstitial solutes and vacancies, acceleration of solute precipitation kinetics and precipitate dissolution by solid solution stabilization due to vacancies. These results would not have been obtained without the development and/or extension of analytical methods in statistical physics which are able to describe cluster's components and their interactions at the atomic scale. Finally, we have also been working on cavities in α-iron, the study of which requires a different approach. Our study highlights the impact of the atomic discrete lattice on the equilibrium shape of cavities, and describes various kinetic mechanisms of these objects at the atomic scale. (author) [fr

  12. Solid on liquid deposition, a review of technological solutions

    OpenAIRE

    Homsy, Alexandra; Laux, Edith; Jeandupeux, Laure; Charmet, Jérôme; Bitterli, Roland; Botta, Chiara; Rebetez, Yves; Banakh, Oksana; Keppner, Herbert

    2015-01-01

    Solid-on-liquid deposition (SOLID) techniques are of great interest to the MEMS and NEMS (Micro- and Nano Electro Mechanical Systems) community because of potential applications in biomedical engineering, on-chip liquid trapping, tunable micro-lenses, and replacements of gate oxides. However, depositing solids on liquid with subsequent hermetic sealing is difficult because liquids tend to have a lower density than solids. Furthermore, current systems seen in nature lack thermal, mechanical or...

  13. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu [School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 (China); Chou, Lingjun, E-mail: ljchou@licp.cas.cn [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Zhuo, Shuping, E-mail: zhuosp_academic@yahoo.com [School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 (China)

    2017-07-31

    Highlights: • A novel mesoporous ZrO{sub 2}/SO{sub 4}{sup 2−} has been prepared via a facile one-pot EISA strategy. • The M-ZrO{sub 2}/SO{sub 4}{sup 2−} exhibited excellent textural and acidic properties. • The introduced S species were homogeneously dispersed in mesoporous skeleton. • The M-ZrO{sub 2}/SO{sub 4}{sup 2−} exhibited excellent catalytic performance and reusability. - Abstract: In this paper, a novel mesoporous sulfated zirconium (M-ZrO{sub 2}/SO{sub 4}{sup 2−}) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N{sub 2}-physisorption and TEM characterization techniques indicated that M-ZrO{sub 2}/SO{sub 4}{sup 2−} possessed distinct mesostructure with big specific surface area (133.5 m{sup 2} g{sup −1}), large pore volume (0.18 cm{sup 3} g{sup −1}) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N{sub 2}-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO{sub 4}{sup 2−}, improved the textural properties of prepared materials. In addition, the NH{sub 3}-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO{sub 2}/SO{sub 4}{sup 2−} even evacuated at 400 °C. Furthermore, the M-ZrO{sub 2}/SO{sub 4}{sup 2−} was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  14. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  15. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  16. Photocatalytic degradation of nicotine in an aqueous solution using unconventional supported catalysts and commercial ZnO/TiO{sub 2} under ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Marcela Andrea Espina de, E-mail: marcela.eq@gmail.com; Silva, William Leonardo da; Bagnara, Mônica; Lansarin, Marla Azário; Zimnoch dos Santos, João Henrique

    2014-10-01

    Nicotine, a highly toxic alkaloid, has been detected in effluents, surface and groundwater and even bottled mineral water. The present work studied the photocatalytic degradation of nicotine in aqueous solution, under ultraviolet irradiation. The experiments were carried out using commercial (ZnO, TiO{sub 2}) and non-conventional catalysts, which were prepared from industrial and laboratory waste. Two experimental designs (CCD) were performed for both commercial catalysts, and initial nicotine concentration, catalyst concentration and initial solution pH effects were studied. Then, the synthesized catalysts were tested under the optimal conditions which were found through CCDs. Using commercial catalysts, about 98% of the alkaloid was degraded by ZnO, and 88% by TiO{sub 2}, in 1 h. Among the non-conventional catalysts, the highest photocatalytic degradation (44%) was achieved using the catalyst prepared from a petrochemical industry residue. - Highlights: • The photocatalytic degradation of nicotine was studied under UV irradiation. • Commercial catalysts ZnO and TiO{sub 2} were tested using two central composite designs. • Initial nicotine concentration, catalyst concentration and pH were evaluated. • Catalysts were prepared using chemical wastes and tested at the best conditions.

  17. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Science.gov (United States)

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-07

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Efficient hydrolysis of cellulose over a magnetic lignin-derived solid acid catalyst in 1-butyl-3-methylimidazolium chloride

    International Nuclear Information System (INIS)

    Hu, Lei; Wu, Zhen; Xu, Jiaxing; Zhou, Shouyong; Tang, Guodong

    2016-01-01

    A green and efficient strategy for the hydrolysis of cellulose was developed by using a magnetic lignin-derived solid acid catalyst (MLC-SO 3 H) in the presence of ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). The results indicated that reaction temperature, reaction time, catalyst loading and water content have a big influence on the yield of total reducing sugars (TRS). By optimizing these reaction parameters, 69.3% TRS yield was observed at 140 .deg. C for 150 min with the addition of 40 wt% MLC-SO 3 H and 1 wt% water. More importantly, MLC-SO 3 H could be easily separated from the reaction mixture with an external magnet and could be repeatedly used five times without an obvious loss of catalytic activity, demonstrating that it possessed excellent recyclability. Furthermore, a plausible mechanism involving three consecutive processes of dissolution, adsorption and catalysis for the hydrolysis of cellulose in [BMIM]Cl over a catalyst of MLC-SO 3 H was also proposed.

  19. Comparative solution and solid-phase glycosylations toward a disaccharide library

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Agoston, Agnes

    2009-01-01

    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  20. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  1. Visible-light Homogeneous Photocatalytic Conversion of CO2 into CO in Aqueous Solutions with an Iron Catalyst.

    Science.gov (United States)

    Rao, Heng; Bonin, Julien; Robert, Marc

    2017-11-23

    An iron-substituted tetraphenyl porphyrin bearing positively charged trimethylammonio groups at the para position of each phenyl ring catalyzes the photoinduced conversion of CO 2 . This complex is water soluble and acts as a molecular catalyst to selectively reduce CO 2 into CO under visible-light irradiation in aqueous solutions (acetonitrile/water=1:9 v/v) with the assistance of purpurin, a simple organic photosensitizer. CO is produced with a catalytic selectivity of 95 % and turnover number up to 120, illustrating the possibility of photocatalyzing the reduction of CO 2 in aqueous solution by using visible light, a simple organic sensitizer coupled to an amine as a sacrificial electron donor, and an earth-abundant metal-based molecular catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The calcium oxide influence on formation of manganese, calcium pyrovanadate solid solutions

    International Nuclear Information System (INIS)

    Vatolin, N.A.; Volkova, P.I.; Sapozhnikova, T.V.; Ovchinnikova, L.A.

    1988-01-01

    The X-ray graphic, derivatographic, microscopic and chemical methods are used to study solid solutions of manganese, calcium pyrovanadates containing 1-10 mass% CaO and the products of interaction of reprocessing charges of vanadium-containing converter slags intended for he formation of manganese and calcium pyrovanadates with additions of calcium oxide within 10-90 mass%. It is established that in the case of 1-6 mass% CaO content in manganese pyrovanadate solid interstitial solutions appear, while at 6-20 mass% CaO - solid substitution solutions form. The results of calculating elementary cell parameters as well as melting temperatures and pyrovanadate solid solution solubility depending on CaO content are presented. The best solubility of introduction solid solutions during vanadium extraction according to the lime technology is found

  3. Hairy foam: carbon nanofibers on solid foam as catalyst support : synthesis, mass transfer, and reactor modeling

    NARCIS (Netherlands)

    Wenmakers, P.W.A.M.

    2010-01-01

    The chemical reactor is at the heart of many chemical processes. The chemical industry strives for the most efficient, most compact, and safest chemical reactor. The efficiency of a chemical reactor is determined by the delicate balance of catalyst performance (i.e. selectivity and activity) and the

  4. Calcium Oxide Supported on Monoclinic Zirconia as a Highly Active Solid Base Catalyst

    NARCIS (Netherlands)

    Frey, A.M.; Haasterecht, van T.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Calcium oxide supported on ZrO2 is a highly active catalyst for base-catalyzed reactions such as aldol-type reactions and transesterification reactions. The role of key parameters during preparation, that is, impregnation versus precipitation, heat treatment, and metal oxide loading on the basicity

  5. Poly(N-4-vinylbenzyl-1,4,7-triazacyclononane Copper Complex Grafted Solid Catalyst for Oxidative Polymerization of 2,6-Dimethylphenol

    Directory of Open Access Journals (Sweden)

    Kei Saito

    2016-01-01

    Full Text Available A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane copper(I complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst.

  6. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  7. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  8. Recovery by solvent extraction of vanadium from spent catalysts leaching solutions using Primene 81R

    Directory of Open Access Journals (Sweden)

    Lozano, L. J.

    2001-10-01

    Full Text Available Recovery of vanadium contained in solutions coming from spent catalysts leaching process by means of solvent extraction techniques using primary amine Primene 81R, has been studied in this work, resulting in an industrial multistage process for the treatment of these effluents. Results obtained allows to propose an extraction mechanism for vanadium(V with this amine in acidic media, verifying the great influence of pH on the process and fix adequate ranges for variables: O/A ratio, organic phase composition, pH, stirring speed and phase separation speed. These values were simulated in industrial conditions. Vanadium is finally recovered by means of precipitation as ammonium metavanadate and later calcination to obtain vanadium pentoxide of commercial grade.

    En el presente trabajo se ha estudiado la recuperación del vanadio contenido en soluciones procedentes del proceso de lixiviación de catalizadores agotados, por medio de la técnica de extracción con disolventes, empleando la amina primaria PRIMENE 81R, planteando un proceso industrial multietapa para el tratamiento de estos efluentes. Los resultados obtenidos permiten proponer un mecanismo de extracción para el vanadio(V, con esta amina en medio ácido, verificando la gran influencia del pH en el proceso y Ajando los rangos adecuados para las siguientes variables: relación O/A, composición de la fase orgánica, pH, velocidad de agitación y velocidad de separación de fases. Esos valores se simularon en condiciones industriales. El vanadio se recupera finalmente precipitándolo como metavanadato amónico y posterior calcinación para obtener pentóxido de vanadio de calidad comercial.

  9. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  10. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    Science.gov (United States)

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Effect of reverse Boudouard reaction catalyst on the performance of solid oxide carbon fuel cells integrated with a dry gasifier

    International Nuclear Information System (INIS)

    Kim, Sun-Kyung; Mehran, Muhammad Taqi; Mushtaq, Usman; Lim, Tak-Hyoung; Lee, Jong-Won; Lee, Seung-Bok; Park, Seok-Joo; Song, Rak-Hyun

    2016-01-01

    Highlights: • The addition of K_2CO_3 catalyst in carbon fuel improves the performance of SO-CFC. • Thermal and electrochemical analyses done to elucidate the catalytic enhancement. • Material characterization of SO-CFC performed after long-term degradation test. - Abstract: A solid oxide carbon fuel cell (SO-CFC) integrated with a dry gasifier was operated on activated carbon fuel and the effect of adding a reverse Boudouard gasification catalyst on the performance and long-term operation characteristics of the SO-CFC was investigated. The reactivity of the carbon fuels for the Boudouard gasification reaction was analyzed by a thermal analysis at various operating conditions. The SO-CFC was then operated on gasified fuel gas consisting of CO_2 and CO obtained from the integrated dry gasifier. The SO-CFC operated on activated carbon fuel with 5 wt.% K_2CO_3 achieved a maximum power density of 202, 262, and 271 mW/cm"2 at 750, 800, and 850 °C, respectively; the SO-CFC fueled with activated carbon fuel without a catalyst meanwhile yielded maximum power density of 168 mW/cm"2 at 850 °C. By using electrochemical impedance spectroscopy, the effect of adding the catalyst on the gasification products and subsequently on the performance of the SO-CFC was studied. A long-term degradation test was conducted by continuously operating the SO-CFC at 50 mA/cm"2 for 518 h at 750 °C. During the long-term degradation test, the average degradation rate of the SO-CFC was found to be 183 mV/kh. The post-mortem SEM and XRD analyses of the SO-CFC after the long-term test revealed the presence of carbon deposits and oxidation of Ni at the anode, causing a relatively higher degree of degradation in the SO-CFC integrated with the dry gasifier during the long-term operation. The addition of the K_2CO_3 based dry gasification catalyst significantly enhances the performance of the SO-CFC integrated with dry gasification, but during long-term operation, the degradation rate is found

  12. Solid state synthesis, characterization, surface and catalytic properties of Pr2CoO4 and Pr2NiO4 catalyst

    International Nuclear Information System (INIS)

    Sinha, K.K.; Indu, N.K.; Sinha, S.K.; Pankaj, A.K.

    2008-01-01

    Full text: The most interesting non-stoichiometric oxides are found in transition metal and rare earth oxides at higher temperatures. The role of Solid State properties in the catalysis using mixed metal oxide as catalyst have wide applications in fertilizer, Petro-chemical, Pharmaceutical, cosmetic, paint detergents, plastics and food-stuff industries and these are also resistive towards acids and alkalies. The use of catalyst has opened up new process routes or revolutioned the existing process in terms of economics and efficiency and has radically changed the industrial scenario. The use of catalyst is so pervasive today that nearly 70 % of modern chemical processes are based on it at some stage or other and 90% new processes developed are catalytic nature. A series of non-stoichiometric spinel type of oxide catalyst of Praseodymium with cobalt and nickel were synthesized by their oxalates through Solid State reaction technique at different activation temperatures i.e. 600, 700, 800 and 900 deg C. The characterization of catalyst was done by XRD, FTIR and ESR methods. X-ray powder diffraction study shows that catalysts are made up of well grown crystallinities mostly in single phase crystal and system is of orthorhombic structure. FTIR is related to inadequate decomposition of oxalate ion from the Catalyst. The kinetic decomposition of Urea was employed as a model reaction to study the catalytic potentiality of different catalysts. Surface and Catalytic Properties of catalysts were measured. A relation between activation temperature and surface properties like excess surface oxygen (E.S.O.), surface acidity and surface area was observed. A linear relationship between the surface area of the catalyst and the amount of ammonia gas evolved per gm of the sample was observed also. Nickel containing catalysts were found a bit more catalytic active in comparison to cobalt oxide catalysts. Transition metal ions (i.e. Ni 2+ and Co 2+ ions) are mainly responsible for

  13. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    International Nuclear Information System (INIS)

    Jie, J.C.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Li, T.J.

    2014-01-01

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al 12 Mg 17 phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β

  14. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    International Nuclear Information System (INIS)

    Ma, Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2015-01-01

    We propose an approach for the computationally efficient and quantitatively accurate prediction of solid-solution strengthening. It combines the 2-D Peierls–Nabarro model and a recently developed solid-solution strengthening model. Solid-solution strengthening is examined with Al–Mg and Al–Li as representative alloy systems, demonstrating a good agreement between theory and experiments within the temperature range in which the dislocation motion is overdamped. Through a parametric study, two guideline maps of the misfit parameters against (i) the critical resolved shear stress, τ 0 , at 0 K and (ii) the energy barrier, ΔE b , against dislocation motion in a solid solution with randomly distributed solute atoms are created. With these two guideline maps, τ 0 at finite temperatures is predicted for other Al binary systems, and compared with available experiments, achieving good agreement

  15. Synthesis and photocatalytic degradation study of methylene blue dye under visible light irradiation by Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0)

    Science.gov (United States)

    Bera, Ganesh; Reddy, V. R.; Mal, Priyanath; Das, Pradip; Turpu, G. R.

    2018-05-01

    The novel hetero-structures Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0) with the two dissimilar end member of FeVO4 - BiVO4, were successfully synthesized by the standard solid state reaction method. The structural and chemical properties of as prepared photo-catalyst samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and UV-visible absorption spectroscopy techniques. It is confirmed from the results of XRD, Raman and FT-IR that FeVO4 and BiVO4 are in triclinic (space group P-1 (2)) and monoclinic (space group I2/b (15)) phases respectively. The Bi incorporation into Fe site of FeVO4 emerges as hetero-structures of both the end members of the solid solutions. In addition, the photocatalytic activity in the degradation of methylene blue (MB) dye under visible light irradiation was carried out through UV-visible spectroscopy measurement of photo-catalysts FeVO4, BiVO4 and mixed phases of both photo-catalyst. The results indicate that under visible light irradiation the photocatalytic activity of mixed phases were very effective and higher than the both single phases of the solid solutions. The composition x= 0.25 exhibits an excellent photocatalytic property for the degradation of MB solution under visible light irradiation rather than other.

  16. Face-centered-cubic Nb-Si solid solutions produced by picosecond pulsed laser quenching

    International Nuclear Information System (INIS)

    Wang, W.K.; Spaepen, F.

    1985-01-01

    Face-centered-cubic Nb/sub 100-x/Si/sub x/ solid solutions (10 2 . The lattice parameters of these solutions suggest that the solute atoms can be interstitial or substitutional, probably as a result of a change in the quenching conditions

  17. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd-Ru Solid-solution Alloy Nanoparticles

    Science.gov (United States)

    Sato, Katsutoshi; Tomonaga, Hiroyuki; Yamamoto, Tomokazu; Matsumura, Syo; Zulkifli, Nor Diana Binti; Ishimoto, Takayoshi; Koyama, Michihisa; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Nagaoka, Katsutoshi

    2016-06-01

    Rh is one of the most important noble metals for industrial applications. A major fraction of Rh is used as a catalyst for emission control in automotive catalytic converters because of its unparalleled activity toward NOx reduction. However, Rh is a rare and extremely expensive element; thus, the development of Rh alternative composed of abundant elements is desirable. Pd and Ru are located at the right and left of Rh in the periodic table, respectively, nevertheless this combination of elements is immiscible in the bulk state. Here, we report a Pd-Ru solid-solution-alloy nanoparticle (PdxRu1-x NP) catalyst exhibiting better NOx reduction activity than Rh. Theoretical calculations show that the electronic structure of Pd0.5Ru0.5 is similar to that of Rh, indicating that Pd0.5Ru0.5 can be regarded as a pseudo-Rh. Pd0.5Ru0.5 exhibits better activity than natural Rh, which implies promising applications not only for exhaust-gas cleaning but also for various chemical reactions.

  19. Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties

    Directory of Open Access Journals (Sweden)

    Snežana Bošković

    2012-09-01

    Full Text Available In this paper a short review of our results on the synthesis of nanosized CeO2, CaMnO3 and BaCeO3 solid solutions are presented. The nanopowders were prepared by two innovative methods: self propagating room temperature synthesis (SPRT and modified glycine/nitrate procedure (MGNP. Different types of solid solutions with rare earth dopants in concentrations ranging from 0–0.25 mol% were synthesized. The reactions forming solid solutions were studied. In addition, the characteristics of prepared nanopowders, phenomena during sintering and the properties of sintered samples are discussed.

  20. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  1. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  2. Continuous synthesis of Oleyl Oleate in supercritical carbon oxide using solid p-Toluenesulfonic Acid as catalyst

    International Nuclear Information System (INIS)

    Ghaziaskar, H.; Ikushima, Y.

    2000-01-01

    Supercritical carbon dioxide (Sc-CO 2 ) was used as solvent to synthesize oleyl oleate as an analog of Jojoba oil from oleic acid and oleyl alcohol with high conversion (100%) of the acid into ester in a short time of 100 min. Utilizing a low cost solid catalyst, p-toluenesulfonic acid monohydrate , the esterification reaction was performed, without any prior preparation step, in a flow mode, at a pressure of 147 bar and a temperature of 60 d eg C. This method seems industrially suitable for the production of oleyl oleate. The solubility of a mixture of oleyl alcohol and oleic acid in Sc-CO 2 were also measured to calculate the alcohol to acid ratio and the esterification yield

  3. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  4. Biodiesel production from esterification of free fatty acid over PA/NaY solid catalyst

    International Nuclear Information System (INIS)

    Liu, Wei; Yin, Ping; Zhang, Jiang; Tang, Qinghua; Qu, Rongjun

    2014-01-01

    Highlights: • Biodiesel production from esterification of oleic acid was catalyzed by PA/NaY. • The influences of the process operating parameters were studied. • RSM was employed to optimize the experimental conditions. • The kinetic equation of the esterification reaction was investigated. - Abstract: Because of the incitements from increasing petroleum prices, diminishing petroleum reserves and the environmental consequences of exhaust gases from petroleum fueled engines, biodiesel has been used as a substitute of the regular diesel in recent years. In this paper, biodiesel production from the esterification of the free fatty oil oleic acid with ethanol catalyzed by PA/NaY (PA = organic phosphonic acid) was investigated, and the effect of reaction conditions such as PA loading, catalyst amount, molar ratio of alcohol to acid, reaction temperature and reaction time on the esterification reaction was examined. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated. The optimum values for maximum conversion ratio of oleic acid could be obtained by using a Box–Behnken center-united design with a minimum of experimental work. The oleic acid conversion reached 79.51 ± 0.68% with the molar ratio of alcohol to oleic acid being 7:1 and 1.7 g PA/NaY catalyst (20 ml of PA loading) at 105 °C for 7 h. Moreover, a kinetic model for the esterification catalyzed by PA/NaY catalyst was established. By fitting the kinetic model with the experimental results, the reaction order n = 2, activation energy of the positive reaction Ea + = 43.41 kJ/mol and that of the reverse reaction Ea − = 59.74 kJ/mol were obtained

  5. Synthesis of 1,2-Disubstituted Benzimidazoles in the Presence of SBA-Pr-SO3H as a Nano Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    G. Mohammadi Ziarani

    2012-06-01

    Full Text Available In this article, simple, convenient synthesis of 2-aryl-1- arylmethyl-1H-1,3-benzimidazole (1,2-disubstituted benzimidazoles via condensation of 1,2-phenylenediamine and aromatic aldehydes using SBA-Pr-SO3H as a nanoporous solid acid catalyst in green protocol was reported.

  6. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  7. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  8. Synthesis of (U,Zr)C solid solutions under exothermic conditions

    International Nuclear Information System (INIS)

    Wang, L.L.; Moore, H.G.; Gladson, J.W.

    1993-01-01

    The reactions of forming (U,Zr)C solid solutions from their elemental components or similarly less stable reactants such as UC 2 are strongly exothermic due to the high stability of these solid solutions. A simple approach of utilizing this heat of formation energy to assist the solid solution reaction process is to intimately mix the less stable reactant powders and then pressed them into a compact. The compact is then heated to the ignition temperature of the reaction. The feasibility of this reaction method to synthesize (U,Zr)C solid solutions has been demonstrated in this study. The preliminary results also show that both the initial composition and the heating rate have a significant effect on the nature of the reaction process. As expected the degree of powder mixing was also found to affect the completeness of the reaction

  9. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.

  10. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian; Liu, Mengxia; Sargent, Edward H.

    2016-01-01

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally

  11. Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Liu, Xinmin; Cao, Changqing; Guo, Qingjie [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-08-01

    Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH{sub 4}) in fuel cell fields. In this study, hydrogen production from alkaline NaBH{sub 4} via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200-400 C, but a high calcination temperature above 500 C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co-B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH{sub 4}, and the hydrogen generation rate increases for lower NaBH{sub 4} concentrations and decreases after reaching a maximum at 10 wt.% of NaBH{sub 4}. (author)

  12. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    Czech Academy of Sciences Publication Activity Database

    Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 85, FEB (2015), s. 53-66 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015

  13. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  14. Thermal expansion studies on uranium-neodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Venkata Krishnan, R.; Antony, M.P.; Nagarajan, K.

    2012-01-01

    Uranium-Neodymium mixed oxides solid solutions (U 1-y Nd y ) O 2 (y=0.2-0.95) were prepared by combustion synthesis using citric acid as fuel. Structural characterization and computation of lattice parameter was carried out from room temperature X-ray diffraction measurements. Single-phase fluorite structure was observed up to y=0.80. For solid solutions with y>0.80 additional Nd 2 O 3 lines were visible

  15. SU-E-T-350: Verification of Gating Performance of a New Elekta Gating Solution: Response Kit and Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X; Cao, D; Housley, D; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2014-06-01

    Purpose: In this work, we have tested the performance of new respiratory gating solutions for Elekta linacs. These solutions include the Response gating and the C-RAD Catalyst surface mapping system.Verification measurements have been performed for a series of clinical cases. We also examined the beam on latency of the system and its impact on delivery efficiency. Methods: To verify the benefits of tighter gating windows, a Quasar Respiratory Motion Platform was used. Its vertical-motion plate acted as a respiration surrogate and was tracked by the Catalyst system to generate gating signals. A MatriXX ion-chamber array was mounted on its longitudinal-moving platform. Clinical plans are delivered to a stationary and moving Matrix array at 100%, 50% and 30% gating windows and gamma scores were calculated comparing moving delivery results to the stationary result. It is important to note that as one moves to tighter gating windows, the delivery efficiency will be impacted by the linac's beam-on latency. Using a specialized software package, we generated beam-on signals of lengths of 1000ms, 600ms, 450ms, 400ms, 350ms and 300ms. As the gating windows get tighter, one can expect to reach a point where the dose rate will fall to nearly zero, indicating that the gating window is close to beam-on latency. A clinically useful gating window needs to be significantly longer than the latency for the linac. Results: As expected, the use of tighter gating windows improved delivery accuracy. However, a lower limit of the gating window, largely defined by linac beam-on latency, exists at around 300ms. Conclusion: The Response gating kit, combined with the C-RAD Catalyst, provides an effective solution for respiratorygated treatment delivery. Careful patient selection, gating window design, even visual/audio coaching may be necessary to ensure both delivery quality and efficiency. This research project is funded by Elekta.

  16. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  17. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  18. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  19. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  20. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    Science.gov (United States)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  1. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    Science.gov (United States)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  2. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  3. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    International Nuclear Information System (INIS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-01-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH 3 -TPD and N 2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO 4 2− /Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h −1 and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO 4 2− /Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO 4 2− /Zr-MCM-48-25

  4. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  5. Contribution to the study of the structure of silver krypton solid solutions; Contribution a l'etude de la structure des solutions solides argent-krypton

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Tullairet, J; Delaplace, J; Antolin-Baudier, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [French] Les solutions solides argent, krypton, realisees par decharges electrique ont ete etudiees par Rayons X, resistivite electrique et microscopie electronique en transmission. Les mesures de parametre cristallin et de resistivite residuelle ont montre que le comportement de l'atome de krypton est tres different de celui des autres elements de la classification periodique en solution dans l'argent. La restauration du parametre cristallin et de la resistivite electrique en fonction de la temperature a ete etudiee. (auteurs)

  6. Precipitation of Nd-Ca carbonate solid solution at 25 degrees C

    International Nuclear Information System (INIS)

    Carroll, S.A.

    1993-01-01

    The formation of a Nd-Ca carbonate solid solution was studied by monitoring the reactions of calcite with aqueous Nd, orthorhombic NdOHCO 3 (s) with aqueous Ca, and calcite with hexagonal Nd-carbonate solid phase as a function of time at 25 degrees C and controlled pCO 2 (g). All experiments reached steady state after 200 h of reaction. The dominant mechanism controlling the formation of the solid solution was precipitation of a Nd-Ca carbonate phase from the bulk solution as individual crystals or at the orthorhombic NdOHCO 3 (s)-solution interface. The lack of Nd adsorption or solid solution at the calcite-solution interface suggests that the solid solution was orthorhombic and may be modeled as a mixture of orthorhombic NdOHCO 3 (s) and aragonite. Orthorhombic NdOHCO 3 (s) was determined to be the stable Nd-carbonate phase in the Nd-CO 2 -H 2 O system at pCO 2 (g) 0.1 atmospheres at 25 degrees C. The equilibrium constant corrected to zero ionic strength for orthorhombic NdOHCO 3 (s) solubility is 10 10.41(±0.29) for the following: NdOHCO 3 (s) + 3H + = Nd 3+ + CO 2 (g) + H 2 O. Results are discussed in relation to radioactive waste disposal by burial, and specifically in relation to americium chemistry

  7. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    Science.gov (United States)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  8. Municipal solid waste management. Strategies and technologies for sustainable solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, C.; Hellweg, S.; Stucki, S. (eds.)

    2002-10-01

    The way municipal solid waste is handled greatly determines its impact on the local as well as the global environment. New technologies habe emerged for the treatment of waste, for the recovery of raw materials and energy, and for safe final disposal. The environmental performance of technologies, their social acceptance and their economic viability are key issues to be considered in sustainable waste management. This book provides an overview of current practices in waste management and a synthesis of new developments achieved through interdisciplinary discussions of recent research results. (orig.)

  9. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  10. Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions

    Science.gov (United States)

    Sibatov, R. T.; Svetukhin, V. V.

    2015-06-01

    Based on fractional differential generalizations of the Ham and Aaron-Kotler precipitation models, we study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions agree with the Monte Carlo simulation results.

  11. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    Science.gov (United States)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  12. The complex synthesis and solid state chemistry of ceria-lanthana solid solutions prepared via a hexamethylenetetramine precipitation

    International Nuclear Information System (INIS)

    Fleming, P.G.; Holmes, J.D.; Otway, D.J.; Morris, M.A.

    2011-01-01

    Mixed oxide solid solutions are becoming ever more commercially important across a range of applications. However, their synthesis can be problematical. Here, we show that ceria-lanthana solid solutions can be readily prepared via simple precipitation using hexamethylenetetramine. However, the solution chemistry can be complex, which results in the precipitated particles having a complex structure and morphology. Great care must be taken in both the synthesis and characterisation to quantify the complexity of the product. Even very high heat treatments were not able to produce highly homogeneous materials and X-ray diffractions reveals the non-equilibrium form of particles prepared in this way. Unexpected crystal structures are revealed including a new metastable cubic La 2 O 3 phase. - Graphical abstract: The suggested mechanism for the formation of dual fluorite phase particles, where Step 1 corresponds to room temperature aging, Step 2; heating the solution to 90 deg. C, Step 3; cooling of the solution to room temperature, Step 4; calcination to 500 deg. C, Step 5; calcination to 700 deg. C and Step 6; calcination to 1300 deg. C. The terminology of e.g. La 1-x Ce x (OH) 3 is used to indicate the formation of a mixed oxy-hydroxy participate rather than a definitive assignment of stoichiometry. Similarly, La 1-y Ce y O 2 only implies a mixed solid solution. Highlights: → Mol% of prepared Ce-La oxides did not follow that of reactant mol%. → Complex reaction pathway found to be dependent on metal solution concentrations. → At certain concentrations core shell particles were found to form. → A reaction model was produced based on cationic solubility. → Report lanthana solubility higher than previously reported in CeO 2 .

  13. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian

    2016-02-29

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  14. Thermal conductivities of (ZrxPu(1-x)/2Am(1-x)/2)N solid solutions

    International Nuclear Information System (INIS)

    Nishi, Tsuyoshi; Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo

    2011-01-01

    The thermal conductivity of Zr-based transuranium (TRU) nitride solid solutions is important for designing subcritical cores in nitride-fueled ADS. Some results have been reported concerning the thermal conductivities of (Zr,Pu)N. However, there have been no experimental data on the thermal conductivities of Zr-based nitride solid solutions containing MA. In this study, the authors prepared sintered samples of (Zr x Pu (1-x)/2 Am (1-x)/2) N (x=0.0, 0.58, 0.80) solid solutions. The thermal diffusivity and heat capacity of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were measured using a laser flash method and drop calorimetry, respectively. Thermal conductivities were determined from the measured thermal diffusivities, heat capacities and bulk densities over a temperature range of 473 to 1473 K. The thermal conductivities of (Zr 0.58 Pu 0.21 Am 0.21 )N and (Zr 0.80 Pu 0.10 Am 0.10 )N solid solutions were found to be higher than that of (Pu 0.5 Am 0.5 )N due to the high thermal conductivity of ZrN as the principal component, although they were lower than that of ZrN due to the impurifying effect of the transuranium elements. Thus, the thermal conductivities of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions increased with increasing ZrN concentration. Moreover, in order to help to promote the design study of nitride-fueled ADS, the thermal conductivity of the (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were fitted to an equation using the least squares method. (author)

  15. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Amira M. Mahmoud

    2015-03-01

    Full Text Available Environmental pollution by heavy metal is arising as the most endangering tasks to both water sources and atmosphere quality today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. To limit the spread of the heavy metals within water sources, nickel oxide nanoparticles adsorbents were synthesized and characterized with the aim of removal of one of the aggressive heavy elements, namely; lead ions. Nano nickel oxide adsorbents were prepared using NaOH and oxalic acid dissolved in ethanol as precursors. The results indicated that adsorption capacity of Pb(II ion by NiO-org catalyst is favored than that prepared using NaOH as a precipitant. Nickel oxide nanoparticles prepared by the two methods were characterized structurally and chemically through XRD, DTA, TGA, BET and FT-IR. Affinity and efficiency sorption parameters of the solid nano NiO particles, such as; contact time, initial concentration of lead ions and the dosage of NiO nano catalyst and competitive adsorption behaviors were studied. The results showed that the first-order reaction law fit the reduction of lead ion, also showed good linear relationship with a correlation coefficient (R2 larger than 0.9.

  16. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  17. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  18. Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst

    Science.gov (United States)

    Ding, Ning; Zhou, Lan; Zhou, Changwei; Geng, Dongsheng; Yang, Jin; Chien, Sheau Wei; Liu, Zhaolin; Ng, Man-Fai; Yu, Aishui; Hor, T. S. Andy; Sullivan, Michael B.; Zong, Yun

    2016-09-01

    Lithium nitrate (LiNO3) is known as an important electrolyte additive in lithium-sulfur (Li-S) batteries. The prevailing understanding is that LiNO3 reacts with metallic lithium anode to form a passivation layer which suppresses redox shuttles of lithium polysulfides, enabling good rechargeability of Li-S batteries. However, this view is seeing more challenges in the recent studies, and above all, the inability of inhibiting polysulfide reduction on Li anode. A closely related issue is the progressive reduction of LiNO3 on Li anode which elevates internal resistance of the cell and compromises its cycling stability. Herein, we systematically investigated the function of LiNO3 in redox-shuttle suppression, and propose the suppression as a result of catalyzed oxidation of polysulfides to sulfur by nitrate anions on or in the proximity of the electrode surface upon cell charging. This hypothesis is supported by both density functional theory calculations and the nitrate anions-suppressed self-discharge rate in Li-S cells. The catalytic mechanism is further validated by the use of ruthenium oxide (RuO2, a good oxygen evolution catalyst) on cathode, which equips the LiNO3-free cell with higher capacity and improved capacity retention over 400 cycles.

  19. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  20. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0solid solutions and the gaseous oxygen by thermal gravimetric analysis at 600 degrees Celsius has shown that these solutions have not a ideal behaviour. A thermodynamic model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  1. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  2. Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zhenzi, E-mail: zzjing@tongji.edu.cn [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Jin, Fangming [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2017-05-15

    Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6–5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite. - Highlights: •Pure pollucite barely exists in nature due to coexistence of Cs and Na. •Pollucite, analcime and their solid solutions could be hydrothermally synthesized. •Most formed solid solutions were found to have similar properties to pollucite. •Even coexistence in nature, pollucite favors to form due to site preference for Cs over Na.

  3. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  4. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    Science.gov (United States)

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability

  5. Cutting solid figures by plane - analytical solution and spreadsheet implementation

    Science.gov (United States)

    Benacka, Jan

    2012-07-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.

  6. Soil solid-phase controls lead activity in soil solution.

    Science.gov (United States)

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  7. Ab initio identified design principles of solid-solution strengthening in Al

    International Nuclear Information System (INIS)

    Ma Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2013-01-01

    Solid-solution strengthening in six Al–X binary systems is investigated using first-principle methods. The volumetric mismatch parameter and the solubility enthalpy per solute were calculated. We derive three rules for designing solid-solution strengthened alloys: (i) the solubility enthalpy per solute is related to the volumetric mismatch by a power law; (ii) for each annealing temperature, there exists an optimal solute–volume mismatch to achieve maximum strength; and (iii) the strengthening potential of high volumetric mismatch solutes is severely limited by their low solubility. Our results thus show that the thermodynamic properties of the system (here Al–X alloys) set clear upper bounds to the achievable strengthening effects owing to the reduced solubility with increasing volume mismatch. (paper)

  8. Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se

    International Nuclear Information System (INIS)

    Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V.

    2014-01-01

    We have summarized experimental data on the phase diagram of the system Ag 2 S–Ag 2 Se. Standard thermodynamic functions of four solid solutions in this system have been calculated using the model of regular and subregular solutions: a restricted fcc solid solution γ-Ag 2 S-Ag 2 S 1−x Se x (x 2 S–Ag 2 Se, monoclinic solid solution (α) from Ag 2 S to Ag 2 S 0.4 Se 0.6 , and orthorhombic solid solution (α) from Ag 2 S 0.3 Se 0.7 to the Ag 2 Se. G mix and S mix have been evaluated using the subregular model for asymmetric solution for the region Ag 2 S 0.4 Se 0.6 –Ag 2 S 0.3 Se 0.7 . The thermodynamic data can be used for modeling in complex natural systems and in matters of semiconductor materials

  9. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    Science.gov (United States)

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Qing; Gao, Jixian; Nawaz, Zeeshan; Liao, Yuhui; Wang, Dezheng; Wang, Jinfu [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Broensted acid sites), hydrophobicity that prevented the hydration of -OH species, hydrophilic functional groups (-SO{sub 3}H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants. (author)

  11. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    Science.gov (United States)

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  12. Regularities in electroconductivity and thermo-emf in systems of binary continuous solid solutions of metals

    International Nuclear Information System (INIS)

    Vedernikov, M.V.; Dvunitkin, V.G.; Zhumagulov, A.

    1978-01-01

    Given are new experimental data about specific electric resistance of 10 systems of binary continuous solid metal solutions at the temperatures of 293 and 4.2 K: Cr-V, Mo-Nb, Mo-V, Cr-Mo, Nb-V, Ti-Zr, Hf-Zr, Hf-Ti, Sc-Zr, Sc-Hf. For the first time a comparative analysis of all available data on the resistance dependence on the composition of systems of continuous solid solutions, which covers 21 systems, is carried out. The ''resistance-composition'' dependence for such alloy systems is found to be of two types. The dependence of the first type is characteristic of the systems, formed by two isoelectronic metals, the dependence of the second type - for the systems, formed by non-isoelectronic metals. Thermo-emf of each type of solid solutions differently depends on their compositions

  13. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.

    Science.gov (United States)

    Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi

    2015-06-16

    hydrogen absorption/desorption process as a trigger. Several atom percent replacements of Pd with Pt atoms resulted in a significantly enhanced hydrogen absorption capacity compared with Pd nanoparticles. AgxRh1-x and PdxRu1-x solid-solution alloy nanoparticles were also developed by nonequilibrium synthesis based on a polyol method. The AgxRh1-x nanoparticles demonstrated hydrogen storage properties, although pure metal nanoparticles of each constituent element do not adsorb hydrogen. AgxRh1-x is therefore considered to possess a similar electronic structure to Pd as a synthetic pseudo-palladium. The PdxRu1-x nanoparticles showed enhanced catalytic activity for CO oxidation, with the highest catalytic activity found using the equimolar Pd0.5Ru0.5 nanoparticles. The catalytic activity of the Pd0.5Ru0.5 nanoparticles exceeds that of the widely used and best-performing Ru catalysts for CO oxidation and is also higher than that of neighboring Rh on the periodic table. Our present work provides a guiding principle for the design of a suitable DOS shape according to the intended physical and/or chemical properties and a method for the development of novel solid-solution alloys.

  14. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    Science.gov (United States)

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  15. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  16. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  17. A Moessbauer study on the photolysis of potassium trisoxalatoferrate(III) in solid and solutions

    International Nuclear Information System (INIS)

    Sato, H.; Tominaga, T.

    1977-01-01

    The photolysis of potassium trisoxalatoferrate(III) in solid and aqueous solutions was studied by Moessbauer spectroscopy. A ferrous species was mainly detected as an intermediate product in the photoirradiated solutions. A tentative mechanism was proposed for the overall reactions in and after the photolysis of this compound. The Moessbauer spectra were measured with a Hitachi AA-40 or Shimadzu MEG-2 Moessbauer spectrometer against Co-57 in copper foil. Acrylic holders (32 mm in diameter) were used for measurements of solutions: the irradiated solution was quickly frozen before measurement by adding it dropwise into the acrylic holder which had been cooled with liquid nitrogen or dry-ice. (T.I.)

  18. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions

    International Nuclear Information System (INIS)

    Tao, D.P.

    2004-01-01

    Based on the free volume theory and the lattice model, the partition functions of pure solids and their mixtures were expressed. This resulted in the establishment of a thermodynamic model for solid solutions. The model naturally combines the excess entropy and excess enthalpy of a solution by means of new expressions of the configurational partition functions of solids and their mixtures derived from statistical thermodynamics, which is approximate to real solid solutions, that is S E ≠0 (V E ≠0) and H E ≠0. It can describe the thermodynamic properties of partially miscible systems and predict the thermodynamic properties in a multicomponent solid solution system using only the related binary infinite dilute activity coefficients. The predicted activity coefficients from the model are in good agreement with the experimental data of the ternary solid dilutions. This shows that the prediction effect of the proposed model is of better stability and reliability because it has a good physical basis

  19. Light refractive index in indium phosphide and InP-containing solid solutions

    International Nuclear Information System (INIS)

    Yas'kov, A.D.

    1983-01-01

    Spectral and temperatUre dependences of the InP and Gasub(x)Insub(1-x)P refractive indexes in the range of 0.98-1.3 μm are measured. The obtained in this case and published earlier experimental data on refractive index dispersion of the InP and solid solutions with its participation are generalized within the framework of a simple model approach based on a consecutiVe account of measured parameters of zone structure with the solid solution composition

  20. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  1. Specific features of kinetics of He3-He4 solid solution transformations at superlow temperatures

    International Nuclear Information System (INIS)

    Mikheev, V.A.; Majdanov, V.A.; Mikhin, N.P.

    1986-01-01

    The NMR data on the phase transition kinetics of 3 He- 4 He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm 2 /mol with a 3 He content of 0.54 %. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of 3 He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid

  2. Characterization of solid-solution interface by potentiometric titration and electrophoretic mobility

    International Nuclear Information System (INIS)

    Lindecker, C.; Drot, R.; Fourest, B.; Simoni, E.

    1999-01-01

    The study of nuclear waste storage in deep geological sites involves the understanding of processes which could produce a possible dispersion or retention of radioelements. The dispersion of solid particles in aqueous solution is consequently important to be characterized. In this bi-phased system it is necessary to determine the characteristics of the solid-solution interface. The method used of this study is the techniques of potentiometric titration applied to heterogeneous systems. The material studied were phosphate matrices which were synthesized in the laboratory. The dependence of their surface change upon the nature of the electrolytes was investigated

  3. Decomposition features of a supersaturated solid solution in the Mg-3.3 wt. % Yb alloy

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Kajgorodova, L.I.; Sukhanov, V.D.; Dobatkina, T.V.

    2007-01-01

    Methods of electron microscopy, hardness measuring and X-ray diffraction analysis are applied to study decomposition kinetics for a supersaturated solid solution in a Mg-3.3 mas. % alloy on aging within a temperature range of 150-225 deg C. The mechanism of supersaturation solid solution decomposition is revealed along with the nature of phases precipitated at various stages of aging: on incomplete and extended aging as well as at maximum hardness. The types of structural constituents responsible for changes of hardness on aging are determined [ru

  4. Direct measurements of the enthalpy of solution of solid solute in supercritical fluids: study on the CO2-naphthalene system.

    Science.gov (United States)

    Zhang, X; Han, B; Zhang, J; Li, H; He, J; Yan, H

    2001-10-01

    A setup for a calorimeter for simultaneously measuring the solubility and the solution enthalpy of solid solutes in supercritical fluids (SCFs) has been established. The enthalpy of solution of naphthalene in supercritical CO2 was measured at 308.15 K in the pressure range from 8.0-11.0 MPa. It was found that the enthalpy of solution (deltaH) was negative in the pressure range from 8.0 to 9.5 MPa, and the absolute value decreased with increasing pressure. In this pressure range, the dissolution of the solute was enthalpy driven. However, the deltaH became positive at pressures higher than 9.5 MPa, and the dissolution was entropy driven. Monte Carlo simulation was performed to analyze the local structural environment of the solvated naphthalene molecules in supercritical CO2 under the experimental conditions for the calorimetric measurements. By combining the enthalpy data and the simulation results, it can be deduced that the energy level of CO2 in the high compressible region is higher than that at higher pressures, which results in the large negative enthalpy of solution and the larger degree of solvent-solute clustering in the high compressible region.

  5. Diffusion kinetics and spinodal decay of quasi-equilibrium solid solutions

    International Nuclear Information System (INIS)

    Zakharov, M.A.

    2000-01-01

    Phenomenological theory for rearrangement of solid solutions with the hierarchy of the component atomic mobilities is elaborated in the approximation of the local equilibrium. The hydrodynamic stage of the evolution of these solutions is studied as a sequence of quasi-equilibrium states characterized by implementation of some conditions of the total equilibrium. On the basis of separation of fast and slow constituents of diffusion and on the basis of the method of reduced description one derived equation for evolution of separations of fast components in quasi-equilibrium solid solutions at the arbitrary stages of rearrangement in terms of the generalized lattice model taking account of the proper volumes of the components. The conditions of the stability of quasi-equilibrium solutions to the spinodal decomposition are determined and the equations of metastability boundaries of such systems are derived [ru

  6. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Tao, N [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hong, Y [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Lu, J [LASMIS, University of Technology of Troyes, 10000, Troyes (France); Lu, K [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2005-11-21

    Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

  7. Use of Graphite Oxide and Graphene Oxide as Catalysts in the Synthesis of Dipyrromethane and Calix[4]pyrrole

    Directory of Open Access Journals (Sweden)

    Sweta Mishra

    2011-08-01

    Full Text Available Graphite oxide and graphene oxides have been used as solid catalysts for the synthesis of 5,5-dialkyldipyrromethanes and calix[4]pyrroles in organic and aqueous solutions at room temperature.

  8. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  9. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  10. Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions

    International Nuclear Information System (INIS)

    Hinatsu, Y.; Fujino, T.

    1988-01-01

    Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions with fluorite structure were measured from 4.2 K to room temperature. An antiferromagnetic transition was observed for all the solid solutions examined in this study (y ≤ 0.33). The Neel temperature of the oxygen-hypostoichiometric solid solutions (x 2 solid solutions, but different from that of (U,Th)O 2 solid solutions. The effective magnetic moment decreased with increasing calcium concentration, which indicates the oxidation of uranium in the solid solutions. From the analysis of the magnetic susceptibility data, it was found that the oxidation state of uranium was either tetravalent or pentavalent. The Neel temperature of the hyperstoichiometric solid solutions (x > 0) did not change appreciably with calcium concentrations. From the comparison of the magnetic susceptibility data of the hypostoichiometric solid solutions with those of the hyperstoichiometric solid solutions, the effect of oxygen vacancies is more significant than that of interstitial oxygens on the decrease of magnetic interactions between uranium ions

  11. Influence of Ce 0.68 Zr 0.32 O 2 solid solution on depositing ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Influence of Ce0.68Zr0.32O2 solid solution on depositing -alumina washcoat on FeCrAl foils. Mei-Qing Shen Li-Wei Jia Wen-Long Zhou Jun Wang Ying Huang. Composites Volume 29 Issue 1 February 2006 pp 73-76 ...

  12. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  13. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  14. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2009-01-01

    The lattice thermal expansion of the transuranium nitride solid solutions was measured to investigate the composition dependence. The single-phase solid solution samples of (Np 0.55 Am 0.45 )N, (Pu 0.59 Am 0.41 )N, (Np 0.21 Pu 0.52 Am 0.22 Cm 0.05 )N and (Pu 0.21 Am 0.18 Zr 0.61 )N were prepared by carbothermic nitridation of the respective transuranium dioxides and nitridation of Zr metal through hydride. The lattice parameters were measured by the high temperature X-ray diffraction method from room temperature up to 1478 K. The linear thermal expansion of each sample was determined as a function of temperature. The average thermal expansion coefficients over the temperature range of 293-1273 K for the solid solution samples were 10.1, 11.5, 10.8 and 8.8 x 10 -6 K -1 , respectively. Comparison of these values with those for the constituent nitrides showed that the average thermal expansion coefficients of the solid solution samples could be approximated by the linear mixture rule within the error of 2-3%.

  15. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  16. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  17. Solution and solid-phase halogen and C-H hydrogen bonding to perrhenate.

    Science.gov (United States)

    Massena, Casey J; Riel, Asia Marie S; Neuhaus, George F; Decato, Daniel A; Berryman, Orion B

    2015-01-28

    (1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.

  18. Fine interstitial clusters as recombinators in decomposing solid solutions under irradiation

    International Nuclear Information System (INIS)

    Trushin, Yu.V.

    1991-01-01

    Behaviour of interstitial clusters and their roll in processes of radiation swelling of metals are described. It is shown that occurrence of coherent advanced precipitations during decomposition of solid solutions under irradiation leads to matrix supersaturation over interstitial atoms. This enhances recombination of unlike defects due to vacancy precipitation on fine interstitial clusters. Evaluation of cluster sizes was conducted

  19. Bridging phases at the morphotropic boundaries of lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, Beatriz; Cox, DE

    2006-01-01

    Ceramic solid solutions of PbZr1-xTixO3 (PZT) with compositions x similar or equal to 0.50 are well-known for their extraordinarily large piezoelectric responses. The latter are highly anisotropic, and it was recently shown that, for the rhombohedral compositions (x less than or similar to 0.5), the

  20. Study of reaction sequences for formation of solid solution: 0,48 ...

    African Journals Online (AJOL)

    ... of a low concentration of ions forming the perovskite structure PZT (Pb2+, Zr4+ et Ti4+) by other ions (Zn2+, Cr3+ et Sb+5 in our study) alters the reaction sequences training of the solid solution PZT and especially the formation of intermediate phase. Keywords: PZT / Calcination / TGA / DTA / RX / Piezoelectric Ceramics ...

  1. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    Science.gov (United States)

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  2. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  3. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  4. Pd-RuSe/C as ORR specific catalyst in alkaline solution containing methanol

    Energy Technology Data Exchange (ETDEWEB)

    Maheswari, S.; Sridhar, P.; Pitchumani, S. [CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Complex, Chennai 600 113 (India)

    2012-12-15

    Carbon supported RuSe (RuSe/C) catalyst in varying atomic ratios of Ru to Se, namely, 1:1, 2:1, and 3:1 were prepared and their performances were compared with carbon supported Ru (Ru/C). Based on the performance, Palladium was incorporated into as prepared RuSe(2:1)/C and heat treated HTRuSe(2:1)/C. Ru/C, RuSe/C, and Pd-RuSe/C were characterized by X-ray diffraction (XRD) and transmission electron microscopy techniques. The XRD analyses of Ru/C, RuSe/C and Pd-HTRuSe/C show the formation of the hcp structure of Ru particles and the mean particle size was obtained from Ru(101) peak. The electrochemical characterizations of Ru/C, RuSe/C, Pd-HTRuSe(2:1)/C and Pd-RuSe(2:1)/C were conducted by cyclic voltammetry. Linear Sweep Voltammetric studies showed that incorporation of Pd in HTRu-Se(2:1)/C resulted in better catalytic activity toward oxygen reduction with resistance to methanol oxidation. The quantity of hydrogen peroxide produced was obtained from rotating ring disk electrode studies. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    Science.gov (United States)

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  6. Zirconyl (IV Nitrate as Efficient and Reusable Solid Lewis Acid Catalyst for the Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Pratapsinha B. Gorepatil

    2013-01-01

    Full Text Available The present paper introduces a simple and efficient method for the synthesis of substituted benzimidazoles by heterocyclization of different o-phenylenediamines and substituted aromatic carboxylic acid/aldehyde in the presence of zirconyl nitrate as catalyst in ethanol under reflux, which produced excellent yield of corresponding benzimidazoles in a short reaction time with reusability of catalyst.

  7. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  8. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  9. Failure criterion effect on solid production prediction and selection of completion solution

    Directory of Open Access Journals (Sweden)

    Dariush Javani

    2017-12-01

    Full Text Available Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohr–Coulomb and Mogi–Coulomb, were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohr–Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi–Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi–Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.

  10. Thermodynamics of CoAl2O4-CoGa2O4 solid solutions

    International Nuclear Information System (INIS)

    Lilova, Kristina I.; Navrotsky, Alexandra; Melot, Brent C.; Seshadri, Ram

    2010-01-01

    CoAl 2 O 4 , CoGa 2 O 4 , and their solid solution Co(Ga z Al 1-z ) 2 O 4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO.B 2 O 3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O'Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing. - Graphical abstract: Measured enthalpies of mixing of CoAl 2 O 4 -CoGa 2 O 4 solid solutions are close to zero but entropies of mixing reflect the complex cation distribution, so the system is not an ideal solution.

  11. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    Science.gov (United States)

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  12. Current state in adsorption from multicomponent solutions of nonelectrolytes on solids

    International Nuclear Information System (INIS)

    Borowko, M.; Jaroniec, M.

    1983-01-01

    This paper surveys the research carried out on the adsorption from multicomponent liquid mixtures of nonelectrolytes on solids with emphasis on the work performed by the authors. The consistent theoretical treatment of adsorption from concentrated and dilute multicomponent solutions and its application to the liquid adsorption chromatography with the mixed mobile phase are presented. This treatment involved nonideality of the bulk and surface phases, energetic heterogeneity of the adsorbent surface and it may be extended to multilayer adsorption from solutions. The multicomponent liquid/solid adsorption systems, studied experimentally, are reviewed. Many of them have been examined by means of the equations derived for liquid adsorption on heterogeneous surfaces. These studies are summarized in this paper. Moreover, the model studies illustrating the influence of solution nonideality and adsorbent heterogeneity on the excess adsorption isotherms and the distribution coefficient are discussed. (orig.)

  13. Selective hydrogenation of 1,3-butadiene from crude C{sub 4} cracker stream with a solid catalyst with ionic liquid layer (SCILL). DSC and solubility study

    Energy Technology Data Exchange (ETDEWEB)

    Mangartz, T.; Korth, W.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In petroleum as well as in fine chemical industry, selective catalytic hydrogenation is an important reaction. The selective hydrogenation of 1,3-butadiene (BD) to butene (trans-,1- and cis-butene) from the crude C4 steam cracker fraction represents one example, but under today's technical conditions undesired butane forms inevitably in relevant amounts. To increase the butene yield, the concept of Solid Catalyst with Ionic Liquid Layer (SCILL) was employed. The SCILL catalyst, in contrast to the uncoated catalyst, yielded a remarkably high selectivity to butenes (S{sub butenes} > 99 %) even at high residence times or at high hydrogen partial pressure. Nearly no butane (S{sub butane} {approx} 0 %) was analytically detected. We expected that due to different solubility, the poorer soluble compounds discharged from the ionic liquid and, thus, caused the shift in selectivity to a great extent. Temperature dependent solubility measurements in the used ionic liquid ([DMIM][DMP]) revealed that the order of increasing solubility is 1,3-butadiene > butenes > butane which matches the assumption. However, since differences in solubility cannot explain this SCILL effect satisfyingly, ionic liquids are expected to affect the surface of the catalyst (side-specific ligand-type effect). Investigations using spectroscopic methods (e.g. FTIR) confirmed this suggestion. (orig.)

  14. Excited-state dynamics of a ruthenium(II) catalyst studied by transient photofragmentation in gas phase and transient absorption in solution

    Energy Technology Data Exchange (ETDEWEB)

    Imanbaew, D.; Nosenko, Y. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Kerner, C. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Chevalier, K.; Rupp, F. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Riehn, C., E-mail: riehn@chemie.uni-kl.de [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Thiel, W.R. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Diller, R. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany)

    2014-10-17

    Graphical abstract: - Highlights: • Ultrafast dynamics of new Ru(II) catalysts investigated in gas phase and solution. • Catalyst activation (HCl loss) achieved in ion trap by UV photoexcitation. • Electronic relaxation proceeds by IVR and IC followed by ground state dissociation. • No triplet formation in contrast to other Ru-polypyridine complexes. • Solvent prohibits catalyst activation in solution by fast vibrational cooling. - Abstract: We report studies on the excited state dynamics of new ruthenium(II) complexes [(η{sup 6}-cymene)RuCl(apypm)]PF{sub 6} (apypm=2-NR{sub 2}-4-(pyridine-2-yl)-pyrimidine, R=CH{sub 3} (1)/H (2)) which, in their active form [1{sup +}-HCl] and [2{sup +}-HCl], catalyze the transfer hydrogenation of arylalkyl ketones in the absence of a base. The investigations encompass femtosecond pump–probe transient mass spectrometry under isolated conditions and transient absorption spectroscopy in acetonitrile solution, both on the cations [(η{sup 6}-cymene)RuCl(apypm)]{sup +} (1{sup +}, 2{sup +}). Gas phase studies on mass selected ions were performed in an ESI ion trap mass spectrometer by transient photofragmentation, unambiguously proving the formation of the activated catalyst species [1{sup +}-HCl] or [2{sup +}-HCl] after photoexcitation being the only fragmentation channel. The primary excited state dynamics in the gas phase could be fitted to a biexponential decay, yielding time constants of <100 fs and 1–3 ps. Transient absorption spectroscopy performed in acetonitrile solution using femtosecond UV/Vis and IR probe laser pulses revealed additional deactivation processes on longer time scales (∼7–12 ps). However, the formation of the active catalyst species after photoexcitation could not be observed in solution. The results from both studies are compared to former CID investigations and DFT calculations concerning the activation mechanism.

  15. Synthesis and characterization of Fe colloid catalysts in inverse micelle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Martino, A.; Stoker, M.; Hicks, M. [Sandia National Lab., Alburquerque, NM (United States)] [and others

    1995-12-31

    Surfactant molecules, possessing a hydrophilic head group and a hydrophobic tail group, aggregate in various solvents to form structured solutions. In two component mixtures of surfactant and organic solvents (e.g., toluene and alkanes), surfactants aggregate to form inverse micelles. Here, the hydrophilic head groups shield themselves by forming a polar core, and the hydrophobic tails groups are free to move about in the surrounding oleic phase. The formation of Fe clusters in inverse miscelles was studied.Iron salts are solubilized within the polar interior of inverse micelles, and the addition of the reducing agent LiBH{sub 4} initiates a chemical reduction to produce monodisperse, nanometer sized Fe based particles. The reaction sequence is sustained by material exchange between inverse micelles. The surfactant interface provides a spatial constraint on the reaction volume, and reactions carried out in these micro-heterogeneous solutions produce colloidal sized particles (10-100{Angstrom}) stabilized in solution against flocculation of surfactant. The clusters were stabilized with respect to size with transmission electron microscopy (TEM) and with respect to chemical composition with Mossbauer spectroscopy, electron diffraction, and x-ray photoelectron spectroscopy (XPS). In addition, these iron based clusters were tested for catalytic activity in a model hydrogenolysis reaction. The hydrogenolysis of naphthyl bibenzyl methane was used as a model for coal pyrolysis.

  16. Thermodynamic characteristics of systems with solid solutions composed of crystal hydrates of lanthanide and yttrium chlorides, at 250C. III. Systems of Roozeboom's type IV, with restricted solid solutions

    International Nuclear Information System (INIS)

    Sokolova, N.P.

    1983-01-01

    The values of the activity, the activity coefficients, the free energy of mixing and the excess free energy of mixing have been calculated for CeCl 3 -LnCl 3 -H 2 O systems (where Ln identical with Sm, Gd, Dy, Ho, Er, Y) containing solid solutions of types IV and IVa. It is shown that the stability of the solid solutions decreases with increasing difference between the radii of the cations of cerium and the second lanthanide, which enter into the composition of the components of the solid solutions. The factors determining the composition of a liquid solution corresponding to the eutonic point are specified

  17. Optimization of moistening solution concentration on xylanase activity in solid state fermentation from oil palm empty fruit bunches

    Science.gov (United States)

    Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang

    2018-03-01

    Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.

  18. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  19. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  20. phase formation and thermal stability of fcc (fluorite) Ce1-xTbxO2-d solid solutions

    NARCIS (Netherlands)

    de Vries, Karel Jan; de Vries, K.J.; Meng, G.Y.

    1998-01-01

    Ce1−xTbxO2−δ solid solutions (x = 0.3, 0.4, and 0.5) were synthesized by a coprecipitation method, using ammonia. The formation process of the solid solutions was studied as a function of temperature up to 1200°C by X-ray diffraction, thermogravimetric analysis, and differential scanning

  1. Ionic thermocurrents and ionic conductivity of solid solutions of SrF2 and YbF3

    NARCIS (Netherlands)

    Meuldijk, J.; Hartog, den H.W.

    1983-01-01

    We report dielectric [ionic thermocurrent (!TC)] experiments and ionic conductivity of cubic solid solutions of the type Sr1-xYbxF2+x. These combined experiments provide us with new information concerning the ionic conductivity mechanisms which play an important role in solid solutions Sr1-xRxF2+x

  2. Local structure of Th1-xMO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Moisy, Ph.; Dacheux, N.; Purans, J.E.

    2004-01-01

    X-ray absorption spectroscopy of Th 1-x U x O 2 and Th 1-x Pu x O 2 solid solutions was carried out on the Th, U L 3 -edges, and Pu L 3 edge to study the local structure environment of actinide mixed oxides. Various compositions of Th 1-x M x O 2 solid solutions have been prepared through the coprecipitation of the mixed oxalates from chloride or nitrate solutions: x = 0.11, 0.24, 0.37, 0.53, 0.67, 0.81, 0.91 and 1 for Th 1-x U x O 2 , and x = 0.13, 0.32, 0.66 and 1 for Th 1-x Pu x O 2 . They were characterized using X- ray diffraction. XRD analysis allowed to confirm that the variation of the lattice parameters varies linearly with the composition between the end members, suggesting that the atomic volume was conserved regardless of the details of the local distortions of the lattice, following the Vegard's law. Extending X-ray absorption fine structure (EXAFS) provides a direct characterization of the local distortions present in solid solutions. We found that opposite to the lattice parameter obtained by XRD, the interatomic distances given by EXAFS do not follow completely to neither the Vegard's law nor the virtual crystal approximation (VCA). However, the average lattice parameter obtained from EXAFS data for the first and the second shells agrees well with the one calculated from XRD data. (authors)

  3. Studies on Al-Mg solid solutions using electrical resistivity and microhardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Afify, N.; El-Halawany, S.M.; Mossad, A. [Assiut Univ. (Egypt). Dept. of Physics

    1999-08-01

    Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al-Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as {delta}{rho}{sub all} = 64.66 c(1-c) {mu}{omega} cm. In addition, both the temperature coefficient of resistivity, {alpha}{sub all} and the relaxation time of the free electrons {tau}{sub all} in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, {eta}, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature {theta} decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation {delta}HV{sub s} = 135.5C{sup 0.778} MPa which is comparable to the theory of solid solution hardening for all alloys; {delta}HV{sub s} {approx} C{sup 0.5-0.67} MPa. (orig.)

  4. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Karakirova, Y.

    2007-01-01

    A simple new approach for independent calibration of solid state/EPR (SS/EPR) dosimetry system is reported. It is based on the fact that: (i) gamma-irradiation of solid sucrose (sugar) induces stable EPR detectable free radicals accompanied by UV detectable brown colour stable in the solid state and in solution; (ii) both the EPR intensity of gamma-irradiated solid sucrose and its solution UV absorbance linearly depend on the absorbed dose high energy radiation and may be independently used for dosimetric purpose; (iii) UV spectrometers are calibrated. The correlation between EPR response and absorbed dose radiation of solid sucrose and UV absorption of its solutions is used in the present communication for calibration purpose. The procedure of sucrose extraction from sucrose-paraffin dosimeters is described. The calibration procedure may be applied to any other (alanine, self-calibrated, etc.) SS/EPR dosimeters, simultaneously irradiated with sucrose

  5. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+ as a Green Solid Catalyst

    Directory of Open Access Journals (Sweden)

    Lahouaria Medjdoub

    2016-08-01

    Full Text Available Nucleophilic substitution on hexachlorocyclotriphosphazene (HCCTP with allylamine in order to give hexa(allylaminocyclotriphosphazene (HACTP  is performed for the first time under mild conditions by using diethylether as solvent to replace benzene which is very toxic. The reaction time is reduced to half and also performed at room temperature but especially in the presence of an eco-catalyst called Maghnite-H+. This catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. Then, Maghnite-H+ is became an excellent catalyst for many chemical reactions. The structure of HACTP synthesized in the presence of Maghnite-H+ to 5% by weight is confirmed by 1H-NMR, 13C-NMR, 31P-NMR (Nuclear magnetic resonance and FTIR (Fourier Transform Infrared spectroscopy. MALDI-TOF (Matrix-Assisted Laser Desorption/Ionisation-time-of-flight mass spectrometry is used to establish the molecular weight of HACTP which is 471 g/mol. DSC (Differential Scanning Calorimetery and TGA (Thermogravimetric Analysis show that HACTP is a crystalline product with a melting point of 88 °C. It is reactive after melting but is degraded from 230 °C. Copyright © 2016 BCREC GROUP. All rights reserved Received: 28th September 2015; Revised: 5th December 2015; Accepted: 4th January 2016 How to Cite: Medjdoub, L., Mohammed, B. (2016. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+ as a Green Solid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 151-160 (doi:10.9767/bcrec.11.2.541.151-160 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.541.151-160

  6. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    Science.gov (United States)

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  7. Recovery of Cobalt from leach solution of spent oil Hydrodesulphurization catalyst using a synergistic system consisting of VersaticTM10 and Cyanex®272

    Science.gov (United States)

    Yuliusman; Ramadhan, I. T.; Huda, M.

    2018-03-01

    Catalyst are often used in the petroleum refinery industry, especially cobalt-based catalyst such as CoMoX. Every year, Indonesia’s oil industry produces around 1350 tons of spent hydrodesulphurization catalyst in which cobalt makes up for 7%wt. of them. Cobalt is a non-renewable and highly valuable resource. Taking into account the aforementioned reasons, this research was made to recover cobalt from spent hydrodesulphurization catalyst so that it can be reused by industries needing them. The methods used in the recovery of cobalt from the waste catalyst leach solution are liquid-liquid extraction using a synergistic system of VersaticTM 10 and Cyanex®272. Based on the experiments done using the aforementioned methods and materials, the optimum condition for the extraction process: concentration of VersaticTM 10 of 0.35 M, Cyanex®272 of 0.25 M, temperature of 23-25°C (room temperature), and pH of 6 with an extraction percentage of 98.80% and co-extraction of Ni at 93.51%.

  8. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results

    Directory of Open Access Journals (Sweden)

    Shirley Nakagaki

    2016-02-01

    Full Text Available Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic. These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs and Layered Hydroxide Salts (LHSs, published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1 and intercalated with different anions (CO32− or NO3−. The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  9. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results.

    Science.gov (United States)

    Nakagaki, Shirley; Mantovani, Karen Mary; Machado, Guilherme Sippel; Castro, Kelly Aparecida Dias de Freitas; Wypych, Fernando

    2016-02-29

    Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO₃(2-) or NO₃(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  10. Giant asymmetry of separation and homogenization processes in solid 3He-4He solutions

    International Nuclear Information System (INIS)

    Grigor'ev, V.N.; Majdanov, V.A.; Penzev, A.A.; Polev, A.V.; Rubets, S.P.; Rudavskij, Eh.Ya.; Rybalko, A.S.; Syrnikov, E.V.

    2005-01-01

    The kinetics of the processes of separation and homogenization of solid 3 He- 4 He solutions is compared by using the precision barometry. The experiments were made with the initial specimens of three types: weak 3 He- 4 He and 4 He- 3 He solutions and concentrated 3 He- 4 He ones. It is found that the homogenization rate at the initial stage may be more than 500 times higher that the rate of separation. This is the case for all types of the solutions studied. The appreciable rate of phase separation in the concentrated solutions where, according to the modern concepts, impurity atoms in quantum crystals should be localized, suggests that in such conditions there is a new unknown mechanism of mass-transfer, while the fast homogenization points to a nondiffusion nature of the process

  11. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  12. The investigation of solid solutions thin interlayers in CdS/CdTe film heterosystems

    International Nuclear Information System (INIS)

    Khrypunov, G.; Boyko, B.; Chernykh, O.

    1999-01-01

    The photo-response spectral dependence of ITO/CdTe/Au/Cu and ITO/CdS/CdTe/Au/Cu film heterosystems were investigated. At illuminations ITO/CdS/CdTe/Au/Cu heterosystems on ITO side a photo-response maximum was observed for photon absorption with a wavelength of 0.87 μm that is stipulated by formation of CdS x Te 1-x solid solutions interlayer with band gap width less than in CdTe layer. By use optical measurement transmittance spectra was selected a spectral photosensitivity interval appropriate to the contribution of non-equilibrium charge carriers generated in solid solutions interlayer by photon absorption with energy less than CdTe film band gap

  13. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    International Nuclear Information System (INIS)

    Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN

    2015-01-01

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys

  14. Calorimetric measurements on plutonium rich (U,Pu)O2 solid solutions

    International Nuclear Information System (INIS)

    Kandan, R.; Babu, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2008-01-01

    Enthalpy increments of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 were measured using a high-temperature differential calorimeter by employing the method of inverse drop calorimetry in the temperature range 956-1803 K. From the fit equations for the enthalpy increments, other thermodynamic functions such as heat capacity, entropy and Gibbs energy function have been computed in the temperature range 298-1800 K. The results are presented and compared with the data available in the literature. The results indicate that the enthalpies of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 obey the Neumann-Kopp's molar additivity rule

  15. Influence of chemical heterogeneity of solid solutions on brittleness in chromium steels

    International Nuclear Information System (INIS)

    Madyanov, S.A.; Sedov, V.K.; Apaev, B.A.

    1985-01-01

    The role of chemical heterogeneity of solid solutions in formation of mechanical properties of Kh09, Kh15, Kh20, Kh19N2G5T chromium steels has been investigated. It is established that besides the known regioA of chemical heterogeneity in the vicinity of 475 deg C exists a high-temperature region (1000-1050 deg C), where maximum heteroge=- neity of chromium distribution in solid solution, is observed. Both types of chemical heterogeneity cause essential hardening of alloys, which becomes apparent in abrupt change of capability to microplastic deformation The mechanism of occurrence of the given temper brittleness consists in carbon diffusion into microvolunes enriched in carbide-forming elements

  16. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  17. Microstructure and Mechanical Strengths of Metastable FCC Solid Solutions in Al-Ce-Fe System

    OpenAIRE

    A., Inoue; H., Yamaguchi; M., Kikuchi; T., Masumoto; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research

    1990-01-01

    A metastable fcc solid solution (SS) with high mechanical strengths and good bending ductility was found to be formed in rapidly solidified Al-Ce-Fe alloys containing the solute elements below about 6 at%. The SS consists of equiaxed grains with a size of about 2μm and contains a high density of internal defects. The highest hardness (H_v) and tensile fracture strengtn (σ_f) are 440 and 860 MPa in the as-quenched state and remain almost unchanged up to about 600 K for 1 h, though fine compoun...

  18. Photoelectrochemical properties of CdSesub(x)Tesub(1-x) semiconducting solid solutions

    International Nuclear Information System (INIS)

    Kolbasov, G.Ya.; Karpov, I.I.; Pavelets, A.M.; Khanat, L.N.

    1985-01-01

    Photoelectrochemical properties of polycrystalline films of solid solutions CdSesub(x)Tesub(1-x) at x=0.5-0.8 are studied. Films from 5 to 30 μm thickness had hexagonal or mixed cubic and hexogonal structures depending on the compositions. All compositions had the electron type of conductivity. Alkali solutions of Na 2 S and S were used as electrolyte. Polarization characteristics of the CdSesub(0.5)Tesub(0.5) photoelectrode, curves of spectral dependence of photo electrochemical current and of the changes of photo-e.m.f. on electrode potential are plotted

  19. Phase transitions in solid Kr-CH4 solutions and rotational excitations in phase II

    International Nuclear Information System (INIS)

    Bagatskii, M.I.; Mashchenko, D.A.; Dudkin, V.V.

    2007-01-01

    The heat capacity C p of solid Kr-n CH 4 solutions with the CH 4 concentrations n=0.82, 0.86, 0.90 as well as solutions with n=0.90, 0.95 doped with 0.002 O 2 impurity has been investigated under equilibrium vapor pressure over the internal 1-24 K. The (T,n)-phase diagram was refined and the region of two-phase states was determined for Kr-n CH 4 solid solutions. The contribution of the rotational subsystem, C r ot, to the heat capacity of the solutions has been separated. Analysis of C r ot(T) at T 1 and E 2 between the tunnel levels of the A-, T- and A-, E--nuclear-spin species of CH 4 molecules in the orientationally ordered subsystem, and to determine the effective energy gaps E 1 between lowest levels of the A- and T- species. The relations τ(n) and E 1 (n) stem from changes of the effective potential field caused as the replacement of CH 4 molecules by Kr atoms at sites of the ordered sublattices. The effective gaps E L between a group of tunnel levels of the ground-state liberation state and the nearest group of excited levels of the liberation state of the ordered CH 4 molecules in the solutions with n=0.90 (E L =52 K) and 0.95 (E L =55 K) has been estimated

  20. Tensometrical properties of volumetric crystals of germanium-silicon solid solutions irradiated by fast electrons

    International Nuclear Information System (INIS)

    Abbasov, Sh.M.

    2002-01-01

    Full Text: In the present work the tensometrical properties of Ge1-xSix solid solution monocrystal contended of up to 15 at. % Si were investigated. The radiation-proof strain gauges of researched crystals were made. For this purpose the site was cutted out from a sample, perpendicularly or in parallel of a crystal axes. After polishing the samples had thickness of 30-40 microns, and length of 2 mm

  1. First-principles investigations of solid solution strengthening in Al alloys

    OpenAIRE

    Ma, Duancheng

    2012-01-01

    Any material properties, in principle, can be reproduced or predicted by performing firstprinciples calculations. Nowadays, however, we are dealing with complex alloy compositions and processes. The complexities cannot be fully described by first-principles, because of the limited computational power. The primary objective of this study is to investigate an important engineering problem, solid solution strengthening, in a simplified manner. The simplified scheme should allow fast and reliable...

  2. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  3. Long-term behavior of refractory thorium-plutonium dioxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Claparede, Laurent, E-mail: laurent.claparede@umontpellier.fr [ICSM, UMR 5257 CNRS/CEA/Univ. Montpellier/ENSCM, Site de Marcoule, Bât. 426, BP 17171, 30207 Bagnols/Cèze (France); Guigue, Mireille [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France); Jouan, Gauthier [CEA, Nuclear Energy Division, DTEC Department, BP 17171, 30207 Bagnols/Cèze (France); Nadah, Nassima [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France); Dacheux, Nicolas [ICSM, UMR 5257 CNRS/CEA/Univ. Montpellier/ENSCM, Site de Marcoule, Bât. 426, BP 17171, 30207 Bagnols/Cèze (France); Moisy, Philippe [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France)

    2017-01-15

    The long-term behavior of Th{sub 0.87}Pu{sub 0.13}O{sub 2} was examined in nitric acid concentrations. The normalized dissolution rates after 3380 days, range from (1.4 ± 0.2) × 10{sup −6} g m{sup −2} d{sup −1} in 5 M HNO{sub 3} down to (3.2 ± 0.4) × 10{sup −8} g m{sup −2} d{sup −1} in 10{sup −3} M HNO{sub 3}, which confirms the high chemical durability of this solid solution. The amounts of plutonium measured in solution lead to 0.9% and 2.1% of dissolved solid in 1 M and 5 M HNO{sub 3}, respectively. In such conditions, the time required to reach the full dissolution of the material varies from 430 years (5 M HNO{sub 3}) to 18,000 years (10{sup −3} M HNO{sub 3}). Moreover, the partial order related to the proton activity (n = 0.45 ± 0.03) suggests that the dissolution is mainly driven by surface reactions occurring at the solid/liquid interface. The characterization of the leached samples by SEM shows small microstructural modifications (i.e. detachment of crystallites) and the absence of neoformed phase while from PXRD, the unit cell parameter and crystallite size are not significantly affected. - Highlights: • Leaching tests of Th{sub 0.87}Pu{sub 0.13}O{sub 2} were performed for 9 years in several nitric acid solutions. • The high chemical durability of thorium-plutonium oxide solid solutions was confirmed. • The solubility of plutonium(IV) was not controlled by the precipitation of plutonium tetrahydroxide in these experiments.

  4. Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2000-02-03

    A new class of binary mesoporous yttria-zirconia (YZ) and ternary mesoporous metal-YZ materials (M = electroactive Ni/Pt) is presented here that displays the highest surface area of any known form of yttria-stabilized zirconia. These mesoporous materials form as solid solutions and retain their structural integrity to 800 C, which bodes well for their possible utilization in fuel cells. (orig.)

  5. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  6. Electron paramagnetic resonance response and magnetic interactions in ordered solid solutions of lithium nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, Pavia (Italy); Paleari, A. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita di Milano, Milan (Italy); Massarotti, V.; Capsoni, D. [Dipartimento di Chimica-Fisica, Universita di Pavia, Pavia (Italy)

    1996-09-23

    EPR data of ordered solid solutions of lithium nickel oxides are reported as a function of the lithium content. The features of the signal and the EPR centre density are analysed by a model of dynamical trapping of holes in [(Ni{sup 2+}-O-Ni{sup 2+})-h{sup +}] complexes. The possible origin of the interactions responsible for the magnetic ordering and some features of the transport properties are also discussed. (author)

  7. Contribution to the study of the structure of silver krypton solid solutions

    International Nuclear Information System (INIS)

    Levy, V.; Tullairet, J.; Delaplace, J.; Antolin-Baudier, J.; Adda, Y.

    1964-01-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [fr

  8. Small interstitial clusters as opposite defect recombinators in decomposing solid solutions under irradiation

    International Nuclear Information System (INIS)

    Orlov, A.N.; Trushin, Yu.V.

    1988-01-01

    An attempt was made to make allowance for the role of binary and ternary interstitials in the kinetics of radiation point defects both in the presence and in the absence of coherent preseparation. It is shown that in solid solutions, decomposing under irradiation, recombination with binary and ternary interstitials proceeds more quickly than directly, and this difference is more pronounced (from 2 up to 20 time growth) due to defect flow for preseparation at the stage of coherent preseparation formation

  9. Solid solution inhomogeneity in DC-cast AlMn(Fe,Si) ingots

    International Nuclear Information System (INIS)

    Lakner, J.; Kovacs-Csetenyi, E.; Lal, K.

    1990-01-01

    The aim of this work was to characterize the structure in cast state of the AlMn1 alloy containing different Fe and Si concentration. The casting parameters were intended to keep constant and the effect of impurities was studied. The inhomogeneity along the diameter of cast billet was characterized by the dendrite arm spacing and by the solid solution content. To explain the results the model developed for binary AlFe and AlMn alloys was applied

  10. Decomposition of supersaturated solid solutions Mg-Ho and Mg-Gd

    International Nuclear Information System (INIS)

    Sukhanov, V.D.; Dobromyslov, A.V.; Rokhlin, L.L.; Dobatkina, T.V.

    2002-01-01

    Methods of electron microscopy and X-ray diffraction analysis are applied to study ageing magnesium base alloys with holmium and gadolinium. It is shown that the precipitation of supersaturated Mg base solid solutions goes through several subsequent stages and is accompanied by a considerable precipitation hardening effect at the stage of metastable phase precipitation. The influence of aging time and temperature on precipitation kinetics is established [ru

  11. Photophysical processes study for poly (P-substituted styrenes) in solid films and in solutions

    International Nuclear Information System (INIS)

    Al-Hakeem, I.A.

    1985-01-01

    In this work, the absorption and emission spectra of poly (P-NN dimethyl amino styrene), poly (P-Fluoro Styrene), poly (P-CH2OCH3 styrene), poly (P-Methyl (styrene), poly(P-Tertiary butyl styrene) have been studied in solid films and solutions. The effect of added dimethylterph-thalate as a quencher to the fluorescence emission of the polymers used in this work were studied.(5 tabs., 39 figs., 60 refs.)

  12. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  13. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  14. CSBB-ConeExclusion, adapting structure based solution virtual screening to libraries on solid support.

    Science.gov (United States)

    Shave, Steven; Auer, Manfred

    2013-12-23

    Combinatorial chemical libraries produced on solid support offer fast and cost-effective access to a large number of unique compounds. If such libraries are screened directly on-bead, the speed at which chemical space can be explored by chemists is much greater than that addressable using solution based synthesis and screening methods. Solution based screening has a large supporting body of software such as structure-based virtual screening tools which enable the prediction of protein-ligand complexes. Use of these techniques to predict the protein bound complexes of compounds synthesized on solid support neglects to take into account the conjugation site on the small molecule ligand. This may invalidate predicted binding modes, the linker may be clashing with protein atoms. We present CSBB-ConeExclusion, a methodology and computer program which provides a measure of the applicability of solution dockings to solid support. Output is given in the form of statistics for each docking pose, a unique 2D visualization method which can be used to determine applicability at a glance, and automatically generated PyMol scripts allowing visualization of protein atom incursion into a defined exclusion volume. CSBB-ConeExclusion is then exemplarically used to determine the optimum attachment point for a purine library targeting cyclin-dependent kinase 2 CDK2.

  15. Studies on thermal expansion and XPS of urania-thoria solid solutions

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Panneerselvam, G.; Bera, Santanu; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2000-01-01

    The thermal expansion characteristics of polycrystalline (U y Th 1-y )O 2 solid solutions with y=0.13, 0.55 and 0.91 were determined in the temperature range from 298 to 1973 K by means of X-ray diffraction technique. For these temperatures, the average linear thermal expansion coefficients for (U 0.13 Th 0.87 )O 2 , (U 0.55 Th 0.45 )O 2 and (U 0.91 Th 0.09 )O 2 are 1.033x10 -5 , 1.083x10 -5 and 1.145x10 -5 K -1 , respectively. The measured thermal expansion values were compared with those calculated by applying the equations for linear thermal expansion of pure urania and thoria. It was shown that the stoichiometric (U, Th)O 2 solid solutions are almost ideal at least up to 2000 K. The binding energies of U 4f 7/2 and Th 4f 7/2 electrons of (U 0.1 Th 0.9 )O 2 , (U 0.25 Th 0.75 )O 2 , (U 0.50 Th 0.50 )O 2 , (U 0.75 Th 0.25 )O 2 and (U 0.90 Th 0.10 )O 2 were experimentally determined by X-ray photoelectron spectroscopy. The result showed the presence of only U 4+ and Th 4+ chemical states in the stoichiometric urania-thoria solid solutions

  16. Existence of a solid solution from brucite to {beta}-Co(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Delorme, F.; Autret-Lambert, C. [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Seron, A.; Jean-Prost, V. [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 Orleans Cedex 2 (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A solid solution exist between Mg(OH){sub 2} and {beta}-Co(OH){sub 2}. Black-Right-Pointing-Pointer Synthesis has been performed through an easy and fast coprecipitation route. Black-Right-Pointing-Pointer No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH){sub 2}) and {beta}-Co(OH){sub 2}, all the compositions are possible. The solid solution Mg{sub 1-x}Co{sub x}(OH){sub 2} has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg-Co mixed oxide with all possible cationic ratios.

  17. Existence of a solid solution from brucite to β-Co(OH)2

    International Nuclear Information System (INIS)

    Giovannelli, F.; Delorme, F.; Autret-Lambert, C.; Seron, A.; Jean-Prost, V.

    2012-01-01

    Highlights: ► A solid solution exist between Mg(OH) 2 and β-Co(OH) 2 . ► Synthesis has been performed through an easy and fast coprecipitation route. ► No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH) 2 ) and β-Co(OH) 2 , all the compositions are possible. The solid solution Mg 1−x Co x (OH) 2 has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg–Co mixed oxide with all possible cationic ratios.

  18. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  19. MoS₂ nanocube structures as catalysts for electrochemical H₂ evolution from acidic aqueous solutions.

    Science.gov (United States)

    Maijenburg, A Wouter; Regis, Morrisa; Hattori, Azusa N; Tanaka, Hidekazu; Choi, Kyoung-Shin; ten Elshof, Johan E

    2014-02-12

    Core-shell PMMA-Au nanocube structures made by a combination of nanoimprint lithography and sidewall deposition were used as template for electrodeposition of MoS2, Ni, and Pt. Linear sweep voltammetry experiments obtained in an aqueous solution containing 0.29 M H2SO4 (pH 0.24) showed that the onset potential of the core-shell-shell PMMA-Au-MoS2 nanocube electrode for the hydrogen evolution reaction (HER) was shifted to the positive direction (i.e., requiring a lower overpotential) by 20-40 mV compared to planar MoS2 films. This indicates that the nanocube electrodes have a significantly increased HER activity, which is probably because of a higher density of catalytically active edge sites available at the nanocube surface. It was also found that the HER activity initially increased with increasing MoS2 deposition time, but decreased after deposition for 60 min because the edges of the nanocubes became rounded, thereby decreasing the number of active edge sites. By depositing Ni and Pt on top of PMMA-Au nanocubes, it was shown that this method can also be used for the synthesis of nanocube structures with varying compositions.

  20. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  1. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    Waysbort, Daniel; McGarvey, David J.; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M.; Durst, H. Dupont

    2009-01-01

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green TM , has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO 4 -2 ) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t 1/2 ≤ 4 min), 1:10 for HD (t 1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  2. Toluene and chlorobenzene dinitration over solid H3PO4/MoO3/SiO2 catalyst

    International Nuclear Information System (INIS)

    Adamiak, Joanna; Kalinowska-Alichnewicz, Dorota; Szadkowski, Michal; Skupinski, Wincenty

    2011-01-01

    Highlights: → A novel catalyst H 3 PO 4 /MoO 3 /SiO 2 was characterized and used in nitration. → On the surface domains of phosphomolybdic acid (HPM) are obtained. → Dinitrotoluene is obtained with very high yield i.e. 96 wt.% in mild conditions. → Dinitrochlorobenzene is obtained with only twelve-fold excess of nitric acid. → It is sulfuric acid free and solvent free nitration of aromatic compounds. - Abstract: A new catalyst, H 3 PO 4 /MoO 3 /SiO 2 , was prepared by modification of MoO 3 /SiO 2 using phosphoric acid. The characterization of the catalyst was performed using Infrared and Raman Spectroscopy, potentiometric titration and nitrogen adsorption-desorption methods. Molybdenum oxides were identified along with phosphomolybdic acid and polymolybdates on the modified surface. The suitability of the catalysts for toluene and chlorobenzene nitration in continuous process was examined. Toluene is effectively nitrated to dinitrotoluene (DNT) in one-stage process (96 wt.% of DNT in the product) and in mild conditions i.e. at room temperature and only with ten-fold excess of nitric acid. In chlorobenzene nitration only twelve-fold excess of nitric acid is needed to obtain as high yield as 95 wt.%. Most importantly, the novel catalysts we have developed, provide the opportunity for sulfuric acid- free nitration of aromatic compounds.

  3. Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High-Yield Synthetic Fuel Production.

    Science.gov (United States)

    Duyckaerts, Nicolas; Bartsch, Mathias; Trotuş, Ioan-Teodor; Pfänder, Norbert; Lorke, Axel; Schüth, Ferdi; Prieto, Gonzalo

    2017-09-11

    Tandem catalysis is an attractive strategy to intensify chemical technologies. However, simultaneous control over the individual and concerted catalyst performances poses a challenge. We demonstrate that enhanced pore transport within a Co/Al 2 O 3 Fischer-Tropsch (FT) catalyst with hierarchical porosity enables its tandem integration with a Pt/ZSM-5 zeolitic hydrotreating catalyst in a spatially distant fashion that allows for catalyst-specific temperature adjustment. Nevertheless, this system resembles the case of close active-site proximity by mitigating secondary reactions of primary FT α-olefin products. This approach enables the combination of in situ dewaxing with a minimum production of gaseous hydrocarbons (18 wt %) and an up to twofold higher (50 wt %) selectivity to middle distillates compared to tandem pairs based on benchmark mesoporous FT catalysts. An overall 80 % selectivity to liquid hydrocarbons from syngas is attained in one step, attesting to the potential of this strategy for increasing the carbon efficiency in intensified gas-to-liquid technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  5. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    Science.gov (United States)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  7. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    Science.gov (United States)

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  8. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  9. Decay property of regularity-loss type for solutions in elastic solids with voids

    KAUST Repository

    Djouamai, Leila; Said-Houari, Belkacem

    2014-01-01

    In this paper, we consider the Cauchy problem for a system of elastic solids with voids. First, we show that a linear porous dissipation leads to decay rates of regularity-loss type of the solution. We show some decay estimates for initial data in Hs(R)∩L1(R). Furthermore, we prove that by restricting the initial data to be in Hs(R)∩L1,γ(R) and γ. ∈. [0, 1], we can derive faster decay estimates of the solution. Second, we show that by adding a viscoelastic damping term, then we gain the regularity of the solution and obtain the optimal decay rate. © 2013 Elsevier Ltd.

  10. Large-scale fluctuations in the diffusive decomposition of solid solutions

    International Nuclear Information System (INIS)

    Karpov, V.G.; Grimsditch, M.

    1995-01-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L∼(na) -1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered

  11. Large-scale fluctuations in the diffusive decomposition of solid solutions

    Science.gov (United States)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.

  12. The effects of additives on the microstructure and sinterability of molybdenum oxide - study of related solid solutions

    International Nuclear Information System (INIS)

    Kassem, M.

    2006-01-01

    This study focuses on the phase transformation induced during mixing a fixed quantity of MoO 3 with various concentration of V 2 O 5 , Bn 2 O 5 , Al 2 O 3 and pure aluminium. These concentrations are 2, 3, 4, 5, 10, 20, 40 and 50%. Employing several physical techniques such as x-ray powder diffraction, FTIR and DTA, different solid solution were identified. Also the compressibility and sintering of these solid solutions have been studied via the variation of the density of pellets prepared from these solid solutions (Author)

  13. Influence of hydrostatic pressure on BCC-lattice parameter in molybdenum, niobium and vanadium with rhenium solid solutions

    International Nuclear Information System (INIS)

    Smol'yaninova, Eh.A.; Stribuk, E.K.; Tyavlovskij, V.I.

    1987-01-01

    Data on the effect of 1.8GPa hydrostatic pressure on bcc lattice parameters of solid solutions in Mo-Re, Nb-Re, V-re systems are presented. It is shown that after the application hydrostatic pressure a decrease in bcc lattice parameter is observed and the greatest change in the lattice parameter takes place in bcc of solid solutions in the Nb-Re system (DELTA A ∼ 0.0035 nm). Analysis of the experimental data obtained on the basis of calculations made for packing density change in the above-mentioned solid solutions under the pressure is carried out

  14. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    Science.gov (United States)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  15. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bin, E-mail: kongbin@buaa.edu.cn; Jia, Lina, E-mail: jialina@buaa.edu.cn; Su, Linfen, E-mail: sulinfen@mse.buaa.edu.cn; Guan, Kai, E-mail: guankai@mse.buaa.edu.cn; Weng, Junfei, E-mail: wengjf@mse.buaa.edu.cn; Zhang, Hu, E-mail: zhanghu@buaa.edu.cn

    2015-07-15

    Controlling the elements content in the niobium solid solution (Nb{sub SS}) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, Nb{sub SS} grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr{sub 2}Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of Nb{sub SS} grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in Nb{sub SS} and brittle Cr{sub 2}Nb and Nb-silicides precipitate phases display negative effect.

  16. Nanostructured sodium lithium niobate and lithium niobium tantalate solid solutions obtained by controlled crystallization of glass

    International Nuclear Information System (INIS)

    Radonjic, L.; Todorovic, M.; Miladinovic, J.

    2005-01-01

    Transparent, nanostructured glass ceramics based on ferroelectric solid solutions of the type Na 1-x Li x NbO 3 (in very narrow composition regions for x = 0.12 and 0.93) and LiNb 1-y Ta y O 3 (y = 0.5 unlimited solid solubility), can be obtained by controlled crystallization of glass. The parent glass samples were prepared by conventional melt-quenching technique. Heat-treatment of the parent glasses was performed at the various temperatures, for the same time. The glass structure evolution during the controlled crystallization was examined by FT-IR spectroscopy analysis. Crystalline phases were identified by X-ray diffraction analysis and SEM was used for microstructure characterization. Densities of the crystallized glasses were measured by Archimedean principle. The capacitance and dielectric loss tangent were measured at a frequency of 1 kHz, at the room temperature. It was found that in the all investigated systems crystallize solid solutions Na 1-x Li x NbO 3 and LiNb 1-y Ta y O 3 in the glassy matrix, have crystal size on nanoscale (less than 100 nm), which is one of requirements to get a transparent glass ceramic that could be a good ferroelectric material regarding to the measured properties

  17. Excess Gibbs energy for six binary solid solutions of molecularly simple substances

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, L J; Staveley, L A.K.

    1985-01-01

    In this paper we apply the method developed in a previous study of Ar + CH/sub 4/ to the evaluation of the excess Gibbs energy G /SUP E.S/ for solid solutions of two molecularly simple components. The method depends on combining information on the excess Gibbs energy G /SUP E.L/ for the liquid mixture of the two components with a knowledge of the (T, x) solid-liquid phase diagram. Certain thermal properties o the pure substances are also needed. G /SUP E.S/ has been calculated for binary mixtures of Ar + Kr, Kr + CH/sub 4/, CO + N/sub 2/, Kr + Xe, Ar + N/sub 2/, and Ar + CO. In general, but not always, the solid mixtures are more non-ideal than the liquid mixtures of the same composition at the same temperature. Except for the Kr + CH/sub 4/ system, the ratio r = G /SUP E.S/ /G /SUP E.L/ is larger the richer the solution in the component with the smaller molecules.

  18. B-site substituted solid solutions on the base of sodium-bismuth titanate

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2016-12-01

    Full Text Available The paper presents results of studies of the formation of phases during the solid-state synthesis in the [(Na0.5Bi0.50.80Ba0.20](Ti1–yByO3 system of solid solutions with B-site substitutions. The substitutions by zirconium, tin and ion complexes (In0.5Nb0.5 and (Fe0.5Nb0.5 have been studied. It has been found that the synthesis is a multi-step process associated with the formation of a number of intermediate phases (depending on the compositions and calcination temperatures. Single-phase solid solutions have been produced at the calcination temperatures in the interval 1000–1100∘C. An increase in the substituting ions concentration leads to a linear increase of the crystal cell size. At the same time, the tolerance factor gets reduced boosting the stability of the antiferroelectric phase as compared to that of the ferroelectric phase.

  19. Synthesis, characterization and thermal expansion studies on ThO2-SmO1.5 solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.

    2008-01-01

    Full text: A highly homogeneous Th 1-x Sm x O 2 ; 0 ≤ x ≤ 0.8 solid solutions were synthesized by co-precipitation technique and the co-precipitated samples were sintered at 1473 K. Compositions of the solid solutions were characterized by standard wet-chemical analysis. X-ray diffraction measurements were performed in the sintered pellets for structural analysis, lattice parameter calculation and determination of solid solubility of SmO 1.5 in ThO 2 matrix. Bulk and theoretical densities of solid solutions were also determined. A fluorite structure was observed for ThO 2 -SmO 1.5 solid solutions with 0-55.2 mol % SmO 1.5 . Their thermal expansion coefficients were measured using high temperature X-ray diffraction technique. The mean linear thermal expansivity, αm for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mole percent of SmO 1.5 were determined in the temperature range 298 to 2000 K for the first time. The mean linear thermal expansion coefficients for ThO 2 -SmO 1.5 solid solutions are 10.47x10 -6 K -1 , 11.16x10 -6 K -1 and 11.45x10 -6 K -1 , respectively. The percentage linear thermal expansion in this temperature range, for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mol % SmO 1.5 are 1.82,1.94 and 1.99 respectively. It is suggested that the solid solutions are stable up to 2000 K. It is also suggested that the effect and nature of the dopant are the important parameters influenced in the thermal expansion of the ThO 2

  20. Toluene and chlorobenzene dinitration over solid H3PO4/MoO3/SiO2 catalyst.

    Science.gov (United States)

    Adamiak, Joanna; Kalinowska-Alichnewicz, Dorota; Szadkowski, Michał; Skupiński, Wincenty

    2011-11-15

    A new catalyst, H(3)PO(4)/MoO(3)/SiO(2), was prepared by modification of MoO(3)/SiO(2) using phosphoric acid. The characterization of the catalyst was performed using Infrared and Raman Spectroscopy, potentiometric titration and nitrogen adsorption-desorption methods. Molybdenum oxides were identified along with phosphomolybdic acid and polymolybdates on the modified surface. The suitability of the catalysts for toluene and chlorobenzene nitration in continuous process was examined. Toluene is effectively nitrated to dinitrotoluene (DNT) in one-stage process (96 wt.% of DNT in the product) and in mild conditions i.e. at room temperature and only with ten-fold excess of nitric acid. In chlorobenzene nitration only twelve-fold excess of nitric acid is needed to obtain as high yield as 95 wt.%. Most importantly, the novel catalysts we have developed, provide the opportunity for sulfuric acid- free nitration of aromatic compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Dissolution of britholites and monazite / brabantite solid solutions doped with actinides; Etude de la dissolution de britholites et de solutions solides monazite / brabantite dopees avec des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Du Fou De Kerdaniel, E

    2007-12-15

    In the field of the radwaste storage in underground repository, several matrices were considered as promising ceramics for the specific immobilization of actinides. Two of them, britholites and monazite/ brabantite solid solution, have been considered during this work. In order to examine the dissolution mechanisms occurring at the solid liquid interface, several leaching experiments have been conducted on (Ln{sup III}PO{sub 4} ), brabantite (Ca{sup II}An{sup IV}(PO{sub 4}){sub 2}: An = Th, U) and britholites (Ca{sub 9}Nd{sub 0.5}An{sub 0.5}{sup IV} (PO{sub 4}){sub 4.5}(SiO{sub 4}){sub 1.5}F{sub 2}: An = Th, U). Some steady experiments, performed in under saturation conditions for various pH and temperature conditions allowed to evaluate the long term behaviour of such matrices through their chemical durability. On the contrary, the thermodynamic equilibria were examined through the leaching experiments performed near the saturation conditions. By the way, various secondary phases, precipitated onto the surface of altered samples have been identified and characterized. Among them, the (Nd, Ca, Th) - rhabdophane, novelly prepared in over- saturation experiments for a thorium weight loading lower than 11 % appeared to be metastable. Indeed, it turns into TPHPH (Th{sub 2}(PO{sub 4}){sub 2}HPO{sub 4}.H{sub 2}O) and Nd - rhabdophane (NdPO{sub 4}.1/2H{sub 2}O) when increasing leaching time. (author)

  2. Synthesis of High cis-Polybutadiene in Styrene Solution with Neodymium-Based Catalysts: Towards the Preparation of HIPS and ABS via In Situ Bulk Polymerization

    Directory of Open Access Journals (Sweden)

    Ramón Díaz de León

    2016-01-01

    Full Text Available In a first step, 1,3-butadiene was selectively polymerized at 60°C in styrene as solvent using NdV3/DIBAH/EASC as the catalyst system. The catalyst system activation process, the addition order of monomers and catalyst components, and the molar ratios [Al]/[Nd] and [Cl]/[Nd] were studied. The catalyst system allowed the selective 1,3-butadiene polymerization, reaching conversions between 57.5 and 88.1% with low polystyrene contents in the order of 6.3 to 15.4%. Molecular weights ranging from 39,000 to 150,000 g/mol were obtained, while cis-1,4 content was found in the interval of 94.4 to 96.4%. On the other hand, the glass transition temperatures of synthesized materials were established in the range of −101.9 to −107.4°C, explained by the presence of polystyrene segments in the polybutadiene chains; in the same sense, the polybutadienes did not show the typical melting endotherm of high cis-polybutadienes. In a second step, the resulting styrene/high cis-1,4 polybutadiene solutions were used to synthesize ABS (adding a fraction of acrylonitrile monomer and HIPS via in situ bulk polymerizations and the results were discussed in terms of morphological development, molecular parameters, dynamical mechanical behavior, and mechanical properties.

  3. An ordered metallic glass solid solution phase that grows from the melt like a crystal

    International Nuclear Information System (INIS)

    Chapman, Karena W.; Chupas, Peter J.; Long, Gabrielle G.; Bendersky, Leonid A.; Levine, Lyle E.; Mompiou, Frédéric; Stalick, Judith K.; Cahn, John W.

    2014-01-01

    We report structural studies of an Al–Fe–Si glassy solid that is a solid solution phase in the classical thermodynamic sense. We demonstrate that it is neither a frozen melt nor nanocrystalline. The glass has a well-defined solubility limit and rejects Al during formation from the melt. The pair distribution function of the glass reveals chemical ordering out to at least 12 Å that resembles the ordering within a stable crystalline intermetallic phase of neighboring composition. Under isothermal annealing at 305 °C the glass first rejects Al, then persists for approximately 1 h with no detectable change in structure, and finally is transformed by a first-order phase transition to a crystalline phase with a structure that is different from that within the glass. It is possible that this remarkable glass phase has a fully ordered atomic structure that nevertheless possesses no long-range translational symmetry and is isotropic

  4. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  5. Four Thermochromic o-Hydroxy Schiff Bases of α-Aminodiphenylmethane: Solution and Solid State Study

    Directory of Open Access Journals (Sweden)

    Marija Zbačnik

    2017-01-01

    Full Text Available More than a hundred years after the first studies of the photo- and thermochromism of o-hydroxy Schiff bases (imines, it is still an intriguing topic that fascinates several research groups around the world. The reasons for such behavior are still under investigation, and this work is a part of it. We report the solution-based and mechanochemical synthesis of four o-hydroxy imines derived from α-aminodiphenylmethane. The thermochromic properties were studied for the single crystal and polycrystalline samples of the imines. The supramolecular impact on the keto-enol tautomerism in the solid state was studied using SCXRD and NMR, while NMR spectroscopy was used for the solution state. All four imines are thermochromic, although the color changes of the single crystals are not as strong as of the polycrystalline samples. One of the imines shows negative thermochromism, and that one is in keto-amine tautomeric form, both in the solid state as in solution.

  6. Effect of ionizing radiation on solid and water solution Penicillin G

    International Nuclear Information System (INIS)

    Ben Salem, I.; Amine, Kh.M.; Mabrouk, Y.; Saidi, M.; Mezni, M; Boulila, N; Hafez, E

    2015-01-01

    Penicillin G is a conventional antibiotic used for treatment of different kinds of infectious diseases. Due to its huge quantity production and resistance to biodegradability, this molecule has been a serious concern for clinicians and environmentalists. In this study, the effect of ionizing radiation on the penicillin G powder and in water solution was investigated. The Nuclear Magnetic Resonance (NMR) and fourier transform infrared spectroscopy (FTIR) analysis showed that the ionizing radiation at 50 kGy has no effect on the integrity of solid Penicillin G. The anti-microbial assays revealed that the activity of irradiated solid Penicillin G did not reduce and was stable after storage for one month. Ionizing radiation at 50 kGy led to degradation of water solution Penicillin G. The complete disappear of peaks observed in the control sample confirmed the broken of β-lactam ring, the decarboxylation and cleavage of the thiazolidine ring. The product issued from the irradiation of Penicillin G, was completely removed by the bacterium Cupriavidus.metallidurans. Thus, the ionizing irradiation followed by a biological treatment was very effective method for removing of Penicillin G antibiotics residuals from water solution.

  7. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    Science.gov (United States)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  8. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  9. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    International Nuclear Information System (INIS)

    Cui, Yajuan; Fang, Ruimei; Shang, Hongyan; Shi, Zhonghua; Gong, Maochu; Chen, Yaoqiang

    2015-01-01

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m 2 /g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure

  10. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A [INSTM RU at the Department of Chemistry of the University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Mattei, G; Mazzoldi, P [Department of Physics, CNISM and University of Padova, via Marzolo 8, 35131 Padova (Italy); Paz, E; Palomares, F J [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Cavigli, L, E-mail: cesar.dejulian@unifi.it [Department of Physics-LENS, University of Florence, via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO{sub 2} matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  11. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    International Nuclear Information System (INIS)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A; Mattei, G; Mazzoldi, P; Paz, E; Palomares, F J; Cavigli, L

    2010-01-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO 2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  12. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Science.gov (United States)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  13. Atomic mean-square displacements and the critical-voltage effect in cubic solid solutions

    International Nuclear Information System (INIS)

    Shirley, C.G.; Fisher, R.M.

    1979-01-01

    The critical-voltage phenomena observed in high-voltage electron microscope images of bend contours as well as in corresponding Kikuchi or convergent-beam diffraction patterns provide sensitive methods of determining submicroscopic alloy parameters such as Debye temperatures, short-range order, and atomic scattering factors. Only a very limited number of critical voltages can be observed in metal crystals in the voltage range usually available, 100 to 1200 kV, so that quantitative interpretation of the data must be based on a few-parameter model which incorporates all the pertinent factors. A satisfactory two-parameter model has been developed which can be used to interpret or compute the critical voltages of substitutional solid solutions as functions of composition, temperature and short-range order. In the alloy systems Fe-Cr, Ni-Au, Cu-Au and Cu-Al, sufficient critical voltage data are available to derive the model parameters which pertain to atomic bonding in the lattice. In addition to atomic scattering amplitudes, the critical voltage depends strongly on the atomic mean-square displacements. The static contribution to the mean-square displacements is large in alloys with large atomic-radius disparity, and is especially sensitive to short-range order in f.c.c. solid solutions. Well-defined best estimates for the model parameters are used to predict the critical voltage and its sensitivity to composition, temperature and short-range order for a large number of solid solutions. Systems for which critical-voltage studies may be of considerable interest are indicated. (author)

  14. Calculations of oscillation spectra of disordered interstitial solid solutions of vanadium-oxygen system

    International Nuclear Information System (INIS)

    Danilkin, S.A.

    1978-01-01

    The frequency spectra calculation of disordered solid interstitial solutions of a vanadium-oxygen system for oxygen concentration of 5.9% and 15.8% (V 16 O and V 16 O 3 ) is carried out. The axially-symmetric model of crystal lattice dinamics with consideration of vanadium-oxygen and vanadium-vanadium interactions up to the second coordination sphere is used. On the whole, the obtained spectra are in qualitative agreement with experiment and reflect correctly all the changes in frequency spectra of pure vanadium on doping with oxygen

  15. The role of solid-solution strengthening in the development of alloys for HTR applications

    International Nuclear Information System (INIS)

    Dean, A.V.

    1978-09-01

    In this paper the fundamental factors (lattice distortion, stacking fault energy and diffusion rates) which contribute to solid-solution strengthening are examined and used as a basis for indicating the composition of alloys likely to posses the highest strength at elevated temperatures. Alloys based on Ni-Cr-W-Mo should possess the best properties but alloys based on Ni-Cr-Nb-Ti are also recommended for further study. The effect of alloy composition on corrosion resistance has been excluded from this examination but it should be possible to adjust alloy composition in order to optimise corrosion resistance. (orig./IHOE) [de

  16. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  17. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  18. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

    Science.gov (United States)

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin

    2018-02-14

    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  19. The X-ray electronic spectra of TiC-NbC solid solution

    International Nuclear Information System (INIS)

    Cherkashenko, V.M.; Ezhov, A.V.; Nazarova, S.Z.; Kurmaev, Eh.Z.; Nojmann, M.

    2001-01-01

    X-ray photoelectronic spectra of inner levels and valency lands in TiC-NbC solid solutions were studied. Results of combining TiL α -, NbL β2.15 -, CK α - X-ray emission spectra and photoelectronic spectra of valency bands in one energy scale in reference to the Fermi level were analyzed. It is shown that a change in crystal lattice parameters, as well as charge redistribution between titanium and niobium atoms, produce a strong effect on electronic structure formation in the mixed carbides mentioned [ru

  20. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    DEFF Research Database (Denmark)

    Bialy, Agata; Jensen, Peter Bjerre; Blanchard, Didier

    2015-01-01

    with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained...... with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides...

  1. Local structure in the disordered solid solution of cis- and trans-perinones

    DEFF Research Database (Denmark)

    Teteruk, Jaroslav L.; Glinnemann, Juergen; Heyse, Winfried

    2016-01-01

    preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic....... The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including...

  2. Photoluminescence study in solid solutions of CdMgMnTe semimagnetic semiconductors

    International Nuclear Information System (INIS)

    Kusraev, Yu.G.; Averkieva, G.K.

    1993-01-01

    Luminescence and resonant Raman scattering in quaternary solid solutions of CdMgMnTe semimagnetic semiconductors are investigated. It is shown that the intensity and position of the luminescence band, conditioned by the 4 T 1 --> 6 A 1 optical transitions in the Mn d-shell, depend on the local crystal environment. Temperature variations of the photoluminescence spectra are interpreted on the base of a model of electron excitation energy transport from Mn 2+ to different recombination centers. In the resonant Raman scattering spectrum were observed three longitudinal vibrational modes with energies near to phonon energies of corresponding binary compounds

  3. Study of valence of cerium and praseodymium ions in Pr1-xCexO2 solid solutions

    International Nuclear Information System (INIS)

    Gartsman, K.G.; Kartenko, N.F.; Melekh, B.T.

    1990-01-01

    Effect of preparation conditions of Pr 1-x Ce x O 2 solid solutions on Ce and Pr ion valence within Pr 1-x Ce x O 2 system is studied. The data obtained enable to conclude that praseodymium may depending on annealing conditions change its state from Pr 3+ to Pr 4+ , while Ce 4+ is stable in Pr 1-x Ce x O 2 solid solutions

  4. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  5. Microstructural and microchemical studies of phase stability in V-O solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Chanchal, E-mail: chanchal@igcar.gov.in [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Singh, Akash [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Basu, Joysurya [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh (India); Ramachandran, Divakar; Mohandas, E [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India)

    2017-02-15

    Over the last couple of decades vanadium and V-based alloys have received significant attention as a potential structural material for fusion power applications because of their favourable mechanical properties under irradiation and at elevated temperatures. They are also considered as the advanced options of storage materials for hydrogen and its isotopes. However, the higher affinity of V for O, C and N poses critical challenges in its engineering applications since they lead to degradation of mechanical properties. They can further interact with the matrix to produce metallic oxy-carbo-nitride precipitates. To a certain limit, these precipitates are beneficial and can be exploited to enhance the mechanical behaviour of the alloy through suitable microstructural design. However, this requires a prior knowledge of the interaction between the alloy and the impurity solutes. In the present work vanadium specific experiments have been designed and carried out to bring out the V-interstitial solute interaction by charging oxygen in the near surface region of vanadium. Microstructural and microchemical behaviour of the V-O solid solution has been studied through HRTEM (high resolution transmission electron microscopy) and HAADF (high angle annular dark field) coupled with EELS. Quantitative electron microscopy has been carried out to study structural modification of the alloy in atomic level caused by O charging. - Highlights: •Controlled experiments were carried out in pulsed laser ablation set-up to promote V-O interaction. • As a consequence of O dissolution, V transformed into a bct structure which is otherwise a bcc structure. •In V-O solid solution, dissolved O in the V matrix introduces significant amount of lattice strain. • Present work can be extended for introducing interstitial O in other pure transition metals and their alloys.

  6. Increase oil recovery of heavy oil in combustion tube using a new catalyst based nickel ionic solution

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Garnica, M.A.; Hernandez-Perez, J.R.; Cabrera-Reves, M.C.; Schacht-Hernandez, P. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    An ionic liquid-based nickel catalyst was used in conjunction with a combustion tube as an in situ process for heavy oil. The experimental system was comprised of a fluid injection system; a combustion tube; a fluid production system; a gas chromatograph; and a data recording system. Injected nitrogen and air was controlled by a mass flow controller. Nitrogen was used to pressurize the combustion tube and flush the system. Air was injected at a rate of 3 L per minute throughout the combustion run. Liquids leaving the combustion tube passed through a 2-stage separation process. Gases passing through the condenser were kept at low temperatures. Fractions of produced gas were analyzed by the chromatograph. Data loggers were used to obtain data at 30 second intervals. Two combustion experiments were conducted to obtain production times, temperature profiles, and the quality of the oil produced by the catalyst. Combustion tests were conducted with and without the catalyst. An analysis of the experimental data showed that use of the nickel catalyst resulted in increases in oil production as well as higher combustion efficiencies. Use of the catalyst also resulted in a faster combustion front and accelerated oil production. It was concluded that the produced oil contained fewer impurities than oil produced during the control experiment. 23 refs., 3 tabs., 9 figs.

  7. Complexon Solutions in Freon for Decontamination of Solids and SNF Treatment

    International Nuclear Information System (INIS)

    Kamachev, V.; Shadrin, A.; Murzin, A.

    2008-01-01

    Full text of publication follows: The possibility of using complexon solutions in supercritical and compressed carbon dioxide for decontamination of solid surfaces and for spent nuclear fuel (SNF) treatment was demonstrated in the works of Japanese, Russian and American researchers. The obtained data showed that the use of complexon solutions in carbon dioxide sharply decreases the volume of secondary radioactive wastes because it can be easily evaporated, purified and recycled. Moreover, high penetrability of carbon dioxide allows decontamination of surfaces with complex shape. However, one of the disadvantages of carbon dioxide is its high working pressure (10-20 MPa for supercritical CO 2 and 7 MPa for compressed CO 2 ). Moreover, in case of SNF treatment, carbon dioxide solvent will be contaminated with 14 C, which in the course of SNF dissolution in CO 2 containing TBP*HNO 3 adduct stage will be oxidized into CO 2 . These main disadvantages can be eliminated by using complexon solutions in ozone-friendly Freon HFC-134a for decontamination and SNF treatment. Our experimental data for real contaminated materials showed that the decontamination factor for complexon solutions in liquid Freon HFC-134a at 1,2 MPa and 25 deg. C is close to that attained in carbon dioxide. Moreover, the possibility of SNF treatment in Freon HFC-134a was demonstrated in trials using real SNF and its imitators. (authors)

  8. Crystalline structure and electrical properties of Dy1-XCaXMnO3 solid solution

    Directory of Open Access Journals (Sweden)

    Durán, P.

    2002-12-01

    Full Text Available Solid solutions corresponding to the Dy1-xCaXMnO3 system, x=0.0 to 0.60 have been studied. The powders were prepared by solid state reaction of the corresponding oxides and carbonates. Sintered bodies were obtained by firing between 1250 and 1450ºC. All the compositions showed single-phased perovskite-type structure with orthorhombic symmetry and Space Group Pbnm. Increase of the CaO content leads to a monotonic decrease of the orthorhombicity factor b/a with the Ca2+ concentration up to x=0.60. All the solid solutions crystallised with the same O’-type orthorhombic perovskite structure such as pure DyMnO3. Electrical measurements have shown semiconducting behaviour for all the solid solutions. The room temperature conductivity increases monotonically with the CaO content. The 60/40 Ca/Dy composition showed a high value of the electrical conductivity and a correlative very low value of the activation energy. Thermally activated small polaron hopping mechanism controls the conductivity of these perovskite ceramics.Se han estudiado soluciones sólidas correspondientes al sistema Dy1-xCaxMnO3, x=0.0 a 0.60. Los polvos cerámicos fueron preparados por reacción en estado sólido de los correspondientes óxidos y carbonatos. Los materiales cerámicos se obtuvieron por sinterización entre 1250º y 1450ºC. Todas las composiciones fueron monofásicas y mostraron una estructura tipo perovskita, con simetría ortorrómbica y Grupo Espacial Pbnm. El aumento del contenido en CaO llevó a una disminución monótona del factor de ortorrombicidad, b/a. Todas las soluciones sólidas cristalizaron con el mismo tipo de estructura perovskita ortorrómbica O’, como la del compuesto puro DyMnO3. Las medidas eléctricas mostraron comportamiento semiconductor en todas las soluciones sólidas. La conductividad a temperatura ambiente aumenta monótonamente con el contenido de CaO. La composición 60/40 mostró un elevado valor de conductividad y un correlativo

  9. Lattice parameters and electrical resistivity of Ceria-Yttria solid solutions

    International Nuclear Information System (INIS)

    Rey, Jose Fernando Queiruga

    2002-01-01

    Ce0 2 :u mol% Y 2 O 3 (u=0, 4, 6, 8, 10 and 12) solid solutions were prepared by the conventional powder mixture technique. The main purposes of this work are: the study of the dependence of the lattice parameter of the Ceria cubic phase on the Yttria content, comparing the experimental data with data calculated according to the existing theoretical models; to determine the dependence of the ionic conductivity on the Yttria content; and to study the stability of the cubic fluorite phase after extensive thermal treatments (aging) of the Ceria-Yttria specimens. The results show that the lattice parameter of the solid solutions follows the Vegard's law and can be described by the two reported theoretical models. The 8 mol% Yttria-doped Ceria was found to present the largest value of ionic conductivity. Preliminary results show that a large decrease is found for only 1 h aging at 700 deg C and that the ionic conductivity decreases for ceramic specimens aged for times up to 10 h. (author)

  10. Combined solid state and solution NMR studies of α,ε-15N labeled bovine rhodopsin

    International Nuclear Information System (INIS)

    Werner, Karla; Lehner, Ines; Dhiman, Harpreet Kaur; Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald; Klein-Seetharaman, Judith; Khorana, H. Gobind

    2007-01-01

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of α,ε- 15 N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13 C, 15 N-REDOR and HETCOR experiments of all possible 13 C' i-1 carbonyl/ 15 N i -tryptophan isotope labeled amide pairs, and H/D exchange 1 H, 15 N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15 N nuclei and partially to their bound protons. 1 H, 15 N chemical shift assignment was achieved for indole side chains of Trp35 1.30 and Trp175 4.65 . 15 N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175 4.65 at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin

  11. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  12. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R; Chen, Long-Qing

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  13. Local structural relaxation around Co2+ along the hardystonite-Co-åkermanite melilite solid solution

    Science.gov (United States)

    Ardit, Matteo; Cruciani, Giuseppe; Dondi, Michele

    2012-10-01

    Six pure compounds belonging to the hardystonite (Ca2ZnSi2O7)-Co-åkermanite (Ca2CoSi2O7) solid solution were investigated by the combined application of X-ray powder diffraction and electronic absorption spectroscopy. Structural refinements of the XRPD data revealed a negative excess volume of mixing due to the single isovalent substitution of Co for Zn in the tetrahedral site. In agreement with the diffraction data, deconvolution of the optical spectra showed a progressive decreasing of the crystal field strength parameter 10 Dq moving toward the Co-åkermanite end-member, meaning that the local cobalt-oxygen bond distance, Co}}{-}{{O}}rangle^{{local}} , increased along the join with the amount of cobalt. The calculated structural relaxation coefficient around the fourfold coordinated Co2+ in the Ca2(Zn1- x Co x )Si2O7 join was ɛ = 0.69, very far from the one predicted by the Vegard's law ( ɛ = 0) and at variance with ɛ = 0.47 previously found for tetrahedrally coordinated Co2+ in gahnite-Co-aluminate spinel solid solution. This difference is consistent with the largest constraints existing on the spinel structure, based on cubic closest packing, compared to the more flexible layered melilite structure.

  14. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszkiewicz, Marek, E-mail: mpietraszkiewicz@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Dutkiewicz, Grzegorz; Borowiak, Teresa [Adam Mickiewicz University, Faculty of Chemistry, Department of Crystallography, Grunwaldzka 6, 60-780 Poznań (Poland); Kaczmarek, Anna M. [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium); Van Deun, Rik, E-mail: rik.vandeun@ugent.be [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium)

    2016-02-15

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu{sup 3+} to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip){sub 3}. The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  15. Multiple Multidentate Halogen Bonding in Solution, in the Solid State, and in the (Calculated) Gas Phase.

    Science.gov (United States)

    Jungbauer, Stefan H; Schindler, Severin; Herdtweck, Eberhardt; Keller, Sandro; Huber, Stefan M

    2015-09-21

    The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California

    Science.gov (United States)

    Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.

    1989-01-01

    Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.

  17. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  18. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  19. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1976-01-01

    Tritides of such metals as Sc, Ti, and Er are useful materials for determining the effects of He accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages, the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Sc is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature T solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp Sc lattice are only minimally changed by T solution. Single crystal ScT/sub 0.3/ samples in two crystallographic orientations were obtained. Using a very sensitive technique, 3 He emission was measured from both these samples, as well as from fine-grained thin film Sc--T solid solution samples (ScT/sub 0.3-0.4/). The fine-grained film samples release 3 He at 2-3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  20. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  1. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  2. Activation of a Cu/ZnO catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Rasmussen, F.B.; Helveg, S.

    2006-01-01

    The structural changes during activation by temperature-programmed reduction of a Cu/ZnO catalyst for methanol synthesis have been studied by several in situ techniques. The catalyst is prepared by coprecipitation and contains 4.76 wt% Cu, which forms a substitutional solid solution with Zn......O as determined by resonant X-ray diffraction. In situ resonant X-ray diffraction reveals that the Cu atoms are extracted from the solid solution by the reduction procedure, forming metallic Cu crystallites. Cu is redispersed in bulk or surface Zn lattice sites upon oxidation by heating in air. The results...... is highly dispersed and in intimate contact with the surface of the host ZnO particles. The possibility of re-forming the (Zn,Cu)O solid solution by oxidation may provide a means of redispersing Cu in a deactivated catalyst....

  3. Investigation of the behaviour of solid acid catalysts for acylations and cyanisations of aromatics. Final report; Untersuchungen zur Wirkungsweise von festen sauren Katalysatoren bei Acylierungen und Cyanierungen von Aromaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kemnitz, E.

    2002-01-01

    The present state of the art in the field of FRIEDEL-CRAFTS-ACYLATIONS is characterized by the application of homogenous catalysts (at least stochiometric amounts) like AlCl{sub 3} or FeCl{sub 3}. Problems arising from this application are corrosions, difficult product separations from the catalyst and the origin of acid waste water. Hence, the aim of this project was the development of suitable solid catalysts which overcome the problems ascribed above. Sulfated zirconia (SZ) was found to be an excellent solid Br.o/nsted-acid to be used especially in their aerogel or cryogel form. Thus with this catalyst system, in the benzoylation of anisol nearly 100% conversion may be achieved. In this way it could be proved, that with SZ a solid Br.o/nsted-acid might be available which gives reasonable hope to substitute in a near future, at least for some reactions, the classical homogeneous catalysts and to overcome their problems in use. (orig.)

  4. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    Science.gov (United States)

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  5. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    Science.gov (United States)

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  7. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  8. MANAGEMENT OF SOLID WASTE GENERATED BY THE INTEGRATED STEELWORKS ACTIVITY AND SOLUTIONS TO REDUCE THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Anişoara CIOCAN

    2010-05-01

    Full Text Available The development of steel industry is subject to solve major problems arising from industry-nature relationship, strictly targeted on pollution control and protection of natural resources and energy. In this paper we discussed about the management of solid waste generated by an integrated steelwork located near a major urban area and the adopted solutions for the reduction of environmental impact. There are summarized technical solutions that are currently applied and were proposed some solutions that can be applied in accordance with the environmental legislations. The new solutions are proposed for integrated management of solid wastes in accordance with: the exact quantification (quantitative, qualitative and the generation sources of emissions and solid wastes; controlled storage; minimization of the wastes and its harmfulness; transformation of the wastes into valuable by-products used directly by the company in a subsequent process, or by external down-stream user.

  9. Iron site occupancies in magnetite-ulvospinel solid solution: A new approach using XMCD

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, C. I.; Henderson, C. M. B.; Telling, N. D.; Pattrick, R. A.D.; Vaughan, D. J.; Charnock, J. M.; Arenholz, E.; Tuna, F.; Coker, V.S.; Laan, G. van der

    2009-06-22

    Ordering of Fe{sup 3+} and Fe{sup 2+} between octahedral (Oh) and tetrahedral (Td) sites in synthetic members of the magnetite (Fe{sub 3}O{sub 4}) - ulvoespinel (Fe{sub 2}TiO{sub 4}) solid-solution series was determined using Fe L{sub 2,3}-edge X-ray magnetic circular dichroism (XMCD) coupled with electron microprobe and chemical analysis, Ti L-edge spectroscopy, Fe K-edge EXAFS and XANES, Fe{sub 57} Moessbauer spectroscopy, and unit cell parameters. Microprobe analysis, cell edges and chemical FeO determinations showed that the bulk compositions of the samples were stoichiometric magnetite-ulvoespinel solid-solutions. Surface sensitive XMCD showed that the surfaces of these oxide minerals were more sensitive to redox conditions and some samples required re-equilibration with suitable solid-solid buffers. Detailed site-occupancy analysis of these samples gave XMCD-Fe{sup 2+}/Fe{sup 3+} ratios very close to stoichiometric values. L{sub 2,3}-edge spectroscopy showed that Ti{sup 4+} was restricted to Oh sites. XMCD results showed that significant Fe{sup 2+} only entered Td when the Ti content was > 0.40 apfu while Fe{sup 2+} in Oh increased from 1 a.p.f.u in magnetite to a maximum of {approx}1.4 apfu in USP45. As the Ti content increased from this point, the steady increase in Fe{sup 2+} in Td sites was clearly observable in the XMCD spectra, concurrent with a slow decrease in Fe{sup 2+} in Oh sites. Calculated magnetic moments showed a steady decrease from magnetite (4.06 {mu}{sub B}) to USP45 (1.5 {mu}{sub B}) and then a slower decrease towards the value for ulvoespinel (0 {mu}{sub B}). Two of the synthesized samples were also partially maghemitized by re-equilibrating with an oxidizing Ni-NiO buffer and XMCD showed that Fe{sup 2+} oxidation only occurred at Oh sites, with concomitant vacancy formation restricted to this site. This study shows the advantage of using XMCD as a direct measurement of Fe oxidation state in these complex magnetic spinels. These results

  10. Research and demonstration results for a new "Double-Solution" technology for municipal solid waste treatment.

    Science.gov (United States)

    Erping, Li; Haoyun, Chen; Yanyang, Shang; Jun, Pan; Qing, Hu

    2017-11-01

    In this paper, the pyrolysis characteristics of six typical components in municipal solid waste (MSW) were investigated through a TG-FTIR combined technique and it was concluded that the main pyrolysis process of the biomass components (including food residues, sawdust and paper) occurred at 150-600°C. The main volatiles were multi-component gas including H 2 O, CO 2 , and CO. The main pyrolysis temperatures of three artificial products (PP, PVC and leather) was ranged from 200to 500°C. The wavelength of small molecule gases (CH 4 , CO 2 and CO) and the the chemical bonds (CO and CC) were observed in the infrared spectrum Based on the pyrolysis temperature interval and volatile constituent, a new "double-solution" process of pyrolysis and oxygen-enrichment decomposition MSW was designed. To achieve this process, a double-solution project was built for the direct treatment of MSW (10t/d). The complete setup of equipment and analysis of the byproducts has been reported in this paper to indicate the performance of this process. Energy balance and economic benefits were analysed for the process supporting. It was successfully demonstrated that the double-solution process was the environmentally friendly alternative method for MSW treatment in Chinese rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Theoretical multi-physics approaches to solid-solution strengthening of Al

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Duancheng; Friak, Martin; Raabe, Dierk; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2009-07-01

    The strengthening of soft metallic materials has a long tradition and is an important metallurgical topic since the time when ancient smiths forged the first swords. Intense materials research revealed a combination of three mechanisms as decisive for solid-solution strengthening phenomena: (i) the size mismatch of components (Mott and Nabarro's parelastic concept), (ii) the elastic modulus mismatch of atoms (Fleischer's dielastic contribution), and (iii) the concentration of solutes (statistical concept of Friedel and Labusch). Combining density functional theory calculations and linear-elasticity theory, the key parameters that are essential for the classical strengthening theories are determined in order to test them and identify their possible validity limits. The strengthening of fcc aluminium is chosen as an example and a series of binary systems Al-X (with X=Ca,Sr,Ir,Li,Mg,Cu) was considered. Comparing our results with those obtained by applying classical theories we find clear deviations. These deviations originate from non-classical lattice distortions due to the size mismatch of solute atoms in their first coordination shells.

  12. Evaluation of absorbed doses at the interface solid surfaces - tritiated water solutions

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2003-01-01

    Studies concerning the isotopic exchange H/D/T in the system elemental hydrogen -- water and in the presence of platinum metals on hydrophobic supports as catalysts were carried out at ICSI (Institute of Cryogenics and Isotope Separations) - Rm. Valcea, Romania. Due to the very low energy of β-radiation emitted by tritium, the direct measurements of dose absorbed by the isotopic exchange catalyst using classical methods is practically impossible. For this purpose an evaluation model was developed. The volume of tritiated water which can irradiate the catalyst was represented by a hemisphere with the radius equal to the maximal rate of β-radiation emitted by tritium. The catalyst surface is represented by a circle with a 0.2 μm radius and the same centre as the circle of the hemisphere secant plane. Flow rate of absorbed dose is calculated with the relation: d (1/100)(Φ·E m /m), where d = dose flow rate, in rad/s, Φ total radiation flux interacting with the catalyst surface, expressed in erg and m = catalyst weight, in grams. Total flux of available radiation, Φ, was determined as a function of three parameters: a) total flow of tritium β-radiation emitted in the hemisphere of tritiated water, dependent on the volume and radioactive concentration; b) emission coefficient in the direction of the catalyst surface; c) attenuation coefficient (due to self-absorption) of the tritium β-radiation in the tritiated water body. (authors)

  13. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, Ana, E-mail: avallet@quim.ucm.es [Grupo de Catalisis y Procesos de Separacion (CyPS), Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Besson, Michele, E-mail: michele.besson@ircelyon.univ-lyon1.fr [IRCELYON, Institut de recherches sur la catalyse et l' environnement de Lyon, UMR5256 CNRS-Universite Lyon1, 2 Avenue Albert Einstein, F-69626 Villeurbanne Cedex (France); Ovejero, Gabriel; Garcia, Juan [Grupo de Catalisis y Procesos de Separacion (CyPS), Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ni supported over hydrotalcite calcined precursors as catalyst. Black-Right-Pointing-Pointer Catalytic wet air oxidation in trickle bed reactor for Basic Yellow 11 removal. Black-Right-Pointing-Pointer Dye removal depends on temperature, initial dye concentration and flow rate. Black-Right-Pointing-Pointer The catalyst proved to be stable and efficient for the dye degradation. - Abstract: Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550 Degree-Sign C. An increase in the reaction temperature (120-180 Degree-Sign C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.7 mL min{sup -1}) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min{sup -1} and 180 Degree-Sign C under 5 MPa air.

  14. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor

    International Nuclear Information System (INIS)

    Vallet, Ana; Besson, Michèle; Ovejero, Gabriel; García, Juan

    2012-01-01

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Basic Yellow 11 removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to be stable and efficient for the dye degradation. - Abstract: Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550 °C. An increase in the reaction temperature (120–180 °C), and a decrease in dye concentration (1000–3000 ppm) or liquid flow rate (0.1–0.7 mL min −1 ) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min −1 and 180 °C under 5 MPa air.

  15. Photodegradation of indigo carmine and methylene blue dyes in aqueous solution by SiC-TiO{sub 2} catalysts prepared by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Solis, Christian [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Juarez-Ramirez, Isaias, E-mail: isajua13@yahoo.com [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Moctezuma, Edgar [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Torres-Martinez, Leticia M. [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Photodegradation of organic dyes is possible using sol-gel SiC-TiO{sub 2} catalysts. Black-Right-Pointing-Pointer SiC-TiO{sub 2} makes a synergy effect that enhances its catalytic activity. Black-Right-Pointing-Pointer Sol-gel allows good dispersion and attachment of TiO{sub 2} particles on SiC surface. Black-Right-Pointing-Pointer SiC-TiO{sub 2} exhibits better activity than TiO{sub 2} (P25) on organic dyes degradation. Black-Right-Pointing-Pointer SiC-TiO{sub 2} catalysts are settled down and easily separated after photocatalysis. - Abstract: Indigo carmine and methylene blue dyes in aqueous solution were photodegraded using SiC-TiO{sub 2} catalysts prepared by sol-gel method. After thermal treatment at 450 Degree-Sign C, SiC-TiO{sub 2} catalysts prepared in this work showed the presence of SiC and TiO{sub 2} anatase phase. Those compounds showed specific surface area values around 22-25 m{sup 2} g{sup -1}, and energy band gap values close to 3.05 eV. In comparison with TiO{sub 2} (P25), SiC-TiO{sub 2} catalysts showed the highest activity for indigo carmine and methylene blue degradation, but this activity cannot be attributed to the properties above mentioned. Therefore, photocatalytic performance is due to the synergy effect between SiC and TiO{sub 2} particles caused by the sol-gel method used to prepare the SiC-TiO{sub 2} catalysts. TiO{sub 2} nanoparticles are well dispersed onto SiC surface allowing the transfer of electronic charges between SiC and TiO{sub 2} semiconductors, which avoid the fast recombination of the electron-hole pair during the photocatalytic process.

  16. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.

    Science.gov (United States)

    Zhang, Luxin; He, Yunfei; Zhu, Yujie; Liu, Yuting; Wang, Xiaochang

    2018-02-01

    This paper focuses on the high-value transformation of camellia oleifera shell, which is an agricultural waste enriched in hemicellulose. An efficient catalytic route employing sulfonated swelling mesoporous polydivinylbenzene (PDVB-SO 3 H) as catalyst in monophasic or biphasic solvents was developed for the conversion of raw camellia oleifera shell into furfural. The reaction parameters were evaluated and optimized for improving the furfural yield. It was found that the solvent greatly influenced the hydrolysis of camellia oleifera shells, and the highest furfural yield of 61.3% was obtained in "γ-butyrolactone + water" system when the feedstock-to-catalyst ratio was 2 for 30 min at 443 K. Camellia oleifera shell exhibited a high potential as feedstock to produce furfural in high yields. The outcome of this study provides an attractive utilization option to camellia oleifera shell, which is currently burned or discarded for producing a bio-based chemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. PdRu alloy nanoparticles of solid solution in atomic scale: outperformance towards formic acid electro-oxidation in acidic medium

    International Nuclear Information System (INIS)

    Miao, Kanghua; Luo, Yun; Zou, Jiasui; Yang, Jun; Zhang, Fengqi; Huang, Lin; Huang, Jie; Kang, Xiongwu; Chen, Shaowei

    2017-01-01

    Developing catalyst of high performance and low cost toward the electro-oxidation of formic acid on the anode of fuel cell is critical for the commercialization of direct formic acid fuel cells. Here we reported the synthesis of Pd x Ru 10-x (x = 1,3,5,7,9) nanoparticles (NPs) by concurrent reduction of Pd 2+ and Ru 2+ in polyol solution at 200 °C. The particle size of the obtained NPs was confined at 5–15 nm in diameter. X-ray diffraction (XRD) analysis revealed face-centered cubic (fcc) crystal structure for Pd x Ru 10-x (x = 3,5,7,9), with the lattice parameter proportional to the Pd content. The formation of the solid solution in atomic scale was confirmed for the alloy nanoparticles by XRD and the elemental mapping. Williamson-Hall method revealed that the stacking fault was dependent on the alloying extent of the alloy nanoparticles and reached the minimum for Pd 5 Ru 5 , which exhibited the highest activity towards formic acid oxidation among all these prepared samples, with mass activity of 12.6 times higher than that of commercial Pd/C. It was observed that the highest catalytic activity was in agreement with the minimum of the stacking fault of the alloy nanoparticles.

  18. High strength Ni based composite reinforced by solid solution W(Al) obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Zhao Bo; Zhu Changjun; Ma Xianfeng; Zhao Wei; Tang Huaguo; Cai Shuguang; Qiao Zhuhui

    2007-01-01

    The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al 50 W 50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21% and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens

  19. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  20. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  1. Dielectric properties of lead orthovanadate and orthophosphate and some solid solutions on theirs basis

    International Nuclear Information System (INIS)

    Dudnik, E.F.; Sinyakov, E.V.; Gene, V.V.

    1977-01-01

    The dielectric properties of the monocrystals of the ferroelastics Pb 3 (PO 4 ) 2 and Pb 3 (VO 4 ) 2 were investigated. The dependencies of dielectric permeability and double refraction upon temperature were measured. The domain structure and the effect of pressure upon it were studied. The influence of BaO, CaO and Cr 2 O 3 additions upon the properties of Pb 3 (V 4 ) 2 monocrystals and upon the system of monocrystalline solid solutions of Pb 3 (VO 4 ) 2 - Pb 3 (PO 4 ) 2 was also examined. Similar to the case of usual segnetoelectrics, introduction of additions into segnetoelastic crystals was found to lead to spreading of the phase transition

  2. Internal friction and dislocation collective pinning in disordered quenched solid solutions

    Science.gov (United States)

    D'Anna, G.; Benoit, W.; Vinokur, V. M.

    1997-12-01

    We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.

  3. Synthesis, solid and solution studies of paraquat dichloride calixarene complexes. Molecular modelling

    International Nuclear Information System (INIS)

    Garcia S, I.; Ramirez, F. M.

    2010-01-01

    The interaction of the herbicide paraquat dichloride (P Q, substrate) with p-tert-butylcalix arenas (L, receptor) was investigated in both the solution and solid states. The isolated paraquat calixarene complexes were characterised by UV-visible, 1 H NMR, ESI-Ms, Luminescence and IR spectroscopies and elemental analysis. The stoichiometry of complexes 1 and 2 was 1:1 (1 herbicide: 1 calixarene) and both revealed a biexponential luminescence decay with lifetimes depending on the size and the conformational particularity of the calixarenes. Molecular modelling suggested that both calixarenes interact with the herbicide through cation-π interaction. P Q in included in the p-tert butylcalix a rene cavity, a situation favoured by its pinched conformation in polar solvent while it is partially included in the p-tert butylcalix a rene cavity because of its in-out cone conformation. The theoretical results, in particular using Mopac procedures, were in agreement with the experimental findings. (Author)

  4. Synthesis, solid and solution studies of paraquat dichloride calixarene complexes. Molecular modelling

    Energy Technology Data Exchange (ETDEWEB)

    Garcia S, I.; Ramirez, F. M., E-mail: flor.ramirez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The interaction of the herbicide paraquat dichloride (P Q, substrate) with p-tert-butylcalix arenas (L, receptor) was investigated in both the solution and solid states. The isolated paraquat calixarene complexes were characterised by UV-visible, {sup 1}H NMR, ESI-Ms, Luminescence and IR spectroscopies and elemental analysis. The stoichiometry of complexes 1 and 2 was 1:1 (1 herbicide: 1 calixarene) and both revealed a biexponential luminescence decay with lifetimes depending on the size and the conformational particularity of the calixarenes. Molecular modelling suggested that both calixarenes interact with the herbicide through cation-{pi} interaction. P Q in included in the p-tert butylcalix a rene cavity, a situation favoured by its pinched conformation in polar solvent while it is partially included in the p-tert butylcalix a rene cavity because of its in-out cone conformation. The theoretical results, in particular using Mopac procedures, were in agreement with the experimental findings. (Author)

  5. Double crystal X-ray analysis of phosphorus precipitation in supersaturated Si-P solid solutions

    International Nuclear Information System (INIS)

    Servidori, M.; Zini, Q.; Dal Monte, C.

    1983-01-01

    The physical nature of the electrically inactive phosphorus in silicon is investigated by double crystal X-ray diffraction measurements. This analysis is performed on laser annealed supersaturated samples, doped by ion implantation up to 5 x 10 21 cm -3 . After isothermal heat treatments, these solid solutions show marked reductions in the electrically active phosphorus concentration. In particular, 850 0 C heatings give rise to a carrier concentration which corresponds to the phosphorus solubility in equilibrium with the inactive dopant. This dopant is characterized by means of lattice strain measurements: they are found consistent with the presence of perfectly coherent cubic SiP precipitates. This result is in agreement with the one obtained in preceeding works by electrical measurements and transmission electron microscopy observations and contradicts the hypothesis that the excess dopant atoms are, at least in part, charged point defects (E-centres). (author)

  6. Measurement test on creep strain rate of uranium-zirconium solid solutions

    International Nuclear Information System (INIS)

    Ogata, Takanari; Akabori, Mitsuo; Ogawa, Toru

    1996-11-01

    In order to measure creep strain rate of a small specimen of U-Zr solid solution, authors proposed an estimation method which was based upon the stress relaxation after compression. It was applied to measurement test on creep strain rate of the U-10wt%Zr specimen in the temperature range of 757 to 911degC. It may be concluded that the proposed method is valid, provided that the strain is within the appropriate range and that sufficient amount of the load decrement is observed. The obtained creep rate of U-10wt%Zr alloy indicated significantly smaller value, compared to the experimental data for pure U metal and evaluated data for U-Pu-Zr alloy. However, more careful measurement is desired in future since the present data are thought to be influenced by the precipitations included in the specimen. (author)

  7. Magnetic and electrical properties in BaNiS2-type solid solutions

    International Nuclear Information System (INIS)

    Irizawa, Akinori; Yoshimura, Kazuyoshi; Kosuge, Koji

    2000-01-01

    The magnetic and electrical properties are reported in the new solid solutions BaCo 1-x Cu x S 2 and BaNi 1-x Fe x S 2 . Both compounds show spin-glass-like behavior, although the type of spin frustrations is different with each other. BaCo 1-x Cu x S 2 shows a competition type spin-glass behavior with reentrant phenomenon from antiferromagnetic to spin-glass at low temperatures. BaNi 1-x Fe x S 2 shows a dilute type spin-glass behavior together with super-paramagnetic properties. The temperature variation of 57 Fe Moessbauer spectra in BaNi 0.8 Fe 0.2 S 2 is explicable in a framework of cluster-glass. (author)

  8. Variable valence of praseodymium in rare-earth oxide solid solutions

    International Nuclear Information System (INIS)

    Kravchinskaya, M.V.; Merezhinskii, K.Y.; Tikhonov, P.A.

    1986-01-01

    Solid solutions of elevated praseodymium oxide content have interesting electrical properties, making them the basis for the manufacture of high-temperature electrically conducting materials. Establishment of the composition-structure-valence state relationships enables control of the material properties. The authors performed investigations using a thermogravimetric apparatus with an electronic microbalance of type EM-5-3M, and using x-ray phase analysis of powders (DRON-1 diffractometer, CuK /SUB alpha/ -radiation). The authors also studied the kinetics of praseodymium oxidation with a thermogravimetric apparatus under isothermal conditions. Evaluation of the results with the equation of Kolmogorov, Erofeev, and Avraam indicates that the process is limited by the chemical oxidation of praseodymium and not by diffusion

  9. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  10. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoyan, E-mail: luxy@hit.edu.cn, E-mail: dzk@psu.edu; Li, Hui [Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Limei [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Cao, Wenwu [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-04-07

    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point.

  11. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    International Nuclear Information System (INIS)

    Lu, Xiaoyan; Li, Hui; Zheng, Limei; Cao, Wenwu

    2015-01-01

    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr 1−x Ti x )O 3 system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point

  12. Distribution of rare-earths in solid solution crandalita- goyazita of Sapucaia (Bonito-Para)

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de

    1987-01-01

    The Crandallite are predominant in the lateritic phosphates of Sapucaia, in the form of the solid solution Crandallite (Cn)- Goyazite (Gz)-Florencite (Fl). The Crandallite-Goyazite is predominant, where the maximum proportion of Florencite is Cn 60 Cz 34.8 Fl 5.2 - This proportion of Florencite is relatively high for laterites, and for this case having up to 1,374% weight of TR 2 O 3 in the total sample. The light rare elements are predominant over the heavy ores, and are illustrated in the distribution curve normalized for the chondrites. This curve is partially comparable with the curve for Apatite presents slight negative anomaly for the element Europium, and slight positive anomaly for The elements Thulium. The geochemical caracteristics for the rare earths in this group allow the prediction for the original rock for the laterites. (author) [pt

  13. Paramagnetic properties of the (U1-xTbx)Co2Ge2 solid solutions

    International Nuclear Information System (INIS)

    Kuznietz, Moshe; Pinto, Haim; Ettedgui, Hanania

    1995-01-01

    Polycrystalline (U 1-x Tb x )Co 2 Ge 2 solid solutions have the ThCr 2 Si 2 -type crystal structure and order antiferromagnetically. AC-susceptibility at 80-295 K yields paramagnetic Curie temperatures θ=-350±50, -15±5, -50±15, -12±5, and -80±5 K, and effective magnetic moments μ eff =4.5, 5.9, 7.3, 8.5, and 12.0 (±0.5)μ B , for samples with x=0, 0.25, 0.50, 0.75 and 1, respectively. The high μ eff values are related to occurrence of paramagnetic moments on U, Tb and Co, of which only U and Tb moments order magnetically. ((orig.))

  14. Investigating the effect of compression on solute transport through degrading municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2014-11-15

    Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to the presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.

  15. Dissolution of britholites and monazite / brabantite solid solutions doped with actinides

    International Nuclear Information System (INIS)

    Du Fou De Kerdaniel, E.

    2007-12-01

    In the field of the radwaste storage in underground repository, several matrices were considered as promising ceramics for the specific immobilization of actinides. Two of them, britholites and monazite/ brabantite solid solution, have been considered during this work. In order to examine the dissolution mechanisms occurring at the solid liquid interface, several leaching experiments have been conducted on (Ln III PO 4 ), brabantite (Ca II An IV (PO 4 ) 2 : An = Th, U) and britholites (Ca 9 Nd 0.5 An 0.5 IV (PO 4 ) 4.5 (SiO 4 ) 1.5 F 2 : An = Th, U). Some steady experiments, performed in under saturation conditions for various pH and temperature conditions allowed to evaluate the long term behaviour of such matrices through their chemical durability. On the contrary, the thermodynamic equilibria were examined through the leaching experiments performed near the saturation conditions. By the way, various secondary phases, precipitated onto the surface of altered samples have been identified and characterized. Among them, the (Nd, Ca, Th) - rhabdophane, novelly prepared in over- saturation experiments for a thorium weight loading lower than 11 % appeared to be metastable. Indeed, it turns into TPHPH (Th 2 (PO 4 ) 2 HPO 4 .H 2 O) and Nd - rhabdophane (NdPO 4 .1/2H 2 O) when increasing leaching time. (author)

  16. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Bialy, Agata [Amminex Emissions Technology A/S, Gladsaxevej 363, 2860 Soeborg (Denmark); Jensen, Peter B. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Fysikvej 311, DK-2800 Kgs. Lyngby (Denmark); Blanchard, Didier [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Vegge, Tejs, E-mail: teve@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Quaade, Ulrich J., E-mail: ujq@amminex.com [Amminex Emissions Technology A/S, Gladsaxevej 363, 2860 Soeborg (Denmark)

    2015-01-15

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba{sub x}Sr{sub (1−x)}Cl{sub 2} mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH{sub 3}){sub 8}Cl{sub 2}. - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl{sub 2} in SrCl{sub 2} yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures.

  17. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  18. High-temperature, Knudsen cell-mass spectroscopic studies on lanthanum oxide/uranium dioxide solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; McEachern, R.; LeBlanc, J.C.

    2001-01-01

    Knudsen cell-mass spectroscopic experiments were carried out with lanthanum oxide/uranium oxide solid solutions (1%, 2% and 5% (metal at.% basis)) to assess the volatilization characteristics of rare earths present in irradiated nuclear fuel. The oxidation state of each sample used was conditioned to the 'uranium dioxide stage' by heating in the Knudsen cell under an atmosphere of 10% CO 2 in CO. The mass spectra were analyzed to obtain the vapour pressures of the lanthanum and uranium species. It was found that the vapour pressure of lanthanum oxide follows Henry's law, i.e., its value is directly proportional to its concentration in the solid phase. Also, the vapour pressure of lanthanum oxide over the solid solution, after correction for its concentration in the solid phase, is similar to that of uranium dioxide. (authors)

  19. Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems

    KAUST Repository

    Yan, Yan

    2015-01-01

    We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial

  20. Transesterification of linoleic and oleic sunflower oils to biodiesel using CaO as a solid base catalyst

    Directory of Open Access Journals (Sweden)

    Predojević Zlatica

    2012-01-01

    Full Text Available The purpose of this work is to characterize biodiesel (i.e. methyl esters, MEs produced from linoleic and oleic sunflower oils (LSO and OSO, respectively by alkali transesterification with methanol and CaO as a heterogeneous catalyst under different reaction parameters. The parameters investigated were the methanol/oil molar ratio (4.5:1, 6:1, 7.5:1, 9:1 and 12:1 and the mass ratio of CaO to oil (2% and 3%. The physical and chemical properties of the feedstocks and MEs, like density at 15oC, kinematic viscosity at 40oC, acid value, iodine value, saponification value, cetane index, fatty acid (methyl ester composition, were determined in order to investigate the effects of LSO and OSO properties and reaction parameters on the product characteristics, yields and purity. The properties of feedstock had decisive effect on the physical and chemical properties of MEs as majority of them did not differ significantly under studied reaction conditions. The MEs produced generally met the criteria required for commercial biodiesel; in fact, the only exception was in the case of iodine value of ME produced from LSO. The product yields only slightly changed with the applied conditions; the highest yield (99.22% was obtained for ME-LSO produced at 6 mol% methanol to oil ratio, while the lowest one (93.20% was for ME-OSO produced under the lowest methanol/oil molar ratio (4.5:1. The applied catalyst amounts had similar influence on the oil conversion to biodiesel. The yields of ME-LSOs were in general somewhat higher than those obtained for ME-OSOs under the same conditions, which was attributed to the influence of the respective feedstocks' acid value and viscosity.

  1. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1975-01-01

    Tritides of such metals as scandium, titanium, and erbium are useful materials for determining the effects of helium accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation, as reported elsewhere, which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages (2 to 4 years, depending on the parent metal), the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Scandium is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature tritium solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp scandium lattice are only minimally changed by tritium solution, and we have succeeded in obtaining single crystal ScT 0 . 3 samples in two crystallographic orientations. Using a very sensitive technique, we have measured 3 He emission from both these samples, as well as from fine-grained thin film scandium-tritium solid solution samples (ScT 0 . 3 - 0 . 4 ). The fine-grained film samples release 3 He at 2 to 3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  2. Crystalline structure and electrical properties of solid solutions YNixMn1-xO3

    Directory of Open Access Journals (Sweden)

    Moure, C.

    1999-12-01

    Full Text Available Solid solutions belonging to the Mn-rich region of the YNiXMn1-XO3 system have been studied. The powders were prepared by solid state reaction between the corresponding oxides. Sintered ceramics were obtained by firing at 1325-1350ºC. The incorporation of 20 atomic % Ni2+ to the Yttrium manganite induces the formation of a perovskite phase, with orthorhombic symmetry. Increase of the Ni amount leads to an increase of the orthorhombicity factor b/a, up to an amount of 50 atomic % Ni2+. Above this Ni amount, a biphasic system has been observed, with the presence of unreacted Y2O3. DC electrical conductivity measurements have shown semiconducting behaviour for all the solid solutions with perovskite-type structure. The room temperature conductivity increases with Ni until ~33 atomic % Ni, and then decreases. The 50/50 Ni/Mn composition has different values of conductivity and activation energy against those corresponding to samples with lower values of that ionic ratio. Small polaron hopping mechanism controls the conductivity in these ceramics. Results are discussed as a function of the Mn3+/Mn4+ ratio for each composition.Se han estudiado las soluciones sólidas correspondientes a la región rica en Mn del sistema YNiXMn1-XO3, entre 0 y 50 atomic % Ni. Los compuestos fueron preparados por reacción en estado sólido de los óxidos correspondientes. Se sinterizaron materiales cerámicos a 1325-1350ºC. Con cantidades de 20 atomic % Ni se produce la formación de una fase con estructura de perovskita, y simetría ortorrómbica. La distorsión ortorrómbica crece con el contenido de Ni. Por encima de 50 atomic % Ni, aparece Y2O3 sin reaccionar. Las soluciones sólidas muestran semiconducción con valores de σ que aumentan con el contenido de Ni hasta ~33 atomic %, para luego decrecer, hasta x=0.5. La composición 50/50 Ni/Mn muestra un comportamiento eléctrico algo diferente. Se discuten los resultados en función de la razón Mn3+/Mn4+ para cada

  3. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  4. High temperature thermodynamics of H2 and D2 in titanium, and in dilute titanium oxygen solid solutions

    International Nuclear Information System (INIS)

    Dantzer, P.

    1983-01-01

    The Tian Calvet microcalorimetric method has been improved in order to determine ΔH-barsub(H)(D), the partial molar enthalpy of mixing of hydrogen (deuterium) in the Ti-H 2 (D 2 ) solid systems for compositions 0 2 solid solutions (y = (O/Ti)) at 745 K. The combined calorimetric and equilibrium method allows a precise evaluation of the partial molar entropies. The results of this study differ substantially from earlier published data. (author)

  5. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  6. XAFS spectroscopic study of uranyl coordination in solids and aqueous solution

    International Nuclear Information System (INIS)

    Thompson, H.A.; Brown, G.E. Jr.; Parks, G.A.

    1997-01-01

    To evaluate the ability of X-ray absorption fine structure (XAFS) spectroscopy to elucidate the coordination environment of U 6+ at the solid-water interface, we conducted an in-depth analysis of experimental XAFS data from U 6+ solid and solution model compounds. Using the ab initio XAFS code FEFF6, we calculated phase-shift and amplitude functions for fitting experimental data. The code FEFF6 does a good job of reproducing experimental data and is particularly valuable for providing phase-shift and amplitude functions for neighboring atoms whose spectral contributions are difficult to isolate from experimental data because of overlap of Fourier transform features. In solid-phase model compounds at ambient temperature, we were able to fit spectral contributions from axial O (1.8 Angstrom), equatorial O (2.2-2.5 Angstrom), N (2.9 Angstrom), C (2.9 Angstrom), Si (3.2 Angstrom), P (3.6 Angstrom), distant 0 (4.3 Angstrom), and U (4.0, 4.3, 4.9, and 5.2 Angstrom) atoms. Contributions from N, C, Si, P, distant O, and distant U (4.9 and 5.2 Angstrom) are weak and therefore might go undetected in a sample of unknown composition. Lowering the temperature to 10 K extends detection of U neighbors to 7.0 Angstrom. The ability to detect these atoms suggests that XAFS might be capable of discerning inner-sphere U sorption at solid aluminosilicate-water interfaces. XAFS should definitely detect multinuclear U complexes and precipitates. Multiple-scattering paths are minor contributors to uranyl XAFS beyond k = 3 Angstrom -1 . Allowing shell-dependent disorder parameters (σ 2 ) to vary, we observed narrow ranges of σ 2 values for similar shells of neighboring atoms. Knowledge of these ranges is necessary to constrain the fit of XAFS spectra for unknowns. Finally, we found that structures reported in the literature for uranyl diacetate and rutherfordine are not completely correct. 50 refs., 6 figs., 2 tabs

  7. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks.

    Science.gov (United States)

    Chambers, Matthew B; Wang, Xia; Elgrishi, Noémie; Hendon, Christopher H; Walsh, Aron; Bonnefoy, Jonathan; Canivet, Jérôme; Quadrelli, Elsje Alessandra; Farrusseng, David; Mellot-Draznieks, Caroline; Fontecave, Marc

    2015-02-01

    The first photosensitization of a rhodium-based catalytic system for CO2 reduction is reported, with formate as the sole carbon-containing product. Formate has wide industrial applications and is seen as valuable within fuel cell technologies as well as an interesting H2 -storage compound. Heterogenization of molecular rhodium catalysts is accomplished via the synthesis, post-synthetic linker exchange, and characterization of a new metal-organic framework (MOF) Cp*Rh@UiO-67. While the catalytic activities of the homogeneous and heterogeneous systems are found to be comparable, the MOF-based system is more stable and selective. Furthermore it can be recycled without loss of activity. For formate production, an optimal catalyst loading of ∼10 % molar Rh incorporation is determined. Increased incorporation of rhodium catalyst favors thermal decomposition of formate into H2 . There is no precedent for a MOF catalyzing the latter reaction so far. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dispersion of dielectric permittivity and magnetic properties of solid solution PZT–PFT

    Directory of Open Access Journals (Sweden)

    Skulski Ryszard

    2015-09-01

    Full Text Available In this paper we present the results of investigations into ceramic samples of solid solution (1-x(PbZr0.53Ti0.47O3- x(PbFe0.5Ta0.503 (i.e. (1-xPZT-xPFT with x = 0.25, 0.35 and 0.45. We try to find the relation between the character of dielectric dispersion at various temperatures and the composition of this solution. We also describe the magnetic properties of investigated samples. With increasing the content of PFT also mass magnetization and mass susceptibility increase (i.e. magnetic properties are more pronounced at every temperature. The temperature dependences of mass magnetization and re­ciprocal of mass susceptibility have similar runs for all the compositions. However, our magnetic investigations exhibit weak antiferromagnetic ordering instead of the ferromagnetic one at room temperature. We can also say that up to room tempera­ture any magnetic phase transition has not occurred. It may be a result of the conditions of the technological process during producing our PZT-PFT ceramics.

  9. Evolution of microstructures in nickel solid solution fatigued at high temperature: occurence of an intragranular cavitation

    International Nuclear Information System (INIS)

    Arnaud, B.

    1986-06-01

    We studied by T.E.M. the microstructures appearing in Nickel solid solution fatigued in push-pull between 0.4 Tm and 0.6 Tm (Tm=melting temperature), the maximum amplitude of stress was imposed: +- 100 MPa, three frequencies were used: 1.25 Hz, 2.5 Hz and 10 Hz. In Ni 6% at Ge the structure of dislocations evolves continuously with the number of cycles: homogeneous distribution of dislocations, cell structure, then development of sub-grains 5 times as big as the cell; these sub-grains are not stable, they break up into cells. This succession of structures suggests a cyclic evolution. The cavities appear for number of cycles greater than a threshold number depending on the temperature and the frequency. The cavities are not distributed uniformly, they are located in zone. According to the conditions of sollicitation, the shape (equiaxe of small stick) and the distribution (uniform, in band, in crown) of the cavities fluctuate. This cavitation exists equally in other materials (Ni 4% at Si, Ni). This intra-granular cavitation has been observed in the same domain of temperatures as the domain of swelling in the same material under bombardment with ions Ni + . Due to this similitude we searched for a segregation of solute (like the induced precipitation by irradiation) but this phenomenon did not occur with our experimental conditions [fr

  10. A new variable temperature solution-solid interface scanning tunneling microscope.

    Science.gov (United States)

    Jahanbekam, Abdolreza; Mazur, Ursula; Hipps, K W

    2014-10-01

    We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift. By incorporating an open solution reservoir in the chamber, solvent evaporation from the sample is minimized; allowing users to use volatile solvents for temperature dependent studies at high temperatures. The new design enables the user to image at the SS interface with some volatile solvents for long periods of time (>24 h). An increase in the nonlinearity of the piezoelectric scanner in the lateral direction as a function of temperature is addressed. A temperature dependent study of cobalt(II) octaethylporphyrin (CoOEP) at the toluene/Au(111) interface has been performed with this instrument. It is demonstrated that the lattice parameters remain constant within experimental error from 24 °C to 75 °C. Similar quality images were obtained over the entire temperature range. We report the unit cell of CoOEP at the toluene/Au(111) interface (based on two molecules per unit cell) to be A = (1.36 ± 0.04) nm, B = (2.51 ± 0.04) nm, and α = 97° ± 2°.

  11. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    Directory of Open Access Journals (Sweden)

    Hongwei Deng

    2010-11-01

    Full Text Available One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M, and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  12. Fabrication and performance of all-solid-state chloride sensors in synthetic concrete pore solutions.

    Science.gov (United States)

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  13. Training Course of Experimental Chemistry in the Nuclear Fuel Cycle: Solid State and Solution Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju hyeong; Park, Kwangheon; Kim, Tae hoon; Park, Hyoung gyu; Kim, Jisu [Kyunghee University, Yongin (Korea, Republic of); Song, Hyuk jin [Dongguk University, Gyeongju (Korea, Republic of); Lee, Chan ki; Kang, Do kyu; Jeong, Hyeon jun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    In this experimental study program in Tohoku University, basic experiments were done by the participants. First one is the hydrogen reduction experiment of the mixture of UO{sub 2} and ZrO{sub 2}. Second one is to observe microscopic structure of solid solution of UO{sub 2} and ZrO{sub 2} using SEM/EDX and XRD system, simulated fuel debris. Third one is milking process of {sup 239}Np from {sup 243}Am by solvent extraction using Tri-n-Octylamine (TOA). Last one is solvent extraction in PUREX by the simulated mixed aqueous solution of U, {sup 85}Sr and {sup 239}Np which is represented minor actinide elements included in the spent nuclear fuel. Uranium is separated from aqueous phase to organic phase during solvent extraction procedure using TBP and dodecane. Also, neptunium can be extracted to organic phase as nitric acid concentration change. The extraction behavior of neptunium is different by oxidation state in aqueous phase. The behavior of neptunium is represented as a combined form of these oxidation states in experiment. Therefore, because the oxidation states of neptunium can be controlled by controlling the concentration of nitric acid, the extractability of neptunium can be controlled.

  14. Hairy foam" : carbon nanofibers grown on solid foam. A fully accessible, high surface area, graphitic catalyst support

    NARCIS (Netherlands)

    Wenmakers, P.W.A.M.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    This paper describes the synthesis of carbon nanofibers (CNFs) on solid carbon foam ("Hairy Foam") by catalytic decompn. of ethylene. The effect of nickel loading on fiber diam. and morphol., CNF coverage, and fiber layer thickness is studied using SEM and N2/Kr-physisorption. The surface area

  15. Photocatalytic hydrogen production over solid solutions between BiFeO{sub 3} and SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lingwei; Lv, Meilin [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Liu, Gang [Shenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xu, Xiaoxiang, E-mail: xxxu@tongji.edu.cn [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China)

    2017-01-01

    Graphical abstract: We have successfully prepared a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions. These materials own strong visible light absorption and demonstrate appealing photocatalytic activity under both full range and visible light irradiation. - Highlights: • Band gap values can be tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. • Photocatalytic activity is greatly improved after constituting solid solutions. • Photocatalytic activity is influenced by surface area and light absorption. • Fe plays an important role for band gap reduction and catalytic activity. - Abstract: Constituting solid solutions has been an appealing means to gain control over various physicochemical properties. In this work, we synthesized a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions and systematically explored their structural, optical and photocatalytic properties. Our results show that all solid solutions crystallize in a primitive cubic structure and their band gap values can be easily tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. Photocatalytic hydrogen production under both full range and visible light irradiation is greatly improved after forming solid solutions. The highest hydrogen production rate obtained is ∼180 μmol/h under full range irradiation (λ ≥ 250 nm) and ∼4.2 μmol/h under visible light irradiation (λ ≥ 400 nm), corresponding to apparent quantum efficiency ∼2.28% and ∼0.10%, respectively. The activity is found to be strongly influenced by surface area and light absorption. Theoretical calculation suggests that Fe contributes to the formation of spin-polarized bands in the middle of original band gap and is responsible for the band gap reduction and visible light photocatalytic activity.

  16. Recycling of spent hydroprocessing catalysts: EURECAT technology

    Energy Technology Data Exchange (ETDEWEB)

    Berrebi, G.; Dufresne, P.; Jacquier, Y. (EURECAT-European Reprocessing Catalysts, La Voulte sur Rhone (France))

    1994-04-01

    Disposal of spent catalyst is a growing concern for all refiners. Environmental regulations are becoming stricter and stricter and there are State recommendations to develop disposal routes which would emphasize recycling as much as possible, and processing the wastes as near as possible to the production center. In this context, EURECAT has developed a recycling process for the hydroprocessing catalysts used in the oil refineries (NiMo, CoMo, NiW on alumina or mixed alumina silica). The process starts with a regeneration of the catalyst to eliminate hydrocarbons, carbon and sulfur. After a caustic roasting, the material is leached to obtain a solution containing mainly molybdenum (or tungsten) and vanadium, and a solid containing essentially alumina, cobalt and/or nickel. Molybdenum and vanadium are separated by an ion exchange resin technique. The solid is processed in an arc furnace to separate the alumina. Nickel and cobalt are separated by conventional solvent extraction to obtain pure metal. Alumina is disposed of as an inert slag. The strength of the process lies in the combination of proven technologies applied by companies whose reliability in their respective field is well known. The aspects concerning spent catalyst handling, packaging and transport are also discussed. 13 refs., 2 figs., 2 tabs.

  17. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    Science.gov (United States)

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Fuyang Tian

    2017-11-01

    Full Text Available Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasirandom structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics and their applications and limits in single phase HEAs.

  19. Deep and shallow acceptor levels in solid solutions Pb0.98Sm0.02S

    International Nuclear Information System (INIS)

    Hasanov, H.A.; Rahimov, R.Sh.

    2010-01-01

    It is well known that the metal vacancies the energy levels of which take place between permitted energies of valency band, are the main acceptor centers in the led salts and solid solutions on their base. The aim of the given paper is founding of character of acceptor levels in single crystals Pb 0 .98Sm 0 .02S with low concentrations of charge carrier. The deep and shallow acceptor levels are found at investigation of Hall effect in Pb 0 .98Sm 0 .02S solid solution with character of low concentrations of charge carriers in crystals

  20. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  1. Neutron diffraction radiation of solid solution of carbon and hydrogen in the α-titanium in the homogeneity domain

    International Nuclear Information System (INIS)

    Mirzaev, B.B.; Khidirov, I.; Mukhtarova, N.N.

    2005-01-01

    In the work by the neutron-graph the homogeneity domain of the introduction solid solution TiC x H y is determined. The sample neutron grams have been taken on the neutron diffractometer (λ=.1085 nm) installed at the thermal column of the WWR-SM reactor (INF AN RUz). For the phase analysis and estimation of solid solutions homogeneity the X-ray graph was used. X-ray grams were taken on the X-ray diffractometer DRON-3M with use of CuK α radiation (λ=0.015418 nm)

  2. Thermoelectric properties of Bi2Te3-Bi2Se3 solid solutions prepared by attrition milling and hot pressing

    International Nuclear Information System (INIS)

    Lee, Go-Eun; Kim, Il-Ho; Choi, Soon-Mok; Lim, Young-Soo; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2014-01-01

    Bi 2 Te 3-y Se y (y = 0.15 - 0.6) solid solutions were prepared by attrition milling and hot pressing. The lattice constants decreased with increasing Se content, indicating that the Se atoms were successfully substituted into the Te sites. All specimens exhibited n-type conduction, and their electrical resistivities increased slightly with increasing temperature. With increasing Se content, the Seebeck coefficients increased while the thermal conductivity decreased due to the increase in phonon scattering. The maximum figure of merit obtained was 0.63 at 440 K for the undoped Bi 2 Te 2.4 Se 0.6 solid solution.

  3. Specific features of kinetics of He/sup 3/-He/sup 4/ solid solution transformations at superlow temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, V A; Majdanov, V A; Mikhin, N P

    1986-06-01

    The NMR data on the phase transition kinetics of /sup 3/He-/sup 4/He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm/sup 2//mol with a /sup 3/He content of 0.54%. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of /sup 3/He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid.

  4. Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer

    International Nuclear Information System (INIS)

    Reid, Ellen F.; Burn, Paul L.; Lo, Shih-Chun; Hogan, Conor F.

    2013-01-01

    The solution phase and solid-state electrochemistry and electrochemiluminescence (ECL) of an iridium(III) complex-cored dendrimeric analogue of Ir(ppy) 3 , (G1pIr), are reported. The solid-state electrochemistry and solid-state ECL of Ir(ppy) 3 itself is also described for the first time. In solution phase, the dendrimer displays greater immunity to oxygen quenching in photoluminescence (PL) experiments and exhibits greater ECL efficiency compared to the parent Ir(ppy) 3 core under the same conditions, despite a lower photoluminescence quantum yield. It is proposed that the dendrons which effectively shield the core from PL quenching interactions in the solid-state counteract the effects of parasitic side-reactions during the solution ECL experiments. Electroactive and ECL-active solid-state films of both Ir(ppy) 3 and G1pIr were produced by drop-coating on boron doped diamond electrodes. Films of Ir(ppy) 3 produced stable co-reactant ECL. However, films of G1pIr produced lower than expected ECL intensity. This was attributed to poorer charge transport and the lipophilicity of the film limiting the rate of interaction with the co-reactant required for formation of the excited state

  5. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  6. Numerical Simulation of Solid Combustion with a Robust Conjugate-Gradient Solution for Pressure

    National Research Council Canada - National Science Library

    Wang, Yi-Zun

    2002-01-01

    A Bi-Conjugate Gradient method (Bi-CGSTAB) is studied and tested for solid combustion in which the gas and solid phases are coupled by a set of conditions describing mass, momentum and heat transport across the interface...

  7. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    Science.gov (United States)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  8. Community Solutions to Solid Waste Pollution. Operation Waste Watch: The New Three Rs for Elementary School. Grade 6. [Second Edition.

    Science.gov (United States)

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    This publication, the last in a series of seven for elementary schools, is an environmental education curriculum guide with a focus on waste management issues. It contains a unit of exercises selected for sixth grade students focusing on community solutions to solid waste pollution. Waste management activities included in this unit seek to…

  9. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    Science.gov (United States)

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  10. About thermal properties of TIIn1-xNdxS2 (0≤X≤0.10) solid solutions

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Agaeva, U.M.; Sardarova, N.S.

    2013-01-01

    This report is devoted to investigation of thermal expansion and thermal conductivity of TIIn 1 -xNd x S 2 (0≤X≤0.10) solid solutions, depending on the concentration and temperature at 80-450 K. The measurements were carried out on the thermal expansion of polycrystalline, and the thermal conductivity of single-crystal samples

  11. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.; Gaynor, Whitney; Ding, I-Kang; Rim, Seung-Bum; Peumans, Peter; McGehee, Michael D.

    2011-01-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag

  12. Neutron diffraction studies on Ca1− xBaxZr4P6O24 solid solutions

    Indian Academy of Sciences (India)

    P6O24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from ...

  13. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    Directory of Open Access Journals (Sweden)

    Jesús-Alejandro Peña-Jiménez

    2016-09-01

    Full Text Available The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  14. Planet Patrol. An Environmental Unit on Solid Waste Solutions for Grades 4-6.

    Science.gov (United States)

    Procter and Gamble Educational Services, Cincinnati, OH.

    This classroom unit was developed for use in grades 4-6 to help teach the concept of solid waste management. The teacher's guide provides an overview of the issue of solid waste disposal, a description of government, industry, and consumer roles in resolving the solid waste issue, and four lessons involving sanitary landfills, the reduction of…

  15. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys

    Science.gov (United States)

    Shi, Shi; He, Mo-Rigen; Jin, Ke; Bei, Hongbin; Robertson, Ian M.

    2018-04-01

    Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size and fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. These dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.

  16. Cerium valence change in the solid solutions Ce(Rh1-xRux)Sn

    International Nuclear Information System (INIS)

    Niehaus, Oliver; Riecken, Jan F.; Winter, Florian; Poettgen, Rainer; Muenster Univ.; Abdala, Paula M.; Chevalier, Bernard

    2013-01-01

    The solid solutions Ce(Rh 1-x Ru x )Sn were investigated by means of susceptibility measurements, specific heat, electrical resistivity, X-ray absorption spectroscopy (XAS), and 119 Sn Moessbauer spectroscopy. Magnetic measurements as well as XAS data show a cerium valence change in dependence on the ruthenium content. Higher ruthenium content causes an increase from 3.22 to 3.45 at 300 K. Furthermore χ and χ -1 data indicate valence fluctuation for cerium as a function of temperature. For example, Ce(Rh 0.8 Ru 0.2 )Sn exhibits valence fluctuations between 3.42 and 3.32 in the temperature range of 10 to 300 K. This could be proven by using the interconfiguration fluctuation (ICF) model introduced by Sales and Wohlleben. Cerium valence change does not influence the tin atoms as proven by 119 Sn Moessbauer spectroscopy, but it influences the electrical properties. Ce(Rh 0.9 Ru 0.1 )Sn behaves like a typical valence fluctuating compound, and higher ruthenium content causes an increase of the metallic behavior. (orig.)

  17. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys

    International Nuclear Information System (INIS)

    Lu, Chenyang; Yang, Taini; Jin, Ke; Gao, Ning; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Weber, William J.; Sun, Kai; Dong, Yan; Wang, Lumin

    2017-01-01

    A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni"2"+ ions at 773 K to a fluence of 5 × 10"1"6 ions/cm"2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasing compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, “disk” like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.

  18. Structure and adhesive properties of solid solution specimen surfaces based on bismuth tellurides after cutting

    International Nuclear Information System (INIS)

    Dik, M.G.; Rybina, L.N.; Dubrovina, A.N.; Abdinov, D.Sh.

    1988-01-01

    Structure and depth of broken layer, occuring at electroerosion cutting along ingot samples axis of Bi 2 Te 3 -Bi 2 Se 3 , Bi 2 Te 3 -Sb 2 Te 3 systems solid solutions (obtained by methods of directed crystallization and extrusion), and equilibrium contact angle θ, adhesion effort A and contact resistance r c of these crystals contacts with eutectic alloy of Bi-Sn system are investigated. Depth and structure of the broken layer were determined by means of stage-by-stage scouring-etching and X-ray investigation of cutting surface. It is shown, that etching during ∼50 c in large-block material eliminates polycrystalline layer, lattice bendings, resulting in Laue spots asterism, but does not remove their fragmentation and wash-out. Slots wash-out reduces, while fragmentation remains even after continuous etching. Etching with duration from ∼50 c up to 30-40 min practically does not change the character of polycrystalline samples diffraction pattern

  19. Stacking fault energy measurements in solid solution strengthened Ni-Cr-Fe alloys using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Unfried-Silgado, Jimy [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Universidade Estadual de Campinas UNICAMP, Faculdade de Engenharia Mecanica FEM, Campinas (Brazil); Universidad Autonoma del Caribe, Grupo IMTEF, Ingenieria Mecanica, Barranquilla (Colombia); Wu, Leonardo [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil); Furlan Ferreira, Fabio [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas (CCNH), Sao Paulo (Brazil); Mario Garzon, Carlos [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Ramirez, Antonio J, E-mail: antonio.ramirez@lnnano.org.br [Metals Characterization and Processing Laboratory, Brazilian Nanothecnology National Laboratory - CNPEM/ABTLuS, Caixa Postal 6192, CEP 13083-970, Campinas, Sao Paulo (Brazil)

    2012-12-15

    The stacking fault energy (SFE) in a set of experimental Ni-Cr-Fe alloys was determined using line profile analysis on synchrotron X-ray diffraction measurements. The methodology used here is supported by the Warren-Averbach calculations and the relationships among the stacking fault probability ({alpha}) and the mean-square microstrain (<{epsilon}{sup 2}{sub L}>). These parameters were obtained experimentally from cold-worked and annealed specimens extracted from the set of studied Ni-alloys. The obtained results show that the SFE in these alloys is strongly influenced by the kind and quantity of addition elements. Different effects due to the action of carbide-forming elements and the solid solution hardening elements on the SFE are discussed here. The simultaneous addition of Nb, Hf, and, Mo, in the studied Ni-Cr-Fe alloys have generated the stronger decreasing of the SFE. The relationships between SFE and the contributions on electronic structure from each element of additions were established.

  20. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    Science.gov (United States)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  1. Bioadsorption of a reactive dye from aqueous solution by municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abdelkader Berrazoum

    2015-09-01

    Full Text Available The biosorbent was obtained from municipal solid waste (MSW of the Mostaganem city. Before use the MSW was dried in air for three days and washed several times. The sorption of yellow procion reactive dye MX-3R onto biomass from aqueous solution was investigated as function of pH, contact time and temperature. The adsorption capacity of MX-3R was 45.84 mg/g at pH 2–3 and room temperature. MX-3R adsorption decreases with increasing temperature. The Langmuir, Freundlich and Langmuir–Freundlich adsorption models were applied to describe the related isotherms. Langmuir–Freundlich equation has shown the best fitting with the experimental data. The pseudo first-order, pseudo second-order and intra-particle diffusion kinetic models were used to describe the kinetic sorption. The results clearly showed that the adsorption of MX-3R onto biosorbent followed the pseudo second-order model. The enthalpy (ΔH°, entropy (ΔS° and Gibbs free energy (ΔG° changes of adsorption were calculated. The results indicated that the adsorption of MX-3R occurs spontaneously as an exothermic process.

  2. High-temperature superconductivity in solid solutions based on mixed yttrium and barium cuprate

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Kirsanov, N.A.; Makarova, O.V.; Zubkov, V.G.; Shveikin, G.P.

    1990-01-01

    The discovery of high-temperature superconductivity (T c = 30-40 K) in mixed lanthanum and alkaline earth cuprates La 2-x M x CuO 4 , where M = Ba and Ca (1-3) stimulated an extensive search for new superconducting phases based on mixed oxides of these elements. The superconducting transition temperature T c in LnBa 2 Cu 3 O 7-z phases is practically independent of the REE and lies between 90-96 K. The crystal structure of superconducting YBa 2 Cu 3 O 7-z is similar to perovskite, has orthorhombic symmetry (4,5), and is related to the lanthanum barium cuprite tetragonal defect structure La 3 Ba 3 Cu 6 O 14.1 (8). A study of possible solid solutions (SS) based on YBa 2 Cu 3 O 7-z through iso- or heterovalent substitution for Y 3+ and Ba 2+ and of their electrical properties seems warranted. In the present work, the authors report the synthesis, x-ray diffraction study, and specific electric resistivity of SS Y 1-x M x (Ba 1-y M y ') 2 Cu 3 O 7-z , where M = La, Lu, Sc, In, K, Zr, and Ce and M' = Ca, Sr, Mg, K, and La

  3. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.; Cook, Stuart N.; Scanlon, David O.; Fearn, Sarah; Cabana, Jordi; Greaves, Colin; Kilner, John A.; Skinner, Stephen J.

    2014-01-01

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  4. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions

    Science.gov (United States)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-04-01

    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  5. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent

    International Nuclear Information System (INIS)

    Al-Ghouti, Mohammad A.; Li, Juiki; Salamh, Yousef; Al-Laqtah, Nasir; Walker, Gavin; Ahmad, Mohammad N.M.

    2010-01-01

    A potential usefulness of raw date pits as an inexpensive solid adsorbent for methylene blue (MB), copper ion (Cu 2+ ), and cadmium ion (Cd 2+ ) has been demonstrated in this work. This work was conducted to provide fundamental information from the study of equilibrium adsorption isotherms and to investigate the adsorption mechanisms in the adsorption of MB, Cu 2+ , and Cd 2+ onto raw date pits. The fit of two models, namely Langmuir and Freundlich models, to experimental data obtained from the adsorption isotherms was checked. The adsorption capacities of the raw date pits towards MB and both Cu 2+ and Cd 2+ ions obtained from Langmuir and Freundlich models were found to be 277.8, 35.9, and 39.5 mg g -1 , respectively. Surface functional groups on the raw date pits surface substantially influence the adsorption characteristics of MB, Cu 2+ , and Cd 2+ onto the raw date pits. The Fourier transform infrared spectroscopy (FTIR) studies show clear differences in both absorbances and shapes of the bands and in their locations before and after solute adsorption. Two mechanisms were observed for MB adsorption, hydrogen bonding and electrostatic attraction, while other mechanisms were observed for Cu 2+ and Cd 2+ . For Cu 2+ , binding two cellulose/lignin units together is the predominant mechanism. For Cd 2+ , the predominant mechanism is by binding itself using two hydroxyl groups in the cellulose/lignin unit.

  6. A Unified Physical Model for Creep and Hot Working of Al-Mg Solid Solution Alloys

    Directory of Open Access Journals (Sweden)

    Stefano Spigarelli

    2017-12-01

    Full Text Available The description of the dependence of steady-state creep rate on applied stress and temperature is almost invariably based on the Norton equation or on derived power-law relationships. In hot working, the Norton equation does not work, and is therefore usually replaced with the Garofalo (sinh equation. Both of these equations are phenomenological in nature and can be seldom unambiguously related to microstructural parameters, such as dislocation density, although early efforts in this sense led to the introduction of the “natural power law” with exponent 3. In an attempt to overcome this deficiency, a recent model with sound physical basis has been successfully used to describe the creep response of fcc metals, such as copper. The main advantage of this model is that it does not require any data fitting to predict the strain rate dependence on applied stress and temperature, which is a particularly attractive peculiarity when studying the hot workability of metals. Thus, the model, properly modified to take into account solid solution strengthening effects, has been here applied to the study of the creep and hot-working of simple Al-Mg single phase alloys. The model demonstrated an excellent accuracy in describing both creep and hot working regimes, still maintaining its most important feature, that is, it does not require any fitting of the experimental data.

  7. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    Science.gov (United States)

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.

  8. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.

    2014-09-24

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  9. Investigation of physicochemical and pigment properties of solid solutions of cadmium, manganese, zinc sulfides

    International Nuclear Information System (INIS)

    Grigor'eva, L.I.; Ignat'eva, I.V.; Kalinskaya, T.V.

    1985-01-01

    Mixed sulfides (Cd, Mn)S and (Cd, Mn, Zn)S with manganese sulfide content upto 50 mol% are synthesized. The possibility of preparing solid solutions both on the basis of silfides (Cd, Mn)S and in the ternary system (Cd, Mn, Zn)S with the temperature of polymorphic transformation of a cubic structure into a hexagonal one, being lower (500 deg C) than in the absence of MnS, is shown by the X-ray diffraction method. The colour analysis of the pigment specimens obtained has shown that the quantity of oxidized manganese compounds, producing no effect of the system colour, should not exceed 0.05 mol% on conversion to MnS. Among the mixed specimens (Cd, Mn)S the brightest colour background is obtained for specimens calcinated at 500-550 deg C. The mixed sulfide of the composition 0.77CdSx0.15MnSx0.08ZnS, calcinated at 500 deg C, gives a pigment corresponding to a commercial one by colour

  10. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D.

    1999-12-01

    The major contributions of the isotopes 122 Sb and 124 Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300 o C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb 2 O 3 increases by about two orders of magnitude between 25 and 200 o C, and then levels out or decreases slightly. At 250 o C, in oxidizing solutions, Sb 2 O 5 ·xH 2 O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na 2α [H(H 2 O)] 2-2α Sb 2 O 6 , which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200 o C and decreases at temperatures above 250 o C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO 3 - or Sb(OH) 6 - ), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations ≥ 0.00005 mol·dm -3 in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be ruled out that hydrated Sb 2 O 5 (especially the pyrochlore form) might be less soluble in near-neutral, low

  11. Determination of boron in aqueous solutions by solid state nuclear track detectors technique, using a filtered neutron beam

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Pugliesi, R.; Khouri, M.T.F.C.

    1985-11-01

    The solid state nuclear track detectors technique has been used for determination of boron in aqueous solutions, using a filtered neutron beam. The particles tracks from the 10 B(n,α)Li 7 reaction were registered in the CR-39 film, chemically etched in a (30%) KOH solution 70 0 C during 90 minutes. The obtained results showed the usefulness of this technique for boron determination in the ppm range. The inferior detectable limit was 9 ppm. The combined track registration efficiency factor K has been evaluated in the solutions, for the CR-39 detector and its values is K= (4,60 - + 0,06). 10 -4 cm. (Author) [pt

  12. Effect of sodium carbonate catalyst weight on production of bio-oil via thermochemical liquefaction of corncobs in ethanol-water solution

    Science.gov (United States)

    Sembodo, Bregas Siswahjono Tatag; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Lignocellulosic biomass has recently received serious attention as an energy source that can replace fossil fuels. Corncob is one of lignocellulosic biomass wastes, which can be further processed into bio-oil through thermochemical liquefaction process. Bio-oil is expected to be further processed into fuel oil. In this research the effect of Na2CO3 catalyst weight on the yield of bio-oil was investigated. The composition of bio-oil produced in this process was analyzed by GC-MS. Bio-oil formation rate were analyzed through mathematical model development. First model aasumed as an isothermal process, while second model was not. It is found that both models were able to provide a good approach to experimental data. The average reaction rate constants was obtained from isothermal model, while the activation energy level and collision factors were obtained from non-isothermal model. The reaction rate will increase by addition of Na2CO3 (0 - 0.5 g) as catalyst to 250 mL system solution, then the activation energy will decrease from 1964.265 joules/mole to 1029.994 joules/mole. The GC-MS analysis results showed that the bio-oil were contained of ester compounds, phenolic compounds, cyclic compunds, heterocyclic compounds, and poly-alcohols compounds.

  13. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  14. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  15. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  16. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    Science.gov (United States)

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  17. Mg-Cu-Al layered double hydroxides based catalysts for the reduction of nitrates in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vulić Tatjana J.

    2010-01-01

    Full Text Available The secondary waste and bacterial contamination in physico-chemical and biological separation processes used today for nitrate removal from ground water make novel catalytic technologies that convert nitrates to unharmful gaseous nitrogen, very attractive for scientific research. The Mg-Cu-Al layered double hydroxide (LDH based catalysts with different Mg/Al ratio were investigated in water denitrification reaction in the presence of hydrogen and with solely copper as an active phase. Since LDHs have ion exchange properties and their derived mixed oxides possess memory effect (restoration of layered structure after thermal decomposition, their adsorption capacity for nitrates was also measured in the same model system. All studied samples showed nitrate removal from 23% to 62% following the decrease in Al content, as well as the substantial adsorption capacity ranging from 18% to 38%. These results underlie the necessity to take into account the effects of the adsorption in all future investigations.

  18. Structure-property relationships of new bismuth and lead oxide based perovskite ternary solid solutions

    Science.gov (United States)

    Dwivedi, Akansha

    Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM

  19. Kinetics and thermodynamics of the dissolution of Th1-xMxO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Dacheux, N.; Moisy, Ph.; Purans, J.

    2004-01-01

    Kinetics of the dissolution of Th 1-x M x O 2 (M = U, Pu) solid solutions was investigated as a function of several chemical parameters such as pH, substitution ratio, temperature, ionic strength, and electrolyte. Several compositions of Th 1-x U x O 2 and Th 1-x Pu x O 2 were synthesized and characterized before and after leaching by using several methods such as XRD, EXAFS, BET, PIXE, SEM, and XPS. Leaching tests were performed in nitric, hydrochloric or sulfuric media and groundwater. The normalized dissolution rates were evaluated for Th 1-x U x O 2 , and Th 0.88 Pu 0.12 O 2 leading to the determination of the partial order related to the proton concentration, n, and to the corresponding normalized dissolution rate constant at pH = 0, k'T. While for Th enriched solids, the solid solutions Th 1-x U x O 2 have the same dissolution behaviour than ThO 2 with a partial order n ∼ 0.3, in the case of uranium enriched solids, Th 1-x U x O 2 has the same dissolution behaviour than UO 2 with a partial order of n = 1, indicating that uranium oxidation rate becomes the limiting step of the dissolution process. The stoichiometry of the release of both actinides (U or Pu, Th) was verified until the precipitation of thorium occurred in the leachate for pH > 2, while uranium was released in the solution as an uranyl form. For uranium enriched solid solutions, thermodynamic equilibrium was reached after 100 days, and solubility constant of secondary phase was determined. In the case of Th 1-x Pu x O 2 , the dissolution behaviour is similar to that of ThO 2 , but only kinetic aspect of the dissolution can be studied. From the analysis of XPS and EXAFS data on leached and un-leached Th 1-x U x O 2 samples, the dissolution mechanism of solid solutions was explained and will be discussed. The role of the electrolytes on the dissolution of the solid solutions is discussed. Kinetics parameters of dissolution are also given in groundwater and in neutral media

  20. Fe-Ti-O based catalyst for large-chiral-angle single-walled carbon nanotube growth

    DEFF Research Database (Denmark)

    He, Maoshuai; Zhang, Lili; Jiang, Hua

    2016-01-01

    Catalyst selection is very crucial for controlled growth of single-walled carbon nanotubes (SWNTs). Here we introduce a well-designed Fe-Ti-O solid solution for SWNT growth with a high preference to large chiral angles. The Fe-Ti-O catalyst was prepared by combining Ti layer deposition onto premade...... Fe nanoparticles with subsequent high-temperature air calcination, which favours the formation of a homogeneous Fe-Ti-O solid solution. Using CO as the carbon feedstock, chemical vapour deposition growth of SWNTs at 800 °C was demonstrated on the Fe-Ti-O catalyst. Nanobeam electron diffraction...... characterization on a number of individual SWNTs revealed that more than 94% of SWNTs have chiral angles larger than 15°. In situ environmental transmission electron microscopy study was carried out to reveal the catalyst dynamics upon reduction. Our results identify that the phase segregation through reducing Fe...